
UNIVERZITA PALACKÉHO V OLOMOUCI
PŘÍRODOVĚDECKÁ FAKULTA
KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY

DIPLOMOVÁ PRÁCE

Metody Newtonova typu pro řešeńı úloh

nelineárńıho programováńı

Vedoućı práce:
Doc. RNDr. Radek Kučera, Ph.D.

Rok odevzdáńı: 2010

Vypracovala:
Kristina Rádková

MPM, II. ročńık

Prohlášeńı

Prohlašuji, že jsem vytvořila tuto diplomovou práci samostatně za vedeńı
Doc. RNDr. Radka Kučery, Ph.D. a že jsem v seznamu použité literatury uvedla
všechny zdroje použité při zpracováńı práce.

V Olomouci dne 30. března 2010

Poděkováńı

Mé poděkováńı směřuji předevš́ım vedoućımu této diplomové práce Doc. RNDr.
Radku Kučerovi, Ph.D za výbornou spolupráci, ochotu, trpělivost, podporu a čas
tomu věnovaný. Dále bych ráda poděkovala RNDr. Jitce Machalové, Ph.D za
pomoc a podporu při psańı této práce. Neméně vřelé poděkováńı věnuji mým
rodič̊um, rodině, Ivanovi směrem vzh̊uru, Přemkovi, všem mým kamarád̊um,
spolužák̊um, vyučuj́ıćım a samozřejmě pánu Bohu za to, že mohu ž́ıt tak krásný
a št’astný život. Děkuji.

Contents

Notation 4

Introduction 5

1 The Newton Method and Its Modifications 9

1.1 One Nonlinear Equation . 10
1.2 System of Nonlinear Equations 11
1.3 The Semi-Smooth Newton Method 15

2 Inequality-Constrained Quadratic Problems 20

2.1 Formulation of the Problem . 20
2.2 Application of the Semi-Smooth Newton Method 21
2.3 The Semi-Smooth Newton Method as an Active-Set

Algorithm . 22

3 Implementation 25

3.1 Nonsymmetric Case . 27
3.2 Symmetric Case . 27
3.3 Solving Inner Problems . 28

3.3.1 The Schur Complement 28
3.3.2 BiCGSTAB . 30
3.3.3 The LU-factorization . 31
3.3.4 CGM . 32

3.4 Adaptive Precision Control . 33

4 Numerical Experiments 35

4.1 Model Problem in 1D . 35
4.1.1 Algorithm with Adjustments 37

4.2 Model Problem in 3D . 40

Appendix 46

Conclusion 47

Annexe 49

Bibliography 50

Notation

N set of all natural numbers, e.g. 1, 2, 3, . . .

R set of all real numbers

R
n set of all vectors x = (x1, x2, . . . , xn)⊤

with real componenets

R
m×n set of all matrixes with m rows and n columns,

with real components

I identity matrix

0 zero matrix

Cm(D) space of all functions with m continuous
(partial) derivatives on D, usually D ⊆ R

n

f(x) = o(g(x)), for x → a limx→a f(x)/g(x) = 0

B(x∗, r) {x ∈ D : ||x − x∗|| ≤ r}, i.e. the ball
of the radius r with the center at the point x∗,
where x∗ ∈ D and usually D ⊆ R

n

L(Rn, Rn) set of all bounded linear mappings of R
n

into R
n

A ∈ R
n×n is called symmetric if A⊤ = A

A ∈ R
n×n is called positive definite if ∀x 6= 0, x ∈ R

n : x⊤Ax > 0

4

Introduction

Nemyslete na to, co máte dělat.

Neuvažujte, jak to máte dělat.

Š́ıp vylétne hladce jen tehdy,

když překvaṕı i samotného lukostřelce.

(zenová moudrost)

Newtonova metoda je jednou z nejefektivněǰśıch iteračńıch metod pro řešeńı

systémů nelineárńıch rovnic. Jej́ı výhodou je rychlost konvergence, která nám

umožňuje vypoč́ıtat řešeńı v několika málo iteraćıch. Klasická Newtonova metoda

se potýká s několika nevýhodami, které se staly motivaćı pro tuto práci. Hlavńım

ćılem práce je sestrojeńı efektivńıho řešiče oṕıraj́ıćıho se o vhodnou variantu

Newtonovy metody, kterým lze řešit jistou tř́ıdu minimalizačńıch úloh vznikaj́ıćıch

při duálńı formulaci kontakńıch úloh se třeńım ve třech prostorových dimenźıch

(3D). Kontaktńı úlohy hraj́ı d̊uležitou roli jak v pr̊umyslových, tak ve zdravot-

nických aplikaćıch. Návrhy co nejefektivněǰśıch technik diskretizaćı a strategíı

řešeńı kontaktńıch úloh jsou nyńı velkou výzvou pro matematiky i inženýry.

Práce je rozdělena do čtyř kapitol. Prvńı kapitola pojednává o Newtonově

metodě. Nejprve je popsána klasická Newtonova metoda a je dokázána věta o jej́ı

konvergenci. S upozorněńım na nevýhody klasické Newtonovy metody kapitola

přecháźı k definici slanting funkćı a k nehladké Newtonově metodě. Stěžejńı část

této kapitoly tvoř́ı d̊ukazy vět o konvergenci jak klasické, tak nehladké Newtonovy

metody.

V druhé části práce je formulována úloha nelineárńıho programováńı. Jedná

se o minimalizaci kvadratického funkcionálu se separovatelnými kvadratickými

omezeńımi. Je popsáno, jak řešeńı nelineárńıho problému přecháźı elegantńım

zp̊usobem přes nediferencovatelný problém až k řešeńı posloupnosti systémů

lineárńıch rovnic. Kapitola vyúst’uje schématem algoritmu nehladké Newtonovy

metody s použit́ım techniky aktivńıch množin.

Třet́ı kapitola je věnována implementaci algoritmu a směřuje k jeho co největš́ı

efektivitě. Nejprve je od̊uvodněno rozděleńı na dva př́ıpady - nesymetrický a sy-

5

metrický, a jsou navrženy tři varianty implementace. Poté nastupuje detailńı

popis možných cest, jak řešit vnitřńı soustavy. Je popsán Schur̊uv doplněk,

metoda bikonjugovaných gradient̊u, LU rozklad a metoda konjugovaných gradi-

ent̊u. Neméně d̊uležitou část zde tvoř́ı podkapitola o adaptivńım ř́ızeńı přesnosti

vnitřńıch soustav.

Vyvrcholeńım práce je posledńı - čtvrtá kapitola, kde se řeš́ı dva modelové

př́ıklady. Prvńı př́ıklad v jedné dimenzi slouž́ı hlavně k odladěńı programu

a ověřeńı jeho efektivity. Nyńı můžeme přej́ıt k hlavńımu vytyčenému ćıli práce,

a t́ım je 3D kontaktńı úloha s třeńım. Stručně uvád́ıme diskrétńı formulaci

úlohy s Trescovým třeńım (po diskretizaci metodou konečných prvk̊u), kterou

převád́ıme do duálńıho tvaru. Pro tuto úlohu pak porovnáváme tři navržené vari-

anty implementace našeho algoritmu (samozřejmě s t́ım, že použ́ıváme znalosti

źıskané prozkoumáváńım př́ıkladu prvńıho). Pokud se dostanete až sem, dozv́ıte

se, která varianta vyhrává.

Přesto, že hlavńım úsiĺım práce je sepsáńı a vyladěńı programu v Matlabu,

nenajdete v práci (až na dvě výjimky) žádné matlabovské kódy. Podle mého

názoru to k porozuměńı a přehlednosti práce nijak nepř́ısṕıvá. V kapitole o im-

plementaci jsou shrnuty všechny hlavńı myšlenky, podle kterých je program ses-

taven. K práci je přiložen CD nosič, který všechny kódy obsahuje. Jelikož se

jedná o velmi rozsáhlou problematiku, použila jsem již vytvořené m-fily týkaj́ı

se formulace problému pomoćı metody konečných prvk̊u, zadáńı dat a některé

daľśı. Dále také program QPC vytvořený vedoućım této práce (všechny tyto m-

fily poskytnul vedoućı práce). M-fily týkaj́ıćı se všeho výše teoreticky popsaného

jsou pak samozřejmě vlastńı praćı.

Čtenář̊um této práce přeji dobrou náladu při čteńı. Tak tedy hurá do toho

a v 0.49999998988999... je hotovo.

6

The Newton method is one of the most effective iterative methods for solving

systems of nonlinear equations. The main advantage is a rapid rate of conver-

gence, which enables us to solve the system in few iterations. As a disadvantage

we can mention local convergence results and quite high demands on smoothness.

This work is motivated by the effort to appropriately modify (to set lower the

demands on smoothness) the Newton method in relation to the problem of non-

linear programming. The goal of this work is the completion of an effective solver

based on a suitable variant of the Newton method for solving a particular class

of minimization problems arising from the dual formulation of contact problems

with friction in 3D. The design of discretization techniques and efficient solution

strategies for contact problems is a challenging task from both the engineering

and the mathematical point of view.

The work is divided into four chapters. The first chapter deals with the

Newton method. First the classical Newton method is described and the theorem

of its convergence is proved. After pointing out the disadvatages of the classical

Newton method, slanting functions and the Semi-Smooth Newton method are

introduced. The convergence of the Semi-Smooth Newton method is proved.

The problem of nonlinear programming is discussed in the second part of

this work. We consider a minimization problem of a quadratic functional with

separable quadratic constraints. It is argued how to compute the solution to this

nonlinear problem by a sequence of linear equations. To this end the algorithm

of the Semi-Smooth Newton method is reformulated in an active set terminology.

The third chapter is dedicated to the implementation of the algorithm and

leads to its high efficiency. We distinguish two cases - nonsymmetric and symmet-

ric and three implementation variants. It is described in details how to deal with

the inner problems - the Schur complement, the bi-conjugate gradient method,

LU–factorization and the conjugate gradient method. Moreover, the adaptive

precision control is mentioned.

The most important part of this work is the fourth chapter, where two model

problems are solved. The first 1D example is used mainly for adjusting and ver-

7

ifying the efficiency of the program. Now, we are ready to deal with the aim of

this work - the 3D contact problem with friction. First we introduce the discrete

formulation of the problem with Tresca friction (after finite element discretiza-

tion) and than we derive its dual formulation. For this problem we compare our

three proposed variants of the algorithm (using the gained knowledges from the

first example). If you read up to this point, you will find out which variant is the

winner.

Although the main result of this work is the Matlab program you will not find

(except two) any Matlab code in the text. According to my opinion it does not

help to understanding. In the attachment you can find the CD with all m-files.

As we are concerned with a vast subject I have used some already completed

m–files (the formulation of the problem using finite element method and data,

all provided by the supervisor of this work). Furthermore, I have used a program

QPC completed by the supervisor of this work.

8

1 The Newton Method and Its Modifications

The Newton method belongs to numerical methods for a calculation of roots

of nonlinear functions. For the sake of simplicity, we will distinguish two cases:

a) f : R → R, i.e. we are seeking for x∗ ∈ R such that f(x∗) = 0,

b) F : R
n → R

n, i.e. we are seeking for x∗ ∈ R
n such that F (x∗) = 0.

Numerical methods for an approximation of roots of a nonlinear real-valued

function are usually iterative. An initial iteration x(0) is chosen and the aim is to

generate a sequence of values {x(k)} such that

lim
k→∞

x(k) = x∗.

Among numerical methods of this type belong, for example, the bisection method,

the chord method, the secant method, the Regula Falsi method, the Newton

method, etc. The efficiency of the method depends on its rate of convergence.

Definition 1.1

(i) An iterative method generating a sequence {x(k)} is of order p ≥ 1, if

∃C > 0 : |x(k+1) − x∗| ≤ C|x(k) − x∗|p, ∀k ≥ k0, k0 ∈ N. (1.1)

(ii) If it holds:

lim
k→∞

|x(k+1) − x∗|

|x(k) − x∗|
= 0, (1.2)

then we call the convergence superlinear.

Remark 1.1

(i) If p = 1, then for the convergence of the sequence {x(k)} it is necessary

that C < 1. If limk→∞ x(k) = x∗ and p = 1, we call the convergence linear.

The convegence occurs for any choice of the initial iteration x(0) so that the

method is then said to be globally convergent.

9

(ii) If p = 2, then we call the convergence quadratic. There is no demand on

the constant C so that the convergence result depends on the choice of the

initial iteration x(0). The method is said to be locally convergent in this

case.

(iii) The condition (1.2) implies that

∀ε > 0 : |x(k+1) − x∗| ≤ ε|x(k) − x∗|, ∀k ≥ k0, k0 ∈ N.

Comparing with the formula (1.1), we can conclude that the superlinear

convergence is a certain compromise between the linear and the quadratic

convergence.

1.1 One Nonlinear Equation

Assume that f ∈ C1(I), I ⊆ R, x∗ ∈ I and f ′(x∗) 6= 0 (i.e. x∗ is a simple

root). A sequence of values generated by the Newton method is computed by the

following rule:

x(k+1) = x(k) −
f(x(k))

f ′(x(k))
, k = 0, 1, 2, (1.3)

Geometrically, the iteration x(k+1) is a point of intersection of the tangent con-

structed in the point [x(k), f(x(k))] to the graph of the function f with the x–axis.

Let us suppose, moreover, that f ∈ C2(I), f ′(x) 6= 0, ∀x ∈ I and that the

sequence {x(k)} generated by (1.3) converges to x∗. By taking the limit of both

sides of (1.3) we obtain f(x∗) = 0. Consider the Taylor expansion of the function

f in the neighbourhood of x(k) for x = x∗, i.e.

f(x∗) = 0 = f(x(k)) + f ′(x(k))(x∗ − x(k)) +
1

2
f ′′(α)(x∗ − x(k))2,

where α is between x∗ and x(k). By dividing this equation by f ′(x(k)) and inserting

(1.3) we get

x∗ − x(k+1) + (x∗ − x(k))2 f ′′(α)

2f ′(x(k))
= 0.

10

We can conclude that

|x∗ − x(k+1)| =
∣
∣
∣

f ′′(α)

2f ′(x(k))

∣
∣
∣|x∗ − x(k)|2 ≤ C|x∗ − x(k)|2,

where C = max
α,x∈I

∣
∣
∣

f ′′(α)
2f ′(x)

∣
∣
∣. It is easy to deduce that under the previous assumptions,

the Newton method is of the second order.

To ensure the convergence of the Newton method it is necessary to choose the

initial iteration x(0) from a subinterval of I. This will be discussed in the next

chapter.

Remark 1.2 The way how to aproximate f by a straight line going through the

point [x(k), f(x(k))] is not unique. The Newton method is actually a special case

of a substitution of a linear function for the function f :

lk(x) := f(x(k)) + (x − x(k))qk,

where the slope qk is chosen as

qk := f ′(x(k)).

Remark 1.3 The generalization of the Newton method for a multiple root x∗

with multiplicity m, m > 1, is also of the second order. It is given by the following

rule

x(k+1) = x(k) − m
f(x(k))

f ′(x(k))
, k = 0, 1, 2

1.2 System of Nonlinear Equations

The Newton method theory concerened with a system of nonlinear equations

is analogical to Section 1.1.

Assume that F : R
n → R

n, i.e. F = (F1, . . . , Fn)⊤, F ∈ C1(D), where

D ⊆ R
n. We denote by F ′ the Jacobi matrix of F defined as F ′ : R

n → R
n×n

(F ′(x))ij =

(
∂Fi

∂xj

)

(x), i, j = 1, 2, . . . , n.

11

For a chosen initial iteration x(0) we write the Newton method for n-dimensional

case as follows

x(k+1) = x(k) + δx(k), k = 0, 1, 2, . . . , (1.4)

where δx(k) is computed in each step by solving the system of linear equations

F ′(x(k))δx(k) = −F (x(k)). (1.5)

Remark 1.4 The main idea how to derive the Newton method is based on the

fact, that we substitute a sequence of linear problems Lk(x) = 0, Lk : R
n → R

n,

k = 0, 1, . . . for the nonlinear problem F (x) = 0. The solutions of these linear

systems x(k) generate a sequence of values {x(k)} that converges to the solution

of the problem F (x) = 0. Here, Lk(x) are chosen as the linear parts of the Taylor

expansion of the function F at the points x(k), i.e.

F (x) = F (x(k)) + F ′(x(k))(x − x(k)) + o(|x − x(k)|2)

and

Lk(x) = F (x(k)) + F ′(x(k))(x − x(k)).

Putting Lk(x) equal to zero we obtain the formula for the k + 1 iteration, i.e.

x(k+1) = x(k) − (F ′(x(k)))−1F (x(k)).

Let us note this formula is equivalent to (1.4) (1.5), where the inverse matrix is

replaced by its action computed by solving the linear system.

Theorem 1.1 Let F : R
n → R

n be a continuously differentiable function in

a convex open set D ⊆ R
n and let x∗ ∈ D be a solution to the nonlinear equation

F (x) = 0. Suppose that the second derivative of F is continuous at a neighbour-

hood of x∗. Moreover, suppose that (F ′(x∗))−1 exists and that there are positive

constants R, C and L, such that

||(F ′(x∗))−1|| ≤ C,

and

||F ′(x) − F ′(y)|| ≤ L||x − y|| ∀x, y ∈ B(x∗; R), (1.6)

12

having denoted by the same symbol || · || two consistent norms.

Then, there exists r > 0 such that for any initial iteration x(0) ∈ B(x∗, r), the

sequence of values {x(k)} generated by (1.4) is uniquely defined and converges to

x∗ quadratically. Moreover, it holds that

||x(k+1) − x∗|| ≤ CL||x(k) − x∗||2. (1.7)

Proof: In the statement of the theorem is said that there exists r > 0, i.e. r

sufficiently small and we choose x(0) in B(x∗, r). (In other words there exists

r > 0 such that (F ′(x(0)))−1 exists for any chosen x(0) ∈ B(x∗, r)). Below, we will

show that a good choice of r is r = min(R, 1/(2CL)).

Firstly, we will demonstrate that for an arbitrary initial iteration x(0) ∈ B(x∗, r)

matrix (F ′(x(0)))−1 exists. Indeed,

||(F ′(x∗))−1(F ′(x(0))−F ′(x∗))|| ≤ ||(F ′(x∗))−1|| ||F ′(x(0))−F ′(x∗)|| ≤ CLr ≤
1

2
.

Let us set

A = I − (F ′(x∗))−1F ′(x(0)) = −(F ′(x∗))−1(F ′(x(0)) − F ′(x∗)).

Then

(I − A) = (F ′(x∗))−1F ′(x(0)) and (I − A)−1 = (F ′(x(0)))−1F ′(x∗).

Therefore Lemma 4.1 (see Appendix) implies that (F ′(x(0)))−1 exists and it holds

||(F ′(x(0)))−1|| ≤ ||(F ′(x(0)))−1F ′(x∗)|| ||(F ′(x∗))−1|| ≤

≤
||(F ′(x∗))−1||

1 − ||(F ′(x∗))−1(F ′(x(0)) − F ′(x∗))||
≤ 2||(F ′(x∗))−1|| ≤ 2C.

Thus the iteration x(1) is well defined and it holds

x(1) − x∗ = x(0) − x∗ − (F ′(x(0)))−1(F (x(0)) − F (x∗)). (1.8)

By taking a norm in (1.8) we get

||x(1) − x∗|| ≤ ||(F ′(x(0)))−1|| ||F (x∗) − F (x(0)) − F ′(x(0))(x∗ − x(0))||. (1.9)

13

From the Taylor expansion of F it follows that

F (x∗) = F (x(0)) + F ′(x(0))(x∗ − x(0)) +

+
1

2
(x∗ − x(0))⊤ : HF (x∗ + t(x∗ − x(0))) : (x∗ − x(0)),

where t ∈ (0, 1) and HF is the Hessian matrix of F . From (1.9) we get

||x(1)−x∗|| ≤ ||(F ′(x(0)))−1|| ||
1

2
(x∗−x(0))⊤ : HF (x∗+t(x∗−x(0))) : (x∗−x(0))|| ≤

≤ 2C
1

2
||HF (x∗ + t(x∗ − x(0)))|| ||x∗ − x(0)||2 ≤ 2C

L

2
||x∗ − x(0)||2,

as it follows from (1.6) that ||HF (x)|| ≤ L, ∀x ∈ B(x∗; R). Thus, (1.7) is proved

for k = 0.

Because x(0) ∈ B(x∗, r), we get

||x∗ − x(0)|| ≤
1

2CL
,

so that

||x(1) − x∗|| ≤
1

2
||x∗ − x(0)||

and therefore x(1) ∈ B(x∗, r).

By the mathematical induction it is easy to prove that the relationship (1.7)

holds for an arbitrary k and that x(k) ∈ B(x∗, r). The theorem is proved. ¤

Remark 1.5 If we omit the requirement of an existence and a continuity of the

second derivative of F , the statement of Theorem 1.1 is still true. Since the

theorem assums that F ∈ C1(D) and F ′ is locally Lipschitz continuous, we can

use a generalized Hessian matrix in the Taylor expansion, where this requirement

is not needed. For further detailes see [10].

Theorem 1.1 also shows disadvantages of the Newton method. For instance,

to achieve the desired convergence of the method it is necessery to choose the

initial iteration x(0) ‘sufficiently close’ to the solution. Secondly, in each step of

14

the Newton method we need to know the Jacobi matrix that, moreover, has to be

nonsingular. In order to overcome these difficulties and to lower the computional

cost, many modifications of the Newton method were developed, for instance, the

Jacobi matrix is replaced by its approximation or for a given number of iterations

is made fixed, its LU-factorization is used. Other methods are used to obtain the

first iteration ‘sufficiently close’ to the solution. The system (1.5) is solved by

various iterative methods. Modified Newton methods usually do not reach the

second order, but a lower one.

1.3 The Semi-Smooth Newton Method

The classical Newton method assumes that F is differentiable. What are

suitable analogies of the Newton method in the case when F is not differentiable?

Remark 1.6 Superlinear convergence of a ‘semi-smooth Newton method’ have

been already proved by assuming that F is locally Lipschitz continuous, and by

using the notions of the generalized Jacobian and the semismoothness. The main

idea is based on the Rademacher theorem, that states: If F : Rn → Rm is a locally

Lipschitz continuous function, then F is differentiable almost everywhere. Unfor-

tunately, the Rademacher theorem does not hold in function spaces. That is why

‘slanting’ functions are introduced. Within the bounds of this paper we assume

‘only’ n-dimensional Euclidean spaces R
n. In spite of that we will work with

slanting functions and the theorem that proves the superlinear convergence of

the ‘semi-smooth Newton method’ will be proved without using the Rademacher

theorem, see [8].

Let us assume L(Rn, Rn), D ⊆ R
n be an open subset, F : D → R

n a function

and y, h ∈ R
n. To better understand a new notion of a particular generalization of

the Jacobi matrix, we will recall the definition of the strong (Fréchet) derivative.

15

Remark 1.7 We assume the set L(Rn, Rn). But it is without any problem to

formulate the following theory also on a set L(X,Y), where X and Y are Banach

spaces.

Definition 1.2 We say that the function F has at y ∈ D strong or the Fréchet

derivative if there exists a mapping F ′ : D → L(Rn, Rn) such that

lim
h→0

1

||h||
(F (y + h) − F (y) − F ′(y)h) = 0. (1.10)

Remark 1.8 If a function F has the Fréchet derivative at y, the operator F ′

from the last definition is uniquely defined and it is called the strong or the

Fréchet derivative.

Definition 1.3

(i) The function F is called slantly differentiable at y ∈ D if there exists

a mapping F ◦ : D → L(Rn, Rn) such that F ◦ is uniformly bounded in

an open neighbourhood of y and

lim
h→0

1

||h||
||F (y + h) − F (y) − F ◦(y + h)h|| = 0. (1.11)

The function F ◦ is called a slanting function for F at y.

(ii) The function F is called slantly differentiable in D if there exists

F ◦ : D → L(Rn, Rn) such that F ◦ is a slanting function for F at every

point y ∈ D. The function F ◦ is called a slanting function for F in D.

Let us point out some properties of slanting functions:

• If F is continuously differentiable in D and we take F ◦(y) := F ′(y) for all

y ∈ D, then F ◦ is a slanting function for F at every point of D.

• A slantly differentiable function F at y can have infinitely many slanting

functions at y (See Example 1.2). In general, F ◦ can take the values of F ′

16

except at finite number of points of D, and take arbitrary values at these

finite number of points. Then such F ◦ is still a slanting function of F for

all points of D. To conclude, if F is continuously differentiable function

in D and F ◦ is a slanting function for F in D, then F ◦ coincides with F ′

except possibly on a set of measure zero.

• A convex combination of two slanting functions of F is also a slanting

function of F .

• A slanting function is not continuous in general. See Example 1.2.

• A continuous function is not necessarily slantly differentiable (see Example

1.1). But it holds (see [8]) that a function is slantly differentiable at y if

and only if F is Lipschitz continuous at y.

Example 1.1 Let n = 1 and

F (y) =

{√

(y) if y ≥ 0,

−
√

(− y) if y < 0.

Since F (h) − F (0) = h/
√

|h|, and limh→0 1/
√

|h| → ∞, there is no uniformly

bounded function F ◦ such that fulfils the relationship (1.11) at y = 0.

Example 1.2 Let n = 1 and F (y) = max{0, y}. By inserting in (1.11) we get

F ◦(y) =







0 y < 0,
1 y > 0,
α ∈ R y = 0.

The first two cases are obvious. Let us have a detailed look at the last one (y = 0).

For h > 0 we get (from the definition) h−0−1·h
h

= 0. For h < 0 we get 0−0−0·h
h

= 0.

We see that both cases are equal to zero for F ◦(0) = α, where α ∈ R is arbitrary.

The Semi-Smooth Newton method is a sequence of values {y(k)}

generated by the following rule

y(k+1) = y(k) − (F ◦(y(k)))−1F (y(k)), k = 0, 1, 2, . . . (1.12)

17

Theorem 1.2 Let F : R
n 7→ R

n be slantly differentiable in D with a slant-

ing function F ◦. Suppose that y∗ ∈ D is a solution to the nonlinear equation

F (y) = 0. Assume that F ◦(y) is nonsingular for all y ∈ D, and there exists

a positive constant M such that

||F ◦(y)−1|| ≤ M, ∀y ∈ D.

Then there exists r > 0 such that for any initial iteration y(0) ∈ B(y∗, r) the

sequence of values {y(k)} generated by (1.12) is defined uniquely and converges to

y∗ superlinearly.

Proof: Firstly, we prove the following statement: if {y(k)} converges to y∗, then

it converges superlinearly. We can assume without loss of generality that y(k) 6= y∗

for all k, since the statement is trivially satisfied in the opposite situation. The

iteration rule (1.12) gives

y(k+1) − y∗ = y(k) − y∗ − (F ◦(y(k)))−1F (y(k)).

Denoting hk = y(k) − y∗ we can write

y(k+1) − y∗ = (F ◦(y(k)))−1(F ◦(y∗ + hk)hk − F (y∗ + hk) + F (y∗))

that implies

||y(k+1) − y∗||

||y(k) − y∗||
≤

M ||F (y∗ + hk) − F (y∗) − F ◦(y∗ + hk)hk||

||hk||
. (1.13)

As the right-hand side tends to zero by the definition of the slanting function, we

arrive at

lim
k→∞

||y(k+1) − y∗||

||y(k) − y∗||
= 0.

We see that the convergence is indeed superlinear.

Now we prove that the Semi-Smooth Newton method converges for sufficiently

small r. The definition of the slaning function gives

∀ε > 0 ∃δ > 0 ∀h ∈ R
n : ||h|| < δ:

||F (y∗ + h) − F (y∗) − F ◦(y∗ + h)h||

||h||
≤ ε.

18

Let us choose ε := M−1η, where η ∈ (0, 1) is arbitrary but fixed. Consider

r ∈ (0, δ) and y(0) ∈ B(y∗, r). Then (1.13) yields for k = 0

||y(1) − y∗||

||y(0) − y∗||
≤ MM−1η = η.

Therefore ||y(1)−y∗|| ≤ η||y(0)−y∗|| ≤ ηr so that y(1) ∈ B(y∗, r). By the induction

we obtain ||y(k) − y∗|| ≤ ηkr, that proves the convergence of {y(k)}. The theorem

is proved. ¤

19

2 Inequality-Constrained Quadratic Problems

2.1 Formulation of the Problem

We shall be concerned with solving

minimize 1
2
x⊤Ax − x⊤b

subject to x1,i ≥ li, x2
2,i + x2

3,i ≤ g2
i , i = 1, . . . ,m,

x = (x⊤
1 , x⊤

2 , x⊤
3)⊤ ∈ R

n,






(2.1)

where x1, x2, x3 ∈ R
m, 3m = n. Here, A ∈ R

n×n is a symmetric, positive definite

matrix, b ∈ R
n and l, g ∈ R

m.

Theorem 2.1 There is a unique solution to the problem (2.1).

Proof: The problem (2.1) is a program with a strictly quadratic objective on

a convex set. For further detailes see [15] (chapters 12,16) or [14]. ¤

It is well known that the solution to (2.1) is fully determined by a system of

equalities and inequalities called the Karush-Kuhn-Tucker (KKT) conditions. To

this end introduce the Lagrangian L : R
n+2m → R associated with (2.1) by

L(x, λ, µ) =
1

2
x⊤Ax − x⊤b + λ⊤(l − x1) + µ⊤(x2

2 + x2
3 − g2),

where λ ∈ R
m, µ ∈ R

m are called Lagrange multipliers.

Theorem 2.2 Let us denote by x∗ the solution of (2.1). There exists λ∗ ∈ R
m

and µ∗ ∈ R
m so that the triplet (x∗, λ∗, µ∗) is a unique saddle-point to L, i.e. it

satisfies the following system of the KKT conditions

∇xL(x, λ, µ) = 0,
∇λL(x, λ, µ) ≤ 0, λ ≥ 0, λ⊤∇λL(x, λ, µ) = 0,
∇µL(x, λ, µ) ≤ 0, µ ≥ 0, µ⊤∇µL(x, λ, µ) = 0.






(2.2)

Proof: For detailes see [15] (chapters 12,16) or [14]. ¤

20

For convenience, we divide A and b into blocks Aij, bi, where i, j ∈ {1, 2, 3},

consistently with the partition of x into x1, x2, x3. Then (2.2) reads as follows

A11x1 + A12x2 + A13x3 − λ − b1 = 0, (2.3)

A21x1 + (A22 + 2M)x2 + A23x3 − b2 = 0, (2.4)

A31x1 + A32x2 + (A33 + 2M)x3 − b3 = 0, (2.5)

l − x1 ≤ 0, λ ≥ 0, λ⊤(l − x1) = 0, (2.6)

(x2
2+ x2

3 − g2) ≤ 0, µ ≥ 0, µ⊤(x2
2 + x2

3 − g2) = 0, (2.7)

where M ∈ R
m×m, M = diag(µ) and the second powers are considered compo-

nentwisely.

2.2 Application of the Semi-Smooth Newton Method

The idea how to use the Newton method for solving (2.1) is based on refor-

mulating the KKT conditions as a system of equalities. The Newton iterations

performed on this new system represent an unconstrained iterative process, how-

ever some equalities are typically described by non-differentiable functions. To

overcome this difficulty we apply the Semi-Smooth Newton method.

Lemma 2.1

a) The condition (2.6) is (componentwisely) equivalent to

λ − max{0, λ + ρ(l − x1)} = 0, ∀ρ > 0. (2.8)

b) The condition (2.7) is (componentwisely) equivalent to

µ − max{0, µ + ρ(x2
2 + x2

3 − g2)} = 0, ∀ρ > 0. (2.9)

Proof:

a) We want to show that l − x1 ≤ 0, λ ≥ 0, λ⊤(l − x1) = 0 ⇔

⇔ λ − max{0, λ + + ρ(l − x1)} = 0, ∀ρ > 0.

21

Let us start with the right implication ‘⇒’. There are two possibilities how

to fulfil the complementarity condition λ⊤(l− x1) = 0. Firstly, (l− x1) = 0

and λ ≥ 0, then undoubtedly λ − max{0, λ + ρ(l − x1)} = 0. Secondly, for

(l − x1) ≤ 0 and λ = 0 we also get that λ − max{0, λ + ρ(l − x1)} = 0.

Now we prove the opposite implication ‘⇐’. If max{0, λ + ρ(l − x1)} = 0,

then λ = 0 and ρ(l − x1) ≤ 0, so that (l − x1) ≤ 0.

If max{0, λ + ρ(l − x1)} = λ + ρ(l − x1), then ρ(l − x1) = 0 and λ ≥ 0, and

because ρ > 0, then necessarily is (l − x1) = 0.

Moreover λ⊤(l − x1) = 0 in all cases.

b) The proof is analogous.
¤

Therefore the KKT conditions (2.3) - (2.7) are equivalent to the one (vector)

equation

F (y) = 0, (2.10)

with y = (x⊤, λ⊤, µ⊤)⊤, where F : R
n+2m 7→ R

n+2m is determined by (2.3) - (2.5),

(2.8) and (2.9) as follows:

F (y) =









A11x1 + A12x2 + A13x3 − λ − b1

A21x1 + (A22 + 2M)x2 + A23x3 − b2

A31x1 + A32x2 + (A33 + 2M)x3 − b3

λ − D(Ab)(λ + ρ(l − x1))
µ − D(Aq)(µ + ρ(x2

2 + x2
3 − g2))









. (2.11)

2.3 The Semi-Smooth Newton Method as an Active-Set

Algorithm

On the equation (2.10) we now apply the Semi-Smooth Newton method, i.e.

F ◦(y(k))y(k+1) = F ◦(y(k))y(k) − F (y(k)), k = 0, 1, . . . (2.12)

Below, we present an implementation of (2.12) as an active-set algorithm. Let

M := {1, 2, . . . ,m} and ρ > 0. We define active-sets at y ∈ R
n+2m

Ab(y) := {i ∈ M : λi + ρ(li − x1,i) > 0},

22

Aq(y) := {i ∈ M : µi + ρ(x2
2,i + x2

3,i − g2
i) > 0},

and inactive-sets as their complements: Ib(y) := M\Ab(y) and Iq(y) := M\Aq(y).

With S ⊆ M, we associate the diagonal matrix D(S) as follows

D(S) := diag(s1, . . . , sm), si =

{
1, if i ∈ S,
0, if i /∈ S.

In order to simplify the notation we denote Ab := Ab(y), Aq := Aq(y), Ib := Ib(y)

and Iq := Iq(y).

The value of the slanting function F ◦(y) can be derived from the last formula

by the standard differentiation rules

F ◦(y) =









A11 A12 A13 −I 0
A21 A22 + 2M A23 0 2X2

A31 A32 A33 + 2M 0 2X3

ρD(Ab) 0 0 D(Ib) 0
0 −2ρD(Aq)X2 −2ρD(Aq)X3 0 D(Ig)









, (2.13)

where X2 = diag(x2), X3 = diag(x3), X2, X3, I, 0 ∈ R
m×m. Moreover, the

direct computation gives

F ◦(y)y − F (y) =









b1

b2 + 2X2µ
b3 + 2X3µ
ρD(Ab)l
−ρD(Aq)(x

2
2 + x2

3 + g2)









. (2.14)

23

Algorithm: Semi-Smooth Newton Method (SSNM)

Given x(0) ∈ R
n, λ(0) ∈ R

m, µ(0) ∈ R
m and tolx ≥ 0.

Step 0 Set k := 0 and choose ρ > 0. (Typically ρ = 1.)

Step 1 Define the active and the inactive sets: Ab := Ab(y
(k)), Aq := Aq(y

(k)),

Ib := Ib(y
(k)) and Iq := Iq(y

(k)).

Step 2 Compute y(k+1) := ((x(k+1))⊤, (λ(k+1))⊤, (µ(k+1))⊤)⊤ as the solution to

the linear system given by the matrix (2.13) and the right-hand-side vector

(2.14), in which µ := µ(k), M = diag(µ), X2 = diag(x
(k)
2) and

X3 = diag(x
(k)
3).

Step 3 Set err(k) := ||x(k+1) − x(k)||/(||x(k+1)|| + 1). If err(k) ≤ tolx, return

x := x(k+1), λ := λ(k+1) and µ := µ(k+1).

Step 4 Set k := k + 1 and go to Step 1 .

24

3 Implementation

For a reasonable implementation of the algorithm (SSNM) it is necessary to

think about all possible problems and make particular adjustments. The skeleton

of the algorithm will stay untouched. There are plenty of ways how to do it.

Firstly, we will express the main ideas. Secondly, we will describe the most

important things from that ideas in detail (solving inner problems).

The matrix performing in (2.13), i.e.

F ◦(y) =









A11 A12 A13 −I 0
A21 A22 + 2M A23 0 2X2

A31 A32 A33 + 2M 0 2X3

ρD(Ab) 0 0 D(Ib) 0
0 −2ρD(Aq)X2 −2ρD(Aq)X3 0 D(Ig)









,

will be divided into indicated parts and a new notation will be introduced as

(
K B⊤

1

B2 −D

)

.

We refer to this matrix as the generalized saddle-point matrix.

The right-hand-side vector performing in (2.14), i.e.

F ◦(y)y − F (y) =









b1

b2 + 2X2µ
b3 + 2X3µ
ρD(Ab)l
−ρD(Aq)(x

2
2 + x2

3 + g2)









will again be divided into indicated parts and a following notation will be intro-

duced:
(

f
h

)

.

Also the vector of unknowns y = (x⊤, λ⊤, µ⊤)⊤ will be re-marked as (x⊤, z⊤)⊤,

where x⊤ = x⊤ and z⊤ = (λ⊤, µ⊤). Finally, we get the system

(
K B⊤

1

B2 −D

)(
x
z

)

=

(
f
h

)

. (3.1)

25

We refer to this system as the generalized saddle-point system in our case with

generally nonsymmetric and nonsingular matrix, where

K =





A11 A12 A13

A21 A22 + 2M A23

A31 A32 A33 + 2M



 ,

B1 =

(
−I 0 0
0 2X2 2X3

)

,

B2 =

(
−ρD(Ab) 0 0

0 2ρD(Aq)X2 2ρD(Aq)X3

)

,

D =

(
D(Ib) 0

0 D(Ig)

)

and

f =





b1

b2 + 2X2µ
b3 + 2X3µ



 ,

h =

(
−ρD(Ab)l
ρD(Aq)(x

2
2 + x2

3 + g2)

)

.

Let us modify the algorithm on particular places to make the computional cost

as low as possible. At the same time, we require the final tests to be sufficiently

exact, i.e. comparable with the tolerance. One of the important characteristics

of the efficiency of the algorithm is the number of matrix K−1 multilpications,

because this is here absolutely the most demanding computional operation. As we

can mention, the matrix K is a slight modification of the Hessian matrix A from

our problem (2.1). That is why, the number that is taking down (matrix K−1

multiplications) is usually called Hessian multiplications. Another characteristic

of the efficiency is the number of iterations needed for the convergence of the

method.

First and foremost we will modify Step 2, the computation of

y(k+1) := ((x(k+1))⊤, (λ(k+1))⊤, (µ(k+1))⊤)⊤ (i.e. the solution to the linear system

given by the matrix (2.13) and the right-hand-side vector (2.14)).

26

3.1 Nonsymmetric Case

As we can see, the matrix F ◦(y) is nonsymmetric. But its structure and the

nonsingularity enables us to use the Schur complement reduction. This approach

will be described in detail in Subsection 3.3.1. The main benefit of this acces

is that we split one huge problem into two smaller ones. If we follow the Schur

complement path we get to a system of linear equations with nonsymmetric

nonsingular square matrix (inner problem). To solve it effectively an iterative

method of bi-conjugate gradient (BiCGSTAB) is used (see Subsection 3.3.2).

Furthermore, the LU-factorization of the matrix K is used (see Subsection 3.3.3).

The computation of the LU-factorization is unfortunately quite expensive and

it has to be done during every iteration (because there is always another matrix).

Another idea how to solve the system from Step 2 is to avoid using the LU-

factorization. Moreover, to have the computation still effective we do not use the

Schur complement. The idea is to solve the problem directly by using BiCGSTAB

algorithm.

3.2 Symmetric Case

BiCGSTAB is slower comparing to the conjugate gradient method (CGM).

Whay not to use CGM then?

For using CGM it is necessary to have a symmetric, positive definite matrix.

If we remind the notation and have a detailed look at our system with the matrix

F ◦(y) =









A11 A12 A13 −I 0
A21 A22 + 2M A23 0 2X2

A31 A32 A33 + 2M 0 2X3

ρD(Ab) 0 0 D(Ib) 0
0 −2ρD(Aq)X2 −2ρD(Aq)X3 0 D(Ig)









and the right-hand side vector

F ◦(y)y − F (y) =









b1

b2 + 2X2µ
b3 + 2X3µ
ρD(Ab)l
−ρD(Aq)(x

2
2 + x2

3 + g2)









,

27

we can see that the matrix could somehow be made symmetric through adjusting

B1 and B2. Our changes will influence only the vector z (it means λ and µ).

Firstly, ρ can be omitted. Secondly, the active and the inactive sets, in par-

ticular D(Ab), D(Aq), D(Ib), D(Iq), are complementary, i.e. for j = b, q we have

D(Aj)D(Ij) = 0 and ∀α ∈ R
m can be written as α = D(Aj)α + D(Ij)α. There

is no problem to solve the system using only the active sets. For instance, from

the equation

ρD(Ab)x1 + D(Ib)λ = ρD(Ab)l,

we get that D(Ib)λ = 0. The ‘inactive part’ of the z–solution must be equal to

zero. This is the way how to make the matrix symmetric. Instead of the system

(3.1) we get a system
(

K B̄⊤

B̄ 0

)(
x
z̄

)

=

(
f
h̄

)

. (3.2)

The sizes of the matrixes are changed acording to the sizes of active sets. It is

essential to do the backward adjustments to the z–solution when interpreting the

solution to the problem.

After getting the symmetrized problem, the LU-factorization and the Schur

complement reduction (that is why there is x and not x̄ in (3.2)) will be used.

The arising linear system will be solved by CGM (see Subsection 3.3.4).

To sum up, we have just described three variants how to implement the algo-

rithm (SSNM). We will shortly refer to them as A, B and C, respectively.

3.3 Solving Inner Problems

3.3.1 The Schur Complement

To solve the generalized saddle-point system (3.1), i.e.

(
K B⊤

1

B2 −D

)(
x
z

)

=

(
f
h

)

,

we will show a method based on the Schur complement reduction.

28

We can perceive the system as two equations. From the first equation we

express x, insert it in the second equation and express z. So

Kx + B⊤
1 z = f

and therefore

x = K−1(f − B⊤
1 z). (3.3)

We get

B2x − Dz = h ⇒ B2K
−1f − B2K

−1B⊤
1 z − Dz = h,

and finally

(D + B2K
−1B⊤

1)z = B2K
−1f − h.

Let us denote

S := D + B2K
−1B⊤

1 .

We write

Sz = B2K
−1f − h. (3.4)

S is called the Schur complement. We arrived at a block upper triangular system

(
K B⊤

1

0 S

)(
x
z

)

=

(
f

B2K
−1f − h

)

.

Because the matrix K and the saddle-point matrix are nonsingular, we can

write the block triangular factorization

(
K B⊤

1

B2 −D

)

=

(
I 0

B2K
−1 I

)(
K 0
0 −S

)(
I K−1B⊤

1

0 I

)

.

Moreover, we can see that S is also nonsingular.

To conclude, the vector of unknowns y = (x⊤, z⊤)⊤ is not computed at once,

but as a solution to two systems of smaller sizes. Firstly, we compute z from

(3.4) and after that x from (3.3).

29

3.3.2 BiCGSTAB

For a computation of z from the relation (3.4), i.e. Sz = B2K
−1f − h, we

use an iterative bi-conjugate gradient method (BiCGSTAB) according to Van der

Vorst (1992) see [18], which obeys the following:

find z ∈ R
n such that Fz = d, where d ∈ R

n and F ∈ R
n×n,

where F is (generally) nonsymmetric and nonsingular.

Algorithm: BiGCSTAB

Given z(0) ∈ R
n, tolv ≥ 0.

Step 0 Set r(0) := d−Fz(0), p(0) := r(0), r̃(0) arbitrary (usually we set r̃(0) := r(0))

and k := 0.

Step 1 If ||r(k)|| > tolv, compute:

a) p̃(k) := Fp(k)

b) αk := (r(k))⊤r̃(0)/(p̃(k))⊤r̃(0)

c) s(k) := r(k) − αkp̃
(k)

d) s̃(k) := Fs(k)

e) ωk := (s̃(k))⊤s(k)/(s̃(k))⊤s̃(k)

f) z(k+1) := z(k) + αkp
(k) + ωks

(k)

g) r(k+1) := s(k) − ωks̃
(k)

h) βk+1 := (αk/ωk)(r
(k+1))⊤r̃(0)/(r(k))⊤r̃(0)

i) p(k+1) := r(k+1) + βk+1(p
(k) − ωkp̃

(k))

j) k := k + 1

Step 2 Otherwise, i.e. if ||r(k)|| ≤ tolv, end.

30

Remark 3.1 At the beginning of this algorithm it is necessary to choose an

initial iteration z(0). Because it is an inner computation, it will be needed to

choose this initial value during each iteration. We can choose it, to make it

simple, always as a zero vector, or, to make it more effective, as a zero vector

only at the first outer step and then we will always take the computed z from

the previous computation.

Remark 3.2 If we compute z according to the algorithm, we do not need to

know the Schur complement S explicitely. We are only interested in the re-

sult of Schur complement-vector products, which can be computed stepwise.

So S = D + B2K
−1B⊤

1 and we are interested in the result of Sp. Proceed as

follows: let us denote by y = Dp and p1 = B2(K
−1(B⊤

1 p)). Then Sp = y + p1.

3.3.3 The LU-factorization

As another computional-cost-saving modification an LU-factorization of the

matrix K will be used, i.e. K = LU . Due to the symmetry of the matrix K we

can use a special case of an LU-factorization, the so called LDL⊤-factorization,

where the lower triangular matrix L agrees with the matrix L from the classical

LU-factorization and D is a diagonal matrix, that has on its diagonal diagonal

elements of the upper triangular matrix U from the classical LU-factorization.

During the computation with the matrix K we need to store only the matrix

L and the diagonal of the matrix D, which we denote by dD. Let us get back to

the computation of x from the formula (3.3), i.e.

x = K−1f − K−1B⊤
1 z.

The expression K−1f will be computed as follows:

K−1f = (LDL⊤)−1f = (L⊤)−1D−1L−1f = ((L⊤)−1(D−1(L−1f))).

In other words, we are solving a system Ka = f . Then

LD L⊤a
︸︷︷︸

z
︸ ︷︷ ︸

y

= f.

31

And so

Ly = f,

Dz = y,

L⊤a = z.

The Matlab command is:

a = (((L\f)./dD)’/L)’.

Analogically, we will also compute K−1B⊤
1 z.

If we return to the Remark 3.2, we can notice, that in this situation it can also

be used what was just mentioned. Having Sp = y+p1, where S = D+B2K
−1B⊤

1 ,

y = Dp and p1 = B2(K
−1(B⊤

1 p)). The Matlab command for p1 is:

p1 = B2*((L\(p’*B1)’./dD)’/L)’.

Because B⊤
1 p = (p⊤B1)

⊤ (less demanding is a transpozition of a vector).

3.3.4 CGM

We shall be considered with a problem

find x ∈ R
n such that Ax = b, where b ∈ R

n and A ∈ R
n×n (3.5)

is symmetric and positive definite. Below, we will present a so called practical

form of the conjugate gradient method (CGM), see [3], chapter 10.

32

Algorithm: CGM

Given x(0) ∈ R
n, tolv ≥ 0.

Step 0 Set r(0) := b − Ax(0), p(0) := r(0), ρ(0) := (r(0))⊤r(0) and k := 0.

Step 1 If ||r(k)|| > tolv, compute:

a) w(k) := Ap(k)

b) αk := ρ(k)/(p(k))⊤w(k)

c) x(k+1) := x(k) + αkp
(k)

d) r(k+1) := r(k) − αkw

e) ρ(k+1) := (r(k+1))⊤r(k+1)

f) βk+1 := ρ(k+1)/ρ(k)

g) p(k+1) := r(k+1) + βk+1p
(k)

j) k := k + 1

Step 2 Otherwise, i.e. if ||r(k)|| ≤ tolv, end.

Theorem 3.1 For any initial iteration x(0) ∈ R
n the sequence {x(k)} generated

by CGM converges to the solution x∗ of the linear system (3.5) in at most n steps.

Theorem 3.2 If A has only r distinct eigenvalues, then the CGM iteration will

terminate at the solution in at most r iterations.

For the proofs of these theorems see [15], chapter 5.

3.4 Adaptive Precision Control

The inner precision tolv, performing in solving of our inner problems, can be

fixed, or can be appropriately changed during each step. This is called adap-

tive precision control. For instance, choose two parametres rtol and cfact, where

33

0 < rtol < 1 and 0 < cfact < 1 (usually rtol = 0.01 and cfact = 0.9). Then

tol(k)
v := min(rtol · err

(k−1), cfact · tol
(k−1)
v),

where err(k) := ||x(k+1) − x(k)||/(||x(k+1)|| + 1) (see algorithm SSNM) and

tol
(−1)
v = rtol/cfact.

Note that the inner problems will be solved ‘inexactly’. These inexact solu-

tions will influence the convergence of the outer iterations in a negative way (slow

down). But in general, the whole problem will be solved more quickly.

34

4 Numerical Experiments

All our experiments are carried out in Matlab. For any further detailes see

m-files on the attached CD.

4.1 Model Problem in 1D

The model problem that is used in our experiments describes a loaded wire

that is partially above a plane far off the distance l and partially (in the second

half) inside the cylindrical tube of the radius g (see Figure 4.1).

A finite element discretization on a regular grid leads to the algebraic problem

minimize 1
2
x⊤Ax − x⊤b

subject to x1,i ≥ li, x2
2,i + x2

3,i ≤ g2
i , i = 1, . . . ,m,

x = (x⊤
1 , x⊤

2 , x⊤
3 , x⊤

4)⊤ ∈ R
n,






(4.1)

where x1, x2, x3, x4 ∈ R
m, 4m = n. Here, A ∈ R

n×n is symmetric, positive definite

matrix, b ∈ R
n and l, g ∈ R

m. We refer to constraints x1,i ≥ li as simple bounds,

and to constraints x2
2,i + x2

3,i ≤ g2
i as circular consraints. The unknown x4 is not

under any constraints. This problem is a slight modification of the problem (2.1).

Figure 4.1 Geometry of the wire.

On the problem (4.1) we apply the Semi-Smooth Newton method. Firstly,

we have implemented the algorithm SSNM as it is, without any adjustments. It

simply means - using a backslash to solve the linear system from Step 2. Let us

have a look at some results of this version.

35

If it is not stated otherwise, the input data x(0), λ(0) and µ(0) have been chosen

as zero vectors, the tolerance tolx has been set as 10−6, ρ = 1 and the final tests

are sufficiently exact.

Remark 4.1 Tables 4.1 - 4.4 demonstrates the behaviour of the Semi-Smooth

Newton method when solving problem (4.1) with various set constraints l and g.

The number n indicates the size of the problem, i.e. the size of the matrix A.

Taken down are the ratios of active and inactive sets, i.e. Ab : Ib/Aq : Iq, below

them are the numbers of iterations needed for finding the solution with desired

tolerance.

Table 4.1
g = 2, only simple bounds are active in the solution.

n l = −1.5 l = −1 l = −0.8 l = −0.5 l = −0.1 l = 0
0 : 8/0 : 8 1 : 7/0 : 8 1 : 7/0 : 8 3 : 5/0 : 8 4 : 4/0 : 8 5 : 3/0 : 8

32 2 3 5 5 6 6
0 : 16/0 : 16 1 : 15/0 : 16 1 : 15/0 : 16 4 : 12/0 : 16 6 : 10/0 : 16 9 : 7/0 : 16

64 2 3 6 7 9 10
0 : 32/0 : 32 1 : 31/0 : 32 3 : 29/0 : 32 6 : 26/0 : 32 12 : 20/0 : 32 19 : 13/0 : 32

128 2 3 8 13 16 16
0 : 64/0 : 64 1 : 63/0 : 64 4 : 60/0 : 64 10 : 54/0 : 64 23 : 41/0 : 64 37 : 27/0 : 64

256 2 3 15 22 29 30
0 : 128/0 : 128 1 : 127/0 : 128 8 : 120/0 : 128 21 : 107/0 : 128 45 : 83/0 : 128 73 : 55/0 : 128

512 2 3 27 41 55 58
0 : 256/0 : 256 1 : 255/0 : 256 16 : 240/0 : 256 40 : 216/0 : 256 89 : 167/0 : 256 146 : 110/0 : 256

1024 2 3 51 79 107 113
0 : 512/0 : 512 1 : 511/0 : 512 30 : 482/0 : 512 79 : 433/0 : 512 178 : 334/0 : 512 292 : 220/0 : 512

2048 2 3 101 156 211 223

If we choose l = 0, g = 0.3 and the size of the problem is equal to the number

64 (see Table 4.2), it seems that the method does not converge, in other words,

even in 1000 iterations fails to find the solution. If we continue to make higher

n or lower g, the situation repeats. All these cases are taken down in Table 4.2

and denoted by symbol ×. The difficulty here is probably in the initial iteration,

which in not sufficiently close to the solution.

36

Table 4.2
l = 0, both simple bounds and circular constraints are active in the solution.

n g = 1.4 g = 1 g = 0.5 g = 0.3 g = 0.1 g = 0.01
5 : 3/2 : 6 6 : 2/4 : 4 7 : 1/5 : 3 7 : 1/5 : 3 8 : 0/8 : 0 8 : 0/8 : 0

32 7 7 8 9 10 14
10 : 6/2 : 14 11 : 5/5 : 11 13 : 3/6 : 10 16 : 0/16 : 0

64 10 8 9 × × 62
20 : 12/4 : 28 22 : 10/5 : 27 26 : 6/10 : 22 29 : 3/16 : 16 31 : 1/22 : 10

128 16 13 9 16 64 ×
39 : 25/4 : 60 45 : 19/8 : 56 52 : 12/18 : 46

256 29 22 58 × × ×
77 : 51/4 : 124 89 : 39/12 : 116 104 : 24/33 : 95

512 54 42 27 × × ×
155 : 101/6 : 250 177 : 79/22 : 234 208 : 48/60 : 196 228 : 28/95 : 161

1024 104 82 51 186 × ×
309 : 203/11 : 501 354 : 158/39 : 473 416 : 96/120 : 392

2048 206 161 99 × × ×

For this reason we will find another initial iteration by Polyak-type-algoritm

(program QPC, see [12]), which will definitely be sufficiently close to the solution.

Moreover, in relation to this new initial iteration x(0) we appropriately modify

also other input arguments λ(0) and µ(0).

Remark 4.2 Table 4.3 takes down the behaviour of the Semi-Smooth Newton

method with input values modified by QPC. The numbers in round brackets

write down the number of iterations that are needed for finding a new initial

iteration x(0) by QPC with a tolerance set to 10−1. In some cases, however, it

is necessary to compute with a higher tolerance to achieve the convergence of

the Semi-Smooth Newton method. In angular brackets are in these cases written

down numbers y, where the lowest such a precision is 10−y.

Table 4.4 compares for l = 0 and g = 1 the Semi-Smooth Newton method

with null input data x(0), λ(0) and µ(0), with input data modified by QPC.

4.1.1 Algorithm with Adjustments

In the subsection 3.4 we have familiarized ourselves with the adaptive precision

control tolv. In the mentioned theory there are two optional parametres rtol and

37

Table 4.3 QPC
l = 0, both simple bounds and circular constraints are active in the solution.

n g = 0.3 g = 0.1 g = 0.01 g = 0.001
7 : 1/5 : 3 8 : 0/8 : 0 8 : 0/8 : 0 8 : 0/8 : 0

32 8(3) 7(3) 19(2) 20(2)
14 : 2/9 : 7 16 : 0/13 : 3 16 : 0/16 : 0 16 : 0/16 : 0

64 5(6) 4(4) 20(2) 29(3)
29 : 3/16 : 16 31 : 1/22 : 10 32 : 0/31 : 1 32 : 0/32 : 0

128 3(69)[2] 7(9) 4(5) 20(4)
57 : 7/26 : 38 61 : 3/40 : 24 64 : 0/58 : 6 64 : 0/64 : 0

256 6(31) 3(99)[2] 5(10) 2(10)
114 : 14/49 : 79 122 : 6/77 : 51 127 : 1/111 : 17 128 : 0/126 : 2

512 15(114) 9(289)[2] 2(418)[4] 9(11)
228 : 28/95 : 161 244 : 12/149 : 107 253 : 3/219 : 37 256 : 0/249 : 7

1024 9(373) 14(379) 6(730)[2] 11(774)[5]
456 : 56/186 : 326 488 : 24/296 : 216 506 : 6/434 : 78 511 : 1/496 : 16

2048 34(809) 15(1026) 10(1558) 2(1897)[6]

cfact. The total efficiency of the computation will be examined through these two

parametres. The aim is to find their ‘optimal’ values. It is obvious, that it is

not possible to find all-purpose optimal parametres, i.e. one value of parametres

that is optimal for any case. It is necessary to gain particular experience how

to handle these parametres. If the size of the problem is n and the number of

Hessian multiplications will be n or even smaller, then it is a success.

The conjugate gradient method for solving a linear system of equations cer-

tainly converges after n iteration. In our case we deal with a nonlinear problem,

so if we get the number of iterations comparable with n, it is a success.

In the 1D example we have firstly implemented our first idea with the Schur

complement (A) and we want to explore the adaptive precision control. To verify

that it makes sense, we will carry out particular comparative tests. We will still

consider the same problem, with l = 0 and g = 0.5.

In Table 4.5, we monitor the numbers of Hessian multiplications and the

number of iterations (needed for the convergence of the method). Two following

cases are compared.

a) the inner precision tolv will be fixed (10−6), the vector z(0) will always be

38

Table 4.4 QPC
l = 0, both simple bounds and circular constraints are active in the solution.

n g = 1 g = 1(QPC)
6 : 2/4 : 4 6 : 2/4 : 4

32 7 8(1)
11 : 5/5 : 11 11 : 5/5 : 11

64 8 6(1)
22 : 10/5 : 27 22 : 10/5 : 27

128 13 11(1)
45 : 19/8 : 56 45 : 19/8 : 56

256 22 4(532)[2]
89 : 39/12 : 116 89 : 39/12 : 116

512 42 40(1)
177 : 79/22 : 234 177 : 79/22 : 234

1024 82 80(1)
354 : 158/39 : 473 354 : 158/39 : 473

2048 161 159(1)

a null vector and ρ = 1.

b) the adaptive precision control tolv will be used with parameters rtol = 0.01

and cfact = 0.9, the vector z(0) will be a null vector only at the first time

and then modified (see Remark 3.1) and ρ = 0.5.

Table 4.5
Hessian multiplications/iterations.

n a) b)
32 162/8 94/10
64 243/9 128/10

128 391/9 170/10
256 5253/65 341/13
512 2997/29 756/20

1024 7969/49 1317/23
2048 21846/84 10576/68

From the table we can easily read, that the number of Hessian multiplications

has been significantly set lower by our modifications. With the growing n the

numbers of iterations, are also lower.

39

In the paper see [13] it is stated, that it is covenient to choose rtol = 0.01

and cfact = 0.9. For example for n = 256 we get 1077/31 (Hessian multiplica-

tions/iterations). But if we choose rtol = 0.8 and cfact = 0.82 we get 81/14. This

just proves the fact that it is very tricky to find the optimal values of the parame-

tres. Loads of experiments for this purpose have been done. Have a look at some

of them (Table 4.6) to have an idea how to choose the optional parametres rtol

and cfact.

Table 4.6
Hessian multiplications/iterations, rtol = 0.8.

cfact n = 256 n = 512 n = 1024
0.9 262/20 188/18 397/17
0.8 146/22 269/17 778/22
0.82 82/14 249/19 350/18
0.7 145/15 476/30 3945/47
0.6 167/19 383/23 7745/53
0.5 135/17 419/19 1723/25
0.4 213/17 259/17 539/17
0.3 296/14 301/13 6278/32
0.2 934/18 1627/19 4654/22
0.1 451/11 1649/15 12926/28

rtol = 0.01, cfact = 0.9 1077/31 × 2044/30

We have also noticed that there is not a small influence on the results when

choosing ρ (from the ‘maximum conditions’, Lemma 2.1). Have a look at the

next table (Table 4.7).

Moreover, we have implemented for the 1D example the second idea (B) -

using BiCGSTAB. Next table (Table 4.8) compares variant A with B.

Problems in 3D are definitely (in our case) much more interesting than prob-

lems in 1D. Let us move to 3D.

4.2 Model Problem in 3D

As a three-dimensional model problem we will deal with a one-body contact

problem with Tresca friction. Let us consider the elastic body represented by the

40

Table 4.7
Hessian multiplications/iterations, cfact = 0.9, n = 512.

rtol ρ = 1 ρ = 0.9 ρ = 0.5 ρ = 0.1
0.9 370/22 371/21 314/24 223/17
0.8 188/18 414/16 230/16 184/18
0.7 1391/31 201/17 271/19 192/16
0.6 198/16 337/19 254/14 169/15
0.5 372/22 355/21 271/19 211/19
0.4 49/91 558/15 151/13 281/15
0.3 438/16 396/20 248/14 251/19
0.2 319/13 297/15 248/18 302/18
0.1 409/21 329/17 301/15 218/14

0.05 430/18 497/21 313/19 309/15
0.01 × 686/18 756/20 518/14

0.001 1709/23 1784/24 2218/30 1492/22

Table 4.8
Hessian multiplications/iterations, cfact = 0.9.
n A, rtol = 0.01 B, rtol = 0.01 B, rtol = 0.1
32 94/10 415/11 74/6
64 137/11 910/12 425/13
128 195/11 1064/10 786/12
256 1077/31 3457/19 1529/17
512 × 11534/30 2841/25
1024 2044/30 32062/50 8410/42
2048 5421/49 × 101668/92

prism

Ω = (0, 3) × (0, 1) × (0, 1).

The boundary ∂Ω consists of three disjoint parts

Γu = {0} × (0, 1) × (0, 1), Γc = (0, 3) × (0, 1) × {0},

Γp = ∂Ω\(Γu ∪ Γc).

On Γu we prescribe zero displacements while surface tractions pj (j = 1, 2) act on

Γp. On Γc we consider the non-penetration condition with respect to the perfectly

rigid foundation (an initial gap is equal to zero) and the effect of (isotropic) Tresca

friction (see Figure 4.2). Finally we assume that the volume forces are vanishing.

The elastic properties of Ω are described by the Lamè equations with material

41

parameters the Young modulus E = 2.119 · 105 [MPA] and the Poisson constant

ν = 0.277 (steel).

Figure 4.2 Geometry of the body.

p1

p2

Γu

Γc

Ω

After finite element approximation we arrive at the following algebraic mini-

mization problem:

minimize 1
2
u⊤Ku − u⊤f +

m∑

i=1

gi||(T1,iu, T2,iu)⊤||2

subject to Nu ≤ d,






(4.2)

where K denotes a symmetric positive definite stiffness matrix, N, T1 and T2

(Tj,i denotes a i-th row for j = 1, 2 and i = 1, 2, . . . ,m) are matrices projecting

displacements in contact nodes to the normal and tangential directions, respec-

tively, f is the load vector, g = (g1, g2, . . . , gm)⊤ is the vector of slip bound values

and the vector d collects distances between Ω and the rigid foundation of the

contact nodes. Here, m is the number of contact nodes on Γc and || · ||2 indicates

a norm in R
2.

Due to the fact that the functional
m∑

i=1

gi||(T1,iu, T2,iu)⊤||2 is not differentiable

and the non-penetration condition is quite complicated, our solution method is

based on the dual formulation of (4.2). We use two types of Lagrange multipliers:

λN ∈ R
m is associated with the non-penetration condition while λT1

, λT2
∈ R

m

regularize the non-differentiability in the objective function of (4.2). To simplify

42

the notation we denote

λ =





λN

λT1

λT2



 , B =





N
T1

T2



 , c =





d
0
0



 .

The Lagrangian associated with the problem (4.2) reads as follows

L(u, λ) =
1

2
u⊤Ku − u⊤f + λ⊤(Bu − c),

where u is unconstrained and λ ∈ Λ(g) for the set of Lagrange multipliers given

as

Λ(g) = {λ ∈ R
3m : λN,i ≥ 0, ||(λT1,i, λT2,i)

⊤||2 ≤ gi, i = 1, 2, . . . ,m}.

Then the problem (4.2) is equivalent to the saddle-point problem

min
u

max
λ∈Λ(g)

L(u, λ). (4.3)

The first unknown may be eliminated from (4.3) by

u = K−1(f − B⊤λ). (4.4)

Substituting (4.4) into (4.3) we obtain the dual problem

minimize 1
2
λ⊤BK−1B⊤λ − λ⊤(BK−1f − c)

subject to λ ∈ Λ(g).

Note that this problem corresponds with (2.1), so that we can solve it by the

SSNM. After computing λ we can evaluate u from (4.4).

We took some advantage of exploring the 1D example. Now, we are at most

interested to compare the efficiency of our three variants (A, B and C) that have

been implemented.

Firstly, we were trying to find the ‘optimal’ parametres rtol and cfact for each

variant. We have concluded that

• for A it is rtol = 0.2 and cfact = 0.4,

43

• for B it is rtol = 0.1 and cfact = 0.99,

• for C it is rtol = 0.1 and cfact = 0.2.

With these choices we have carried out next comparisons, see Table 4.9.

Table 4.9
Hessian multiplications/iterations and times (sec.) above.
n nx/ny/nz A B C

6.5938 38 3.3125

270 15/5/5 796/16 182/14 802/10
18.9531 98.4219 10.3906

378 18/6/6 1216/16 1480/26 1308/10
41.8438 211.9688 22.5156

504 21/7/7 1536/16 1729/25 1596/10
84.2813 505.9688 49.7344

648 24/8/8 1888/16 2199/21 2246/10
158.9063 915.2656 107.9219

810 27/9/9 2257/17 NaN 3191/11
312.0156 1389.8906 176.0156

990 30/10/10 3061/17 NaN 3508/10
538.1875 2011.1875 331.4531

1188 33/11/11 3679/17 2102/18 4615/11
5970.4531

1404 36/12/12 out of memory 4184/20 out of memory

Remark 4.3 The ‘NaN’ means that there was a dividing by zero in BiCGSTAB,

due to rounding errors and we did not get the solution. The ‘out of memory’ ex-

presses that an ordinary computer is not able to compute the solution because

of an unsufficient memory. The nx, ny, nz in the table describe into how many

parts is the body divided in the corresponding directions of axes x, y, z, respec-

tively. The number n indicates the size of the problem.

44

Figure 4.3 Normal contact stress, C.

0

0.5

1

1.5

2

2.5

3

0

0.5

1

0

0.2

0.4

0.6

0.8

1

x
1

x
2

× 35

λν

In spite of the fact that A needs more iterations to converge than C, the variant

A is the most effective. This is because the characteristic Hessian multiplications

is more important than iterations when concerning effectivity. (Here, this is

caused by the fact that the inner problems for C are solved more exactly than for

A). The variant B seems to be good for large problems. But the so called break

down occurs - this is a problem connected with the rounding errors in BiCGSTAB

when using it without the Schur complement reduction and it does not compute

the solution.

45

Appendix

Definition 4.1 The matrix norm || · || is said to be consistent with the vector

norm || · ||, if

||Ax|| ≤ ||A|| ||x|| ∀x ∈ R
n, A ∈ Rm×n.

Lemma 4.1 Let A ∈ R
m×n and I ∈ R

m×n be the identity matrix. If ||A|| < 1,

then (I − A)−1 exists and it holds that

||(I − A)−1|| ≤
1

1 − ||A||
.

Definition 4.2 The Hessian matrix of F , i.e. HF : R
n → R

n×n×n

(HF (x))ijk =

(
∂2Fi

∂xj∂xk

)

(x) i, j, k = 1, 2, . . . , n,

for x = (x1, . . . , xn)⊤ and F = (F1, . . . , Fn)⊤.

Remark 4.4 Because HF is a three-index matrix it is necessary to use a gen-

eralized case of the dot product for matrices with different number of indexes,

which is denoted by ‘:’.

Definition 4.3 The generalization of the definition of the dot product. The case

of matrixes with a different number of indexes. If

A = (ai1,...,im,j1,...,jn
)i1≤k1,...,im≤km,j1≤l1,...,jn≤ln

and

B = (bj1,...,jn
)j1≤l1,...,jn≤ln ,

then

A : B = (ci1,...,im)i1≤k1,...,im≤km
,

where

ci1,...,im =
∑

j1≤l1,...,jn≤ln

ai1,...,im,j1,...,jn
bj1,...,jn

.

46

Conclusion

To conclude, the goal of this work – the completion of the effective solver for

the contact problem with friction – was sucesfully accomplished. The A variant

(the nonsymmetric case with the Schur complement reduction) proved to be the

most effective variant of the implementation.

After describing the Newton method and its disadvantages, we introduced

the slanting functions and the Semi–Smooth Newton method as a possibility

how to deal with these disadvantages. Moreover, we have showed how to solve

the minimization problem of the quadratic functional with separable constraints.

An important part of this work was the chapter devoted to the implementation,

where we have presented three variants of the implementation of the algorithm

of the Semi–Smooth Newton method. The 1D model example helped us to make

our program as effective as possible. Finally, the 3D model problem fulfiled all

our expectations we were heading towards during whole work.

Due to a dealing with a vast subject that includes the finite elemnet method,

nonlinear programming, contact problems etc., I have found it difficult to decide

how much information give to the reader about these subjects that are not really

the main topic of this work. Finally, I have decided to give the sufficient and

sometimes just basic information about these topics.

Because I have been absorbed in this subject, I would like to occupy myself

with this topic even more closely in the future.

47

Hlavńı ćıl diplomové práce – sestrojeńı efektivńıho řešiče pro kontaktńı úlohu

se třeńım, byl uspěšně dosažen. Jako nejefektivněǰśı varianta implementace se

ukázala varianta A - nesymetrický př́ıpad s použit́ım rozkladu na Schur̊uv kom-

plement.

V práci jsme se bĺıže seznámili s Newtonovou metodou a jej́ımi nevýhodami.

Jako jedno z možných východisek z těchto problémů byla představena nehladká

Newtonova netoda, která využ́ıvá slanting funkćı. Ukázali jsme, jak je možné

pomoćı nehladké Newtonovy metody řešit minimalizačńı úlohy s kvadratickým

funkcionálem a separovatelnými kvadratickými omezeńımi. Důležitou část́ı této

práce byla kapitola o implementaci, která obsáhla tři implementačńı varianty

algoritmu nehladké Newtonovy metody. Modelový př́ıklad v 1D posloužil jako

velmi dobrý pomocńık při ověřováńı teoretických úvah a odlad’ováńı programu.

Závěrečný modelový př́ıklad kontaktńı úlohy završil vše, k čemu jsme celou dobu

směřovali.

Jelikož tato práce zahrnuje rozsáhlé téma, které v sobě obsahuje několik dis-

cipĺın (metody konečných prvk̊u, nelineárńı programováńı, kontaktńı úlohy atd.),

bylo poměrně těžké určit, do jaké mı́ry se o problematice př́ımo nesouvisej́ıćı

s tématem rozepsat. V těchto př́ıpadech jsem se snažila poskytnout nejpod-

statněǰśı informace a nenarušovat tak hlavńı tok práce.

Daná problematika mě zaujala natolik, že bych se j́ı ráda věnovala i v bu-

doucnu. Výzvou je pro mě hlubš́ı pochopeńı problematiky jako celku. Daľśı

velmi lákavou motivaćı jsou dynamické kontaktńı úlohy.

Přestaň myslet: To je mé

a to neńı mé.

Pak mi pověz, kdo jsi ty?

A také mi řekni,

jak vypadala tvoje tvář,

než se narodili tv́ı rodiče?
(zenová moudrost)

48

Annexe

Here is some information about the attached CD with m-files. CD includes

two files:

1. 1D - 1D model problem

- no adjust - algorithm with no adjustments and

QPC is added

- with adjust - algorithm with adjustments

2. 3D - 3D model problem

- mysolvers - solvers of the problem (SSNM)

- definition of the problem

- data - plotting and results

1. the running m-file is compute.m, the main solver is SSNM.m

2. the running m-file is myTEST.m, the main solver is SSNM.m

49

Bibliography

[1] Benzi, M., Golub, G. H., Liesen, J.: Numerical solution of saddle point
problems. Acta Numerica, (2005), pp. 1-137.

[2] Felcman, J.: Numerická matematika. KNM Press, Praha, 2005.

[3] Golub, G. H., Van Loan, C. F.: Matrix Computations. The Johns Hopkins
University Press, Baltimore; Maryland, 1996.

[4] Haslinger, J., Kučera, R.: Scalable T-FETI based algorithm for 3D contact
problems with orthotropic friction. Submitted to Lecture Notes in Applied
and Computional Mechanics, 16 (2009).

[5] Haslinger, J., Zoubek, T., Kučera, R., Peichl, G.: Projected Schur com-
plement method for solving non-symmetric systems arising from a smooth
fictitious domain approach. Numer. Linear Algebra Appl., 14 (2007), pp.
713-739.

[6] Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy
as a semismooth Newton method. SIAM J. Optim., 13 (2003), pp. 865-888.

[7] Hüeber, S.: Discretization techniques and efficient algorithms for contact
problems. Institut für Angewandte Analysis und Numerische Simulation Uni-
versität Stuttgart, Thesis (2008).

[8] Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods
for nondifferentiable operator equations. SIAM J. Numer. Anal., 38 (2000),
pp. 1200-1216.

[9] Ito, K., Kunish, K.: Semi-smooth Newton methods for variational inequal-
ities of the first kind. Mathematical Modelling and Numerical Analysis, 37

(2002), pp. 41-62.

[10] Jeyakumar, V., Luc, D. T.: Approximate Jacobian matrices for nonsmoooth
continuous maps and C1-optimization. SIAM J. Optim., 36 (1998), pp. 1815-
1832.

[11] Kučera, R., Machalová, J., Ženčák, P.: Newton-like algorithms for 3D con-
tact problems. Proceedings PANM14, Horńı Maxov (2008), pp. 111 - 117.

[12] Kučera, R.: Convergence rate of an optimization algorithm for minimizing
quadratic functions with separable convex constraints. SIAM J. Optim., 19

(2008), pp. 846-862.

50

[13] Ligurský, T., Haslinger, J., Kučera, R.: Approximation and numerical re-
alization of 3D contact problems with Coulomb friction and a solution-
dependent coefficient of friction. Submitted to International Journal for Nu-
merical Methods in Engineering (2009).

[14] Mı́ka, S.: Matematická optimalizace, Západočeská univerzita, Plzeň, 1997.

[15] Nocedal, J., Wright, S. J.: Numerical Optimization, Series in Operations
Research, Springer, New York; Berlin; Heildeberg, 2006.

[16] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, New
York; Berlin; Heildeberg, 2007.

[17] Sikorski, R.: Diferenciálńı a integrálńı počet, Funkce v́ıce proměnných.
Academia, Praha, 1973.

[18] Van der Vorst (1992), H. A.: BiCGSTAB: a fast and smoothly converging
variant of BiCG for solution of nonsymmetric linear systems. SIAM J. Sci.
Statist. Comput., 13 (1992), pp. 631–644.

[19] Ćılek, V.: Mrtvá kočka. Dokořán, 2002.

51

