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Notation

Rn

RmXTL

L(R",R")

set of all natural numbers, e.g. 1,2,3,...

set of all real numbers

set of all vectors z = (21, 2o,...,7,)"

with real componenets

set of all matrixes with m rows and n columns,
with real components

identity matrix
zero matrix

space of all functions with m continuous
(partial) derivatives on D, usually D C R"

limg, ., f(2)/g(x) =0

{r € D: ||z —a*|| <r},ie. the ball
of the radius r with the center at the point x*,
where x* € D and usually D C R"”

set of all bounded linear mappings of R”
into R”

A € R™™ ig called symmetric

A € R™™ is called positive definite

if AT=A

ifVe#0, z€R": 2" Az >0



Introduction

Nemyslete na to, co mate délat.
Neuvazujte, jak to mate délat.
Sip vylétne hladce jen tehdy,

kdyz prekvapi i samotného lukostielce.

(zenova moudrost)

Newtonova metoda je jednou z nejefektivnéjsich itera¢nich metod pro feseni
systému nelinearnich rovnic. Jeji vyhodou je rychlost konvergence, kterda nam
umoznuje vypocitat feSeni v nékolika malo iteracich. Klasickd Newtonova metoda
se potyka s nékolika nevyhodami, které se staly motivaci pro tuto praci. Hlavnim
cilem préace je sestrojeni efektivniho fesSice opirajictho se o vhodnou variantu
Newtonovy metody, kterym lze fesit jistou tfidu minimalizacnich tloh vznikajicich
pii dudlni formulaci kontaknich tloh se tfenim ve tfech prostorovych dimenzich
(3D). Kontaktni dlohy hraji dulezitou roli jak v prumyslovych, tak ve zdravot-
nickych aplikacich. Navrhy co nejefektivnéjsich technik diskretizaci a strategii
feseni kontaktnich 1loh jsou nyni velkou vyzvou pro matematiky i inzenyry.

Prace je rozdélena do ¢tyt kapitol. Prvni kapitola pojednava o Newtonoveé
metodé. Nejprve je popsana klasickda Newtonova metoda a je dokazana véta o jeji
konvergenci. S upozornénim na nevyhody klasické Newtonovy metody kapitola
prechézi k definici slanting funkei a k nehladké Newtonové metodé. Stézejni ¢ast
této kapitoly tvori dukazy vét o konvergenci jak klasické, tak nehladké Newtonovy
metody.

V druhé ¢asti prace je formulovana tloha nelinearniho programovani. Jedna
se o minimalizaci kvadratického funkcionalu se separovatelnymi kvadratickymi
omezenimi. Je popsano, jak feSeni nelinearniho problému prechazi elegantnim
zpusobem pres nediferencovatelny problém az k teSeni posloupnosti systému
linearnich rovnic. Kapitola vyust'uje schématem algoritmu nehladké Newtonovy
metody s pouzitim techniky aktivnich mnozin.

Treti kapitola je vénovana implementaci algoritmu a smétruje k jeho co nejvetsi

efektivité. Nejprve je oduvodnéno rozdéleni na dva pripady - nesymetricky a sy-
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metricky, a jsou navrzeny tfi varianty implementace. Poté nastupuje detailni
popis moznych cest, jak feSit vnitini soustavy. Je popsan Schuruv doplnék,
metoda bikonjugovanych gradientu, LU rozklad a metoda konjugovanych gradi-
entu. Neméné dulezitou ¢ast zde tvori podkapitola o adaptivnim fizeni presnosti
vnitinich soustav.

Vyvrcholenim préce je posledni - ¢tvrtd kapitola, kde se fesi dva modelové
priklady. Prvni ptiklad v jedné dimenzi slouzi hlavné k odladéni programu
a oveéreni jeho efektivity. Nyni muzeme prejit k hlavnimu vytycenému cili prace,
a tim je 3D kontaktni tloha s tfenim. Struéné uvadime diskrétni formulaci
ulohy s Trescovym tfenim (po diskretizaci metodou konecnych prvku), kterou
prevadime do dualniho tvaru. Pro tuto ulohu pak porovnavame tii navrzené vari-
anty implementace naseho algoritmu (samoziejmé s tim, ze pouzivame znalosti
ziskané prozkoumavanim piikladu prvniho). Pokud se dostanete az sem, dozvite
se, ktera varianta vyhrava.

Ptesto, ze hlavnim tusilim prace je sepsani a vyladéni programu v Matlabu,
nenajdete v praci (az na dvé vyjimky) zadné matlabovské kédy. Podle mého
nazoru to k porozumeéni a prehlednosti prace nijak nepiispiva. V kapitole o im-
plementaci jsou shrnuty vSechny hlavni myslenky, podle kterych je program ses-
taven. K praci je ptilozen CD nosi¢, ktery vSechny kédy obsahuje. Jelikoz se
jedna o velmi rozsdhlou problematiku, pouzila jsem jiz vytvorené m-fily tykaji
se formulace problému pomoci metody konecnych prvku, zadani dat a nékteré
dalsi. Dale také program QPC vytvoteny vedoucim této préce (vSechny tyto m-
fily poskytnul vedouci prace). M-fily tykajici se vieho vyse teoreticky popsaného
jsou pak samoziejmé vlastni praci.

Ctenaium této préce pieji dobrou néladu pii ¢teni. Tak tedy hurd do toho

a v 0.49999998988999... je hotovo.



The Newton method is one of the most effective iterative methods for solving
systems of nonlinear equations. The main advantage is a rapid rate of conver-
gence, which enables us to solve the system in few iterations. As a disadvantage
we can mention local convergence results and quite high demands on smoothness.
This work is motivated by the effort to appropriately modify (to set lower the
demands on smoothness) the Newton method in relation to the problem of non-
linear programming. The goal of this work is the completion of an effective solver
based on a suitable variant of the Newton method for solving a particular class
of minimization problems arising from the dual formulation of contact problems
with friction in 3D. The design of discretization techniques and efficient solution
strategies for contact problems is a challenging task from both the engineering
and the mathematical point of view.

The work is divided into four chapters. The first chapter deals with the
Newton method. First the classical Newton method is described and the theorem
of its convergence is proved. After pointing out the disadvatages of the classical
Newton method, slanting functions and the Semi-Smooth Newton method are
introduced. The convergence of the Semi-Smooth Newton method is proved.

The problem of nonlinear programming is discussed in the second part of
this work. We consider a minimization problem of a quadratic functional with
separable quadratic constraints. It is argued how to compute the solution to this
nonlinear problem by a sequence of linear equations. To this end the algorithm
of the Semi-Smooth Newton method is reformulated in an active set terminology.

The third chapter is dedicated to the implementation of the algorithm and
leads to its high efficiency. We distinguish two cases - nonsymmetric and symmet-
ric and three implementation variants. It is described in details how to deal with
the inner problems - the Schur complement, the bi-conjugate gradient method,
LU-factorization and the conjugate gradient method. Moreover, the adaptive
precision control is mentioned.

The most important part of this work is the fourth chapter, where two model

problems are solved. The first 1D example is used mainly for adjusting and ver-



ifying the efficiency of the program. Now, we are ready to deal with the aim of
this work - the 3D contact problem with friction. First we introduce the discrete
formulation of the problem with Tresca friction (after finite element discretiza-
tion) and than we derive its dual formulation. For this problem we compare our
three proposed variants of the algorithm (using the gained knowledges from the
first example). If you read up to this point, you will find out which variant is the
winner.

Although the main result of this work is the Matlab program you will not find
(except two) any Matlab code in the text. According to my opinion it does not
help to understanding. In the attachment you can find the CD with all m-files.
As we are concerned with a vast subject I have used some already completed
m-files (the formulation of the problem using finite element method and data,
all provided by the supervisor of this work). Furthermore, I have used a program

QPC completed by the supervisor of this work.



1 The Newton Method and Its Modifications

The Newton method belongs to numerical methods for a calculation of roots

of nonlinear functions. For the sake of simplicity, we will distinguish two cases:
a) f:R — R, ie. we are seeking for z* € R such that f(z*) =0,
b) F:R"™ — R", ie. we are seeking for * € R"™ such that F(z*) =0.

Numerical methods for an approximation of roots of a nonlinear real-valued
function are usually iterative. An initial iteration z#(?) is chosen and the aim is to

generate a sequence of values {2®)} such that

k) *

lim z® = 2*.

k—oo

Among numerical methods of this type belong, for example, the bisection method,
the chord method, the secant method, the Regula Falsi method, the Newton

method, etc. The efficiency of the method depends on its rate of convergence.

Definition 1.1
(i) An iterative method generating a sequence {x'®} is of order p > 1, if

30 > 0: |z®Y — 2 < O™ — 2*P, VEk > ko, ko €N, (1.1)

(i) If it holds:

a0 — |

o e (1.2)

then we call the convergence superlinear.

Remark 1.1

(i) If p = 1, then for the convergence of the sequence {z®} it is necessary
that C' < 1. If limj_ o ® = 2* and p = 1, we call the convergence linear.
The convegence occurs for any choice of the initial iteration z(*) so that the

method is then said to be globally convergent.
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(ii) If p = 2, then we call the convergence quadratic. There is no demand on
the constant C' so that the convergence result depends on the choice of the

0)

initial iteration 2(°). The method is said to be locally convergent in this

case.
(iii) The condition (1.2) implies that
Ve > 0: [zt — 2% < ela®™ — 2|, Vk > ko, ko € N

Comparing with the formula (1.1), we can conclude that the superlinear
convergence is a certain compromise between the linear and the quadratic

convergence.

1.1 One Nonlinear Equation

Assume that f € CY(Z), Z C R, z* € T and f'(z*) # 0 (i.e. 2* is a simple
root). A sequence of values generated by the Newton method is computed by the

following rule:

gD = 2 k) —%, k=0,1,2,.... (1.3)

Geometrically, the iteration z(**1) is a point of intersection of the tangent con-
structed in the point [z, f(z())] to the graph of the function f with the z—axis.
Let us suppose, moreover, that f € C*(Z), f'(z) # 0, Vo € Z and that the
sequence {2} generated by (1.3) converges to z*. By taking the limit of both
sides of (1.3) we obtain f(z*) = 0. Consider the Taylor expansion of the function

f in the neighbourhood of ® for x = 2*, i.e.
1
£t = 0= £+ ) —a®) + 3 (0) " - o,

where a is between 2* and #*). By dividing this equation by f’(x*)) and inserting
(1.3) we get
f"(@)

gt — 2® 4 (2* — W) 2 =0,

2 ()
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We can conclude that

1
gty _ | L@ g e «_ 2
where C' = max % ‘ It is easy to deduce that under the previous assumptions,
[eWAS

the Newton method is of the second order.
To ensure the convergence of the Newton method it is necessary to choose the
initial iteration z(® from a subinterval of Z. This will be discussed in the next

chapter.

Remark 1.2 The way how to aproximate f by a straight line going through the
point [2®), f(z*))] is not unique. The Newton method is actually a special case

of a substitution of a linear function for the function f:

lp(x) = f(x(k)) + (z — x(k))qk,

where the slope ¢ is chosen as
ar = f'(z®).

Remark 1.3 The generalization of the Newton method for a multiple root z*
with multiplicity m, m > 1, is also of the second order. It is given by the following
rule

k+1) k) f(z®))

k=0,1,2....

1.2 System of Nonlinear Equations

The Newton method theory concerened with a system of nonlinear equations
is analogical to Section 1.1.

Assume that F' : R* — R" ie. F = (F,....F,)", F € CYD), where
D C R™ We denote by F’ the Jacobi matrix of F' defined as F’ : R" — R™"*"

(F'(z));; = (gf:)(x), ij=1,2,....n.
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0)

For a chosen initial iteration 2(9) we write the Newton method for n-dimensional

case as follows

pED) — (k) 5:,;(16), k=0,1,2,..., (1.4)

where 62 is computed in each step by solving the system of linear equations
F'(z®)5z® = —p(z0)), (1.5)

Remark 1.4 The main idea how to derive the Newton method is based on the
fact, that we substitute a sequence of linear problems Ly (z) =0, Ly : R — R"
k =0,1,... for the nonlinear problem F(z) = 0. The solutions of these linear
systems z(*) generate a sequence of values {z®} that converges to the solution
of the problem F(z) = 0. Here, Ly(x) are chosen as the linear parts of the Taylor

expansion of the function F at the points 2, i.e.
F(z) = Fe®) + F/(@)(z - o) + of|z — 29 P)
and
Li(z) = F(z®) + F'(2®) (z — z¥).

Putting Ly(x) equal to zero we obtain the formula for the k + 1 iteration, i.e.
2R — (k) (F’(x(k)))_lF(x(k)).

Let us note this formula is equivalent to (1.4) (1.5), where the inverse matrix is

replaced by its action computed by solving the linear system.

Theorem 1.1 Let F' : R" — R" be a continuously differentiable function in
a convex open set D C R"™ and let x* € D be a solution to the nonlinear equation
F(x) = 0. Suppose that the second derivative of F is continuous at a neighbour-
hood of x*. Moreover, suppose that (F'(z*))™! exists and that there are positive

constants R, C and L, such that
|(F'(z")) | < C,

and
|F'(x) = F'(y)|| < Ll|lx —yl| Yo,y € B(z"; R), (1.6)
12



having denoted by the same symbol || - || two consistent norms.
Then, there exists 1 > 0 such that for any initial iteration % € B(x*,r), the
sequence of values {x®} generated by (1.4) is uniquely defined and converges to

x* quadratically. Moreover, it holds that
|+ — 2% | < CL||a® — 2*| . (1.7)

Proof: In the statement of the theorem is said that there exists r > 0, i.e. r
sufficiently small and we choose x(® in B(2*,r). (In other words there exists
r > 0 such that (F'(2(®))~! exists for any chosen #(?) € B(z*,r)). Below, we will
show that a good choice of r is r = min(R,1/(2CL)).

Firstly, we will demonstrate that for an arbitrary initial iteration (% € B(a*, r)

matrix (F'(z(®))~! exists. Indeed,

I @) (F' () = Fa)]] < I(F' (@) 1F(@©) — F(a”)]| < CLr <

DN | —

Let us set
A=1—(F'@) " F(@Y) = =(F'(a") " (F'(2Y) — F'(2")).
Then
(I=A)=(F'(2) ' F'(z¥) and (I —A)"=(F (") F ().
Therefore Lemma 4.1 (see Appendix) implies that (F”(z(?)))~! exists and it holds

[1CE" (@) H] < /@) F @) (F () ] <

(£ () ]| (o
< 1 — ||(F’(QJ*))_1(F’(:IJ(O)) _ F/(x*))H < 2H(F (:U )) H <2C.

Thus the iteration 2 is well defined and it holds
2V — 2" = 2O — g — (F'(2O)"YF(2) — F(z%)). (1.8)
By taking a norm in (1.8) we get

le® — 2| < | @) | [|[F(a”) = F®) - Fe®)@ — ). (1.9)

13



From the Taylor expansion of F' it follows that

F(z*) = F(z9) + F'(z©)(a* —2©) +

+ (" =) Hp(z* +t(a* — 2)) : (2" — 2(©),

N | —

where ¢t € (0,1) and Hp is the Hessian matrix of F'. From (1.9) we get

* — 1 * * * *
20 =% < [J(F' @) 5" =2 )T He(@" (" —2)) : (27 =2 <

1 L
<205 [[Hp(a" + 1" =2 D) [la* = 2O < 207 [l — 2|2,

as it follows from (1.6) that ||Hp(x)|| < L, Vo € B(2*; R). Thus, (1.7) is proved
for k = 0.
Because 2% € B(z*,7), we get

*_ 0] <«
o~ 2] < 22

so that

1
2% = [ < Slle” = 2]

and therefore (V) € B(z*, 7).
By the mathematical induction it is easy to prove that the relationship (1.7)
holds for an arbitrary & and that 2*) € B(z*, 7). The theorem is proved. O

Remark 1.5 If we omit the requirement of an existence and a continuity of the
second derivative of F', the statement of Theorem 1.1 is still true. Since the
theorem assums that F' € C'(D) and F” is locally Lipschitz continuous, we can
use a generalized Hessian matrix in the Taylor expansion, where this requirement

is not needed. For further detailes see [10].

Theorem 1.1 also shows disadvantages of the Newton method. For instance,
to achieve the desired convergence of the method it is necessery to choose the

initial iteration z(© ‘sufficiently close’ to the solution. Secondly, in each step of

14



the Newton method we need to know the Jacobi matrix that, moreover, has to be
nonsingular. In order to overcome these difficulties and to lower the computional
cost, many modifications of the Newton method were developed, for instance, the
Jacobi matrix is replaced by its approximation or for a given number of iterations
is made fixed, its LU-factorization is used. Other methods are used to obtain the
first iteration ‘sufficiently close’ to the solution. The system (1.5) is solved by
various iterative methods. Modified Newton methods usually do not reach the

second order, but a lower one.

1.3 The Semi-Smooth Newton Method

The classical Newton method assumes that F is differentiable. What are

suitable analogies of the Newton method in the case when F' is not differentiable?

Remark 1.6 Superlinear convergence of a ‘semi-smooth Newton method’ have
been already proved by assuming that F'is locally Lipschitz continuous, and by
using the notions of the generalized Jacobian and the semismoothness. The main
idea is based on the Rademacher theorem, that states: If F': R® — R™ is a locally
Lipschitz continuous function, then F'is differentiable almost everywhere. Unfor-
tunately, the Rademacher theorem does not hold in function spaces. That is why
‘slanting’” functions are introduced. Within the bounds of this paper we assume
‘only” n-dimensional Euclidean spaces R". In spite of that we will work with
slanting functions and the theorem that proves the superlinear convergence of
the ‘semi-smooth Newton method’ will be proved without using the Rademacher

theorem, see [8].

Let us assume L(R", R™), D C R™ be an open subset, F': D — R™ a function
and y, h € R". To better understand a new notion of a particular generalization of

the Jacobi matrix, we will recall the definition of the strong (Fréchet) derivative.
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Remark 1.7 We assume the set L(R™,R™). But it is without any problem to
formulate the following theory also on a set L(X,Y'), where X and Y are Banach

spaces.

Definition 1.2 We say that the function F' has at y € D strong or the Fréchet
derivative if there exists a mapping F' : D — L(R™ R") such that

lim ﬁmy ) — Fy) — F'(y)h) = 0. (1.10)

Remark 1.8 If a function F' has the Fréchet derivative at y, the operator F”
from the last definition is uniquely defined and it is called the strong or the

Fréchet derivative.

Definition 1.3

(i) The function F is called slantly differentiable at y € D if there exists
a mapping F° : D — L(R",R™) such that F° is uniformly bounded in

an open neighbourhood of y and
lirr(l)—HF(y—i—h)—F(y)—Fo(y—i—h)hH =0. (1.11)

The function F*° is called a slanting function for F' at y.

(ii) The function F s called slantly differentiable in D if there exists
F° : D — L(R",R") such that F° is a slanting function for F atl every
point y € D. The function F° is called a slanting function for F' in D.

Let us point out some properties of slanting functions:

e If F is continuously differentiable in D and we take F°(y) := F’(y) for all
y € D, then F° is a slanting function for F' at every point of D.

e A slantly differentiable function F' at y can have infinitely many slanting

functions at y (See Example 1.2). In general, F° can take the values of F’
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except at finite number of points of D, and take arbitrary values at these
finite number of points. Then such F° is still a slanting function of F' for
all points of D. To conclude, if F' is continuously differentiable function
in D and F° is a slanting function for F' in D, then F° coincides with F’

except possibly on a set of measure zero.

e A convex combination of two slanting functions of F' is also a slanting

function of F.
e A slanting function is not continuous in general. See Example 1.2.

e A continuous function is not necessarily slantly differentiable (see Example
1.1). But it holds (see [8]) that a function is slantly differentiable at y if

and only if F'is Lipschitz continuous at y.

Example 1.1 Let n =1 and

_ [V ity >0,
F(y)_{—\/(—y)ify<0.

Since F(h) — F(0) = h/+/|h|, and lim,_1/+/]h| — oo, there is no uniformly
bounded function F° such that fulfils the relationship (1.11) at y = 0.

Example 1.2 Let n =1 and F(y) = max{0,y}. By inserting in (1.11) we get

0 y <0,
Foy) =41 y >0,
acR y=0.

The first two cases are obvious. Let us have a detailed look at the last one (y = 0).

For h > 0 we get (from the definition) 2=%=1" = 0. For h < 0 we get &=0-0% = (.

We see that both cases are equal to zero for F°(0) = o, where a € R is arbitrary.

The Semi-Smooth Newton method is a sequence of values {y®}

generated by the following rule

g+ = B (P (y N Ey®), R =0,1,2,... (1.12)

17



Theorem 1.2 Let F' : R" — R"™ be slantly differentiable in D with a slant-
ing function F°. Suppose that y* € D is a solution to the nonlinear equation
F(y) = 0. Assume that F°(y) is nonsingular for all y € D, and there exists

a positive constant M such that
|1Fo(y) 'l < M, VyeD.

Then there exists r > 0 such that for any initial iteration y© € B(y*,r) the
sequence of values {y™} generated by (1.12) is defined uniquely and converges to

y* superlinearly.

Proof: Firstly, we prove the following statement: if {y*} converges to y*, then
it converges superlinearly. We can assume without loss of generality that y*) # y*
for all k, since the statement is trivially satisfied in the opposite situation. The

iteration rule (1.12) gives
y ) —y =y ® — g — (P (y ™) F(y®).
Denoting h* = y*) — y* we can write
yB —yt = (P (W) THE (v + RS — Fly +05) + F(y))

that implies

ly* ) || _ MIIF @y +h*) = Fly) = Fo(y" + W)hf|

< (1.13)
[ly®) — y]] [1h¥]]

As the right-hand side tends to zero by the definition of the slanting function, we
arrive at
D — ||

lim 1Y —0.

e o
We see that the convergence is indeed superlinear.

Now we prove that the Semi-Smooth Newton method converges for sufficiently

small . The definition of the slaning function gives

Ve>030>0VheR": ||h|| <o:
[F(y* + h) — F(y*) — F°(y" + h)h|]
IR
18
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Let us choose € := M~'n, where n € (0,1) is arbitrary but fixed. Consider
r € (0,6) and y» € B(y*,r). Then (1.13) yields for k =0

|y — || 1
WY < vty =,
|y © — y*|

Therefore ||y —y*|| < nl|ly® —y*|| < nrso that M) € B(y*,r). By the induction
we obtain ||y —y*|| < n*r, that proves the convergence of {y*}. The theorem
is proved. 0]
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2 Inequality-Constrained Quadratic Problems

2.1 Formulation of the Problem

We shall be concerned with solving

minimize 1z"Az —a2'b
subject to w1, > 1, 23, + a3, < g7, i=1,...,m, (2.1)
T T T\
r=(2,29,25) €R"

where x1, 29, x3 € R™, 3m = n. Here, A € R™™" is a symmetric, positive definite

matrix, b € R" and [, g € R™.
Theorem 2.1 There is a unique solution to the problem (2.1).

Proof: The problem (2.1) is a program with a strictly quadratic objective on

a convex set. For further detailes see [15] (chapters 12,16) or [14]. O

It is well known that the solution to (2.1) is fully determined by a system of
equalities and inequalities called the Karush-Kuhn-Tucker (KKT) conditions. To
this end introduce the Lagrangian £ : R"™?™ — R associated with (2.1) by

1
L(z, A\, p) = §xTAx — 2 b+ N (1 —21) +p' (22 + 22 — 7,

where A € R™, u € R™ are called Lagrange multipliers.

Theorem 2.2 Let us denote by x* the solution of (2.1). There exists \* € R™
and p* € R™ so that the triplet (x*, \*, u*) is a unique saddle-point to L, i.e. it
satisfies the following system of the KKT conditions

V. L(x, A\ p) =0,
VoL, A\ p) <0, A>0, NTVAL(x, A\, 1) =0, (2.2)
vu£<xa )\,/L) S 07 /J' 2 07 MTVM£<x)/\7:u’) - 0

Proof: For detailes see [15] (chapters 12,16) or [14]. O
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For convenience, we divide A and b into blocks A;;, b;, where 4,5 € {1,2, 3},

consistently with the partition of = into x, x9, x3. Then (2.2) reads as follows

Ay + Appxo + Azzs — A — by =0, (2.3)
Agyy + (Agg + 2M )z + Aggs — by = 0, (2.4)
As1xy + Asoxo + (Ass + 2M)xg — by = 0, (2.5)
-2 <0, A>0, \'(I—2,) =0, (2.6)
(234 23— ¢*) <0, p>0, p' (23 + 23— g°) =0, (2.7)

where M € R™*™ M = diag(p) and the second powers are considered compo-

nentwisely.

2.2 Application of the Semi-Smooth Newton Method

The idea how to use the Newton method for solving (2.1) is based on refor-
mulating the KKT conditions as a system of equalities. The Newton iterations
performed on this new system represent an unconstrained iterative process, how-
ever some equalities are typically described by non-differentiable functions. To

overcome this difficulty we apply the Semi-Smooth Newton method.
Lemma 2.1
a) The condition (2.6) is (componentwisely) equivalent to

A —max{0, A+ p(l —x1)} =0, Vp>0. (2.8)

b) The condition (2.7) is (componentwisely) equivalent to
p—max{0, u + p(z3 + 23— g°)} =0, Vp> 0. (2.9)

Proof:

a) We want to show that [ — 21 < 0, A\ > 0, A'(l —z;) = 0 &
& A —max{0,A++ p(l —21)} =0, Vp>0.
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Let us start with the right implication ‘=’. There are two possibilities how
to fulfil the complementarity condition A" (I —z;) = 0. Firstly, (I —x1) =0
and A > 0, then undoubtedly A — max{0, A + p(l — x1)} = 0. Secondly, for
(I —21) <0 and A =0 we also get that A — max{0,A\ + p(l — 1)} = 0.

Now we prove the opposite implication ‘<=’. If max{0, A + p(l — z1)} =0,
then A = 0 and p(l — z1) <0, so that (I —z;) <0.
If max{0, A+ p(l —x1)} = A+ p(l — 1), then p(l —z1) =0 and A > 0, and

because p > 0, then necessarily is (I — z1) = 0.

Moreover AT (I —z;) = 0 in all cases.

b) The proof is analogous. ¥

Therefore the KKT conditions (2.3) - (2.7) are equivalent to the one (vector)
equation

F(y) =0, (2.10)

withy = (", AT, ") 7, where F' : R*"2™ s R™"*2™ is determined by (2.3) - (2.5),
(2.8) and (2.9) as follows:

Allﬂfl + Alg.ilﬁg + A13333 — )\ — bl
Apxy + (Agg + 2M)xo + Agzxs — by
F(y) = Aglxl + Aggl’g + (A33 + 2M)I3 — b3 . (211)
A= D(Ap)(A+ p(l — 21))
= D(Ag)(p + p(x5 + 23 — g°))

2.3 The Semi-Smooth Newton Method as an Active-Set
Algorithm

On the equation (2.10) we now apply the Semi-Smooth Newton method, i.e.
Fo(y®yy b+ — Fo(y(k))y(k) — F(y(k)), kE=0,1,... (2.12)

Below, we present an implementation of (2.12) as an active-set algorithm. Let

M :={1,2,....m} and p > 0. We define active-sets at y € R"+>™

Ab(y) = {Z eM: A+ p(ll — wl,i) > 0},
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Ay) ={i e M:p; + P(l’gz + x%z —g7) > 0},
and inactive-sets as their complements: Z,(y) := M\ Ay(y) and Z,(y) := M\ A,(y).
With & € M, we associate the diagonal matrix D(S) as follows

| 1, ifies,
D(S) :=diag(si1, ..., Sm), Si:{O ifi¢S.

In order to simplify the notation we denote A, := A, (), A, == A, (y), L := T (y)
and Z, := Z,(y).
The value of the slanting function F°(y) can be derived from the last formula

by the standard differentiation rules

An Alg A —1 0
A21 A22 -+ 2M A23 0 2X2
Fo(’y) = A31 A32 A33 -+ 2M 0 2X3 s (213)
pD(Ay) 0 0 D(T,) 0
0 —2pD(A)X> —2pD(A)Xs| 0  D(Z,)

where Xy = diag(zs), X3 = diag(xs), Xo, X3, I, 0 € R™ ™. Moreover, the

direct computation gives

b
bg + 2X2LL
Fo(y)y — F(y) = | bs+2X3pu : (2.14)
pD(A,)l
—pD(A,)(23 + 23 + %)
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ALGORITHM: SEMI-SMOOTH NEWTON METHOD (SSNM)

Given (¥ € R", A ¢ R™, ;(® ¢ R™ and tol, > 0.
STEP 0 Set k := 0 and choose p > 0. (Typically p = 1.)

STEP 1 Define the active and the inactive sets: A, := A, (y*)), A, = A, (y"),
Ty == Tp(y™®) and I, := T, (y ™).

STEP 2 Compute y* 1) = ((x¢FD)T (AEFD)T (1, (E+1D)TYT a5 the solution to
the linear system given by the matrix (2.13) and the right-hand-side vector
(2.14), in which g = p®, M = diag(y), Xo = diag(z}) and
X3 = dz’ag(xék)).

STEP 3 Set err® = |[z*+D — 2| /(||a*+V|| + 1). If err® < tol,, return

x = a®t) N = \EHD and o= ptD.

STEP 4 Set k:=k+ 1 and go to STEP 1 .
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3 Implementation

For a reasonable implementation of the algorithm (SSNM) it is necessary to
think about all possible problems and make particular adjustments. The skeleton
of the algorithm will stay untouched. There are plenty of ways how to do it.

Firstly, we will express the main ideas. Secondly, we will describe the most
important things from that ideas in detail (solving inner problems).

The matrix performing in (2.13), i.e.

All A12 A13 -1 0
Ao Agy +2M A 0 2X,
Fe (y) = Agl A32 A33 + 2M 0 2X3 s
pD(Ay) 0 0 D(Z,) 0
0 —2pD(A)Xy —2pD(A)Xs| 0 D(T,)

will be divided into indicated parts and a new notation will be introduced as

K B/
By =D )
We refer to this matrix as the generalized saddle-point matriz.

The right-hand-side vector performing in (2.14), i.e.

by
bg + 2X2/,L
Fo(y)y — F(y) = | bs +2X3u
pD(A;)l
—pD(A,) (5 + 23+ ¢°)

will again be divided into indicated parts and a following notation will be intro-

duced:
( 4 )
[

Also the vector of unknowns y = (z", AT, 1) will be re-marked as (z",

z

9

T
where x7 = 2" and 2" = (AT, "). Finally, we get the system

(5 %) (2)=(0) o
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We refer to this system as the generalized saddle-point system in our case with

generally nonsymmetric and nonsingular matrix, where

An Ay A
K = A9 Ay +2M Asgs 3
Az Asy Asz +2M

-1 0 0
Bl_(o 2X, 2X3>’

B, — [ —PDP(A) 0 0
2 0 20D(A,) X2 2pD(A) X5 )’

2= (" b))

and
by
f = | b+ 2X2,U, ’
bz + 2X3pu

. (—PD(Ab)l ) .

pD(Ay) (x5 + x5 + g°)

Let us modify the algorithm on particular places to make the computional cost
as low as possible. At the same time, we require the final tests to be sufficiently
exact, i.e. comparable with the tolerance. One of the important characteristics
of the efficiency of the algorithm is the number of matrix K ! multilpications,
because this is here absolutely the most demanding computional operation. As we
can mention, the matrix K is a slight modification of the Hessian matrix A from
our problem (2.1). That is why, the number that is taking down (matrix K~
multiplications) is usually called Hessian multiplications. Another characteristic
of the efficiency is the number of iterations needed for the convergence of the
method.

First and foremost we will modify STEP 2, the computation of
y ) = (DT (AEHIDYT (,FDYTYT (Ge. the solution to the linear system

given by the matrix (2.13) and the right-hand-side vector (2.14)).

26



3.1 Nonsymmetric Case

As we can see, the matrix F°(y) is nonsymmetric. But its structure and the
nonsingularity enables us to use the Schur complement reduction. This approach
will be described in detail in Subsection 3.3.1. The main benefit of this acces
is that we split one huge problem into two smaller ones. If we follow the Schur
complement path we get to a system of linear equations with nonsymmetric
nonsingular square matrix (inner problem). To solve it effectively an iterative
method of bi-conjugate gradient (BiCGSTAB) is used (see Subsection 3.3.2).
Furthermore, the LU-factorization of the matrix K is used (see Subsection 3.3.3).

The computation of the LU-factorization is unfortunately quite expensive and
it has to be done during every iteration (because there is always another matrix).
Another idea how to solve the system from STEP 2 is to avoid using the LU-
factorization. Moreover, to have the computation still effective we do not use the
Schur complement. The idea is to solve the problem directly by using BICGSTAB

algorithm.

3.2 Symmetric Case

BiCGSTAB is slower comparing to the conjugate gradient method (CGM).
Whay not to use CGM then?
For using CGM it is necessary to have a symmetric, positive definite matrix.

If we remind the notation and have a detailed look at our system with the matrix

An Az Ay —I 0
A21 AQQ +2M A23 0 2X2
Fo(y) == A31 A32 A33 + 2M 0 2X3
pD(Ay) 0 0 D(L) 0
0  —2pD(A)X, —2pD(A)Xs| 0  D(Z,)

and the right-hand side vector

by
bg + 2X2M
Fo(y)y — F(y) = | bs +2X3u ,
pD(A,)l
—pD(Ay) (23 + 23+ ¢%)
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we can see that the matrix could somehow be made symmetric through adjusting
By and Bs. Our changes will influence only the vector z (it means A and p).

Firstly, p can be omitted. Secondly, the active and the inactive sets, in par-
ticular D(Ay), D(A,), D(Z), D(Z,), are complementary, i.e. for j = b, ¢ we have
D(A;)D(Z;) = 0 and Yo € R™ can be written as a« = D(A;)a + D(Z;)a. There
is no problem to solve the system using only the active sets. For instance, from
the equation

pD(Ap)z1 + D(Zy)\ = pD(Ap)l,

we get that D(Z,)\ = 0. The ‘inactive part’ of the z—solution must be equal to

zero. This is the way how to make the matrix symmetric. Instead of the system

(53)()-0)

The sizes of the matrixes are changed acording to the sizes of active sets. It is

(3.1) we get a system

essential to do the backward adjustments to the z—solution when interpreting the
solution to the problem.

After getting the symmetrized problem, the LU-factorization and the Schur
complement reduction (that is why there is x and not z in (3.2)) will be used.
The arising linear system will be solved by CGM (see Subsection 3.3.4).

To sum up, we have just described three variants how to implement the algo-

rithm (SSNM). We will shortly refer to them as A, B and C, respectively.

3.3 Solving Inner Problems

3.3.1 The Schur Complement

To solve the generalized saddle-point system (3.1), i.e.

(5 %) ()= (3).

we will show a method based on the Schur complement reduction.
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We can perceive the system as two equations. From the first equation we

express x, insert it in the second equation and express z. So

K+ Blz=f
and therefore
v=K'f—-B/2). (3.3)
We get
Byx — Dz =h = BoK™'f - BbK'Blz— Dz = h,
and finally

(D+ ByK'Bl)2 = ByK™'f — h.

Let us denote

S:=D+ B,K 'B/.

We write

Sz = ByK'f —h. (3.4)

S is called the Schur complement. We arrived at a block upper triangular system

(0 ) (2) = (o)

Because the matrix K and the saddle-point matrix are nonsingular, we can

write the block triangular factorization

K B ( I 0\(K 0)\/(I K'Bf
By, -D) "\ Bkt 1)\0o -s)\o 1 )

Moreover, we can see that S is also nonsingular.
To conclude, the vector of unknowns y = (", 2")T is not computed at once,
but as a solution to two systems of smaller sizes. Firstly, we compute z from

(3.4) and after that = from (3.3).
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3.3.2 BiCGSTAB

For a computation of z from the relation (3.4), i.e. Sz = BoK~'f — h, we
use an iterative bi-conjugate gradient method (BiCGSTAB) according to Van der
Vorst (1992) see [18], which obeys the following:

find z € R" such that Fz=d, whered e R" and F € R"*",

where F is (generally) nonsymmetric and nonsingular.

ALGORITHM: BIGCSTAB

Given 29 € R", tol, > 0.

STEP 0 Set r® 1= d—Fz pO .= 70 70 arbitrary (usually we set 70 := ()

and k := 0.
Step 1 If ||[r®)|| > tol,, compute:

I (r(k))Tf(O)/@(k))Tf(O)

s®) = B g 5h)

STEP 2 Otherwise, i.e. if ||r®|| < tol,, end.
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Remark 3.1 At the beginning of this algorithm it is necessary to choose an
initial iteration z(®. Because it is an inner computation, it will be needed to
choose this initial value during each iteration. We can choose it, to make it
simple, always as a zero vector, or, to make it more effective, as a zero vector
only at the first outer step and then we will always take the computed z from

the previous computation.

Remark 3.2 If we compute z according to the algorithm, we do not need to
know the Schur complement S explicitely. We are only interested in the re-
sult of Schur complement-vector products, which can be computed stepwise.
So S = D+ BoK !B/ and we are interested in the result of Sp. Proceed as
follows: let us denote by y = Dp and p; = Bo(K~Y(B/ p)). Then Sp =y + p;.

3.3.3 The LU-factorization

As another computional-cost-saving modification an LU-factorization of the
matrix K will be used, i.e. K = LU. Due to the symmetry of the matrix K we
can use a special case of an LU-factorization, the so called LDL "-factorization,
where the lower triangular matrix L agrees with the matrix L from the classical
LU-factorization and D is a diagonal matrix, that has on its diagonal diagonal
elements of the upper triangular matrix U from the classical LU-factorization.

During the computation with the matrix K we need to store only the matrix
L and the diagonal of the matrix D, which we denote by dD. Let us get back to

the computation of  from the formula (3.3), i.e.
r=K'f-K'Bz
The expression K~ f will be computed as follows:
K~ = (LDLT) ™ f = (LT)' D7 L7 f = (L) (DY (L)),
In other words, we are solving a system Ka = f. Then

LDL"aq=f.
~~

z
——
Y
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And so

Ly = f,
Dz =y,
L'a =2

The Matlab command is:
a = (((L\f)./dD)’/L)"’.

Analogically, we will also compute KB/ 2.

If we return to the Remark 3.2, we can notice, that in this situation it can also
be used what was just mentioned. Having Sp = y+p;, where S = D+ B, K 1B,
y = Dp and p; = Bo(K~Y(B] p)). The Matlab command for p; is:

pl = B2x((L\(p’*B1)’./dD)’/L)’.
Because B p = (p' B;)" (less demanding is a transpozition of a vector).
3.3.4 CGM
We shall be considered with a problem

find x € R" such that Ax =0, where b€ R" and A € R"™*" (3.5)

is symmetric and positive definite. Below, we will present a so called practical

form of the conjugate gradient method (CGM), see [3], chapter 10.
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AvrcoriTaM: CGM

Given 2V € R”, tol, > 0.
STEP 0 Set 7V 1= b — Az@ pO©) = O pO) .= (O)T7(0) and k := 0.

SteP 1 If ||r®)|| > tol,, compute:

STEP 2 Otherwise, i.e. if |[r®)|| < tol,, end.

Theorem 3.1 For any initial iteration 2°) € R" the sequence {x™} generated

by CGM converges to the solution x* of the linear system (3.5) in at most n steps.

Theorem 3.2 If A has only r distinct eigenvalues, then the CGM iteration will

terminate at the solution in at most r iterations.

For the proofs of these theorems see [15], chapter 5.

3.4 Adaptive Precision Control

The inner precision tol,, performing in solving of our inner problems, can be
fixed, or can be appropriately changed during each step. This is called adap-

tiwe precision control. For instance, choose two parametres 1y, and cfqq, Where
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0 <1 <1land0 < cpaer <1 (usually ry = 0.01 and cpoee = 0.9). Then
tolf}k) = min(ry - errF=1), Cfact * tolfjk_l)),

where err® = ||zt — 28| /(||2*+D]| + 1) (see algorithm SSNM) and
toll ™V = Ttol/ Cact-

Note that the inner problems will be solved ‘inexactly’. These inexact solu-
tions will influence the convergence of the outer iterations in a negative way (slow

down). But in general, the whole problem will be solved more quickly.
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4 Numerical Experiments

All our experiments are carried out in Matlab. For any further detailes see

m-files on the attached CD.

4.1 Model Problem in 1D

The model problem that is used in our experiments describes a loaded wire
that is partially above a plane far off the distance [ and partially (in the second
half) inside the cylindrical tube of the radius g (see Figure 4.1).

A finite element discretization on a regular grid leads to the algebraic problem

minimize %ZETAZE —2'h

subject to @1, > I, o5, + 23, < g7, i=1,...,m, (4.1)

— (T T T L TN\T n
Jf—(Il,$2,ZE3,ZE4) cR ’

where x1, x9, 13,14 € R™, 4m = n. Here, A € R™*" is symmetric, positive definite
matrix, b € R" and [, g € R™. We refer to constraints z,,; > [; as simple bounds,
and to constraints 3, + 23, < g7 as circular consraints. The unknown z, is not
under any constraints. This problem is a slight modification of the problem (2.1).

Figure 4.1 Geometry of the wire.

On the problem (4.1) we apply the Semi-Smooth Newton method. Firstly,
we have implemented the algorithm SSNM as it is, without any adjustments. It
simply means - using a backslash to solve the linear system from STEP 2. Let us

have a look at some results of this version.
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If it is not stated otherwise, the input data (¥, A and ;) have been chosen
as zero vectors, the tolerance tol, has been set as 1075, p = 1 and the final tests

are sufficiently exact.

Remark 4.1 Tables 4.1 - 4.4 demonstrates the behaviour of the Semi-Smooth
Newton method when solving problem (4.1) with various set constraints [ and g.
The number n indicates the size of the problem, i.e. the size of the matrix A.
Taken down are the ratios of active and inactive sets, i.e. A, : 7,/ A, : Z,, below

them are the numbers of iterations needed for finding the solution with desired

tolerance.
Table 4.1
g = 2, only simple bounds are active in the solution.

n [=-15 [=-1 [=-0.8 [=-0.5 [=-0.1 [=0
0:8/0:8 1:7/0:8 1:7/0:8 3:5/0:8 4:4/0:8 5:3/0:8
32 2 3 5) 5) 6 6
0:16/0: 16 1:15/0: 16 1:15/0: 16 4:12/0: 16 6:10/0: 16 9:7/0:16
64 2 3 6 7 9 10
0:32/0:32 1:31/0: 32 3:29/0:32 6:26/0: 32 12:20/0 : 32 19:13/0: 32
128 2 3 8 13 16 16
0:64/0: 64 1:63/0:64 4:60/0: 64 10:54/0: 64 23:41/0: 64 37:27/0: 64
256 2 3 15 22 29 30
0:128/0:128 1:127/0:128  8:120/0:128 21:107/0:128  45:83/0: 128 73:55/0: 128
512 2 3 27 41 55 58
0:256/0:256 1:255/0:256 16:240/0:256 40:216/0:256  89:167/0:256 146 :110/0 : 256
1024 2 3 51 79 107 113
0:512/0:512 1:511/0:512 30:482/0:512 79:433/0:512 178:334/0:512 292 :220/0 : 512
2048 2 3 101 156 211 223

If we choose [ = 0, g = 0.3 and the size of the problem is equal to the number
64 (see Table 4.2), it seems that the method does not converge, in other words,
even in 1000 iterations fails to find the solution. If we continue to make higher
n or lower g, the situation repeats. All these cases are taken down in Table 4.2
and denoted by symbol x. The difficulty here is probably in the initial iteration,

which in not sufficiently close to the solution.
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Table 4.2

[ = 0, both simple bounds and circular constraints are active in the solution.

n g=14 g=1 g=20.5 g=0.3 g=01 ¢g=0.01

5:3/2:6 6:2/4:4 7:1/5:3 7:1/5:3 8:0/8:0 8:0/8:0

32 7 7 8 9 10 14

10:6/2: 14 11:5/5:11 13:3/6: 10 16:0/16: 0

64 10 8 9 X X 62

20:12/4: 28 22:10/5: 27 26 :6/10 : 22 29:3/16:16 31:1/22:10

128 16 13 9 16 64 X
39:25/4: 60 45:19/8 : 56 52:12/18 : 46

256 29 22 58 X X X
77:51/4:124 89:39/12: 116 104 : 24/33: 95

512 54 42 27 X X X

155:101/6 : 250  177:79/22:234 208 :48/60: 196 228 : 28/95 : 161

1024 104 82 51 186 X X
309 :203/11:501 354 :158/39:473 416 : 96/120 : 392

2048 206 161 99 X X X

For this reason we will find another initial iteration by Polyak-type-algoritm

(program QPC, see [12]), which will definitely be sufficiently close to the solution.

Moreover, in relation to this new initial iteration z(®) we appropriately modify

also other input arguments A\(?) and p(9).

Remark 4.2 Table 4.3 takes down the behaviour of the Semi-Smooth Newton

method with input values modified by QPC. The numbers in round brackets

write down the number of iterations that are needed for finding a new initial

iteration z(*) by QPC with a tolerance set to 107!, In some cases, however, it

is necessary to compute with a higher tolerance to achieve the convergence of

the Semi-Smooth Newton method. In angular brackets are in these cases written

down numbers y, where the lowest such a precision is 107Y.

with null input data (@, A© and ;(©), with input data modified by QPC.

Table 4.4 compares for [ = 0 and g = 1 the Semi-Smooth Newton method

4.1.1 Algorithm with Adjustments

In the subsection 3.4 we have familiarized ourselves with the adaptive precision

control tol,. In the mentioned theory there are two optional parametres r;, and
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Table 4.3 QPC
[ = 0, both simple bounds and circular constraints are active in the solution.

n =0.3 g=20.1 =0.01 ¢g=0.001
7:1/5:3 8:0/8:0 8:0/8:0 8:0/8:0

32 8(3) 7(3) 19(2) 20(2)
14:2/9:7 16:0/13:3 16:0/16: 0 16:0/16: 0

64 5(6) 4(4) 20(2) 29(3)
29:3/16: 16 31:1/22:10 32:0/31:1 32:0/32:0

128 3(69)[2] 7(9) 4(5) 20(4)
57:7/26: 38 61:3/40 : 24 64:0/58 : 6 64:0/64:0

256 6(31) 3(99)[2] 5(10) 2(10)
114 : 14/49 : 79 122:6/77:51  127:1/111:17  128:0/126: 2

512 15(114) 9(289)[2] 2(418)[4] 9(11)
228:28/95: 161  244:12/149:107 253:3/219:37  256:0/249: 7

1024 9(373) 14(379) 6(730)[2]  11(774)[5]
456 : 56/186 : 326 488 : 24/296 : 216 506 : 6/434: 78  511:1/496 : 16

2048 34(809) 15(1026) 10(1558)  2(1897)[6]

Ctact- The total efficiency of the computation will be examined through these two
parametres. The aim is to find their ‘optimal’ values. It is obvious, that it is
not possible to find all-purpose optimal parametres, i.e. one value of parametres
that is optimal for any case. It is necessary to gain particular experience how
to handle these parametres. If the size of the problem is n and the number of
Hessian multiplications will be n or even smaller, then it is a success.

The conjugate gradient method for solving a linear system of equations cer-
tainly converges after n iteration. In our case we deal with a nonlinear problem,
so if we get the number of iterations comparable with n, it is a success.

In the 1D example we have firstly implemented our first idea with the Schur
complement (A) and we want to explore the adaptive precision control. To verify
that it makes sense, we will carry out particular comparative tests. We will still
consider the same problem, with [ = 0 and g = 0.5.

In Table 4.5, we monitor the numbers of Hessian multiplications and the
number of iterations (needed for the convergence of the method). Two following

cases are compared.

a) the inner precision tol, will be fixed (1079), the vector z(?) will always be
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Table 4.4 QPC
[ = 0, both simple bounds and circular constraints are active in the solution.

n g=1 g=1(QPC)
6:2/4:4 6:2/4:4

32 7 8(1)
11:5/5:11 11:5/5:11

64 8 6(1)
22:10/5: 27 22:10/5: 27

128 13 11(1)
45:19/8 : 56 45:19/8 : 56

256 22 4(532)[2]
89:39/12:116 89:39/12:116

512 42 40(1)
177 :79/22 : 234 177 :79/22 : 234

1024 82 80(1)
354 :158/39 : 473 354 :158/39 : 473

2048 161 159(1)

a null vector and p = 1.

b) the adaptive precision control tol, will be used with parameters r,; = 0.01
and cfqer = 0.9, the vector 2 will be a null vector only at the first time

and then modified (see Remark 3.1) and p = 0.5.

Table 4.5
Hessian multiplications/iterations.

n a) b)
32| 162/8  94/10
64 243/9 128/10

128 | 391/9  170/10
256 | 5253/65  341/13
512 | 2997/29  756/20
1024 | 7969/49  1317/23
2048 | 21846/84 1057668

From the table we can easily read, that the number of Hessian multiplications
has been significantly set lower by our modifications. With the growing n the

numbers of iterations, are also lower.
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In the paper see [13] it is stated, that it is covenient to choose ry,; = 0.01
and ¢y = 0.9. For example for n = 256 we get 1077/31 (Hessian multiplica-
tions/iterations). But if we choose r;; = 0.8 and cfq = 0.82 we get 81/14. This
just proves the fact that it is very tricky to find the optimal values of the parame-
tres. Loads of experiments for this purpose have been done. Have a look at some

of them (Table 4.6) to have an idea how to choose the optional parametres r,

and crqer
Table 4.6
Hessian multiplications/iterations, 4, = 0.8.
Clact n=256 n=>512 n=1024
0.9 262/20  188/18 397/17
0.8 146/22  269/17 778/22
0.82 82/14  249/19 350/18
0.7 145/15  476/30  3945/47
0.6 167/19  383/23  7745/53
0.5 135/17  419/19  1723/25
0.4 213/17  259/17 539/17
0.3 296/14  301/13  6278/32
0.2 934/18 1627/19  4654/22
0.1 451/11 1649/15 12926/28
7ot = 0.01, ¢fqee = 0.9 | 1077/31 X 2044/30

We have also noticed that there is not a small influence on the results when
choosing p (from the ‘maximum conditions’, Lemma 2.1). Have a look at the
next table (Table 4.7).

Moreover, we have implemented for the 1D example the second idea (B) -
using BiICGSTAB. Next table (Table 4.8) compares variant A with B.

Problems in 3D are definitely (in our case) much more interesting than prob-

lems in 1D. Let us move to 3D.

4.2 Model Problem in 3D

As a three-dimensional model problem we will deal with a one-body contact

problem with Tresca friction. Let us consider the elastic body represented by the
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Table 4.7
Hessian multiplications/iterations, ¢fqet = 0.9, n = 512,

Ttol p=1 p=09 p=05 p=0.1
09| 370/22 371/21 314/24  223/17
0.8 | 188/18 414/16 230/16  184/18
0.7 | 1391/31  201/17 271/19  192/16
0.6 | 198/16  337/19 254/14  169/15
0.5 | 372/22 355/21 271/19  211/19
0.4 49/9*  558/15  151/13  281/15
0.3 | 438/16  396/20 248/14  251/19
0.2 319/13 297/15 248/18  302/18
0.1 | 409/21 329/17 301/15 218/14
0.05 | 430/18 497/21 313/19 309/15
0.01 x  686/18 756/20  518/14
0.001 | 1709/23 1784/24 2218/30 1492/22

Table 4.8
Hessian multiplications/iterations, cfqe = 0.9.

n

A, 75, = 0.0l B, 71 = 0.0l B, 1y = 0.1

32
64
128
256
512
1024
2048

94/10
137/11
195/11

1077/31

X
2044/30
5421/49

1
3

415/11
910/12
1064,/10
3457/19
1534,/30
2062/50
X

7476
425/13
786,12

1529/17
2841/25
8410/42
101668,/92

prism

Q=1(0,3) x (0,1) x (0,1).

The boundary 02 consists of three disjoint parts

', ={0} x(0,1) x (0,1),

On T', we prescribe zero displacements while surface tractions p/ (j = 1,2) act on
I',. On I'; we consider the non-penetration condition with respect to the perfectly
rigid foundation (an initial gap is equal to zero) and the effect of (isotropic) Tresca
friction (see Figure 4.2). Finally we assume that the volume forces are vanishing.

The elastic properties of 2 are described by the Lame equations with material

T, = 90\(T, UT,).
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parameters the Young modulus F = 2.119 - 10° [MPA] and the Poisson constant
v = 0.277 (steel).

Figure 4.2 Geometry of the body.

After finite element approximation we arrive at the following algebraic mini-

mization problem:

m
minimize %UTKU —u' f+ > gl|(Thu, Tou) |2
i=1

subject to Nu < d,

(4.2)

where K denotes a symmetric positive definite stiffness matrix, N, T} and T5
(Tj,; denotes a i-th row for j = 1,2 and i = 1,2,...,m) are matrices projecting
displacements in contact nodes to the normal and tangential directions, respec-
tively, f is the load vector, g = (g1, g2, ..., 9m) " is the vector of slip bound values
and the vector d collects distances between () and the rigid foundation of the
contact nodes. Here, m is the number of contact nodes on I'. and || - ||2 indicates

a norm in R2.

Due to the fact that the functional >~ g;||(T1u, Tou)"||2 is not differentiable
i=1

and the non-penetration condition is quite complicated, our solution method is
based on the dual formulation of (4.2). We use two types of Lagrange multipliers:
An € R™ is associated with the non-penetration condition while Ap,, Ap, € R™

regularize the non-differentiability in the objective function of (4.2). To simplify
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the notation we denote

AN N d
A= /\Tl , B=|T1],c={0
ATQ T2 O

The Lagrangian associated with the problem (4.2) reads as follows
1
L(u,\) = iuTKu —u' f+ A" (Bu—c),

where u is unconstrained and A € A(g) for the set of Lagrange multipliers given

as
Ag)={NeRY™: Ayv; >0, [|(AMyi Ana) |2 < g5 1 =1,2,...,m}.
Then the problem (4.2) is equivalent to the saddle-point problem

i L(u, \). 43
min max (u, A) (4.3)

The first unknown may be eliminated from (4.3) by
w=K'(f—-B")\). (4.4)

Substituting (4.4) into (4.3) we obtain the dual problem

minimize $ATBK'B'A - AT(BK'f —¢)
subject to A € A(g).

Note that this problem corresponds with (2.1), so that we can solve it by the
SSNM. After computing A we can evaluate u from (4.4).

We took some advantage of exploring the 1D example. Now, we are at most
interested to compare the efficiency of our three variants (A, B and C) that have
been implemented.

Firstly, we were trying to find the ‘optimal” parametres 7, and cy. for each

variant. We have concluded that

o for A it is ry = 0.2 and cpeer = 0.4,
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o for B it is 14 = 0.1 and ¢4 = 0.99,
o for Citis ryy = 0.1 and cfaee = 0.2.

With these choices we have carried out next comparisons, see Table 4.9.

Table 4.9

Hessian multiplications/iterations and times (sec.) above.
n  nx/ny/nz A B C
6.5938 38 3.3125
270 15/5/5 796/16  182/14 802/10
18.9531 98.4219 10.3906
378 18/6/6 1216/16 1480/26 1308/10
41.8438  211.9688 22.5156
504 21/7)7 1536/16  1729/25 1596,/10
84.2813  505.9688 49.7344
648  24/8/8 1888/16  2199/21 2246/10
158.9063  915.2656 107.9219
810 27/9/9 2257/17 NaN 3191/11
3120156 1389.8906 176.0156
990 30/10/10 3061/17 NaN 3508/10
538.1875  2011.1875 331.4531
1188  33/11/11 3679/17 2102/18 4615/11

5970.4531

1404  36/12/12 | out of memory 4184/20 out of memory

Remark 4.3 The ‘NaN’ means that there was a dividing by zero in BICGSTAB,
due to rounding errors and we did not get the solution. The ‘out of memory’ ex-
presses that an ordinary computer is not able to compute the solution because
of an unsufficient memory. The nx, ny, nz in the table describe into how many
parts is the body divided in the corresponding directions of axes x, y, z, respec-

tively. The number n indicates the size of the problem.
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Figure 4.3 Normal contact stress, C.

In spite of the fact that A needs more iterations to converge than C, the variant
A is the most effective. This is because the characteristic Hessian multiplications
is more important than iterations when concerning effectivity. (Here, this is
caused by the fact that the inner problems for C are solved more exactly than for
A). The variant B seems to be good for large problems. But the so called break
down occurs - this is a problem connected with the rounding errors in BICGSTAB
when using it without the Schur complement reduction and it does not compute

the solution.
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Appendix

Definition 4.1 The matriz norm || - || is said to be consistent with the vector
norm || - ||, if

|Az|| < [[A]] [|«]] Vo eR", AeR™™.

Lemma 4.1 Let A € R™™ and I € R™ " be the identity matrix. If ||A|| < 1,
then (I — A)~! exists and it holds that

1
I—A < —-.
I =47 < =

Definition 4.2 The Hessian matriz of F, i.e. Hp : R" — R™»*"*"

0*F, o
(HF<x))ljk_ (axj@xk)('r) Z7.77k_1727"‘7n7

forx=(x1,...,2,)" and F = (Fy,..., F,)".

Remark 4.4 Because Hp is a three-index matrix it is necessary to use a gen-
eralized case of the dot product for matrices with different number of indexes,

which is denoted by ‘:’.

Definition 4.3 The generalization of the definition of the dot product. The case

of matrizes with a different number of indezes. If

A= (@it )it <t seion <ot <Lt seejn <l

and
B = (bjy,.ju) i1 <t <l
then
A B = (Ciy,oig)ir <kt roosim <k s
where

Cityoovsim = E i, i1 oo Ot oo
J1<li,e,jn<ln

46



Conclusion

To conclude, the goal of this work — the completion of the effective solver for
the contact problem with friction — was sucesfully accomplished. The A variant
(the nonsymmetric case with the Schur complement reduction) proved to be the
most effective variant of the implementation.

After describing the Newton method and its disadvantages, we introduced
the slanting functions and the Semi—Smooth Newton method as a possibility
how to deal with these disadvantages. Moreover, we have showed how to solve
the minimization problem of the quadratic functional with separable constraints.
An important part of this work was the chapter devoted to the implementation,
where we have presented three variants of the implementation of the algorithm
of the Semi—-Smooth Newton method. The 1D model example helped us to make
our program as effective as possible. Finally, the 3D model problem fulfiled all
our expectations we were heading towards during whole work.

Due to a dealing with a vast subject that includes the finite elemnet method,
nonlinear programming, contact problems etc., I have found it difficult to decide
how much information give to the reader about these subjects that are not really
the main topic of this work. Finally, I have decided to give the sufficient and
sometimes just basic information about these topics.

Because I have been absorbed in this subject, I would like to occupy myself

with this topic even more closely in the future.
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Hlavni cil diplomové préace — sestrojeni efektivniho tesice pro kontaktni tilohu
se trenim, byl uspésné dosazen. Jako nejefektivnéjsi varianta implementace se
ukazala varianta A - nesymetricky piipad s pouzitim rozkladu na Schuruv kom-
plement.

V préci jsme se blize seznamili s Newtonovou metodou a jejimi nevyhodami.
Jako jedno z moznych vychodisek z téchto problému byla predstavena nehladka
Newtonova netoda, ktera vyuziva slanting funkci. Ukézali jsme, jak je mozné
pomoci nehladké Newtonovy metody teSit minimaliza¢ni tlohy s kvadratickym
funkciondlem a separovatelnymi kvadratickymi omezenimi. Dulezitou ¢ésti této
prace byla kapitola o implementaci, ktera obsahla tii implementac¢ni varianty
algoritmu nehladké Newtonovy metody. Modelovy ptiklad v 1D poslouzil jako
velmi dobry pomocnik pti ovérovani teoretickych tivah a odlad’ovani programu.
Zavérecny modelovy priklad kontaktni ulohy zavrsil vse, k ¢emu jsme celou dobu
smeérovali.

Jelikoz tato prace zahrnuje rozsdhlé téma, které v sobé obsahuje nékolik dis-
ciplin (metody koneénych prvku, nelinedrni programovani, kontaktni ilohy atd.),
bylo pomérné tézké urcit, do jaké miry se o problematice piimo nesouvisejici
s tématem rozepsat. V téchto piipadech jsem se snazila poskytnout nejpod-
statnéjsi informace a nenarusovat tak hlavni tok préce.

Dana problematika mé zaujala natolik, ze bych se ji rdda vénovala i v bu-
doucnu. Vyzvou je pro mé hlubsi pochopeni problematiky jako celku. Dalsi

velmi lakavou motivaci jsou dynamické kontaktni tlohy:.

Prestan myslet: To je mé
a to neni mé.
Pak mi poveéz, kdo jsi ty?
A také mi rekni,
jak vypadala tvoje tvar,

nez se narodili tvi rodice?

(zenova moudrost)
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Annexe

Here is some information about the attached CD with m-files. CD includes

two files:
1. 1D - 1D model problem

- no_adjust - algorithm with no adjustments and

QPC is added

- with_adjust - algorithm with adjustments
2. 3D - 3D model problem

- mysolvers - solvers of the problem (SSNM)
- definition_of_the_problem

- data - plotting and results

1. the running m-file is compute.m, the main solver is SSNM.m

2. the running m-file is myTEST.m, the main solver is SSNM.m
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