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Abstract
Lead halide perovskites (LHPs) with their unprecedented functional qualities which are
only enhanced by the simple band gap tuning, have taken the world of semiconductors
by storm. The process of anion exchange, possible even post-synthesis, allows for band
gap tuning of LHPs, resulting in lead mixed-halide perovskites (LMHPs), thus expand-
ing their potential for applications, notably in tuneable detectors. The widespread
adoption of LMHPs is, however, hindered by their chemical instability, which leads
to halide segregation in the material, seriously inhibiting reliable operation of any
LMHP-based device. Understanding the kinetics of the halide segregation over ex-
tended periods remains a challenge, motivating the use of theoretical simulations like
Monte Carlo (MC) methods. Yet, MC simulations rely on well-defined potential energy
surfaces (PES), typically derived from computationally intensive density functional the-
ory (DFT) calculations. In this thesis, we propose a novel approach for constructing
well-defined PES from high-fidelity DFT data with fraction of the computational load.
Utilizing activation-relaxation technique noveau (ARTn) motivated searches for transi-
tion points in the PES combined with state-of-the-art machine learning approaches, we
aim to to significantly reduce computational costs. Additionally, employing classical
theory, we assess the detection capabilities of selected LMHPs.

Abstrakt
Olovnato-halogenidové perovskity (OHP) se svými bezprecedentními funkčními vlast-
nostmi, které umocňuje jednoduché ladění zakázaného pásma, vzaly svět polovodičů
útokem. Proces aniontové výměny, možný i po syntéze, umožňuje ladění zakázaného
pásu OHP, což vede k olovnato-mix-halogenidovým perovskitům (OMHP), čímž se
rozšiřuje jejich potenciál pro aplikace, zejména v oblasti laditelných detektorů. Širokému
přijetí LMHP však brání jejich chemická nestabilita, která vede k segregaci halogenidů
v materiálu, což zásadně omezuje spolehlivý provoz zařízení na bázi OMHP. Pochopení
kinetiky segregace halogenidu přes delší časové intervaly zůstává výzvou, nabízi se
tak použití teoretických simulací, jako jsou metody Monte Carlo (MC). Avšak MC
simulace spoléhají na dobře definované povrchy potenciální energie (PPE), typicky
odvozené z výpočetně náročných výpočtů teorie funkcionálu hustoty (DFT). V této
práci navrhujeme nový přístup pro konstrukci dobře definovaných PPE z vysoce přes-
ných DFT dat se zlomkem výpočetního zatížení. Využitím activation-relaxation tech-
nique noveau (ARTn) pro motivaci hledání přechodových bodů v PPE v kombinaci s ne-
jmodernějšími přístupy strojového učení se snažíme výrazně snížit výpočetní náklady.
Navíc s využitím klasické teorie hodnotíme detekční schopnosti vybraných OMHP.

Keywords
lead halide perovskites, advanced nanomaterials, tunability, machine-learning, density
functional theory

Klíčová slova
olovnato-halogenidové perovskity, pokročilé nanomateriály, laditelnost, strojové učení,
teorie funkcionálu hustoty
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Introduction

It has been fifteen years since Kojima et al. published their breakthrough paper,
in which they first introduced the notion of lead halide perovskites (LHPs) being
as visible light sensitizers for photovoltaic cells. Since then LHPs have seen a boom
as many new functional properties and subsequent new applications were discovered.
LHPs are a group of semiconductors known by their universal formula ABX3, where
A is in our case a cation of Cs, B is Pb and X = Cl, Br or I. Through the means
of anion exchange, they allow for relatively simple band gap tuning. Their singular
functional properties – highly tunable band gap, bright and narrow photoluminescence
across the visible spectrum, high stopping power, unprecedented quantum yields – and
cheap and easy production from chemical solutions, lend LHPs to many applications.

To exploit LHPs’ capabilities to their fullest extent halide mixing has become
the norm, resulting in use of lead mixed-halide perovksites (LMHPs), most often with
composition APbBr3–xIx. LMHPs combining of iodine (I) and bromide (Br) are one of
the most attractive candidates as varying the ratio of Br/I makes materials with band
gaps suitable for high-efficiency tandem cells. Furthermore, in recent years, a technique
utilizing organic ligands to transfer halides into an existing LHP structure has been
introduced. Thus introducing the possibility of post-synthesis tuning, and opening
the doors for applications such as tuneable detectors.

LMHPs are held back from mainstream use in solar cells due to their instability.
When put under usual solar cell conditions, continuous wave illumination and applied
electric field, they suffer reversible halide segregation into separate halide domains,
which directly affects the cell’s power conversion efficiency. Nonetheless, recent research
suggests the presence of a metal ion on the A position further improves the stability
of the compound and prevents significant phase segregation in the crystal, therefore
in this research we will focus specifically on caesium LMHPs.

Though the chemistry of the mixing and demixing of the halides in the LMHP
compound has been well studied, the physics governing the segregation and the creation
of single-halide domains is not well understood. To remedy this blind spot a rigorous
theoretical analysis of the process by means of ab-initio simulations is required. In order
to simulate the evolution of such complex system with the Monte Carlo (MC) technique
over a considerable period, we require the potential energy surface (PES) to be accurate,
as the energy values appear in the exponential term of the probability of transition
calculated during the MC simulation. DFT offers the necessary accuracy, however
the method’s poor scalability limits its use to small systems and short simulation
times.

One viable alternative is the use of machine learning interatomic potentials (MLIPs)
to describe the PES. This method doesn’t necessitate the sacrifice of the high accuracy
provided by ab-initio methods the same way a classical potential would, while maintain-
ing favourable computational efficiency. Neural network interatomic potentials (NN-IP)
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were previously limited in their applicability by the need for large ab-initio training set.
Allegro is an equivariant deep learning variant of a message passing neural network
(MPNN), which retains the accuracy of the previous NN-IPs but improves on them by
introducing strict locality, thus enabling scaling to large systems. Thus the problem
turns into search for the right data set for training of the high-fidelity PES.

In this thesis, we introduce a novel approach to PES exploration. Thusly con-
structed PES can be further used in MC simulations, the results of which we hope
will open an easier path to the study of the halide segregation in the LMHPs and
the discovery of more stable LMHPs for application in high-energy radiation detection.
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1. Lead Mixed-Halide Perovskites

After spending almost a century being overlooked, lead halide perovskites (LHPs) have
entered the scientific consciousness and garnered considerable attention in circa 2009
when Kojima et al. have decided to use the then fairly unknown material as a thin-film
light absorber layer in their solar cell [2]. LHPs are named after the mineral Perovskite,
with which they share its general structure, the basis of which are corner-sharing PbX6
octahedra forming a cubic lattice. The cavities created between the octahedra, the A-
sites, are filled by one or a combination of three large cations – Cs+, CH3NH +

3 (MA+),
CH(NH2)

+
2 (FA+) – resulting in the general LHP formula APbX3, see Figure 1.1.

LHP’s eponymous structure that is the origin of their unique optical and func-
tional properties, such as highly tunable bandgap, bright and narrow photolumines-
cence across the visible spectrum, high stopping power, unprecedented quantum yields,
and cheap and easy production from chemical solutions, which have helped them gener-
ate notable attention in the scientific community over the last decade [2–11]. All these
qualitites lend LHPs to many applications, those include solar cells [12], LEDs [13], light
absorbers [14], optically pumped lasers [15], or high-energy radiation detection [16].

Cs Pb X = Cl, Br, I

Figure 1.1: The structure of LHPs is formed by PbX6 octahedra arranged in a cubic
lattice, with heavy metal cations, in this case Cs+, filling the cavities created by stacking
of the octahedra.

One of the most common method of LHP production is the hot injection method.
The key to the method lies in mixing the correct ratio of lead-halide and caesium
precursor, alongside the addition of oleic acid (OA) or oleylamine (OLA). OA and OLA
play a dual role, triggering the nucleation and growth of the nanocrystals (NCs), while
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also aiding in the surface passivation of said NCs [17]. The temperature and quenching
time determine the kinetics of the growth, thus deciding the quality of the prepared NCs.
For example CsPbBr3 nanocubes are converted to non-emitting tetragonal Cs2PbBr5
nanosheets at very high temperatures as described by Dutta et al. [18].

LHPs’ single most interesting quality is their highly tuneable band gap. Tuning in-
volves simply adjusting the ratio of the lead-halide precursors. The most common com-
bination being APbBr3–xIx. LHPs combining iodine and bromine are one of the most
attractive candidates. Increasing the Br:I ratio enables the tuning of the band gap
from 2.43 eV to 1.48 eV with a continuous red shift [19], and creates materials with
band gaps suitable for high-efficiency tandem cells [20], see Figure 1.2a.
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Figure 1.2: a) The change in optical absorption (solid lines) and PL spectra (dashed
lines) of CsPbBr3 NCs as PbI2 is added as a source of exchanging halide anions. Image
adapted from [21]. b) Linear attenuation coefficient against energy for several common
semiconductor materials used in ionizing radiation detectors compared to LHPs CsPbI3
and MAPbI3, showing the LHPs to outperform most of the standardly used materials,
especially at high energies. Image adapted from [22].

Stoumpos et al. [23] have first considered a CsPbBr3 perovskite for use in X- and
𝛾-ray detection in 2013 and found it to be highly promising. The hunger for newer,
cheaper, and more efficient materials has led to LHPs being considered for use across
the entire spectrum in radiation detection. For a material to be considered suitably
efficient for use in solid-state detection devices it has to simultaneously exhibit certain
characteristics:

• High average atomic number Z, which is related to the photoelectric absorption
cross-section of a detector.

• Large resistivity, to ensure the lowest noise possible.

• High mobility-lifetime product 𝜇𝜏 , larger product means a lower probability of
carriers being recombined (the highest product is in single crystalline semicon-
ductors).

LHPs can meet all the criteria, while being cheap and easy to produce and having high
tolerance to radiation damage [16, 24, 25].
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Table 1.1 summarizes the X-ray detection performance of materials commonly used
in current detectors, along with currently emerging new candidates including three
LHPs. Si, is due to its low stopping to X-rays, delegated mainly to portable detec-
tors [26]. The most commonly used material in direct conversion, 𝛼-Se, has stopping
power 10 times greater than that of Si, however its production is expensive [27, 28].
HgI2 and Cd1–𝑥Zn𝑥Te (CZT, x<20%) both show great promise, with good sensitivities
as shown in Table 1.1, however both materials have their limitations. HgI2 suffers
large leakage current, while CZT is difficult to integrate within read-out circuitry as
it requires high temperature for high-quality crystal growth [22]. The current state-of-
the-art CsI(Tl)-based detectors perform the best out of the traditional materials [29,
30].

The LHPs show themselves to be at least comparable to the traditional materials,
while outperforming their predecessors in some metrics, as seen in Table 1.1. MAPbBr3
appears to be the best candidate of the ones shown, however the poor stability of LHPs
with organic A-position molecule detract from its merits. The third LHP presented,
CsPbBr3, also yields better results when compared to the traditional materials, while
exhibiting greater chemical stability to MAPbBr3 [31].

Table 1.1: Comparison of detection capabilities of classically used materials and LHPs

Atomic number Applied electric field 𝜇𝜏 product Sensitivity Spatial resolution Lowest detectable dose rate Refs[Vµm−1] [cm2V−1] [µCGy−1
air cm

−2] [lpmm−1] [µGyair s
−1]

Si 14 0.5 >1 8 4.5 <8300 [26, 32]
𝛼-Se 34 10 10−7 20 -15 5.5 [28, 33]
HgI2 53, 80 10 10−4 1600 3.93 10 [34]
CZT 48, 52 0.1-1 0.01 318 10 50 [35, 36]

CsI(Tl) 53, 55, 81 – – 5370 10 0.18 [29, 30]
MAPbI3 53, 82 0.24 0.010 1.1× 104 3 <5000 [37]

MAPbBr3 35, 82 0.05 0.012 2.1× 104 10 0.039 [38, 39]
CsPbBr3 35, 82 0.005 0.013 5.6× 104 9.8 0.215 [40, 41]

Zhang et al. [42] implemented anion exchange to improve the trap density and resis-
tivity of CsPbBr3 SCs and have discovered that the CsPbBr2.9I0.1 perovskite exhibits
record sensitivity of 6.3× 104µC Gy−1 cm−2 and a low detection limit 117 nGy s−1 for
120 keV hard X-rays along with stable detection capabilities in an ambient environment
for over 30 days.

The capability to fine-tune the band gap after synthesis would provide additional
motivation for employing LHPs in scintillator or high-resolution display applications.
Thanks to their structure and high defect tolerance LHPs allow for such change in
structure and composition via the means of anion exchange [43]. The nanostructures
best suited for this process are colloidal NCs due to their high volume-to-surface ratio
and short diffusion path lengths [21]. The anion exchange is conducted by mixing
the LHP NCs with a halide precursor, e.g., tetrabutyl halides (TBA-X), octadeculam-
monium halides (ODA-X), oleylammonium halides (OLAM-X), see Figure 1.3a. For
the highly soluble precursors (OLAM-X and TBA-X), the reaction takes no more than
a few seconds. The exchange can be monitored by observing the changes in the optical
absorption and PL spectra [44], see Figure 1.3b and c.

One big hurdle holding back LHPs from mainstream applicability is their chemical
instability. LHPs’ good solubility in polar solvents, as useful as it is for easy thin film
fabrication, compromises structural integrity of the NCs over longer periods of time.
Caesium LHPs experience the lowest solubility, however even if low, this feature still
poses a threat to structural integrity of the NCs [45].

Despite being stable against oxidation, LHPs’ long-term stability in the combined
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Figure 1.3: a) Schematic showing achievable anion exchange reaction for three precur-
sors (ODA, TBA, OLAM) tested in [44]. b) Change in PL of the LHP NC after adding
TBA-Br. c) PL calibration curve for anion exchange starting from pure CsPbI3, using
TBA-Br. The curve is given as a function of the ration of molar masses of the added
and original halide. Images adapted from [44].

presence of light, moisture, and oxygen is questionable [46]. There are several pro-
posed routes to take in order to improve the LHPs stability to environmental factors.
The change in composition is one of the studied possible advancements in this area.
Caesium once again proves to be beneficial as the presence of Cs in the lattice im-
proves stability of the LHP against humid environment and irradiation compared to
fully organic MAPbX3 or FAPbX3 [47–49]. One of the most well tested techniques
for improving the lifetime of solar cell materials is encapsulation. This approach en-
closes the LHP NCs into SiO2 which results in ceramic-like stability for the NCs, while
retaining 100% of the original PL intensity [50].

Furthermore, the use of lead mixed-halide perovskites (LMHPs) is further hindered
by the halide segregation occurring when the material is put under usual solar cell con-
ditions, i.e., continuous wave illumination and applied electric field. While the segrega-
tion is reversible it does negatively impact the power conversion efficiency of the solar
cell [51].

Though the chemistry of the mixing and demixing of the halides in the LMHP com-
pound has been well studied [19], the physics governing the segregation and the creation
of single-halide domains is not well understood [3, 52]. To remedy this blind spot a rig-
orous theoretical analysis of the process by means of ab-initio simulations is required.

In this thesis, we aim to exploit the singular properties of LMHPs to design a mate-
rial to serve as a basis for a cheap and quality solid-state detector, specifically focusing
on the area of hard X-rays (>10 keV). Through anion exchange we aim to passively tune
the material to achieve high stopping power and a large X-ray absorption cross-section.

8



2. Detection of High-energy Radiation

Ever since their discoveries both X- and 𝛾-rays have become an integral part of vari-
ous fields of study and with that came the need for efficient and large-area detection.
Contemporary X-ray detectors can be classified into two categories by their approach
to detection, direct and indirect, both of which contain semiconducting material which
is responsible for absorption of the high-energy photons and their subsequent conver-
sion into either a visible-spectrum photon or an electron [24]. However, the materials
commonly used (Si, 𝛼-Se, CsI(Tl)) are lacking severely in several important areas, e.g.,
low X-ray absorption cross-section (linear cross-section coefficient to 50 keV of CsPbBr3
quantum dots is 35 times larger than that of Si [53]), material instability, limited spatial
resolution, or difficult tuning of their radioluminescence across the visible spectrum [25].
This makes the detectors expensive and ineffective at best but also a potential health
risk in the case of use in the medical field where one cannot afford higher doses of
radiation needed to compensate for low absorption.

On the electromagnetic spectrum the region of high-energy, or ionizing, radiation
starts after ultraviolet radiation bellow 𝜆 ∼ 10−10 m (also 𝑓 ∼ 1018 Hz), which accord-
ing to 𝐸 = ℎ𝑐/𝜆 corresponds to energies higher than (5–10) eV. In nature, ionizing
radiation is created by the means of radioactive decay, this includes 𝛼, 𝛽, or 𝛾-rays.
Among artificial sources belong particle accelerators, nuclear fission, or X-ray tubes,
which generate X-rays. The classification of "high-energy" stems from the shared char-
acteristic of these radiation types: they possess sufficient energy to ionize the atoms
they encounter. While this property is immensely beneficial in sectors like nuclear
power, industrial manufacturing, and medicine, it also poses significant risks to living
organisms. Consequently, there is a pressing demand for effective and reliable detection
methods for such radiation.

Solid-state, or semiconductor, detectors (Figure 2.1a) use semiconductors in their
architecture to absorb the incoming X-rays, and convert their energy into detectable
quantities. Direct detectors convert the X-rays into an electron-hole pair and electric
charge, that is proportional to the absorbed X-ray. The charge is captured by electric
field to ensure maximal spatial resolution, by keeping the charge localised. The charge
is then detected by a read-out component of the detector, and further analysed [54,
55].

Indirect, or scintillator, detectors (Figure 2.1b) consist of a layer of scintillating
material and an electronic light sensor, e.g., a photodiode, silicone photomultiplier, or
a photo multiplier tube (PMT). Scintillator is a device capable of absorbing the energy
of an incoming particle and re-emitting it in the form of light in the visible spectrum.
The visible-spectrum photon, provided it has energy greater than the band gap of
the scintillating semiconductor, excites an electron from the valence band into the con-
duction band, creating an electron-hole pair in the process. Applying bias pulls elec-
trons and holes in opposite directions, resulting in photocurrent. The photoelectrons
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are then further multiplied, which results in a detectable electrical pulse [54, 55].
Gas detectors measure the dose rate of the X-rays absorbed by the gas. As the gas

absorbs the X-rays it becomes ionized, i.e., creating pairs of ions and free electrons,
under applied electric field each member of the pair is pulled in the opposite direction,
generating detectable current [56].
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Figure 2.1: a) Semiconductor (direct) detector. Image adapted from [57]. b) Scintil-
lator (indirect) detector. Image adapted from [58].

High-energy radiation detectors are needed in every field which deals with high
energy radiation, therefore their applications are broad and varied. From medical diag-
nostics with radiography, mammography, or computed tomography (CT). CT also finds
applications in industrial setting in material analysis, or defect inspection. To science,
where detectors are a part of many common techniques, such as EDX spectroscopy,
X-ray astronomy, XPS, or again CT. To even everyday life, in airport security, smoke
detectors or Geiger counters, which both utilize gas detectors.

Material intended for use in semiconductor detectors need to exhibit efficient absorp-
tion over wide spectrum, high charge carrier mobility, long-term operational stability,
and low-cost scale-up. Standardly used materials in commercial detectors, like Si or
GaN require complex and costly equipment, along with process-intensive high-vacuum
techniques. Meanwhile, a popular alternative capable of all the aforementioned features
while being cheap to produce has recently emerged – lead halide perovskites (LHPs).
LHPs have been considered for both direct and indirect detectors but are being held
back by their subpar chemical stability. The goal of this thesis is not to design a detec-
tor, but merely to propose a material well-suited for the use in scintillator detectors,
as that is the area where the use of LHPs is the most advanced.
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3. Ab-initio Codes

This chapter serves as a non-exhaustive overview of ab-initio tools used in the creation
and exploration of the potential energy surface (PES), needed for the Monte Carlo
simulation of the halide segregation in lead mixed-halide perovskites.

3.1 Density Functional Theory

Density functional theory (DFT) serves as an alternative approach to quantum mechan-
ics. It employs the Born-Oppenheimer approximation along with a number of others, to
approximate the extremely complex many-body problems and provides a way to solve
them in a satisfactory manner within finite and manageable time periods. DFT trans-
forms the problem of solving the Schrödinger equation into the search for the ground
state of a given quantum system, described by the Kohn-Sham equations (KSEs), which
is achieved by minimizing the electron density functional [59, 60].

The self-consistent field (SCF) method, employs an iterative process to solve for
a simpler approximation of the wave function. The algorithm of the SCF calculation
is shown in Figure 3.1. The process starts with the initial guess of the electron den-
sity 𝜌i(r) from which effective potential 𝑣eff,i(r) is calculated. The KSEs are solved for
the effective potential 𝑣eff,i resulting in new electron density 𝜌i+1(r). Total energy is
calculated using the new electron density and the values are evaluated against a con-
vergence threshold. Convergence is reached once the energy difference ∆𝐸 = 𝐸𝑖−𝐸𝑖−1

is lesser than the threshold. Should the convergence not be reached in the given it-
eration, the electron density 𝜌i+1 is plugged into the algorithm as the new input and
the process is repeated. Once convergence is reached, the desired output is calculated.
In this thesis, the DFT-SCF method is used for calculation of structure’s energies and
forces.

In this time and age, DFT has come to a point where it can reliably reproduce
high-quality results over various methods and implementations. DFT has found its
use in science, e.g., solid-state physics or quantum chemistry, as well as in metallurgy
and pharmaceutical design; the number of papers regarding the use of DFT, published
every year, is reaching over 15 000 and growing [62, 63].

The advantage of DFT’s precision is however in certain cases outweighed by the com-
putational cost of such calculations. The problem lays in DFT’s poor scaling with sys-
tem size, thus restricting its use to small-scale system and short simulation times [64].
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Initial guess

Calculate effective potential

Solve Kohn-Sham equations

Evaluate the electon density & total energy

Output quantities

Converged?

Yes

No

Figure 3.1: Diagram showing the process of an iterative DFT SCF calculation. It
takes an initial guess of electron density 𝜌init as input, this is then used to construct
the effective potential 𝑣eff. The 𝑣eff then enters the Kohn-Sham equations, the result of
which is a new electron density 𝜌(r). Next total energy is calculated from the updated
𝜌(r). Convergence is determined by comparing the energy difference between the total
energies of the current and the previous step against a user-defined value. The process is
repeated until convergence is reached. Energies and forces are calculated from the final
electron density 𝜌out. Adapted and edited from [61].

3.2 Molecular Dynamics

Molecular dynamics (MD) calculations is a method in computer simulations for analyz-
ing the physical movement of particles in a particular system. The algorithm simulates
the particle interactions over a fixed time period, thus giving a dynamic evolution of
the many-body system. This is achieved by the means of exactly solving the classical
equations of motion for the particles in question [65]. Usually, the particles creating
the studied system are atoms.

Each i -th atom can be described by

F𝑖 = 𝑚𝑖
d2r𝑖(𝑡)

d𝑡2
, (3.1)

where r𝑖 = (𝑥𝑖(𝑡), 𝑦𝑖(𝑡), 𝑧𝑖(𝑡)) is the position, 𝑚𝑖 is the mass, and F𝑖 is the force acting
upon the i -th atom. To solve the equation 3.1, the required input parameters are
the initial positions and velocities of the atoms, along with the forces acting upon
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them.
Due to the complexity of the many-body problem the equation of motion needs to

be discretized and solved numerically, e.g., using the Verlet algorithm [66]. The discrete
time steps being no more than a few femtoseconds each. The time-dependent change in
position is defined by r𝑖(𝑡), while it’s derivative v𝑖(𝑡) determines the kinetic energy, and
thus the instantaneous temperature, of the system. Each step of the algorithm consists
of calculating the forces acting on i -th atom and moving the atoms, i.e., updating its
position and velocity [67].

In using numerical integration to solve the Newton’s equation of motion one wants
to express the next position r𝑖(𝑡+∆𝑡) at time 𝑡+∆𝑡 in terms of the previous position.
The basic formula for the Verlet algorithm can be expressed from the Taylor expansion
of r𝑖(𝑡+∆𝑡) [66]

r𝑖(𝑡+∆𝑡) ∼= 2r𝑖(𝑡)− r𝑖(𝑡−∆𝑡) +
F𝑖(𝑡)

𝑚𝑖

∆𝑡2. (3.2)

MD Molecular Dynamics (MD) simulations offer insights into diverse processes,
ranging from protein behavior to semiconductor research, providing atomic-scale reso-
lution and precise temporal analysis from a classical perspective [68, 69]. This makes
MD ideal for simulations on large ensembles and long time scale. None the less, sim-
ulations of this scale demand millions or even billions of computational steps, each
involving potentially millions of interatomic interactions, resulting in substantial com-
putational overhead. Nevertheless, advancements in computer hardware, such as GPUs,
coupled with enhancements in MD software and algorithms, have significantly enhanced
the accessibility and accuracy of MD simulations [70–73].

3.3 LAMMPS

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) has become
a popular and powerful computational engine for modeling interacting particles [74].
To achieve high computational efficiency LAMMPS implements neighbour lists to store
information on particles within the cut-off distance. This feature allows LAMMPS to
split the computational domain into sub-domains, where each of the parallel processors
performs its part and the results from each one are then married to create the finished
outcome. LAMMPS thus takes advantage of MD’s scalability when the calculation is
split into multiple parallel processes, as most tasks are easily parallelized, with each
particle requiring only positional information about its neighbours during the force
calculation [75]. Being open-source and mainly written in C++, LAMMPS allows for
a relatively simple implementation of outside modules [76].

Numerical optimization is a cornerstone technique in condensed matter physics,
frequently employed for various purposes. Typically, the target of optimization or min-
imization is the potential energy 𝐸(r) with respect to the coordinates r. The outcome
of this optimization process provides equilibrium structures and energies at a temper-
ature of 0K, such as those of defects. These configurations of minimum energy can
subsequently serve as starting points for further computations, as will be shown in
the following chapter [77].

Fast inertial relaxation engine (FIRE) is one of the most commonly used mini-
mization algorithms. It relies solely on the gradient of energy, i.e., force, to arrive at
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the minimum. Despite its simplicity in approach, it consistently delivers performance
that rivals, and often surpasses, that of much more complex schemes [77]. To arrive at
a minimum in the PES, FIRE follows the equation of motion given as

v̇(𝑡) =
1

𝑚
F(𝑡)− 𝛾(𝑡)|v(𝑡)|

[︁
v̂(𝑡)− F̂(𝑡)

]︁
, (3.3)

where m is mass of the particles in the system, their velocity is v = ẋ, force F =
−∇𝐸(r), and v̂ and F̂ denote unit vectors. The scalar function of time 𝛾(𝑡) is optimized
throughout the run of the algorithm. The goal of the algorithm thus is to descend in
the direction ’steeper’ than was the direction before a given point. This is done by
the correct choice of the 𝛾(𝑡) function. The value power is calculated as 𝑃 (𝑡) = F(𝑡)·v(𝑡)
and if the result is negative, the algorithm halts its propagation and corrects itself once
again by an appropriate choice of 𝛾(𝑡).

The numerical side of the algorithm can be handled by any commonly used inte-
grator, such as the Verlet algorithm (equation 3.2), which provides the propagation of
the MD trajectories. Those are readjusted at each step by two velocity modifications:
(1) the aforementioned uphill motion check, and (2) the combination of global velocity
and updated force vector, given as: v → (1− 𝛼)v + 𝛼F̂|v|; with the parameter 𝛼 and
time step ∆𝑡, which are both of chosen adaptively at each step [77–79]. The diagram
of the calculation is shown in Figure 3.2.

Calculate

using integrator

Calculate

Yes

No

Figure 3.2: Schematic showing the process of FIRE arriving at a local minimum in
the PES. The algorithm starts with given values for time step and the mixing factor
𝛼, with the velocity at zero. Next, FIRE uses a standard integrator, such as Verlet,
to calculate the current position, velocity and forces. This is followed by convergence
check. In case of not reaching convergence, the velocity is updated with a mix of
global velocity and updated force, the mixing determined by the 𝛼 factor. The power
is calculated and evaluated. If it is negative the algorithm halts and resets the velocity
and the mixing factor, and lowers the time step. If the value of power is positive and
the number of steps since the last negative value is greater than a given threshold
the time step is increased and 𝛼 is decreased [78].
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3.4 ARTn

Activation relaxation technique noveau (ARTn) is a highly efficient method intended
to identify local transitions in a PES using only local information – energy and forces.
The basis of the ARTn algorithm is formed by three steps (blue squares in Figure 3.3)
which are repeated at each iteration until convergence is reached:

• finding the lowest curvature which corresponds to the lowest eigenvalue of the Hes-
sian 𝜆m and its corresponding eigenvector em,

• uphill push, against the forces,

• relaxation into the hyperplane perpendicular to the push.

Input 

Lanczos Push Relax
until

Saddle

relax to minima

YesNo

a 

b 
c d 

e 

Figure 3.3: Schematic showing the ARTn algorithm. The three main steps are de-
noted by a blue border. The algorithm starts with a given position and a random
push. In practice several consecutive random pushed are performed in order to escape
the minima basin. In the first step, ARTn uses the Lanczos algorithm to find the curva-
ture and its corresponding eigenvector. These two values enter the second step, where
they determine the size and direction of the ensuing push. The third step follows with
relaxation in the direction perpendicular to the push. Eventually, the perpendicular
relaxation arrives at the saddle point, thus having converged and the algorithm stop.
The finding of a saddle point may be followed by a relaxation to a backward and for-
ward minima. Adapted from [80].

The beginning of the first ARTn loop is preceded by an initial uphill push. This is
done as it is otherwise impossible to obtain information about the sought after saddle
point from the local minimum which is the starting structure for the algorithm. Ran-
dom push erand is generated from the local minimum to start the search for the saddle
point, Figure 3.3a.

The Lanczos algorithm evaluates the Hessian and outputs the lowest eigenvalue 𝜆m

and its corresponding eigenvector em [81]. The goal is to determine whether the current
position is above (𝜆m < 0), or still bellow (𝜆m > 0) the inflection hyperplane. While
bellow the hyperplane, the system is repeatedly pushed in the random initial uphill
direction, until escaping the concave region (minimum basin). For the sake of saving on
computational costs the random push is performed several time before the first Lanczos
evaluation. Once above the hyperplane, the push direction eigenvector is assigned value
em, Figure 3.3b.
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The uphill push once above the inflection hyperplane is updated after each ARTn
loop as the eigenvector em corresponding to the current lowest eigenvalue 𝜆m of the Hes-
sian while |𝜆m| > 𝜆thr, where 𝜆thr is a user set threshold for curvature convergence.
The orientation of the push is set antiparallel to the force and the displacement norm
for the push is set as

d𝑟 = min
(︂

sizemax,
‖F‖‖

max(|𝜆min|, 0.5)

)︂
, (3.4)

where F‖ is the force component parallel to emin and sizemax is user defined threshold.
This approach reduces the displacement as ARTn nears the saddle point and thus
accelerates convergence, Figure 3.3c.

The saddle point on a given surface is the point where all the derivatives in the or-
thogonal directions are zero, but the point is not a local extreme, but rather saddle
point is a maximum in one direction and a minimum in all the others [82]. The slope of
the PES is by definition the force, and therefore the saddle point in the PES is denoted
by F⊥ = 0. To lower computational costs the orthogonal relaxation is stopped once
F⊥ < F‖, Figure 3.3d.

When the saddle point – point with F⊥ bellow a near-zero threshold and 𝜆m < 0 –
is reached, the system is given a push in the direction of the current em and a standard
minimization algorithm, e.g., FIRE, relaxes the system into a connected minimum.
The connection is ensured by the choice of the push [80], Figure 3.3e.

The implementation of ARTn used further in this work is the plug-in ARTn (pARTn)
developed by Poberznik et al [83]. pARTn works on the basis of hijacking the FIRE
minimization algorithm. The hijacking is achieved by accessing the four quantities
FIRE calculates at each step – F,v, 𝛼,∆𝑡 – and modifying them by imposing an exter-
nal condition on the system. The hijacking scheme allows for an easy interfacing with
LAMMPS and makes it possible to run ARTn within a LAMMPS calculation.

3.5 Machine-Learned Interatomic Potentials

The accuracy of a Potential Energy Surface (PES) is pivotal for ensuring the reliability
of results in both MD and Monte Carlo (MC) simulations. Nonetheless, the compu-
tational expenses associated with DFT render it impractical for this purpose. Thus
empirical potentials have become standard practice, despite the challenging process of
constructing a reliable empirical potential. This difficulty stems from the necessity of
fitting parameters for a guessed (albeit physically grounded) functional form of the in-
teratomic potential, which can potentially yield qualitatively incorrect results. [84, 85].

The development of machine-learned interatomic potentials (MLIPs) was pioneered
by Behler and Parrinello [85, 86]. This method utilizes ab-initio data as the input of
the neural networks (NNs) at the center of the algorithm. NN based MLIPs combine
the results of several element-specific NNs, each trained on one single-atom local envi-
ronment of the studied structure, called symmetry functions. The output of the NNs
are energy predictions which are summed up to from the total energy of the system,
as is shown in Figure 3.4.

The problem with the first generation of MLIPs lay in the lack of predictive ac-
curacy, as the networks were often unable to predict structures beyond the confines
of the training data set [87]. Message-passing NNs (MPNNs) emerged as a remedy

16



E1

E2

E3

Σ E
Water

Oxygen

Hydrogen

Hydrogen

Figure 3.4: Schematic of the NN-based MLIPs. The studied system is split into
element-specific single-atomic local environments. For each of those a dedicated NN
produces an energy prediction. The energy predictions of each subpart are the summed
up to the system’s total energy. Adapted from [84].

to this issue, showcasing markedly improved accuracy, albeit at the expense of signifi-
cant computational resources [88]. The transition from invariant MLIPs, which solely
manipulate geometric invariants of a system, to equivariant MLIPs marked a signifi-
cant leap forward in accuracy. Allegro is the first equivariant MLIP which was able
to achieve the high accuracy of MPNNs while simultaneously offering scaling to large
simulations, due to strict locality of its geometric representations [64, 88].

The task at hand thus becomes the correct choice of the DFT training set to
achieve ab initio accuracy MLIP. The following chapter deals with the automatization
of the process via a custom Python code.
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4. Creation of the Machine-Learned
Interatomic Potential

During my ERASMUS internship at the Institute Ruđer Bošković I have taken part in
the development of a code for the iterative improvement of machine-learned interatomic
potentials (MLIPs) via consecutive activation relaxation technique noveau (ARTn) runs.
The latest version of the code entitled CAMUS can be found at [89].

The initial data set was generated from a set of LMHP structures of several lattice
configurations by performing a molecular dynamics (MD) calculation using the VASP [90–
92] code with the following parameters,

IBRION = 0 # MD
NSW = 200 # Number of steps
POTIM = 2 # Duration of one step (in fs)
SMASS = -1 # Canonical ensemble
TEBEG = 400 # K
MDALGO = 0 # Verlet

which indicate an MD calculation performed for 200 steps, the duration of each being
2 fs, with continuous increase in the kinetic energy, beginning at the temperature of
400 K, using the Verlet algorithm, equation 3.2. This resulted in the starting data set
of ≈ 1200 structures ℳ0.

Further a subset of 200 structures was pseudo-randomly chosen out of ℳ0, each of
the structures had a caesium and a halide (either bromide or iodine) atom removed, to
include the effect of vacancies in the MLIP. The resulting set is then split in a 80/20
ratio to create an initial and a test set, ℳinit and ℳtest, respectively. The following
paragraphs describe the process of creation of a high-fidelity MLIP for CsPbBr3–𝑥I𝑥
perovskite using the CAMUS code.

The initial training set ℳinit is clustered at the beginning of the process. The clus-
tering happens at two levels. At the first level the structures are grouped based on
chemical composition, thus preventing the unnecessary and computationally expensive
descriptor-comparison of any two structures.

The second level clustering is executed withing the composition groups. Every
structure is assigned an Atomic-Centered Symmetry Functions (ACSFs) descriptor.
CAMUS implements the ACSF descriptors via the DScribe code [93, 94]. The ACSFs
describe local environment around a central atom with the number of the considered
neighbouring atoms determined by a cut-off radius 𝑟cut [95]. The ACSF descriptor

DACSF = (d1, . . . ,dn) ∝ [(r1,1, . . . , r1,𝑚,Z), . . . , (r𝑚,1, . . . , r𝑚,𝑚,Z)], (4.1)

where d𝑖 is a local atomic environment is created as an output of several two- and three-
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body functions. They depend on the relation of the m neighbouring atoms belonging
to each of the n atoms in the structure to that atom, and by their chemical species Z.

With each structure of the set being issued a corresponding descriptors, the cluster-
ing algorithm proceeds to calculate the similarity metric between every pair of struc-
tures withing a composition group. The desired similarity value is calculated by build-
ing an average kernel, which for two structures is defined as

𝐾(A,B) =
1

𝑁𝑀

∑︁
𝑖,𝑗

𝐶𝑖,𝑗(A,B), (4.2)

where N,M are numbers of atoms of structures A and B, respectively. 𝐶𝑖,𝑗 is the sim-
ilarity between two local atomic environments and can be calculated by any pairwise
metric, the Laplacian metric was chosen for the LMHP structures as it yielded the most
intuitive similarity values.

Should the calculated pairwise similarity of any two structures exceed a user-set
similarity threshold 𝑡sim, these structures are considered ’similar’ and thus flagged as
neigbours. The algorithm finds a structure with the highest number of neighbours.
This structure is the first cluster center and along with its list of neighbors is recorded
as such and omitted from the next iteration. In each iteration a new cluster center and
a corresponding neighbour or a list of neighbours are found, until all the structures left
are not ’similar’ to any other structure in the set. These ’dissimilar’ structures are listed
as orphans. The list of centers and orphans serve as the representatives of the whole
ℳinit. Figure 4.1 schematically shows the concept of clustering as is implemented in
CAMUS.

Cluster Center Cluster Border

a) b) c)

Neigbour Represented Cluster Orphan

Figure 4.1: The descriptor-based similarity clustering finds a structure with the high-
est number of similar structures and chooses it as the first cluster center. The process
is repeated until all clusters are identified. Should a structure be found not similar to
any other it will be designated an orphan.

The clustering is performed for the optimization of the 𝑟cut and 𝑡sim parameters, and
to prevent over-fitting of the network. For the 𝑟cut, we determined the best value to be
7Å as a neighbourhood of this radius includes second neighbours. We clustered the set
for 𝑡sim = (0.60, 0.70, 0.80, 0.90). For each of the created subsets of ℳinit we train three
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networks and pick the best performing one. Each trained network is evaluated using
Allegro’s built-in nequip-evaluate method. This method uses the trained network
to predict the energies of the structures form ℳtest and calculates the error between
the predicted value and the ’correct’ value included in ℳtest. The errors calculated are
mean absolute error (MAE), and root-mean square error (RMSE):

MAE =
1

𝑁

𝑁∑︁
𝑖=1

|𝑒𝑖|, RMSE =
√

MAE =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=1

𝑒𝑖. (4.3)

In figure 4.2 we see the comparison of the networks within each triplet, as well as
the comparison of networks for different cluster sizes. The network chosen is the one
with the lowest error, network-7-60 (corresponding to 𝑟cut = 7 and 𝑡sim = 0.60).
The chosen network is deployed using nequip-deploy, which creates a potential file
containing the PES fit compatible with LAMMPS.

nw-7-60

1# 2# 3# 1# 2# 3# 1# 2# 3# 1# 2# 3#

nw-7-70 nw-7-80 nw-7-90

Figure 4.2: For each of the subset created by clustering for parameters 𝑟cut = 7Å
and 𝑡sim = (0.60, 0.70, 0.80, 0.90), we trained three networks. From each trio the net-
work with the lowest error is chosen (marked by red rectangle). The chosen ones are
compared amongst each other and once again the one with the lowest errors is chosen.
The chosen network is network-7-60 as it has the lowest combination of errors.

The corresponding data set, sub set of ℳinit, denoted as ℳtrain,0, is minimized
via LAMMPS using the current potential. The minimized structures will serve as
the starting points of the Sisyphus calculations.

The Sisyphus algorithm serves as the essential building block of the CAMUS code.
It performs a series of ARTn calculations with the purpose of defining transitions in
the PES. The schematic of the Sisyphus algorithm is in Figure 4.3.

A Sisyphus calculation starts from a structure corresponding to a local minimum on
the PES. The algorithm performs ARTn searches until it reaches a saddle point; the two
companion minima of the saddle point are auditioned. At least one of the newly found
minima must be ’close’ to the starting one for the path to be considered connected.
This is determined by the user-given delrthr parameter, which expresses the total dis-
placement of the configuration from the initial configuration and is calculated by ARTn
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Figure 4.3: Flowchart describing the algorithm which results in Figure 4.6.

as a part of its output. Subsequently, the algorithm compares the delrs for both of
the minima and determines which of the minima is further from the starting one. This
minimum is auditioned as the next possible point along the path. It is accepted if it
is energetically higher than the previous minimum, the acceptance sign is ’>’ during
the uphill climb.

This process of performing ARTn searches and auditioning found saddle and min-
ima points is repeated until the algorithm reaches a saddle point with energy greater
than 𝐸TOP, or runs out of the set number of ARTn searches. Once over 𝐸TOP the algo-
rithm stops, the energy of the final saddle point defines the energy height of the found
transition.

At this point the acceptance sign changes to ’<’ and the downhill climb comences.
The process is identical to the one described in the previous two paragraphs, except
for the accepted minima now being energetically lower than the ones preceding them.
The algorithm ends once a minimum with energy lower than 𝐸MIN is found, or it runs
out of the set number of ARTn searches. The result of a Sisyphus run is shown in
Figure 4.6a.

The result, ℳ(1)
train,0, is a large collection of new data points, many of which are

possibly very similar to the starting set ℳtrain,0. Therefore we perform a second round
of clustering, using the same parameters which were used in the original clustering
(𝑟cut = 7 and 𝑡sim = 0.60). The result of the clustering is ℳ(2)

train,0, a set of representatives
of ℳ(1)

train,0.
Self-contained field (SCF) DFT calculations are performed on the structures con-

tained in ℳ(2)
train,0, to obtain the ’correct’ energies and forces for the configurations

generated by Sisyphus using the current MLIP. The energy evaluation is performed
according to the algorithm shown in Figure 4.4.

The difference ∆𝐸 between the ML and DFT energies is evaluated against two
user-set parameters 𝐸thr and 𝐸max. The former differentiates between well and poorly
predicted structures, while the latter serves to filter out structures with extremely high
energies, which are far beyond the well defined area of the MLIP, as these would then
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Figure 4.4: Schematic of the evaluation process. We evaluate the difference between
the ’correct’ energy from DFT calculation and the energy predicted by the MLIP.

skew the fitting of the network. The structures for which ∆𝐸 ∈ ⟨𝐸thr, 𝐸max⟩ become
ℳ(3)

train,0. The training set for the next iteration of the network fitting via Allegro is
given as

ℳtrain,1 = ℳtrain,0 + ℳ(3)
train,0.

The iterations that followed were executed in the same fashion. In total, three
rounds of network training were performed. Figure 4.5 shows the improvement in
accuracy over the four MLIPs. Each of the MLIPs were tested on an extended test
set ℳexttest. The graph shows significant lowering of the MAE and RMSE (eqs 4.3)
for the energies of ℳexttest calculated with the MLIP of each iteration. The intended
purpose of CAMUS is to create MLIPs for use in Monte Carlo simulations, which
require well defined energy levels in the PES.

iteration #1iteration #0 iteration #2
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Figure 4.5: The initial network was improved over two iteration using the CAMUS
process of adding relevant data points into the data set.

In this chapter we have shown that the method implemented in CAMUS is capable
of significant improvement to the PES at a significantly reduced computational cost
as we had to run DFT calculations only for a fraction of data points. Performing
the MC simulations of the LMHPs halide segregation is beyond the scope of this thesis.
Therefore we turn to published research to find a stable LMHP suitable for application
in high-energy radiation detection. Zhang et al. introduce CsPbBr2.9I0.1 as the ideal
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candidate due to its record sensitivity, high resistivity, and long term stability.
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Figure 4.6: a) Plot of a successful Sisyphus run. The run starts from a minimized
structure, by performing ARTn searches the algorithm finds new saddle points and
its two companion minima, these minima are auditioned. New minimum is accepted
if it is the further one from and it is energetically higher than the initial minimum.
This process is repeated until a saddle point with energy greater than 𝐸top – this is
the transition point. The algorithm further descends into a minimum below 𝐸min. Fig-
ures b)–d) show selected atoms from: b) the initial minimum structure, c) the structure
corresponding to the transition point (on top overlaid b)), d) the final minimum (on
top overlaid c)).
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5. Calculation of Detection Capabili-
ties

The ability of a material to reduce the impinging beam of radiation is expressed by
the linear attenuation coefficient. Small attenuation coefficient would imply a relatively
transparent material while large value would mean more opaque material, potentially
ideal for application in detectors of such radiation. Attenuation coefficient of a volume
is given as

𝜇 = − 1

Φe

dΦe

d𝑧
, (5.1)

where Φe is the radiant flux and 𝑧 is the path length of the beam.
The energy carried by an X-ray is transferred into the target material by two dif-

ferent mechanisms – absorption and scattering. The processes occurring at the energy
transfer are either ionization, in this case an electron is removed from the incident
atom creating a positively charged ion, or excitation. During excitation the energy of
the X-ray gets transferred to an electron in the incident atom’s electron shells, tem-
porarily increasing the electron’s energy, thus moving it up into a higher energy level
and the whole atom into a more energetic state.

There are three main processes that are important to take into consideration when
an X-ray interacts with matter – the photoelectric effect, the Compton effect, and pair
production (here we are specifically referring to the creation of electron-positron pairs).
These three interactions are pictured in a schematic in Figure 5.1.

The photoelectric (PE) effect is the cause of the characteristic X-ray emission, but
also it is a crucial secondary process in the interaction of X-rays with matter. For
energies up to ∼ 500 keV PE absorption is the dominant form of X-ray absorption,
especially for atoms with higher atomic numbers. The impinging X-ray transfers its en-
ergy to an orbital electron. This photo-electron then leaves the atom at high speed [96].
The probability of PE occurring, and therefore contributing to the total interaction of
the X-ray with the given matter, is given by its cross-section [97] as

𝜎PE =
16
√
2𝜋

3
𝑟2e𝛼

4 𝑍
5

𝑘3.5
, (5.2)

where 𝑟e is the classical electron radius, 𝛼 is the fine structure constant, and 𝑘 = 𝐸X
𝐸e

is
the ratio of the X-ray energy to the electrons rest mass energy 𝐸e = 𝑚e𝑐

2 ≃ 0.511 MeV.
Compton scattering (CS), or incoherent scattering, is a process in which an X-

ray imparts its energy to an atom’s electron, ejecting him from its orbital, accom-
panied by a lower energy X-ray. The absorption due to CS is prevalent for energies
between 100 keV–10 MeV, particularly for low atomic number elements. Generally, CS

24



Figure 5.1: Three main processes governing the interaction of X-rays with matter:
the photoelectric effect (𝜆1), the Compton scattering (𝜆2), and the pair production
(𝜆3).

is the overall background in X-ray diffraction measurements [98]. We use the Klein-
Nishina [99, 100] formula to calculate the contribution of CS to the total absorption
cross-section

d𝜎C

dΩ
=

𝑟2e
2

(︂
𝐸 ′

X

𝐸X

)︂2 [︂
𝐸 ′

X

𝐸X
+

𝐸X

𝐸 ′
X
− sin2 𝜃

]︂
, (5.3)

where 𝐸X and 𝐸 ′
X are the initial and final photon energy, respectively, and 𝜃 is the scat-

tering angle. The ratio of initial and final photon energy can be expressed as

𝐸 ′
X

𝐸X
=

𝜆

𝜆′ =
1

1 + 𝑘(1− cos(𝜃))
. (5.4)

Integrating d𝜎C
dΩ

over all solid angles yields the total Compton contribution

𝜎C =

2𝜋∫︁
0

𝜋∫︁
0

d𝜎C

dΩ
sin 𝜃 d𝜃 d𝜑 . (5.5)

The pair production (PP) occurs for X-rays with energies > 1.02 MeV (2 · 0.51 =
1.02, twice the rest mast energy of electron, or electron and positron), then it becomes
the dominant mode of interaction between X-rays and matter. For the sake of con-
servation of momentum the PP occurs only near the nucleus, as a result portion of
the momentum is transferred to the nucleus as recoil when the pair is created [101].
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To calculate the cross-section of the incident we use the Maximon equation [102]

𝜎PP =
2𝜋

3
𝑟2e𝛼𝑍

2

(︂
𝑘 − 2

𝑘

)︂3(︂
1 +

1

2
𝜌+

23

40
𝜌2 +

11

60
𝜌3 +

29

960
𝜌4
)︂
, (5.6)

where
𝜌 =

2𝑘 − 4

2 + 𝑘 + 2
√
2𝑘

.

The total photon absorption cross-section is given as the sum of the three contribu-
tions expressed by equations 5.2, 5.5, and 5.6

𝜎 = 𝜎PE + 𝜎C + 𝜎PP. (5.7)

The contributions along with the total absorption cross-section are plotted in Fig-
ure 5.2.
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Figure 5.2: We see on this CsPbBr3 LHP that the photoelectric absorption domi-
nates for lower energies but decreases as energy increases, the pair production becomes
a relevant contribution once the necessary energy limit of 2 ·0.511 MeV is reached, and
the Compton scattering is present as background. The area between the two dashed
lines is the energy interval used in the calculation of the linear attenuation coefficient
and we see that the dominant contribution is the photoelectric absorption. (1 barn =
10−28 m−2).

The linear attenuation coefficient is calculated for the photon absorption cross-
section as

𝜇 = 𝑛 · 𝜎 =
𝑁A𝜌M

𝑀
𝜎, (5.8)

where 𝑁A is the Avogadro’s constant, 𝜌M is the mass density, and 𝑀 is the molar
mass. The linear attenuation coefficient is calculated for a set of LMHPs CsPbBr3–𝑥I𝑥
(𝑥 = 0, 0.1, 0.5, 1) in the energy interval of (101–103) keV, it is shown in Figure 5.3.
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Figure 5.3: a) Linear absorption coefficient against energy for two common semicon-
ductor materials used in ionizing radiation detectors compared to LMHPs CsPbBr3–𝑥I𝑥
(𝑥 = 0, 0.1, 0.5, 1), showing the LMHPs to be on par with CZT and outperform Si. Im-
age adapted from [42]. b) Theoretical calculation of the linear attenuation coefficient
(equation 5.8) for LMHPs CsPbBr3–𝑥I𝑥 (𝑥 = 0, 0.1, 0.5, 1).

It is important to note that we are attempting to calculate this quantity using highly
approximated theory, thus we see the result values of the linear attenuation coefficient
lie four orders of magnitude higher compared to the experimental data from [42]. Ac-
quiring results closer to physical reality would require further research and employment
of more complex ab initio theory.
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Conclusion

Throughout this thesis, I have presented a method for construction of potential en-
ergy surfaces (PES) via the consecutive runs of activation relaxation technique noveau
(ARTn). Further, I have employed classical theory to calculate the linear attenuation
coefficient for selected lead mixed-halide perovskites (LMHPs).

I used the code, called CAMUS, which I helped to develop during my ERASMUS
stay at the IRB Zagreb, to construct an improved PES. To start, the initial data
set was generated by running an molecular dynamics calculation of two hundred 2 fs
steps, starting at 400 K with continuous increase in the kinetic energy, using the Verlet
algorithm. Next I extended the initial set by 200 vacancy structures, by randomly
selecting structures and removing a Cs and either Br, or I atoms. This was done to
include the effects of vacancies into the training model. Then I employed the ACSF
descriptors to cluster the the data set including the vacancies. The created sub set of
cluster centers was used further.

The main part of the CAMUS code is the so-called Sisyphus algorithm. This al-
gorithm creates chains of ARTn runs, which look for the saddle points in the PES.
The algorithm searches for connected ARTns until it reaches a given energy thresh-
old. The connected Sisyphus path is then considered a potential transition point and
the structures belonging to its points are further investigated. For purposes of efficiency
the large data set of new structures was again clustered. The chosen structures were re-
calculated with DFT and I performed energy evaluation based on the energy difference
between the DFT and CAMUS result. During the first iteration all structures recalcu-
lated with DFT were included in the retraining set, to fix some of the initial disconnect
in the PES, which resulted in nonphysical structures from CAMUS. In the second
iteration, structures with energy difference over 2 eV were included.

I performed two whole iterations of the CAMUS process, which resulted in 25%
and 26% improvement in RMSE and MAE for energy, respectively. The improvement
of these errors for forces are much greater at 42% and 32% for RMSE and MAE, re-
spectively. This result shows that the presented method, entitled CAMUS, which I
used and helped develop, is capable of expanding a suitably chosen set of data points
around the PES into a much more well defined PES. If the scope of this thesis would
allow, several more iterations would be performed and we would arrive at a machine-
learned interatomic potential (MLIP), which would describe the complex system of
CsPbBr3–𝑥I𝑥 well (determined by the use of extensive test data set). This resulting
MLIP would then permit us to conduct Monte Carlo simulations to model the process
of halide segregation in the LMHPs and consequently we could search for stable compo-
sitions, which we could further research as potential applicants for use in high-energy
radiation detection devices.

Considering the scope of the thesis, I opted for classical theory to calculate the lin-
ear attenuation coefficient for the selected LHMPs. Those were selected according to
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the paper by Zhang et al. for easier comparison with the experimental data presented
by the authors. I calculated the photoelectric effect (PE), Compton scattering (CS),
and pair production (PP) contributions to the absorption cross-section using the sim-
plified Bethe-Heitler, Klein-Nishina, and Maximon equation, respectively. I plotted
the calculated contributions and their sum for CsPbBr3 in the interval of energies
(1–106) keV. The resulting curves adhere to the assumptions of the classical theory.
The PE contribution is the dominant one at lower energies (below ∼ 103 keV), while
PP begins at the energy threshold of (2 · 511 keV) and quickly becomes the dominant
contribution as PE becomes negligible. The CS, meanwhile, is present throughout in
the form of background.

Furthermore, I calculated and plotted the linear attenuation coefficient for the
CsPbBr3–𝑥I𝑥 (𝑥 = 0, 0.1, 0.5, 1) LMHPs. Compared to the paper the calculated co-
efficients are four orders of magnitude larger, this is most likely due to the level of
approximation of classical theory. While I was unable to match the quantitative re-
sults of experiments, what the classical theory allowed me to do, was qualitatively
analyse the processes occurring when hard X-rays interact with LMHPs. To achieve
high-fidelity results, comparable with experiment, would require thorough research and
use of advanced ab initio methods, which proves to be non-trivial for material such as
LMHP as at the core of the problem lies the calculation of dielectric function, for which
even DFT is insufficient.

"I leave Sisyphus at the foot of the mountain. One always finds one’s burden again.
But Sisyphus teaches the higher fidelity that negates the gods and raises rocks. he too
concludes that all is well. This universe henceforth without a master seems to him
neither sterile nor futile. Each atom of that stone, each mineral flake of that night-filled
mountain, in itself, forms a world. The struggle itself toward the heights is enough to
fill a man’s heart. One must imagine Sisyphus happy." [1]
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KSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kohn-Sham equation
SCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . self-consistent field
MD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . molecular dynamics
LAMMPS . . . . . . . . . . large-scale atomic/molecular massively parallel simulator
FIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . fast inertial relaxation engine
ARTn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . activation relaxation technique noveau
MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Monte Carlo
MLIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . machine-learned interatomic potential
NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . neural network
MPNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . message-passing neural network
ACSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . atomic-centered symmetry functions
MAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mean absolute error
RMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . root-mean square error
PE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . photoelectric effect
CS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compton scattering
PP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pair production
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