
T 
BRND UNIVERSITY DF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF MECHANICAL ENGINEERING 
FAKULTA STROJNÍHO INŽENÝRSTVÍ 

INSTITUTE OF PHYSICAL ENGINEERING 
ÚSTAV FYZIKÁLNÍHO INŽENÝRSTVÍ 

ANION-EXCHANGE ENABLED TUNING OF CAESIUM 
LEAD MIXED-HALIDE PEROVSKITES FOR HIGH-ENERGY 
RADIATION DETECTION 
LADITELNOST CESIUM OLOVNATÝCH HALOGENIDOVÝCH PEROVSKITŮ UMOŽNĚNÁ VÝMĚNOU 
ANIONTŮ PRO DETEKCI VYSOKOENERGIOVÉHO ZÁŘENÍ 

MASTER'S THESIS 
DIPLOMOVÁ PRÁCE 

AUTHOR Be. Radovan Matula 
AUTOR PRÁCE 

SUPERVISOR Ing. Petr Dvořák, Ph.D. 
VEDOUCÍ PRÁCE 

BRNO 2024 



Assignment Master's Thesis 

Degree prog ramm 
Branch: 
Supervisor: 
Academic year: 

Institut: 
Student: 

Institute of Physical Engineering 
Be. Radovan Matula 
Physical Engineering and Nanotechnology 
no specialisation 
Ing. Petr Dvorak, Ph.D. 
2023/24 

As provided for by the Act No. 111/98 Coll. on higher education institutions and the BUT Study and 
Examination Regulations, the director of the Institute hereby assigns the following topic of Master's 
Thesis: 

Anion-exchange enabled tuning of caesium lead mixed-halide 
perovskites for high-energy radiation detection 

Brief Description: 

Lead halide perovskites (LHPs) have revolutionised the field of optoelectronics. LHPs' unique 
optoelectronic properties such as highly tunable bandgap, high stopping power, or large 
absorption cross-section, make them perfect candidates to be the semiconductor basis of 
a solid-state high-energy radiation detector. Varying the composition of LHPs furthermore leads to 
effective tuning of the aforementioned properties highlighting the already high significance and 
versatility. However, the anion-exchange enabled tuning is hindered by a questionable chemical 
stability of the resulting compounds. While lead halide perovskites show immense promise for 
high-energy radiation detection, addressing the issue of chemical stability is paramount to fully 
harness their potential. 

Master's Thesis goals: 

1. Research on the properties of lead halide perovskites for high-energy radiation detection. 
2. Briefly describe the appropriate theoretical and simulation tools to describe the molecular 
dynamics of anion exchange in LHP. 
3. Using theoretical and simulation tools, investigate the chemical stability and configuration of 
different halide concentrations in LHP. 
4. Subject stable compounds to electronic structure calculations and estimate their suitability for 
high-energy radiation detection. 
5. Compare your conclusions with available literature or experimental results and discuss the 
effectiveness of LHP detectors compared to conventional high-energy radiation detectors used 
today. 

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno 



Recommended bibliography: 

AKKERMAN, Quinten A., Gabriele RAINO, Maksym V. KOVALENKO a Liberato MANNA, 2018. 
Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nature 
Materials. 17(5), 394-405. ISSN 1476-1122. Dostupne z: doi:10.1038/s41563-018-0018-4 

AKKERMAN, Quinten A., Valerio D'INNOCENZO, Sara ACCORNERO, Alice SCARPELLINI, 
Annamaria PETROZZA, Mirko PRATO a Liberato MANNA, 2015. Tuning the Optical Properties of 
Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions. Journal of the 
American Chemical Society [online]. 2015-08-19, 137(32), 10276-10281 [cit. 2023-09-20]. ISSN 
0002-7863. Dostupne z: doi:10.1021/jacs.5b05602 

Deadline for submission Master's Thesis is given by the Schedule of the Academic year 2023/24 

In Brno, 

L. S. 

prof. RNDr. Tomáš Šikola, CSc. 
Director of the Institute 

doc. Ing. Jiří Hlinka, Ph.D. 
FME dean 

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno 



A b s t r a c t 
Lead halide perovskites (LHPs) wi th their unprecedented functional qualities which are 
only enhanced by the simple band gap tuning, have taken the world of semiconductors 
by storm. The process of anion exchange, possible even post-synthesis, allows for band 
gap tuning of L H P s , resulting in lead mixed-halide perovskites ( L M H P s ) , thus expand­
ing their potential for applications, notably in tuneable detectors. The widespread 
adoption of L M H P s is, however, hindered by their chemical instability, which leads 
to halide segregation in the material, seriously inhibit ing reliable operation of any 
L M H P - b a s e d device. Understanding the kinetics of the halide segregation over ex­
tended periods remains a challenge, motivating the use of theoretical simulations like 
Monte Carlo ( M C ) methods. Yet, M C simulations rely on well-defined potential energy 
surfaces (PES) , typically derived from computationally intensive density functional the­
ory ( D F T ) calculations. In this thesis, we propose a novel approach for constructing 
well-defined P E S from high-fidelity D F T data with fraction of the computational load. 
Ut i l iz ing activation-relaxation technique noveau (ARTn) motivated searches for transi­
tion points in the P E S combined wi th state-of-the-art machine learning approaches, we 
aim to to significantly reduce computational costs. Additionally, employing classical 
theory, we assess the detection capabilities of selected L M H P s . 

A b s t r a k t 
Olovnato-halogenidové perovskity (OHP) se svými bezprecedentn ími funkčními vlast­
nostmi, k te ré umocňuje j ednoduché ladění zakázaného pásma , vzaly svět polovodičů 
ú tokem. Proces aniontové výměny, možný i po syntéze, umožňuje ladění zakázaného 
pásu O H P , což vede k olovnato-mix-halogenidovým perovsk i tům ( O M H P ) , čímž se 
rozšiřuje jejich potenciá l pro aplikace, zejména v oblasti ladi telných de tek torů . Širokému 
přijetí L M H P však b rán í jejich chemická nestabilita, k t e r á vede k segregaci halogenidů 
v mater iá lu , což zásadně omezuje spolehlivý provoz zařízení na bázi O M H P . Pochopení 
kinetiky segregace halogenidů přes delší časové intervaly zůs tává výzvou, nabízi se 
tak použi t í teoret ických simulací, jako jsou metody Monte Carlo ( M C ) . Avšak M C 
simulace spoléhají na dobře definované povrchy potenciá lní energie ( P P E ) , typicky 
odvozené z výpoče tně náročných v ý p o č t ů teorie funkcionálu hustoty ( D F T ) . V t é to 
práci navrhujeme nový p ř í s tup pro konstrukci dobře definovaných P P E z vysoce přes­
ných D F T dat se zlomkem výpoče tn ího zatížení . Využi t ím activation-relaxation tech­
nique noveau (ARTn) pro motivaci h ledání přechodových b o d ů v P P E v kombinaci s ne-
jmodernějš ími p ř í s tupy strojového učení se snažíme výrazně snížit výpoče tn í náklady. 
Navíc s využ i t ím klasické teorie hodno t íme detekční schopnosti vybraných O M H P . 

K e y w o r d s 
lead halide perovskites, advanced nanomaterials, tunability, machine-learning, density 
functional theory 

K l í č o v á s lova 
olovnato-halogenidové perovskity, pokročilé nanomater iá ly , laditelnost, strojové učení, 
teorie funkcionálu hustoty 
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Introduction 

It has been fifteen years since Ko j ima et al. published their breakthrough paper, 
in which they first introduced the notion of lead halide perovskites (LHPs) being 
as visible light sensitizers for photovoltaic cells. Since then L H P s have seen a boom 
as many new functional properties and subsequent new applications were discovered. 
L H P s are a group of semiconductors known by their universal formula A B X 3 , where 
A is in our case a cation of Cs, B is P b and X = CI, B r or I. Through the means 
of anion exchange, they allow for relatively simple band gap tuning. Their singular 
functional properties - highly tunable band gap, bright and narrow photoluminescence 
across the visible spectrum, high stopping power, unprecedented quantum yields - and 
cheap and easy production from chemical solutions, lend L H P s to many applications. 

To exploit L H P s ' capabilities to their fullest extent halide mixing has become 
the norm, resulting in use of lead mixed-halide perovksites ( L M H P s ) , most often wi th 
composition A P b B r 3 _ x I x . L M H P s combining of iodine (I) and bromide (Br) are one of 
the most attractive candidates as varying the ratio of B r / I makes materials wi th band 
gaps suitable for high-efficiency tandem cells. Furthermore, in recent years, a technique 
uti l izing organic ligands to transfer halides into an existing L H P structure has been 
introduced. Thus introducing the possibility of post-synthesis tuning, and opening 
the doors for applications such as tuneable detectors. 

L M H P s are held back from mainstream use in solar cells due to their instability. 
When put under usual solar cell conditions, continuous wave i l lumination and applied 
electric field, they suffer reversible halide segregation into separate halide domains, 
which directly affects the cell's power conversion efficiency. Nonetheless, recent research 
suggests the presence of a metal ion on the A position further improves the stability 
of the compound and prevents significant phase segregation in the crystal, therefore 
in this research we wi l l focus specifically on caesium L M H P s . 

Though the chemistry of the mixing and demixing of the halides in the L M H P 
compound has been well studied, the physics governing the segregation and the creation 
of single-halide domains is not well understood. To remedy this bl ind spot a rigorous 
theoretical analysis of the process by means of ab-initio simulations is required. In order 
to simulate the evolution of such complex system wi th the Monte Carlo ( M C ) technique 
over a considerable period, we require the potential energy surface (PES) to be accurate, 
as the energy values appear in the exponential term of the probability of transition 
calculated during the M C simulation. D F T offers the necessary accuracy, however 
the method's poor scalability limits its use to small systems and short simulation 
times. 

One viable alternative is the use of machine learning interatomic potentials (MLIPs) 
to describe the P E S . This method doesn't necessitate the sacrifice of the high accuracy 
provided by ab-initio methods the same way a classical potential would, while maintain­
ing favourable computational efficiency. Neural network interatomic potentials (NN-IP) 
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were previously limited in their applicability by the need for large ab-initio training set. 
Allegro is an equivariant deep learning variant of a message passing neural network 
( M P N N ) , which retains the accuracy of the previous NN-IPs but improves on them by 
introducing strict locality, thus enabling scaling to large systems. Thus the problem 
turns into search for the right data set for training of the high-fidelity P E S . 

In this thesis, we introduce a novel approach to P E S exploration. Thusly con­
structed P E S can be further used in M C simulations, the results of which we hope 
wi l l open an easier path to the study of the halide segregation in the L M H P s and 
the discovery of more stable L M H P s for application in high-energy radiation detection. 
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1. Lead Mixed-Halide Perovskites 

After spending almost a century being overlooked, lead halide perovskites (LHPs) have 
entered the scientific consciousness and garnered considerable attention in circa 2009 
when Ko j ima et al. have decided to use the then fairly unknown material as a thin-film 
light absorber layer in their solar cell [2]. L H P s are named after the mineral Perovskite, 
wi th which they share its general structure, the basis of which are corner-sharing P b X 6 

octahedra forming a cubic lattice. The cavities created between the octahedra, the A -
sites, are filled by one or a combination of three large cations - C s + , C H 3 N H 3

+ ( M A + ) , 
C H ( N H 2 ) 2 + ( F A + ) - resulting in the general L H P formula A P b X 3 , see Figure 1.1. 

L H P ' s eponymous structure that is the origin of their unique optical and func­
tional properties, such as highly tunable bandgap, bright and narrow photolumines-
cence across the visible spectrum, high stopping power, unprecedented quantum yields, 
and cheap and easy production from chemical solutions, which have helped them gener­
ate notable attention in the scientific community over the last decade [2-11]. A l l these 
qualitites lend L H P s to many applications, those include solar cells [12], L E D s [13], light 
absorbers [14], optically pumped lasers [15], or high-energy radiation detection [16]. 

Q C s Q P b O X = C I , B r , I 

F i g u r e 1.1: The structure of L H P s is formed by P b X 6 octahedra arranged in a cubic 
lattice, with heavy metal cations, in this case C s + , filling the cavities created by stacking 
of the octahedra. 

One of the most common method of L H P production is the hot injection method. 
The key to the method lies in mixing the correct ratio of lead-halide and caesium 
precursor, alongside the addition of oleic acid (OA) or oleylamine ( O L A ) . O A and O L A 
play a dual role, triggering the nucleation and growth of the nanocrystals (NCs), while 

5 



also aiding in the surface passivation of said N C s [17]. The temperature and quenching 
time determine the kinetics of the growth, thus deciding the quality of the prepared N C s . 
For example C s P b B r 3 nanocubes are converted to non-emitting tetragonal C s 2 P b B r 5 

nanosheets at very high temperatures as described by Dut ta et al. [18]. 
L H P s ' single most interesting quality is their highly tuneable band gap. Tuning in­

volves simply adjusting the ratio of the lead-halide precursors. The most common com­
bination being A P b B r 3 _ x I x . L H P s combining iodine and bromine are one of the most 
attractive candidates. Increasing the Br:I ratio enables the tuning of the band gap 
from 2.43 eV to 1.48 eV wi th a continuous red shift [19], and creates materials wi th 
band gaps suitable for high-efficiency tandem cells [20], see Figure 1.2a. 
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F i g u r e 1.2: a) The change in optical absorption (solid lines) and P L spectra (dashed 
lines) of C s P b B r 3 N C s as P b l 2 is added as a source of exchanging halide anions. Image 
adapted from [21]. b) Linear attenuation coefficient against energy for several common 
semiconductor materials used in ionizing radiation detectors compared to L H P s C s P b I 3 

and M A P b I 3 , showing the L H P s to outperform most of the standardly used materials, 
especially at high energies. Image adapted from [22]. 

Stoumpos et al. [23] have first considered a C s P b B r 3 perovskite for use in X - and 
7-ray detection in 2013 and found it to be highly promising. The hunger for newer, 
cheaper, and more efficient materials has led to L H P s being considered for use across 
the entire spectrum in radiation detection. For a material to be considered suitably 
efficient for use in solid-state detection devices it has to simultaneously exhibit certain 
characteristics: 

• High average atomic number Z, which is related to the photoelectric absorption 
cross-section of a detector. 

• Large resistivity, to ensure the lowest noise possible. 

• High mobility-lifetime product /xr, larger product means a lower probability of 
carriers being recombined (the highest product is in single crystalline semicon­
ductors) . 

L H P s can meet all the criteria, while being cheap and easy to produce and having high 
tolerance to radiation damage [16, 24, 25]. 
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Table 1.1 summarizes the X-ray detection performance of materials commonly used 
in current detectors, along wi th currently emerging new candidates including three 
L H P s . Si, is due to its low stopping to X-rays, delegated mainly to portable detec­
tors [26]. The most commonly used material in direct conversion, a-Se, has stopping 
power 10 times greater than that of Si, however its production is expensive [27, 28]. 
H g l 2 and C d ^ Z n ^ T e ( C Z T , x<20%) both show great promise, with good sensitivities 
as shown in Table 1.1, however both materials have their limitations. H g l 2 suffers 
large leakage current, while C Z T is difficult to integrate wi thin read-out circuitry as 
it requires high temperature for high-quality crystal growth [22]. The current state-of-
the-art CsI(Tl)-based detectors perform the best out of the traditional materials [29, 
30]. 

The L H P s show themselves to be at least comparable to the traditional materials, 
while outperforming their predecessors in some metrics, as seen in Table 1.1. M A P b B r 3 

appears to be the best candidate of the ones shown, however the poor stability of L H P s 
wi th organic A-posi t ion molecule detract from its merits. The third L H P presented, 
C s P b B r 3 , also yields better results when compared to the traditional materials, while 
exhibiting greater chemical stability to M A P b B r 3 [31]. 

T a b l e 1.1: Comparison of detection capabilities of classically used materials and L H P s 

Atomic number Applied electric field 
[V ̂ m"1] 

fxr product Sensitivity 
[̂C Gy-J cm"2] 

Spatial resolution 
[lp mm-1] 

Lowest detectable dose rate 
kCj-s-1] 

Refs 
Si 14 0.5 >1 8 4.5 <8300 [26, 32] 

Q-Se 34 10 io-7 20 -15 5.5 [28, 33] 
Hgl2 53, 80 10 10"4 1600 3.93 10 [341 
CZT 48, 52 0.1-1 0.01 318 10 50 [35, 361 

CsI(Tl) 53, 55, 81 - - 5370 10 0.18 [29, 30] 
MAPbI3 53, 82 0.24 0.010 1.1 x 10" 3 <5000 [371 

MAPbBr3 35, 82 0.05 0.012 2.1 x 10" 10 0.039 [38, 39] 
CsPbBi's 35, 82 0.005 0.013 5.6 x 10" 9.8 0.215 [40, 41] 

Zhang et al. [42] implemented anion exchange to improve the trap density and resis­
t iv i ty of C s P b B r 3 SCs and have discovered that the CsPbBr 2 .gIo.i perovskite exhibits 
record sensitivity of 6.3 x 10 4 uC G y _ 1 c m - 2 and a low detection limit 117 n G y s - 1 for 
120 keV hard X-rays along wi th stable detection capabilities in an ambient environment 
for over 30 days. 

The capability to fine-tune the band gap after synthesis would provide additional 
motivation for employing L H P s in scintillator or high-resolution display applications. 
Thanks to their structure and high defect tolerance L H P s allow for such change in 
structure and composition v ia the means of anion exchange [43]. The nanostructures 
best suited for this process are colloidal N C s due to their high volume-to-surface ratio 
and short diffusion path lengths [21]. The anion exchange is conducted by mixing 
the L H P N C s wi th a halide precursor, e.g., tetrabutyl halides ( T B A - X ) , octadeculam-
monium halides ( O D A - X ) , oleylammonium halides ( O L A M - X ) , see Figure 1.3a. For 
the highly soluble precursors ( O L A M - X and T B A - X ) , the reaction takes no more than 
a few seconds. The exchange can be monitored by observing the changes in the optical 
absorption and P L spectra [44], see Figure 1.3b and c. 

One big hurdle holding back L H P s from mainstream applicability is their chemical 
instability. L H P s ' good solubility in polar solvents, as useful as it is for easy thin film 
fabrication, compromises structural integrity of the N C s over longer periods of time. 
Caesium L H P s experience the lowest solubility, however even if low, this feature still 
poses a threat to structural integrity of the N C s [45]. 

Despite being stable against oxidation, L H P s ' long-term stability in the combined 
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new halide/parent halide 

F i g u r e 1.3: a) Schematic showing achievable anion exchange reaction for three precur­
sors ( O D A , T B A , O L A M ) tested in [44]. b) Change in P L of the L H P N C after adding 
T B A - B r . c) P L calibration curve for anion exchange starting from pure C s P b I 3 , using 
T B A - B r . The curve is given as a function of the ration of molar masses of the added 
and original halide. Images adapted from [44]. 

presence of light, moisture, and oxygen is questionable [46]. There are several pro­
posed routes to take in order to improve the L H P s stability to environmental factors. 
The change in composition is one of the studied possible advancements in this area. 
Caesium once again proves to be beneficial as the presence of Cs in the lattice im­
proves stability of the L H P against humid environment and irradiation compared to 
fully organic M A P b X 3 or F A P b X 3 [47-49]. One of the most well tested techniques 
for improving the lifetime of solar cell materials is encapsulation. This approach en­
closes the L H P N C s into S i 0 2 which results in ceramic-like stability for the N C s , while 
retaining 100% of the original P L intensity [50]. 

Furthermore, the use of lead mixed-halide perovskites ( L M H P s ) is further hindered 
by the halide segregation occurring when the material is put under usual solar cell con­
ditions, i.e., continuous wave il lumination and applied electric field. Whi le the segrega­
tion is reversible it does negatively impact the power conversion efficiency of the solar 
cell [51]. 

Though the chemistry of the mixing and demixing of the halides in the L M H P com­
pound has been well studied [19], the physics governing the segregation and the creation 
of single-halide domains is not well understood [3, 52]. To remedy this bl ind spot a rig­
orous theoretical analysis of the process by means of ab-initio simulations is required. 

In this thesis, we aim to exploit the singular properties of L M H P s to design a mate­
rial to serve as a basis for a cheap and quality solid-state detector, specifically focusing 
on the area of hard X-rays (>10 keV). Through anion exchange we aim to passively tune 
the material to achieve high stopping power and a large X-ray absorption cross-section. 
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2. Detection of High-energy Radiation 

Ever since their discoveries both X - and 7-rays have become an integral part of vari­
ous fields of study and wi th that came the need for efficient and large-area detection. 
Contemporary X-ray detectors can be classified into two categories by their approach 
to detection, direct and indirect, both of which contain semiconducting material which 
is responsible for absorption of the high-energy photons and their subsequent conver­
sion into either a visible-spectrum photon or an electron [24]. However, the materials 
commonly used (Si, a-Se, CsI(Tl)) are lacking severely in several important areas, e.g., 
low X-ray absorption cross-section (linear cross-section coefficient to 50 keV of C s P b B r 3 

quantum dots is 35 times larger than that of Si [53]), material instability, l imited spatial 
resolution, or difficult tuning of their radioluminescence across the visible spectrum [25]. 
This makes the detectors expensive and ineffective at best but also a potential health 
risk in the case of use in the medical field where one cannot afford higher doses of 
radiation needed to compensate for low absorption. 

O n the electromagnetic spectrum the region of high-energy, or ionizing, radiation 
starts after ultraviolet radiation bellow A ~ 10~ 1 0 m (also / ~ 10 1 8 Hz) , which accord­
ing to E — hc/X corresponds to energies higher than (5-10) eV. In nature, ionizing 
radiation is created by the means of radioactive decay, this includes a, (3, or 7-rays. 
Among artificial sources belong particle accelerators, nuclear fission, or X-ray tubes, 
which generate X-rays. The classification of "high-energy" stems from the shared char­
acteristic of these radiation types: they possess sufficient energy to ionize the atoms 
they encounter. Whi le this property is immensely beneficial in sectors like nuclear 
power, industrial manufacturing, and medicine, it also poses significant risks to living 
organisms. Consequently, there is a pressing demand for effective and reliable detection 
methods for such radiation. 

Solid-state, or semiconductor, detectors (Figure 2.1a) use semiconductors in their 
architecture to absorb the incoming X-rays, and convert their energy into detectable 
quantities. Direct detectors convert the X-rays into an electron-hole pair and electric 
charge, that is proportional to the absorbed X-ray. The charge is captured by electric 
field to ensure maximal spatial resolution, by keeping the charge localised. The charge 
is then detected by a read-out component of the detector, and further analysed [54, 
55]. 

Indirect, or scintillator, detectors (Figure 2.1b) consist of a layer of scintillating 
material and an electronic light sensor, e.g., a photodiode, silicone photomultiplier, or 
a photo multiplier tube ( P M T ) . Scintillator is a device capable of absorbing the energy 
of an incoming particle and re-emitting it in the form of light in the visible spectrum. 
The visible-spectrum photon, provided it has energy greater than the band gap of 
the scintillating semiconductor, excites an electron from the valence band into the con­
duction band, creating an electron-hole pair in the process. App ly ing bias pulls elec­
trons and holes in opposite directions, resulting in photocurrent. The photoelectrons 
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are then further multiplied, which results in a detectable electrical pulse [54, 55]. 
Gas detectors measure the dose rate of the X-rays absorbed by the gas. A s the gas 

absorbs the X-rays it becomes ionized, i.e., creating pairs of ions and free electrons, 
under applied electric field each member of the pair is pulled in the opposite direction, 
generating detectable current [56]. 

• P M T 

F i g u r e 2 .1: a) Semiconductor (direct) detector. Image adapted from [57]. b) Scintil­
lator (indirect) detector. Image adapted from [58]. 

High-energy radiation detectors are needed in every field which deals with high 
energy radiation, therefore their applications are broad and varied. From medical diag­
nostics wi th radiography, mammography, or computed tomography ( C T ) . C T also finds 
applications in industrial setting in material analysis, or defect inspection. To science, 
where detectors are a part of many common techniques, such as E D X spectroscopy, 
X-ray astronomy, X P S , or again C T . To even everyday life, in airport security, smoke 
detectors or Geiger counters, which both utilize gas detectors. 

Material intended for use in semiconductor detectors need to exhibit efficient absorp­
tion over wide spectrum, high charge carrier mobility, long-term operational stability, 
and low-cost scale-up. Standardly used materials in commercial detectors, like Si or 
G a N require complex and costly equipment, along with process-intensive high-vacuum 
techniques. Meanwhile, a popular alternative capable of all the aforementioned features 
while being cheap to produce has recently emerged - lead halide perovskites (LHPs) . 
L H P s have been considered for both direct and indirect detectors but are being held 
back by their subpar chemical stability. The goal of this thesis is not to design a detec­
tor, but merely to propose a material well-suited for the use in scintillator detectors, 
as that is the area where the use of L H P s is the most advanced. 
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3. Ab-initio Codes 

This chapter serves as a non-exhaustive overview of ab-initio tools used in the creation 
and exploration of the potential energy surface (PES) , needed for the Monte Carlo 
simulation of the halide segregation in lead mixed-halide perovskites. 

3.1 Density Functional Theory 

Density functional theory ( D F T ) serves as an alternative approach to quantum mechan­
ics. It employs the Born-Oppenheimer approximation along wi th a number of others, to 
approximate the extremely complex many-body problems and provides a way to solve 
them in a satisfactory manner wi thin finite and manageable time periods. D F T trans­
forms the problem of solving the Schrodinger equation into the search for the ground 
state of a given quantum system, described by the Kohn-Sham equations (KSEs) , which 
is achieved by minimizing the electron density functional [59, 60]. 

The self-consistent field (SCF) method, employs an iterative process to solve for 
a simpler approximation of the wave function. The algorithm of the S C F calculation 
is shown in Figure 3.1. The process starts wi th the ini t ial guess of the electron den­
sity Pi(r) from which effective potential weff,i(r) is calculated. The K S E s are solved for 
the effective potential resulting in new electron density p i + i ( r ) . Total energy is 
calculated using the new electron density and the values are evaluated against a con­
vergence threshold. Convergence is reached once the energy difference AE = Ei — Ei_\ 
is lesser than the threshold. Should the convergence not be reached in the given it­
eration, the electron density pi+i is plugged into the algorithm as the new input and 
the process is repeated. Once convergence is reached, the desired output is calculated. 
In this thesis, the D F T - S C F method is used for calculation of structure's energies and 
forces. 

In this time and age, D F T has come to a point where it can reliably reproduce 
high-quality results over various methods and implementations. D F T has found its 
use in science, e.g., solid-state physics or quantum chemistry, as well as in metallurgy 
and pharmaceutical design; the number of papers regarding the use of D F T , published 
every year, is reaching over 15 000 and growing [62, 63]. 

The advantage of D F T ' s precision is however in certain cases outweighed by the com­
putational cost of such calculations. The problem lays in D F T ' s poor scaling wi th sys­
tem size, thus restricting its use to small-scale system and short simulation times [64]. 
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Initial guess 
P(r) =Pinit(r) 

Calculate effective potential 

w(r) = Kn(r) + J ^ r ^ d r ' + KcWr); 

Solve Kohn-Sham equations 
h2 

2m, 

Evaluate the electon density & total energy 

p(r) = Zi\Mr)\2^EtoMr)] = ---

No 

Output quantities 

Pout(r),Ei[pout(r)]^- Forces, Eigenvalues 

F i g u r e 3 .1: Diagram showing the process of an iterative D F T S C F calculation. It 
takes an init ial guess of electron density p i n i t as input, this is then used to construct 
the effective potential ves. The ves then enters the Kohn-Sham equations, the result of 
which is a new electron density p(r). Next total energy is calculated from the updated 
p(r). Convergence is determined by comparing the energy difference between the total 
energies of the current and the previous step against a user-defined value. The process is 
repeated unti l convergence is reached. Energies and forces are calculated from the final 
electron density p o u t . Adapted and edited from [61]. 

3.2 Molecular Dynamics 
Molecular dynamics (MD) calculations is a method in computer simulations for analyz­
ing the physical movement of particles in a particular system. The algorithm simulates 
the particle interactions over a fixed time period, thus giving a dynamic evolution of 
the many-body system. This is achieved by the means of exactly solving the classical 
equations of motion for the particles in question [65]. Usually, the particles creating 
the studied system are atoms. 

Each z-th atom can be described by 

m i Jf2 ' dt2 

where vi = (xi(t), Hi(t), Zi(t)) is the position, nii is the mass, and F j is the force acting 
upon the i - th atom. To solve the equation 3.1, the required input parameters are 
the ini t ial positions and velocities of the atoms, along with the forces acting upon 
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them. 
Due to the complexity of the many-body problem the equation of motion needs to 

be discretized and solved numerically, e.g., using the Verlet algorithm [66]. The discrete 
time steps being no more than a few femtoseconds each. The time-dependent change in 
position is defined by while it's derivative Vj(t) determines the kinetic energy, and 
thus the instantaneous temperature, of the system. Each step of the algorithm consists 
of calculating the forces acting on i-th atom and moving the atoms, i.e., updating its 
position and velocity [67]. 

In using numerical integration to solve the Newton's equation of motion one wants 
to express the next position r,(t + A t ) at time t + At in terms of the previous position. 
The basic formula for the Verlet algorithm can be expressed from the Taylor expansion 
of Ti(t + At) [66] 

F(t) 
rJt + At) 2ri(t) - rJt - At) + - ^ A t 2 . (3.2) 

M D Molecular Dynamics (MD) simulations offer insights into diverse processes, 
ranging from protein behavior to semiconductor research, providing atomic-scale reso­
lution and precise temporal analysis from a classical perspective [68, 69]. This makes 
M D ideal for simulations on large ensembles and long time scale. None the less, sim­
ulations of this scale demand millions or even billions of computational steps, each 
involving potentially millions of interatomic interactions, resulting in substantial com­
putational overhead. Nevertheless, advancements in computer hardware, such as G P U s , 
coupled with enhancements in M D software and algorithms, have significantly enhanced 
the accessibility and accuracy of M D simulations [70-73]. 

3.3 L A M M P S 

Large-scale Atomic /Molecular Massively Parallel Simulator ( L A M M P S ) has become 
a popular and powerful computational engine for modeling interacting particles [74]. 
To achieve high computational efficiency L A M M P S implements neighbour lists to store 
information on particles wi thin the cut-off distance. This feature allows L A M M P S to 
split the computational domain into sub-domains, where each of the parallel processors 
performs its part and the results from each one are then married to create the finished 
outcome. L A M M P S thus takes advantage of M D ' s scalability when the calculation is 
split into multiple parallel processes, as most tasks are easily parallelized, wi th each 
particle requiring only positional information about its neighbours during the force 
calculation [75]. Being open-source and mainly written in C + + , L A M M P S allows for 
a relatively simple implementation of outside modules [76]. 

Numerical optimization is a cornerstone technique in condensed matter physics, 
frequently employed for various purposes. Typically, the target of optimization or min­
imization is the potential energy E(r) wi th respect to the coordinates r. The outcome 
of this optimization process provides equilibrium structures and energies at a temper­
ature of OK, such as those of defects. These configurations of minimum energy can 
subsequently serve as starting points for further computations, as wi l l be shown in 
the following chapter [77]. 

Fast inertial relaxation engine (F IRE) is one of the most commonly used mini­
mization algorithms. It relies solely on the gradient of energy, i.e., force, to arrive at 

13 



the minimum. Despite its simplicity in approach, it consistently delivers performance 
that rivals, and often surpasses, that of much more complex schemes [77]. To arrive at 
a minimum in the P E S , F I R E follows the equation of motion given as 

v(t) = - F ( t ) - 7 ( t ) | v ( t ) | v ( t ) - F ( t ) 
m 

(3.3) 

where m is mass of the particles in the system, their velocity is v = x , force F = 
—V.E'(r), and v and F denote unit vectors. The scalar function of time 7 ( £ ) is optimized 
throughout the run of the algorithm. The goal of the algorithm thus is to descend in 
the direction 'steeper' than was the direction before a given point. This is done by 
the correct choice of the j(t) function. The value power is calculated as P(t) = F(t)-v(t) 
and if the result is negative, the algorithm halts its propagation and corrects itself once 
again by an appropriate choice of 7 ( t ) . 

The numerical side of the algorithm can be handled by any commonly used inte­
grator, such as the Verlet algorithm (equation 3.2), which provides the propagation of 
the M D trajectories. Those are readjusted at each step by two velocity modifications: 
(1) the aforementioned uphil l motion check, and (2) the combination of global velocity 
and updated force vector, given as: v —> (1 — a)\ + <xF|v|; wi th the parameter a and 
time step A t , which are both of chosen adaptively at each step [77-79]. The diagram 
of the calculation is shown in Figure 3.2. 

: detail; J v ' 

Calculate 
x,F = -VE(x) and v 

using integrator 

v —»• (1 — a)v + aF\v 

tAt-> (Ai/ i n c ,At n 

| a ->• afa 

Calculate 
F = F v 

f 
No lAt -+ A i / d e c 

v - > 0 O = "start 

F i g u r e 3.2: Schematic showing the process of F I R E arriving at a local minimum in 
the P E S . The algorithm starts wi th given values for time step and the mixing factor 
a, wi th the velocity at zero. Next, F I R E uses a standard integrator, such as Verlet, 
to calculate the current position, velocity and forces. This is followed by convergence 
check. In case of not reaching convergence, the velocity is updated wi th a mix of 
global velocity and updated force, the mixing determined by the a factor. The power 
is calculated and evaluated. If it is negative the algorithm halts and resets the velocity 
and the mixing factor, and lowers the time step. If the value of power is positive and 
the number of steps since the last negative value is greater than a given threshold 
the time step is increased and a is decreased [78]. 
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3.4 A R T h 
Activat ion relaxation technique noveau (ARTn) is a highly efficient method intended 
to identify local transitions in a P E S using only local information - energy and forces. 
The basis of the A R T n algorithm is formed by three steps (blue squares in Figure 3.3) 
which are repeated at each iteration unti l convergence is reached: 

• finding the lowest curvature which corresponds to the lowest eigenvalue of the Hes­
sian A m and its corresponding eigenvector e m . 

• uphil l push, against the forces, 

• relaxation into the hyperplane perpendicular to the push. 

a f Input x \̂  
I " G r ancl ] 
V.a = Cste y 

b 

_L Relax 
until F ± < Fi 

e 
Saddle = x 
x = x ± e m 

relax to minima j 

F i g u r e 3.3: Schematic showing the A R T n algorithm. The three main steps are de­
noted by a blue border. The algorithm starts wi th a given position and a random 
push. In practice several consecutive random pushed are performed in order to escape 
the minima basin. In the first step, A R T n uses the Lanczos algorithm to find the curva­
ture and its corresponding eigenvector. These two values enter the second step, where 
they determine the size and direction of the ensuing push. The third step follows wi th 
relaxation in the direction perpendicular to the push. Eventually, the perpendicular 
relaxation arrives at the saddle point, thus having converged and the algorithm stop. 
The finding of a saddle point may be followed by a relaxation to a backward and for­
ward minima. Adapted from [80]. 

The beginning of the first A R T n loop is preceded by an initial uphill push. This is 
done as it is otherwise impossible to obtain information about the sought after saddle 
point from the local minimum which is the starting structure for the algorithm. Ran­
dom push e r a n c i is generated from the local minimum to start the search for the saddle 
point, Figure 3.3a. 

The Lanczos algorithm evaluates the Hessian and outputs the lowest eigenvalue A m 

and its corresponding eigenvector e m [81]. The goal is to determine whether the current 
position is above ( A m < 0), or still bellow ( A m > 0) the inflection hyperplane. Whi le 
bellow the hyperplane, the system is repeatedly pushed in the random init ial uphil l 
direction, unti l escaping the concave region (minimum basin). For the sake of saving on 
computational costs the random push is performed several time before the first Lanczos 
evaluation. Once above the hyperplane, the push direction eigenvector is assigned value 
e m , Figure 3.3b. 
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The uphil l push once above the inflection hyperplane is updated after each A R T n 
loop as the eigenvector e m corresponding to the current lowest eigenvalue A m of the Hes­
sian while | A m | > A thr, where A thr is a user set threshold for curvature convergence. 
The orientation of the push is set antiparallel to the force and the displacement norm 
for the push is set as 

where Fy is the force component parallel to e m i n and s i z e m a x is user defined threshold. 
This approach reduces the displacement as A R T n nears the saddle point and thus 
accelerates convergence, Figure 3.3c. 

The saddle point on a given surface is the point where all the derivatives in the or­
thogonal directions are zero, but the point is not a local extreme, but rather saddle 
point is a maximum in one direction and a minimum in all the others [82]. The slope of 
the P E S is by definition the force, and therefore the saddle point in the P E S is denoted 
by Fj_ = 0. To lower computational costs the orthogonal relaxation is stopped once 
F ± < Fy, Figure 3.3d. 

When the saddle point - point wi th Fj_ bellow a near-zero threshold and A m < 0 -
is reached, the system is given a push in the direction of the current e m and a standard 
minimization algorithm, e.g., F I R E , relaxes the system into a connected minimum. 
The connection is ensured by the choice of the push [80], Figure 3.3e. 

The implementation of A R T n used further in this work is the plug-in A R T n (pARTn) 
developed by Poberznik et al [83]. p A R T n works on the basis of hijacking the F I R E 
minimization algorithm. The hijacking is achieved by accessing the four quantities 
F I R E calculates at each step - F , v , a, At - and modifying them by imposing an exter­
nal condition on the system. The hijacking scheme allows for an easy interfacing wi th 
L A M M P S and makes it possible to run A R T n within a L A M M P S calculation. 

3.5 Machine-Learned Interatomic Potentials 

The accuracy of a Potential Energy Surface (PES) is pivotal for ensuring the reliability 
of results in both M D and Monte Carlo ( M C ) simulations. Nonetheless, the compu­
tational expenses associated wi th D F T render it impractical for this purpose. Thus 
empirical potentials have become standard practice, despite the challenging process of 
constructing a reliable empirical potential. This difficulty stems from the necessity of 
fitting parameters for a guessed (albeit physically grounded) functional form of the in­
teratomic potential, which can potentially yield qualitatively incorrect results. [84, 85]. 

The development of machine-learned interatomic potentials (MLIPs) was pioneered 
by Behler and Parrinello [85, 86]. This method utilizes ab-initio data as the input of 
the neural networks (NNs) at the center of the algorithm. N N based M L I P s combine 
the results of several element-specific NNs , each trained on one single-atom local envi­
ronment of the studied structure, called symmetry functions. The output of the NNs 
are energy predictions which are summed up to from the total energy of the system, 
as is shown in Figure 3.4. 

The problem wi th the first generation of M L I P s lay in the lack of predictive ac­
curacy, as the networks were often unable to predict structures beyond the confines 
of the training data set [87]. Message-passing N N s ( M P N N s ) emerged as a remedy 

(3.4) 
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F i g u r e 3.4: Schematic of the NN-based M L I P s . The studied system is split into 
element-specific single-atomic local environments. For each of those a dedicated N N 
produces an energy prediction. The energy predictions of each subpart are the summed 
up to the system's total energy. Adapted from [84]. 

to this issue, showcasing markedly improved accuracy, albeit at the expense of signifi­
cant computational resources [88]. The transition from invariant M L I P s , which solely 
manipulate geometric invariants of a system, to equivariant M L I P s marked a signifi­
cant leap forward in accuracy. Allegro is the first equivariant M L I P which was able 
to achieve the high accuracy of M P N N s while simultaneously offering scaling to large 
simulations, due to strict locality of its geometric representations [64, 88]. 

The task at hand thus becomes the correct choice of the D F T training set to 
achieve ab initio accuracy M L I P . The following chapter deals wi th the automatization 
of the process v ia a custom Python code. 
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4. Creation of the Machine-Learned 
Interatomic Potential 

During my E R A S M U S internship at the Institute Ruder Boskovic I have taken part in 
the development of a code for the iterative improvement of machine-learned interatomic 
potentials (MLIPs) v ia consecutive activation relaxation technique noveau (ARTn) runs. 
The latest version of the code entitled C A M U S can be found at [89]. 

The init ial data set was generated from a set of L M H P structures of several lattice 
configurations by performing a molecular dynamics (MD) calculation using the V A S P [90-
92] code wi th the following parameters, 

IBRION 
NSW 
POTIM 
SMASS 
TEBEG 
MDALGO 

0 # MD 
200 # Number of s teps 
2 # D u r a t i o n of one s tep ( i n f s ) 
-1 # C a n o n i c a l ensemble 
400 # K 
0 # V e r l e t 

which indicate an M D calculation performed for 200 steps, the duration of each being 
2 fs, wi th continuous increase in the kinetic energy, beginning at the temperature of 
400 K , using the Verlet algorithm, equation 3.2. This resulted in the starting data set 
of pa 1200 structures Mo-

Further a subset of 200 structures was pseudo-randomly chosen out of A40, each of 
the structures had a caesium and a halide (either bromide or iodine) atom removed, to 
include the effect of vacancies in the M L I P . The resulting set is then split in a 80/20 
ratio to create an initial and a test set, Afmit and Attest, respectively. The following 
paragraphs describe the process of creation of a high-fidelity M L I P for C s P b B r s ^ I ^ 
perovskite using the C A M U S code. 

The init ial training set Afmit is clustered at the beginning of the process. The clus­
tering happens at two levels. A t the first level the structures are grouped based on 
chemical composition, thus preventing the unnecessary and computationally expensive 
descriptor-comparison of any two structures. 

The second level clustering is executed withing the composition groups. Every 
structure is assigned an Atomic-Centered Symmetry Functions (ACSFs) descriptor. 
C A M U S implements the A C S F descriptors via the DScribe code [93, 94]. The A C S F s 
describe local environment around a central atom wi th the number of the considered 
neighbouring atoms determined by a cut-off radius r c u t [95]. The A C S F descriptor 

D A C S F = ( d i , . . . , d n ) oc [(ri Z)], (4.1) 

where dj is a local atomic environment is created as an output of several two- and three-
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body functions. They depend on the relation of the m neighbouring atoms belonging 
to each of the n atoms in the structure to that atom, and by their chemical species Z . 

W i t h each structure of the set being issued a corresponding descriptors, the cluster­
ing algorithm proceeds to calculate the similarity metric between every pair of struc­
tures withing a composition group. The desired similarity value is calculated by build­
ing an average kernel, which for two structures is defined as 

K(A,B) 
NM E '̂(A>B) (4.2) 

where N,M are numbers of atoms of structures A and B , respectively. C j j is the sim­
ilarity between two local atomic environments and can be calculated by any pairwise 
metric, the Laplacian metric was chosen for the L M H P structures as it yielded the most 
intuitive similarity values. 

Should the calculated pairwise similarity of any two structures exceed a user-set 
similarity threshold t s i m , these structures are considered 'similar ' and thus flagged as 
neigbours. The algorithm finds a structure with the highest number of neighbours. 
This structure is the first cluster center and along wi th its list of neighbors is recorded 
as such and omitted from the next iteration. In each iteration a new cluster center and 
a corresponding neighbour or a list of neighbours are found, unti l all the structures left 
are not 'similar' to any other structure in the set. These 'dissimilar' structures are listed 
as orphans. The list of centers and orphans serve as the representatives of the whole 
A^mit- Figure 4.1 schematically shows the concept of clustering as is implemented in 
C A M U S . 

c) 

0 Cluster Center ONeigbour Cluster Border % Represented Cluster % Orphan 

F i g u r e 4 .1 : The descriptor-based similarity clustering finds a structure wi th the high­
est number of similar structures and chooses it as the first cluster center. The process 
is repeated unti l all clusters are identified. Should a structure be found not similar to 
any other it wi l l be designated an orphan. 

The clustering is performed for the optimization of the r c u t and t s i m parameters, and 
to prevent over-fitting of the network. For the r c u t , we determined the best value to be 
7A as a neighbourhood of this radius includes second neighbours. We clustered the set 
for tSim = (0.60, 0.70, 0.80, 0.90). For each of the created subsets of Afmit we train three 
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networks and pick the best performing one. Each trained network is evaluated using 
Allegro's buil t- in n e q u i p - e v a l u a t e method. This method uses the trained network 
to predict the energies of the structures form Attest and calculates the error between 
the predicted value and the 'correct' value included in Attest- The errors calculated are 
mean absolute error ( M A E ) , and root-mean square error ( R M S E ) : 

M A E 
1 N 

R M S E = VMAE \ 
1 N 

(4.3) 

In figure 4.2 we see the comparison of the networks within each triplet, as well as 
the comparison of networks for different cluster sizes. The network chosen is the one 
wi th the lowest error, ne twork-7-60 (corresponding to r c u t = 7 and ts[m = 0.60). 
The chosen network is deployed using nequ ip -dep loy , which creates a potential file 
containing the P E S fit compatible wi th L A M M P S . 

0.6 

0.4 

0.2 

0.0 

#1 "2 3 

nw-7-60 

#1 •2 3 #1 "2 3 

nw-7-70 nw-7-80 

#1 "2 

- E R M S E 

• E M A E 

nw-7-90 

F i g u r e 4.2: For each of the subset created by clustering for parameters r c u t = 7A 
and t s i m = (0.60,0.70,0.80,0.90), we trained three networks. From each trio the net­
work wi th the lowest error is chosen (marked by red rectangle). The chosen ones are 
compared amongst each other and once again the one wi th the lowest errors is chosen. 
The chosen network is ne twork-7-60 as it has the lowest combination of errors. 

The corresponding data set, sub set of Afmit, denoted as Aftrain,o> is minimized 
via L A M M P S using the current potential. The minimized structures wi l l serve as 
the starting points of the Sisyphus calculations. 

The Sisyphus algorithm serves as the essential building block of the C A M U S code. 
It performs a series of A R T n calculations wi th the purpose of defining transitions in 
the P E S . The schematic of the Sisyphus algorithm is in Figure 4.3. 

A Sisyphus calculation starts from a structure corresponding to a local minimum on 
the P E S . The algorithm performs A R T n searches unti l it reaches a saddle point; the two 
companion minima of the saddle point are auditioned. A t least one of the newly found 
minima must be 'close' to the starting one for the path to be considered connected. 
This is determined by the user-given delr th r parameter, which expresses the total dis­
placement of the configuration from the init ial configuration and is calculated by A R T n 
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F i g u r e 4 .3 : Flowchart describing the algorithm which results in Figure 4.6. 

as a part of its output. Subsequently, the algorithm compares the delrs for both of 
the minima and determines which of the minima is further from the starting one. This 
minimum is auditioned as the next possible point along the path. It is accepted if it 
is energetically higher than the previous minimum, the acceptance sign is ' > ' during 
the uphill climb. 

This process of performing A R T n searches and auditioning found saddle and min­
ima points is repeated unti l the algorithm reaches a saddle point wi th energy greater 
than - S T O P , or runs out of the set number of A R T n searches. Once over E ' T O P the algo­
r i thm stops, the energy of the final saddle point defines the energy height of the found 
transition. 

A t this point the acceptance sign changes to ' < ' and the downhill climb comences. 
The process is identical to the one described in the previous two paragraphs, except 
for the accepted minima now being energetically lower than the ones preceding them. 
The algorithm ends once a minimum with energy lower than £ M I N is found, or it runs 
out of the set number of A R T n searches. The result of a Sisyphus run is shown in 
Figure 4.6a. 

The result, A^^ l inO ' * s a l & r g e collection of new data points, many of which are 
possibly very similar to the starting set .Mtram,o- Therefore we perform a second round 
of clustering, using the same parameters which were used in the original clustering 
(rcut = 7 and t s i m = 0.60). The result of the clustering is M.traln 0 )

 a s e t of representatives 

Self-contained field (SCF) D F T calculations are performed on the structures con-
(2) 

tained in M.tr - n 0 , to obtain the 'correct' energies and forces for the configurations 
generated by Sisyphus using the current M L I P . The energy evaluation is performed 
according to the algorithm shown in Figure 4.4. 

The difference AE between the M L and D F T energies is evaluated against two 
user-set parameters Ethr and Emax. The former differentiates between well and poorly 
predicted structures, while the latter serves to filter out structures wi th extremely high 
energies, which are far beyond the well defined area of the M L I P , as these would then 
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F i g u r e 4.4: Schematic of the evaluation process. We evaluate the difference between 
the 'correct' energy from D F T calculation and the energy predicted by the M L I P . 

skew the fitting of the network. The structures for which AE e (£thr, ^max) become 

M (3) 
train,0' 

given as 

The training set for the next iteration of the network fitting via Allegro is 

M train,1 = M train,0 M (3) 
train,0' 

The iterations that followed were executed in the same fashion. In total, three 
rounds of network training were performed. Figure 4.5 shows the improvement in 
accuracy over the four M L I P s . Each of the M L I P s were tested on an extended test 
set A^exttest- The graph shows significant lowering of the M A E and R M S E (eqs 4.3) 
for the energies of .Mexttest calculated wi th the M L I P of each iteration. The intended 
purpose of C A M U S is to create M L I P s for use in Monte Carlo simulations, which 
require well defined energy levels in the P E S . 
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F i g u r e 4 .5 : The init ial network was improved over two iteration using the C A M U S 
process of adding relevant data points into the data set. 

In this chapter we have shown that the method implemented in C A M U S is capable 
of significant improvement to the P E S at a significantly reduced computational cost 
as we had to run D F T calculations only for a fraction of data points. Performing 
the M C simulations of the L M H P s halide segregation is beyond the scope of this thesis. 
Therefore we turn to published research to find a stable L M H P suitable for application 
in high-energy radiation detection. Zhang et al. introduce C s P b B r 2 9 I 0 . i as the ideal 
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candidate due to its record sensitivity, high resistivity, and long term stability. 
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F i g u r e 4.6: a) Plot of a successful Sisyphus run. The run starts from a minimized 
structure, by performing A R T n searches the algorithm finds new saddle points and 
its two companion minima, these minima are auditioned. New minimum is accepted 
if it is the further one from and it is energetically higher than the ini t ial minimum. 
This process is repeated unti l a saddle point with energy greater than ETOP - this is 
the transition point. The algorithm further descends into a minimum below EMm. F ig ­
ures b)-d) show selected atoms from: b) the ini t ial minimum structure, c) the structure 
corresponding to the transition point (on top overlaid b)), d) the final minimum (on 
top overlaid c)). 
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5. Calculation of Detection Capabili­
ties 

The ability of a material to reduce the impinging beam of radiation is expressed by 
the linear attenuation coefficient. Small attenuation coefficient would imply a relatively 
transparent material while large value would mean more opaque material, potentially 
ideal for application in detectors of such radiation. Attenuation coefficient of a volume 
is given as 

where $ e is the radiant flux and z is the path length of the beam. 
The energy carried by an X-ray is transferred into the target material by two dif­

ferent mechanisms - absorption and scattering. The processes occurring at the energy 
transfer are either ionization, in this case an electron is removed from the incident 
atom creating a positively charged ion, or excitation. During excitation the energy of 
the X-ray gets transferred to an electron in the incident atom's electron shells, tem­
porarily increasing the electron's energy, thus moving it up into a higher energy level 
and the whole atom into a more energetic state. 

There are three main processes that are important to take into consideration when 
an X-ray interacts wi th matter - the photoelectric effect, the Compton effect, and pair 
production (here we are specifically referring to the creation of electron-positron pairs). 
These three interactions are pictured in a schematic in Figure 5.1. 

The photoelectric (PE) effect is the cause of the characteristic X-ray emission, but 
also it is a crucial secondary process in the interaction of X-rays wi th matter. For 
energies up to ~ 500 keV P E absorption is the dominant form of X-ray absorption, 
especially for atoms with higher atomic numbers. The impinging X-ray transfers its en­
ergy to an orbital electron. This photo-electron then leaves the atom at high speed [96]. 
The probability of P E occurring, and therefore contributing to the total interaction of 
the X-ray with the given matter, is given by its cross-section [97] as 

where r e is the classical electron radius, a is the fine structure constant, and k — is 
the ratio of the X-ray energy to the electrons rest mass energy Ee = mec2 ~ 0.511 M e V . 

Compton scattering (CS), or incoherent scattering, is a process in which an X -
ray imparts its energy to an atom's electron, ejecting h im from its orbital, accom­
panied by a lower energy X-ray. The absorption due to CS is prevalent for energies 
between 100 keV-10 M e V , particularly for low atomic number elements. Generally, CS 

1 d $ e 

<TpE = 
16\/2~7T 

3 
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Ei ~ 1/Ai < E2 ~ 1/A 2 < E3 ~ I/A3 

F i g u r e 5.1: Three main processes governing the interaction of X-rays wi th matter: 
the photoelectric effect (Ai) , the Compton scattering (A2), and the pair production 
(A3). 

is the overall background in X-ray diffraction measurements [98]. We use the Kle in -
Nishina [99, 100] formula to calculate the contribution of CS to the total absorption 
cross-section 

doc 

Ex 

Ex E 
E + 

x 
EL sm 

x 
(5.3) 

where Ex and Ex are the ini t ial and final photon energy, respectively, and 9 is the scat­
tering angle. The ratio of ini t ial and final photon energy can be expressed as 

E± 
Ex 

A 
Ä7 1 + fc(l - c o s ( ö ) ) ' 

(5.4) 

Integrating over all solid angles yields the total Compton contribution 

2"7T 7T 
doc sin 0 dß d<ft. (5.5) 

0 0 

The pair production (PP) occurs for X-rays with energies > 1.02 M e V (2 • 0.51 = 
1.02, twice the rest mast energy of electron, or electron and positron), then it becomes 
the dominant mode of interaction between X-rays and matter. For the sake of con­
servation of momentum the P P occurs only near the nucleus, as a result portion of 
the momentum is transferred to the nucleus as recoil when the pair is created [101]. 
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To calculate the cross-section of the incident we use the Max imon equation [102] 

2TT o r 7 2 f k - 2 \ 3 f 1 23 2 11 a 29 A . . 

where 
_ 2k - 4  

P ~ 2 + k + 2 ^ ' 
The total photon absorption cross-section is given as the sum of the three contribu­

tions expressed by equations 5.2, 5.5, and 5.6 

a = O P E + cr c + app. (5.7) 

The contributions along with the total absorption cross-section are plotted in F ig ­
ure 5.2. 

IO 3 0 t . . 1 

io-" 

101' 

10° 

Photoelectric absorption 

Compton scattering 

Pair production 

Total absorption corss-section 

102 10 3 104 

Photon energy [keV] 
Iff' 10° 

F i g u r e 5.2: We see on this C s P b B r 3 L H P that the photoelectric absorption domi­
nates for lower energies but decreases as energy increases, the pair production becomes 
a relevant contribution once the necessary energy limit of 2 • 0.511 M e V is reached, and 
the Compton scattering is present as background. The area between the two dashed 
lines is the energy interval used in the calculation of the linear attenuation coefficient 
and we see that the dominant contribution is the photoelectric absorption. (1 barn = 
l O " 2 8 m " 2 ) . 

The linear attenuation coefficient is calculated for the photon absorption cross-
section as 

fi = n-<r= (5-8) 

where TVA is the Avogadro's constant, pu is the mass density, and M is the molar 
mass. The linear attenuation coefficient is calculated for a set of L M H P s C s P b B r s ^ I ^ 
{x = 0,0.1,0.5,1) in the energy interval of ( l O ^ l O 3 ) keV, it is shown in Figure 5.3. 
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Photon energy [keV] Photon energy [keV] 

F i g u r e 5.3: a) Linear absorption coefficient against energy for two common semicon­
ductor materials used in ionizing radiation detectors compared to L M H P s C s P b B r s ^ L . 
(x = 0, 0.1, 0.5,1), showing the L M H P s to be on par wi th C Z T and outperform Si . Im­
age adapted from [42]. b) Theoretical calculation of the linear attenuation coefficient 
(equation 5.8) for L M H P s C s P b B r 3 _ J x (x = 0,0.1,0.5,1). 

It is important to note that we are attempting to calculate this quantity using highly 
approximated theory, thus we see the result values of the linear attenuation coefficient 
lie four orders of magnitude higher compared to the experimental data from [42]. A c ­
quiring results closer to physical reality would require further research and employment 
of more complex ab initio theory. 
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Conclusion 

Throughout this thesis, I have presented a method for construction of potential en­
ergy surfaces (PES) via the consecutive runs of activation relaxation technique noveau 
(ARTn) . Further, I have employed classical theory to calculate the linear attenuation 
coefficient for selected lead mixed-halide perovskites ( L M H P s ) . 

I used the code, called C A M U S , which I helped to develop during my E R A S M U S 
stay at the I R B Zagreb, to construct an improved P E S . To start, the ini t ial data 
set was generated by running an molecular dynamics calculation of two hundred 2 fs 
steps, starting at 400 K wi th continuous increase in the kinetic energy, using the Verlet 
algorithm. Next I extended the init ial set by 200 vacancy structures, by randomly 
selecting structures and removing a Cs and either B r , or I atoms. This was done to 
include the effects of vacancies into the training model. Then I employed the A C S F 
descriptors to cluster the the data set including the vacancies. The created sub set of 
cluster centers was used further. 

The main part of the C A M U S code is the so-called Sisyphus algorithm. This al­
gorithm creates chains of A R T n runs, which look for the saddle points in the P E S . 
The algorithm searches for connected A R T n s unti l it reaches a given energy thresh­
old. The connected Sisyphus path is then considered a potential transition point and 
the structures belonging to its points are further investigated. For purposes of efficiency 
the large data set of new structures was again clustered. The chosen structures were re­
calculated wi th D F T and I performed energy evaluation based on the energy difference 
between the D F T and C A M U S result. During the first iteration all structures recalcu­
lated wi th D F T were included in the retraining set, to fix some of the ini t ial disconnect 
in the P E S , which resulted in nonphysical structures from C A M U S . In the second 
iteration, structures wi th energy difference over 2 eV were included. 

I performed two whole iterations of the C A M U S process, which resulted in 25% 
and 26% improvement in R M S E and M A E for energy, respectively. The improvement 
of these errors for forces are much greater at 42% and 32% for R M S E and M A E , re­
spectively. This result shows that the presented method, entitled C A M U S , which I 
used and helped develop, is capable of expanding a suitably chosen set of data points 
around the P E S into a much more well defined P E S . If the scope of this thesis would 
allow, several more iterations would be performed and we would arrive at a machine-
learned interatomic potential ( M L I P ) , which would describe the complex system of 
CsPbBr 3 _ : r I : r well (determined by the use of extensive test data set). This resulting 
M L I P would then permit us to conduct Monte Carlo simulations to model the process 
of halide segregation in the L M H P s and consequently we could search for stable compo­
sitions, which we could further research as potential applicants for use in high-energy 
radiation detection devices. 

Considering the scope of the thesis, I opted for classical theory to calculate the l in­
ear attenuation coefficient for the selected L H M P s . Those were selected according to 
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the paper by Zhang et al. for easier comparison wi th the experimental data presented 
by the authors. I calculated the photoelectric effect (PE) , Compton scattering (CS), 
and pair production (PP) contributions to the absorption cross-section using the sim­
plified Bethe-Heitler, Klein-Nishina, and Maximon equation, respectively. I plotted 
the calculated contributions and their sum for C s P b B r 3 in the interval of energies 
(1-10 6) keV. The resulting curves adhere to the assumptions of the classical theory. 
The P E contribution is the dominant one at lower energies (below ~ 10 3 keV) , while 
P P begins at the energy threshold of (2-511 keV) and quickly becomes the dominant 
contribution as P E becomes negligible. The CS , meanwhile, is present throughout in 
the form of background. 

Furthermore, I calculated and plotted the linear attenuation coefficient for the 
CsPbBr 3 _ , J , r (x = 0,0.1,0.5,1) L M H P s . Compared to the paper the calculated co­
efficients are four orders of magnitude larger, this is most likely due to the level of 
approximation of classical theory. Whi le I was unable to match the quantitative re­
sults of experiments, what the classical theory allowed me to do, was qualitatively 
analyse the processes occurring when hard X-rays interact wi th L M H P s . To achieve 
high-fidelity results, comparable wi th experiment, would require thorough research and 
use of advanced ab initio methods, which proves to be non-trivial for material such as 
L M H P as at the core of the problem lies the calculation of dielectric function, for which 
even D F T is insufficient. 

"/ leave Sisyphus at the foot of the mountain. One always finds one's burden again. 
But Sisyphus teaches the higher fidelity that negates the gods and raises rocks, he too 
concludes that all is well. This universe henceforth without a master seems to him 
neither sterile nor futile. Each atom of that stone, each mineral flake of that night-filled 
mountain, in itself, forms a world. The struggle itself toward the heights is enough to 
fill a man's heart. One must imagine Sisyphus happy. " [1] 
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List of abbreviations 

L H P lead halide perovskite 
L M H P lead mixed-halide perovskite 
O A oleic acid 
O L A oleylamine 
N C nanocrystal 
P E S potential energy surface 
D F T density functional theory 
K S E Kohn-Sham equation 
S C F self-consistent field 
M D molecular dynamics 
L A M M P S large-scale atomic/molecular massively parallel simulator 
F I R E fast inertial relaxation engine 
A R T n activation relaxation technique noveau 
M C Monte Carlo 
M L I P machine-learned interatomic potential 
N N neural network 
M P N N message-passing neural network 
A C S F atomic-centered symmetry functions 
M A E mean absolute error 
R M S E root-mean square error 
P E photoelectric effect 
C S Compton scattering 
P P pair production 

40 


