
BRNO UNIVERSITY OF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF INFORMATION TECHNOLOGY 
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ 

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA 
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ 

VIDEO CONTENT SUMMARIZATION 
SUMARIZACE OBSAHU VIDEÍ 

MASTER'S THESIS 
DIPLOMOVÁ PRÁCE 

AUTHOR 
AUTOR PRÁCE 

Bc. ROMAN JAŠKA 

SUPERVISOR 
VEDOUCÍ PRÁCE 

Ing. VÍTĚZSLAV BERAN, Ph.D. 

BRNO 2018 



Zadáni diplomové práce/19414/2017/xjaska00 

Vysoké učení technické v Brně - Fakulta informačních technologií 

Ústav počítačové grafiky a multimédií Akademický rok 2017/2018 

Zadání diplomové práce 
Řešitel: Jaška Roman, Bc. 
Obor: Počítačová grafika a multimédia 
Téma : Sumarizace obsahu videí 

Video Content Summarization 
Kategorie: Zpracování obrazu 

Pokyny: 
1. Seznamte se s aktuálními technikami pro video sumarizaci a synopsi. Prostudujte metody 

zpracování obrazu a videa s ohledem na detekci lokálních změn obsahu videa v čase 
(lokální příznaky, sledování příznaků v čase apod.) . 

2. Navrhněte potřebné metody a systém, který provede analýzu snímků videa v čase a získá 
informace o aktivitách ve videu. Na základě těchto informací provede výběr částí videa 
podle požadovaných parametrů (délka výsledného videa apod.) . 

3. Implementujte klíčové funkce a funkční základ systému s využitím existujících nástrojů a 
knihoven. 

4. Naplňte systém vhodnými daty a demonstrujte funkčnost řešení. Provedte experimenty na 
přesnost a efektivitu řešení. Komentujte výsledky experimentů a diskutujte možnosti 
dalšího vývoje. 

5. Vytvořte plakát a krátké video prezentující klíčové výsledky vašeho řešení. 

Literatura: 
• M. Sonka, V. Hlaváč, R. Boyle. Image Processing, Analysis, and Machine Vision, CL-

Engineeríng, ISBN-13: 978-0495082521, 2007. 
• G. R. Bradski, A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV Library, 

O'Reilly Media, Inc. 2008. 
• Dále dle pokynu vedoucího. 

Při obhajobě semestrální části projektu je požadováno: 
• Body 1, 2, 3 a částečně bod 4. 

Podrobné závazné pokyny pro vypracování diplomové práce naleznete na adrese 
http://www.fit.vutbr.cz/info/szz/ 

Technická zpráva diplomové práce musí obsahovat formulaci cíle, charakteristiku současného stavu, teoretická a 
odborná východiska řešených problémů a specifikaci etap, které byly vyřešeny v rámci dřívějších projektů (30 až 4 0 % 
celkového rozsahu technické zprávy). 

Student odevzdá v jednom výtisku technickou zprávu a v elektronické podobě zdrojový text technické zprávy, úplnou 
programovou dokumentaci a zdrojové texty programů. Informace v elektronické podobě budou uloženy na standardním 
nepřepisovatelném paměťovém médiu (CD-R, DVD-R, apod.) , které bude vloženo do písemné zprávy tak, aby nemohlo 
dojít k jeho ztrátě při běžné manipulaci. 

Vedoucí: Beran Vítězslav, Ing., Ph.D., UPGM FIT VUT 
Datum zadání: 1. listopadu 2017 
Datum odevzdání: 23. května 2018 m m , 7 

Fakulta Informačních technologií 
Ústav počítačové grafiky a multimédií 

6ia_8!.Bmo, Božetěchova 2 

doc. Dr. Ing. Jan Černocký 
vedoucí ústavu 

http://www.fit.vutbr.cz/info/szz/


Abstract 
The amount surveillance footage recorded each day is too large for human operators to 
analyze. A video summary system to process and refine this video data would prove bene­
ficial in many instances. This work defines the problem in terms of its inputs, outputs and 
sub-problems, identifies suitable techniques and existing works as well as describes a design 
of such system. The system is implemented, and the results are examined. 

Abstrakt 
Bezpečnostné kamery denne vyprodukujú enormné množstvo video záznamov. Ľudská 
analýza daného objemu záznamov je prakticky nemožná. Sumarizačný systém by bol v 
mnohých prípadoch veľkým prínosom. Táto práca definuje problém video sumarizácie na 
základe jeho vstupov, výstupov a podproblémov. Práca zároveň identifikuje vhodné tech­
niky a existujúce práce na túto tému, pričom taktiež predstavuje návrh vhodného riešenia. 
Navrhnutý systém bol implementovaný a výsledky vyhodnotené. 

Keywords 
Video surveillance, video summarization, video processing, computer vision, activity track­
ing, SIFT 

Klíčová slova 
Bezpečnostné kamery, sumarizácia videa, spracovanie videa, počítačové videnie, sledovanie 
aktivity, SIFT 

Reference 
JAŠKA, Roman. Video Content Summarization. Brno, 2018. Master's thesis. Brno Uni­
versity of Technology, Faculty of Information Technology. Supervisor Ing. Vítězslav Be­
ran, Ph.D. 



Video Content Summarization 

Declaration 
Hereby I declare that this term project was prepared as an original author's work under 
the supervision of Mr . Beran. A l l the relevant information sources, which were used during 
preparation of this thesis, are properly cited and included in the list of references. 

Roman Jaška 
May 23, 2018 



Contents 

1 I n t r o d u c t i o n 3 
1.1 The concept of video summarization 3 

2 M o t i v a t i o n 4 
2.1 Video surveillance 4 

2.1.1 Stolen vehicle scenario 4 
2.2 Other applications 5 

3 P r e v i o u s works 6 

4 T h e o r e t i c a l background 8 
4.1 Background subtraction 8 
4.2 Object tracking 9 

4.2.1 Median flow tracker 9 
4.3 Visual features 9 

4.3.1 SIFT 10 
4.4 K-means clustering 11 
4.5 Bag of Words model 12 
4.6 Cosine similarity 13 

5 P r o b l e m def in i t ion 14 
5.1 Problem structure 14 
5.2 Analysis phase 14 

5.2.1 Inputs 14 
5.2.2 Inner processes 15 
5.2.3 Outputs 15 

5.3 Response phase 16 
5.3.1 Inputs 16 
5.3.2 Inner processes 16 
5.3.3 Outputs 16 

6 P r o p o s e d so lut ion 17 
6.1 System structure 17 
6.2 Video storage 18 
6.3 Input analyzer 19 

6.3.1 Tubes and Slices 19 
6.3.2 Analysis pipeline 19 
6.3.3 Tube description 22 

1 



6.4 Database 24 
6.4.1 Entities 24 

6.5 Query processor 26 
6.5.1 Queries and Constraints 27 
6.5.2 Temporal constraints 27 
6.5.3 Spatial constraints 28 
6.5.4 Visual constraints 29 

6.6 Output assembler 30 
6.6.1 Summary generation 31 
6.6.2 Output video rendering 32 

6.7 GUI application 32 
6.7.1 Mockups and GUI description 33 

7 I m p l e m e n t a t i o n 37 
7.1 Choice of tools and technologies 37 
7.2 Solution structure 38 
7.3 Implementation of individual components 38 

7.3.1 Backend 38 
7.3.2 Data access layer 39 
7.3.3 Analyzer console application 40 
7.3.4 Windows Application 40 

8 Resul ts 43 
8.1 Capabilities of the implemented system 43 
8.2 Usage examples 43 

8.2.1 Example 1 43 
8.2.2 Example 2 45 
8.2.3 Example 3 46 
8.2.4 Example 4 47 

8.3 Tests and measurements 49 
8.3.1 Testing methodology 49 
8.3.2 Tesing results and consequences 49 
8.3.3 Discovered implementation problems 50 

8.4 Limitations and known problems 51 

9 C o n c l u s i o n 53 

B i b l i o g r a p h y 54 

A Contents of D V D 56 

2 



Chapter 1 

Introduction 

The world is filled with surveillance cameras and their numbers keep on steadily growing 
with each passing day. Constant video surveillance of public places, such as city streets, 
busy intersections or workspaces has become commonplace. This ever-increasing number 
of video cameras produces enormous amounts of footage each day, most of which to never 
be seen by a human being. Looking for a particular event in this amount of footage is an 
inherently time-consuming task, which requires a lot of manual work and attention. Wi th 
the ongoing improvements in video quality, the affordability of powerful computer hardware 
and advancements in computer vision it is possible to automate some of the tedious tasks 
which come with the job of reviewing hours' worth of camera footage. This work aims to 
design and implement a system which would aid a human operator during such endeavuor. 

1.1 The concept of video summarization 

Summarization in general is the act of expressing information in a concise form. This is 
usually achieved by omitting content which is duplicate, redundant or carries very little 
information. In this way, summarization is akin to compression. The purpose of compres­
sion however, is to minimize the space necessary to store the same information without any 
apparent change to its content. This does not hold true for summarization, which usually 
allows for some rearrangement of the content and filtering of information deemed useful. 

Applying these concepts to video data, we arrive to the following conclusion. While 
video compression, regardless of being lossy or lossless, aims to preserve the perceived 
content of a video sequence while minimizing the size of the resulting file, video summary 
condenses the interesting parts of the footage into a shorter video clip. 

In practice this means, that long periods of inactivity in source videos can be fast-
forwarded or even skipped. Furthermore, objects not matching any relevant spatial, visual 
or temporal criteria can be omitted as well, depending on system's definition of what 
constitutes interesting data. We can call these criteria constraints. A set of such constraints 
can form a query. A n example of a user query can be the following: 

summarize, all blue cars traveling from left to right from Monday to Friday." 

The product of a summarization conforming to this query should be a comparatively 
shorter video sequence, containing all occurrences of activities matching the individual 
constraints while simultaneously suppressesing any activities not fitting the query. 

3 



Chapter 2 

Motivat ion 

Video summarization software can be a useful tool to have in a situation where there 
is a need to deal with extraction of meaningful information from repetitive stationary 
video imagery in a time-effective manner. This holds true especially in the field of video 
surveillance and crime investigation. 

2.1 Video surveillance 

Arguably the most important area day to day life where video summarization is regularly 
employed is the field of video surveillance. This fact is no coincidence and stems from the 
inherent nature of security and traffic camera footage which generally has the following 
traits: 

1. Recordings spanning several hours 

2. Long periods of inactivity 

3. Stationary imagery with minimal camera movement 

While the first two items pose the main problems with manual analysis of surveillance 
footage, the third trait can be exploited to mitigate them. The fact that the cameras do 
not move allows for an efficient automatization of the analysis process. As such, the system 
designed and implemented as the subject of this work works with the basic assumption that 
the input footage is recorded by a stationary camera. Furthermore, the focus will be placed 
on analysis of traffic footage. Let us examine a fictional story where the usefulness such 
tool can be exemplified. 

2.1.1 S t o l e n v e h i c l e s c e n a r i o 

Consider the following scenario; a red van was reported stolen on Friday. The vehicle was 
last accounted for on Monday in a warehouse parking lot. The area where the warehouse 
is located has 5 exits, each of which equipped with a continuously recording surveillance 
camera. Now imagine that you are tasked with reviewing all the footage from said cameras. 
Since we have 5 cameras, recording around the clock for 5 days, you are left with the worst-
case scenario of 600 hours or 25 days' worth of footage to review. You could employ a 
small group of people to review the fast-forwarded footage, but even this would consume a 
considerable amount time and resources. These people would also be prone to overlooking 

4 



the pertinent events in videos, since fast-forwarding usually works by skipping entire frames 
of a video, and thus possibly discards the information you are looking for. Not to mention 
that human operators looking at these recordings would very likely grow less attentive and 
thus more erroneous as time passed on. 

The number of man-hours spent reviewing the footage as well as the probability of 
detection could be drastically improved if we introduced a video summarization system 
into this situation. The said system would analyze the footage, process the search query 
and identify all instances of red vans leaving the area and condense them in short videos 
corresponding to each recording location. These could be checked by one person within 
a few minutes. The knowledge of which exit was used to steal the vehicle would allow to 
narrow down the direction of further search using traffic cameras and possibly lead to quick 
location of said vehicle. The plausibility of the technical aspect of the solution will be the 
subject of following chapters. 

2.2 Other applications 

Video summarization has other potential applications aside from situations similar to the 
scenario described above. Summarized sequences are suitable candidates for long term 
archival of surveillance footage or other instances of static video recordings with sparse 
periods of activity. This way, instead of storing several hours of raw video, one could store 
only the short, summarized versions and reduce the storage space necessary for archival 
by a substantial amount. Exclusive archival of summarized videos, while great for storage 
space requirements, would however lead to a reduced possibility of further application of 
user queries on the video data. For this purpose, the preferred solution would be to store 
the pre-processed versions of videos. Using this approach, the amount of data stored would 
still be reduced when compared to raw data but the ability to further refine the summary 
could be preserved in its entirety. The only trade-off would be a slight increase in size 
caused by the need to store the detection metadata along with parts of the source video 
sequences. The amount of achieved savings would of course be highly dependent on the 
amount of activity in the source data, with less active videos providing better gains, simply 
because of the reduced length of a summarized video. 

Another possible application is the usage of video summary as a pre-processing step 
for other, more demanding forms of video analysis. Running a simple movement-based 
summarization before application of a computationally demanding task could help speed 
up given process. 

5 



Chapter 3 

Previous works 

This work is inspired by a series of previous publications by Prof. Shmuel Peleg, et al. 
from Yissum Research Development Company of the Hebrew University. The very concept 
of video summarization resulting in another video, called Video Synopsis in the article, 
comes from their 2006 piece of work titled Making a Long Video Short: Dynamic Video 
Synopsis. In this paper, the researchers state the following: 

„Video browsing and retrieval are inconvenient due to inherent spatio-temporal 
redundancies, where some time intervals may have no activity, or have activi­
ties that occur in a small image region. Video synopsis aims to provide a com­
pact video representation, while preserving the essential activities of the original 
video. We present dynamic video synopsis, where most of the activity in the 
video is condensed by simultaneously showing several actions, even when they 
originally occurred at different times." [15] 

Figure 3.1: A n illustration of a video synopsis from the original paper. [15] 

In this paper, the researchers present a novel approach to video summarization. At 
the time of its publication, various video abstraction methods have already existed. These 
preexisting methods however only focused on the generation of a set of images or short 
clips containing interesting activity. Both approaches were key-frame based, meaning that 

G 



the basic building block of the output was an entire frame of the input video. In another 
approach, a static summary image was produced as a mosaic of interesting parts of the 
input video. 

The novelty of Prof. Peleg's method was in its focus on the creation of an entirely 
artificial summary video rather than a set of images or clips. 

The article presents two methods of achieving video synopsis. In the initial approach 
the article describes, the result was achieved using pixel-wise summarization. Input pixels 
were flagged as Active based on their temporal value changes. Subsequently, the active 
pixels were shifted in time using energy minimization, with a cost function crafted in such 
way, as to avoid discontinuities and loss of active pixels. This low-level approach produced 
summaries containing a stroboscopic effect, meaning that the resulting videos had the 
possibility of multiple instances of the same object being present on the same output frame. 
Furthermore, since no context information was known about objects comprised by the 
pixels, the content of the summarization could not be easily filtered. 

The second approach described, aimed to solve this problem using a higher-level object-
based summarization. In this approach, Activity strips are detected. These strips represent 
a subset of detected areas in frames with corresponding activity. The resulting summariztion 
is achieved by shifting the entire strips instead of individual pixels. This is the approach 
that will be implemented in my system. This problem is described as computationally 
intensive, so a number of restrictions is introduced in attempts to reduce the number of 
possible solutions. 

In their following paper on this subject, titled Webcam Synopsis: Peeking Around the 
World, the researchers expand on their previous ideas and introduce the idea of query-based 
synopsis. 

„We would like to address queries like 'I would like to watch in one minute the 
highlights of this camera broadcast during the past day'[13]" 

The concept is even further expanded in the 2008 paper Nonchronological Video Synopsis 
and Indexing, where the idea of breaking the chronological order of source activities is 
discussed. [ ] 

Finally, the paper Clustered Synopsis of Surveillance Video from 2009, written by the 
same authors describes the possibility of clustering of the detected activities by similarities 
of properties. The authors found, that this clustering allowed for more coherent results 
with less confusing outputs. [12] 

In 2010, a company by the name of Brief Cam, Ltd. was founded by Prof. Peleg and 
others. The company procured a license to use the technology developed at Yissum and 
currently offers a commercial solution based on this research. The History section of the 
company's website states the following: 

„The technology was reported to have been used in the investigation of Oslo 
bomber and mass murderer Anders Behring Breivik, and the Boston Marathon 
bombing investigation. ".[18] 

7 



Chapter 4 

Theoretical background 

The aim of this chapter is to briefly introduce the reader to the basics of each concept nec­
essary for understanding of upcoming chapters as well as to discuss my choices of particular 
techniques used in the implementation. 

4.1 Background subtraction 

Background subtraction is the process of extraction of foreground objects from an input 
image. Background subtraction of a stationary video sequence is a common first step in 
many computer vision tasks. It is highly suitable for movement detection. As such, a wide 
variety of techniques have emerged over the years of research on the subject. The general 
steps however remain the same for most of the approaches. 

At the heart of each technique lies a model of the background. These models can range 
from as simple as the previous frame, an average or median of previous samples to statistical 
models or even neural networks. [2] This background model is usually being continuously 
updated as new frames are processed to account for gradual changes in appearance of 
the background. Wi th each new frame processed, the subtractor performs a differencing 
operation, comparing its model to the real frame. A low amount of Gaussian blur is often 
applied on the new frame before this step, in order to cancel out the small amount of 
variance caused by noise. The resulting difference forms the foreground mask (Figure 4.1), 
which is a binary image representing the presence of an object in the foreground. Shadows 
can also be detected as they usually only decrease the brightness of an area but preserve its 
visual structure. Once shadow detection is introduced, two binary masks are necessary, one 
for the objects and one for the shadows, unless a grayscale representation is used instead 
of binary. 

Figure 4.1: Input frame (left) and extracted foreground mask (right) 

8 



Having tested the various background subtraction methods available in the OpenCV 
library, I have determined that the mixture of gaussian distributions model described in 
the paper An Improved Adaptive Background Mixture Model for Realtime Tracking with 
Shadow Detection [ ] will be the most suitable for the needs of this project. 

4.2 Object tracking 

Object tracking is another common computer vision task, having multiple approaches and 
documented techniques. The basis of an object tracker is a point tracker. In order to track 
an object multiple points of interest are identified and tracked as a whole. The purpose 
of a general object tracker is to maintain the identity and determine the position of a 
given object across multiple frames of a video. A n object tracker needs to be initialized 
by a specification of the area to be tracked. Once initialized, the tracker will update its 
internal state with each frame, searching for the new position and analyzing the changes 
in appearance of the tracked object. Multiple traits of the detected objects are exploited 
in order to increase the precision of a tracking algorithm. These include attributes like 
positional history, size, speed, direction or visual features. Important features of an object 
tracker are: 

• Ability to preserve identity of tracked object across frames 

• Ability to cope with temporary occlusion of the tracked object 

• Resiliency against false positives and drifting 

• Reliable tracking failure detection 

For this project I have decided to use the Median flow tracker, described in the paper 
Forward-Backward Error: Automatic Detection of Tracking Failures[ ], available in the 
OpenCV library. This tracker has provided the best results in my initial test cases. 

4.2.1 M e d i a n flow t r a c k e r 

The Median flow tracker is based on evaluation of a median of the vectors generated by 
the changes in points tracked using the Lucas-Kanade method. It is a forward-backward 
tracker, meaning that it maintains the historical trajectory of the object for analysis. It 
works under the assumption that the tracking consistency should be independent of the 
direction of time-flow. Wi th each new sample, the object is tracked forward in time, as well 
as backwards. These two trajectories are then compared, and the discrepancy is evaluated. 
This allows for a reliable detection of tracking failure. [5] The algorithm works best when 
the tracked objects move rather predictably. [20] 

These attributes of the Median flow tracker make it a suitable solution for the needs 
of this project. This is due to the fact, that the tracked objects will be primarily vehicles, 
which are highly predictable and the timely detection of tracking failure will allow for early 
termination of tracking to avoid identity inconsistencies. 

4.3 Visual features 

Features in the field of computer vision can be described as the most unique parts of an 
image. The ability to identify, describe and compare these unique parts is the basis of a 

9 



vast number of computer vision tasks. In this section I will describe the most commonly 
used type of image features - the SIFT features. These are also used within this project for 
the purposes of identification of visually similar objects as described in the section Bag of 
Words 4.3.1. 

4.3.1 S I F T 

The Scale-invariant feature transform consists of two main parts. First is the detection of 
keypoints in an image. Subsequently an efficient way to describe these points is needed. 
The measure of efficiency in this case is primarily the robustness and speed of comparison of 
these descriptors. The main advantage of SIFT, when compared to earlier methodologies, 
is its scale invariance. This means that SIFT descriptors, detected at different scales, can 
be compared with fairly consistent results. SIFT was developed by David G . Lowe, and 
was first described in his 2004 paper titled Distinctive Image Features from Scale-Invariant 
Keypoints. The paper was a ground-breaking success and has been cited more than 45 000 
times since its publication [7]. The method itself is currently patented. 

D e t e c t i o n of keypoints 

First a scale space is constructed. Scale space is a set of images produced from the in­
put image by application of a Gaussian filter of different a values at progressively lower 
resolutions. This produces octaves. Each octave's images have the same resolution, but 
different a values. The paper recommends a particular combination of a values and number 
of octaves. 

Once the scale space is created, a Laplacian of Gaussian is needed. L o G is suitable 
because it performs well as a corner detector and corners in turn make for good keypoints. 
LoG however is a quite costly operation to compute and thus an approximation is used. 
This approximation is achieved by performing a simple subtraction of each neighboring pair 
of images in an octave. This technique is called the Difference of Gaussians, or DoG for 
short. Performing this operation on each octave, we get a DoG of multiple sizes. 

The next step is the actual detection of keypoints. This is done by detecting the 
extremes in the generated DoG images. The image is analyzed pixel by pixel. Each pixel's 
surrounding values are then compared with its value. Pixel's surroundings are comprised 
of its 8 immediate neighbors as well as the 9 pixels above and below in the neighboring 
scales space images. This leaves us with 26 neighbors to compare. Since only extremes are 
of interest, most of the comparisons are skipped, because an extreme must have a value 
that is higher or lower than all of its neighbors. The actual extremes often occur between 
the pixels and thus a Taylor expansion around the point is necessary. 

The found keypoints are then filtered according to their gradients in order to remove 
any keypoints occurring on the edges of the image and on flat regions. This reduces the 
number of keypoints but increases their overall stability. Since the information about the 
scale at which a point was detected is known, the points are scale invariant. 

Descr iptors 

The detected keypoints need to be described in a suitable way. SIFT does this in the form 
of features. A feature, in terms of SIFT, is 128-dimensional vector. In order to obtain this 
vector, the following steps are taken. The area around the detected keypoint is analyzed 
for gradient directions and magnitudes. These are collected into a 36-value histogram with 

10 



/ / / / / / / 

Scale yy^yy 
AAxAAA AAYAAAA  AAAéAA 

Figure 4.2: Visualization of a point neighborhood [ ] 

bins representing 10-degree direction steps. The magnitude of each gradient is added to 
the corresponding column. This step ensures rotational invariance since further steps will 
be computed relative to these values. 

Next a 16x16 area around the keypoint is sampled. This area is further divided into 
smaller 4x4 regions. In each of these regions the gradient directions and magnitudes are 
distributed into an 8-bin histogram, with each bin corresponding to 45 degrees. Finally, 
a Gaussian weighting function is applied to the resulting window. These 16 groups of 8 
values each form the 128-value vector, which is the SIFT feature descriptor. [7, 16] 

The OpenCV library provide and implementation of SIFT. 

Image gradients Keypoint descriptor 

Figure 4.3: A simplification of a SIFT descriptor. The size of the window is 8x8 instead of 
16x16 for clarity. The blue circle represents the Gaussian weighting function. [ ] 

4.4 K-means clustering 
K-means clustering is an unsupervised, iterative process of sorting data points into a defined 
number of groups, based on their similarity. The number of final groups is defined by the 
constant k. The clustering process starts with specified, or randomly determined centroids 
of the individual clusters. Two steps take place in each iteration of the process. First, 
each data point is assigned to its closest cluster centroid. A regular Euclidean distance is 
employed for calculation of this value. 

Secondly, the position of each centroid is updated, using the mean of all of its assigned 
data points. These two steps are executed repeatedly until a terminal condition is satisfied. 
Examples of this condition include the number of iterations or stabilization of the cluster 

11 



Figure 4.4: A n example of the result of k-means clustering on a set of two-dimensional data 
points clustered into four groups. The stars represent centroids of the clusters.[17] 

centroids. This method is known to converge on a result, but the result may not be 
optimal. [17] A change in the initial centroid positions can affect the final results. A 
k-means clustering solution is available in the OpenCV library. 

4.5 Bag of Words model 

Bag of Words is the name of a technique stemming from the field of text processing. This 
model was originally conceived to simplify text for classification purposes. 

The first step towards implementing a B o W model is the acquisition of a vocabulary. 
The vocabulary is a set of words, or groups of words, that are deemed relevant in the text. 
Once a vocabulary is established, the frequency of each vocabulary entry encountered is 
counted into a histogram with bins corresponding to the vocabulary words. This results in 
a vector of size equal to the vocabulary size. This vector is the resulting „bag of words", 
and can be compared to other such vectors, obtained using identical vocabulary. 

This idea can be successfully applied to the field of computer vision. A slight variation 
on the name is used: Bag of Features, or Bag of Visual Words. As the names suggest, we 
are no longer working with literal words. These are instead replaced with suitable image 
features. These can range from simple samples of small areas of images, to full-blown 
feature descriptors like the SIFT features described in section 4.3.1. 

The visual vocabulary is obtained by the means of clustering. A large number of features 
is sampled from a training set. The contents of this set will determine the accuracy of the 
resulting vocabulary. A number n is decided, which is used to build the vocabulary. The 
sampled features are then clustered into n clusters, using the k-means method described 
in section 4.4. These clusters represent the visual vocabulary. The number of input sam­
ples and the number of clusters directly affect the resulting accuracy and robustness of a 
vocabulary. 

Once trained, the input images are described using the visual words of the trained 
vocabulary. A number k is decided, and k features are extracted from the image being 
described. The type of features extracted needs to match the type of features used during 
the training process. Once these features are extracted, is placed into the histogram bin 
of the closest vocabulary word. The resulting histogram of length n and sum of k is 
produced. This histogram represents the resulting description of an image and can be 
efficiently compared to other such histograms for similarity. 

12 



The method has many positive traits advantageous to this project. These are the 
relatively small and adjustable descriptor size, efficient comparison of described images 
and the ability to train a task-specific vocabulary. However, there are also downsides. 
The vocabulary is fixed and once it is changed, all the images described using this given 
vocabulary need to be described from scratch using the new vocabulary. Another difficulty 
may arise from the fact that the effectiveness of the comparison is largely determined by 
suitability of the training samples. A vocabulary trained on images of vehicles will perform 
inadequately when applied to images of animals. 

The OpenCV library provides an implementation of a B o W model described in the 
paper Visual Categorization with Bags of Keypoints [3]. 

4.6 Cosine similarity 
Cosine similarity is a widely used similarity function, used to determine the similarity of two, 
n-dimensional vectors. This similarity is determined by the computation of the cosine of 
the angle between these two vectors. This angle will range from 0 to 180 degrees, regardless 
of dimensionality of the space. The cosine distance can be calculated by computation of 
the cosine of the angle, followed by application of the arc-cosine, in order to translate the 
angle to the 0-180 range. [ ] 

The result is then projected onto the unit circle, resulting in value range of -1 to 1, 
or 0 to 1 if the direction is not of concern. The two vectors in question are deemed most 
similar, when they are parallel with each other, resulting in the cosine of their difference 
being 1. On the other hand, the vectors are considered dissimilar if they are orthogonal to 
each other, resulting in the cosine value of 0. 

Simi lar s c o r e s 
S c o r e Vec to r s in s a m e direction 
A n g l e be tween then is near 0 d e g . 
C o s i n e of ang le is near 1 i.e. 1 0 0 % 

Unre la ted sco res 
S c o r e Vec to r s are near ly o r thogona 
Ang le be tween then is near 90 d e g 
C o s i n e of ang le is near 0 i.e. 0 % 

Opposite stores 
S c o r e Vec tors in oppos i te direction 
A n g l e be tween then is near 1 BO d e g . 
C o s i n e of ang le is nea r -1 i.e. - 1 0 0 % 

Figure 4.5: A visualization of possible outcomes of the vector comparison, demonstrated in 
a two-dimensional space. [11] 

The advantage of this approach over Euclidean distance, is the fact that the magnitude 
of the vectors does not affect their similarity. The consequence of this, is that values of 
vastly different ranges can still be considered similar, if the direction of their vectors is in 
agreement. 

This operation can be efficiently implemented without the need for computation of 
actual trigonometric functions. Instead, a vector dot product can be calculated, and divided 
by the Z/2-norms of x and y, which in this case are the Euclidean distances from the origin. 
[6] 

13 



Chapter 5 

Problem definition 

Before we venture any further into the subject of the individual steps of video summariza­
tion, it is necessary to properly define the problems it presents and outline a high-level 
structural overview of the system designed to solve them. Each of these elements and their 
respective problems will be described in this chapter. 

5.1 Problem structure 

I have a large number of long videos, that I would like to be able to produce a video summary 
of, as described in section 1.1. In order achieve this, a video summarization system needs 
to be designed and implemented. This system and its subsystem will be defined in terms 
of their inputs, inner processes and outputs. 

The system needs to perform two basic tasks. It needs to be able to process the input 
groups of video files in search of any activity. This is the first part, that I will refer to as 
the Analysis phase from this point on. Upon analyzing the input files, the results of the 
analysis need to be stored in a suitable way for later processing. 

Secondly, the system will need to obtain and evaluate user queries. This will be referred 
to as the Response phase, borrowing the term from the second paper on the subject of 
video synopsis by Prof. Peleg, et al.[13] Upon evaluation of user queries, the final subset of 
activities obtained from the analysis phase is known, and thus a summary can be assembled. 

5.2 Analysis phase 

This phase represents the initial entry point of the entire summarization system. It is a 
self-contained phase which will only need to be executed when new video sequences enter 
the system. It can be fully automated. 

5.2.1 I n p u t s 

The inputs of the analysis phase are comprised of multiple groups of long video files. Each 
group can contain one or more video files. These files must adhere to a special set of 
constraints. The footage is required to be static in nature, meaning that it must be recorded 
or rendered, when dealing with artificial imagery, using a fixed camera. 

The secondary requirement for the video sequences in an input group is a strict cor­
respondence of individual files' technical attributes. The frame rate and resolution of the 

14 



input files must match in order to avoid additional steps during the response phase. These 
conditions are implicitly satisfied when dealing with a group of video files provided by a 
single camera. 

These were the general assumptions about the input files that I will be working with 
throughout the rest of this project. 

5.2.2 I n n e r processes 

Each input file needs to traverse an analysis pipeline. The entire length of the video file 
needs to be analyzed in a time-efficient manner. Following problems need to be solved 
during the analysis of a single input file: 

1. Object detection - Once a new object enters the frame, it needs to be reliably detected. 
The sensitivity of detection should be such, that no object is missed. This may lead 
to an increase in the number of false positives, which will need to be identified and 
discarded later on. 

2. Object tracking - The detected objects need to preserve their identity across the entire 
span of frames they are present in. A n efficient object tracking solution is necessary. 
Early termination should be prioritized over false tracking matches which may result 
in an unwanted merging of different objects' activities. 

3. Activity description - After the tracking period concludes, the detected activity needs 
to be finalized. This finalization process should generate a useful description of the 
activity for later stages of processing, namely the response phase. 

4. Description storage - Once the activity is finalized and a fitting description is pro­
duced, it needs to be stored using a sufficient a long-term storage solution. 

5. Background approximation - The final step of analysis phase is the acquisition of a 
background image. This image represents the scene devoid of any moving objects. 
Since there is no guarantee, that a period of absolutely no activity will appear in the 
input video, the background image will have to be approximated. The background im­
age is vital for later stages of the summarization process, where the detected activities 
will be projected onto it. 

5.2.3 O u t p u t s 

The analysis phase results in a preprocessed representation of activities detected in the 
input video sequences. This representation and its storage solution should be carefully 
selected for space efficiency, since large quantities of activities are expected to be handled. 
The second consideration is the ability quickly retrieve any desired activity matching a 
given set of constraints and compare it to other activities. 

The secondary output of the analysis comes in the form of a background image described 
in the previous section. The quality of this image will directly affect the perceived visual 
quality of the final summary, but will have no effect on the effectiveness of the temporal 
realignment of activities themselves. This concludes the analysis phase of the problem. 

15 



5.3 Response phase 
This phase represents the point at which user interaction with the system will be required. 
User specified queries will be applied on a subset of the data accumulated from the anal­
ysis phase. These activities will be further filtered and eventually rendered into the final 
summary. 

5.3.1 I n p u t s 

The response phase picks up where the analysis left off, meaning that the produced repre­
sentation of analyzed activities will be used as a primary input. However, secondary inputs 
will still need to be specified by the user. These will fall into two categories. 

The first is the selection of analyzed videos upon which all of the subsequent operations 
will take place. The other will pertain to the activities themselves. This is where the various 
queries and views will be applied to the data. The type of these queries can range from 
spatial, visual to temporal. 

5.3.2 I n n e r processes 

After a number of processed videos is selected as an input for the summary, additional 
problems need to be solved in the following order: 

1. Activity merging - Once the user defines the subset of files to appear in the summary, 
the activities originating in these files will need to be merged into a single pool of 
activities upon which the next steps will take place. 

2. Constraint specification - In order to be able to filter the activities, the user will need 
to be provided with a way to build their queries, using individual constraints. Some 
of these are of visual nature and thus, a graphical user interface will be necessary. 

3. Constraint application - Once defined, the user constraints will have to be aggregated 
into a single query that will be applied on the selected data in order to retrieve 
matching activities. 

4. Temporal realignment of activities - After the final subset of included activities is 
known, a temporal shift for each activity needs to be determined in order to fit the 
activities together as close as possible. 

5. Summary rendering - The generated offsets can now be applied to each activity. 
Activities will be projected onto the background obtained during the analysis phase. 
This produces the frames of the final video summary. 

5.3.3 O u t p u t s 

The output of a video summarization process is once again a video sequence. The output 
video will only contain activities matching the user specified constraints. Should no con­
straints be specified, the output will contain all of the detected activities. The selected 
activities will be overlaid onto a background image in such way, that the output video 
will be considerably shorter than the sum of its inputs, while simultaneously displaying 
activities from different files and temporal positions, omitting any periods of inactivity. 

16 



Chapter 6 

Proposed solution 

This chapter describes the design of a system which aims to solve the problems laid out in 
chapter 5. This system is comprised of a set of interoperable sub-systems and components. 

6.1 System structure 

I have identified and designed the following parts of the system: 

V i d e o storage 
The actual location of the input data as well as the destination of rendered summaries. 
This may be a local filesystem directory or a remote network-attached storage. This 
storage will be expected to be accessible during the entire summarization process. 
Further details are available in section 6.2. 

Input analyzer 
This part of the system closely corresponds to the Analysis phase described in section 
5.2. Files are retrieved from video storage and processed. This part will require no 
user interaction apart from launching and will be implemented in the form of a class 
library with a companion console application. This part is described in section 6.3. 

Database 
As mentioned in section 5.2.2, a long-term storage solution is required for the detected 
metadata. A regular relational database will be used to satisfy this requirement. The 
details of this choice and the design of the database itself are further expanded upon 
in section 6.4. This database will facilitate all communicational needs of individual 
parts of the entire system and serve to provide a persistency layer for the application. 

Q u e r y processor 
This part of the system will be responsible for the evaluation of user queries men­
tioned in section 5.3.2. The description of these queries and individual steps of their 
evaluation are laid out in section 6.5. 

O u t p u t assembler 
The output part of the system, having two main functions. First is the assembly of 
the final alignment of activities using temporal shifts, with the second being the actual 
rendering process of the output video. These processes are explained in sections 6.6.1 
and 6.6.2 respectively. 

17 



G U I appl i ca t ion 
A graphical user interface will be required for the purposes of user interaction men­
tioned in section 5.3.2. This application is the main communicational channel between 
the user and the entire summarization system. The application is situated in the Re­
sponse phase of the summarization process as described in section 5.3.2. The design 
of the user interface is described in section 6.7. 

Input analyzer 

|<S>£ 

User 

GUI Application 

Management Playback 

Query processor • Output assembler 

T # 
Database 1 

Input videos Output video 

OUT 123 

Video storage 

Figure 6.1: Diagram of the proposed system. Arrows represent the direction of data access 
and communication between individual elements. 

6.2 Video storage 
The source video files will need to be accessed during various stages of the summarization 
process in order to minimize the spatial requirements of analysis outputs. As such, almost 
no visual data will be kept. Instead, only metadata relative to the source files will be stored 
and the actual image data will be loaded from the source files as necessary. This approach 

18 



requires the source files to not change their location after they have been processed by the 
system, until a video summary is produced, and the files are determined to be of no interest 
for further processing. 

The rendered summaries will be stored alongside the source files, with corresponding 
filenames. A suitable suffix will be added to distinguish the individual summaries. As for 
the actual storage solution, any regular filesystem supported by the host operating system 
should be sufficient for the needs of this project. 

6.3 Input analyzer 

The first part of the system is the input analyzer. This component takes the initial input 
in the form of a single or multiple recorded video files and produces processed Tubes. 

6.3.1 T u b e s a n d Sl ices 

A Tube is a three-dimensional representation of a detected activity. The actual term Tube 
comes from the previously mentioned paper Webcam Synopsis: Peeking Around the World 
[13]. However, the basic idea behind tubes can be traced back to earlier work of the same 
authors, where they are called activity strips [ 5]. In order to better understand the concept 
of a tube, let's imagine a simple video of driving by. 

In each frame, the car occupies a certain part of the two-dimensional frame image. As 
the frames advance, the car changes its appearance and position in the frame. We can 
call each of these occurrences of the detected object a Slice. Now, if we take all of these 
two-dimensional slices as they move across the 2D space and time, we are able to construct 
a three-dimensional tube. The three dimensions in this case correspond to the X and Y 
dimensions of the input frame, with the third dimension being a representation of time. 

6.3.2 A n a l y s i s p i p e l i n e 

Once the analysis of a video is commenced, the following steps are taken on a frame-by-
frame basis. 

The analysis takes place on two levels; detection and tracking. Since the analysis needs 
to be fully automatic, the tracking portion of the pipeline must to be guided by the detection 
portion. The right time to start and finish tracking must be determined automatically. 

1. Frame resizing - In order to reduce the computational cost of frame analysis, each 
frame is resized to match a predetermined resolution. A l l other operations are exe­
cuted using this resized frame. 

2. Detection - The detection part of the pipeline is responsible for the extraction of 
individual moving elements from a frame. 

(a) Background subtraction - A background subtraction operation, as described in 
section 4.1, is applied on the resized frame. This operation results in a coarse 
binary foreground mask which requires further processing. 

(b) Morphological operations - The acquired foreground mask usually contains un­
wanted noise and needs to be refined using morphological operations. A mor­
phological opening and closing are applied to the foreground mask. This rids 
the mask of small patches of activity as well as closes some of the gaps in the 
detected shapes. 

19 



Frame 
resizing 

Tracking 
update 

Background 
subtraction 

Contour 
merging 

Morphological 
operations 

Contour 
extraction 

Contour/Tracker 
matching 

1 1 
New object 
detection 

Tube 
expansion 

Tracking 
termination 

Tube 
initialization 

i 
Tracking 

initialization 

Tube 
finalization 

Figure 6.2: Diagram of the analysis pipeline 

(c) Contour extraction - Once the foreground mask is refined, individual contours 
are extracted. Only the first level, outer-most contours are taken into account. 
This speeds up contour detection as well as fills occasional holes in foreground 
shapes. 

(d) Contour merging - A bounding rectangle is placed around each contour. Should 
this bounding rectangle fully envelop any smaller contours, these will be merged 
into the larger contour. This helps reduce the total amount of contours as well 
as merge multiple contours originating in a single object. 

3. Tracking - This portion of the pipeline maintains the identity of a detected object 
across multiple frames, as described in section 4.2. 

(a) Tracking update - A set of all active object trackers is kept until their termina­
tion. This set of trackers is updated with each new frame being processed. A 
tracker update causes the tracker to produce a new estimation of the tracked 
object's location. 

20 



(b) Contour/Tracker matching - In this step, the updated trackers are polled the for 
current positions of tracked objects. These positions are correlated with contours 
detected in the first part of the pipeline. Contours having large overlaps with 
the tracker bounding box are assigned to given tracker. This assigns an identity 
to a detected contour. 

(c) Tracking initialization - Wi th each contour matched to a corresponding tracker, 
the remaining contours represent new objects, that have not yet been tracked. 
For these contours a new tracker is initialized and placed amongst the active 
trackers. This constitutes the detection of a new object and a new tube is 
initialized as well. 

(d) Tube expansion - The matched contours are used to expand their trackers' tubes. 
This is achieved by the addition of a new slice to the target tube, corresponding to 
the bounding rectangle of the matched contour. Information about the bounding 
rectangle, as well as the source frame number, is stored. 

(e) Tracking termination - Once a tracker has failed to locate its subject or the 
ensuing contour matching yielded no results, the tracker's T T L (time to live) 
counter is decremented. Once it reaches zero, the associated tube's slice count is 
checked. Should the number of slices be less than the initial T T L threshold, the 
tube is outright discarded, getting rid of random short anomalies. This counter 
is replenished on each tracking and matching success. 

(f) Tube finalization - When a tracking terminates and passes the slice count check, 
the associated tube can be finalized. This involves the accumulation of relevant 
information, such which file the tube originated in or what resolution it was 
detected at. Once this information is compiled, the tube along with all of its 
slices is stored in the database and is associated with the input file's entry. 

Once the activities are extracted, additional problems must be solved. A n approxima­
tion of the background image needs to be obtained, as described in section 5.2.2. This can 
be done for free by the background subtractor class provided by OpenCV. Since the back­
ground subtractor already keeps a model of the background, no additional computation 
is necessary, and the image is simply obtained directly from the subtractor. The image 
itself is then stored in the database as well, and a reference is added to the particular video 
file's entry. The image is stored using lossless image compression, since it wil l be the most 
important part of the rendered output video. The amount of data necessary for storage of 
a single frame of a video file is minor and can be safely stored in the database itself. 

A background video could be produced and used instead. This would help to preserve 
natural lighting changes of the source video. For example, the background of a video taken 
during the sunset will change greatly and the visual quality of the rendered output would 
benefit from a background video instead of a background image. This however, would add 
additional overhead in form of the need to store additional background frames sampled at 
various points of the detection process. I have decided not to take this route and instead 
rely on a single background image. I believe that it provides enough visual information 
for the viewer of the final summary to understand the spatial relationships between the 
displayed activities, albeit at reduced consistency at the seams of the overlaid imagery. 

21 



6.3.3 T u b e d e s c r i p t i o n 

A suitable method of tube description is necessary. Three main attributes of a tube's source 
activity are tracked for this purpose and are generated during the description process. A n 
extracted tube's description consists of the following parts: 

• Slices - A collection of the individual detected parts of input frames. These are kept 
in the form of metadata instead of the actual image data. 

• Bag of Words histogram - A histogram describing the tube is used for comparison of 
individual tubes for the purposes of similarity-based tube retrieval and filtering. 

• Hue histogram - A histogram describing the tube's hue distribution for the purposes 
of color-based tube retrieval and filtering. 

• Thumbnail - A single small slice taken from the middle of the activity will be used 
for the purposes of visual representation of the tube in GUI . 

Slices 

A slice represents a rectangular part of a single frame of an input video. A rectangle is 
used instead of a foreground mask, because an enormous number of slices is expected to 
be stored and their handling needs to be as fast as possible. The source frame number 
is stored alongside the rectangle. Once the actual content of a slice is needed, it must be 
loaded from the source file. 

B a g of W o r d s h i s togram 

In order to be able to perform a comparison of individual tubes a common descriptor is 
necessary. For the purposes of this project, the Bag of Words (BoW) model was chosen, as 
described in section 4.5. Each tube contains a histogram obtained during the description 
process. A reference to the vocabulary used to generate this histogram is tracked as well. 

The B o W vocabulary is trained once using the detected tubes in database. This sim­
plifies training, because no additional training set is necessary, and the trained vocabulary 
is well suited for the type of videos being processed. During the description of a tube, the 
latest dictionary will always be used. 

H u e h i s togram 

Hue information of the tube's slices is used for evaluation of color distribution of an entire 
tube. H S V (hue, saturation, value) colorspace is used. The advantage of this color space 
is the ability to only focus on a single channel, which holds the primary color information. 
This histogram will be used to allow the user to search for tubes by a specified general 
color. It requires no special training, and thus only needs to be computed once for each 
tube, without the need for recalculation in contrast with the B o W histogram. 

22 



T r a i n i n g process 

A visual vocabulary requires initial training. This needs to be done only once, provided 
the system already contains a sufficient amount of analyzed tubes. The training process 
involves traversal of all of the detected tubes stored in the database and computation of 
their slices' SIFT descriptors. The visual vocabulary is trained as follows: 

Step 1: The actual image data of a group of slices is preloaded from the source video file. 
This helps reduce the latency of on-demand video data access. A n adjustable 
frame-skipping is employed to reduce the amount of computation. 

Step 2: A constant number of SIFT descriptors is computed. The number of descriptors 
used in this project is 128. 

Step 3: The computed descriptors are fed into the Bag of Words model trainer. Once all 
of the descriptors are entered, the vocabulary is trained by k-means clustering, 
as described in sections 4.5 and 4.4. The number of clusters is set to 32. 

This produces the B o W vocabulary which is stored in the database for future description 
of tubes. 

D e s c r i p t i o n process 

The description process of a tube consists of the computation of its B o W and hue his­
tograms. Since the first two steps of the description process correspond to the training 
process and the descriptions need to be retrained after each vocabulary change, it is ben­
eficial to execute the description process alongside the training. This, however, is not a 
requirement. 

Step 1: The image data of the tube being described is loaded the same way as described 
in the first step of the training process. 

Step 2: A constant number of SIFT descriptors is computed on each slice and a closest 
cluster is found for each of them using a feature matcher. A histogram with the 
number of bins equal to the vocabulary cluster size is obtained. 

Step 3: A hue histogram is calculated. This is achieved by transformation of the slice 
image data into the H S V colorspace, upon which a hue value histogram is calcu­
lated. The values of these histograms are then averaged into a single histogram 
which describes the hue distribution of the entire tube. The size of this histogram 
is set to 64. 

It is important to mention, that the description process does not always need to be 
applied to all of the detected data. For example, only newly processed files in the current 
session can be described, if a vocabulary had already been generated. This will however 
limit the similarity-based tube retrieval to the given subset of tubes in the session, or rather 
to tubes described by said vocabulary. 

In order to allow for global search of all detected tubes, the entire set needs to be 
described using the same vocabulary, ideally during the initial analysis of tubes, when all 
of the image data is accessible. 

23 



6.4 Database 
A regular relational database will be used for storage of processed tubes as well as various 
other metadata. A small amount of image data is stored as well. These are comprised 
of thumbnails and video file backgrounds. The database can be deployed locally or on a 
remote server. For the purposes of this project a local database will be used. 

A n alternative solution would be the usage of a file-based storage system. It is possible 
to store all of the detected metadata in a suitable format like X M L . This would allow for 
better portability of the data and less general overhead. However, the database route allows 
for easier execution of complicated queries, as well as ensures data consistency without the 
need for design and implementation of additional input/output systems. 

6.4.1 E n t i t i e s 

This section contains an overview of the most important database model entities as well as 
an E R diagram of the final database (Figure 6.3). 

Slice 

The Slice database entity fits the description of a general slice defined in 6.3.3. It is the 
most numerous entity in the database. A slice consists of only its bounding rectangle's 
coordinates stored as integers and the frame number it was detected in, stored as a long 
integer. 

Tube and Shi f ted tube 

The Tube database entity is the representation of an activity tube. It serves as a parent 
for a set of Slices. It also contains following properties: 

• B o W histogram and Vocabulary reference - The histogram used for similarity com­
parison, as well as a reference to the vocabulary used to generate this histogram. 

• Hue histogram - Hue histogram used for color-based queries. Described in 6.3.3. 

• Thumbnail - A small, binary encoded image representing the file for easier manage­
ment in the GUI. 

A Shifted tube serves as a wrapper for a regular tube, adding information about the gen­
erated time offset. A Tube can be referenced by multiple Shifted tubes. The starting and 
ending frame numbers are also stored in a shifted tube to speed up look up processes. 

V i d e o F i l e 

The Video File database entity represents a single video file. It serves as a parent for a set of 
Tubes. There are two types of video files stored in the database. The input video files, and 
the rendered output summaries. These are distinguished by the IsSummary binary flag. A 
video file entry contains the basic information necessary for the summarization process and 
playback. 

24 



Following properties of a video file are tracked: 

• Path and Name - These are the basic filesystem variables used to access the physical 
video file. Should the actual file be renamed or moved to a different directory, these 
must be updated. 

• Width and Height - The dimensions at which the file was processed. These correspond 
to the resolution mentioned in section 6.3.2. 

• Size and Checksum - These are used for identification of duplicate files. The size of 
files in bytes and an MD5 checksum are used. 

• Summary flag - A Boolean value distinguishing input and output files. 

• Length - The total running length of the video file stored as ticks. 

• F P S - A floating point number describing the framerate of the video file. 

• Thumbnail - Equivalent to the tube thumbnail mentioned above. 

S u m m a r y 

The Summary database entity represents the temporal alignment of a set of tubes. It 
contains a set of Shifted tubes, used for rendering of the output video. It also contains a 
reference to the output Video File entry, if rendered. 

Session 

The Session database entity represents a user session of the G U I app. It provides a layer 
of persistency in the application as well as serves as the initial filter, selecting a subset of 
files for further processing. It contains information about the creation date of the session. 
A session may contain multiple Summaries. 

25 



B a c k g r o u n d l m a g e s 
Column Name Data Type 

f Id int 

Width int 
Height int 

Image varbinary(MAX) 

V i d e o F i l e S e s s i o n s 
Column Name Data Type 

f VideoFileJd int 

? Sessionjd int 
CO=<3> 

V i d e o F i l e s 
Column Name Data Type 

f Id int 

Name nvarchar(MAX) 
Path nvarchar(MAX) 

Width int 

Height int 

Size bigint 
Checksum varbinary(MAX) 

Backgroundlmageld int 

IsSummary bit 

LengthTicks bigint 

Fps real 
Thumbnail varbinary(MAX) 

B o w V o c a b u l a r i e s 
Column Name Data Type 

f Id int 

Vocabulary varbinary(MAX) 

S e s s i o n s S u m m a r i e s 

Column Name Data Type 

t Id int 

DateCreated datetime 

Column Name Data Type 

f Id int 

Sessionld int 

GeneratedVideoFileJd int 

Column Name Data Type 

f Id int 

Sessionld int 

GeneratedVideoFileJd int 

T u b e s 
Column Name Data Type 

<? Id int 

VideoFileld int 

BowHistogram varbinary(MAX) 
BowVocabularyJd int 

ColorHistogram varbinary(MAX) 

Thumbnail varbinary(MAX) 

S h i f t e d T u b e s 
Column Name Data Type 

^ Id bigint 

Offset bigint 

Tu be J d int 

Summaryld int 

S l i c e 
Column Name Data Type 

? Id bigint 

FrameNo bigint 
CoordX int 

CoordY int 

Width int 
Height int 

Tubeld int 

Figure 6.3: Entity Relationship diagram of the designed system 

6.5 Query processor 
The Query processor is the part of the summarization system responsible for evaluation and 
application of user queries. Wi th tubes already successfully extracted, analyzed and stored, 
there is a need to determine which tubes should be displayed and which should be discarded. 
Some tubes are discarded outright during the initial analysis process. These include short 
activities, or global scene changes such as sudden camera movement. Because of this, it can 
be safely assumed that the remaining tubes are „healthy". A tube is considered healthy 
when the activity it contains is consistent and without any major flaws. User may also 
specify queries for filtering and search within the processed activities without the need to 
produce a resulting summary. 

When looking for a specific activity in a video, only a subset of tubes will be of interest 
while the rest can be ommited from the resulting summary. This act of filtering will be 
performed in adherence to user defined constraints. This part of the system will communi­
cate with the user using a graphical user interface, described in section 6.7. This interface 
will allow for specification of said queries, as well as respond to the user's commands in 
real time, providing filtered results upon specification of individual constraints. The basic 

26 



idea behind a query-enabled summary comes from the paper Webcam Synopsis: Peeking 
Around the World. [13] 

6.5.1 Q u e r i e s a n d C o n s t r a i n t s 

In order to make the explanations of the various types of filtering clearer, two terms which 
were up until now used interchangeably need to be distinguished and defined. 

• A Constraint represents a single condition that must be satisfied by a filtered tube. 
It is the basic building block used by the user to define queries. Constraints may 
be of various types. Should a constraint of the same type be defined multiple times, 
the operation of logical disjunction will be applied to combine them into a single 
constraint of the same type. This means that at least one constraint of a given type 
must be satisfied. 

• A Query represents the entire set of constraints defined by the user, combined into 
a single condition that is required to be met by all of the filtered tubes. The logical 
operation of conjunction is applied to the individual constraints constituting the query. 
This effectively means that each type of defined constraints must be satisfied. 

For the purposes of this text, I have identified these three basic categories the constraints 
can be divided into: 

• Temporal - Constraints falling into this category are based around the restriction of 
the time dimension. 

• Spatial - Since the temporal constraints restrict the 3D tube space along its time 
axis, the spatial constraints restrict the tubes in the two remaining dimensions. This 
means that spatial constraints revolve around filtering of the tubes according to their 
slices' sizes and positions. 

• Visual - The remaining attributes of a tube can be described as visual. These are 
based on the actual graphical content of the slices comprising the tubes. 

A single constraint category may contain multiple types of constraints. A constraint category 
only serves as a conceptual unit used for the purposes of this text, while the type of a query 
is an actual attribute used in the filtering process, conforming to the definition of queries 
and constraints laid out above. 

In the following paragraphs, each constraint category will be explored, defining its 
individual constraint type in terms of its variables and the description of the evaluation 
process. 

6.5.2 T e m p o r a l c o n s t r a i n t s 

A single type of a temporal constraint will be available in the system. The temporal 
constraint will have these three components: 

• Video file context - A n input video file on which the constraint will be applied must 
be specified. Enforcement of a time constraint on all files in the current session would 
only make sense if the system had information about the actual time of the day during 
the recording of the video, which is outside the scope of this project. 

27 



• Starting point - A point in the selected video's timeline must be specified. 

• Ending point - A point in time specifying the end of the time-span of interest. 

Once these three values are obtained from the user, the constraint can be applied. 
Should the user need to specify multiple time spans within the same video, additional 
instances of time constraints can be added and will be combined using the logical operations 
described above. 

E v a l u a t i o n of a t e m p o r a l constraint 

The temporal filtering is applied as follows: 

Step 1: A l l tubes originating in file specified, which currently conform to any preexisting 
filters, will be checked. 

Step 2: The starting and ending frame of each tube will be determined based on its 
slices. 

Step 3: A tube will be deemed satisfactory if its ending frame occurs after the specified 
starting point and its starting frame occurs before the ending point of the period. 

A n example of a temporal constraint can read as follows. 

,j5how, all activities from video A, occurring between timestamps 00:07:00 and 
00:12:00." 

6.5.3 S p a t i a l c o n s t r a i n t s 

This category of constraints deals with the individual positions and sizes of tube's slices in 
the X and Y dimensions of the video. Two types of spatial queries will be present in the 
system. 

• Region of interest - A n area of interest is specified. Activities detected outside of this 
area can be safely omitted. 

• Direction - A direction is specified. Activities moving in this general direction must 
be included in the filtered results. 

Following variables need to be specified by the user in order to perform filtering. For 
the ROI constraint, a rectangular region of interest must be specified by the user through 
use of the G U I . In case of the direction constraint, a directional arrow will be drawn by the 
user. Only the angle of this arrow will be taken into account, with its length being purely 
cosmetic. 

E v a l u a t i o n of a region of interest constraint 

The region of interest constraint is applied as follows: 

Step 1: A l l tubes originating in any file of the current session, which currently conform 
to any preexisting filters, will be checked. 

Step 2: Each tube's slices' bounding rectangles will be checked for an overlap with the 
specified rectangular region of interest 

Step 3: A tube will be deemed satisfactory if any of its slices have at any point overlapped 
with the ROI. 

28 



E v a l u a t i o n of a d i rec t iona l constraint 

The directional constraint is applied as follows: 

Step 1: A l l tubes originating in any file of the current session, which currently conform 
to any preexisting filters, will be checked. 

Step 2: The starting and ending spatial positions of each tube will be determined based 
on the positions of their starting and ending slices. 

Step 3: A vector will be obtained from these positions. 

Step 4: A vector will be obtained from the user drawn arrow. 

Step 5: A tube will be deemed satisfactory if the angular difference of the two vectors 
will be below a certain tolerance value. 

Figure 6.4: A n example of simultaneous application of both types spatial constraints. Only 
activities detected within the region of interest (ROI) and matching the specified direction 
will appear in the summarized output. 

6.5.4 V i s u a l c o n s t r a i n t s 

The final category of constraints is the most complex. Two types of visual queries will be 
available in the designed system. They are the following: 

• Similarity - The retrieval of tubes similar to a specified tube. 

• Color - The retrieval of tubes of a given color. 

A single input is required for the evaluation of each these constraints. In case of simi­
larity, a source tube must be selected. As for the color constraint, a target hue needs to be 
specified using a graphical hue picker. 

29 



E v a l u a t i o n of a s i m i l a r i t y constraint 

Step 1: A l l tubes originating in any file of the current session, which currently conform 
to any preexisting filters, will be checked. 

Step 2: A B o W histogram will be loaded for the selected tube. 

Step 3: Each tube's own BoW histogram will be compared with said histogram, by the 
means of cosine similarity. 

Step 4: The resulting similarity measure will be transformed into a percentual range of 
0-100. 

Step 5: A tube will be deemed satisfactory, if the calculated similarity surpasses a set 
percentual threshold. 

The details regarding the Bag of Words model and histogram were already discussed in 
the sections 4.5 and 6.3.3 respectively. A n example of a similarity constraint can read as 
follows. 

,j5how, all activities similar to activity A." 

E v a l u a t i o n of a color constraint 

Step 1: A l l tubes originating in any file of the current session, which currently conform 
to any preexisting filters, will be checked. 

Step 2: A hue histogram will be generated from the selected hue value combined with a 
gaussian filter. 

Step 3: Each tube's hue histogram will be compared with said histogram, by the means 
of cosine similarity. 

Step 4: The resulting similarity measure will be transformed into a percentual range of 
0-100. 

Step 5: A tube will be deemed satisfactory, if the calculated similarity surpasses a set 
percentual threshold. 

The details regarding the hue histogram were already discussed in the sections 6.3.3. A n 
example of a similarity constraint can read as follows. 

,j5how, all activities containing primarily red objects." 

6.6 Output assembler 
The output assembler takes care of the final steps of the summarization process. Having 
determined which tubes should appear in the output summary, a way to transform these 
inputs into the final output video needs to be devised. This task consists of phases that are 
independent and time-consuming enough to be decoupled into two individual processes. 

30 



These are the following: 

• Summary generation - This phase produces the final temporal rearrangement of rel­
evant tubes. 

• Output video rendering - Once the tube arrangement is generated, the physical output 
file can be rendered. 

Each process can be launched independently, in order to allow for a quick review and 
prospective regeneration of a generated summary without the need for the costly rendering 
process to take place each time. The generated arrangement will be visualized in the 
graphical using interface using bounding rectagles without the actual contents of their 
slices. 

6.6.1 S u m m a r y g e n e r a t i o n 

The final subset of tubes needs to be rearranged in such way, that the resulting arrange­
ment takes up a significantly smaller amount of time. The two spatial dimensions are fixed, 
because the tubes are required to maintain their spatial relationships as well as correspon­
dence to the background. This leaves us with one dimension, the time. Taking this into 
account, it is possible to define the aim of the summary generation step, as a search for 
each individual tube's time offset. This time offset will represent a temporal position in the 
output video file, at which the given tube will be projected into the output. This needs to 
be done in such way, that no tubes are interfering with any other tubes. 

A first-fit algorithm is employed for the purposes of offset determination. A simplified 
description of the algorithm goes as follows: 

Step 1: The desired tubes are sorted primarily by their input files, and secondarily by 
their detection time. 

Step 2: A set of output frame reservations is established. These reservations consist of 
a collection of rectangles already occupying space in a given output frame. 

Step 3: Current tube's slices are iterated over and existing reservations are checked for 
occupancy of given slice's bounding rectangle. This can be efficiently done using 
a simple rectangle coordinate comparison. 

Step 4: If a collision is detected, the tube's offset is increased, and Step 3 is taken again. 

Step 5: If no collision occurs, output reservations are placed for current tube's slices, 
and the final offset for the tube is produced. 

Step 6: If no tubes remain, the processing is finished. Otherwise, the next tube is 
handled returning to Step 2. 

Once all of the offsets are determined, a new Summary database entity, described in 
section 6.4, will be generated, complete with a set of Shifted tubes. These will be stored in 
the database for later review or commencement of the rendering process. 

31 



6.6.2 O u t p u t v i d e o r e n d e r i n g 

Once the offsets are determined, the actual summary video can be generated. Since only 
the slice metadata is kept in the database, the source video files will need to be accessed 
throughout the rendering process. Simple sequential drawing of the tubes cannot be em­
ployed in the rendering process, because the nature of the output requires it to be written 
frame by frame instead of tube by tube. For this reason, I have devised the following 
method of output summary rendering. 

Rendering will be done in chunks. A chunk is a sequential subset of the output frames 
of constant size. Each chunk is defined by its starting and ending frame. The smallest 
possible chunk is a single frame long, in which case the rendering process is equivalent to 
simple frame by frame rendering. The chunk-based rendering process is comprised of the 
following steps: 

Step 1: Relevant tubes are identified. This is done by checking all of the desired tubes 
for a temporal overlap with the chunk's time period. 

Step 2: Metadata of the relevant tubes' slices is loaded from the database. 

Step 3: The actual image data for these slices is buffered from the source video files. 

Step 4: A frame of the output video file is initialized with the default background image. 

Step 5: Each tube's slices, where the combination of slice frame number and tube offset 
matches the current output frame number, are projected onto the output frame. 

Step 6: When all relevant slices are projected, the next frame is processed from Step 4. 

Step 7: When all of the chunk's frames are rendered, the chunk is written into the output 
file and all resources allocated by the chunk are released. The next chunk is 
processed from Step 1. 

Step 8: When all chunks are rendered, a new entry describing the generated video file 
is added to the database. A reference to this entry is created under the current 
summary entity's generated video file property, as defined in section 6.4. 

The usage of chunks is a compromise between the speed of rendering and memory re­
quirements of the process. As the size of a single chunk increases, the memory requirements 
rise as well. Large chunk size however results in less frequent input video file reads, which 
leads to a speed up of the actual rendering of individual slices. 

Another advantage of this kind of compartmentalization of the output rendering is the 
ability to easily parallelize the process. It is even possible to distribute the task of rendering 
individual chunks between multiple rendering servers and assemble the final output after all 
chunks have been rendered. This however, is beyond the scope of this project, meaning that 
only the basic, sequential chunk rendering will be employed during the implementation. 

6.7 G U I application 

With the individual parts of the system laid out, the design of the graphical user interface 
can be defined. The user interface will take the form of a regular desktop application, 
centered around the mouse as the primary source of input. 

32 



The application will facilitate access to the following features: 

• Video file management 

— Source video playback - The user will have the ability to browse and play the 
input videos. Dynamic annotations will be used to give the detected tubes a 
context and a layer of interactivity. 

— Introduction of new input files to the system - The user will be allowed to start 
the analysis process from within the application itself without the need to use 
the console interface. 

— Summarization output playback - The user will have the ability to play the 
generated summaries without leaving the application. 

• Tube management 

— Tube playback - The user will have the ability to browse and display an interac­
tive representation of the detected tubes. Dynamic annotations will be used. 

— Similar tube search - Any given tube will have the capability of being used as 
the basis for a similarity search. 

— Tube description generation and training - The user wil l be able to launch the 
tube description process described in section 6.3.3. 

• Session management 

— Session creation - The user will have the ability to create a new session, selecting 
the desired files. 

— Session selection - Previously created sessions will have the ability to be loaded 
and worked with. 

• Summary management 

— Summary generation - The user will have the ability to generate and visualize 
the arrangement of tubes described in section 6.6.1. 

— Summary rendering - The user will have the ability render the video outputs of 
the previously generated video summaries. 

• Entity deletion - The user will be provided by means of deleting any of the mentioned 
entities from within the application. 

• Query specification - The user will be able to enter individual constraints. 

• Progress communication - The user will be informed about the progress of long run­
ning tasks. 

6.7.1 M o c k u p s a n d G U I d e s c r i p t i o n 

This section contains mockups of the user interface as well as the description of its key 
components. The description contains multiple instances of italicized words. In this section, 
they are used to refer to specific UI elements, pertaining to the mockups. I have tried to 
keep the user interface as simple as possible, without hindering any functionality. The final 
design consists of a single main window, visible in Figure 6.5, and an initial modal dialog 

33 



prompting the user to either select or create a new session. The mockup of the dialog can 
be seen in Figure 6.6. Generic message boxes and confirmation dialogs will be used where 
necessary and are not important enough to be warrant a detailed description in this text. 

Constraint toolbox Commands Progress bar 

Active 
Constraints 

Generated 
Summaries 

• • • • • 
Main video canvas 

• • • • • 

• • • • • 
Selected item preview 

• • • • • 

Session 
Video files 

Filtered Tubes Similar Tubes 

Figure 6.5: A mockup of main application window 

Center panel 

The centerpiece of the application is a pair of video players. Two players are used for 
easier previewing of selected tubes. The Main video canvas will be used for playback of the 
active source video, or the final output video. It will also serve two additional purposes 
aside from video playback. It bears the word canvas in its name because it serves as the 
input method for the spatial constraints defined in section 6.5.3. The user will draw their 
constraints directly onto the video canvas itself. The other type of drawing that will be 
done on this canvas is drawing of the context annotations for displayed tubes by the UI 
itself. A bounding rectangle will be drawn for each slice, displaying the time in the source 
video at which the activity occurred. This dynamic annotation will be clickable and will 
provide the user with a preview of the selected activity. 

This brings us to the second video component of the center part, the Selected item 
preview pane. This second video pane will display any selected tube in an infinite loop. 
This will let the user view different tubes without losing their position in the main video 
player. Overlays will also be drawn in this player, however they will not be interactive. 

Both video players will have standard video controls, comprised of a play/pause toggle 
button, a timeline seek bar and length counter. Additionally, the players will be zoomable 

34 



using the mouse scroll wheel. The speed of the video playback will be adjustable by pressing 
of the plus (+) and minus (-) keyboard keys. 

B o t t o m panel 

The bottom part of the UI will be divided into three parts. The first, leftmost part will 
display the current Session video files. Upon clicking a video from this list, the video will be 
displayed on the Main video canvas, and will be overlaid with the interactive annotations 
described above. 

The next section is the second largest part of the entire UI. This is because it hosts the 
list of Filtered tubes, conforming to the currently applied constraints. Since a large number 
of tubes is expected to be present in the system, pagination will be applied to this list. 
Clicking an item in this list will cause the Selected item preview video pane to display the 
given tube, complete with a dynamic annotation. A right click will display a context menu, 
letting the user search for similar tubes. 

The last part of the bottom panel is reserved for the results of similar tube search. 
This list is similar to the Filtered tube list, with the difference of additional percentual 
information regarding the tube similarity being displayed. Clicking an item in this list will 
also cause the Selected item preview to play corresponding tube. 

Left panel 

The left part of the UI contains two main parts. The upper-most part is the list of Active 
constraints. The specification of new constraints will be initiated by clicking the desired 
type of constraint in the Constraint toolbox located above this list. Depending on the type 
of selected constraint, the definition process will be started. A n exception to this rule comes 
in the form on the Similarity constraint, which is defined via the context menu of a tube. 

Spatial constraints will be drawn directly on the video canvas. Selecting an existing 
spatial constraint in the list will highlight it on the Main video canvas. 

Temporal constraints will be defined directly in the list item of the constraint using 
buttons setting the required timestamps to the current position of the Main video canvas 
playback and a combo box for the selection of a relevant video file. 

Color constraints will also be editable directly from the list item. This will be handled 
by a single hue seek bar. 

Additionally, a reset button will be provided to quickly remove all of the defined con­
straints. 

Bellow the Active constraints list lies the Generated summaries panel. This list contains 
all summaries generated in the current session, by the process described in section 6.6.1. 
A n item in this list will display the number of tubes contained in given summary, as well 
as the rendering state of this summary. The rendering state can range from Not rendered, 
Rendering to Rendered. If the summary is Not rendered, clicking it will display only the 
interactive annotations representing the shifted tubes, visualized on a static background 
image. In order to be able to display the actual image data of activities in the summary, 
the output video must be rendered. This will be done by clicking a button on the summary 
item itself. A l l playback will be halted until the video is rendered. When a Rendered 
summary item is clicked, the rendered output video will be displayed on the Main video 
canvas, along with the interactive overlays described before. The summary item will also 
contain a button taking the user straight to the generated file in the operating system's file 
explorer window. 

35 



Session selection dialog 

Select 
Session 

c \ 
Create 
Session 

T 

- I 

Existing sessions 

Back Confirm 

i 

Available 
video files 

Back 

Selected 
video files 

Confirm 

Figure 6.6: A mockup of the Session selection dialog window. 

Top panel 

The last part of the main UI screen is the top panel. This panel will contain remaining 
commands. These are the launching button for the Session selection dialog window, a 
button for analysis of a new video, a button for retraining of tube descriptions and a 
cancellation button for long operations. The rest of this panel is occupied by the progress 
bar. The progress bar will also contain status messages for long operations. 

Session selection dia log 

This modal dialog lets the user select between two options of session selection. The user 
can either choose to load an existing session from the database, leading them to the actual 
session selection, or they can opt for creation of a new session. This will take the user to 
the session creation part of the dialog, where a subset of all video is selected using two 
lists of videos. Upon confirmation of either part of the dialog, it is closed, and the selected 
session is loaded. 

36 



Chapter 7 

Implementation 

The aim of this chapter is to highlight some of the more interesting aspects of the im­
plementation process. I discuss my choices and describe the challenges faced during this 
period. 

7.1 Choice of tools and technologies 

After the initial research and definition of the individual subsystems described in chapter 6, 
I set out to implement the described system. The first step in the process was the selection 
of a development platform, suitable tools and frameworks. Initially, I chose the following: 

• Microsoft Windows 10 as target and development platform. 

• OpenCV 3.3 as the core library for the majority of computer vision tasks. 

• Python 3.6 as the implementation language. 

Microsoft Windows was chosen because it is an operating system that I use on a daily 
basis and one that I feel the most comfortable with. The OpenCV (Open Source Computer 
Vision) library is an obvious choice for the majority of computer vision related projects. 
This open source, cross-platform library would provide me with a wide variety of important 
tools accessible from C/C+-1-, Java and Python [ ]. 

Finally, Python programing language was selected for its ease of prototyping and ability 
to quickly implement and test out ideas. I was fully aware that a C/C+-1- implementation 
would prove to be more efficient, nevertheless I chose to sacrifice some of the final product's 
speed for faster development. This combination of Python and OpenCV would also make 
the final product quite portable. 

However, after the implementation of primary parts of the Input analyzer, described in 
section 6.3, I started to realize that I may not be as proficient in Python as I have initially 
thought myself to be, so I started looking for an alternative. 

After researching the availability of various OpenCV wrappers, I have reconsidered my 
initial choice of tools as follows: 

• C # and . N E T Framework 4.6.1 were chosen as the language and framework. 

• Emgu C V 3.4 as the C # wrapper for OpenCV 3.4. 

• Windows Presentation Foundation (WPF) was used for the GUI of the system. 

37 



• Microsoft SQL Server 2017 was used as the backing database system. 

• Entity Framework 6.2 was used for database management and communication. 

• Microsoft Visual Studio 2017 was used as the main implementation IDE. 

• Microsoft Visual Studio Team Services were used for version control. 

This combination of tools, with the exception of W P F , is one that I am familiar with. 
This has allowed me to quickly implement the system I had designed, without the need to 
focus on other issues that come with learning a new language or framework. In addition 
to the items listed above, a few minor libraries mentioned throughout this chapter were 
obtained using the NuGet package system. 

7.2 Solution structure 

The entire system was implemented as a single Solution. A Solution is a Visual Studio 
concept representing a complex system consisting of several Projects. A Project is a self-
contained part of the codebase, usually producing single output, in the form of a library or 
an application. I have divided the designed system into the following projects: 

S u m m a r y . B a c k e n d 
This is the core of the solution containing the majority of individual subsystems, 
described in section 6.1. The output of this project is a class library. 

S u m m a r y . D A L 
This project represents the data access layer (DAL) of the system. It provides a 
facade for each part of the system that needs to interface with the database described 
in section 6.4. The output of this project is a class library. 

S u m m a r y . A n a l y z e r 
This project represents the standalone input analyzer application describe in section 
6.3. The output of this project is a console application. 

S u m m a r y . A p p 
This project represents the man G U I application described in section 6.7. The output 
of this project if a Windows application. 

7.3 Implementation of individual components 

This section contains descriptions of the individual components of the implemented system. 

7.3.1 B a c k e n d 

The Backend project implements all of the important subsystems of the summarization 
process. It references the D A L layer for the purposes of database access. 

Input analyzer 
This part is comprised of individual subsystems, corresponding to the proposed design 
from section 6.3. The SmartThreadpool[ ] library is used to move database access to 
multiple different threads. These are the components: 

38 



Frame provider is responsible for the reading of the input videos. In my implemen­
tation I have decided to use the regular R G B image representation consisting of 
three channels with the depth of a single byte each. A n instance of a frame 
provider is initialized with the path of the desired file, and the target working 
resolution. The actual reading of the file's frames is facilitated by the OpenCV 
class Capture. The frame provider also offers buffered reading and preloading of 
a tube's slices' image data, utilized in the process described in section 6.6.1. 

M a s k extrac tor implements the foreground extraction and refinement steps de­
scribed in section 6.3.2. The BackgroundSubtractorMOG2 OpenCV class is used 
for the initial background subtraction. 

C o n t o u r extrac tor detects and filters contours of the extracted mask. This is done 
using the OpenCV method FindContours. 

Tube detector handles the tracking and recording processes of individual tubes. 
OpenCV class TrackerMedianFlow is used for the actual tracking. 

Tube processor oversees tube fmalization and description. It also implements the 
training processes described in section 6.3.3. Training of the Bag of Words model 
is handled by the OpenCV class BOWKMeansTrainer, while the features used 
are implemented by the OpenCV class SIFT. The matching of the keypoints is 
done using the FlannBasedMatcher class. 

Q u e r y processor 
This subsystem, as designed in 6.5, handles the retrieval of similar tubes and appli­
cation of the individual constraints described in section 6.5. A l l of the implemented 
constraints are an extension of an abstract TubeConstraint class. This class defines 
the type of constraint and a method which determines whether or not a tube satis­
fies this constraint. This allows for quick addition and implementation of new tube 
constraint types. 

S u m m a r y assembler 
The final part of the backend project handles the tasks described in section 6.6.1. 
It facilitates the generation of time offsets as well as the actual rendering process. 
A n ability to locate the generated file is present. This is achieved by launching the 
Windows Explorer in a new process targeted at the output file. 

7.3.2 D a t a access l ayer 

The implementation of the database communications was largely done using the Entity 
Framework library. This library offers various abstractions of the database system. It also 
facilitates the creation of the entire database schema on a code-first basis. This was utilized 
during the design of the database. The individual entities described in section 6.4 were 
implemented in the form of model classes located in the namespace Summar.DAL.Model. 
A n application database context was created, defining sets of these model classes. These 
sets were then transformed in a database schema by the framework itself. Subsequent 
changes to the model classes were tracked and applied using database migrations. 

A number of Facade classes was implemented, corresponding to each part of the system 
requiring database access. Each facade exposes a subset of database tasks necessary for the 
given part of the system. 

39 



For the purposes of communication between the D A L and other layers of the system, 
a set of data transfer object classes, or DTOs, was created, resembling the model classes. 
These are purpose-built, data-only classes used in specific places of the individual parts of 
the system. The DTOs are used as inputs and outputs of the facade methods. The model 
classes are never exposed beyond the scope of this layer. 

7.3.3 A n a l y z e r conso le a p p l i c a t i o n 

This is the simplest part of the system consisting of a single console application providing 
an interface for the Input analyzer subsystem implemented in the Backend class library 
described in the previous section. The purpose of this application is to allow the user 
automated launching of the input analysis without the need for a G U I application, or 
further interactions. The CommandLineParser [10] library is used for parsing of the input 
arguments. 

7.3.4 W i n d o w s A p p l i c a t i o n 

The main application provides access to all of the system's features. It is one of the 
most complex parts of the system. The application was implemented using the Model-
View-ViewModel ( M V V M ) pattern. This means that large parts of the code responsible 
for synchronization of the user interface and data structures were not necessary to be 
implemented, as this task is handled by viewmodel bindings and commands. A library 
called QuickConverter was used to reduce the number of necessary value converters. This 
library allows for inline specification of simple converters directly in the W P F bindings. [' ] 
For example, one could bind a Visibility property to a numeric value using an expression, 
without the need for a converter class. Various custom W P F controls were created for this 
project, with the most important being the Video canvas described in the section 6.7. 

V i d e o canvas 

This control primarily serves as a video player. M y initial implementation relied on the 
built in W P F control called the MediaElement. This however proved to be a terrible choice, 
as the control is practically unusable with today's video formats unless the operating system 
is carefully set up with the necessary codecs. I have spent multiple days trying to get this 
control to work reliably with regular H.264 files. I've decided to go the third party route 
and look for an external library for this purpose. I found the library WPFMediaKit which 
initially appeared to provide support for multiple current formats, but in the end still relied 
on the Windows's DirectShow filters. Finally I have discovered the Meta Vic library. This 
library is based on the open source UbVLC library, which powers the popular, codec-less 
video player VLC This fulfilled all my needs for video playback. 

The second problem that needed to be solved regarding the video canvas was need for 
a custom drawing capability. I have decided to implement my own version of a drawing 
control, since I only needed to be able to draw two shapes; a rectangle and an arrow. In 
order to create a W P F control capable of this, I had to break some of the M V V M pattern's 
rules, and revert to a more basic, event driven design within this control. The resulting 
control's interaction is implemented using mouse events and allows for user drawing of 
required shapes. 

The third problem is the drawing of dynamic annotation overlays. This is achieved 
using regular updates of the video canvas's visual tree upon a change in the video position. 

40 



Dynamic annotations 

Figure 7.1: A screenshot of the implemented video canvas displaying a summarized video. 
Direction and ROI constraints are visible as in this image, along with multiple instances 
of the dynamic annotations of individual tubes. The timestamps below each annotation 
correspond to the source video's time of the activity. 

The V L C library caused a bit of a problem here, with a fixed rate of event updates which 
is locked at around 250ms. I was able to successfully bypass this limitation through the 
creation of a separate timer, ticking at the speed the of video file's framerate. This lets 
me redraw the annotations with each new frame. The V L C position update events are still 
used for synchronization of the annotation timer. Upon each redraw, relevant tubes are 
determined based on the current frame number. 

Since the video playback may contain a large number of tubes, it is not feasible to load 
all of these at once. A memory cache is employed instead, storing the previously loaded 
tubes, until a memory shortage occurs. Upon a cache miss, the cache loads the requested 
tube from the database. Once the relevant tube is determined and obtained, the current 
slice is located, and a corresponding Tracker overlay control instance is initialized and added 
to children of the video canvas. The tracker overlay is a clickable rectangle corresponding 
to a tube's bounding box and displays the actual timestamp of the source video frame it 
was detected in. 

Should a background image be used instead of a background video, as exemplified in 
the case of a summary preview preceding the rendering described in section 6.7.1, only the 
timer will be used for the annotation drawing. 

In order to simplify the management of the video canvas playback, a Playbackservice 
is implemented as a singleton. This service allows for changes of media and playing state 
from any part of the UI code. 

41 



Multiple instances of video canvas control can be used concurrently, as evidenced by 
the presence of two video players in the design. A l l of the elements described above can be 
seen in Figure 7.1. 

B a c k g r o u n d tasks 

Multiple long running tasks are present in the system. For this purpose, a progress bar and 
an option of cancellation was necessary to be implemented. I have implemented an extended 
version of a basic background worker, with the ability to post status messages in addition 
to percentual value regarding the progress. Each viewmodel which contains a progress 
bar is derived from a base WorkerViewmodel, which provides the necessary properties and 
methods for this feature. Cancellation is implemented using the regular cancellation token 
available in the extended worker. 

42 



Chapter 8 

Results 

In this chapter I present capabilities of the system I have designed and implemented. This 
is done through a set of walkthroughs, covering main features of the system. Next, I provide 
measurements and assess the results. Finally I discuss a list of shortcomings I have identified 
in my solution. 

8.1 Capabilities of the implemented system 

Since no type of input videos was explicitly specified in the formal requirements for this 
project, I have decided to focus the capabilities of the system on summarization of traffic 
surveillance data. This has allowed me to make assumptions about the size and general 
predictability of the movement of objects. The input analysis process was designed around 
these assumptions. This primarily holds true for the selection of tracking solution, which 
works well for this type of videos as described in section 4.2. Adjustments of the analysis 
phase would need to be carried out, should the type of processed videos change dramati­
cally. This however is a fairly manageable task, since the rest of the system is decoupled 
from the analyzer, which means that the analyzer can be easily swapped for a different 
implementation, fine-tuned to other types of input videos. 

Wi th these clarifications out of the way, I can safely state, that I have successfully man­
aged to implement all of the features designed in chapter 6. The implemented application 
allows for analysis, filtering, similarity-based retrieval and most importantly summarization 
of the input videos, using a graphical user interface. 

8.2 Usage examples 

In this section, multiple examples covering different features of the application are demon­
strated. The best way to demonstrate the system's capabilities is to show it in action. Since 
the nature of the content does not translate well into plain text, screenshots of the system, 
coupled with short descriptions are used. 

8.2.1 E x a m p l e 1 

The aim of the first example is to demonstrate the process of session selection and creation. 
Input videos must be present in the system prior to attempting the steps described in this 
example. The input analysis does not have a dedicated example of its own, since minimal 
user interaction is required. 

43 



This example covers the following functionality: 

• Creation of a new session 

• Selection of an existing session 

When the application is launched, the user is presented with the session selection dialog 
(Figure 8.1). The user specifies whether an existing session will be selected or a new one will 
be created. After this is determined, the relevant part of the dialog is revealed. These can 
be seen in Figures 8.2 and 8.3. The session creation dialog lets the user add any combination 
of compatible videos. Upon confirmation, the given session is loaded in the main window. 

3 Session selectio 

Ez? Select existing session -|- Create new session 

Figure 8.1: A resized Screenshot of the session selection dialog from Example 1 

9 Session selection 

Session #9 
Videos 

1 Summaries 
C'=a:ec: 5--13/2C3 8 C7 PV1 

Session £15 
Videos 

1 Summaries 

Created: 5/15/2018 7:01 P M | 

Session #10 I 
Videos 

4 Summaries 

C'=a:ec: 5/13/ IC3 8 15 PV1 

Session #16 
1 Videos 
1 Summaries 
Created: 5/15/2015 7:06 PM | 

Session £11 
Videos 

5 Summaries 
C'=a:ec: 5/13/2C J 3 8 £i3 PM 

Session #17 
2 Videos 
1 Summaries 
Created: 5/15/2018 7:10 PM 

Session #12 
1 Videos 
2 Summaries 
C'=a:ec 5/13/2C3 PM 

Session #14 
1 Vfdeos 
2 Summaries 
Created: 5/15/2018 6:49 PM 

^ Back S Select Session 

Figure 8.2: A resized Screenshot of the session selection dialog from Example 1 

9 Session selectio 

Available Videos Session videos 
bridge.mp4 ^ ^ ^ • ^ ^ H hwy.mp4 bridge.mp4 

1 540x303 124.00 FPS H Q 
5 T - " 540x303 1 29.97 FPS 

00:00:51 • ^ • 1 00:00:22 

g p p ? "j VIRAT_S_000002_sizesn 

BPr .1 540x303 1 29.97 FPS 00:05:02 

•r|8«i Untitlea-l.mp4 - j» Untitled-l.mp4 
S B V i 540x324 1 30.00 FPS 540x324 | 30 M F=S 

• S H H 00:04:10 ^ B H 00:05:13 

\A Back X Reset Session *S Create Session 

Figure 8.3: A resized Screenshot of the session creation dialog from Example 1 

44 



8.2.2 E x a m p l e 2 

The aim of this example is to generate a video summary of all red vehicles appearing in 
specified lanes. This example covers the following functionality: 

• Generation of a single summary video from multiple source sequences 

• Color constraint application 

• Region of interest constraint application 

W a l k t h r o u g h 

A session with multiple input videos is selected as show in previous example. Two con­
straints are specified; a color constraint with red hue is specified and a region of interest 
constraint is drawn to cover the two leftmost lanes of the highway. This is visible in the 
top left part of Figure 8.5. A summary is generated using the Generate summary button. 
This results in a preview of the summary visible in Figure 8.4. A n output video is produced 
using the provided button, which results in the final summary being rendered and played 
back within the application, along with interactive annotations. This is visible in Figure. 
8.5 

Constra ints 

) C o l o r 

• Region 

Main video 
Summary #35 preview 

Genera te 5umrnary| |X Reset)  

Summar ies (1) 

Summary #35 

25 tubes 

X not rendered 

i Render summary 

' F ind in exp lorer 

Figure 8.4 : A screenshot of a preview of generated summary described in Example 2 

45 



[J Video Summary 

8.2.3 E x a m p l e 3 

The aim of this example is to generate a video summary of all vehicles going from right to 
left, in the second half of the video. This example covers the following functionality: 

• Generation of a summary video from single source 

• Temporal constraint application 

• Directional constraint application 

W a l k t h r o u g h 

A session with a single file is created. This file contains cars going in two directions. Two 
constraints are specified; a directional constraint going from right to left, and a temporal 
constraint restricting the video to its second half. A summary is generated following the 
same steps as Example 1. The resulting video contains only activities matching the defined 
constraints, as is evident from Figure 8.6. 

46 



S e s s i o n # 1 5 

summary_000036_hwy.mp4.avi 

8.2.4 E x a m p l e 4 

The aim of this final example is to search for similar vehicles and generate a summary of 
these vehicle. This example covers the following functionality: 

• Similarity based tube retrieval 

• Similarity constraint application 

W a l k t h r o u g h 

The session from Example 2 is loaded. A van-like vehicle is located (Figure 8.7). A context 
menu is displayed by a right click and similar tubes are searched for. The results of this 
search appear in the right panel. When the Add similarity constraint menu option is clicked, 
a constraint corresponding to the results of the search is created. A resulting summary is 
generated, containing only delivery vehicles similar to the source vehicle, as can be seen in 
8.8. 

47 



00:00:03/00:04:10 

' 00:00:57/OQ:04:10 

X Delete 

Add similarity constraint 

Q> Find similar 

Tube »803 
54 frames 

Tube »804 
54 frames 

Tube #805 
^8 f '3nes 

Tube #710 
65 frames 
89% similar 
Tube #733 
74 frames 
90% similar 
Tube #790 
'CSf-anes 
92% similar 
Tnho #AQ4 

Tube #71 6 
mM 81 frames 

86% similar 
Tube #743 

~J 92 frames 
84% similar 
Tube #880 

~* 63 fra r 
92% similar 

Tube #718 
129 frames 
83% similar 
Tube #763 
'CSf-anes 
84% similar 
Tube #888 
' S9 f 'anes 
83% similar 

Figure 8.7: A Screenshot of context menu and search results described in Example 4 

Constraints 

®> Similarity » e s s i o n # 1 7 

Main video 
summary_Q00038_Untitled-2.mp4.avi 

\0) Generate summary I |X Reset]  

Summaries (3)  

Summary #15 

Z5 tubes 

*f rendered 

Summary #17 

' £- :ubes 

rendered 

Summary #18 

20 tubes 

rendered 

y | Render 5urnnnary| 

I D Find in explorer] 

00:00:01/00:00:11 

Figure 8.8: A Screenshot of resulting summary containing after the application of similarity 
constraint described in Example 4 

18 



8.3 Tests and measurements 
This section documents performance of the implemented system. The entire development 
and testing process was done on a mid-range desktop computer having following specifica­
tions: 

C P U Intel Skylake Core i5 6600K - 4 core/4 thread processor clocked at 4.5GHz 

R A M 16GB of DDR4 

G P U NVidia G T X 1060 6GB 

No explicit G P U acceleration was implemented. 

8.3.1 T e s t i n g m e t h o d o l o g y 

Testing consisted of timed execution of individual processes of the summarization process. 
Following values were measured: 

V a l u e M e a n i n g 
Lin Length of the input video 
NTube Number of tubes detected in the video 
TAna Time spent on input analysis - including B o W histogram generation 
Teen Time spent on generation of a summary containing all detected tubes 
Tften Time spent on rendering of the output video 
Lout Length of the output video 

Table 8.1: Tracked values 

A high activity video (rougly 1.5 new activities per second) was chosen for testing 
purposes. A 60, 30 and 15 minute variants of this video were created, containing a looped 
version of the base video. Resolution of the input video was 800x480 and the processing 
size was set to 540 pixels on the long side, resulting in a resultion of 540x324. Framerate 
of the video was fixed at 30 frames per second with an average bitrate of 7200kbps. 

8.3.2 T e s i n g r e s u l t s a n d consequences 

Following table presents the experimentally obtained values defined in the previous section. 

File v e r t . m p 4 v e r t l 5 . m p 4 vert30 .mp4 ver t60 .mp4 
Lin 00:04:10 00:15:00 00:30:00 01:00:00 
NTube 438 1532 3051 6109 
TAna 00:02:39 00:08 56 00:18:54 00:36:13 
Teen 00:00:04 00:00 24 00:01:24 00:04:17 
Tften 00:02:59 00:17 12 00:42:48 01:21:08 
Lout 00:02:05 00:07 36 00:14:35 00:29:00 

Table 8.2: Measured results 

Several conclusions can be made about the results. The main goal of summarization 
was achieved, with the generated videos being considerably shorter than the input videos 

49 



with an average of 50% reduction of the input videos' length. The length of the analysis 
process scaled linearly with the length of the input video, keeping at around 1.6x the 
speed of source video, which means that the analysis is capable of running in real time. It 
is important to keep in mind that this also includes the costly tube description process. 
Generation of the summary's tube arrangement, was almost immediate for numbers of tubes 
ranging in hundreds, and scaled approximately according to a second order polynomial 
with increasing number of tubes, evident from Figure 8.9. While the algorithm may not be 
optimal, the results are satisfactory, providing the results for large sets of tubes (ranging 
in single thousands) in a matter of minutes. 

0:05:02 

0:04:19 

0:03:36 

0:02:53 

0:02:10 

0:01:26 

0:00:43 

0:00:00 

lAna 

y = ( 5E-llx 2 + 2E-07x - 5E-05 
R2 = 0,9995 

« 

1000 2000 3000 4000 5000 6000 7000 

Figure 8.9: Graph of the analysis time and tube count relationship 

The actual rendering, however was slower than expected. While bearable for at rela­
tively low number of tubes it was too slow for comfortable usage when processing longer 
summaries. This is caused mainly by the solution's resource intensive approach, constantly 
accessing the database as wall as the input source file, each individual tube's image data. 
The memory usage of this portion was satisfactory, peaking at around 580MB. This part 
of the system is a great candidate for further optimization. 

8.3.3 D i s c o v e r e d i m p l e m e n t a t i o n p r o b l e m s 

A severe problem was discovered during the testing period of the analysis phase. The 
current version of used OpenCV wrapper, the Emgu C V , contains a memory leak in the 
implementation of a Disposal routine of all of it's tracker classes. Since the wrapper works 
by calling the native C/C++ code, the unmanaged memory allocated within this code needs 
to be managed by the wrapper itself. The wrapper implements the Dispose pattern, for 
this purpose. This method, should by definition of the . N E T framework do the following: 

„Use this method to close or release unmanaged resources such as files, streams, 
and handles held by an instance of the class that implements this interface. By 
convention, this method is used for all tasks associated with freeing resources 
held by an object, or preparing an object for reuse." [8] 

The wrapper's failure to comply with this contract was verified by a simple experiment. 
A n infinite while loop containing two statements was launched. First, an class implementing 

50 



the Tracker base class was instantialized. Second, the Dispose method of this class was 
called. This led to a gradual increase in the amount of allocated unamanged memory, until 
the object size limit was reached, resulting in a crash. For control purposes, a different 
disposable object was used. When placed in this loop, the application was able to run 
indefinitelly. 

This problem will cause a crash during the analysis phase, if a file having the activity 
frequency comparable to the tested video and the duration of more than about 1,5 hours 
is analyzed. 

8.4 Limitations and known problems 

As much as I have tried to create the best possible version of my system, some problems 
and limitation are known and need to be acknowledged. 

A p p l i c a t i o n 

• The graphical user interface exists primarily for presentational purposes of the 
summarization process. The implemented system was not created as a commer­
cial product, neither was it created to fulfill any kind of formal requirements. It 
is a mere proof of concept of high-level, object-based video summarization. This 
means that some inconsistencies are bound to be present in the graphical user 
interface, as no extensive UI testing was done. Each feature was tested to work 
on its own and in conjunction with related features, during the implementation 
and preparation of the presentational materials, including this text, but I believe 
that there is a high possibility of conflicts arising from random combinations of 
user inputs. 

• The V L C library used for playback tends to fail to display the video in some case. 
This is a known problem described on the developer's page and an application 
restart is necessary if this occurs. 

• The application currently does not support multiple users simultaneously ma­
nipulating the data. This was not a requirement and the behavior is not defined. 
This problem could be solved using the existing session system, making a ses­
sion and its related tubes and files read-only for other users, until the first user 
finishes. 

• The databse layer is expected to be always accessible by the application and a 
failure to fulfill this assumption will lead to undefined behaviour. 

• Due to the verified memory leak in the implementation of used OpenCV wrapper, 
the analysis of long, activity-heavy videos will fail, even though the algorithm 
is sound. This was identified during the testing period and I was not able to 
produce a workaround in time. 

Input analysis 

• As mentioned at the start of this chapter, the video analysis process was designed 
and implemented with traffic videos in mind. This means that different types of 
videos may produce unsatisfactory results. 

• As mentioned in chapter 5, the analysis process assumes that the camera does 
not move during the entire length of the recording. Should the camera move, 

51 



a large number of false movements will be incorrectly tracked, simply because 
of being, correctly classified as moving objects, since they have changed their 
positions. In order to solve this problem, additional step of image registration 
would need to be introduced into the analysis pipeline, increasing its complexity. 

• Quality of the Bag of Words histogram generated during analysis process is 
dependent on the quality of vocabulary used. 

• Slow moving objects may become „fused" with the background, because of the 
selection of the background subtraction method. This comes back to the as­
sumptions made regarding the type of input videos the system is designed to 
analyze. 

• Input video files are assumed to be without corruptions and to not change their 
location or names after entering the system. In order to address this, a video 
file relocation routine could be implemented and added into the GUI, letting the 
user navigate to the new location of the file, updating the stored metadata. 

S u m m a r y generat ion 

• The first-fit approach to summary generation produces short videos, but the 
resulting time arrangement is in not necessarily optimal. A more advanced 
algorithm could be devised to improve this part of the system. 

O u t p u t render ing 

• Currently, the size of the rendered output video is restricted to the working 
resolution it was analyzed at. Scaling could be introduced into key parts of the 
rendering and filtering processes in order to solve this problem. I have decided 
that this is not an important issue, since the actual content of the resulting 
summary is the main point of interest. 

• The edges of activities exhibit hard seams. This is because the visual fidelity of 
the output was not a primary concern. This could be partly improved by appli­
cation of advanced image blending at the edges of rendered slices. Furthermore, 
the entire foreground masks could be stored during the analysis process in order 
to improve the blending. This would introduce additional spatial and temporal 
complexity to the entire process and was omitted from the design of the system 
for efficiency purposes. Simple rectangles are used because they can be easily 
stored and compared. 

52 



Chapter 9 

Conclusion 

The primary goal of this project was to produce a system capable of video summarization. 
In order to achieve this, I had set out to understand the process first. 

After the initial research I was able to present the motivation and various possible 
applications of video summarization. I have familiarized myself with existing works of 
Prof. Peleg, a pioneer in the field. I have researched the various approaches to video 
summarization, until I have identified and defined the type of summarization that is suitable 
for this project. 

I have identified and taken a closer look into the inner workings of the building blocks 
provided by the OpenCV library. I have briefly explained the theoretical background of 
their key parts necessary for comprehension of this text. 

The problem of video summarization was defined, and its various subproblems were 
identified. This was done in terms of its inputs, outputs and processes of the individual 
phases of the main problem. 

I have proposed a solution in the form of a system, dealing with the individual problems 
defined previously. The design of this system was described in terms of its individual parts. 
The concepts of Tubes and related entities were defined. A process of extraction and 
description of these tubes was devised. A database system for storage of these entities 
was designed and deployed. Filtering and retrieval processes were designed for stored 
information. A n application was designed to provide the user with means of interaction 
with stored information and initiation of the summarization process. I have designed the 
graphical user interface of this application, creating mockups and verbal descriptions of its 
elements. 

Having designed the system, I have chosen the implementation tools and platforms. 
Many of these were changed during the development in order to increase productivity. The 
resulting system was comprised of a class library, a database, console application and a 
GUI application. The system was successfully implemented and was able to successfully 
produce a video summary from the provided files. 

This was exemplified by a set of scenarios walking the reader through the process of 
creation of different types of summaries. These examples covered the extent of the imple­
mented functionality. 

The performance and resource requirements of the system were measured and presented. 
The overall viability of the system was assessed, and weak points were identified, along with 
brief ideas for their improvement. 

53 



Bibliography 

[1] Bar, A . : Smart Thread Pool. 
Retrieved from: 
h t t p s : //www.codeproject.com/Articles/7933/Smart-Thread-Pool 

[2] Bouwmans, T.: Recent Advanced Statistical Background Modeling for Foreground 
Detection: A Systematic Survey. Laboratoire M I A , Universitě de La Rochelle. 2011. 
Retrieved from: https://www.academia.edu/938519/ 

[3] Csurka, G . ; Dance, C. R.; Fan, L. ; et al.: Visual Categorization with Bags of 
Keypoints. Xerox Research Centre Europe. 2004. 
Retrieved from: 
h t t p s : //www.cs.cmu.edu/~ef ros/courses/LBMV07/Papers/csurka-eccv-04.pdf 

[4] KaewTraKulPong, P.; Bowden, R.: An Improved Adaptive Background Mixture Model 
for Realtime Tracking with Shadow Detection. Vision and Virtual Reality group, 
Department of Systems Engineering, Brunei University. 2002. 
Retrieved from: h t t p : //citeseerx.ist.psu.edu/viewdoc/download?doi= 
10.1.1.12.3705&rep=repl&type=pdf 

[5] Kálal, Z.; Mikolajczyk, K . ; Matas, J . : Forward-backward error: Automatic detection 
of tracking failures. International Conference on Pattern Recognition. 2010. 
Retrieved from: h t t p : //citeseerx.ist.psu.edu/viewdoc/download?doi= 
10.1.1.231.4285&rep=repl&type=pdf 

[6] Leskovec, J.; Rajaraman, A . ; Ullman, J . : Mining of Massive Datasets. Cambridge 
University Press. 2011. ISBN 1107015359 9781107015357. 

[7] Lowe, D . G . : Distinctive Image Features from Scale-Invariant Keypoints. Computer 
Science Department University of British Columbia. 2004. 
Retrieved from: 
h t t p s : //people.eecs.berkeley.edu/~malik/cs294/lowe-i jcv04.pdf 

[8] Microsoft: IDisposable.Dispose Method documentation. 
Retrieved from: 
h t t p s : //msdn.microsof t .com/en-us/library/system.idisposable.dispose (v= 
vs.110) .aspx 

[9] Moersch, J . : QuickConverter. 
Retrieved from: h t t p s : //github.com/JohannesMoersch/QuickConverter 

[10] Newton, E. : Command Line Parser Library for C L R and NetStandard. 
Retrieved from: h t t p s : //github.com/commandlineparser/commandline 

54 

http://www.codeproject.com/Articles/7933/Smart-Thread-Pool
https://www.academia.edu/938519/
http://www.cs.cmu.edu/~ef
http://citeseerx.ist.psu.edu/
http://citeseerx.ist.psu.edu/
http://eecs.berkeley.edu/~malik/
http://github.com/


[11] Perone, C S . : Machine Learning :: Cosine Similarity for Vector Space Models (Part 
III). 
Retrieved from: h t t p : //blog.christianperone.com/2013/09/machine-learning-
c o s i n e - s i m i l a r i t y - f o r - v e c t o r - s p a c e - m o d e l s - p a r t - i i i / 

[12] Pritch, Y . ; Ratovitch, S.; Hendel, A . ; et al.: Clustered Synopsis of Surveillance Video. 
School of Computer Science and Engineering The Hebrew University of Jerusalem. 
2009. 
Retrieved from: 
h t t p : //www. v i s ion.hu j i .ac . i l/video-synopsis/avss09-ClusteredSynops is .pdf 

[13] Pritch, Y . ; Rav-Acha, A . ; Gutman, A . ; et al.: Webcam Synopsis: Peeking Around the 
World. School of Computer Science and Engineering The Hebrew University of 
Jerusalem. 2007. 
Retrieved from: 
h t t p : //www.vision.huj i .ac. i l/video-synopsis/iccv07-webcam.pdf 

[14] Pritch, Y . ; Rav-Acha, A . ; Peleg, S.: Nonchronological Video Synopsis and Indexing. 
School of Computer Science and Engineering The Hebrew University of Jerusalem. 
2008. 
Retrieved from: 
h t t p : //www. v i sion.hu j i .ac . i l/video-synopsis/pami08-synopsis .pdf 

[15] Rav-Acha, A . ; Pritch, Y . ; Peleg, S.: Making a Long Video Short: Dynamic Video 
Synopsis. School of Computer Science and Engineering The Hebrew University of 
Jerusalem. 2006. 
Retrieved from: 
h t t p : //www.vision.huj i . ac . i l/video-synopsis/cvpr06-synopsis .pdf 

[16] Sinha, U . : SIFT: Theory and Practice. 
Retrieved from: h t t p : / / a i s h a c k . i n / t u t o r i a l s / s i f t - s c a l e - i n v a r i a n t - f e a t u r e -
t r a n s f o r m - i n t r o d u c t i o n / 

[17] Trevino, A . : Introduction to K-means Clustering. 
Retrieved from: h t t p s : //www.datascience.com/blog/k-means-clustering 

[18] About us - BriefCam. 
Retrieved from: http://briefcam.eom/about-us/#history 

[19] OpenCV library. 
Retrieved from: h t t p s : //opencv.org/ 

[20] OpenCV: TrackerMedianFlow Class Reference. 
Retrieved from: 
h t t p s : //docs.opencv.org/3.4.0/d7/d86/classcv_l_lTrackerMedianFlow.html 

55 

http://christianperone.com/2013/09/machine-learning-
http://ac.il/video-synopsis/avss09-ClusteredSynops
http://www.vision.huj
http://ac.il/video-synopsis/
http://sion.hu
http://ji.ac.il/video-synopsis/pami08-
http://www.vision.huj
http://ac.il/video-synopsis/
http://aishack.in/tutorials/sift-scale-invariant-feature-
http://www.datascience.com/blog/k-means-clustering
http://briefcam.eom/about-us/%23history


Appendix A 

Contents of D V D 

The attached D V D contains the following items: 

• Digital version of this text. 

• Digital version of this text intended for printing. 

• A Visual Studio Solution containg the source code of the implemented software. 

• A Readme file describing the steps of launching the software. 

• Reference inputs. 

• Reference outputs. 

• A video demonstration of the implemented features. 

• A digital version of the poster presenting achieved results. 

56 


