
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING
FAKULTA STROJNÍHO INŽENÝRSTVÍ

ENERGY INSTITUTE
ENERGETICKÝ ÚSTAV

FLUID-STRUCTURE INTERACTION BETWEEN
STRUCTURAL COMPONENTS OF HYDRAULIC TURBINE
AND FLUID FLOW
HYDRODYNAMICKÁ INTERAKCE KONSTRUKČNÍCH PRVKŮ VODNÍ TURBINY

DOCTORAL THESIS
DIZERTAČNÍ PRÁCE

AUTHOR
AUTOR PRÁCE

Ing. Michal Havlásek

SUPERVISOR
ŠKOLITEL

prof. Ing. František Pochylý, CSc.

BRNO 2021



 



ABSTRACT
This doctoral thesis deals with two cases of fluid-structure interaction (FSI). The concern of
the first part is to investigate the mutual interaction between the rotor of rotating machinery
and fluid within the annular seals. The effect of the annular seals on the dynamic behaviour of
the whole machine is described by the rotordynamic coefficients. The current models for the
determination of the rotordynamic coefficients of the annular seal use many simplifications.

This thesis presents five different analyses of rotordynamic coefficients of the plain annular
seal of the oxidizer pump. Each of those five analyses uses a different level of simplification.
The most simple analysis models only the volume of fluid within the annular seal. And the
most sophisticated analysis models fluid flow within the entire pump with the eccentric rotor.

The second part of this thesis defines a new method for the solution of interaction between
the fluid and flexible body. This method is based on the solution of the inverse vibration
problem. The direct vibration problem, which is as well known as the eigenvalue problem,
uses the mass, damping and stiffness matrices, which are collectively called ”the structural
matrices”, and determines in the most general case the Jordan matrix and modal matrices
of right and left eigenvectors. The inverse vibration problem is used for the definition of
the structural matrices based on the Jordan matrix and modal matrices of right and left
eigenvectors.

The inverse vibration problems can be divided into two types. If all eigenvalues and
eigenvectors are known, then it is called the full problem. On contrary, if at least one mode of
vibration is unknown, then it is called the partial problem. Five algorithms for the solution of
the inverse vibration problem are defined in this thesis. However, two of these five algorithms
are versatile, each one for one type of inverse vibration problem. The algorithm for the
solution of the full problems was presented in 1979 by Otakar Daněk. The algorithms for the
solution of the partial problem, which are presented in this thesis, are the very first algorithms
for the solution of this type of inverse vibration problem. And the versatile algorithm for
partial problems is called the algorithm for the partial problems with the selection of additional
eigenvalues. The application of these two algorithms for the solution of the inverse vibration
problem for the full problems and the partial problems are demonstrated on the solution of
two cases of interaction between the fluid and flexible body.

KEYWORDS
Fluid-structure interaction, annular seals, added effects, rotordynamic coefficients, inverse
vibration problem, eigenvalue problem, inverse formulas, structural matrices, SDOF Response
Fit Method



ABSTRAKT
Tato dizertační práce se zabývá dvěma případy interakce tělesa s tekutinou (FSI). První z nich
se zabývá analýzou vzájemné interakce mezi rotorem čerpadla a kapalinou uvnitř těsnící spáry.
Vliv těsnící spáry na dynamiku celého stoje je popsán pomocí dynamických parametrů, které
jsou také označovaný jako přídavné účinky. V současnosti používané modely těsnících spár
používají pro stanovení dynamických parametrů řadu zjednodušujících předpokladů.

V této práci je prezentováno pět různých analýz dynamických parametrů těsnící spáry čer-
padla na okysličovadlo. Každá z těchto pěti analýz používá jinou míru zjednodušení výpočet-
ního modelu. V případě největšího zjednodušení je modelován pouze objem kapaliny uvnitř
těsnící spáry. Nejkomplexnější analýza pro stanovení dynamických parametrů těsnící spáry
používá pro výpočet model celého čerpadla s excentrickou polohou rotoru.

Druhá část této dizertační práce definuje novou metodu pro řešení interakce kapaliny s
pružným tělesem. Tato metoda využívá řešení inverzního problému kmitání. Přímý prob-
lém kmitání, který je také označován jako problém vlastních hodnot, používá jako vstupy pro
řešení matice hmotnosti, tuhosti a tlumení, které jsou dohromady označovány jako koeficien-
tové matice, na základě kterých je v nejobecnějším případě stanovena Jordanovská matice a
také modální matice pravostranných a levostranných vlastních vektorů. Při řešení inverzního
problému kmitání jsou stanoveny koeficientové matice na základě Jordanovské matice a mod-
álních matic pravostranných a levostranných vlastních vektorů.

Existují dva případy inverzního problému kmitání. V případě, že jsou známy všechny
vstupní vlastní čísla a vlastní vektory, pak se jedná o tzv. plný problém. Naopak v případě, že
alespoň 1 mód kmitání soustavy není znám, tak se jedná o tzv. částečný problém. V této práci
je prezentováno 5 algoritmů pro řešení inverzního problému v kmitání. Nicméně pro každý typ
inverzního problému kmitání je prezentován jeden univerzální algoritmus. Algoritmus pro řešení
plných problémů byl poprvé prezentován v roce 1979 Otakarem Daňkem. Algoritmy pro řešení
částečných problémů, které jsou prezentovány v této práci, jsou vůbec prvními algoritmy pro
řešení tohoto typu inverzního problému kmitání. Univerzální algoritmus pro řešení částečných
problémů je označován jako algoritmus pro řešení částečných problémů s volbou doplňkových
vlastních hodnot. Aplikace těchto dvou univerzálních algoritmů pro řešení inverzního problému
kmitání pro případ plných i částečných problémů je ukázána na řešení dvou případů interakce
pružného tělesa s kapalinou.

KLÍČOVÁ SLOVA
Interakce tělesa s kapalinou, těsnící spáry, přídavné účinky, dynamické parametry, inverzní
problém v kmitání, problém vlastních hodnot, konstrukční vzorce, koeficientové matice, SDOF
Response Fit Method

HAVLÁSEK, Michal. Fluid-structure interaction between structural components of hydraulic
turbine and fluid flow. Brno, 2021, 329 p. Doctoral thesis. Brno University of Technol-
ogy, Faculty of Mechanical Engineering, Energy Institute. Supervised by prof. Ing. František
Pochylý, CSc.



DECLARATION

I declare that I have written the Doctoral Thesis titled “Fluid-structure interaction between
structural components of hydraulic turbine and fluid flow” independently, under the guidance
of the supervisor and using exclusively the technical references and other sources of information
cited in the thesis and listed in the comprehensive bibliography at the end of the thesis.

As the author I furthermore declare that, with respect to the creation of this Doctoral
Thesis, I have not infringed any copyright or violated anyone’s personal and/or ownership
rights. In this context, I am fully aware of the consequences of breaking Regulation S 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach of
rights related to intellectual property or introduced within amendments to relevant Acts such
as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll., Section 2, Head
VI, Part 4.

Brno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
author’s signature





ACKNOWLEDGEMENT

I would like to express my deepest appreciation for supervising my doctoral studies and doctoral
thesis to my supervisor prof. Ing. František Pochylý, CSc., who led me through the whole
doctoral studies. He inspired me in many areas, his knowledge is incredibly vast and he learned
me to always believe that there is a solution in every situation.

I cannot begin to express my thanks to my beautiful wife Péťa. I would not be able to finish
my studies without her and without her support. We met at the beginning of my doctoral
studies. Sequentially she was my friend, girlfriend, fiancée, and now she is my wife. If the
doctoral studies would bring me only her, it would worth it and it would be more than enough.

I would also like to extend my deepest gratitude to my family, my mother Ludmila, my
father Václav and my sisters Katka and Lucka. I would not be able to even start the studies
without them and their support. I could rely on them every day of my journey through doctoral
studies. My father, Václav Havlásek, who is the welding engineer, provided as well supervision
in the design, manufacturing and testing of the weld joint, which is presented in the thesis.
And my sister Katka also helped me with the corrections of the text of this thesis.

I would not be able to finish my studies without the support and nurturing of my grand-
father František Sedoník, to whom this book is dedicated.

I would like to extend my sincere thanks to doc. Ing. Vladimír Habán, Ph.D., who provided
me countless consultations and we had many other passionate discussions not only about the
topic of the doctoral thesis but as well about dynamics and measurement. It is always a joy
to discuss the engineering topic with him.

I also wish to thank doc. Ing. Pavel Rudolf, Ph.D., who helped me with the CFD
computations and he always found time for me even though he is a very busy man. He is head
of Victor Kaplan Department of Fluid Engineering and it was an honor to work with him.

I am also grateful to Ing. David Štefan, Ph.D., who assisted me with the CFD computation
of the oxidizer pump and as well he provided me many interesting suggestions, which I used
during my studies and during writing of this thesis. And I am very thankful that I found a
great friend.

I must also thank Ing. Petr Lošák, Ph.D., who was the supervisor of my master thesis.
Our discussion about the dynamics always helped me to find a new approach in moments when
I was stuck. His unbiased view often helped me to find another way for solving a problem.

Thanks should also go to Ing. Martin Hudec, who provided supervision in all measurements,
which are presented in this thesis. I also had great pleasure of working with Bronislav Kusý,
who helped with the manufacturing of the fixed beam model. Both of them are great persons
and it is always a joy to meet them. They make the laboratory of Victor Kaplan Department
of Fluid Engineering a special place, where is always a pleasure to be.

I’d also like to extend my gratitude to Ing. Pavel Čupr. We passed not only the doctoral
studies together, but also the master studies. He told me about the possibility to study under
the supervision of prof. Ing. František Pochylý, CSc. We both took an opportunity to learn
a new thing during our internship in the company Voith Hydro Holding GmbH & Co. KG. in
German city Heidenheim an der Brenz. Topics of our doctoral theses are quite similar and it
was great that we were able to help each other.

I am also grateful to Ing. Tomáš Machů. We spent our studies in one office and helped me
in tough moments during my studies when he used his insight into the topic of this thesis and
he helped me to find a new direction in the solution. And he also taught me many interesting
things, for example how to make a perfect cup of coffee.





To František Sedoník, my beloved grandfather.

You taught me everything you knew. You showed me all you believed in. Now I have to go
by myself. Anyway, I still can see you footprints in front of me. Thank you. You will always
be in my heart.





CONTENT

Introduction 15

1 Annular seals 17
1.1 Description of journal bearings, annular seals and squeeze film dampers . . 18
1.2 Analyses of annular seals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 Determination of the velocity and pressure field in annular seal . . . 19
1.2.2 Methods for determination of rotordynamic coefficients . . . . . . . 26

1.3 Determination of rotordynamic coefficients for centred circular whirling . . 30
1.4 Effect of rotordynamic coefficients on dynamic behaviour of rotor systems . 35

1.4.1 Radial force component . . . . . . . . . . . . . . . . . . . . . . . . 36
1.4.2 Tangential force component . . . . . . . . . . . . . . . . . . . . . . 38
1.4.3 Comparison of seals in terms of rotordynamic coefficients . . . . . . 42
1.4.4 Differences between the plain annular seals and plain journal bearings 46
1.4.5 Comparison of different seal designs . . . . . . . . . . . . . . . . . . 46

1.5 Distribution of velocity on rotor surface . . . . . . . . . . . . . . . . . . . . 47
1.5.1 General motion of rotor . . . . . . . . . . . . . . . . . . . . . . . . 48
1.5.2 Centred circular whirling of rotor . . . . . . . . . . . . . . . . . . . 52

1.6 Analysis of annular seal of oxidizer pump . . . . . . . . . . . . . . . . . . . 53
1.6.1 CFD analyses of the oxidizer pump in centred position . . . . . . . 54

1.7 Computational domains used for CFD analyses of annular seal . . . . . . . 55
1.8 Negative whirl frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.9 Overview of tested variants of CFD computations of annular seal . . . . . . 64

1.9.1 CFD analyses set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.10 Analysis 1 - Pure axial flow at seal inlet . . . . . . . . . . . . . . . . . . . 68

1.10.1 Boundary conditions in analysis 1 . . . . . . . . . . . . . . . . . . . 68
1.10.2 Results of CFD analyses and flow regime in analysis 1 . . . . . . . . 70
1.10.3 Determination of rotordynamic coefficients for analysis 1 . . . . . . 72
1.10.4 Review of analysis 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 75

1.11 Analysis 2 - Pre-swirl - 𝜔𝑅/2 . . . . . . . . . . . . . . . . . . . . . . . . . 76
1.11.1 Boundary conditions in analysis 2 . . . . . . . . . . . . . . . . . . . 76
1.11.2 Results of CFD analyses and flow regime in analysis 2 . . . . . . . . 77
1.11.3 Determination of rotordynamic coefficients for analysis 2 . . . . . . 78
1.11.4 Review of analyses 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . 81

9



1.12 Analysis 3 - Pre-swirl - constant values . . . . . . . . . . . . . . . . . . . . 82
1.12.1 Boundary conditions in analysis 3 . . . . . . . . . . . . . . . . . . . 82
1.12.2 Results of CFD analyses and flow regime in analysis 3 . . . . . . . . 83
1.12.3 Determination of rotordynamic coefficients for analysis 3 . . . . . . 84
1.12.4 Review of analysis 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 86

1.13 Analysis 4 - Pre-swirl - Mesh profile . . . . . . . . . . . . . . . . . . . . . . 86
1.13.1 Boundary conditions in analysis 4 . . . . . . . . . . . . . . . . . . . 87
1.13.2 Results of CFD analyses and flow regime in analysis 4 . . . . . . . . 87
1.13.3 Determination of rotordynamic coefficients for analysis 4 . . . . . . 88
1.13.4 Review of analysis 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 94

1.14 Analysis 5 - The pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
1.14.1 Boundary conditions in analysis 5 . . . . . . . . . . . . . . . . . . . 95
1.14.2 Period of rotor movement for eccentric whirling . . . . . . . . . . . 95
1.14.3 Determination of torque for whirl motion . . . . . . . . . . . . . . . 97
1.14.4 Performance characteristics of the oxidizer pump . . . . . . . . . . 99
1.14.5 Results of CFD analyses and flow regime in analysis 5 . . . . . . . . 100
1.14.6 Determination of rotordynamic coefficients for analysis 5 . . . . . . 102

1.15 Comparison of all presented analyses of the annular seal . . . . . . . . . . 108
1.16 Conclusion and thesis outcomes in annular seal analyses . . . . . . . . . . 112

2 Inverse Vibration Problems 119
2.1 Equation of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.2 Solution of homogeneous linear system . . . . . . . . . . . . . . . . . . . . 121

2.2.1 Relation between eigenvalues 𝑠 and 𝜆 for system with simple structure123
2.2.2 Orthogonality properties of the eigenvectors for system with simple

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
2.2.3 Jordan canonical form . . . . . . . . . . . . . . . . . . . . . . . . . 126
2.2.4 Orthogonality properties of the eigenvectors for system with general

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
2.2.5 Orthogonality properties of the eigenvectors for system with general

structure in 2𝑁 space . . . . . . . . . . . . . . . . . . . . . . . . . . 128
2.3 Solution of nonhomogeneous linear system . . . . . . . . . . . . . . . . . . 130

2.3.1 Solution of nonhomogeneous linear differential equation . . . . . . . 131
2.3.2 Solution of nonhomogeneous linear system . . . . . . . . . . . . . . 133
2.3.3 Proof of solution correctness . . . . . . . . . . . . . . . . . . . . . . 134
2.3.4 Simplification of equation for w(𝑡) . . . . . . . . . . . . . . . . . . . 136

2.4 Inverse vibration problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
2.4.1 Continuous undamped problems . . . . . . . . . . . . . . . . . . . . 137
2.4.2 Discrete undamped problems . . . . . . . . . . . . . . . . . . . . . 138
2.4.3 Discrete damped problems . . . . . . . . . . . . . . . . . . . . . . . 139

2.5 Derivation of inverse formulas . . . . . . . . . . . . . . . . . . . . . . . . . 140



2.5.1 Inverse formulas for fat rectangular matrices x and z . . . . . . . . 142
2.5.2 Inverse formulas for thin rectangular matrices x and z . . . . . . . 144
2.5.3 Inverse formulas for square matrices x and z . . . . . . . . . . . . . 145
2.5.4 Overview of inverse formulas . . . . . . . . . . . . . . . . . . . . . . 145

2.6 Algorithms for identification of structural matrices . . . . . . . . . . . . . . 146
2.6.1 Full problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
2.6.2 Partial problem with fat matrices x and z . . . . . . . . . . . . . . 147
2.6.3 Partial problem with thin matrices x and z . . . . . . . . . . . . . . 149
2.6.4 Partial problem with square matrices x and z . . . . . . . . . . . . 150
2.6.5 Partial problem with selection of additional eigenvalues . . . . . . . 152
2.6.6 Overview of algorithms for solution of the inverse vibration problem 156

2.7 Fluid-structure interaction with inverse vibration problem . . . . . . . . . 157
2.8 Experimental modal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 160

2.8.1 Classification of modal analysis identification techniques . . . . . . 160
2.8.2 Free vibration of single-degree-of-freedom systems . . . . . . . . . . 162
2.8.3 Harmonically excited vibration of single-degree-of-freedom systems . 164
2.8.4 SDOF Response Fit Method . . . . . . . . . . . . . . . . . . . . . . 166

2.9 Application 1 - Beam with free ends . . . . . . . . . . . . . . . . . . . . . . 171
2.9.1 Determination of eigenvalues from experiment . . . . . . . . . . . . 172
2.9.2 Analytical determination of eigenvalues and eigenvectors - undamped

vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
2.9.3 Krylov functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
2.9.4 Analytical determination of eigenvalues and eigenvectors - undamped

vibrations - 2nd part . . . . . . . . . . . . . . . . . . . . . . . . . . 180
2.9.5 Damped lateral vibrations of beams . . . . . . . . . . . . . . . . . . 184
2.9.6 Determination of eigenvalues from analytical solution . . . . . . . . 190
2.9.7 Application of algorithm for full problems . . . . . . . . . . . . . . 191
2.9.8 Application of algorithm for partial problems . . . . . . . . . . . . 192

2.10 Application 2 - Fixed beam . . . . . . . . . . . . . . . . . . . . . . . . . . 193
2.10.1 Design and manufacture of fixed beam model . . . . . . . . . . . . 194
2.10.2 Testing of the fillet weld . . . . . . . . . . . . . . . . . . . . . . . . 195
2.10.3 Design of experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 197
2.10.4 Determination of beam length . . . . . . . . . . . . . . . . . . . . . 198
2.10.5 Determination of eigenvalues from experiments . . . . . . . . . . . . 200
2.10.6 Computational model of fixed beam . . . . . . . . . . . . . . . . . . 202
2.10.7 Application of algorithm for inverse vibration problem . . . . . . . 206

2.11 Conclusion and thesis outcomes in inverse vibration problems . . . . . . . 208

Bibliography 213

Nomenclature 227



LIST OF FIGURES 239

LIST OF TABLES 245

List of appendices 247

A Testing of pressure inlet BC 249

B Analysis 1 - Turbulent flow 251

C Analysis 1 - Laminar flow 255

D Analysis 2 - Turbulent flow 259

E Analysis 2 - Laminar flow 263

F Analysis 3 267

G Analysis 4 271

H Analysis 5 - Periods of movement 275
H.1 Positions of rotor for whirl frequency Ω = 0,5𝜔 . . . . . . . . . . . . . . . 275
H.2 Positions of rotor for whirl frequency Ω = 0,75𝜔 . . . . . . . . . . . . . . 276
H.3 Positions of rotor for whirl frequency Ω = 𝜔 . . . . . . . . . . . . . . . . . 277
H.4 Positions of rotor for whirl frequency Ω = 1,25𝜔 . . . . . . . . . . . . . . 278
H.5 Positions of rotor for whirl frequency Ω = 1,5𝜔 . . . . . . . . . . . . . . . 279

I Analysis 5 - Force on rotor within annular seal 281

J Analysis 5 - Frequency spectra of force on rotor within annular seal 283

K Analysis 5 - Mathematical model of force on rotor within annular seal 287

L Analysis 5 - Components of hydraulic reaction force 291

M Structural matrices of beam with free ends - Full problem 293

N General matrices of beam with free ends submerged in water - Full
problem 297

O Structural matrices of beam with free ends - Partial problem 301

P General matrices of beam with free ends submerged in water - Partial
problem 307

Q Testing of weld - Magnetic powder method 313



R Testing of weld - Capillary method 317

S Testing of weld - Metallographic test 321

T Testing of weld - Hardness test 325

U Setup of experiment in steel reservoir 329





INTRODUCTION

Solid bodies are generally surrounded by a fluid. The motion of structure and the flow
of fluid are not independent in that case. The movement of the solid body affects the
flow field around the body itself and the flow of fluid has an impact on behaviour of solid.
The structure and fluid behave as a coupled system. This type of interaction is called
”fluid-structure interaction” (FSI).

First analyses of solid structures made an assumption for simplification, that behaviour
of solid is not influenced by ambient fluid. Similarly, the first analyses of fluid flow as-
sumed that solid boundaries are not deformed by the flow field. This approach is also
applied in contemporary engineering practice. Whenever possible, the structures are anal-
ysed without ambient fluid and the only interaction between fluid flow and surrounding
structures is variations of velocity inside the boundary layer. The reason for the usage of
uncoupled analysis is that even though they are not simple, the coupled FSI analysis is
much, much complicated. However, these approaches are applicable only in cases when
the structure and fluid do not interact with each other.

The fluid-structure interaction can be classified based on the deformations of the
structure. If deformations of the structure are negligible, then it is called the interaction
between the fluid and rigid body. Otherwise, the deformation cannot be neglected and it
is called the interaction between the fluid and flexible body.

This doctoral thesis is separated into two parts. The concern of the first part is annular
seals. Interaction between the rotor of rotating machinery and fluid within the annular
seal has a great influence on the dynamic behaviour of whole machine. The deformations
of rotor in the annular seal are very small and they are usually neglected. Hence, the inter-
action of rotor and fluid within annular seals belongs to the interaction between the fluid
and rigid body. The effect of FSI within the annular seal on the behaviour of whole sys-
tem is normally characterized by so-called ”rotordynamic coefficients”. The first chapter
of this thesis in the first part describes the historical development of analyses of annular
seals and as well the development of method for the determination of rotordynamic coeffi-
cients of seals. The second part of the first chapter is focused on the determination of the
rotordynamic coefficients of the plain annular seal of the oxidizer pump. Five analyses of
the annular seal with different boundary conditions and also computational domain were
carried out and the comparison of those five variants describes the influence of different
phenomenons, which occurs in the annular seals, on the resultant rotordynamic coefficient
of the annular seal.

The second part of the doctoral thesis defines a new method for the solution of in-
teraction between the fluid and flexible body. This method is based on the solution of
the inverse vibration problem, which uses the eigenvalues and right and left eigenvectors
of a system for the determination of mass, damping and stiffness matrices. The inverse
vibration problem was historically solved only for cases, when all eigenvalues and eigen-
vectors of the system were known, so-called ”full problems”. The algorithms for solution

15



of the inverse vibration problem for case, when only a few eigenvalues and eigenvectors
are known (so-called ”partial problems”), are presented in this thesis. The application of
the algorithms for solution of the inverse vibration problem for the full problems and for
the partial problems is demonstrated on solution of two cases of interaction between the
fluid and flexible body.
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1 ANNULAR SEALS

Annular seals are very important parts of all rotating machinery. The close running
clearances between the rotating part and casing are used to restrict a leakage flow within
the machinery which reduces the efficiency of machine. In case of pumps, leakage flow
streams from the rotating machine outlet to the inlet of the impeller. Based on [1], one
percent increase in leakage flow yields one percent decrease in efficiency.

Three basic types of annular seals in pumps are presented in figure 1.1. The impeller
seal (also called as neckring seal or wearing-ring seal) restricts the fluid flow from impeller
discharge through impeller sidewall gap back to impeller inlet. The balance piston seal
has to drop the full head created by the pump. The leakage flow from the balance piston
seal is returned to the pump inlet. The interstage seal limits leakage flow between stages.

Impeller SealInterstage Seal Balance Piston Seal

Fig. 1.1: Types of seals in multistage centrifugal pump (inspired by [2])

Based on the two opening paragraphs, one would assume that it is ideal for pumps to
have seals with as small clearances as possible. However, the leakage flow is not the only
important characteristic of annular seals. A. A. Lomakin [3] was the first who studied the
effect of annular seals on rotordynamics of rotating machinery, specifically high-pressure
pumps. Lomakin established that forces created in the annular seals have a dominant
impact on the dynamics of pumps. The calculated first ”dry” critical speeds (without
ambient fluid) were incomparably lower in comparison with the effective first ”wet” crit-
ical speeds during the operation of the pump. Lomakin also found out the pumps with
different geometries of seals have different critical speeds.

H. F. Black was the first who analysed the effect of variable clearance of the annular
seals by calculating the synchronous responses of single-mass rotors. The resultant re-
sponses are depicted in figure 1.2 which is taken from [4]. Term 𝜔 represents the running
speed of rotor, 𝜔𝑛 is the critical speed of rotor in air, 𝑟𝑟𝑜𝑡 is the amplitude of rotor whirl
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motion and 𝑒𝑟𝑜𝑡 is the eccentricity of rotor. The ϒ was used by Black as a characteristic
of annular seal (ϒ = 𝜁𝑎𝑥𝐿𝑠/𝐶𝑟), where 𝜁𝑎𝑥 is the axial flow friction factor in annular seal,
𝐿𝑠 is the length of seal and 𝐶𝑟 is the seal clearance. Black changes only the annular seal
clearance 𝐶𝑟 in his calculations. The resultant responses show that the critical speeds of
the machine are close to the ”dry” critical speeds only for very large clearances of annular
seal. As a result of clearance reduction the forces in the seal increase. This leads to
elevation of the critical speed and reduction of the response amplitudes.

Response
in air
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ωn [-]

rrot
erot
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Υ=1,0
Υ=1,5

1

Fig. 1.2: Synchronous response of a rotor with annular seal

The forces created in the annular seals have a dominant effect on rotor vibrations
of rotating machinery, which is clear from Lomakin’s and Black’s results. This chapter
in first part provides an overview of rotordynamic models of the annular seals, methods
for determination of rotordynamic coefficients of seals and influence of the coefficients
on machinery response. The second part of this chapter presents results in the author’s
research of the annular seals.

1.1 Description of journal bearings, annular seals and
squeeze film dampers

Several parts of rotating machinery, such as pumps and turbines, consist of two coaxial
cylinders. The inner cylinder is moving and the annular clearance space is filled by fluid.
The most common components, which are composed of the described geometry are journal
bearings, annular seals and squeeze film dampers. The journal bearings are employed to
support rotors. The annular seals are used to reduce backflow in the pumps and the
squeeze film dampers are designed to provide additional damping to rotors to either
stabilize unstable rotors or to reduce amplitudes of synchronous response characteristics.
Even though these parts are utilized differently, the geometry of these components are
identical and it is depicted in 1.3 (created based on [5]).
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Fig. 1.3: Annular clearance space

1.2 Analyses of annular seals

The rotordynamic analysis of annular seals can be divided into two parts. First, it is
necessary to describe the pressure field in fluid-film and the pressure distribution mainly
on rotor surface. The pressure field can be integrated over a rotor surface to define the
forces acting on the rotor. Then in second part, based on these forces the added effects
can be identified.

1.2.1 Determination of the velocity and pressure field in annular
seal

Laminar flow

The basis of modern lubrication theory was provided by Osborne Reynolds who derived
the first equation for the determination of the fluid film pressure distribution in the journal
bearings. Reynolds research explained experimental measurement in railroad car bearings.
He published his theory in [6]. The presented version of Reynolds equation (1.1) is taken
from [5].

𝜕

𝜕𝑥

(︃
𝐻3

𝜂

𝜕𝑝

𝜕𝑥

)︃
+ 𝜕

𝜕𝑧

(︃
𝐻3

𝜂

𝜕𝑝

𝜕𝑧

)︃
= 12(𝑉2 − 𝑉1) + 6(𝑈1 − 𝑈2)

𝜕𝐻

𝜕𝑥
+ 6𝐻 𝜕

𝜕𝑥
(𝑈1 + 𝑈2) (1.1)

Reynolds derived equation (1.1) from the Navier-Stokes equations. He used assump-
tions of small ”clearance to radius ratio” 𝐶𝑟/𝑅 and small Reynolds number. Based on
these assumptions, the pressure gradient across the film (in the radial direction) is negli-
gible and the local and convective accelerations are insignificant. The Reynolds equation
applies for Newtonian, incompressible fluid in the laminar regime which is the main lim-
itation of its use.

In general, the 𝐶𝑟/𝑅 ratio in journal bearings is of the order of 0,001 and the flow is
predominantly circumferential, i.e. driven by rotation of rotor1. On contrary to the jour-

1The shear driven tangential flow, created between two surfaces, one moving tangentially relative to
the other, is called ”Couette flow”.
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nal bearings, the flow in the annular seals consists of two components. There is significant
axial flow induced by pressure gradient2 which is superposed to the circumferential flow
from rotor rotation. In the annular seals, the 𝐶𝑟/𝑅 ratio is generally higher in comparison
to the journal bearings (typically 𝐶𝑟/𝑅 equals to 0,003 for the annular seals [5]).

Based on these differences, the Reynolds number is generally higher in the annular
seals in comparison with the journal bearings. From the beginning of the development of
the journal bearings models and the annular seals models, the flow in the journal bear-
ings was generally assumed to be laminar and turbulent in the annular seals. Hence,
the Reynolds equation was used for the analysis of the journal bearings. However, it is
unsuitable for the modeling of fluid flow in the annular seals. Discussion about the flow
regime in the annular clearance spaces is a concern of the subsequent section.

Turbulent flow

The initial analyses of turbulent flow in the annular seals were performed by ”bulk-flow”
models. One of the main characteristics of the bulk-flow models is the omission of the
fluctuations of fluid local velocity due to turbulence. Secondly, the information about the
shape of the velocity profile is not considered, because the velocity components used for
the analysis of flow are averaged across the seal clearance. The bulk-flow models use only
shear stresses at the stator and rotor surfaces. However, there is no information about
shear stresses within the fluid.

The first analysis of the annular seal was provided by A. A. Lomakin. He analysed
the pressure in annular seal [7] and forces acting on rotor of the plain annular seal with
eccentric rotor but without rotation and whirl of rotor [3]. Other important results of
Lomakin’s research is presented in section 1.4.

H. F. Black adopted results of research of Yamada [8] who described the resistance of
flow in annular clearance space between coaxial cylinders with a rotating inner cylinder.
Black performed analysis of the plain annular seal with rotation of rotor which was pre-
sented in [9]. Averaged circumferential velocity was assumed to equal 𝑅𝜔/2. Set of the
differential governing equations consist of the continuity equation and the axial and cir-
cumferential momentum equations. This set was solved with the perturbation method3.
With application of the linear perturbation theory, Black divided the clearance, veloc-
ity and pressure into mean components that arise in case of the absence of whirl and
small perturbations caused by eccentricity. The small parameter used in the perturbation
analysis is eccentricity ratio 𝜀 ( 𝜀 = 𝑒/𝐶𝑟 ). Perturbed quantities are substituted into the
governing equations that can be divided into two sets of equations. One set is for the
mean flow quantities (so-called ”zeroth-order equations”) and another is for the perturbed

2Pressure-induced flow is called ”Poiseuille flow”.
3The perturbation method is a mathematical tool for finding an approximate solution to a problem,

which is similar to a problem with the exact solution. A similar problem is used as ”starting point”. It
is necessary to break the problem into solvable part and perturbation part. The perturbation theory is
presented e.g. in [10].
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flow quantities (so-called ”first-order equations”). The solution of the first-order equations
yields the flow field, which results in terms of the small motion of rotor around a centred
position. The perturbation method was always used for the analytical solution of the
fluid flow in annular seals in case of rotor whirl. Black as well derived formula for a force
acting on the rotor of seal which was expressed as the linear function of displacement.

D. W. Childs used the Hirs bulk flow model, determined for lubricant film in turbu-
lent regime [11]. Childs developed analysis of plain annular seal with included ”swirl”.
It enabled to calculate a flow with different averaged circumferential velocity than only
fixed value 𝑅𝜔/2, which was used in [9]. Childs presented his results in publications [12]
and [13]. The possibility of circumferential velocity specification in the analyses of an-
nular seals was a very important achievement. The circumferential velocity in the plain
annular seal depends on the roughness of the rotor and stator, the length of the annular
seal and on the ”pre-rotation” (or ”pre-swirl”) at the inlet to the seal. In picture 1.1,
three different types of seals in multistage centrifugal pump are shown. In case of the
impeller seal, the fluid flows from the impeller discharge through the impeller sidewall
gap, where the circumferential velocity of fluid decreases since the rotor surface velocity
𝑅𝜔 also decreases with decreasing radius. Because of the inertia of fluid, fluid enters to
the annular seal with a different mean circumferential velocity than in the case of the
Couette flow which was assumed in [9]. Childs also created a geometric generalization of
his annular seal model to examine the leakage flow and the dynamic characteristics of the
impeller sidewall gap [14].

The bulk-flow models were used for modeling of velocity and pressure field in an-
nular seals with more complex geometries, e.g. the tapered seal [15], stepped seal and
grooved seal [16] depicted in figures 1.4-1.6 (created based on [17]). Theories, presented
in these papers, give qualitative (but not quantitative) agreement with experimental mea-
surements. But none of these theories satisfactory predict the rotordynamic coefficients.

Rotor

Stator
Flow

Fig. 1.4: Tapered seals

Rotor

Stator
Flow

Fig. 1.5: Stepped seals

Flow Rotor

Stator

Fig. 1.6: Grooved seals
S. Florjancic [18] developed a new theory for the grooved annular seals called the

”three-control-volume bulk-flow model”. One grooved passage is split into three different
sections: two that are close to the rotor and third in the groove. The main purpose of the
division is to resolve the flow field and pressure distribution more precisely. The rotor-
dynamic coefficients yielded from this new approach are determined in better agreement
with the experiments. The improvement of the Florjancic model was presented in [19]
where the effect of diverging flow in the groove was included. The ”three-control-volume
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bulk-flow model” was as well used for the determination of the rotordynamic coefficients
of the annular seal in the eccentric rotor position [20] that were validated against experi-
ments with the eccentric grooved seal [21].

A different analytical approach for the determination of the velocity and pressure field
in annular seals was developed by F. Pochylý. He developed a mathematical model of
turbulent flow in annular seals based on the Navier-Stokes equations [22]. The turbulent
flow is modeled by modification of viscosity of fluid which is calculated as a sum of the
dynamic viscosity 𝜂 and turbulent viscosity 𝜂𝑇 . The turbulent viscosity is a function of
spatial coordinates and time and it is generally not known. The effect of turbulent vis-
cosity is covered by loss coefficients which have to be determined experimentally. This is
the main limitation of the method. Modeling of the velocity and pressure field is divided
into two separate parts. One is used for modeling of the shear driven tangential flow and
another one for the pressure-induced flow. Resultant flow field within the annular seal
is given by the superposition of these two parts. The mathematical model of pure shear
driven tangential flow which occurs in the journal bearings could be improved by a more
complex non-linear mathematical model presented in [23].

The mathematical model of the flow field within the annular seal, where the velocity
and pressure field are modeled directly without any superposition of elementary flow fields
was presented in [24]. Turbulence is also covered by the loss coefficients which have to
be set by the measurement. The mathematical models, presented in [22] and [24] were
applied on the grooved seal but they can be used for every geometry of annular seal.
Nevertheless, these methods are not commonly used in the turbomachinery industry.

The second currently used method for the analysis of turbulent flow in annular seals
is based on the solution of the set of equations that consists of the continuity equation,
Reynolds-averaged Navier-Stokes equations (RANS) and equation(s) of turbulence model
(hereinafter the RANS equations set). The early work [25] presented a ”quasi” 3D tech-
nique for solving flow in the annular seal by the Finite difference method (FDM) with the
application of the Standard k-𝜀 turbulence model. It is not a full 3D technique because
it uses 2D computation mesh in one radial section. The same authors derived a ”full” 3D
solution of RANS in the cylindrical coordinate system by FDM [26]. The Standard k-𝜀
model was applied for modeling turbulent flow.

In paper [27], a theory of method for solving RANS equations set in the annular
seal by the Finite element method (FEM) was described. The application of this method
is presented in [28] and analysis of plain annular seal with pressure difference boundary
conditions without ”pre-rotation” of fluid was performed there. The Baldwin–Lomax tur-
bulence model was used for turbulence modeling. This is "0-equation turbulence" where
only eddy viscosity is defined to define turbulence.

The main currently used numerical method for analyses of fluid flow in the annular
seals is the solution of RANS equations set by the Finite volume method (FVM). Nowa-
days, it is as well the main method employed in Computational Fluid Dynamics (CFD).
One of the first analyses of the annular seal by the FVM is presented in [29] where the
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Standard k-𝜀 model was applied for modeling. The results are in good agreement with
the experimental study [30]. The first commercial CFD code based on FVM was called
”SCISEAL” and it was described in [31]. It uses as well the Standard k-𝜀 model.

The k-𝜀 turbulence models are the most employed models in analyses of fluid flow in
the annular seals. These turbulence models are two-equation models that are using two
transport equations, one for the turbulence kinetic energy 𝑘 and another for the rate of
dissipation of turbulence energy 𝜀. The early analyses applied the Standart k-𝜀 model
that was later on replaced by the Realizable k-𝜀 model. The k-𝜀 turbulence models belong
to the so-called high Reynolds number turbulence models. They have a better prediction
of the flow field in areas with high Reynolds number (e.g. in the core region) but they gen-
erate poor results in the proximity of walls. This is in contradiction with the requirement
of a rotordynamic analysis of annular seals because it is necessary to properly predict the
pressure distribution on the rotor.

Researches [32] and [33] compared the solution of the flow field in annular seal with
the application of the Standart k-𝜀 model with laser anemometer measurement of velocity
field [34]. Both papers concluded a good agreement between the calculated and measured
velocity fields. The measurements [34] indicate that the turbulence is anisotropic in the
annular seal. However, the k-𝜀 model is isotropic turbulence model which leads to po-
tential problems with the resultant flow field. Research [32] concluded that despite the
above-mentioned disadvantages of the k-𝜀 model for modeling of fluid flow in the annu-
lar seals it is possible to use this turbulence model for realist prediction of the pressure
distribution on the rotor of annular seal which is necessary for the correct determination
of rotordynamic coefficients of the annular seal. On the other hand, other details of flow
in the annular seal could be incorrectly solved by the k-𝜀 model. Based on this result,
the k-𝜀 model can be applied for rotordynamic coefficients prediction and it is also used
for modeling of leakage flow through the annular seals but it is not possible to correctly
describe the turbulence within the seal.

This result was confirmed in [35] where the results of the k-𝜀 model are compared with
results obtained from computation with the Reynolds-stress turbulence model (RSM). The
conclusion of the study shows that the k-𝜀 model underestimates turbulence interaction
in the core region in comparison with RSM but it predicts similar pressure distribution
in the proximity of walls.

Nowadays, the fluid flow in annular seals is modeled both by the bulk-flow models
and by CFD with the application of FVM in commercial computational tools. The main
advantage of the bulk-flow models is a shorter analysis time. However, it is necessary to
build a whole new procedure for every single annular seal geometry. Even though more
complex bulk-flow models are created, e.g. [36], there are still the annular seals geometries
that have not been covered by the bulk-flow models yet. The disadvantage of the CFD
approach is without any doubt very long computational time. However, the procedure
of the flow field calculation is always identical and it is possible to create a model of the
whole device, to calculate the flow field within it and to determine the rotordynamic co-

23



efficients based on that complex computation. The rotordynamic analyses of the annular
seals performed in commercial softwares are presented e.g. in [37], [38] and [39].

Investigation of the rotordynamic coefficients of the plain annular seal with usage of
CFD modeling was also performed in [40]. The rotordynamic coefficients were deter-
mined for a wide-range of eccentricities for centred and eccentric rotor positions. The
computations were carried out to both hydrophobic and hydrophilic rotors and two con-
figurations of pressure difference over the annular seal were investigated. The results of
CFD computations were compared with experimental measurements and they were in
good agreement.

Flow regime determination

Every rotordynamic textbook which describes journal bearings and annular seals, e.g. [5],
[41] or [42], states that the flow within the journal bearings is usually laminar and the flow
in the annular seal is ordinarily turbulent. The main reasons for this difference are bigger
clearance and axial flow in annular seals. These conclusions are the only information about
the flow regime in annular seals in the above-mentioned books. It is possible to solve both
laminar and turbulent flow in currently used commercial CFD softwares. The flow regime
significantly affects the leakage flow through the annular seals and consequently affects
their rotordynamic coefficients. Hence, the correct prediction of the flow regime within
the annular seal is very important.

First studies of transition between laminar and turbulent flow in the annular clearance
spaces were dealing with the Couette flow (shear driven tangential flow) which occurs in
journal bearings. G. I. Taylor mathematically predicted and experimentally confirmed
the vortex flow regime of the Couette flow between two concentric cylinders where the
inner cylinder rotates, when toroidal vortices occur in the fluid flow [43]. These vortices
are known as ”Taylor vortices”. With this vortex secondary flow pattern, there are four
potential flow regimes:

• Laminar flow
• Laminar flow with vortices
• Turbulent flow with vortices
• Turbulent flow

Each regime of this sequence is stable in its own range of working parameters and each
regime behaves differently from the others.

The flow transition from one regime to another is preceded by flow instability. Two
dimensionless quantities, the Reynolds number 𝑅𝑒 and Taylor number 𝑇𝑎, were defined
to distinguish the above-mentioned regimes and they are defined for the Couette flow by
equations (1.2).

𝑅𝑒 = 𝐶𝑟𝜔𝑅

𝜈
; 𝑇𝑎 =

(︃
𝐶𝑟

𝑅

)︃
𝑅𝑒2 (1.2)
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Fig. 1.7: Radial and circumferential velocity profiles

The transitions between flow regimes are defined in [44]. The critical value of the
Reynolds number 𝑅𝑒𝑐, when the flow transits from laminar directly to the turbulent
regime, is 𝑅𝑒𝑐 equals to 2000. Based on equation (1.3) the Taylor number is a quadratic
function of the Reynolds number. Hence, the square root of the critical value of the Taylor
number 𝑇𝑎𝑐

1/2 = 41,3 is used for the transition between flow, which means the critical
value of the Taylor number is 𝑇𝑎𝑐 = 1707,8, which is valid for small 𝐶𝑟/𝑅 ratios. It was
established that if the value of 𝑇𝑎𝑐 is reached before the Reynolds number attains its
critical value 𝑅𝑒𝑐, the flow transits to vortex flow if 𝑅𝑒 ≥ 2000. However, if the Reynolds
number exceeds is critical value while 𝑇𝑎 is still below 𝑇𝑎𝑐, then the flow transits from
laminar directly to turbulent regime.

Flow in the annular seals without rotor whirl consists of a superposition of the axial
flow due to the pressure difference across the annular seal and the circumferential flow
induced by rotation of the rotor, in other words superposition of the Poiseuille and Cou-
ette flow. Radial and circumferential velocity profiles for the laminar and time-averaged
turbulent flows without the pre-rotation of fluid are depicted in figure 1.7 (inspired by
[45]). It is necessary to define two Reynolds numbers for a description of the combination
of flow fields in the annular seals, the axial Reynolds number 𝑅𝑒𝑎𝑥 and the circumferential
Reynolds number 𝑅𝑒𝜔 defined by equations (1.3) (based on [1]).

𝑅𝑒𝑎𝑥 = 2𝐶𝑟𝑣𝑎𝑥

𝜈
; 𝑅𝑒𝜔 = 2𝐶𝑟𝑣𝑐𝑖𝑟

𝜈
, (1.3)

where 𝑣𝑎𝑥 is the axial velocity averaged over seal clearance and 𝑣𝑐𝑖𝑟 is the circumferential
velocity averaged over seal clearance.

The circumferential velocity 𝑣𝑐𝑖𝑟 greatly depends on the pre-rotation of flow at the
annular seal inlet. The circumferential velocity in long annular seals reaches an asymptotic
value 𝑣𝑐𝑖𝑟 = 0,5 · 𝜔𝑅 in downstream direction but it can be very different at the annular
seal inlet. The fluid motion in the circumferential direction at the inlet to the annular
seal has a significant effect on the potential destabilization of rotor [46]. To evaluate the
fluid pre-rotation at the inlet to the annular seal and to compare flow conditions among
seals, the pre-swirl ratio 𝜒 was introduced and it is defined by (1.4).

𝜒 = 𝑣𝑐𝑖𝑟,𝑖𝑛𝑙𝑒𝑡

𝜔𝑅
(1.4)
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Both Reynolds numbers have to be combined into a single value for determination
of transition between laminar and turbulent flow regime, hereinafter referred to as the
combined Reynolds number 𝑅𝑒* and defined by (1.5), which is presented in [1].

𝑅𝑒* =
√︃
𝑅𝑒𝑎𝑥

2 + 1
4𝑅𝑒𝜔

2 = 𝑅𝑒𝑎𝑥

⎯⎸⎸⎷1 + 1
4

(︃
𝑣𝑐𝑖𝑟

𝑣𝑎𝑥

)︃2

(1.5)

The Taylor vortices are, as well as in journal bearings, an issue in case of flow within
the annular seals, but there are no reliable correlations for description of the transitions
with the vortex flow. The transition of regimes in the annular seals are described based
on empirical conclusions. Pure laminar flow in the seals occurs for 𝑅𝑒* < 2000 and the
flow is purely turbulent if 𝑅𝑒𝜔 > 4000, even if 𝑅𝑒𝑎𝑥 = 0 (no axial flow). A combination
of axial and circumferential flow and determination of boundary, which defines the region
with the pure turbulence flow without vortices has not been covered yet.

Description of flow transitions in case of the whirl motion of rotor in the annular seal
is even more difficult than in the previous case. Based on the textbook [47], it is necessary
to define three Reynolds numbers in case of rotor whirl. The axial Reynolds number 𝑅𝑒𝑎𝑥

and circumferential Reynolds number 𝑅𝑒𝜔, used in the previous part, and furthermore the
whirl Reynolds number 𝑅𝑒Ω, which should cover the effect of whirl on local circumferential
velocity. Even though whirl motion has definitely an effect on the flow regime transitions
within the annular seals, no research on this topic has been published yet.

1.2.2 Methods for determination of rotordynamic coefficients

H. F. Black and D. N. Jenssen [48] were the first, who introduced the concept of the de-
scription of the annular seal dynamic characteristics by rotordynamic coefficients. They
analytically determined the rotordynamic coefficients by modeling the annular seal forces
as a linear function of displacement based on results presented in [9]. Their model rep-
resents the lateral motion of the annular seal rotor. The force-displacement model is
described by equation (1.6).
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Black and Jenssen compared the results of the linear model with the results of non-
linear analysis. They concluded the linear results yield appreciable errors only at high
eccentricity. Hence the linear model is applicable up to eccentricity ratios 𝜀 ≤ 0,5 (𝜀 is
defined by equation (1.7)).

𝜀 = 𝑒

𝐶𝑟

(1.7)

D. W. Childs and J. B. Dressman [49] developed a method for determination of the
rotordynamic coefficients based on time history of horizontal 𝐹𝑥 and vertical 𝐹𝑦 com-
ponents of force induced by the fluid to the rotor. Based on above-mentioned research
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[48], dynamic coefficients describe behaviour of the annular seals in case of small motion
around the equilibrium position. Childs and Dressman used a case when the annular
seal rotor performs small-eccentricity centred circular orbits, which is one of the potential
states and as well very important in rotordynamic practice. If the rotor is moving with
centred circular orbits, the force-displacement model can be rewritten to equation (1.8).
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Authors derived equations (1.9) and (1.10), which lead to the determination of the
rotordynamic coefficients in terms of radial 𝐹𝑟 and tangential 𝐹𝑡 force components, which
are in case of centred steady-state rotor position time-independent, unlike 𝐹𝑥 and 𝐹𝑦.

𝐹𝑟

𝑒
= −𝐾 − Ω𝑐+ Ω2𝑀 (1.9)

𝐹𝑡

𝑒
= 𝑘 − Ω𝐶 − Ω2𝑚 (1.10)

Term Ω represents a quantity called ”whirl frequency” or ”precession frequency”. Deriva-
tion of equations (1.9) and (1.10) is fully covered in section 1.3. The rotordynamic coeffi-
cients are obtained from these equations by a least-square curve fit on force components
𝐹𝑟 and 𝐹𝑡, defined by an analysis of the pressure distribution on the rotor of the annu-
lar seal. It is necessary to compute the force components 𝐹𝑟 and 𝐹𝑡 for a range of the
whirl frequency Ω. Equations (1.9) and (1.10) are from a mathematical point of view
the second-degree polynomials. Hence, the calculations have to be performed for at least
three different whirl frequencies. Childs in [5] suggested to use whirl frequencies from
range Ω ∈ ⟨ 0 ; 2 ⟩.

Childs and Dressman applied derived method for determination of the rotordynamic
coefficients on the experimental evaluation of the rotordynamic coefficient of plain and
tapered annular seal with the eccentricity ratio 𝜀 = 0,25. The axial Reynolds number was
specified over the range 𝑅𝑒𝑎𝑥 ∈ ⟨ 5000 ; 30 000 ⟩ and the circumferential Reynolds number
over the range 𝑅𝑒𝜔 ∈ ⟨ 0 ; 11 000 ⟩. The excitation was synchronous (Ω/𝜔 = 1). The
experimental results exhibit good agreement with the analytical results presented in [13].

The main limitation of this method is the assumption of centred rotor position and
time-independent force components 𝐹𝑟 and 𝐹𝑡. In case of eccentric steady-state rotor
position, force components 𝐹𝑟 and 𝐹𝑡 are time-dependent. Hence, the presented method
is inappropriate in case of an eccentric rotor position.

Even though the method described in [49] is applicable only for centred rotor positions,
authors of paper [50] and also of research report [40] applied this method for eccentric
steady-state rotor position. The results show that radial and tangential components of
force acting of the rotor are truly time-dependent (for the small displacement of the ro-
tor from centric position). The oscillations of these force components around mean value
have small amplitudes compared to mean values of force components. Based on these out-
comes, authors used mean values of 𝐹𝑟 and 𝐹𝑡 for the determination of the rotordynamic
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coefficients, but the Black and Jenssen’s linear force-displacement model was replaced by
a special-purpose non-linear model.

The rotordynamic coefficients can be in case of analytical models determined directly
within the perturbation analysis in the solution of the first-order equations. The pertur-
bation parameter in the annular seals is the eccentricity ratio 𝜀 and the rotordynamic
coefficient can be established from the definition of 𝜀 as a function of time. D. W. Childs
used in analysis [12] an approach, adopted from research [49], where the seal rotor executed
small-eccentricity centred circular orbits. This technique was adopted in the majority of
the analytical methods.

R. Nordmann and H. Massmann [51] developed an identification procedure for the
determination of the rotordynamic coefficients of annular seals, which does not use the
circular orbit assumption and it does not matter if the rotor is centred or not. The test
rig for Nordmann and Massmann’s identification method consists of a horizontally em-
bedded, vertically symmetric shaft. The test rig should be built with two symmetrically
arranged seals and the housing is as well vertically symmetrical. The housing is excited
by the test force, which is normally achieved by a hammer impact. Applying test force
on the vertical symmetry axis of the housing, response of the system is only translation
motion in two directions, orthogonal to the axis of the shaft. The output signal from mea-
surement is relative motion between housing and shaft. The force-displacement relation
between input force and resultant displacement was defined in [51] by equation (1.11).

2 · kexp̃︀uexp = ̃︀Fexp , (1.11)

where ̃︀uexp is vector of complex amplitudes of displacement and ̃︀Fexp is vector of complex
amplitudes of force. It is not easy to determine the complex stiffness matrix kexp (defined
by (1.12)) based on experimental measurements.

kexp =

⎡⎢⎢⎢⎢⎣
𝑘𝑥𝑥 −

(︃
𝑚exp

2 +𝑚𝑥𝑥

)︃
Ω2 + iΩ𝑐𝑥𝑥 𝑘𝑥𝑦 −𝑚𝑥𝑦Ω2 + 𝑐𝑥𝑦

𝑘𝑦𝑥 −𝑚𝑦𝑥Ω2 + 𝑐𝑦𝑥 𝑘𝑦𝑦 −
(︃
𝑚exp

2 +𝑚𝑦𝑦

)︃
Ω2 + iΩ𝑐𝑦𝑦

⎤⎥⎥⎥⎥⎦ (1.12)

If equation (1.12) is inverted, the equation (1.13), which consists the complex mobility
matrix hexp, is obtained. The matrix hexp, contrary to kexp, can be evaluated based on
measurements.

1
4𝜄 · hexp

̃︀Fexp = ̃︀eexp (1.13)

Term 𝜄 and matrix hexp are defined in [51] and they consist of the direct and cross-coupled
terms of stiffness, damping and mass matrices of added effects (defined in section 1.6).

The matrix hexp is determined from input and output signals, which are measured in
the time domain. The vectors ̃︀Fexp and ̃︀uexp are obtained from the force and response
signals with application of the Discrete Fourier transform (DFT) or in case of [51], the
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Fast Fourier transform (FFT).
The rotordynamic coefficients are estimated either by fitting analytical response func-

tions to the measured functions, or the procedure is based on the principle of matrix theory
that the product of matrices kexp and hexp should be the identity matrix I because they
are mutually inverse.

The method described in [51] was adopted by C. C. Nelson and D. T. Nguyen who
present in papers [52] and [53] analytical method for determination of the rotordynamic
coefficients for eccentric steady-state rotor position. This procedure uses FFT for the
integration of zeroth-order equations. Results were compared with experimental mea-
surement [54], but the comparison was done only for direct and cross-coupled stiffness
terms.

Even though the method developed by Nordmann and Massmann allows determina-
tion of the rotordynamic coefficients for the eccentric rotor position, the results show quite
a lot of scatter, and hence, Childs and Dressmann model is generally used nowadays.

Kanemori and Iwatsubo [30] generalized the method of Childs and Dressman for long
annular seals. All methods, which used the force-displacement model defined by equa-
tion (1.6) are reasonably accurate only for seals of length to diameter ratios 𝐿𝑠/𝐷 ≤ 0,5
(so-called ”short seals”). Not only force, but as well moment components 𝑀𝑥 and 𝑀𝑦

act on the rotor because of the non-uniform pressure distribution on the rotor surface.
The effect non-uniformity of pressure field is negligible for short seals, but it has to be
included for long annular seals with 𝐿𝑠/𝑅 ≥ 1. Kanemori and Iwatsubo enlarged the
force-displacement model (1.6) by adding moment components 𝑀𝑥 and 𝑀𝑦. The force-
displacement model for the long annular seals is defined by (1.14).

−

⎡⎢⎢⎢⎢⎢⎣
𝐹𝑥

𝐹𝑦

𝑀𝑥

𝑀𝑦

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
𝑘𝑥𝑥 𝑘𝑥𝑦

𝑘𝑦𝑥 𝑘𝑦𝑦

𝑘𝜑𝜑 𝑘𝜑𝜉

𝑘𝜉𝜑 𝑘𝜉𝜉

⎤⎥⎥⎥⎥⎥⎦
⎡⎣ 𝑥

𝑦

⎤⎦+

⎡⎢⎢⎢⎢⎢⎣
𝑐𝑥𝑥 𝑐𝑥𝑦

𝑐𝑦𝑥 𝑐𝑦𝑦

𝑐𝜑𝜑 𝑐𝜑𝜉

𝑐𝜉𝜑 𝑐𝜉𝜉

⎤⎥⎥⎥⎥⎥⎦
⎡⎣ �̇�

�̇�

⎤⎦+

⎡⎢⎢⎢⎢⎢⎣
𝑚𝑥𝑥 𝑚𝑥𝑦

𝑚𝑦𝑥 𝑚𝑦𝑦

𝑚𝜑𝜑 𝑚𝜑𝜉

𝑚𝜉𝜑 𝑚𝜉𝜉

⎤⎥⎥⎥⎥⎥⎦
⎡⎣ �̈�

𝑦

⎤⎦ (1.14)

Even though motion of rotor in the annular seal is translation, moment components
𝑀𝑥 and 𝑀𝑦 acting on rotor cause tilting of rotor around horizontal 𝜑 and vertical axis 𝜉.
In case of centred steady-state rotor position, the force-displacement model is simplified
to equation (1.15) (similarly to (1.8)) and the rotordynamic coefficients can be established
from the radial 𝑀𝑟 and tangential 𝑀𝑡 moment components and, as well as in previous ap-
proaches, the force components 𝐹𝑟 and 𝐹𝑡. Ale of these components are time-independent.
Kanemori and Iwatsubo derived equations (1.16) and (1.17), which in combination with
equations (1.9) and (1.10) enable the derivation of the rotordynamic coefficients.

−

⎡⎢⎢⎢⎢⎢⎣
𝐹𝑥

𝐹𝑦

𝑀𝑥

𝑀𝑦

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
𝐾 𝑘

−𝑘 𝐾̃︁𝐾 ̃︀𝑘
−̃︀𝑘 ̃︁𝐾

⎤⎥⎥⎥⎥⎥⎦
⎡⎣ 𝑥

𝑦

⎤⎦+

⎡⎢⎢⎢⎢⎢⎣
𝐶 𝑐

−𝑐 𝐶̃︀𝐶 ̃︀𝑐
−̃︀𝑐 ̃︀𝐶

⎤⎥⎥⎥⎥⎥⎦
⎡⎣ �̇�

�̇�

⎤⎦+

⎡⎢⎢⎢⎢⎢⎣
𝑀 𝑚

−𝑚 𝑀̃︁𝑀 ̃︁𝑚
−̃︁𝑚 ̃︁𝑀

⎤⎥⎥⎥⎥⎥⎦
⎡⎣ �̈�

𝑦

⎤⎦ (1.15)
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𝑀𝑟

𝑒
= −̃︁𝐾 − Ω̃︀𝑐+ Ω2 ̃︁𝑀 (1.16)

𝑀𝑡

𝑒
= ̃︀𝑘 − Ω ̃︀𝐶 − Ω2̃︁𝑚 (1.17)

As same as in the method of Childs and Dressman, the rotordynamic coefficients can be
established by a least-square curve fit algorithm on a least three values of 𝐹𝑟, 𝐹𝑡, 𝑀𝑟 and
𝑀𝑡, determined from computations with different whirl frequency Ω of whirl motion.

The transverse motion of the rotor was assumed in all previous methods. In the long
annular seals, it is necessary to add a tilting of the rotor to the transverse motion of the
rotor. The force-displacement model for the long annular seals with a combination of
translation and tilting of the rotor was introduced in [55] and it is defined by equation
(1.18).

−

⎡⎢⎢⎢⎢⎢⎣
𝐹𝑥

𝐹𝑦

𝑀𝑥

𝑀𝑦

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
𝑘𝑥𝑥 𝑘𝑥𝑦 𝑘𝑥𝜑 𝑘𝑥𝜉

𝑘𝑦𝑥 𝑘𝑦𝑦 𝑘𝑦𝜑 𝑘𝑦𝜉

𝑘𝜑𝑥 𝑘𝜑𝑦 𝑘𝜑𝜑 𝑘𝜑𝜉

𝑘𝜉𝑥 𝑘𝜉𝑦 𝑘𝜉𝜑 𝑘𝜉𝜉

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
𝑥

𝑦

𝜑

𝜉

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
𝑐𝑥𝑥 𝑐𝑥𝑦 𝑐𝑥𝜑 𝑐𝑥𝜉

𝑐𝑦𝑥 𝑐𝑦𝑦 𝑐𝑦𝜑 𝑐𝑦𝜉

𝑐𝜑𝑥 𝑐𝜑𝑦 𝑐𝜑𝜑 𝑐𝜑𝜉

𝑐𝜉𝑥 𝑐𝜉𝑦 𝑐𝜉𝜑 𝑐𝜉𝜉

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
�̇�

�̇�

�̇�

𝜉

⎤⎥⎥⎥⎥⎥⎦+

+

⎡⎢⎢⎢⎢⎢⎣
𝑚𝑥𝑥 𝑚𝑥𝑦 𝑚𝑥𝜑 𝑚𝑥𝜉

𝑚𝑦𝑥 𝑚𝑦𝑦 𝑚𝑦𝜑 𝑚𝑦𝜉

𝑚𝜑𝑥 𝑚𝜑𝑦 𝑚𝜑𝜑 𝑚𝜑𝜉

𝑚𝜉𝑥 𝑚𝜉𝑦 𝑚𝜉𝜑 𝑚𝜉𝜉

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
�̈�

𝑦

𝜑

𝜉

⎤⎥⎥⎥⎥⎥⎦ (1.18)

This method was used in analytical the approach presented in [55]. But the experi-
mental verification of calculated results has not been done yet, because the method for
measuring all 48 rotordynamic coefficients has not been developed yet.

1.3 Determination of rotordynamic coefficients for
centred circular whirling

The motivation of this section is to describe the derivation of equations (1.9) and (1.10),
which are the final formulas for the determination of the rotordynamic coefficients of short
annular seals. The derivation is based on the method of Childs and Dressman [49].

The mathematical model of the rotor system is based on the general equation of motion
(1.19) ̃︁𝑚𝑖𝑗�̈�𝑗(𝑡) + ̃︀𝑐𝑖𝑗�̇�𝑗(𝑡) + ̃︀𝑘𝑖𝑗𝑢𝑗(𝑡) = 𝑓𝑖(𝑡) + 𝐹𝑖(𝑡) , (1.19)

where ̃︁𝑚𝑖𝑗 ∈ R𝑁,𝑁 , ̃︀𝑐𝑖𝑗 ∈ R𝑁,𝑁 and ̃︀𝑘𝑖𝑗 ∈ R𝑁,𝑁 are the mass matrix, damping matrix
and stiffness matrix of rotor system, 𝑢𝑖𝑗 ∈ R𝑁,1 is the vector of generalized displacement,
𝑓𝑖𝑗 ∈ R𝑁,1 is the vector of generalized (external) forces acting on the system, 𝑁 is the
number of degrees of freedom (DOF) of the system and 𝐹𝑖𝑗 ∈ R𝑁,1 is the fluid reaction
force acting on a rotor.

30



cyy kyy

myy

c xy

k xy
m x
y

c
yx

k
yx

m
yx

c x
x

k x
x

m
xx

x

y

Fig. 1.8: Model of dynamic coefficients
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Fig. 1.9: Whirling rotor motion

Components of force 𝐹𝑖 caused by an incompressible Newtonian fluid acting on the
surface of a rigid rotor 𝑆 is defined by formula (1.20).

𝐹𝑖 =
∫︁
𝑆

[︃
𝜂

(︃
𝜕𝑣𝑖

𝜕𝑥𝑗

+ 𝜕𝑣𝑗

𝜕𝑥𝑖

)︃
− 𝑝𝛿𝑖𝑗

]︃
𝑚𝑗d𝑆 (1.20)

In case of the Black and Jenssen’s force-displacement linear model for the transversal
motion of the rotor, equations of fluid reaction force acting on a rotor caused by the liquid
are defined by relation (1.6). The formulation of this equation in the index notation (also
called the Einstein summation convention) is represented by expression (1.21).

−𝐹𝑖(𝑡) = 𝑘𝑖𝑗𝑢𝑗(𝑡) + 𝑐𝑖𝑗�̇�𝑗(𝑡) +𝑚𝑖𝑗�̈�𝑗(𝑡) (1.21)

Minus sign in (1.21) refers to the assumption that the force 𝐹𝑖 is a reaction force,
which means that if the force counteracts the displacement of the rotor, the reaction force
assumption is correct. Otherwise, if force caused by a liquid is an action force and the
annular seal has a destabilizing effect on the rotor system. Introducing of formula (1.21)
into equation (1.19) leads to relation (1.22).

(̃︁𝑚𝑖𝑗 +𝑚𝑖𝑗)�̈�𝑗(𝑡) + (̃︀𝑐𝑖𝑗 + 𝑐𝑖𝑗)�̇�𝑗(𝑡) + (̃︀𝑘𝑖𝑗 + 𝑘𝑖𝑗)𝑢𝑗(𝑡) = 𝑓𝑖(𝑡) , (1.22)

Let’s look more closely at Black and Jenssen’s force-displacement linear model, which
is defined by equation (1.6) and it is rewritten here for better notion.

−

⎡⎣ 𝐹𝑥

𝐹𝑦

⎤⎦ =
⎡⎣ 𝑘𝑥𝑥 𝑘𝑥𝑦

𝑘𝑦𝑥 𝑘𝑦𝑦

⎤⎦⎡⎣ 𝑥

𝑦

⎤⎦+
⎡⎣ 𝑐𝑥𝑥 𝑐𝑥𝑦

𝑐𝑦𝑥 𝑐𝑦𝑦

⎤⎦ ⎡⎣ �̇�

�̇�

⎤⎦+
⎡⎣ 𝑚𝑥𝑥 𝑚𝑥𝑦

𝑚𝑦𝑥 𝑚𝑦𝑦

⎤⎦⎡⎣ �̈�

𝑦

⎤⎦ ,
where 𝑘𝑥𝑥, 𝑘𝑦𝑦 are the direct added stiffnesses, 𝑘𝑥𝑦 and 𝑘𝑦𝑥 are the cross-coupled added
stiffnesses, 𝑐𝑥𝑥, 𝑐𝑦𝑦 are the direct added dampings, 𝑐𝑥𝑦 and 𝑐𝑦𝑥 are the cross-coupled added
dampings, 𝑚𝑥𝑥, 𝑚𝑦𝑦 are the direct added masses and 𝑚𝑥𝑦 and 𝑚𝑦𝑥 are the cross-coupled
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added masses. Application of the force-displacement model on a rotordynamic analysis is
depicted in figure 1.8 (recreated based on [45]).

The cross-coupled terms describe the interaction between a force component and a
displacement component which are perpendicular to each other. Hence i.e. the displace-
ment in the 𝑥 direction can produce both a force in the 𝑥 and 𝑦 directions. This results
is more evident if the force-displacement model is described by two equations (1.23) and
(1.24) instead of one matrix equation.

−𝐹𝑥 = 𝑘𝑥𝑥 · 𝑥+ 𝑘𝑥𝑦 · 𝑦 + 𝑐𝑥𝑥 · �̇�+ 𝑐𝑥𝑦 · �̇� +𝑚𝑥𝑥 · �̈�+𝑚𝑥𝑦 · 𝑦 (1.23)
−𝐹𝑦 = 𝑘𝑦𝑥 · 𝑥+ 𝑘𝑦𝑦 · 𝑦 + 𝑐𝑦𝑥 · �̇�+ 𝑐𝑦𝑦 · �̇� +𝑚𝑦𝑥 · �̈�+𝑚𝑦𝑦 · 𝑦 (1.24)

The phenomenon is explained in the following illustrative case. If the rotor is moved
from centred position let say in positive 𝑥 direction and if the rotor rotates counterclock-
wise, converging and diverging section is created in the lower and upper halves of the
seal, respectively. The pressure increases in the converging section and decreases in the
diverging section which yields a reaction force in the positive 𝑦 direction.

In case of application of the Childs and Dressman’s approach, small-eccentricity cen-
tred circular orbits is assumed. The whirling rotor motion is illustrated in figure 1.9
(borrowed from [45]). The rotor orbit radius is equal to eccentricity 𝑒. The fluid reac-
tion force acting on rotor can be divided into perpendicular components either in a fixed
cartesian coordinate system or in a moving cartesian coordinate system. Fixed coordinate
system has horizontal 𝑥 and vertical 𝑦 axis and moving coordinate system has radial 𝑟
and tangential 𝑡* axis. Both coordinate system are depicted in figure 1.10, which shows a
partition of force 𝐹𝑖 into components of fixed and moving coordinate systems. The pole
of moving coordinate system is the centre of gravity of rotor.
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e
= Ωtφ
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Fig. 1.10: Fixed and moving coordinate systems

The radial axis 𝑟 of the moving coordinate system passes through the rotor centre
of gravity and stator centre of gravity. Tangential axis 𝑡* is perpendicular to the radial
axis and passes through the rotor centre of gravity. The direction of the tangential axis
𝑡* is identical to the direction of whirl motion of the rotor. The reason for establishing
the moving coordinate system is that the radial 𝐹𝑟 and tangential 𝐹𝑡 force components
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are, in case of centred circular rotor orbits, time-independent. This fact is proved by the
following derivation.

The radial 𝐹𝑟 and tangential 𝐹𝑡 components of force can be analytically determined
from equations (1.25) and (1.26).

𝐹𝑟 =
𝐿𝑠∫︁
0

2𝜋∫︁
0

𝑝(𝜙, 𝑧) ·𝑅 · cos(𝜙) d𝜙 d𝑧 (1.25)

𝐹𝑡 =
𝐿𝑠∫︁
0

2𝜋∫︁
0

𝑝(𝜙, 𝑧) ·𝑅 · sin(𝜙) d𝜙 d𝑧 (1.26)

To solve the equation (1.21) for centred circular rotor orbit, it is necessary to convert
the vector of displacement and its first and second derivatives with respect to time from
fixed to moving coordinate system. Vector of displacement can be rewritten to form:

u =
⎡⎣ 𝑥

𝑦

⎤⎦ =
⎡⎣ 𝑒 cos𝜙
𝑒 sin𝜙

⎤⎦ = 𝑒

⎡⎣ cos(Ω𝑡)
sin(Ω𝑡)

⎤⎦ = 𝑒𝜅 , (1.27)

where 𝜅 is the attitude matrix. Transfer of the first derivative of displacement vector
with respect to time into the moving coordinate system is described by equation (1.28)

u̇ = d(𝑒𝜅)
d𝑡 =

⎡⎣ −𝑒Ω sin(Ω𝑡)
𝑒Ω cos(Ω𝑡)

⎤⎦ =
⎡⎣ −Ω𝑦

Ω𝑥

⎤⎦ =

= Ω
⎡⎣ 0 −1

1 0

⎤⎦⎡⎣ 𝑥

𝑦

⎤⎦ = ΩΨu = 𝑒ΩΨ𝜅 , (1.28)

where Ψ is the transformation matrix. Vector of the second derivative of displacement
with respect to time can be defined by the formula:

ü = d2(𝑒𝜅)
d𝑡2 =

⎡⎣ −𝑒Ω2 cos(Ω𝑡)
−𝑒Ω2 sin(Ω𝑡)

⎤⎦ = −Ω2

⎡⎣ 𝑥

𝑦

⎤⎦ = −Ω2u = −𝑒Ω2𝜅 (1.29)

The relationship for the transformation of force components from fixed to moving
cartesian coordinate system and vice versa is described by expressions (1.30) and (1.31),
respectively.

F =
⎡⎣ 𝐹𝑥

𝐹𝑦

⎤⎦ =
⎡⎣ 𝐹𝑟 · cos(Ω𝑡) − 𝐹𝑡 · sin(Ω𝑡)
𝐹𝑟 · sin(Ω𝑡) + 𝐹𝑡 · cos(Ω𝑡)

⎤⎦ =

=
⎡⎣ 𝐹𝑟 −𝐹𝑡

𝐹𝑡 𝐹𝑟

⎤⎦⎡⎣ cos(Ω𝑡)
sin(Ω𝑡)

⎤⎦ = Θ𝜅 , (1.30)

where Θ is the conversion matrix.

f =
⎡⎣ 𝐹𝑟

𝐹𝑡

⎤⎦ =
⎡⎣ 𝐹𝑥 cos(Ω𝑡) + 𝐹𝑦 · sin(Ω𝑡)

−𝐹𝑥 sin(Ω𝑡) + 𝐹𝑦 · cos(Ω𝑡)

⎤⎦ =

=
⎡⎣ cos(Ω𝑡) sin(Ω𝑡)

− sin(Ω𝑡) cos(Ω𝑡)

⎤⎦⎡⎣ 𝐹𝑥

𝐹𝑦

⎤⎦ = R𝑇 F = R𝑇 Θ𝜅 , (1.31)

33



where R is the rotation matrix.
Since all previous equations are written in matrix notation, it is appropriate to rewrite

equation (1.21) to matrix notation, defined by formula (1.32). Introducing equation (1.27),
(1.28), (1.30) and (1.29) into matrix form of equation (1.32) leads to expression (1.33).

−F = ku + cu̇ + mü (1.32)
−Θ𝜅 = (𝑒k + Ω𝑒cΨ − Ω2𝑒m)𝜅 (1.33)

The final modification in the derivation of Childs and Dressman’s model is right mul-
tiplication of (1.33) by the term (−1) · 𝜅−1, which yields:

1
𝑒

Θ = −k − ΩcΨ + Ω2m (1.34)

The derivation if almost complete, it is only necessary to preform matrix multipli-
cation cΨ. This adjustment is more understandable if whole structure of matrices is
displayed.

1
𝑒

⎡⎣ 𝐹𝑟 −𝐹𝑡

𝐹𝑡 𝐹𝑟

⎤⎦ = −

⎡⎣ 𝑘𝑥𝑥 𝑘𝑥𝑦

𝑘𝑦𝑥 𝑘𝑦𝑦

⎤⎦− Ω
⎡⎣ 𝑐𝑥𝑥 𝑐𝑥𝑦

𝑐𝑦𝑥 𝑐𝑦𝑦

⎤⎦⎡⎣ 0 −1
1 0

⎤⎦+ Ω2

⎡⎣ 𝑚𝑥𝑥 𝑚𝑥𝑦

𝑚𝑦𝑥 𝑚𝑦𝑦

⎤⎦ (1.35)

1
𝑒

⎡⎣ 𝐹𝑟 −𝐹𝑡

𝐹𝑡 𝐹𝑟

⎤⎦ =
⎡⎣ −𝑘𝑥𝑥 −𝑘𝑥𝑦

−𝑘𝑦𝑥 −𝑘𝑦𝑦

⎤⎦+ Ω
⎡⎣ −𝑐𝑥𝑦 𝑐𝑥𝑥

−𝑐𝑦𝑦 𝑐𝑦𝑥

⎤⎦+ Ω2

⎡⎣ 𝑚𝑥𝑥 𝑚𝑥𝑦

𝑚𝑦𝑥 𝑚𝑦𝑦

⎤⎦ (1.36)

Based on equation (1.36), formulas for radial and tangential component of 𝐹𝑖(𝑡) can
be derived.

1
𝑒
𝐹𝑟 = −𝑘𝑥𝑥 − Ω𝑐𝑥𝑦 + Ω2𝑚𝑥𝑥 = −𝑘𝑦𝑦 + Ω𝑐𝑦𝑥 + Ω2𝑚𝑦𝑦 (1.37)
1
𝑒
𝐹𝑡 = 𝑘𝑥𝑦 − Ω𝑐𝑥𝑥 − Ω2𝑚𝑥𝑦 = −𝑘𝑦𝑥 − Ω𝑐𝑦𝑦 + Ω2𝑚𝑦𝑥 (1.38)

Equations (1.37) and (1.38) for components of force 𝐹𝑖(𝑡) are second degree polyno-
mials. Relations between elements of added effects matrices are determined based on the
theorem, that two polynomials are equal if their coefficients are equal.

𝑚𝑥𝑥 = 𝑚𝑦𝑦 = 𝑀

𝑐𝑥𝑥 = 𝑐𝑦𝑦 = 𝐶

𝑘𝑥𝑥 = 𝑘𝑦𝑦 = 𝐾

𝑚𝑥𝑦 = −𝑚𝑦𝑥 = 𝑚

𝑐𝑥𝑦 = −𝑐𝑦𝑥 = 𝑐

𝑘𝑥𝑦 = −𝑘𝑦𝑥 = 𝑘

(1.39)

Each of the added effects matrices has only two independent elements, which are a
consequence of the theorem about identical polynomials. Direct (diagonal) elements of
each matrix are equal, cross-coupled (off-diagonal) elements have the same value but
reverse signs. Black and Jenssen’s force-displacement is simplified with the assumption
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of centred circular whirling motion of rotor to the form derived by Childs and Dressman,
represented by equation (1.40).

−

⎡⎣ 𝐹𝑥

𝐹𝑦

⎤⎦ =
⎡⎣ 𝐾 𝑘

−𝑘 𝐾

⎤⎦⎡⎣ 𝑥

𝑦

⎤⎦+
⎡⎣ 𝐶 𝑐

−𝑐 𝐶

⎤⎦⎡⎣ �̇�

�̇�

⎤⎦+
⎡⎣ 𝑀 𝑚

−𝑚 𝑀

⎤⎦ ⎡⎣ �̈�

𝑦

⎤⎦ (1.40)

Equations for components of force caused by a liquid in moving coordinate system can
be rewritten to formulas (1.41) (1.42), which shows that 𝐹𝑟 and 𝐹𝑡 are time-independent.

𝐹𝑟

𝑒
= −𝐾 − Ω𝑐+ Ω2𝑀 (1.41)

𝐹𝑡

𝑒
= 𝑘 − Ω𝐶 − Ω2𝑚, (1.42)

where 𝐹𝑟/𝑒 and 𝐹𝑡/𝑒 are called the restitution force coefficient and the tangential force
coefficient, respectively. The rotordynamic coefficients can be established by a least-square
curve fit.

1.4 Effect of rotordynamic coefficients on dynamic
behaviour of rotor systems

Based on the moving coordinate system, depicted on figure 1.10, the radial component
of force 𝐹𝑟 is defined as a positive outward and the tangential component of force 𝐹𝑡 is
defined positive in direction of whirl frequency Ω.

The positive effect on vibrations of rotating machinery has negative force components
𝐹𝑟 and 𝐹𝑡. A negative radial force component opposes the momentary radial displace-
ment of the rotor and because it has centering effect on the rotor it is called the ”restoring
force”. Negative 𝐹𝑟 as well increases the rotor eigenfrequencies [47]. A negative tangential
force component opposes the momentary tangential displacement, which is given by the
whirl motion of the rotor. The negative 𝐹𝑡 has a damping effect on rotating machinery
vibrations. The tangential force component has great significance for the rotor system
stability. If the 𝐹𝑡 is in the same direction as the whirl frequency Ω, i.e. 𝐹𝑡 > 0, it has
rotordynamically destabilizing influence on the whole rotating machinery.

Radial and tangential force components of annular seals have a dissimilar yet signifi-
cant effect on the dynamic behaviour of rotating machinery. The effects of both compo-
nents of the fluid reaction force are fully described in the following two sections.

It is possible to use absolute values of whirl frequency for a description of force compo-
nents and consequently rotordynamic coefficients, but it is more common in praxis to use
so-called whirl to rotation ratio 𝑓Ω, which is defined by equation (1.43) and it is defined
as the ratio of the whirl frequency and angular velocity.

𝑓Ω = Ω
𝜔

(1.43)
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1.4.1 Radial force component

The magnitude and direction of the resultant radial force component are governed by two
competing phenomenons, one is caused by circumferential velocity and another by axial
velocity. When a stator and rotor are not concentric, the flow velocity in a cross-section
increases with clearance reduction. Consequently, the pressure in the cross-section of the
annular seal decreases with the reduction of clearance. This idea is based on Bernoulli’s
principle and it leads to the result that the highest pressure in the cross-section is in a
location with the highest clearance and vice versa. The outward radial force component 𝐹𝑟

is created by the described pressure field and it decentralizes the rotor. This phenomenon
is called the ”Bernoulli effect” or ”inertia effect” and it gives rise to a negative fluid-
induced direct added stiffness 𝐾. The principle of the Bernoulli effect is shown in figure
1.12 (inspired by [1]), where 𝐹𝑟,𝐵 is the outward radial force generated by the Bernoulli
effect.

Axial velocity averaged over the seal clearance 𝑣𝑎𝑥 rises with increasing clearance for
seal with the eccentric rotor, which is clear from velocity profiles depicted in fig. 1.7.
The entrance loss is proportional to the 𝑣𝑎𝑥, which lead to the smallest inlet loss in the
location with the smallest 𝑣𝑎𝑥. Therefore the mean pressure is the highest in the spot with
the smallest clearance. The resultant pressure distribution yields an inward radial force
called the restoring force. The described phenomenon is named the ”Lomakin effect” after
the founder A. Lomakin, who presented its results in [3]. The Lomakin effect creates a
positive direct added stiffness 𝐾. The axial pressure distribution in the eccentric annular
seal in the case of the Lomakin effect is depicted in fig. 1.11 (recreated based on [1]),
where 𝐹𝑟,𝐿 is inward radial force generated by the Lomakin effect.

Stator
Flow Rotor

p 
[P

a]

z [m]

Fr,L

Inlet Outlet

Fig. 1.11: Lomakin effect

Stator

Fr,B

ω vcir,max
pmin

vcir,min
pmax

Rotor

Fig. 1.12: Bernoulli effect

The opposing Bernoulli and Lomakin effects govern the sing of the radial force com-
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ponent. Since it takes some axial distance from seal inlet to form a fully developed
circumferential flow by the rotation of seal rotor, the Bernoulli effect is more dominant in
long annular seals, but its influence on 𝐹𝑟 is weak in short seals. For short annular seals
(𝐿𝑠/𝑅 ≤ 0,3), the inward radial force 𝐹𝑟,𝐿 is greatly higher than the outward radial force
𝐹𝑟,𝐵. The foregoing statements are true only if the pre-rotation at the seal inlet is small.

The positive 𝐹𝑟 and resultant negative direct stiffness 𝐾 arise in long annular seals,
which was first presented in [56]. The negative direct stiffness 𝐾 increases the orbit ra-
dius of the whirl movement, which means it increases the amplitudes of vibrations. The
possibility of contact of rotor and stator is as well increased with negative direct stiffness.

The negative radial force component reduces the orbit radius of the whirl movement
and augments the eigenfrequencies of the rotor system. Consequently, the eigenfrequen-
cies rise with increasing pressure difference across the annular seal and as well they rise
with the running speed of the rotor because 𝜔 is proportional to the pressure difference.
On the other hand, the negative radial force can cause potential problems in case of long
annular seals, e.g. the balance piston seals. The balance piston of a high-pressure pump
has to create a very high pressure drop because it is necessary to decrease pressure from
a very high value at the impeller discharge to the value at impeller suction, which is pro-
portionally lower. These balance piston seals have a strong Lomakin effect, which creates
a greatly high centering force. In case the relative position of the bearings and the piston
is not precisely adjusted, alternating stresses impact within the rotor and the stresses can
lead even to rotor failures.

Even though the preceding paragraphs describe effects defining the sign of the 𝐹𝑟,
there is as well information, which implies the radial force component equals to the direct
added stiffness 𝐾. This result is based on the analysis on equation (1.41), which can be
adapted to following formula.

𝐹𝑟

𝑒
= −𝐾 − Ω𝑐+ Ω2𝑀 = 𝐾 − Ω𝑐

[︃
1 − Ω𝑀

𝑐

]︃
= 𝐾 − 𝑐𝑓Ω 𝜔

[︃
1 −

(︃
𝑀𝜔

𝑐

)︃
𝑓Ω

]︃
, (1.44)

where 𝑓Ω is the whirl to rotation ratio. The concern of research presented in [57] was to
determine the rotordynamic coefficients of the plain annular seal with 𝐿𝑠/𝑅 = 2/3. This
research concluded the term 𝑀𝜔/𝑐 is approximately equal to 1. If the foregoing result is
valid, then for the synchronous whirling motion at the running speed (𝑓Ω = 1), the cross-
coupled added damping 𝑐 and direct added mass tend to cancel. The described situation
arises for the seals with the pre-swirl ratio 𝜒 = 0,5. The annular seal with 𝜒 = 0,5 was
first analysed in [9].

Since the ratio 𝑀𝜔/𝑐 is around one for a wide range of annular seals and the syn-
chronous whirling motion is the most common working state for rotating machinery, it is
common to describe the influence of the Lomakin and Bernoulli effect either by the radial
force component or by the direct added stiffness. It is important to note the 𝑀𝜔/𝑐 is
around one only for the most common types of annular seals with ordinary working con-
ditions. However, for a great number of the annular seal, the restitution force coefficient
is not proportional only to the direct added stiffness 𝐾.
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The cross-coupled added damping has a similar influence as ”gyroscopic stiffening” in
the rotor system, because 𝑐 acts in concert with direct added stiffness 𝐾 and opposed
to direct added mass 𝑀 , which is clear from equation (1.41). The influence of the di-
rect added mass 𝑀 increase with increasing 𝐿𝑠/𝑅 ratios, which means the effect of 𝑀 is
considerable in case of long seals, e.g the balance piston seals.

1.4.2 Tangential force component

The sign of the tangential force component is governed by the ratio of the axial Reynolds
number 𝑅𝑒𝑎𝑥 and the circumferential Reynolds number 𝑅𝑒𝜔, which are defined by formulas
(1.3). This quantity is called the flow coefficient Ψ [47].

Ψ = 𝑅𝑒𝑎𝑥

𝑅𝑒𝜔

= 𝑣𝑎𝑥

𝑣𝑐𝑖𝑟

(1.45)

The cross-coupled added mass term 𝑚 is very small for the majority of annular seals
and therefore 𝑚 is often neglected in seal analysis, which is presented in e.g. [5]. With
this assumption, equation (1.42) is transformed to formula (1.46).

𝐹𝑡

𝑒
= 𝑘 − Ω𝐶 (1.46)

The sign of 𝐹𝑡 and consequently the stability of the rotating system is governed based on
just two coefficients, the cross-coupled added stiffness and direct added damping.

The cross-coupled added stiffness feeds energy to the rotor and causes a rotor instabil-
ity because 𝑘 acts in the direction of the orbit movement. A high values of the pre-swirl
ratio 𝜒 and small values of the flow coefficient Ψ increase the cross-coupled added stiffness.

On the contrary, the direct added damping opposes the whirl movement of the rotor.
The 𝐶 is proportional to the whirl frequency Ω. Direct damping decreases with a growing
flow coefficient Ψ.

The values of rotordynamic coefficients 𝑘 and 𝐶 in the specific annular seal are con-
nected and they are governed by the fluid flow within the annular seal, because if one
increases the other decrease and vice versa. If the fluid flow within the seal is highly
circumferential, i.e. if the pre-swirl ratio 𝜒 is high and else if the flow coefficient Ψ is
small, the 𝑘 increase and the 𝐶 is decreases, which leads to destabilization of the rotor
system. On the other hand, if the flow is predominantly axial, the 𝐶 grows and 𝑘 reduced,
and the annular seal tends to have a stabilizing effect.

Lund [58] was first who adjusted equation (1.46) by following steps.

𝐹𝑡

𝑒
= 𝑘 − Ω𝐶 = 𝐶𝜔

(︃
𝑘

𝐶𝜔
− Ω
𝜔

)︃
= 𝐶𝜔

(︃
Ω𝑤 − 𝑓Ω

)︃
= 𝐶𝜔Ω𝑤

(︃
1 − 𝑓Ω

Ω𝑤

)︃
, (1.47)

where Ω𝑤 is called the whirl-frequency ratio, which is defined by the following formula.

Ω𝑤 = 𝑘

𝐶𝜔
(1.48)
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The rotordynamic stability criterion is defined by the direction of the whirling motion
and the tangential force component because the system is on the stability limit if 𝐹𝑡 = 0.
The tangential force component is rotordynamicaly stabilizing either if 𝐹𝑡 > 0 and also
Ω < 0 or if 𝐹𝑡 < 0 and also Ω > 0, which clearly means the circumferential force stabilize
the rotor system if it opposes the whirling motion. The criterion of stability can be ex-
pressed by a sentence that the seal has a stabilizing effect in case of forward whirl if whirl
frequency is greater than 𝑘 to 𝐶 ratio, i.e. Ω > 𝑘/𝐶. Below this limit, the self-excited
vibrations render the operating of the machine impossible. All presented results about
the stabilizing effects of annular seals were covered e.g. in [59].

The stability criterion can be redefined by application of the whirl-frequency ratio
because if the ratio 𝑓Ω/Ω𝑤 is greater than one, the annular seal is rotordynamicaly sta-
bilizing. Classification of stability regions is depicted in figure 1.13 (inspired by [1]).

A B C

F
t [

N
]

Ω [-]Ωw

Instability

 f

Fig. 1.13: Tangential force as function of whirl-to-rotation ratio

The areas marked as A and C are regions, where the annular seal has the stabilizing
influence because in these regions 𝐹𝑡 opposes the whirling motion. The only area, where
the annular seal has a destabilizing effect is region B. Instantaneous change of stability
between regions A and B is caused by the change of sense of rotation between 𝜔 and Ω
and between regions B and C by the change of sign of tangential force component. Larger
values of the whirl-frequency ratio Ω𝑤 indicate a larger range of instability region.

In the instability region, the self-excited vibrations occur. The instability is created by
the vibrating body because it generates the pressure distribution resulting in tangential
force which acts in direction of orbit movement. Thus energy is fed from 𝐹𝑡 to rotor and
consequently, the whirling movement is accelerated. The instability arises in case when
energy fed to the rotor exceeds the direct damping which opposes the whirling movement.
Two effects contribute to the formation of the described pressure distribution. First, the
fluid is driven and displaced by the orbit motion. Second, the so-called ”journal-bearing
effect” arise, which means the fluid is transported by shear stresses created by rotating
shaft. Based on publication [60], rotor instabilities can be generated by all mechanisms,
which cause whirl motion in sense of rotation. The damping increase with the increase of
whirl to rotation ratio 𝑓Ω, which means that instabilities occur below specific a limit of
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whirl frequency Ω.
The rotor vibrates in instability at its lowest eigenfrequency, which is characteristic of

most instabilities. The frequency of vibrations in instability is below the actual running
speed of the rotor. Therefore, the instability is often recognized as subsynchronous vi-
brations. If the running speed is increased after the onset of instability, the frequency of
vibration is locked in on the lowest eigenfrequency, while the amplitudes increase sharply
until they are limited by non-linear effects. It is convenient to point out, that the rotating
machinery vibrates at its eigenfrequency in instability, but during an imbalance-excited
resonance, the rotor vibrates at its critical speed.

Based on information from the foregoing paragraphs it is clear that the tangential
force becomes destabilizing at the running speed defined by equation (1.49).

𝜔𝑖𝑛𝑠 = Ω𝑑,1

Ω𝑤

, (1.49)

where 𝜔𝑖𝑛𝑠 is the running speed for the onset of instability and Ω𝑑,1 is the first eigenfre-
quency of the rotor system.

Results of paper [57] implies that Ω𝑤 is about 0,5 for the plain annular seals, which
is the same result as for plain journal bearings. Hence, the plain annular seals become
destabilizing, if the running speeds exceed about twice of the first critical speed of the
rotor. The Ω𝑤 can be in seals decreased and the stability region increased by decreasing
the destabilizing cross-coupled added stiffness 𝑘, which is proportional to the circumfer-
ential flow velocity 𝑣𝑐𝑖𝑟. Hence, any reduction of circumferential flow velocity 𝑣𝑐𝑖𝑟 within
the seal, or reduction of pre-swirl ratio 𝜒 enhances the stabilizing effect of the seal.

The reduction of circumferential flow velocity 𝑣𝑐𝑖𝑟 within the annular seals can be
achieved by either so-called ”the damper seals” or by structures hampering the flow in
the circumferential direction. The damper seals were first presented in [61] by von Prage-
nau. The reduction of 𝑣𝑐𝑖𝑟 is achieved by increasing the stator roughness relative to rotor
roughness. The damper seals reduce as well the leakage through the seal. Applying the
higher roughness on the rotor in comparison with stator increase Ω𝑤, which is completely
inappropriate for a rotordynamic point of view. The damper seal was first used to improve
the stability of ”high-pressure oxygen turbopump of the space shuttle main engine” [62].

Another option, how to reduce 𝑣𝑐𝑖𝑟 is to machine serrations into the annular seal sta-
tor. A lot of patterns and shapes of serrations were experimentally tested to find the
best option for a decrease of the tangential force component and as well for reduction of
the leakage through the annular seal. One of the best options for achieving the foregoing
objectives is the honeycomb seal, which stator is depicted in figure 1.14. Experimental
determination of the rotordynamic coefficients in the honeycomb annular seal was pre-
sented in [63]. Almost all annular seals with serrations are used to increase the width of
the boundary layer and it follows that, as well as for the damper seals, machining the ser-
rations into rotor would increase the circumferential flow velocity and even more increase
the destabilizing influence of the annular seal. The serrations should always be machined
to the stator. Last but not least, almost all seals with serrations are bidirectional, which
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can be important in some cases.
On the other hand, helically grooved seals (seal stator with grooves on the stator is

shown in figure 1.15) work on a different principle. The grooves are deliberately machined
in sense to oppose fluid circumferential velocity. The basic idea is to design the grooves
in such shape and position to achieve the pumping effect in the upstream direction. The
helically grooved seal is unidirectional and it has to be assembled in a way, that the
grooves oppose the rotation of the rotor. Research [64] presents the results of rotordy-
namic coefficients measurements for helically grooved seals either with grooves machined
in the stator or to the rotor. Results show, that grooves on the rotor produce a stronger
pumping effect. But from a stability point of view, the seal with grooves in the stator is
a better option. The efficiency of both damper seals and seals with serrations increases
with the length of the annular seal. The flow path within the short annular seals is too
short for an appreciable reduction of 𝑣𝑐𝑖𝑟.

Fig. 1.14: Honeycomb seal [42]

ω

Flow

Fig. 1.15: Helically grooved seal

The pre-rotation of fluid at the inlet to the annular seal can be reduced by an approach
called ”the swirl brake”, which consists of axial slots machined into the seal inlet to reduce
the circumferential velocity at the inlet by guiding the flow directly to seal in direction of
its axis. The influence of the swirl brake was first tested in [65] and a positive influence on
stability and strong damping effect were concluded. The report [66] showed a 50% decrease
in amplitudes of vibrations when the seal operated with twice the design clearance, which
was accomplished by the swirl brake.

A simple question arises from previous paragraphs. Where the swirl break should
be used and where it is suitable to use the damper seals or the stator serrations? The
damper seals and stator serrations are effective in long seals, which was unstable with
an unmodified plain annular seal. Generally, the stator serrations are progressively more
effective in the reduction of Ω𝑤 and 𝑣𝑐𝑖𝑟, but damper seals are generally cheaper option. A
swirl brake is the only solution for decreasing Ω𝑤 in short seals, but it remains substantially
effective for all seal length. However, because of the location at the annular seal inlet, the
swirl brake brings no improvement in rotating systems, where is small or no pre-rotation
of fluid. In these cases, the damper seals or stator serrations have to be used.

Contrary to the radial force component, the changes in the tangential force component
and changes in cross-coupled added stiffness and direct added damping have no influence
on the eigenfrequencies.
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1.4.3 Comparison of seals in terms of rotordynamic coefficients

All six rotordynamic coefficients are directly evaluated from the radial and tangential
force components. In a comparison of rotordynamic coefficients between two seals, it is
possible to analyse solely the absolute values. But it is correct to use absolute values
of rotordynamic coefficients for seal comparison only in case if both seals operate at the
same parameters and have the same geometries, which is clearly a very rare case. Even
changes in e.g. length or radius or seal make comparison with absolute value impossible,
because the force components 𝐹𝑟 and 𝐹𝑡 are given by integration of pressure field over the
rotor surface.

In order to permit easy comparison between the rotordynamic effects contributed by
different seals, it is common to use a nondimensionalization for all components. The
nondimensionalization used in this section is based on Brennen’s approach presented in
[47]. The dimensionless quantities are marked by superscript ”*”.

The radial and tangential force components are nondimensionalized by dividing by
term 𝜌𝜋𝜔2𝑅2𝐿𝑠𝑒, which is fully described by equations (1.50) and (1.51), where 𝜌 is the
fluid density.

𝐹 *
𝑟 = 𝐹𝑟

𝜌𝜋𝜔2𝑅2𝐿𝑠𝑒
(1.50)

𝐹 *
𝑡 = 𝐹𝑡

𝜌𝜋𝜔2𝑅2𝐿𝑠𝑒
(1.51)

The force components and consequently the rotordynamic coefficients are greatly de-
pendent on flow conditions. Hence, it is standard to make a comparison with the flow
coefficient Ψ. The dependence of 𝐹𝑟 and 𝐹𝑡 on flow coefficient for the plain annual seal
with 𝐿𝑠/𝑅 = 1 and 𝐶𝑟/𝑅 = 0,01, based on the measurements [49], is shown in figures
1.16 and 1.17.
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Dimensionless force components as function of flow coefficient Ψ [47]

The dimensionless radial force component decreases with increasing flow coefficient
quadratically, which indicates the Lomakin effect increases its influence with increasing
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Ψ, which is in agreement with information presented in section 1.4.1. The dimensionless
tangential force component is a linear function of flow coefficient Ψ. No region with de-
centralizing positive 𝐹𝑟 or with destabilizing positive 𝐹𝑡 emerged in measurements [49].

The rotordynamic coefficients are nondimensionalized by following formulas.

𝑀*,𝑚* = 𝑀,𝑚

𝜌𝜋𝑅2𝐿𝑠

(1.52)

𝐶*, 𝑐* = 𝐶, 𝑐

𝜌𝜋𝑅2𝐿𝑠𝜔
(1.53)

𝐾*, 𝑘* = 𝐾, 𝑘

𝜌𝜋𝑅2𝐿𝑠𝜔2 (1.54)

Figures 1.18 -1.23 show dependences of dimensionless rotordynamic coefficients on flow
coefficients for specific plain annular seal with synchronous whirling motion. The annular
seals, used for determination of figs. 1.18 -1.20 had constant ratio 𝐶𝑟/𝑅 = 0,01 and the
seals with range of ratios 𝐿𝑠/𝑅 ∈ ⟨0,5 ; 10⟩ were used in analyses. The graphs in figures
1.21 -1.23 were created from analyses of seals with constant ratio 𝐿𝑠/𝑅 = 1 and ratio
𝐶𝑟/𝑅 varies in range ⟨0,005 ; 0,05⟩.

The results, depicted in graphs 1.18 - 1.23, are taken from the bulk-flow model analysis
of Childs for a plain annular seals [12]. The cross-coupled added mass𝑚 was assumed to be
negligible. Based on results of stability analysis of plain annular seal, the whirl-frequency
ratio Ω𝑤 = 𝑘/𝐶𝜔 was assumed to be equal to 0,5 and consequently, the dimensionless
direct added damping 𝐶* was assumed to be two times higher than the dimensionless
cross-coupled added stiffness 𝑘* for synchronous whirling motion. The ratio 𝑀𝜔/𝑐 is
approximately equal to 1, which was presented in section 1.4.1. This result leads to the
equality of the dimensionless cross-coupled added damping 𝑐* and dimensionless direct
added mass 𝑀* in case of a synchronous whirling motion.

The Bernoulli effect exceeds the Lomakin effect, and the negative direct added stiff-
ness 𝐾 occurs only for long annular seal (fig. 1.18). Since the direct added stiffness 𝐾 is
proportional to the radial force component, graph 1.21 confirms the results of A. Lomakin
[3] about the 𝐹𝑟, which grows with decreasing seal clearance.

Dependence of 𝐾 on Ψ is quadratic (figs. 1.18 and 1.21), 𝐶 and 𝑘 has linear relation
to Ψ (figs. 1.19 and 1.22) and 𝑀 and 𝑐 are asymptotic (figs. 1.20 and 1.23). All ro-
tordynamic coefficients grows with increasing Ψ. The only exception is the direct added
stiffness 𝐾 for high 𝐿𝑠/𝑅 ratios where the Bernoulli effect is capable of creating positive
radial force component.

The following analysis of the influence of working and geometric parameters on the
rotordynamic coefficients is inspired by the work of Childs [5]. All coefficients grow
monotonically with increasing 𝐿𝑠/𝑅 ratio except the direct added stiffness 𝐾, which has
a maximum value around 𝐿𝑠/𝑅 = 1. Then 𝐾 stably falls off and it becomes negative,
which means potentially decentralizing for 𝐿𝑠/𝑅 = 3,5. Increasing the 𝐿𝑠/𝑅 ratio aug-
ments the influence of the Bernoulli effect over the Lomakin effect.
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Fig. 1.19: 𝐶* and 𝑘* for various 𝐿𝑠/𝑅
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Fig. 1.20: 𝑀* and 𝑐* for various 𝐿𝑠/𝑅

Figs. 1.18 -1.20: Rotordynamic coefficients for plain annular seal with 𝐶𝑟/𝑅 = 0,01 [47]
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Fig. 1.21: 𝐾* for various 𝐶𝑟/𝑅
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Fig. 1.22: 𝐶* and 𝑘* for various 𝐶𝑟/𝑅
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Fig. 1.23: 𝑀* and 𝑐* for various 𝐶𝑟/𝑅

Figs. 1.21 -1.23: Rotordynamic coefficients for plain annular seal with 𝐿𝑠/𝑅 = 1 [47]
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It is clear from fig. 1.11 that the radial force component generated by the Lomakin
effect decrease in the axial direction of the rotor. This can be potentially dangerous for
long annular seals with a combination of the Bernoulli effect because the part of the rotor
close to the inlet is centralized, but the part close to the outlet can be decentralized.
Described radial force distribution would lead to tilting of the rotor and the Childs and
Dressman’s model would not be sufficient for the determination of the rotordynamic co-
efficients. This situation can arise for the balance piston seals. The potential problems
are often sorted out by ”breaking up” stator of the annular seal with deep grooves, which
should produce the effect of several short seals in series instead of a single long seal. The
deep grooves in the stator support pressure equalization around the circumference of the
rotor.

All rotordynamic coefficients decrease with decreasing of 𝐶𝑟/𝑅 ratio, nevertheless, the
𝐾 and 𝐶 are the most predisposed to changes of 𝐶𝑟/𝑅 and they rapidly drop with in-
creasing 𝐶𝑟/𝑅. Contrary to 𝐿𝑠/𝑅, the 𝐶𝑟/𝑅 ratio can change during operations due to
wearing out of seals. Increasing of 𝐶𝑟/𝑅 can frequently cause a shift of a rotor critical
speeds downwards which can lead to potential resonance. The parallel loss of damping
means higher amplitudes of vibrations. If a annular seal wears out is probable, it is safer
to perform two analyses of the annular seal and its effect on the dynamic properties of
rotating machinery as well. One for seal with designed clearance and another for seal with
higher clearance. The suggested value of higher clearance is double of designed clearance.

The pressure difference across the annular seal Δ𝑝 has almost no effect on the rotordy-
namic coefficients 𝑐, 𝑀 and 𝑚, but the influence of Δ𝑝 on other rotordynamic coefficients
is appreciable. The 𝑘 and 𝐶 grows asymptotically when Δ𝑝 increases linearly, while 𝐾
is a linear function of the pressure difference. Consequently, all rotordynamic coefficients
are a function of fluid density, since the Δ𝑝 is proportional to the 𝜌. Hence, the vibration
characteristics of rotating machinery can be changed markedly by change the in fluid
density.

The pressure difference Δ𝑝 is generally a quadratic function of rotor running speed
𝜔. The 𝐾 and 𝑘 grows quadratically with 𝜔, however, the increase of the cross-coupled
added stiffness is caused by both increase of Δ𝑝 and increase of circumferential velocity
𝑣𝑐𝑖𝑟, which is obviously caused by the increase of 𝜔. The 𝐶 and 𝑐 are linear functions of
the running speed. As same as for 𝑘, an increase of 𝑐 is produced by an increase of 𝑣𝑐𝑖𝑟.
The added mass terms 𝑀 and 𝑚 are insensitive to change of 𝜔, which results in the same
way as changes of Δ𝑝.

In summary, the annular seals depend on a great number of parameters, which can be
mutually related. The effect of only several parameters was covered in this section, but
they have the biggest effect on the dynamical behaviour of seals. The annular seals en-
able a great number of opportunities to favourably modifying the rotordynamic of rotating
machinery.
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1.4.4 Differences between the plain annular seals and plain jour-
nal bearings

The plain journal bearings are similar to the plain annular seals from a geometric point
of view, which was mentioned in section 1.1. Besides a utilization of seals and bearings
and flow field within the annular gap, which was mentioned in previous sections, there are
more differences between these two parts of rotating machinery. The fluid flow in journal
bearing is driven particularly by rotation of the rotor and the position of the rotor is given
by the big number of parameters, e.g. rotating speed of the rotor, applied load, absolute
viscosity of fluid etc. In contrast to journal bearings, seals generated significant direct
added stiffness 𝐾 in a centred position, which is independent of rotor running speed. The
high value of 𝐾 in centred position for annular seals is caused by the Lomakin effect.
Hence, the position of the rotor in annular seals is mainly given by the radial force com-
ponent.

The fluid within the journal bearings normally cavitates, which complicates the anal-
ysis of fluid flow and it as well affects the direct added stiffness term. Bearings are fairly
nonlinear, which in case of the rotordynamic coefficients means that they are strongly
dependent on the static eccentricity ratio 𝜀.

Fortunately, the annular seals are not generally affected by cavitation and they are
linear out to eccentricity ratio about 𝜀 = 0,5. Hence, the rotordynamic coefficients de-
termined for small whirl motion about the centred position are generally satisfactory for
rotordynamic analysis of rotating machinery.

The journal bearings can be characterized by a single parameter called the Sommer-
feld number 𝑆𝑜. On the other hand, the annular seals rotordynamic coefficients depend a
great number of nondimensionalized parameters, e.g. 𝑅𝑒𝑎𝑥, 𝑅𝑒𝜔, 𝑅𝑒Ω, Δ𝑝, 𝐶𝑟/𝑅, 𝐿𝑠/𝐷,
𝜀 etc. Hence, based on [5], it is not possible to develop ”design chart” for various of
seal states, but it is necessary to calculate the rotordynamic coefficients for every single
annular seal operating conditions.

1.4.5 Comparison of different seal designs

The plain annular seals were the first type of seals used in rotating machinery. Even
though they have operating limitations, some of them were presented in previous sec-
tions, the plain annular seals are the most common design of seals nowadays. Due to
the mentioned reasons, the plain annular seal design is the etalon for comparison of seal
design.

The tapered seals (shown in fig. 1.4) reduce the clearance in the downstream direction.
They were analytically and experimentally investigated in research [67], which concluded
that the introduction of taper increases the leakage and the direct added stiffness. How-
ever, the other rotordynamic coefficients are decreased. Paper [67] describes an approach
for determination of an optimal taper angle with respect to either only value of direct
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added stiffness or of the ratio of direct added stiffness to leakage. The 𝐾 can be increased
on the order of 40-50 percent by the tapered seal in comparison with the plain annular
seal. The tapered seals can be used in cases when the direct added stiffness has to be
increased, but the system is not close to the stability limit.

The stepped seals (depicted in fig. 1.5) utilize a step change of clearance and they
are actually a special variant of the tapered seals with taper angle 90°. A. Lomakin was
first who examine the stepped seals and compared its effect on radial force component
and the first eigenfrequency with the plain annular seal [3]. If the stepped seals are used
in series, the seal is called the ”stepped labyrinth seal”, which was investigated e.g. in
[68]. The steps can be arranged to increase seal radius (”the divergent stepped labyrinth
seal”), to decrease seal radius (”the convergent stepped labyrinth seal”) or to sustain seal
radius (”the straight stepped labyrinth seal”). The converging stepped labyrinth seals
leak less than the others. On the other hand, the diverging stepped labyrinth seals have
a higher value of the direct added stiffness. The steps can be machined to either rotor or
stator. The steps on the stator are more stable from rotordynamic point of view, which
is the similar result as for roughness in the damper seals. The stepped labyrinth seals
are used for even greater reduction of leakage than in the tapered seals. The selection of
stepped seal version is based on the desired dynamic behaviour, the leakage and as well
on other occasions, e.g. application of the divergent stepped labyrinth seal increase size
of the machine, which is not always possible.

The grooved seals (shown in fig. 1.6) are used to lower the leakage flow through the
seal in comparison with the plain annular seal. The selection of groove depth is crucial to
achieve a decrease of leakage and to prevent detrimental effect on rotor dynamic. While
deep groves decrease the leakage, they impair the direct added stiffness 𝐾. Seals with
shallow grooves provide a good compromise for leakage reduction, while the 𝐾 sustain
sufficient.

There are more designs of seals used in the turbomachinery industry nowadays. This
section is not aimed to describe of all of them and to cover their effect on rotordynamic ef-
fects, but to introduce the basic seal designs and to compare their rotordynamic properties
with properties of the plain annular seal.

1.5 Distribution of velocity on rotor surface

It is very important for each computation of fluid flow to correctly define the boundary
conditions. In case of modeling of fluid flow within annular seals, it is necessary to
precisely describe the velocity on the surface of rotor. The velocity on the surface of
stator is normally assumed to be zero, which means the no-slip boundary condition is
applied on the stator. The main difficulty is to define the velocity on the rotor surface.
As mentioned in previous sections, the velocity of the rotor in the annular seal is composed
of two components, rotation and whirl of the rotor. Vector velocity u̇, created by whirl
motion, is identical for each location on the rotor surface. On the contrary, the vector of
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circumferential velocity U is always perpendicular to the position vector r. The initial
point of the position vector is located on the surface of rotor and the terminal point is
the centre of rotor. Equation (1.55) defines the vector of circumferential velocity U as a
cross product of the vector of angular velocity 𝜔 and the position vector. This equation
implies the direction of vector U varies per location of the surface of rotor.

U = 𝜔 × r (1.55)

Based on the description in the previous paragraph, it is obvious the velocity on the
surface of rotor is not constant, direction and magnitude vary on surface of rotor. The
most general equation for description of velocity in arbitrary point 𝐴 on rotor surface is
defined by (1.56).

v𝐴 = U + u̇ (1.56)

1.5.1 General motion of rotor

Analytical description of the distribution of velocity on the rotor in the annular seal
is adopted from the derivation of velocity distribution on the rotor in journal bearing,
presented in master thesis of J. Seidl [69] and even further derived in work of S. Fialová
[70]. Movement of the rotor in journal bearings is as well as in annular seals composed of
rotation and whirl motion, therefore the definition of velocity on rotor surface is identical.
Derivation, presented in [69], describes the most general translation movement of the
rotor, which is described in fig. 1.24. The rotor is moving on general orbit around an
eccentric static position. The components of velocity on point 𝐴 is described in fig. 1.25.
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Fig. 1.25: Velocity on rotor surface

Formulas for determination of components of velocity on rotor surface are derived in
the polar coordinate system, which is shown in figs. 1.26 and 1.27. The pole of the polar
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coordinate system is in the centre of gravity of stator, which is identical to the fixed
cartesian coordinate system shown in fig. 1.10. The radial axis 𝑟 of the polar coordinate
system passes through an analysed point on rotor surface 𝐴. Location of point in the
polar coordinate system is fully defined by radial coordinate 𝑟 and angular coordinate 𝜙.
The components of velocity are for simpler description defined by two perpendicular coor-
dinates, the radial 𝑟 and tangential 𝑡 components. The tangential axis 𝑡 is perpendicular
to the radial axis.

All dimensions and angles, which are used for following derivation of velocity in arbi-
trary point 𝐴 on the rotor surface, are depicted in figs. 1.26 and 1.27, respectively.
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Derivation of velocity in arbitrary point 𝐴 is based on equations (1.57) - (1.62), which
are derive from figs. 1.26 and 1.27.

𝑈𝑟 = −|U| sin 𝜀 (1.57)
𝑈𝑡 = |U| cos 𝜀 (1.58)
𝑢𝑥 = |u| cos 𝛽 (1.59)
𝑢𝑦 = |u| sin 𝛽 (1.60)
𝐵 = 𝑒𝑠 cos𝜓 + 𝑢 cos 𝛽 = 𝑎 cos𝜙+𝑅 cos(𝜋 − 𝜙− 𝜀) (1.61)
𝐶 = 𝑎 sin𝜙 = 𝑒𝑠 sin𝜓 + 𝑢 sin 𝛽 +𝑅 sin(𝜋 − 𝜙− 𝜀) (1.62)

Following formulas with trigonometric functions are necessary for subsequent derivation.

sin(𝑥− 𝑦) = sin 𝑥 cos 𝑦 − cos𝑥 sin 𝑦 (1.63)
cos(𝑥− 𝑦) = cos𝑥 cos 𝑦 + sin 𝑥 sin 𝑦 (1.64)
sin(𝜋 − 𝜙) = sin(𝜙) (1.65)
cos(𝜋 − 𝜙) = − cos(𝜙) (1.66)

sin2 𝑥+ cos2 𝑥 = 1 (1.67)

Equation (1.61) can be adjusted with application of (1.59) and (1.64).

𝐵 = 𝑒𝑠 cos𝜓 + 𝑢𝑥 = 𝑎 cos𝜙+𝑅
[︁

cos(𝜋 − 𝜙) cos 𝜀+ sin(𝜋 − 𝜙) sin 𝜀
]︁

(1.68)
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Further modifications of (1.68) are accomplished with usage of (1.65) and (1.66).

𝑒𝑠 cos𝜓 + 𝑢𝑥 = 𝑎 cos𝜙+𝑅
[︁

− cos𝜙 cos 𝜀+ sin𝜙 sin 𝜀
]︁

sin𝜙 sin 𝜀− cos𝜙 cos 𝜀 = 𝑒𝑠

𝑅
cos𝜓 + 𝑢𝑥

𝑅
− 𝑎

𝑅
cos𝜙 (1.69)

Another part of derivation is focused on adjustments of equation (1.62) with applica-
tion of (1.60) and (1.63).

𝐶 = 𝑎 sin𝜙 = 𝑒𝑠 sin𝜓 + 𝑢𝑦 +𝑅
[︁

sin(𝜋 − 𝜙) cos 𝜀− cos(𝜋 − 𝜙) sin 𝜀
]︁

(1.70)

Formula (1.70) can be simplified by (1.65) and (1.66).

𝑎 sin𝜙 = 𝑒𝑠 sin𝜓 + 𝑢𝑦 +𝑅
[︁

sin𝜙 cos 𝜀+ cos𝜙 sin 𝜀
]︁

sin𝜙 cos 𝜀+ cos𝜙 sin 𝜀 = 𝑎

𝑅
sin𝜙− 𝑢𝑦

𝑅
− 𝑒𝑠

𝑅
sin𝜓 (1.71)

Equation (1.69) is multiplied by term cos𝜙 and equation (1.71) is multiplied by term
sin𝜙.

sin𝜙 sin 𝜀 cos𝜙− cos𝜙 cos 𝜀 cos𝜙 = 𝑒𝑠

𝑅
cos𝜓 cos𝜙+ 𝑢𝑥

𝑅
cos𝜙− 𝑎

𝑅
cos𝜙 cos𝜙 (1.72)

sin𝜙 cos 𝜀 sin𝜙+ cos𝜙 sin 𝜀 sin𝜙 = 𝑎

𝑅
sin𝜙 sin𝜙− 𝑢𝑦

𝑅
sin𝜙− 𝑒𝑠

𝑅
sin𝜓 sin𝜙 (1.73)

Subtraction of (1.73) from (1.72) yields formula (1.74).

− cos2 𝜙 cos 𝜀− sin2 𝜙 cos 𝜀 = 𝑒𝑠

𝑅
cos𝜓 cos𝜙+ 𝑢𝑥

𝑅
cos𝜙− 𝑎

𝑅
cos2 𝜙−

−
(︃
𝑎

𝑅
sin2 𝜙− 𝑢𝑦

𝑅
sin𝜙− 𝑒𝑠

𝑅
sin𝜓 sin𝜙

)︃

cos 𝜀(− cos2 𝜙− sin2 𝜙) = 𝑒𝑠

𝑅

(︃
cos𝜓 cos𝜙+ sin𝜓 sin𝜙

)︃
+

+ 𝑎

𝑅

(︃
− cos2 𝜙− sin2 𝜙

)︃
+ 𝑢𝑥

𝑅
cos𝜙+ 𝑢𝑦

𝑅
sin𝜙 (1.74)

Equations (1.64) and (1.67) are used for modifications of (1.74).

− cos 𝜀 = 𝑒𝑠

𝑅
cos(𝜓 − 𝜙) − 𝑎

𝑅
+ 𝑢𝑥

𝑅
cos𝜙+ 𝑢𝑦

𝑅
sin𝜙

cos 𝜀 = 𝑎

𝑅
− 𝑢𝑥

𝑅
cos𝜙− 𝑢𝑦

𝑅
sin𝜙− 𝑒𝑠

𝑅
cos(𝜓 − 𝜙) (1.75)

Tangential component of circumferential velocity 𝑈𝑡 can be expressed with usage of (1.75).
Derivation of formula for radial component of circumferential velocity 𝑈𝑟 is carried out

by multiplication of equation (1.69) by term sin𝜙 and by multiplication of equation (1.71)
by term cos𝜙.

sin𝜙 sin 𝜀 sin𝜙− cos𝜙 cos 𝜀 sin𝜙 = 𝑒𝑠

𝑅
cos𝜓 sin𝜙+ 𝑢𝑥

𝑅
sin𝜙− 𝑎

𝑅
cos𝜙 sin𝜙 (1.76)

sin𝜙 cos 𝜀 cos𝜙+ cos𝜙 sin 𝜀 cos𝜙 = 𝑎

𝑅
sin𝜙 cos𝜙− 𝑢𝑦

𝑅
cos𝜙− 𝑒𝑠

𝑅
sin𝜓 cos𝜙 (1.77)
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Adding equations (1.76) and (1.77) together yields formula (1.78).

sin2 𝜙 sin 𝜀+ cos2 𝜙 sin 𝜀 = 𝑒𝑠

𝑅
cos𝜓 sin𝜙+ 𝑢𝑥

𝑅
sin𝜙− 𝑎

𝑅
cos𝜙 sin𝜙+

+ 𝑎

𝑅
sin𝜙 cos𝜙− 𝑢𝑦

𝑅
cos𝜙− 𝑒𝑠

𝑅
sin𝜓 cos𝜙

sin 𝜀(sin2 𝜙+ cos2 𝜙) = 𝑒𝑠

𝑅
(cos𝜓 sin𝜙− sin𝜓 cos𝜙) + 𝑢𝑥

𝑅
sin𝜙− 𝑢𝑦

𝑅
cos𝜙 (1.78)

Equation (1.78) can be even further modified with application of formulas (1.63) and
(1.67).

sin 𝜀 = 𝑒𝑠

𝑅
sin(𝜙− 𝜓) + 𝑢𝑥

𝑅
sin𝜙− 𝑢𝑦

𝑅
cos𝜙 (1.79)

Formulas (1.57) and (1.58), which determines radial and tangential components of
circumferential velocity, can be with application of equations (1.75) and (1.79) expressed
by following equations.

𝑈𝑟 = −|U|
[︃
𝑒𝑠

𝑅
sin(𝜙− 𝜓) + 𝑢𝑥

𝑅
sin𝜙− 𝑢𝑦

𝑅
cos𝜙

]︃
(1.80)

𝑈𝑡 = |U|
[︃
𝑎

𝑅
− 𝑢𝑥

𝑅
cos𝜙− 𝑢𝑦

𝑅
sin𝜙− 𝑒𝑠

𝑅
cos(𝜓 − 𝜙)

]︃
(1.81)

The velocity of point 𝐴 on rotor surface is in the polar coordinate system defined by
equations:

𝑣𝐴,𝑟 = 𝑈𝑟 + �̇�𝑟 (1.82)
𝑣𝐴,𝑡 = 𝑈𝑡 + �̇�𝑡 (1.83)

Radial and tangential components of translation whirl motion are defined by the following
formulas.

�̇�𝑟 = �̇�𝑥 cos𝜙+ �̇�𝑦 sin𝜙 (1.84)
�̇�𝑡 = −�̇�𝑥 sin𝜙+ �̇�𝑦 cos𝜙 (1.85)

The velocity in point 𝐴 on rotor surface in the polar coordinate system can be adjusted
with application of equations (1.80), (1.81), (1.84) and (1.85) into formulas (1.86) and
(1.87).

𝑣𝐴,𝑟 = −|U|
[︃
𝑒𝑠

𝑅
sin(𝜙− 𝜓) + 𝑢𝑥

𝑅
sin𝜙− 𝑢𝑦

𝑅
cos𝜙

]︃
+ �̇�𝑥 cos𝜙+ �̇�𝑦 sin𝜙 (1.86)

𝑣𝐴,𝑡 = |U|
[︃
𝑎

𝑅
− 𝑢𝑥

𝑅
cos𝜙− 𝑢𝑦

𝑅
sin𝜙− 𝑒𝑠

𝑅
cos(𝜓 − 𝜙)

]︃
− �̇�𝑥 sin𝜙+ �̇�𝑦 cos𝜙 (1.87)

The radial coordinate of the velocity in point 𝐴 on the rotor surface is defined by
parameters that are constant for all points of the rotor surface. Contrary to the radial
coordinate 𝑣𝐴,𝑟, final formula for the tangential coordinate 𝑣𝐴,𝑡 contains parameter 𝑎,
which represents distance between centre of stator and point 𝐴 on rotor surface, which is
function of location on rotor. Parameter 𝑎 can be set either numerically from the known

51



position of the centre of the rotor, or it is possible to obtain approximate analytical
formula (1.88). Derivation of this approximate formula is fully covered in [69] or [70].

𝑣𝐴,𝑡 = |U| − �̇�𝑥 sin𝜙+ �̇�𝑦 cos𝜙 (1.88)

Even though the tangential velocity component distribution given by equations (1.87)
and (1.88) are in good agreement for small values of 𝑒 and 𝑒𝑠 compared to the radius
of rotor, the tangential velocity component is always in presented thesis determined by
numerical approach, which means parameter 𝑎 is determined based on the known position
of the centre of rotor.

1.5.2 Centred circular whirling of rotor

Analysis of annular seals, presented in subsequent sections, uses the Childs and Dressman
method for determination of rotordynamic coefficients. This method uses the assumption
of centred circular whirling motion of the rotor. Equations for velocity on the surface
of rotor with general movement (1.86) and (1.87) can be simplified with the application
of this assumption. The rotor in the Childs and Dressman method should perform a
small-eccentricity centred circular orbit, which means the steady-state rotor eccentricity
𝑒𝑠 is equal to zero. Position of centre of rotor is defined by equation (1.27).

u =
⎡⎣ 𝑢𝑥

𝑢𝑦

⎤⎦ =
⎡⎣ 𝑥

𝑦

⎤⎦ =
⎡⎣ 𝑒 cos𝜙
𝑒 sin𝜙

⎤⎦ =
⎡⎣ 𝑒 cos(Ω𝑡)
𝑒 sin(Ω𝑡)

⎤⎦
Formula (1.28) defines the velocity of the centre of rotor, which is equal to the first
derivative of displacement of rotor centre with respect to time.

u̇ =
⎡⎣ �̇�𝑥

�̇�𝑦

⎤⎦ =
⎡⎣ −𝑒Ω sin(Ω𝑡)

𝑒Ω cos(Ω𝑡)

⎤⎦
Magnitude of the circumferential velocity |U| is defined by equation (1.89).

|U| = 𝜔𝑅 (1.89)

The velocity in point 𝐴 on rotor surface is in case of centred circular whirl defined by
equations (1.90) and (1.91).

𝑣𝐴,𝑟 = −𝜔𝑅
[︃
𝑒

𝑅
cos(Ω𝑡) sin𝜙− 𝑒

𝑅
sin(Ω𝑡+) cos𝜙

]︃
−

−𝑒Ω sin(Ω𝑡) cos𝜙+ 𝑒Ω cos(Ω𝑡) sin𝜙 (1.90)

𝑣𝐴,𝑡 = 𝜔𝑅

[︃
𝑎

𝑅
− 𝑒

𝑅
cos(Ω𝑡) cos𝜙− 𝑒

𝑅
sin(Ω𝑡) sin𝜙

]︃
+

+𝑒Ω sin(Ω𝑡) sin𝜙+ 𝑒Ω cos(Ω𝑡) cos𝜙 (1.91)

Equations (1.90) and (1.91) can be used for definition of the velocity on rotor into
CFD analyses. The motion of the rotor and consequently the velocity on rotor surface is
in the presented thesis defined by the concept of mesh motion in CFD analyses. However,
the derived equations for velocity on the rotor are very important for verification whether
the defined velocity distribution on the rotor is correct.
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1.6 Analysis of annular seal of oxidizer pump

The focus of the following sections is the determination of the rotordynamic coefficients
of plain annular seal in the oxidizer pump of the rocket engine. Hydraulic parts of the
oxidizer pump were designed at Victor Kaplan Department of Fluid Engineering at Faculty
of Mechanical Engineering at Brno University of Technology. The working fluid pumped
by the oxidizer pump is nitrogen peroxide. The design parameters of the pump and the
main characteristics of the working fluid are summarized in table 1.1.

Tab. 1.1: Design parameters of oxidizer pump and physical properties of working fluid

Quantity Value

Revolutions per minute 𝑛 80 000 min−1

Rotational speed 𝜔 8377,58 rad s−1

Inlet pressure to the pump 𝑝𝑖𝑛 550 kPa
Outlet pressure of the pump 𝑝𝑜𝑢𝑡 5,7 MPa
Mass flow rate through the pump 𝑄𝑚 1,604 kg s−1

Density of working fluid 𝜌 1440 kg m−3

Dynamic viscosity of working fluid 𝜂 1,5 × 10−3 Pa s−1
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Fig. 1.28: Meridional section of oxidizer pump

Impeller with 5 blades was designed based on the design parameters. Meridional
section of the oxidizer pump with all main dimensions, which are required for analyses of
the annular seal, is depicted in figure 1.28. All dimensions, presented in the meridional
section of the pump are in millimeters, which means that dimensions of the pump are
very small in comparison with the ordinary dimensions of the pumps. It is necessary to
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point out the sketch of the meridional section of the pump does not represent the real
geometry of the pump, but it is created only for the projection of the main dimensions
and location of the annular seals.

The plain annular seal in the front sidewall gap, which is analysed in subsequent
sections, is highlighted in red colour. It restricts flow from impeller discharge through
the front sidewall gap to the inlet pipe. There is an annular seal with the same geometry
located in the rear sidewall gap. Fluid flow in the rear sidewall gap is limited almost to zero
and it is modeled like there would be a mechanical seal. Although the final constructional
solution is different in comparison with fig. 1.28, the mass flow rate through the rear
sidewall gap is approximately equal to zero. The annular seal in the rear sidewall gap has
no flow in the axial direction and consequently, it does not serve as an ordinary annular
seal. Hence only the annular seal in the front sidewall gap is analysed in subsequent
sections.

1.6.1 CFD analyses of the oxidizer pump in centred position

All steps in the design of the oxidizer pump are presented in report [71] and summarized in
paper [72]. Hydraulic parameters of the pump were evaluated based on CFD simulations
of the pump in the centred position of the rotor. First simulations were carried out
with computational domain, which did not contain the impeller sidewall gaps. Later
on, the hydraulic parameters were more precisely determined from CFD analyses with
the computational domain, where the impeller sidewall gaps were included. Both types of
simulations, with and without impeller sidewall gaps, were used for definition of boundary
conditions for analyses of the annular seal in front sidewall gap.

At this point, I would like to thank Ing. David Štefan, Ph.D. who carried out all CFD
analyses of the pump in the centred position of the rotor and who provided access to the
results of these analyses. Characteristics of the computational mesh used in computations
of the pump in centred rotor position are summarized in table 1.2. It is obvious the
computational mesh in simulations, which were performed without impeller sidewall gap,
did not contain parts named "Front Sidewall Gap" and "Rear Sidewall Gap".

Tab. 1.2: Computational mesh of CFD simulation with centred rotor

Location Number of elements

Impeller 1 582 525
Inlet pipe 1 793 189
Volute 1 405 369
Front Sidewall Gap 475 888
Rear Sidewall Gap 506 736

Total number of elements 5 763 707
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Software ANSYS CFDX 19 R1 was used for all CDF computations of the pump with
the centred rotor. The flow in the pump was modeled by the Standard k-𝜀 turbulence
model. The resultant hydraulic parameters of the oxidizer pump with centred rotor work-
ing at design parameters are presented in table 1.3, which covers the results of CFD
computations without impeller sidewall gaps (ISG) and with them.

Tab. 1.3: Hydraulic parameters of the oxidizer pump in concentric position

Quantity CFD without ISG CFD with ISG

Mass flow rate 𝑄𝑚 1,604 kg s−1 1,604 kg s−1

Torque 𝑀𝑇 0,775 N m 0,833 N m
Head 𝐻 370,0 m 361,1 m
Efficiency 𝜂 0,8963 0,8145

1.7 Computational domains used for CFD analyses
of annular seal

The analysis of rotordynamic coefficients of annular seals has two main steps. First, it is
necessary to determine force on the surface of the rotor within the seal for several whirl
frequencies. The rotordynamic coefficients are then evaluated based on components of
force for different whirl frequencies.

The fluid flow within the annular seal is in all presented analyses modeled by CFD.
Two different computational domains were used for CFD simulation of flow in the annular
seal of the front sidewall gap. Both computational domains model the same operating
conditions of the pump. If the rotor and the stator of the pump are in concentric position,
the radial clearance of the annular seal is 0,045 mm, which is the case of CFD analyses
described in the previous section. Based on work [48], the rotordynamic coefficients deter-
mined with the assumption of centred circular whirl motion are correct for eccentricities
up to half of seal clearance. Selected eccentricity for computation is equal to third of seal
clearance, i.e. 𝑒 = 0,015 mm.

At least three computations with different whirl frequencies have to be carried out for
the purpose of identification of rotordynamic coefficients, which was introduced in section
1.2.2. In all analyses of rotordynamic coefficients, presented in this chapter, five com-
putations were carried out for a range whirl frequencies Ω, specified in table 1.4, which
was executed for reasons of the more accurate curve fit. Selected set of whirl frequencies
differs from set suggested by Childs [5], who used range Ω ∈ ⟨ 0 ; 2 ⟩. There is a problem
with value Ω = 0 because, for this whirl frequency, the rotor performs only rotational mo-
tion and no whirl motion occurs. If Ω = 0, the rotor is not centred, which is a violation
of the main assumption of Childs and Dressman’s model derivation [49]. Centred whirl
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motion of the rotor was assumed in presented computations. The coordinate system of
all computational domains is adopted from the analyses of the pump in centred rotor po-
sition and it is presented in fig. 1.29, which represents cross section through impeller mid
plane. Vector of angular velocity opposes coordinate axis 𝑧 (direction of axis 𝑧 is shown
in fig. 1.33). Rotor performs in all analyses the forward whirl hence whirl frequencies
have negative values, which is more closely described in section 1.8. The main parameters
used for analyses of the annular seal are specified in table 1.4.

Tab. 1.4: Main characteristics for analysis of annular seal

Quantity Value

Radius of rotor in annular seal 𝑅 6,3 mm
Radius of stator in annular seal 𝑅𝑠𝑡𝑎𝑡𝑜𝑟 6,345 mm
Length of annular seal 𝐿𝑠 1,7 mm
Radial clearance 𝐶𝑟 0,045 mm
Eccentricity 𝑒 0,015 mm
Radius of impeller 𝑅𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟 10,6 mm
Revolutions per minute 𝑛 80 000 min−1

Angular velocity 𝜔 8377,58 rad s−1

Whirl to rotation ratio 𝑓Ω 𝑓Ω ∈ {0,5 ; 0,75 ; 1 ; 1,25 ; 1,5}
Density of working fluid 𝜌 5,9 kg m−3

Dynamic viscosity of working fluid 𝜂 1,5 × 10−3 Pa s−1

x

y

Fig. 1.29: Cross section through impeller mid plane
The first computational domain consists solely of the geometry of the annular seal

of the front sidewall gap. The fluid flows in the annular gap between the stator and the
rotor. Rotor performs a whirl motion on predefined whirl frequencies. The computational
domain is depicted in fig. 1.30 and it is called ”Computational domain of annular seal”
in subsequent sections.
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Fig. 1.30: Computational domain of annular seal

All CFD computations in analyses of the rotordynamic coefficients were performed
in software ANSYS Fluent 2019 R3, which enables to use the moving mesh approach for
modeling of rotor whirl. The computational mesh is not deformed during the solution, but
it is split into three parts which are moving against each other in solution. The concept
of domain parts movement is demonstrated in figure 1.31. The blue part is the stationary
part. The green part rotates around the axis of the stator and it creates a whirl motion
of the red domain, which represents the annular area around the rotor. The red area is
moving together with the green area and it as well rotates around the instantaneous axis
of the rotor. The movement of the red part has to create correct velocity distribution
on the surface of the rotor. Value of the angular velocity of the red part is given by
subtraction of angular velocity of rotor 𝜔 by whirl frequency Ω.

Stator

Rotor

Fig. 1.31: Partition of seal domain for modeling of rotor whirl motion

There are other possibilities that enable modeling of whirl motion in current CFD
softwares. For example, it is possible to use the remeshing approach, which changes
computational mesh in each time step based on the current position of the rotor. The
main advantage of the moving mesh approach is the lower computational time because the
mesh is only moved between two time steps and not changed. Another advantage is the
mesh quality is not changed during the solution and hence it is not necessary to examine
mesh quality during the solution. The main disadvantage is the resultant computational
mesh is non-conformal and parts of mesh have to be connected by interfaces, which can
produce interpolation errors at these faces.

The computational mesh of the domain of the annular seal consists of 504 000 hexa-
hedral elements. Each part of the domain is split into 7 divisions in the radial direction.
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Fig. 1.32: Computational mesh of annular seal

Mesh adjacent to rotor and stator walls is refined to correctly resolve the boundary layer.
Computational mesh has 800 and 30 uniformly spaced divisions in circumferential and
axial direction, respectively. Details of computational mesh in locations with maximum
(green rectangle) and minimum clearance (red rectangle) are depicted in fig. 1.32. The
connections of meshes between all parts are generally non-conformal due to their move-
ment. The geometry of the annular seal, which is shown in fig. 1.32, is enlarged in
comparison with actual dimensions of the seal, but ratios between all dimensions are re-
alistic. It is clear from picture 1.32 that it is very difficult to display any parameter on
the whole cross section of the annular seal, due to the very small thickness of the gap
between stator and rotor in comparison with the diameter of the rotor. Therefore it is
necessary to display the required parameters on a small section of the seal cross section.

The second variant of the computational domain covers the entire pump. The fluid
enters the domain through the inlet pipe and flows out by the volute discharge. Inlet is
situated in fig. 1.33 on the left side of the inlet pipe. Outlet is located in fig. 1.29 on
the left side of the volute. The mass flow through the rear sidewall gap is assumed to be
zero. Whole computational domain was split into 5 parts and the location of all parts
is depicted in fig. 1.33. Green and red parts represent the front and rear sidewall gaps,
respectively. Geometries of those parts were created for purposes of modeling of rotor
whirling motion.
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Rotor whirl is modeled identically as in the case of the computational domain of an-
nular seal by mesh motion. Computational mesh in the front and rear sidewall gaps is
split into three parts, one enclosing the stator, another around the eccentric rotor. The
central part between them is used for modeling of whirl motion. It was more difficult to
split sidewall gaps into parts that would connect correctly due to complicated geometry
in those parts of the domain (especially in the front sidewall gap), but the main idea is
the same as in case of the computational domain of annular seal (fig. 1.31).

z

Fig. 1.33: Partition of computational domain of the pump into parts

Fig. 1.34: Computational mesh and BC of the front sidewall gap

It is always a challenge to create a computational mesh in the domain that contains
parts with small dimensions connected to larger volumes. And it is even more demand-
ing if the main results of computation should be determined within the small volume.
Therefore, the main attention in the process of creation of the computational mesh was
focused on the front sidewall gap. Mesh within the annular seal of the front sidewall
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gap has the same element distribution in the radial and circumferential direction as in
case of the mesh of computational domain of annular seal, which is depicted in fig. 1.32.
The distribution of elements in axial direction had to be adjusted to cover the change of
clearance on both sides of the annular seal, which is for the inlet to the seal shown in fig.
1.34 (in orange rectangle). Mesh in the annular seal is split in the axial direction into 50
divisions with the non-uniform distribution. The same distribution of mesh elements is
used in the annular seal of the rear sidewall gap.

The computational mesh in the front sidewall gap is split into two parts in the radial
direction for reduction of the number of elements. The mesh is split up by conical surface
with axis identical to axis of the stator. The projection of the conical surface into the
meridional section of the computational domain is depicted in fig. 1.34, where the projec-
tion is represented by red line. Computational mesh in the front sidewall gap is divided
into 6 parts because parts above and below the conical surface are split into 3 parts due
to modeling of the whirl motion. The distribution of elements in the meridional section
is unchanged at dividing surface (which is presented in fig. 1.34 in the cyan rectangle),
but the number of division is decreased in the circumferential direction. The ratio of the
number of elements at the slicing surface is 1 to 2 and a higher number of elements in the
circumferential direction is in the annular seal. Computational mesh in the rear sidewall
gap is as same as in the front sidewall gap divided into two parts in order to reduce the
number of elements.

The number and type of elements for all parts of the computational mesh of the pump
are presented in table 1.5. The volute is the only part where the hexahedral elements
were not used. The computational mesh with hexahedral elements in the volute was as
well tested, but the CFD computation in such case did not converge. The impeller is the
only part which was modelled by the same mesh as in case of CFD computation of the
pump with the centred rotor. The number of elements is smaller in ”eccentric” case (in
comparison of values in tables 1.2 and 1.5), but it is caused only by the reduction of few
layers of elements of mesh in the radial direction, which was done for modeling of whirl
motion. Distribution of elements in the annular seal in the rear sidewall gap is identical
to mesh distribution in the annular seal in the rear sidewall gap.

Tab. 1.5: Computational mesh of the pump with eccentric rotor

Location Number of elements Type of elements

Impeller 1 460 025 Hexahedral
Inlet pipe 4 918 000 Hexahedral
Volute 3 807 862 Predominantly tetraheral and wedges
Front Sidewall Gap 5 846 400 Hexahedral
Rear Sidewall Gap 4 796 000 Hexahedral

Total number of elements 20 828 287
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1.8 Negative whirl frequency

The fixed cartesian coordinate system in the oxidizer pump is depicted in figs. 1.29 and
1.33. Vector of the angular velocity of rotor 𝜔 is based on the design of impeller oriented
against coordinate axis 𝑧. The forward whirling motion of the rotor is assumed in all
analyses of the rotordynamic coefficients, which are presented in subsequent sections. If
the vector of angular velocity 𝜔 is oriented against axis 𝑧 and the rotor performs the
forward whirling motion, the vector of whirl frequency Ω has to be oriented against axis
𝑧 as well. Vectors 𝜔 and Ω are in such case defined by the following formulas:

𝜔 = (0, 0,−𝜔) ; Ω = (0, 0,−Ω)

The determination of the rotordynamic coefficients, presented in section 1.3, uses as-
sumption the whirl frequency is positive. Therefore it is necessary to adjust the procedure
for the determination of the rotordynamic coefficients for negative whirl frequency. If the
whirl frequency is positive, the rotor rotates in 𝑥𝑦 plane in a counterclockwise direction,
which is depicted in fig. 1.10. As it is mentioned in section 1.4, the radial component of
force 𝐹𝑟 is defined positive outward and the tangential component of force 𝐹𝑡 is defined
positive in direction of whirl frequency Ω. Therefore the tangential axis 𝑡* and conse-
quently the tangential component of force 𝐹𝑡 changes orientation with the change of sign
of whirl frequency. Differences in the moving coordinate system for positive and negative
Ω are shown in fig. 1.35.
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Fig. 1.35: Coordinate systems for positive Ω (left) and negative Ω (right)

The transformation of force components from fixed to moving cartesian coordinate
system for positive whirl frequency is described by equation (1.31). This transformation
is for negative whirl frequency defined by formulas (1.92) and (1.93).

𝐹𝑟 = 𝐹𝑥 cos(−Ω𝑡) − 𝐹𝑦 sin(−Ω𝑡) (1.92)
𝐹𝑡 = 𝐹𝑥 sin(−Ω𝑡) + 𝐹𝑦 cos(−Ω𝑡) (1.93)
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The sign of the whirl frequency for determination of the rotordynamic coefficients is
not defined by used the coordinate system, but it is defined by the mutual orientation
of vectors of angular velocity 𝜔 and whirl frequency Ω. If the direction of both vectors
is identical, the whirl frequency is positive. Otherwise, the whirl frequency is negative.
In other words, if the rotor performs forward whirling motion, the whirl frequency is
positive. And the whirl frequency is negative for the backward whirling motion of the
rotor. Therefore, the whirl frequency should be taken as positive for the determination of
the rotordynamic coefficients.

It is possible to use the positive value of whirl frequency for the transformation of force
components with the usage of the following formulas, which are valid for the trigonometric
functions.

sin(−𝑥) = − sin(𝑥) (1.94)
cos(−𝑥) = cos(𝑥) (1.95)

Equations (1.92) and (1.93) can be adjusted with usage of formulas (1.94) and (1.95) into
the following form.

𝐹𝑟 = 𝐹𝑥 cos(Ω𝑡) + 𝐹𝑦 sin(Ω𝑡) (1.96)
𝐹𝑡 = −𝐹𝑥 sin(Ω𝑡) + 𝐹𝑦 cos(Ω𝑡) (1.97)

Equations (1.96) and (1.97) represents the same transformation equations as matrix
equation (1.31). It would seem that it is possible to use the same equations for the
transformation of force components from fixed to moving coordinate system for positive
and negative whirl frequency. However, there is a crucial difference. The tangential axis 𝑡*

is for negative whirl frequency oriented in opposite direction than in case of positive whirl
frequency. The difference between the positive and negative value of whirl frequency
for the transformation of force components from fixed to moving coordinate system is
summarized by equations (1.98) and (1.99).

𝐹𝑟(−Ω) = 𝐹𝑟(Ω) (1.98)
𝐹𝑡(−Ω) = −𝐹𝑡(Ω) (1.99)

The transformation of force components from fixed to moving cartesian coordinate system
is in case of negative whirl frequency defined by equation (1.100) and (1.101).

𝐹𝑟 = 𝐹𝑥 cos(Ω𝑡) + 𝐹𝑦 sin(Ω𝑡) (1.100)
𝐹𝑡 = 𝐹𝑥 sin(Ω𝑡) − 𝐹𝑦 cos(Ω𝑡) (1.101)

One CFD analysis of the annular seal was performed both for a positive and negative
value of whirl frequency and both for forward whirling motion (orientation of angular
velocity was as well changed). Resultant force components in the fixed and moving co-
ordinate system are presented in fig. 1.36 for positive whirl frequency and in fig. 1.37
for negative whirl frequency. Initial position of rotor centre is in all analyses given from
equation (1.27) for time 𝑡 = 0, therefore the initial position of rotor is given by vector
u(𝑡 = 0) = [ 𝑒 ; 0 ]𝑇 . Time behaviour of the horizontal component of force 𝐹𝑥 is identical
for positive and negative Ω because the initial position of the rotor is in the maximal

62



horizontal displacement of the rotor. On the other hand, time behaviour of vertical com-
ponent of force 𝐹𝑦 has for positive and negative Ω equal magnitude but reverse sign. The
radial and tangential components of force are identical for both cases, which is clear from
figs. 1.36 and 1.37.

If radial and tangential force components are determined for negative whirl frequency
from equations (1.100) and (1.101), then the rotordynamic coefficients are determined
from formulas (1.41) and (1.42), where positive value of whirl frequency is taken.

, , , , , , , ,

Fig. 1.36: Components of force on rotor in annular seal for positive Ω

, , , , , , , ,

Fig. 1.37: Components of force on rotor in annular seal for negative Ω
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1.9 Overview of tested variants of CFD computations
of annular seal

Five versions of CFD computations were carried out for purposes of determination of
rotordynamic coefficients of the annular seal of the oxidizer pump. The main reason for
performing such amount of analyses was to examine, what is the difference between ro-
tordynamic coefficients determined with simplified computational domain or boundary
conditions (BC) and rotordynamic coefficients determined based on analysis of the en-
tire pump. Overview of all tested variants of CFD computations of the annular seal is
presented in table 1.6.

Tab. 1.6: Overview of tested variants of CFD computations of annular seal

Number of analysis Designation of analysis

1 Pure axial flow
2 Pre-swirl - 𝜔𝑅/2
3 Pre-swirl - constant values
4 Pre-swirl - mesh profile
5 Entire pump

Analyses 1 to 4 use the computational domain of annular seal in CFD analyses and used
boundary conditions are pressure inlet and pressure outlet BC. Analyses 5, which covers
the entire pump, prescribes the mass flow rate at the inlet pipe inflow and the pressure BC
is used at volute discharge. Analyses number 1 and 2 were performed at the time when
results of CFD analysis of the pump with centred rotor position with impeller sidewall
gap were not available. Therefore it was not possible to define boundary conditions
directly from CFD analysis and boundary conditions had to be set based on analytical
formulas. Analysis 1 models flow at the seal inlet as purely axial. Analysis 2 prescribes
circumferential velocity at the seal inlet which equals to half of the circumferential velocity
at the rotor surface.

Boundary conditions in analyses 3 and 4 are determined from CFD analysis of the
pump with centred rotor position, which was performed with the impeller sidewall gap.
The results of CFD analysis of the pump with centred rotor position were averaged over
one rotation of the impeller and these time-averaged data were used for definitions of
boundary conditions of CFD analyses. Constant values of pressure and velocity over the
annular seal inlet were assumed in analysis 3. Time-averaged data from CFD analysis
with centred rotor position are used in analysis 4 for interpolation of results onto the
computational mesh at inlet and outlet boundaries of computational domains.

64



1.9.1 CFD analyses set-up

Five CFD computations with different whirl frequency Ω were carried out for each analysis
of the rotordynamic coefficients. The set-up of CFD analyses is summarized in following
table 1.7.

Tab. 1.7: Set-up of CFD analyses

Turbulence modeling

Turbulence model Realizable k-𝜀
Wall Function Non-Equilibrium Wall Function

Solution methods

Solver type Pressure-Based
Pressure-velocity coupling scheme SIMPLE
Method of computing the gradient Least Squares Cell Based
Discretization scheme of pressure equation Second Order
Discretization scheme of momentum equation QUICK
Discretization scheme of TKE equation Second Order Upwind
Discretization scheme of TDR equation Second Order Upwind
Time-dependent solution formulation Bounded Second Order Implicit

All characteristics of fluid flow were determined at a point in time when the flow field
within the annular seal was periodic. The rotor in each computation performed at least
five periods of whirl motion. Time steps of the unsteady solution, used in the majority of
analyses, were determined based on the criterion that rotation between two adjacent cells
between two time steps should not be higher than 1°. The only exception to this rule is
analysis 5, which is the analysis of entire pump. The time steps in analysis 5 were halved
for more accurate results, which means rotation between two adjacent cells between two
time steps was less than or equal to 0,5°. And the domain of impeller rotated at most
0,5° between two time steps. The time steps for all analyses are presented in table 1.8.
Time steps 01 were used for analysis 1 to 4, time step 02 was applied in analysis 5.

Tab. 1.8: Time steps of analyses of annular seal

𝑓Ω [-] Ω [rad s−1] Time step 01 [s] Time step 02 [s]

0,5 4188,790 4,125 × 10−6 1,031 × 10−6

0,75 6283,185 2,750 × 10−6 1,031 × 10−6

1 8377,580 2,063 × 10−6 1,031 × 10−6

1,25 10 471,976 1,650 × 10−6 8,250 × 10−7

1,5 12 566,371 1,375 × 10−6 6,875 × 10−7
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All 5 CFD computations, which were necessary to carry out for determination of ro-
tordynamic coefficients of the annular seal in each analysis, had almost the same set-up.
The only two parameters, which differ in the set of 5 CFD computations, were the time
step of unsteady solution and the whirl frequency. It was easy to make a mistake in such
amount of computations and therefore it was necessary to control the set-up of analyses.
The results of each CFD computation were examined and they are presented in subse-
quent sections. It is easy to verify from the resultant time behaviour of forces, whether the
prescribed whirl frequency is correct. However, it is not simply recognizable in the results
of CFD analysis whether the distribution of velocity on the surface of rotor is correctly
defined because velocity distribution on the rotor is a function of radial coordinate (which
was described in section 1.5).

Velocity on the surface of rotor was for each CFD computation examined by compar-
ison of the distribution of velocity in one cross-section against analytical formulas (1.90)
and (1.91). Distributions of velocity on rotor surface determined from CFD analysis and
analytical solution are compared in fig. 1.38, where the magnitude of velocity on the
rotor is depicted. The velocity distribution on the rotor surface in CFD analysis is in
good agreement with the analytically determined distribution. It is even more obvious
in comparison of radial and tangential components of velocity in the polar coordinate
system, which are presented in figs. 1.39 and 1.40. All three figures 1.38, 1.39 and 1.40
present results of analysis 1 for whirl to rotation ratio 𝑓Ω = 0,5.

,

,

,

,

,

,

,

Fig. 1.38: Distribution of velocity magnitude on rotor surface
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Fig. 1.39: Distribution of radial component velocity on rotor surface
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Fig. 1.40: Distribution of tangential component velocity on rotor surface
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1.10 Analysis 1 - Pure axial flow at seal inlet

The first analysis of the rotordynamic coefficients of the annular seal of the oxidizer pump
was performed on the simplest computational domain, which is the computational domain
of annular seal, where solely annular seal geometry is used in CFD analyses. However,
this analysis was performed at the time, when only results of CFD analysis of the pump
with centred rotor position were available. Hence, it was not possible to define boundary
conditions directly from this analysis. The direction of flow at the seal inlet and outlet
was unknown as well. Even though these parameters were not available, it was necessary
to calculate the first estimation of the rotordynamic coefficients. Therefore, the boundary
conditions were set based on analytical formulas.

1.10.1 Boundary conditions in analysis 1

The pressure inlet and pressure outlet boundary conditions were used to define the fluid
flow conditions at the inlet and outlet to seal (fig. 1.30). Static pressure at the inlet to
the annular seal was computed based on the analytical formula for pressure distribution
in the impeller sidewall gap, which is defined by equation (1.102) and this formula was
taken from publication [73].

𝑝𝑖𝑛,𝑎𝑛 = 𝑝𝑜𝑢𝑡,𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟 − 𝜔2

8

(︃
𝑅2

𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟 − 𝑟2
)︃

(1.102)

Static pressure at the impeller outlet 𝑝𝑜𝑢𝑡,𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟 was extracted from CFD simulation of
the pump without sidewall gaps and it was taken as average value at impeller discharge,
i.e. at the outer radius of impeller 𝑅𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟.

𝑝𝑜𝑢𝑡,𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟 = 4 431 430 Pa

The distribution of static pressure in the impeller sidewall gap is a quadratic function of
radius 𝑟 and it is shown in fig. 1.41. Based on equation (1.102), static pressure at the
inlet to annular seal at radius 𝑅 is equal to:

𝑝𝑖𝑛,𝑎𝑛 = 3 513 383 Pa

Static pressure on the pump suction side was extracted directly from results of the
CFD analysis of the pump without sidewall gaps as an average value of static pressure
over the annular area, where the annular seal outlet is located. Static pressure at the
annular seal outlet is equal to:

𝑝𝑜𝑢𝑡,𝑎𝑛 = 490 kPa

The pre-rotation of fluid at the inlet to the seal has a crucial effect on the values
of the rotordynamic coefficients. Unfortunately, the direction of flow is unknown, and
hence pure axial flow with no circumferential and radial component was used in the first
analysis. It is clear the pure axial flow is unrealistic in solved case. The inlet boundary
condition is more correctly resolved in the following analyses.
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Fig. 1.41: Distribution of static pressure in impeller sidewall gap

It is not possible to prescribe static pressures at both inlet and outlet surfaces of the
computational domain, because it results in the ill-conditioned problem in CFD. Static
pressure is used only for the definition of the outlet pressure BC, but total pressure has
to be applied for the definition of the inlet boundary condition. It is not possible to
directly compute total pressure from static pressure, because total pressure results from
the velocity field. This is the main complication with the definition of total pressure at
inlet BC.

It was necessary to carry out several CFD computations with different inlet total
pressure and find the value of "optimal" inlet total pressure, which results in required
static pressure at the inlet to the seal. CFD computations were performed for synchronous
whirling, e.g. the whirl frequency Ω was equal to the rotational speed 𝜔, which is the
median value at a range of whirl frequencies (tab. 1.4). It was found out the resultant
value of the inlet total pressure for whirl frequency Ω = 𝜔 is applicable for all other
computations with different whirl frequencies from the defined range because resultant
values of static pressure for other whirl frequencies are in the acceptable range.

Tested values of the inlet total pressure and resultant static pressure averaged over
the seal inlet are presented in appendix A in table. A.1, where final values of inlet total
pressure are highlighted in red colour and they are in good agreement with required value
of static pressure 𝑝𝑖𝑛,𝑎𝑛 = 3 513 383 Pa. The flow regime within the annular seal has a great
influence on the velocity field. Hence, it was necessary to set the value of the inlet total
pressure both for laminar and turbulent flow, because CFD analysis with different flow
regime obviously results in different value of static pressure at the inlet to computational
domain. Final value of total pressure, which is used for definition of inlet BC, is for
laminar flow 𝑝𝑖𝑛,𝑎𝑛,𝑡𝑜𝑡 = 7 759 810 Pa and for turbulent flow 𝑝𝑖𝑛,𝑎𝑛,𝑡𝑜𝑡 = 4 160 314 Pa.
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1.10.2 Results of CFD analyses and flow regime in analysis 1

The flow regime within the annular seal has a great influence on the flow field and conse-
quently, on the resultant force on the rotor of the annular seal. Therefore it was necessary
to determine the flow regime in the annular seal. The only currently available criterion
for determination of flow regime in annular seals is presented in publication [1] and it
is summarized in section 1.2.1. The theory assumes the flow in concentric annular seal
consists of superposition of the axial flow due to pressure difference and circumferential
flow induced by rotation of the rotor. Two Reynolds numbers have to be defined, one for
a description of axial flow and another for circumferential flow. Both of them are defined
in equation (1.3).

𝑅𝑒𝑎𝑥 = 2𝐶𝑟𝑣𝑎𝑥

𝜈
; 𝑅𝑒𝜔 = 2𝐶𝑟𝑣𝑐𝑖𝑟

𝜈
,

The axial Reynolds number 𝑅𝑒𝑎𝑥 and circumferential Reynolds number 𝑅𝑒𝜔 have to be
combined into so-called combined Reynolds number, defined by equation (1.5).

𝑅𝑒* =
√︃
𝑅𝑒𝑎𝑥

2 + 1
4𝑅𝑒𝜔

2 = 𝑅𝑒𝑎𝑥

⎯⎸⎸⎷1 + 1
4

(︃
𝑣𝑐𝑖𝑟

𝑣𝑎𝑥

)︃2

Ten CFD computations with different whirl frequencies were carried out for purposes
of determination of the rotordynamic coefficients, five for laminar flow and five for turbu-
lent flow. The Realizable k-𝜀 turbulence model was used for modeling of turbulent flow
regime. Values of all three Reynolds numbers at the seal inlet are for all computations
presented in table 1.9. It is interesting to compare values of all three Reynolds numbers
at the seal inlet with values at the annular seal outlet, which are presented in table 1.10.

The axial Reynolds number 𝑅𝑒𝑎𝑥 at the inlet and outlet are nearly equal. The dif-
ference between the mass flow rate and consequently the axial Reynolds number 𝑅𝑒𝑎𝑥 at
the seal inlet and outlet should be ideally equal to zero. However, the CFD computations
are numerical analysis and there is always some numerical error in results. One of the
generally used criteria for the determination whether the results of the computation are
correct states the difference in the mass flow rate at the inlet to the domain and outlet
from the domain should be less than 2 %. This criterion is fulfilled not only in all CFD
computations in analysis 1 but as well in all subsequently presented analyses. Therefore
it is not necessary to determine the axial Reynolds number specially for inlet and outlet
and hence the only axial Reynolds number is in subsequent analyses defined for inlet and
it is used as well for the definition of the combined Reynolds number at the annular seal
outlet.

On the other hand, the circumferential Reynolds number 𝑅𝑒𝜔 differs at the inlet and
outlet of the annular seal. 𝑅𝑒𝜔 is in analysis 1 much larger at the annular seal outlet
than at the inlet, which indicates the flow develops from pure axial at the seal inlet to
a combination of axial and circumferential flow due to movement of the rotor at the an-
nular seal outlet. The magnitude of circumferential velocity increases from seal inlet to
seal outlet. Values of 𝑅𝑒𝜔 at the annular seal outlet for laminar flow are much smaller
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Tab. 1.9: Comparison of computations at seal inlet for analysis 1

Laminar flow Turbulent flow

𝑓Ω [-] 𝑅𝑒𝑎𝑥 [1] 𝑅𝑒𝜔 [1] 𝑅𝑒* [1] 𝑅𝑒𝑎𝑥 [1] 𝑅𝑒𝜔 [1] 𝑅𝑒* [1]

0,5 6538,8 90,9 6539,0 2433,0 221,2 2435,5
0,75 6537,5 90,7 6537,6 2432,1 221,5 2434,6
1 6538,1 90,6 6538,3 2431,1 221,9 2433,6
1,25 6536,2 90,6 6536,3 2429,7 222,3 2432,2
1,5 6535,8 90,5 6535,9 2428,1 222,9 2430,7

Tab. 1.10: Comparison of computations at seal outlet for analysis 1

Laminar flow Turbulent flow

𝑓Ω [-] 𝑅𝑒𝑎𝑥 [1] 𝑅𝑒𝜔 [1] 𝑅𝑒* [1] 𝑅𝑒𝑎𝑥 [1] 𝑅𝑒𝜔 [1] 𝑅𝑒* [1]

0,5 6537,9 645,9 6545,9 2431,8 2044,7 2638,0
0,75 6536,3 647,6 6544,3 2431,2 2045,8 2637,6
1 6537,1 647,9 6545,1 2430,3 2047,1 2637,0
1,25 6535,0 650,8 6543,1 2429,3 2049,0 2636,5
1,5 6535,2 652,4 6543,3 2427,6 2051,0 2635,3

in comparison with values for turbulent flow and therefore gradient of circumferential
velocity within annular seal in case of laminar flow is smaller than in turbulent regime.
The circumferential Reynolds number 𝑅𝑒𝜔 at the seal inlet is very small in comparison
with the axial Reynolds number 𝑅𝑒𝑎𝑥, but it is not equal to zero. The non-zero value of
𝑅𝑒𝜔 at the seal inlet is caused by the effect of the rotor wall, which intersects with the
inlet boundary condition and which has non-zero values of velocity. 𝑅𝑒𝜔 at the seal inlet
is smaller for the laminar regime, which is caused by a smaller gradient of circumferential
velocity in case of laminar flow.

The axial Reynolds number 𝑅𝑒𝑎𝑥 is much higher in laminar flow than in turbulent flow,
which means the axial velocity averaged over the seal clearance 𝑣𝑎𝑥 and consequently the
mass flow rate through the seal is for the laminar flow higher than in case of turbulent
flow. Based on results presented in table 1.11, the mass flow rate through the annular
seal is more than 2,6 times higher.

The transition of flow regimes for the annular seals are described based on empirical
conclusions presented in [1]. Pure laminar flow in the seals occurs for 𝑅𝑒* < 2000 and the
flow is purely turbulent if 𝑅𝑒𝜔 > 4000, even if 𝑅𝑒𝑎𝑥 = 0 (no axial flow). Based on research,
presented in [1], the critical combined Reynolds number, which describes the transition
between laminar and turbulent regimes, decreases with increasing axial Reynolds number
𝑅𝑒𝑎𝑥. Resultant combined Reynolds numbers determined from analyses with laminar flow
is larger than 𝑅𝑒* > 6535 and hence it is very improbable that the flow in the solved case
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would be laminar. On the other hand, the results of analyses with turbulent flow show
the combined Reynolds numbers 𝑅𝑒* is approximately 2433 at the seal inlet, which is very
close to the limit value for pure laminar flow 𝑅𝑒 = 2000.

It is necessary to point out the combined Reynolds number, defined by equation (1.5),
covers only the effects of axial and circumferential flow. The whirl motion of the rotor
is neglected. It would be necessary to create a criterion for the determination of flow
regime in case of a combination of axial flow, rotation and whirling of the rotor to decide
what flow regime occurs within the annular seal. Unfortunately, such criterion has not
been developed yet. And therefore the rotordynamic coefficient of annular seal in case of
analysis 1 are determined both for laminar and turbulent flow.

The main characteristics of the annular seal, determined from CFD computations, are
presented in table 1.11. The difference between results of simulations with the laminar and
turbulent flow is obvious and they are mentioned above. The dimensionless wall distance
𝑦+ is quantity, which evaluates the capability of computational mesh in the vicinity of
walls to correctly resolve the boundary layer and it is used mainly in analyses of flow with
turbulence models. Hence, 𝑦+ is not evaluated for laminar flow.

Tab. 1.11: Results of CFD computations for analysis 1

Quantity Laminar flow Turbulent flow

Mass flow rate 𝑄𝑚 [kg s−1] 0,195 0,072
Axial velocity 𝑣𝑎𝑥 [m s−1] −75,663 −28,134
Circumferential velocity at inlet 𝑣𝑐𝑖𝑟𝑐,𝑖𝑛 [m s−1] 1,049 2,569
Pre-swirl ratio 𝜒 [-] 0,0199 0,049
Flow coefficient Ψ [-] 72,102 10,951
Maximum dimensionless wall distance 𝑦+ [-] - 2,686

1.10.3 Determination of rotordynamic coefficients for analysis 1

Figure 1.42 shows time behaviour of components of force in fixed and moving coordinate
systems for whirl to rotation ratio 𝑓Ω = 0,5 for analysis 1 in case of turbulent flow. Time
behaviour of force on the rotor of the annular seal for other whirl frequencies are presented
for turbulent and laminar flow in appendices B and C, respectively. The horizontal 𝐹𝑥 and
vertical 𝐹𝑦 force components acting on the surface of rotor, within the annular seal were
calculated from the flow field determined by CFD. The radial 𝐹𝑟 and tangential 𝐹𝑡 force
components were determined from equations (1.100) and (1.101). Based on the results of
all CFD computations, it is obvious the components 𝐹𝑟 and 𝐹𝑡 are time independent for
both flow regimes.

Resultant values of radial and tangential force components from analysis 1 are pre-
sented in table 1.12. The radial force components in all computations have negative value
and therefore the annular seal has a centering effect on the pump rotor based on analysis
1. As well the tangential force components have in all computations negative value and
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Fig. 1.42: Components of force for 𝑓Ω = 0,5 for analysis 1 in case of turbulent flow

Tab. 1.12: Resultant force components from analysis 1

𝑓Ω [-] 0,5 0,75 1 1,25 1,5

Turbulent flow

𝐹𝑟 [N] −6,168 −6,133 −6,061 −5,948 −5,800
𝐹𝑡 [N] −1,506 −2,353 −3,205 −4,057 −4,907

Laminar flow

𝐹𝑟 [N] −10,079 −10,079 −10,099 −10,041 −10,006
𝐹𝑡 [N] −3,728 −5,658 −7,613 −9,493 −11,385

hence the annular seal have stabilizing effect on the pump rotor based on analysis 1. Based
on the resultant force components from CFD analyses, the rotordynamic coefficients were
established by a least-square curve fit on these CFD results with the utilization of equa-
tions (1.41) and (1.42). The result of the curve fit procedure for the turbulent regime is
depicted in figs. 1.43 and 1.44. Application of curve fitting for laminar flow in presented
in appendix C in figs. C.6 and C.7 for 𝐹𝑟 and 𝐹𝑡, respectively. Equation of second-degree
polynomial, created by curve fit procedure, is presented in the pictures for 𝐹𝑟 and 𝐹𝑡. The
rotordynamic coefficients are calculated by the division of coefficients of the polynomials
by eccentricity 𝑒.

Force components 𝐹𝑥 and 𝐹𝑦 are harmonic functions of time with zero value of arith-
metic mean. The magnitude of these functions grows with increasing whirl frequency
Ω both for laminar and turbulent flow, but magnitudes of 𝐹𝑥 and 𝐹𝑦 for all five whirl
frequencies are higher in case of laminar flow. The radial force component 𝐹𝑟 is as well
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Fig. 1.43: Regression analysis for 𝐹𝑟 for analysis 1 in case of turbulent flow
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Fig. 1.44: Regression analysis for 𝐹𝑡 for analysis 1 in case of turbulent flow

higher for laminar flow for all Ω. There is a very small approximation error in the curve
fitting process for 𝐹𝑟 in turbulent flow, which is clear from fig. 1.43. On the other hand,
the approximation error in case of laminar flow is much higher C.6. It seems to be a
problem with a value of the radial force component for 𝑓Ω = 1, which clearly violates
parabolical shape. Therefore analysis 1 with 𝑓Ω = 1 and laminar flow was repeated, but
the results were identical. The shape of curve for 𝐹𝑡 is mainly linear for both flow regimes
linear and both curves predicate almost zero value of 𝐹𝑡 for Ω = 0. But the slope of
curve for laminar flow is much higher, which indicates higher direct added damping 𝐶 for
laminar flow.

Resultant matrices of added mass m, added damping c and added stiffness k are
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presented in equations (1.103)-(1.105) for the laminar regime and in equations (1.106)-
(1.108) for turbulent flow. Values of rotordynamic coefficients for laminar and turbulent
regime are of the same order with one exception which is cross-coupled added mass 𝑚.
Cross-coupled added mass 𝑚 is in case of turbulent flow much smaller than direct added
mass 𝑀 . Laminar flow within the annular seal results in a much higher value of 𝑚 in
comparison with turbulent flow and it changes sign as well. Similar values of direct and
cross-coupled added mass for laminar flow means, the second-degree polynomials, which
are used for approximation of computed values of 𝐹𝑟 and 𝐹𝑡, have similar curvature be-
cause it is defined by terms 𝑀 and 𝑚. This is interesting result, because it is not evident
from figures C.6 and C.7, but it is caused by dissimilar scales of vertical axis in figures.
The difference between values of radial force components from CFD computations with
the laminar flow is very small, on the other hand, tangential force components differ more
evidently.

Direct stiffness is quite high, which means the annular seal has a centering effect on the
pump rotor. The whirl-frequency ratio, defined by (1.48), is equal to Ω𝑤 = 5,590 × 10−2

for turbulent regime and for laminar flow Ω𝑤 = 2,9188 × 10−2, which is very small values
for the plain annular seal.

Rotordynamic coefficients for laminar flow:

m =
⎡⎣ 1,606 −1,628

1,628 1,606

⎤⎦ · 10−4 kg (1.103)

c =
⎡⎣ 63,675 2,112

−2,112 63,675

⎤⎦ · kg s−1 (1.104)

k =
⎡⎣ 665 703,672 15 569,977

−15 569,977 665 703,672

⎤⎦ · N m−1 (1.105)

Rotordynamic coefficients for turbulent flow:

m =
⎡⎣ 288,890 7,871

−7,871 288,890

⎤⎦ · 10−6 kg (1.106)

c =
⎡⎣ 26,944 1,904

−1,904 26,944

⎤⎦ · kg s−1 (1.107)

k =
⎡⎣ 408 321,887 12 619,128

−12 619,128 408 321,887

⎤⎦ · N m−1 (1.108)

1.10.4 Review of analysis 1

Even though it is obvious the pure axial flow at the annular seal inlet is not correct BC
at all, analysis 1 serves as the first approximation of the rotordynamic coefficients of the
annular seal of the oxidizer pump. The following analyses use the same approach in the
determination of rotordynamic coefficients and they more precisely model the fluid flow
within the annular seal.
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1.11 Analysis 2 - Pre-swirl - 𝜔𝑅/2

The fluid in radial pumps flows from the inlet pipe through the impeller and then the
main part of flow streams from the volute outside to the other parts of the hydraulic
system. Small amount of fluid flows from impeller through the front sidewall gap and the
annular seal back to the inlet pipe. Based on this simplified description of flow within
radial pumps, it is clear the fluid which flows through the annular seal has to be affected
by impeller rotation. Therefore circumferential component of velocity at the seal inlet has
to be non-zero. Therefore the inlet boundary condition used in analysis 1 is incorrect.

It is not easy to define the velocity components at the annular seal inlet if only the
analysis of the pump without the impeller sidewall gap is available. The first analyses of
annular seals, which took pre-swirl of fluid into consideration, defined the circumferential
velocity at the seal inlet equal to 𝑣𝑐𝑖𝑟𝑐 = 𝜔𝑅/2. Analysis 2 defined this value of the
circumferential velocity at the seal inlet. The pressure BCs were used and their values
were as same as in case of analysis 1 determined from analytical formulas.

1.11.1 Boundary conditions in analysis 2

The pressure inlet and pressure outlet boundary conditions were used to define the fluid
flow conditions at the inlet and outlet to seal. The determination of BC was performed
identically as in analysis 1. Therefore the inlet and outlet static pressures are the same.

𝑝𝑖𝑛,𝑎𝑛 = 3 513 383 Pa ; 𝑝𝑜𝑢𝑡,𝑎𝑛 = 490 000 Pa

All CFD computations were carried out with ANSYS Fluent 2019 R3, which enables
to use the pressure inlet BC with the definition of flow direction. The option ”Local
Cylindrical Swirl” allows to define total inlet pressure, circumferential velocity component
and axial and radial component of flow direction. It is not possible to define the total
pressure and all components of velocity in CFD computations as boundary conditions.
Therefore, resultant values of axial and radial velocity components are determined from
the mass flow rate, but their ratio remains the same. The flow direction is defined as a
unit vector that is aligned with the local velocity vector and therefore the axial and radial
component of flow direction are dimensionless quantities. The radial velocity component
is not known, hence it is neglected. The pre-rotation of fluid at the inlet to the annular
seal is in analysis 2 defined by pressure inlet BC with option ”Local Cylindrical Swirl”
and averaged circumferential velocity is equal to 𝑣𝑐𝑖𝑟𝑐 = 𝜔𝑅/2 = −26,389 m s−1.

As same as in analysis 1, it was necessary to carry out several CFD computations with
different inlet total pressure and find the "optimal" inlet total pressure. CFD computations
were performed for synchronous whirling. It was found out the resultant value of the inlet
total pressure for whirl frequency Ω = 𝜔 is applicable for all other computations with
different whirl frequencies from defined range.

Tested values of the inlet total pressure and resultant static pressure averaged over
the annular seal inlet are presented in appendix A in table. A.2, where final values of
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inlet total pressure are highlighted in red colour and they are equal to required value of
static pressure 𝑝𝑖𝑛,𝑎𝑛 = 3 513 383 Pa. Similarly to analysis 1, the analyses with the laminar
and turbulent flow were carried out. Final value of total pressure, which was used for
definition of inlet BC, is for laminar flow 𝑝𝑖𝑛,𝑎𝑛,𝑡𝑜𝑡 = 8 113 019 Pa and for turbulent flow
𝑝𝑖𝑛,𝑎𝑛,𝑡𝑜𝑡 = 4 668 972 Pa. Values of inlet total pressure are in case of pre-swirl of fluid 𝜔𝑅/2
higher than in case of pure axial flow at the inlet. The difference of inlet total pressures
between analyses 1 and 2 is understandable, because the circumferential flow component
does not affect mass flow rate, which is set by axial velocity component, but 𝑣𝑐𝑖𝑟𝑐 increase
the kinetic energy of flow and consequently the total pressure.

Boundary conditions, used in CFD computations of analysis 2, are summarized in
table 1.13.

Tab. 1.13: Boundary conditions of analysis 2

Quantity Laminar flow Turbulent flow

Inlet total pressure [Pa] 8 113 019 4 668 972
Axial component of flow direction at inlet [-] −1 −1
Radial component of flow direction at inlet [-] 0 0
Circumferential velocity at inlet 𝑣𝑐𝑖𝑟𝑐,𝑖𝑛 [m s−1] −26,389 −26,389
Outlet static pressure [Pa] 490 000 490 000

1.11.2 Results of CFD analyses and flow regime in analysis 2

Determination of flow regime within the annular seal is carried out with the same crite-
ria as in analysis 1. Two Reynolds numbers have to be defined, axial Reynolds number
𝑅𝑒𝑎𝑥 and circumferential Reynolds number 𝑅𝑒𝜔, and they are combined into the com-
bined Reynolds number 𝑅𝑒*. It would be possible to present all three Reynolds numbers
for all five computations with different whirl frequency, but as same as in case of anal-
ysis 1, change of whirl frequency in predefined range affects resultant Reynolds number
insignificantly. Therefore average values, created from results for all whirl frequencies,
were calculated. Resultant values of Reynolds numbers are presented with other averaged
results of CFD analyses in table 1.14. Even though the circumferential velocity has a
negative value in the defined coordinate system, values of the circumferential Reynolds
number 𝑅𝑒𝜔 are taken as positive.

Even though the averaged circumferential Reynolds number 𝑅𝑒𝜔 in analysis 2 is much
higher in comparison with analysis 1, the combined Reynolds numbers 𝑅𝑒* at inlet and
outlet are almost identical for laminar flow and only slightly higher for turbulent flow.
Hence, there is the same problem with the identification of the flow regime in the annular
seal. Results of analyses with laminar flow indicate the flow should not be laminar, but
resultant values of the combined Reynolds numbers calculated from results of CFD anal-
yses with the turbulent flow are very close to critical 𝑅𝑒*. Although it is more probable
the flow in the annular seal is turbulent, there is still uncertainty in the determination of
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the flow regime and therefore the rotordynamic coefficients are in this section presented
for both flow regimes. However, as same as in analysis 1, it is necessary to point out,
the concept of the combined Reynolds numbers 𝑅𝑒* covers only rotation of the rotor and
axial flow, but it neglects effects of rotor eccentric position and whirling motion.

The pre-rotation of fluid did not affect the difference in mass flow rate between the
laminar and turbulent flow. The mass flow rate and axial velocity are more than 2,6 times
higher in laminar flow than in turbulent regime. The resultant values of both quantities
are comparable for both flow regimes with analysis 1. The pre-swirl ratio is in all com-
putations around 0,5 which verifies the correctness of predefined circumferential velocity
at the seal inlet defined by an inlet boundary condition.

Tab. 1.14: Results of CFD computations for analysis 2

Quantity Laminar flow Turbulent flow

Mass flow rate 𝑄𝑚 [kg s−1] 0,192 0,073
Axial velocity 𝑣𝑎𝑥 [m s−1] −74,506 −28,254
Circumferential velocity at inlet 𝑣𝑐𝑖𝑟𝑐,𝑖𝑛 [m s−1] −26,396 −26,714
Pre-swirl ratio 𝜒 [-] 0,500 0,506
Flow coefficient Ψ [-] 2,823 1,058
Maximum dimensionless wall distance 𝑦+ [-] - 2,345
Axial Reynolds number 𝑅𝑒𝑎𝑥 [-] 6437,293 2441,135
Circumferential Reynolds number at inlet 𝑅𝑒𝜔 [-] 2280,653 2308,123
Circumferential Reynolds number at outlet 𝑅𝑒𝜔 [-] 2280,883 2276,193
Combined Reynolds number at inlet 𝑅𝑒* [-] 6537,514 2700,185
Combined Reynolds number at outlet 𝑅𝑒* [-] 6537,534 2693,400

1.11.3 Determination of rotordynamic coefficients for analysis 2

Figures with time behaviour of force on the rotor of the annular seal created based on
CFD computations with different whirl frequencies are presented for turbulent and lam-
inar flow in appendices D and E, respectively. Resultant values of radial and tangential
force components from analysis 2 are presented in table 1.15. The radial force components
in all computations have negative value and therefore the annular seal has a centering ef-
fect on the pump rotor, which is the same result as in analysis 1. On the other hand, the
tangential force component for whirl to rotation ratio 𝑓Ω = 0,5 is very close to zero and
for laminar flow even positive, which indicates a shift of stability region.

Based on the resultant force components from CFD analyses, the rotordynamic coef-
ficients were established by a least-square curve fit on these CFD results with utilization
of equations (1.41) and (1.42). Result of curve fit procedure for turbulent regime is de-
picted in figs. 1.45 and 1.46. Application of curve fitting for laminar flow in presented in
appendix E in figs. E.6 and E.7 for 𝐹𝑟 and 𝐹𝑡, respectively.
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Tab. 1.15: Resultant force components from analysis 2

𝑓Ω [-] 0,5 0,75 1 1,25 1,5

Turbulent flow

𝐹𝑟 [N] −6,202 −6,182 −6,126 −6,029 −5,895
𝐹𝑡 [N] −0,053 −0,892 −1,737 −2,579 −3,419

Laminar flow

𝐹𝑟 [N] −9,864 −9,864 −9,888 −9,834 −9,803
𝐹𝑡 [N] 3,953 × 10−3 −1,900 −3,819 −5,701 −7,591
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Fig. 1.45: Regression analysis for 𝐹𝑟 for analysis 2 in case of turbulent flow

Many phenomenons, which are valid for graphs with 𝐹𝑟 and 𝐹𝑡, are can be observable
both in analyses 1 and 2. The magnitude of 𝐹𝑥 and 𝐹𝑦 grows with increasing whirl
frequency Ω both for laminar and turbulent flow, but magnitudes of 𝐹𝑥 and 𝐹𝑦 for all
five whirl frequencies are higher in case of laminar flow. The radial force component 𝐹𝑟

is as well higher for laminar flow for all Ω. There is a very small approximation error in
the curve fitting process for 𝐹𝑟 in turbulent flow, which is clear from fig. 1.45. On the
other hand, the approximation error for 𝐹𝑟 in case of laminar flow is much higher C.6.
As same as in analysis 1, CFD computation for 𝑓Ω = 1 and laminar flow was repeated,
but the results were identical. This is a very interesting phenomenon, which should be
analysed more deeply, but such analysis was beyond a scope of this work. The shape of
curve for 𝐹𝑡 is mainly linear for both flow regimes, but contrary to analysis 1, the zero
value of 𝐹𝑡 corresponds to 𝑓Ω = 0,5 for both flow regimes. The slope of curve for laminar
flow is much higher, which indicates higher direct added damping 𝐶 for laminar flow.

79



, , ,

Fig. 1.46: Regression analysis for 𝐹𝑡 for analysis 2 in case of turbulent flow

Rotordynamic coefficients for laminar flow:

m =
⎡⎣ 15,048 −7,051

7,051 15,048

⎤⎦ · 10−5 kg (1.109)

c =
⎡⎣ 61,632 2,034

−2,034 61,632

⎤⎦ · kg s−1 (1.110)

k =
⎡⎣ 651 545,087 257 347,528

−257 347,528 651 545,087

⎤⎦ · N m−1 (1.111)

Rotordynamic coefficients for turbulent flow:

m =
⎡⎣ 2907,682 −4,108

4,108 2907,682

⎤⎦ · 10−7 kg (1.112)

c =
⎡⎣ 26,806 2,428

−2,428 26,806

⎤⎦ · kg s−1 (1.113)

k =
⎡⎣ 408 412,496 108 809,934

−108 809,934 408 412,496

⎤⎦ · N m−1 (1.114)

The comparison of the rotordynamic coefficients determined in analyses 1 and 2 is
very interesting. The rotordynamic coefficients 𝑀 , 𝐶, 𝑐 and 𝐾 for both flow regimes are
almost identical for both analyses 1 and 2. On the other hand, the cross-coupled added
mass 𝑚 for laminar flow is two times lower in analysis 2 than in analysis 1 and almost
20 times lower in analysis 2 than in analysis 1 for the tubulent flow. The cross-coupled
added stiffness 𝑘 is in analysis 2 (in comparison with analysis 1) more than 16 and 8 times
higher for laminar and turbulent flow, respectively. Both rotordynamic coefficients 𝑚 and
𝑘 are determined from the approximation of tangential force components. An increase
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of the cross-coupled added stiffness 𝑘 represents the shift in the stability region, which is
described above. Decrease of the cross-coupled added mass 𝑚 means the computed values
of tangential force component forms a more closely straight line.

The whirl-frequency ratio, defined by (1.48), is equal to Ω𝑤 = 0,485 for turbulent
regime and for laminar flow Ω𝑤 = 0,498, which is very close to value 0,5, which was
determined by D. W. Childs [12] as the most typical value of the whirl-frequency ratio
for plain annular seals.

1.11.4 Review of analyses 1 and 2
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Fig. 1.47: Streamlines in oxidizer pump starting from impeller sidewall gap

Even though the resultant added effect matrices determined in analysis 2 seems realistic,
the resultant fluid flow within the annular seal does not correspond to the flow within the
annular seal in the front sidewall gap of the pump. The main reason is the used inlet and
outlet boundary conditions, determined from analytical derivation, do not represent the
flow in the impeller sidewall gap and in the downstream direction behind the outlet of the
annular seal of the analysed pump. If the boundary conditions would be defined based on
CFD analysis of the pump, where the impeller sidewall gaps would be included, it should
lead to an improvement in correctness of rotordynamic coefficients. Such analysis would
correctly cover both pre-swirl of fluid in the front sidewall gap and interaction of jet from
seal outlet with the flow within the inlet pipe.

The flow is pre-rotated at the inlet to the seal, because of rotation of the shroud and
the geometry of the front sidewall gap of th pump implies there is a non-zero radial velocity
component of flow. There is a big step change in the clearance of the front sidewall gap
in front of the seal inlet, which definitely affects the flow field at the seal inlet. The flow
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through the annular seal creates a jet of high velocity fluid, which juts from the annular
seal outlet. The jet is forced to turn into the direction of suction after a certain distance.

Both effects are depicted in fig. 1.47, which shows the streamlines starting from the
impeller sidewall gap and going through the seal. All of them are forced to go back to
impeller suction. The figures in 1.47 are results of the analysis of the oxidizer pump
with the centric position of the rotor without the effect of whirl. The computational
domain obviously comprises impeller sidewall gaps. Results of CFD computation of the
oxidizer pump with computational domain supplemented with impeller sidewall gaps were
available later than presented analyses 1 and 2 were performed.

1.12 Analysis 3 - Pre-swirl - constant values

Review of analysis 1 and 2 presented in preceding section 1.11.4 emphasized that the
boundary conditions used in analyses 1 and 2 does not correctly resolve the fluid flow
within the annular seal of the oxidizer pump. Analyses 3 uses the same type of boundary
conditions as in analysis 2. However, the values of quantities, which are defined on BCs,
are taken from CFD analysis of the pump with centred rotor and it is assumed the values
are constant on the whole surface of BCs. The radial component of fluid velocity is as
well included in the analysis.

The boundary conditions were defined based on CFD computation of the pump with
centred rotor, which was performed with the Standard k-𝜀 turbulence model. If the
boundary conditions are defined based on computation with the turbulence model, the
turbulent regime should be assumed in all parts of the domain. Therefore all analyses,
which are presented in subsequent sections were carried out with the assumption of a
turbulent flow regime within the annular seal. The Realizable k-𝜀 turbulence model was
used for turbulence modeling.

1.12.1 Boundary conditions in analysis 3

The boundary conditions used in analysis 3 were defined based on transient CFD com-
putation of the pump with the centred rotor, where the values used for the definition of
boundary conditions were time-averaged over one period of impeller rotation. Overview
of the setting of the boundary conditions is presented in table 1.16. Table 1.16 presents
overview of BCs used in analyses 1 to 3. Analytical formula for pressure distribution in
the impeller sidewall gap, defined by equation (1.102), overestimates static pressure at
the annular seal inlet by almost more than 1,5 MPa. The value of inlet total pressure
from CFD computation with the centred rotor position is between inlet total pressure
of analyses 1 and 2. However, dynamic pressure is in analysis 3 much higher than in
analysis 2. This result is evident not only from the difference between total and static
inlet pressures but as well from the comparison of circumferential velocity which is in case
of analysis 3 much higher.
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The outlet static pressure was specified in case of analyses 1 and 2 from CFD com-
putation without impeller sidewall gaps and it is determined at the same location, where
the outlet from the seal is located. The value of outlet static pressure is in analyses 1
and 2 more than 150 000 Pa lower than from the results of CFD analysis with impeller
sidewall gaps. Therefore, the pressure drop created by the annular seal is in analysis 1
and 2 overestimated.

Tab. 1.16: Overview of boundary conditions for turbulent flow

Quantity Analysis 1 Analysis 2 Analysis 3

Inlet static pressure [Pa] 3 513 383 3 513 383 2 035 990
Inlet total pressure [Pa] 4 160 314 4 668 972 4 324 790
Axial velocity at inlet [-] −1 −1 −33,436
Radial velocity at inlet [-] 0 0 −6,401
Circumferential velocity at inlet 𝑣𝑐𝑖𝑟𝑐 [m s−1] 0 −26,389 −46,127
Outlet static pressure [Pa] 490 000 490 000 647 722

It is necessary to point out that although the pressure inlet boundary condition with
option ”Local Cylindrical Swirl” defines only components of flow direction in axial and
radial direction, and the vector of flow direction is unit vector, it is not necessary to insert
components of flow direction in normalized form. The components can be defined directly
by components of velocity and the vector of flow direction is automatically normalized by
software before it is applied. It is important to understand that resultant values of axial
and radial velocity at the inlet BC can be arbitrary, but the ratio between them is fixed.

1.12.2 Results of CFD analyses and flow regime in analysis 3

The results of CFD analyses with different whirl frequencies under the settings of analysis
3 were averaged and they are presented in table 1.17. Even though only CFD analy-
ses with turbulent flow regime were carried out it is possible to evaluate the combined
Reynolds number 𝑅𝑒* and determine, whether the assumption of turbulent flow within
the annular seal is correct. The axial Reynolds number 𝑅𝑒𝑎𝑥 at the seal inlet is in case
of analysis 2 for turbulent flow higher than in analysis 3. Therefore, the mass flow rate
and consequently the axial velocity is in analysis 3 is lower than in analysis 2 with tur-
bulent flow. Even though axial velocity component determined from CFD analysis with
centred rotor was equal to −33,436 m s−1, resultant averaged axial velocity component for
all whirl frequencies is equal to −19,209 m s−1. In the same way, resultant radial velocity
component is in analysis 3 smaller than in CFD analysis with the centred rotor and it
is equal to −3,678 m s−1. This result indicates the dynamic pressure is lower and static
pressure is higher than in CFD analysis with the centred rotor. Therefore, the resultant
pressure drop created by the annular seal in analysis 3 is higher than in CFD analysis
with the centred rotor.

On the other hand, the circumferential Reynolds number 𝑅𝑒𝜔 is in analysis 3 higher
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Tab. 1.17: Results of CFD computations for analysis 3

Quantity Value

Mass flow rate 𝑄𝑚 [kg s−1] 0,049
Axial velocity 𝑣𝑎𝑥 [m s−1] −19,209
Circumferential velocity at inlet 𝑣𝑐𝑖𝑟𝑐,𝑖𝑛 [m s−1] −44,510
Circumferential velocity at outlet 𝑣𝑐𝑖𝑟𝑐,𝑜𝑢𝑡 [m s−1] −27,289
Inlet static pressure 𝑝𝑖𝑛,𝑎𝑛 [Pa] 2 578 110
Pre-swirl ratio 𝜒 [-] 0,843
Flow coefficient Ψ [-] 0,432
Maximum dimensionless wall distance 𝑦+ [-] 2,620
Axial Reynolds number 𝑅𝑒𝑎𝑥 [-] 1659,664
Circumferential Reynolds number at inlet 𝑅𝑒𝜔 [-] 3845,704
Circumferential Reynolds number at outlet 𝑅𝑒𝜔 [-] 2357,806
Combined Reynolds number at inlet 𝑅𝑒* [-] 2540,072
Combined Reynolds number at outlet 𝑅𝑒* [-] 2035,755

than in analysis 2 with turbulent flow, which is expected result because of higher circum-
ferential velocity component in analysis 3. The resultant combined Reynolds number 𝑅𝑒*

at the seal inlet in analysis 3 is equal to 2540,072, which is lower than in analysis 2 and the
difference is caused by the lower pressure difference between the seal inlet and outlet in
analysis 3. Even lower value of combined Reynolds number is detected at the annular seal
outlet, where 𝑅𝑒* = 2018,258. This is very close to critical combined Reynolds number,
but it is necessary to note that the concept of the combined Reynolds number omits the
effects of whirling motion and radial velocity at seal inlet. Therefore, the flow regime
within the seal is still unknown.

1.12.3 Determination of rotordynamic coefficients for analysis 3

Figures with time behaviour of force on the rotor of the annular seal created based on
CFD computations with different whirl frequencies are presented in appendix F. Resultant
values of radial and tangential force components from analysis 3 are presented in table
1.18. The radial force components in all computations have negative value and therefore
the annular seal has centering effect, which is the same result as in analyses 1 and 2. On
the other hand, tangential force component is for whirl to rotation ratio 𝑓Ω = 0,5 positive,
which indicates an even bigger shift of stability region than in analysis 2.

Values of radial and tangential force components and approximation of these com-
ponents by second-order polynomial are depicted in figs. 1.48 and 1.49. Magnitudes of
𝐹𝑥 and 𝐹𝑦 for each whirl frequency is in case of analysis 3 lower, than in both previous
analyses. This phenomenon is caused by lower pressure drop within the annular seal in
analysis 3. The radial force components 𝐹𝑟 in analysis 3 is almost half of the values in
analyses 1 and 2.
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Tab. 1.18: Resultant force components from analysis 3

𝑓Ω [-] 0,5 0,75 1 1,25 1,5

𝐹𝑟 [N] −3,850 −3,845 −3,855 −3,727 −3,599
𝐹𝑡 [N] 0,569 −0,120 −0,815 −1,496 −2,177
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Fig. 1.48: Regression analysis for 𝐹𝑟 for analysis 3

, , ,

Fig. 1.49: Regression analysis for 𝐹𝑡 for analysis 3
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There is a higher approximation error in curve-fitting of 𝐹𝑟 by the second-degree poly-
nomial. Approximation by the parabolic curve is mainly violated by the result of CFD
computation for 𝑓Ω = 1, which is apparent from fig. 1.48. The same phenomenon was
detected in analyses 1 and 2, but contrary to analysis 3 it was observed in analyses with
the laminar flow regime.

Slope of the line, which approximates tangential force components 𝐹𝑡 and which is
very close to the first-degree polynomial, is lower in analysis 3 than in analyses 1. The
nstability region is wider in analysis 3 than in analysis 2 with turbulent flow because 𝐹𝑡

is for 𝑓Ω = 0,5 positive. The whirl-frequency ratio is in analysis 3 equal to Ω𝑤 = 0,700.
Resultant matrices of added mass m, added damping c and added stiffness k are

presented in equations (1.115)-(1.117).

m =
⎡⎣ 41,751 −3,141

3,141 41,751

⎤⎦ · 10−5 kg (1.115)

c =
⎡⎣ 22,391 5,026

−5,026 22,391

⎤⎦ · kg s−1 (1.116)

k =
⎡⎣ 242 542,909 131 241,163

−131 241,163 242 542,909

⎤⎦ · N m−1 (1.117)

1.12.4 Review of analysis 3

Even though resultant static pressure and velocity field at the seal inlet in analysis 3 is
different compared to the results of CFD analysis with centred rotor, it is questionable
whether are those discrepancies caused by used boundary conditions or by whirling motion
or rotor. Therefore, the set-up of the following analysis is trying to refine the flow field
within the seal and to find a condition which would result in more comparable flow field
between analysis with whirl motion of rotor and analysis with centred rotor position.

1.13 Analysis 4 - Pre-swirl - Mesh profile

The inlet and outlet boundary conditions were defined in all previous CFD analyses as
constant on the whole boundary surface. This assumption is not correct based on the
results of CFD computation of the whole pump with the centred rotor. The distribution
of velocity and pressure is not uniform in the front sidewall gap (and also in the rear
sidewall gap) for the centred position of pump rotor. Velocity and pressure vary not only
in the axial and radial direction but as well in the circumferential direction. It is caused
by non-uniform distribution of the circumferential velocity and pressure at the impeller
outlet, which is caused by the volute. This phenomenon is described more deeply in
section 1.13.3. Therefore, it is more correct to specify required quantities in each point of
computational mesh at the boundary of the domain.
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1.13.1 Boundary conditions in analysis 4

For the definition of BCs in all point of computational mesh, it is necessary to extract
so-called mesh profiles at inlet and outlet from results of transient CFD computation of
the whole pump with the centred rotor. The values used for the definition of boundary
conditions were time-averaged over one period of impeller rotation. Mesh profile defines
the required quantities on each point of the computational mesh. In case the computa-
tional meshes are mutually dissimilar, then the distribution of quantities is obtained by
interpolation. This is actually the problem of the solved case because not only distribu-
tion of the computational mesh is different at the boundary conditions, but the geometry
of the whole domain is different. The rotor is not at the centred position, as in CFD
analysis which is used for obtaining the mesh profiles, but it is displaced by third of radial
clearance from the centric position. The stator is in the same position in both CFD anal-
yses and therefore the main interpolation errors occur in the proximity of rotor surface.

Analysis 4 used the same types of boundary conditions as in all previously presented
analyses. The quality of the interpolation process was primarily verified by visual com-
parison and there were no obvious differences between distributions of all quantities in
both CFD analyses. It was necessary to examine the quality of interpolation process
more deeply because inlet and outlet boundary surfaces are small areas. Therefore the
quality of interpolation process was verified by comparison of mean values of all quantities
used for definition of BCs, which should be optimally identical to the BCs of analysis 3.
Mean value of inlet total pressure is affected by interpolation error, because it is almost
0,4 MPa smaller than in analysis 3. On the other hand, inlet circumferential velocity and
outlet static pressure are almost not influenced by interpolation error. It is not possible
to reconstruct the flow field because the information about the influence of rotor whirling
motion on fluid flow was missing.

Turbulence at inlet BC was in all analyses presented in previous sections specified
by turbulence intensity and hydraulic diameter. Turbulence intensity at inlet BC was in
all previously presented CFD analyses set to value 5 % which is recommended value for
applications with medium intensity of turbulence. The hydraulic diameter is based on the
geometry of rotor and stator at the seal inlet and outlet equal to 0,09 mm. This definition
of turbulence is imperfect, but there were no other options in analyses 1 and 2. And this
definition was used in analysis 3 for comparison of results of analyses 1 to 2. Presented
analyses 4 uses definition of turbulence by direct definition of the turbulent kinetic energy
𝑘 and the turbulent dissipation rate 𝜀, which defined by mesh profile generated from the
result of CFD analysis of the whole pump with centred rotor.

1.13.2 Results of CFD analyses and flow regime in analysis 4

Carrying out of analysis 4 was motivated by two intention. First, to cover the flow field
within the annular seal more precisely than in previous analyses. And the second intention
was to find out whether differences between the flow field in analysis 3 and CFD analysis
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with centred rotor are created by rotor whirling motion or by imperfect definition of
boundary conditions.

The results of CFD analyses, which were carried out in analysis 4, are presented in
table 1.19 and they were created as an average value over all 5 CFD computations with
different whirl frequencies. All parameters of the flow field, which were analysed from
results of CFD analyses, were in analysis 4 lower than in results of analysis 3. Therefore
the differences between resultant flow field in analysis 4 and CFD analysis with centred
rotor are even bigger than in analysis 3. This could lead to the conclusion that the rotor
whirl has a significant effect on the flow field in the annular seal. However, it is necessary
to take into account the effect of imperfect boundary conditions, which is created by
the displacement of the rotor from centric position, which was described in the previous
section.

The combined Reynolds number 𝑅𝑒* is at the seal inlet equal to 2427,057. Even lower
value of 𝑅𝑒* was evaluated at the seal outlet, where 𝑅𝑒* = 1864,023. Such low values
of the combined Reynolds number 𝑅𝑒* indicates the possibility of laminar flow within
the annular seal, but as it was pointed out in the previous section, the concept of the
combined Reynolds number 𝑅𝑒* does not cover whirl of the rotor and radial velocity at
the seal inlet.

Tab. 1.19: Results of CFD computations for analysis 4

Quantity Value

Mass flow rate 𝑄𝑚 [kg s−1] 0,043
Axial velocity 𝑣𝑎𝑥 [m s−1] −17,097
Circumferential velocity at inlet 𝑣𝑐𝑖𝑟𝑐,𝑖𝑛 [m s−1] −44,578
Circumferential velocity at outlet 𝑣𝑐𝑖𝑟𝑐,𝑜𝑢𝑡 [m s−1] −26,968
Inlet static pressure 𝑝𝑖𝑛,𝑎𝑛 [Pa] 2 362 644
Pre-swirl ratio 𝜒 [-] 0,788
Flow coefficient Ψ [-] 0,411
Maximum dimensionless wall distance 𝑦+ [-] 2,631
Axial Reynolds number 𝑅𝑒𝑎𝑥 [-] 1477,166
Circumferential Reynolds number at inlet 𝑅𝑒𝜔 [-] 3851,539
Circumferential Reynolds number at outlet 𝑅𝑒𝜔 [-] 2330,029
Combined Reynolds number at inlet 𝑅𝑒* [-] 2427,057
Combined Reynolds number at outlet 𝑅𝑒* [-] 1881,297

1.13.3 Determination of rotordynamic coefficients for analysis 4

There is a very important difference between the flow field within the annular seal in
analyses 1 to 3 and analysis 4. In analyses 1 to 3, the values of boundary conditions were
assumed to be constant on the whole surface of annular seal inlet and outlet. Such settings
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of BCs lead to harmonic time behaviour of 𝐹𝑥 and 𝐹𝑦 with zero mean value. On the other
hand, if the values of quantities on the boundary surfaces is space dependent, then the
resultant horizontal and vertical coordinates are harmonic functions with the non-zero
mean value. Time behaviour of force components acting on rotor within the annular seal
obtained from CFD computation with the settings of analysis 4 for 𝑓Ω = 0,5 are presented
in fig. 1.50. It is clear that after few time steps the unsteady flow comes to steady
periodic flow and then the components of forces in the fixed coordinate system 𝐹𝑥 and 𝐹𝑦

are harmonic function with the non-zero mean value. The resultant radial and tangential
force components are as same as 𝐹𝑥 and 𝐹𝑦 time dependent with magnitudes comparable
to magnitudes of 𝐹𝑥 and 𝐹𝑦. This result clearly violates one of the assumptions, which are
used for determination of the rotordynamic coefficients and which states that the radial
and tangential force components are in case of centred steady-state rotor position time
independent.

, , , , , , , ,

Fig. 1.50: Components of force for 𝑓Ω = 0,5 for analysis 4

The time-dependence of radial and tangential force components are caused by the
varying distribution of flow quantities at domain boundaries. It is necessary to describe
the forces acting of the rotor of pump. Following classification is adopted from publication
[1], where the classification is presented in more details.

1. Steady forces - e.g. rotor weight, hydraulic radial and axial forces
2. Excitation forces - e.g. mechanical imbalance, rotor-stator interaction, rotating stall
3. Hydraulic reaction forces - generated by orbital movement of rotor
Horizontal and vertical force components, depicted in fig. 1.53 are harmonic function

with frequency equals to whirl frequency. Therefore, the only difference between 𝐹𝑥 and 𝐹𝑦

determined in analysis 3 (or any previous analysis) and analysis 4 is the mean or so-called
static value and hence it seems some other steady force is superposed to force created by
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Fig. 1.51: Static pressure at inlet to the front sidewall gap
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Fig. 1.52: Axial velocity at inlet to the front sidewall gap
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rotor whirl. There are three types of steady forces which occurs in the pumps. Weight of
rotor is neglected in CFD analyses and vector of hydraulic axial force is perpendicular to
coordinate axes 𝑥 and 𝑦. On the other hand, hydraulic radial force, which occurs in the
pumps, has non-zero components in axes 𝑥 and 𝑦 and it influences the resultant value of
force on rotor within the annular seal.

”Radial forces are generated when the circumferential distribution of the static pres-
sure at the impeller outlet is non-uniform” [1]. The distribution of the static pressure on
a plane at the inlet to the front sidewall gap (the plane intersect the edge of the volute
inlet which is closer to the pump inlet and normal vector to the plane is identical to the
vector of coordinate axis 𝑧) is depicted in fig. 1.51. The distribution of static pressure
was taken from time-averaged results of CFD computation of the whole pump with the
centred rotor. It is clear the static pressure varies over the circumference of the inlet to the
shroud. Maximum static pressure is located approximately 40° in the counterclockwise
direction below volute cutwater and its location is highlighted by a yellow cross with red
margin in fig. 1.51. Minimum of static pressure in an analysed plane is located close to
the volute cutwater and it is depicted in fig. 1.51 within red rectangle. The static pressure
decreases in the circumference of the plane and except the small area around the volute
cutwater, the area with lowest static pressure on the opposite side of the plane than the
maximum of the static pressure.

The influence of the volute cutwater is as well visible in fig. 1.52, which shows the
distribution of axial velocity in the shroud inlet. The axial velocity is positive in vicinity
of the volute cutwater, which means the fluid flows towards volute discharge, which is in
contradiction with other parts of the analysed plane, where the axial velocity is negative
and therefore the fluid flows towards the annular seal and to the inlet pipe.

The force-displacement model of annular seal defined by equation (1.40) has to be
adapted for pumps into formula (1.118), which is adopted from [47]. 𝐹0,𝑥 and 𝐹0,𝑦 repre-
sents horizontal and vertical component of hydraulic radial force, respectively.

−
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⎤⎦ (1.118)

The rotordynamic coefficients of the annular seal can be still determined based on
equations (1.41) and (1.42), the hydraulic radial force has to be filtered out from time
history of force on rotor within the annular seal. Time behaviour of components of
hydraulic reaction force acting on the rotor of the seal (after filtered out of the hydraulic
radial force) for 𝑓Ω = 0,5 are depicted in fig. 1.53.

Radial and tangential components of force determined after filtration of the hydraulic
radial force is not constant in time, but the magnitude of fluctuation of 𝐹𝑟 and 𝐹𝑡 is much
smaller than before filtration (fig. 1.50). Figures with time behaviour of force on the rotor
of the seal after filtering out of the hydraulic radial force for other whirl frequencies are
presented in appendix G. Time dependence of 𝐹𝑟 and 𝐹𝑡 after filtration is mainly caused
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Fig. 1.53: Components of hydraulic reaction force for 𝑓Ω = 0,5 for analysis 4

by fact that horizontal and vertical force components have slightly different magnitudes.
It is surprising that a small difference between magnitudes of 𝐹𝑥 and 𝐹𝑦, which is almost
visually indistinguishable, causes evident fluctuations in 𝐹𝑟 and 𝐹𝑡. The fluctuations are
higher in tangential force component for 𝑓Ω = 0,5.

Values of radial and tangential force components, which are used in equation (1.41)
and (1.42) for determination of rotordynamic coefficients, were taken as time average
values over one period of whirling movement. The resultant values of 𝐹𝑟 and 𝐹𝑡, which
were used for determination of the rotordynamic coefficients, are presented in table 1.20.
This table as well comprises the horizontal and vertical components of hydraulic radial
force, which were determined as the mean value of horizontal and vertical components of
the total force on rotor within the annular seal.

Tab. 1.20: Resultant force components from analysis 4

𝑓Ω [-] 0,5 0,75 1 1,25 1,5

𝐹𝑟 [N] −3,606 −3,589 −3,572 −3,444 −3,324
𝐹𝑡 [N] 0,172 −0,527 −1,228 −1,914 −2,607
𝐹0𝑥 [N] −2,293 −2,292 −2,285 −2,293 −2,292
𝐹0𝑦 [N] −0,457 −0,458 −0,461 −0,463 −0,457

Even though the average values of quantities used for the definition of boundary con-
ditions are the same as in analysis 3, the resultant flow field and consequently the force on
rotor within the seal are dissimilar, which was presented as well in the previous section.
The approximation of computed radial and tangential components is shown in fig. 1.54
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Fig. 1.54: Regression analysis for 𝐹𝑟 for analysis 4
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Fig. 1.55: Regression analysis for 𝐹𝑡 for analysis 4

and fig. 1.55, respectively. Courses of second-degree polynomials are almost identical in
analyses 3 and 4, but they are shifted against each other. The radial force components
have higher values in analysis 4, on the other hand, tangential components have lower
values. Therefore, the stability region is bigger in analysis 4 in comparison with analysis
3. This phenomenon is proven by the value of the whirl-frequency ratio, which is equal
to Ω𝑤 = 0,628. Similarly to all previously presented analyses, the radial force component
for 𝑓Ω = 1 violates courses of second-degree polynomial.

The matrices of rotordynamic coefficients are presented in equations (1.119)-(1.121).
Resultant values of rotordynamic coefficients are in good agreement with resultant ma-
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trices of analysis 3, which are described in formulas (1.115)-(1.117).

m =
⎡⎣ 38,754 −4,515

4,515 38,754

⎤⎦ · 10−5 kg (1.119)

c =
⎡⎣ 22,222 4,538

−4,538 22,222

⎤⎦ · kg s−1 (1.120)

k =
⎡⎣ 212 933,839 116 912,975

−116 912,975 212 933,839

⎤⎦ · N m−1 (1.121)

1.13.4 Review of analysis 4

Analyses 1 to 3 cover the effect of rotor whirl but other effects that occur in pumps are
neglected. On the contrary, analysis 4 is able to cover the effect of the non-uniform cir-
cumferential distribution of flow quantities in the front sidewall gap which causes adding
of the hydraulic radial force to the resultant force acting on the rotor. Even though the
resultant characteristic of the flow field and rotordynamic coefficients of analysis 4 are
almost identical to the results of analysis 3, the flow field within the annular seal in CFD
analyses of analysis 4 is much closer to real fluid flow in the annular seal of pumps. It
is necessary to point out that there are other effects, which occur in pumps and which
are not covered because used boundary conditions are time-averaged over one period of
impeller rotation, but still analysis 4 increased quality of flow field within the seal to the
next level.

The main uncertainty in process of determination of rotordynamic coefficient in anal-
ysis 4 arises in used boundary conditions. Comparison of CFD analysis with the centred
rotor and CFD analyses of analysis 4 shows that the axial velocity, determined from CFD
analysis with the centred rotor is almost 2 times higher. This phenomenon is partly
caused by interpolation error in the definition of boundary conditions, which is caused
by different geometries in both analyses due to the displacement of the rotor. The aver-
age value of inlet pressure is almost 0,4 MPa than it should be. On the other hand, the
influence of the whirling motion of the rotor and its eccentric position on resultant flow
is unknown, and therefore it is not possible to determine whether the resultant flow field
models the real fluid flow in the solved case or not.

The combined Reynolds number is very close to critical 𝑅𝑒* for the annular seal inlet
and even below this limit for the seal outlet. The combined Reynolds number is a function
of the axial and circumferential velocity component, but the axial velocity component has
a greater influence on the resultant value of 𝑅𝑒*. Therefore, it is necessary to correctly
resolve the flow field within the annular seal for the determination of the flow regime.
However, as same as in previous sections, it is necessary to remark that the concept of
the combined Reynolds number, presented in [1], neglects very important phenomenons
that occur in annular seals.
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1.14 Analysis 5 - The pump

The most complex analysis for determination of force on the rotor surface within the
annular seal of the oxidizer pump is carried out for the entire pump with rotor whirling
motion. Such analysis should cover all effects which affects the flow field within the
annular seal and which are discussed in section 1.11.4. Analysis 5 is the only analyses,
which uses the computational domain of the entire pump described in section 1.7.

It is necessary to mention that the results of analyses 5 are presented only for four
whirl frequencies and not for five 𝑓Ω as it was in all previous analyses. All CFD analyses
in analysis 5 were time consuming and after review of results of CFD analysis with a whirl
to rotation ratio 𝑓Ω = 1,25 it was found out there was a mistake in settings of this CFD
analysis and the results are wrong. It was not possible to compute this analysis again
due to the lack of time. However, determination of the rotordynamic coefficients based on
Childs and Dressman theory is possible with at least three different computations with
different whirl frequencies, which is presented in section 1.2.2. Therefore, it is still possible
to determine the rotordynamic coefficients even though the results of the analysis with
𝑓Ω = 1,25 are not available.

1.14.1 Boundary conditions in analysis 5

The boundary conditions were set based on the design parameters of the pump, which
are presented in table 1.1. The mass-flow inlet and pressure outlet boundary conditions
were used for the definition of fluid flow in CFD computations. The mass flow rate
𝑄𝑚 = 1,604 kg s−1 was prescribed at the inlet to the pump. Based on the design param-
eter, the nominal outlet pressure is equal to 5,7 MPa and the allowable range of outlet
pressure is from 5,5 to 6,0 MPa. It would be possible to set the outlet pressure to the
nominal value. However, since results of CFD analysis with centred rotor are known, it is
possible to compare computations with centred an eccentric rotor. Therefore, the value
of outlet pressure was taken from CFD analysis with the centred rotor and it is equal to
5 743 420 Pa.

1.14.2 Period of rotor movement for eccentric whirling

Flow in all previously presented analyses is periodic and the period of the flow is equal to
the period of whirling motion of the rotor. Therefore all quantities, which were evaluated
in all previously presented analyses, were not taken at some random time step, but they
were averaged over one period of whirl motion of the rotor. The flow field in the pump,
which rotor performs whirling motion, is influenced not only by the whirling motion of
rotor but as well by rotation of the rotor. The flow field in the pump with constant
operating condition is in the solved case as well periodic, but the period of flow is a
function of rotation and the whirling of rotor. The period is generally defined as the
duration of time of one cycle in a repeating event. One cycle of movement is in solved
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case defined not only by the identical position of rotor centre, but as well by angular
displacement of rotor.

The simplest criterion for determination of the period of movement of rotor is to
analyse the position of rotor centre after each period of rotation because then is the rotor
in the same angular displacement as in the initial position. The next step is to the count
number of periods of rotation, which is necessary to perform for getting the rotor center
into the initial position. This approach is for whirl motion with 𝑓Ω = 0,5 depicted in
figs. 1.56, 1.57 and 1.58, which show mutual position of rotor and stator for few periods
of rotation movement. The result of such approach is either the period of movement or
multiple of the period movement. However, this is not a problem, because it is used only
for averaging of results and averaging over more periods than one decreases the error of
the process.

Ω

ω

Fig. 1.56: Initial position (𝑡 = 0) Fig. 1.57: 1st period of rotation (𝑡 = 2𝜋/𝜔)

Fig. 1.58: 2nd period of rotation (𝑡 = 4𝜋/𝜔)
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Tab. 1.21: Number of periods of movement for averaging

𝑓Ω [1] 0,5 0,75 1 1,25 1,5

Period of movement [s] 0,0015 0,003 0,000 75 0,003 0,0015
Number of periods of rotation [1] 2 4 1 4 2
Number of periods of whirling [1] 1 3 1 5 3

Periods of movement for all whirl frequencies are presented in table 1.21. This table
contents as well information about the number of periods of rotation and whirling motion,
which rotor performs for getting from initial to the final position in one cycle. The process
of determination of all periods of movement is depicted in appendix H.

1.14.3 Determination of torque for whirl motion

The boundary conditions of CFD analyses in analysis 5 were set in order to compare the
performance characteristics of the pump with centred and eccentric rotor position. One
of the most important hydraulic parameters of pumps is torque. Torque 𝑀𝑇 is generally
defined as a moment of force about the axis of rotor. The axis of rotor is in case of centred
rotor position unvarying during the whole computation. On the other hand, the axis of
rotor is in soled case time dependent due to the whirl motion of the rotor. Therefore it
was necessary to derive a formula for determination of the torque for rotor with moving
axis.

Even though the axis of rotor changes position in time, it remains parallel with axis
𝑧 of the fixed coordinate system. Hence, in case of analysed oxidizer pump, torque is
identified as the moment of force about 𝑧 axis, which is identical to the case with centred
rotor.

𝑀𝑇 = 𝑀 𝑧 (1.122)

The moment of force is defined as the cross product of the position vector r and the
vector of force F and this definition is expressed for the differential moment of force by
matrix equation (1.123).

dM = r × dF (1.123)

It is more suitable for subsequent derivation to rewrite equation (1.123) into the index
notation.

d𝑀 𝑖 = 𝜀𝑖𝑗𝑘𝑟𝑗d𝐹𝑘 , (1.124)

where 𝜀𝑖𝑗𝑘 is the Levi-Civita tensor, the value of which is given by equation (1.125) and
it is in more details described e.g. in publication [74].

𝜀𝑖𝑗𝑘 =

⎧⎪⎪⎨⎪⎪⎩
+1 if (𝑖, 𝑗, 𝑘) is (1, 2, 3), (2, 3, 1), or (3, 1, 2),
−1 if (𝑖, 𝑗, 𝑘) is (3, 2, 1), (1, 3, 2), or (2, 1, 3),
0 if 𝑖 = 𝑗, or 𝑗 = 𝑘, or 𝑘 = 𝑖.

(1.125)
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Formula (1.125) can be expressed by sentence that the value of component of the Levi-
Civita tensor 𝜀𝑖𝑗𝑘 is equalt to 1 if (𝑖, 𝑗, 𝑘) an even permutation of (1, 2, 3), −1 if it is an
odd permutation, and if any index is repeated the value is equal to 0.

Differential vector of force dF is defined by (1.126).

d𝐹𝑖 = 𝜎𝑖𝑗𝑚𝑗d𝑆 , (1.126)

where 𝜎𝑖𝑗 is the Cauchy stress tensor, 𝑚𝑗 represents the vector of external normal vector
and 𝑆 is infinitesimal surface.

Introducing equation (1.126) into (1.124) lead to formula (1.127).

d𝑀 𝑖 = 𝜀𝑖𝑗𝑘𝑟𝑗𝜎𝑘𝑙𝑚𝑙d𝑆 (1.127)

It is possible to obtain components of the differential moment of force based on equation
(1.127). Formulas for components of d𝑀 𝑖 are expressed by the following formulas. Terms
in formulas for which terms of the Levi-Civita tensor is equal to zero are omitted.

d𝑀1 = 𝜀123𝑟2(𝜎31𝑚1 + 𝜎32𝑚2 + 𝜎33𝑚3)d𝑆 + 𝜀132𝑟3(𝜎21𝑚1 + 𝜎22𝑚2 + 𝜎23𝑚3)d𝑆
=

[︁
𝑟2(𝜎31𝑚1 + 𝜎32𝑚2 + 𝜎33𝑚3) − 𝑟3(𝜎21𝑚1 + 𝜎22𝑚2 + 𝜎23𝑚3)

]︁
d𝑆 (1.128)

d𝑀2 =
[︁
𝑟3(𝜎11𝑚1 + 𝜎12𝑚2 + 𝜎13𝑚3) − 𝑟1(𝜎31𝑚1 + 𝜎32𝑚2 + 𝜎33𝑚3)

]︁
d𝑆 (1.129)

d𝑀3 =
[︁
𝑟1(𝜎21𝑚1 + 𝜎22𝑚2 + 𝜎23𝑚3) − 𝑟2(𝜎11𝑚1 + 𝜎12𝑚2 + 𝜎13𝑚3)

]︁
d𝑆 (1.130)

The index number is assigned to coordinates of the fixed cartesian coordinate system by
the following formula:

1 = 𝑥 ; 2 = 𝑦 ; 3 = 𝑧 (1.131)

Torque 𝑀𝑇 is moment of force about the axis of rotor, which is case of the oxidizer
pump parallel with axis 𝑧. Therefore, the torque is defined by formula (1.130), which can
be rewritten with application of (1.131) into equation (1.132).

d𝑀𝑇 = d𝑀 𝑧 =
[︁
𝑟𝑥(𝜎𝑦𝑥𝑚𝑥 + 𝜎𝑦𝑦𝑚𝑦 + 𝜎𝑦𝑧𝑚𝑧) − 𝑟𝑦(𝜎𝑥𝑥𝑚𝑥 + 𝜎𝑥𝑦𝑚𝑦 + 𝜎𝑥𝑧𝑚𝑧)

]︁
d𝑆 (1.132)

The initial point of the position vector r is centre of rotor and the terminal point is
the point on surface of rotor 𝐴. The position of the centre of rotor is defined by equation
(1.27). Components of the position vector r are defined by the following formula.

r =
(︁
𝐴𝑥 − 𝑒 cos(Ω𝑡) , 𝐴𝑦 − 𝑒 sin(Ω𝑡) , 0

)︁
(1.133)

Inserting components of the position vector r into equation (1.133) leads to the final
formula for calculation of torque d𝑀𝑇 for rotor preforming centred circular whirling.

d𝑀𝑇 =
{︂[︁
𝐴𝑥 − 𝑒 cos(Ω𝑡)

]︁
(𝜎𝑦𝑥𝑚𝑥 + 𝜎𝑦𝑦𝑚𝑦 + 𝜎𝑦𝑧𝑚𝑧) −

−
[︁
𝐴𝑦 − 𝑒 sin(Ω𝑡)

]︁
(𝜎𝑥𝑥𝑚𝑥 + 𝜎𝑥𝑦𝑚𝑦 + 𝜎𝑥𝑧𝑚𝑧)

}︂
d𝑆 (1.134)

The resultant value of torque is given by integration of equation (1.134) over the
surface of the rotor. The unknown components of the Cauchy stress tensor are computed
by CFD.
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1.14.4 Performance characteristics of the oxidizer pump

The main performance characteristics which are used for comparison of different operat-
ing conditions of the oxidizer pump are the torque on the rotor of the pump 𝑀𝑇 , head
of the pump 𝐻 and efficiency of the pump 𝜂. Torque is determined by integration of
equation (1.134) over the surface of the rotor and the head and efficiency have to be de-
termined indirectly based on formulas (1.135) and (1.136). These equations are presented
in publication [1].

𝐻 = 𝑝𝑡𝑜𝑡,𝑜𝑢𝑡 − 𝑝𝑡𝑜𝑡,𝑖𝑛

𝑔𝜌
(1.135)

𝜂 = 𝑔𝐻𝑄𝑚

𝑀𝑇𝜔
(1.136)

The resultant performance characteristics of the oxidizer pump with the centred rotor
and with eccentric rotor for four different whirl frequencies are presented in table 1.22.
It is necessary to point out that the computational domain used in analysis 5 is not
identical to the computational domain used in CFD analysis with the centred rotor. CFD
analysis with centred rotor was not carried out for the final version of the geometry of
the pump. The only difference in both computational domains is the geometry of the
rear impeller sidewall gap, which is in CFD analyses of analysis 5 enlarged. Therefore it
is not possible to directly compare performance characteristics of the pump with centred
and eccentric rotor. Nevertheless, the resultant performance characteristics of the pump
with the eccentric rotor are in good agreement with the results of CFD analysis with the
centred rotor. Torque is higher in eccentric versions, which is caused both by whirling
motion and enlargement of the rear sidewall gap.

Tab. 1.22: Performance characteristics of pump under whirling motion

Ω [rad s−1] 𝑀𝑇 [N m] 𝐻 [m] 𝜂 [1]

4188,790 0,8505 357,547 0,7896
6283,185 0,8498 356,947 0,7889
8377,580 0,8482 356,215 0,7879
12 566,371 0,8481 355,852 0,7881

Centric rotor position

0,833 361,2 0,8147

Results of all four analyses with eccentric rotor are almost identical. All evaluated
performance characteristics decrease with increasing whirl frequency, but the efficiency is
for 𝑓Ω = 1,5 higher than for 𝑓Ω = 1.

Even though it is not possible to evaluate quantitative differences between centric and
eccentric rotor position, the main flow field in the pump, which streams from the inlet
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pipe through the impeller to the volute, is very similar for the pump with the centred
rotor and all whirl frequencies of the eccentric whirling motion of the rotor. This result
is proven by comparison of the distribution of static pressure in mid plane, depicted for
the CFD analysis of the pump with the centred rotor in fig. 1.59 and for eccentric rotor
with whirl to rotation ratio 𝑓Ω = 0,5 in fig. 1.59.
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Fig. 1.59: Distribution of static pressure in mid plane for centric rotor position
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Fig. 1.60: Distribution of static pressure in mid plane for eccentric rotor for 𝑓Ω = 0,5

1.14.5 Results of CFD analyses and flow regime in analysis 5

The results of CFD computations of analysis 5 were averaged first for each whirl frequency
over the period of motion, which is presented in section 1.14.2, and then the resultant
values were averaged for all whirl frequencies. Averaged resultant values of the main
quantities for the description of the flow field in the annular seal from CFD analyses
carried out in analyses 5 are presented in table 1.23, where are as well presented results
of CFD analysis with the centred rotor.

Even though the computational domains in analysis 5 and CFD analysis with centred
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Tab. 1.23: Results of CFD computations for analysis 5 and comparison with CFD com-
putation with centred rotor

Quantity Value

Analysis 5 Centred rotor

Static pressure at inlet to the seal 𝑝𝑖𝑛 [Pa] 2 703 828 2 035 990
Total pressure at inlet to the seal 𝑝𝑡𝑜𝑡,𝑖𝑛 [Pa] 3 963 005 4 324 790
Static pressure at outlet from the seal 𝑝𝑜𝑢𝑡 [Pa] 836 861 647 722
Mass flow rate 𝑄𝑚 [kg s−1] 0,050 0,066
Axial velocity at the seal 𝑣𝑎𝑥 [m s−1] −19,655 −33,436
Radial velocity at inlet to the seal 𝑣𝑟𝑎𝑑,𝑖𝑛 [m s−1] −6,037 −6,401
Circumferential velocity at inlet to the seal 𝑣𝑐𝑖𝑟𝑐,𝑖𝑛 [m s−1] −37,004 −46,127
Circumferential velocity at outlet 𝑣𝑐𝑖𝑟𝑐,𝑜𝑢𝑡 [m s−1] −26,938 −36,696
Pre-swirl ratio 𝜒 [-] 0,647 0,874
Flow coefficient Ψ [-] 0,579 0,725
Maximum dimensionless wall distance within seal 𝑦+ [-] 2,149 25,573
Maximum dimensionless wall distance 𝑦+ [-] 120,898 170,870
Axial Reynolds number 𝑅𝑒𝑎𝑥 [-] 1698,209 2888,870
Circumferential Reynolds number at seal inlet 𝑅𝑒𝜔 [-] 3197,159 3985,373
Circumferential Reynolds number at outlet 𝑅𝑒𝜔 [-] 2327,443 3170,534
Combined Reynolds number at inlet to the seal 𝑅𝑒* [-] 2332,246 3509,469
Combined Reynolds number at outlet 𝑅𝑒* [-] 2058,680 3295,245

rotor are slightly different within the rear sidewall gap, the domains are identical within
the front sidewall gap and these domains differ only by position and movement of the rotor.
The computational meshes in analysis 5 and CFD analysis with centred rotor are different,
which is clear from the overview of number of elements in each part of domains presented
in tables 1.2 and 1.5. The only part of the computational domain, where is similar
distribution of mesh elements is the impeller. Such differences in the number of elements
between both analyses are understandable because the main objectives of both analyses
are different. CFD analysis with centred rotor was primarily carried out for determination
of the performance characteristics of the pump. The performance characteristics were
evaluated as well for the pump with the eccentric rotor position. However, the main
purpose of the analysis 5 was to determine the force on rotor within the annular seal
for the determination of rotordynamic coefficients. Therefore, the computational mesh
within the annular seal was more precisely created for CFD analyses in analysis 5, which
is as well clear from the comparison of the maximum dimensionless wall distance within
the annular seal and in the entire computational domain in both analyses.

Even though the computational meshes are in the vicinity of the annular seal different,
the main flow characteristic in analyses with centred and eccentric rotor should be com-
parable and they are presented in table 1.23. Based on the direct comparison of results

101



of both analyses, it is clear the flow field not only within the annular seal is appreciably
affected by the whirl motion of rotor. The static pressure is in analysis 5 much higher,
however, the total pressure is lower. Therefore, the axial velocity and consequently the
mass flow rate is decreased by the effect of whirl motion of the rotor. Similarly to the
axial velocity, the circumferential velocity at the inlet to the annular seal is as well much
lower in analysis 5. On the other hand, the radial velocity is almost unaffected by rotor
whirl.

The results of CFD analysis of the pump with the centred rotor implies the flow
regime within the annular seal is turbulent. On the other hand, the values of the Com-
bined Reynolds number in analysis, especially at the annular seal outlet, imply the fluid
flow is at the limit between the purely turbulent regime and other regimes which occurs
in annular seals. As same as in all previously presented analyses, it is convenient to note
that the concept of the Combined Reynolds number neglect the whirl motion of the rotor.

1.14.6 Determination of rotordynamic coefficients for analysis 5

Time behaviour of the horizontal 𝐹𝑥 and vertical 𝐹𝑦 force components acting on the
surface of rotor was calculated from the pressure field determined in CFD analyses and
it is for 𝑓Ω = 0,5 presented in fig. 1.61 and for other whirl frequencies in appendix I. The
noise, which occurs mainly in time behaviour of the vertical force component, is caused
by number of interfaces in the computational mesh. Those interfaces caused interpolation
errors and it is the main drawback of used approach of modeling of rotor whirling motion.
Result of determination of the radial 𝐹𝑟 and tangential 𝐹𝑡 force components directly from
𝐹𝑥 and 𝐹𝑦 is shown in fig.1.62.
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Fig. 1.61: Horizontal and vertical components of force for Ω = 1/2 · 𝜔
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Fig. 1.62: Radial and tangential components of force for Ω = 1/2 · 𝜔

As same as in analysis 4, the resultant radial 𝐹𝑟 and tangential 𝐹𝑡 force components
are not time independent and the horizontal 𝐹𝑥 and vertical 𝐹𝑦 force components have
non-zero mean value. However contrary to analysis 4, 𝐹𝑥 and 𝐹𝑦 are not harmonic func-
tions. Therefore, it is not possible to use in analysis 5 the force-displacement model of
annular seal used in analysis 4, which is represented by equation (1.118). The force-
displacement model of annular seal used in analysis 4 describes the effect of hydraulic
radial force and hydraulic reaction forces generated by the orbital movement of rotor.
Classification of forces acting on the rotor of pump, which is presented in section 1.13.3
and which is adopted from publication [1], contains as well the excitation forces, which
were not covered in CFD analyses carried out in analysis 4. It was caused by used bound-
ary conditions because the were constant in time and they were obtained by averaging of
all used quantities over one period of impeller rotation.

Time behaviour of horizontal and vertical components in analysis 5 looks very dissim-
ilar. The vertical force component 𝐹𝑦 seems to be harmonic function with superposed
noise. And even though the carrier function of the time behaviour of the horizontal force
component 𝐹𝑥 has the almost identical frequency and magnitude as 𝐹𝑦, there is clearly
superposed some other periodic function.

The frequency content of both force components was examined in the frequency do-
main and the resultant frequency spectra for 𝐹𝑥 and 𝐹𝑦 are presented for 𝑓Ω = 0,5 in
figs. 1.63 and 1.63, respectively, and for other whirl frequencies in appendix J. Inspection
of frequency spectra for horizontal and vertical force components reveals that there are
three main functions with different frequencies. There is hydraulic radial force, which
is represented as a non-zero value of a function with zero frequency, then the hydraulic
reaction forces generated by the orbital movement of rotor, which frequency is equal to
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whirl frequency. There is as well a force with frequency, which is for all whirl frequencies
identical and it is equal to 6666,67 Hz. This effect is called the rotor-stator interaction and
it represents the passage of the impeller blade under the volute cutwater. Therefore, the
frequency is given by the number of impeller blades multiplied by the rotational speed
of rotor. The rotor-stator interaction frequency is more apparent in the results of the
horizontal force component, but it is encompassed in 𝐹𝑦. Such difference in magnitude of
this frequency is caused by the location of volute cutwater.

Fig. 1.63: Frequency spectrum of 𝐹𝑥 for 𝑓Ω = 0,5

Fig. 1.64: Frequency spectrum of 𝐹𝑦 for 𝑓Ω = 0,5
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The fundamental force-displacement model of the annular seal, used in analysis 4 and
represented by formula (1.118), has to be adapted to cover the effect of the rotor-stator
interaction (RSI). The general formula for the force-displacement model of annular seal
in the pump which encompassed the hydraulic radial force and force caused by the rotor-
stator interaction is described in matrix form by equation (1.137).

−F = F0 + FRSI(𝑡) + ku + cu̇ + mü (1.137)

Term F0 represents the vector of hydraulic radial force and FRSI is the vector of RSI force
which is time dependent.

The effect of the impeller blade passage under the volute cutwater (the RSI force) is
in solved case modeled as harmonic function, which is defined by the magnitude of the
horizontal and vertical component of RSI force 𝐹𝑅𝑆𝐼𝑥 and 𝐹𝑅𝑆𝐼𝑦, the number of impeller
blades 𝑁𝑏 and initial phase 𝜙𝑅𝑆𝐼 . The force-displacement model of the annular seal, used
in analysis 5, is described by formula (1.138).

−
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Fig. 1.65: Mathematical model of 𝐹𝑥 for 𝑓Ω = 0,5

Application of the force-displacement model represented by equation (1.138) is for
horizontal and vertical force component for 𝑓Ω = 0,5 presented in figs. 1.65 and 1.66,
respectively, and for other whirl frequencies in appendix K. It is clear that the main shape
of both curves for 𝐹𝑥 and 𝐹𝑦 is covered correctly, however, the peaks at the moment
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Fig. 1.66: Mathematical model of 𝐹𝑦 for 𝑓Ω = 0,5
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Fig. 1.67: Components of hydraulic reaction force for 𝑓Ω = 0,5 for analysis 5

when the impeller blade passes under the volute cutwater are not correctly described.
Nevertheless, these peaks are caused solely by the rotor-stator interaction and therefore
this inaccuracy of the used model should not have any influence on the rotordynamic
coefficients of the annular seal.

As same as in analysis 4, the rotordynamic coefficients are still determined from equa-
tions (1.41) and (1.42), but it is necessary to filter out the hydraulic radial force and
the force caused by the rotor-stator interaction. Time behaviour of components of the
hydraulic reaction force acting on the rotor of the annular seal is for 𝑓Ω = 0,5 presented
in fig. 1.67 and for other whirl frequencies in appendix L.
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Tab. 1.24: Resultant force components from analysis 5

𝑓Ω [-] 0,5 0,75 1 1,5

𝐹𝑟 [N] −6,455 −6,486 −6,264 −5,213
𝐹𝑡 [N] 1,036 −0,292 −1,922 −4,632
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Fig. 1.68: Regression analysis for 𝐹𝑟 for analysis 5

Fig. 1.69: Regression analysis for 𝐹𝑡 for analysis 5
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Values of radial and tangential components of force which were used for determination
of the rotordynamic coefficients were averaged as same as all other quantities in analysis
5 over the period of motion (presented in section 1.14.2) and they are presented in table
1.24. The results of CFD analysis with whirl to rotation ratio 𝑓Ω = 1,25 is not presented
due to mistake in settings of CFD analysis. This issue is in more details presented in first
part of this section.

There is difference between the resultant radial and tangential forces in analysis 5 and
in all previously presented analyses. Differences between the radial and tangential force
component for 𝑓Ω = 0,5 and 𝑓Ω = 1,5 are bigger than in analyses 1 to 4. This phenomenon
indicates higher values of direct and cross coupled added mass coefficients. As well the
instability region is wide and it is comparable with results of analysis 3.

Based on the resultant force components from CFD analyses, the rotordynamic coef-
ficients were established by a least-square curve fit on these CFD results with utilization
of equations (1.41) and (1.42). Results of curve fit procedure are depicted in figs. 1.68
and 1.69. The matrices of added mass m, added damping c and added stiffness k were
determined based on the rotordynamic coefficients and they are presented in equations
(1.139)-(1.141). The whirl-frequency ratio, defined by (1.48), is equal to Ω𝑤 = 0,665.

m =
⎡⎣ 16,587 −2,188

2,188 16,587

⎤⎦ · 10−4 kg (1.139)

c =
⎡⎣ 49,193 17,866

−17,866 49,193

⎤⎦ · kg s−1 (1.140)

k =
⎡⎣ 384 892,734 273 939,745

−273 939,745 384 892,734

⎤⎦ · N m−1 (1.141)

1.15 Comparison of all presented analyses of the an-
nular seal

Sections 1.10 to 1.14 describe five analyses of the annular seal of the oxidizer pump
and they covered whole range of analyses of annular seals from the most basic, which
is presented in section 1.10, to the most sophisticated analysis of the entire pump with
eccentric rotor, presented in section 1.14.5. It would be possible to create other substeps
between these two extremes in the complexity of analysis, for example, to use the front
sidewall gap as the computational domain. However, the computational domain created
only by the annular seal is the industry standard nowadays. As well the up-to-date bulk-
flow models use only the geometry of the annular seal.

The main idea behind carrying out all five analyses was to progressively increase the
complexity of CFD analyses of the annular seal to see, whether the resultant fluid flow and
as well the rotordynamic coefficient would converge to physically correct values. Another
idea was to determine, which simplification of the problem leads to acceptable values of
rotordynamic coefficients and which gives the unsatisfactory results.
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The first difference between all analyses is that only analyses 4 and 5 are able to cover
the effect of hydraulic radial force and the only analysis, which is able to encompass the
rotor-stator interaction, is analysis 5. It would be possible to model the effect of the RSI
in analysis 4 as well, but the boundary conditions would have to change between each time
step in the transient solution. Analyses 1 to 3 do not cover the effects of the hydraulic
radial force and RSI.

The process of determination of the rotordynamic coefficients for the rotor of the entire
pump (analysis 5) is not covered in any contemporary rotordynamic textbook. Therefore,
the results of analysis 4 gave very important outcomes that were used in the determination
of rotordynamic coefficients in analysis 5. It would be possible to carry out only analyses
1 and 5 and make a comparison of the results of both analyses. However, each subsequent
analysis helps the author to better understand the phenomenons which occur in the
annular seal. And even though the analyses are presented in a logical order, the order
is not chronological. As a matter of fact, analysis 5 was executed before analysis 4 and
it would be much harder to obtain correct results of analysis 5 without understanding of
phenomenons in analysis 4.

All presented analyses of the annular seal of the oxidizer pump can be compared either
by the flow field within the annular seal or by resultant rotordynamic coefficients. All
comparisons in the following paragraphs are made against the results of analysis 5 which is
the most complex analysis covering many possible phenomenons occurring in the annular
seals. Therefore it can be assumed that in comparison of all 5 analyses the results of
analysis 5 are the closest to physically correct results.

Tab. 1.25: Results of CFD simulations for analyses 1 to 5 for turbulent flow

Quantity Analysis 1 Analysis 2 Analysis 3 Analysis 4 Analysis 5

𝑝𝑖𝑛 [Pa] 3 513 383 3 513 383 2 578 110 2 362 644 2 703 828
𝑝𝑡𝑜𝑡,𝑖𝑛 [Pa] 4 160 314 4 668 972 4 324 790 4 324 790 3 963 005
𝑝𝑜𝑢𝑡 [Pa] 490 000 490 000 647 722 647 722 836 861
𝑄𝑚 [kg s−1] 0,072 0,073 0,049 0,043 0,050
𝑣𝑎𝑥 [m s−1] −28,134 −28,254 −19,209 −17,097 −19,655
𝑣𝑟𝑎𝑑,𝑖𝑛 [m s−1] 0 0 −3,678 −3,273 −6,037
𝑣𝑐𝑖𝑟𝑐,𝑖𝑛 [m s−1] 2,569 −26,714 −44,510 −44,578 −37,004
𝑣𝑐𝑖𝑟𝑐,𝑜𝑢𝑡 [m s−1] −23,698 −26,345 −27,289 −26,968 −26,938

First, let’s look at the resultant flow field quantities for the turbulent flow regime,
which are presented in table 1.25. Analyses 1 and 2, which use the analytically defined
boundary conditions, overestimate the flow rate through the annular seal and therefore the
resultant axial velocities are higher than in analysis 5. The pressure at the outlet from the
annular seal, which was in analysis 1 and 2 determined from CFD analysis of entire pump
centred rotor and without the front sidewall gap, is in those analyses underestimated.
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The resultant flow field in the annular seal in analysis 3 and 4 is in good agreement with
the results of analysis 5, except the outlet pressure, and radial and circumferential velocity
components at the seal inlet. However, the differences in those quantities in analyses 3
and 4 in comparison with analysis 5 are not that big. Therefore, it can be assumed the
resultant rotordynamic coefficients of annular seals in analyses 3 and 4 should be close to
rotordynamic coefficients of analysis 5.

Tab. 1.26: Comparisons of resultant rotordynamic coefficients in analyses 1 to 5

Quantity Analysis 1 Analysis 2 Analysis 3 Analysis 4 Analysis 5

𝑀 [kg] 2,889×10−4 2,908×10−4 4,175×10−4 3,875×10−4 1,659×10−3

𝑚 [kg] 7,871×10−6 −4,108×10−7 −3,141×10−5 −4,515×10−5 −2,188×10−4

𝐶 [kg s−1] 26,944 26,806 22,391 22,222 49,193
𝑐 [kg s−1] 1,904 2,428 5,026 4,538 17,866
𝐾 [N m−1] 408 321,887 408 412,496 242 542,909 212 933,839 384 892,734
𝑘 [N m−1] 12 619,128 108 809,934 131 241,163 116 912,975 293 939,745

The rotordynamic coefficients of the annular seals determined in all five analyses for
turbulent flow regime are presented in table 1.26 and they are for easier comparison
depicted in figs. 1.70, 1.71 and 1.72 for direct and cross-coupled mass, damping and
stiffness, respectively. Based on these results, it is clear all hypotheses about rotordynamic
coefficients of the annular seal, which are mentioned in the previous part of this section
are not correct. The rotordynamic coefficients do not converge to the final values and
even though the rotordynamic coefficients are for analyses 3 and 4 similar, they are very
different in comparison with the results of analysis 5. It would be easy to cast doubt
upon the correctness of the results of analysis 5, however, the results of analysis 5 were
examined and no obvious reason for such difference in resultant rotordynamic coefficient
was found.

It would be ideal to have an experimental measurement of the rotordynamic coefficients
of the annular seal of the analysed oxidizer pump. There is a test rig for measurement
of the rotordynamic coefficient in the laboratory of Victor Kaplan Department of Fluid
Engineering. However, this device is designed for the measurement of rotating parts with
a much higher diameter than is in case of the impeller of the oxidizer pump. Therefore,
the next study of the rotordynamic coefficient of annular seals should be performed on
the pump, which could be experimentally measured on an accessible device.

It is obvious, the rotordynamic coefficient determined by the most complex analysis 5
are different in comparison with other presented analyses, however, it is not possible to
determine whether are the results of analysis 5 incorrect or whether the analyses 1 to 4
are inaccurate. It is an interesting outcome that even though the resultant flow fields are
comparable, the rotordynamic coefficients differ more noticeably, mainly the direct and
cross-coupled stiffness, which differs quite heavily between each analysis. Therefore the
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rotordynamic coefficients are sensitive to changes in the flow field. It would be interesting
to perform rotordynamic analysis of the entire rotor, where the annular seal would be
modelled by the rotordynamic coefficients from analyses 1 to 5 and compare the differences
in the resultant dynamic behaviour of rotor. However, this research is beyond a scope of
this work.

1,5×10-3

1,0×10-3

5,0×10-4

Fig. 1.70: Comparison on direct and cross-coupled added mass for all analyses

Fig. 1.71: Comparison on direct and cross-coupled added damping for all analyses
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Fig. 1.72: Comparison on direct and cross-coupled added stiffness for all analyses

1.16 Conclusion and thesis outcomes in annular seal
analyses

The first chapter of this doctoral thesis is focused on the determination of the rotordy-
namic coefficient of annular seals and it is divided into two parts. The first part creates
an overview of the current state of art of analyses of the annular seals with the main focus
on the determination of the rotordynamic coefficients of annular seals. It also covers an
explanation of all important phenomenons which occur in annular seals and which have
an impact on the rotordynamic coefficients. And one section is focused on the analytical
determination of the velocity distribution on the rotor surface. The presented overview
was very important in the understanding of all phenomenons which occur in annular seals,
it can be used as an introduction to the analyses of annular seals and it is a good starting
point for upcoming researches in this area.

The second part of the first chapter concerns with the analysis of the rotodynamic
coefficients of the plain annular seal of the oxidizer pump of the rocket engine. The proce-
dure of determination of the rotordynamic coefficients of the annular seals has two main
steps. In the first step, the force on the surface of rotor within the seal is determined for
several whirl frequencies. And two components of force on the rotor, perpendicular to the
rotor axis, are used in the second step for the evaluation of the rotordynamic coefficients.
Five different versions of CFD computations were carried out for the determination of the
forces on the rotor within the annular seal. Those five different variants of CFD analyses
cover the entire range of complexity of analyses of annular seals, from the most simplified
analysis to analysis of the entire pump. The comparison of all versions of CFD computa-
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tions, presented in the previous section, pointed out on differences in resultant flow field
in the annular seal, which are caused by simplifications of the computational model.

The concept of the description of the annular seal by rotordynamic coefficients was
first introduced by Black and Jensen in [48]. This model was used and further developed
by Childs and Dressman in [49] and their approach for the determination of rotordynamic
coefficients of the annular seal is still used as the main approach. The presented study
discovered a limitation of the Childs and Dressman model for the analysis of entire pumps
because it neglects the effects of the hydraulic radial force and the rotor-stator interaction
force. The identification of the rotordynamic coefficients is not possible without the iden-
tification of those forces. An updated model of the annular seal in the pump was created
and it is represented by equation (1.138). The model is inspired by Childs and Dressman
model and it includes the hydraulic radial force and rotor-stator interaction force into the
model.

The comparison of the rotordynamic coefficients determined for each analysis showed
the resultant rotordynamic coefficients do not converge to final values with the increasing
complexity of analysis, but they differ in all analyses. It is questionable whether the
updated model of the annular seal is correct or imperfect and also whether it is possible
to use the approach applied in this thesis, which only filters out the hydraulic radial force
and the rotor-stator interaction force and then the rotordynamic coefficients are evaluated
by the same approach as in the Childs and Dressman method. However, these questions
should be investigated in future researches.

At this point, it is necessary to point out that even though the analyses marked as 1
and 5 represent the most simplified and the most complex analyses, there are still possi-
bilities to create simplified analyses that would in complexity belong between analyses 4
and 5. The computational domain in such analyses should be enlarged for covering the
flow in the vicinity of the annular seal directly within in computational domain and not
only by boundary conditions at the inlet and outlet of the annular seal, which is a case
of analyses 1 to 4.

Boundary conditions in analysis with enlarged computational domain could be defined
from CFD analysis of the pump with centred rotor position as same as in analyses 3 and 4.
The boundary conditions are in analyses 1 to 4 prescribed directly on the annular seal inlet
and outlet and they are constant in time. However, the rotor whirl periodically changes
the location of minimal clearance, and therefore the velocity and pressure distributions on
the inlet and outlet of the annular seal are time varying. The effect of rotor whirl could
be covered by constant boundary conditions, but the boundary surfaces should be shifted
away from the annular seal. In such analysis with time constant boundary conditions,
the rotor whirl could have a space for adjustments of the flow field at the seal inlet and
outlet. Nevertheless, this hypothesis has to be verified in future researches.

The analysis with constant boundary conditions cannot cover the effect of the rotor-
stator interaction, because it can be covered only with time varying boundary conditions
or in the analysis of the entire pump. Nevertheless, the methodology for the determina-
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tion of the rotordynamic coefficients for the entire pump, which uses the model defined
by equation (1.138), filters out the RSI force and then are the rotordynamic coefficients
evaluated. Therefore the rotordynamic coefficient determined from analysis with time
constant boundary conditions should be comparable with the results of analysis with the
entire pump.

It is obvious, it would be ideal to use boundary conditions determined from the anal-
ysis of the entire pump with eccentric rotor for a determination of the simplified analysis.
However, this is not an acceptable solution, because when the results of the most complex
analysis are known, it is not necessary to perform other simplified analysis. And if there is
a requirement for carrying out a simplified analysis, the results of the analysis of the entire
pump with eccentric rotor for the definition of the boundary conditions are normally not
at disposal. Therefore the simplified analysis of annular seals with boundary conditions
determined from analysis of the entire pump with the eccentric rotor is only an academic
case and it is not possible to use such approach in industrial praxis.

The analysis with enlarged computational domain and constant boundary conditions
determined from CFD analysis of the pump with centred rotor position was tested. The
computational domain consisted of the annular seal and the front sidewall gap. Unfortu-
nately, the inlet boundary surface was located between the impeller discharge and inlet
to the volute. It was not possible to reach the convergence with this analysis set-up. The
improvement in the analysis would be made by shifting away from the inlet boundary
surface from the impeller discharge inwards to the front sidewall gap. The fluid from the
impeller flows directly to the volute and only secondary flow flows to the impeller sidewall
gap, and therefore it would be better to use the location for inlet boundary condition at
the surface, where the flow streams primarily inside the computational domain. Unfortu-
nately, such analysis was not possible to carry out for time reasons.

The first part of the doctoral thesis as well found out the limitations of up to date
methodology of analyses of the annular seals. There is a very simple rule in the theory of
rotordynamics, which states the flow field in journal bearings is laminar and in annular
seals turbulent, which is mentioned in section 1.2.1. This is a very strict rule, however,
there is no published research, which would verify the correctness of this rule. The basic
criterion for the determination of the flow regime is the Reynolds number. Currently, the
most sophisticated version of the Reynolds number formulated for annular seals, called
the combined Reynolds number, is set for configuration with the concentric rotor and
it assumes only the axial and circumferential flow in the annular seal. This means it
neglects the effects of eccentric rotor position, rotor whirling motion, the radial velocity
at the inlet, etc. As well the transition of flow regimes from laminar to turbulent is not
strictly defined.

Values of combined Reynolds number for the analysed annular seal of the oxidizer
pump for all analyses belonged to the transition area between laminar and turbulent flow
and even though they are more close to the turbulent flow regime, there are too many
uncertainties in the determination of flow regime to be sure the flow is certainly turbu-
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lent. Therefore two simplest versions of the analysis of annular seal were performed both
for laminar and turbulent flow regime and comparison of results of those analyses shows
big differences in the flow field in the annular seal and consequently in the rotordynamic
coefficients. Therefore, it is necessary to investigate the flow field in annular seals in more
detail because the flow regime has a crucial effect on the resultant flow field.

The Reynolds number has to be evaluated not only at the seal inlet but as well inside
the annular seal because the circumferential and radial velocity components are changing
with axial coordinate in the annular seal. Based on comparison of fluid flow at the seal
inlet and outlet, the circumferential velocity component is much higher at the annular
seal inlet and the radial velocity component is significant at the seal inlet and negligible
at the outlet. Hence the Reynolds number is higher at the inlet than outlet.

The problems with limitations in determination of the Reynolds number for annular
seals, resultant values of the combined Reynolds number for analysed annular seal, which
are very close to the transition between flow regimes, and as well the decrease of the com-
bined Reynolds number in flow direction within the annular seal leads to an interesting
question. What if the flow regime changes inside the annular seal and therefore the flow
is turbulent at the seal inlet and laminar at the annular seal outlet? Based on results of
presented analysis of the annular seal of the oxidizer pump, this question is maybe not
only an academic idea. The transition between flow regimes inside the annular seal would
bring many interesting challenges into this area. However, this phenomenon would be
very complicated to simulate in CFD, because even though it is possible to model both
laminar and turbulent flow in one CFD analysis, the boundary, where the transition be-
tween both regimes occurs, is not the result of simulation, but it has to be defined before
solution. And the determination of such boundary surfaces is even bigger challenge than
the identification of flow regime in the annular seal. Those are very important challenges
for future researches because the flow regime affects not only the rotordynamic coeffi-
cients but also other important parameters of annular seals e.g. the flow rate through the
annular seal, which affects the efficiency of the pump.

Even if there would be a certainty that the flow regime is turbulent, there is another
interesting issue called turbulence modeling. The Realizable k-𝜀 model was used in all
five analyses for modeling of turbulent flow. This turbulence model has a good prediction
of pressure distribution on the rotor in annular seal, which is in more details presented
in section 1.2.1. Two different turbulence models, the k-𝜔 turbulence model and the
Shear-Stress Transport k-𝜔 turbulence model (SST), were tested in the simplest analysis.
Both models are two-equation turbulence models, as well as the Realizable k-𝜀 turbulence
model. The k-𝜔 turbulence model belongs to the so-called low Reynolds number turbu-
lence models, which means it has a better prediction of fluid flow in proximity of walls
and consequently, it should be more appropriate for modeling of the pressure distribution
on rotor. The SST k-𝜔 turbulence model combines the merits of the k-𝜀 and k-𝜔 turbu-
lence models. It resolves the fluid flow in areas with high 𝑅𝑒 by k-𝜀 model and in areas
with low 𝑅𝑒 by k-𝜔 model. The results of CFD analysis with different turbulence models
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show the resultant force components and as well the resultant rotordynamic coefficients
are identical for all three turbulence models. Based on these outcomes, the Realizable
k-𝜀 turbulence model was used for the determination of turbulent flow field within the
annular seals.

High order turbulence models are able to resolve the flow field within seal in more
details, but it would increase the computational time, which was quite long even with the
application of the k-𝜀 model for CFD analyses of the annular seal. And as well the analysis
with the Realizable k-𝜀 model determines the pressure distribution correctly, which was
concluded in paper [35]. Nevertheless, it would be interesting to compare the resultant
flow field and pressure distribution on rotor determined by the Realizable k-𝜀 turbulence
model and some high order turbulence model.

The rotordynamic coefficients are determined from two components of force on the
rotor, perpendicular to the rotor axis. However, the component of force is an integral
quantity, in which the whole pressure field on the rotor surface is integrated into one
parameter. Therefore in case there is some vagueness in the resultant rotordynamic co-
efficient it is important to investigate not only the force components and their variation
with different whirl frequency but as well the pressure field on the rotor. The pressure
field was in all analyses inspected whether it looks physically correct, however, it was not
deeply investigated and analysed and as well the resultant pressure fields were not com-
pared against each other. The differences between resultant rotordynamic coefficients in
all analyses could be explained by a comparison of pressure fields. However, such analysis
was beyond a scope of the presented research and this hypothesis is some kind of sugges-
tion on how to analyse differences in rotordynamic coefficients between two analyses.

All unclearness about the results of the presented analyses, which are described in
this section, could be resolved by the result of experiment because the comparison of
computational modeling with experimental results would answer, which analysis predicts
the rotordynamic coefficients most precisely. However, even though there is a test rig for
measurement of the rotordynamic coefficients of the annular seals in the laboratory Victor
Kaplan Department of Fluid Engineering, which is mentioned in section 1.15, dimensions
of the analysed pump are too small for this device. And even if the experimental device
would be at disposal, it is a very complicated process to obtain correct experimental re-
sults on an impeller of normal dimensions, but it would be much more complicated to
determine the correct result on such small impeller. The absence of experimental results
and their comparison with results of computational modeling is the main limitation of
presented research. On the other hand, even though it was necessary to choose the im-
peller oxidizer pump for analysis because the analysis of the rotordynamic coefficients was
part of the project of design of hydraulic part of the oxidizer pump, the presented analysis
of the annular seal of the oxidizer pump detects many phenomenons in the annular seal,
which are not currently solved and which have to be investigated in order to increase the
understanding of physics in the annular seals and to help to build better models of their
behaviour.
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At the end of this research of annular seals and their rotordynamic models it is unbe-
lievable, how many interesting and important phenomenons can occur in such tiny part
of such complex machine as the pump is.
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2 INVERSE VIBRATION PROBLEMS

Description of the dynamic behaviour of the structures is based on mass, damping and
stiffness matrices, which are collectively called ”the structural matrices”. Unfortunately,
the structural matrices are known only for a limited number of problems. Generally, the
procedure for producing the structural matrices is not known for complex problems, e.g.
the fluid-structure interaction (FSI). The structural matrices can be determined in the
case when eigenvalues and eigenvectors of the analysed system are known. This method
is called the inverse vibration problem.

The concern of the chapter is to define the inverse vibration problem for the fluid-
structure interaction problems. But if the inverse vibration problem should be applied for
the FSI problem, then the inverse vibration problem should be properly defined first. And
to understand the inverse vibration problem it is necessary to define the direct vibration
problem, which is as well known as the eigenvalue problem. This idea defines the structure
of this chapter. The first part of the chapter is dealing with the direct vibration problem,
which means solving the free vibration of the damped lumped parameter system. The
second part of this chapter defines the inverse vibration problem, i.e. determination of
the structural matrices based on known eigenvalues and associated eigenvectors. The
third part uses the inverse vibration problem for the determination of the matrices of a
system in case of the fluid-structure interaction. The last part of this chapter presents
applications of the derived method.

2.1 Equation of motion

Sir Isaac Newton in his work ”Philosophiæ Naturalis Principia Mathematica” [75] intro-
duced three fundamental laws of motion. Newton defined the second law of motion by
sentence: ”Mutationem motus proportionalem esse vi motrici impressæ, et fieri secundum
lineam rectam qua vis illa imprimitur.” In translation [76] this becomes: ”The alteration
of motion is ever proportional to the motive force impressed; and is made in the direction
of the right line in which that force is impressed.” Even though the contemporary text-
books of dynamics often connect the name ”Newton’s second law” with a set of generally
know equations, Newton defined its second law of motion only by the foregoing sentence.

The mathematical formulation of Newton’s second law was created by Leonhard Eu-
ler, who defined the principle of linear momentum (”Euler’s first law”) in [77] and more
than two decades later the principle of angular momentum (”Euler’s second law”) in [78].
Although Euler is the author of the principles, they are now called Newton’s second law.

Euler’s collaborator, Joseph Louis Lagrange formulated the Lagrange equation (also
called the Euler-Lagrange equation or Euler-equation) and presented it in [79], which is
a second-order partial differential equation whose solution are the functions for which a
given functional is stationary. Lagrange was also the first who introduced the concept of
generalized coordinates, presented as well in [79]. The equation of motion for the forced
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vibration of the undamped lumped parameter system can be derived from Euler’s first
and second law with the application of the Lagrange equation.

The equation of motion for the damped lumped parameter system, defined by equa-
tion (2.1), was first presented by Lord Rayleigh in [80]. Generalized damping forces are
introduced by the concept of Rayleigh’s dissipation function, determined as well by Lord
Rayleigh [81].

Mü(𝑡) + Cu̇(𝑡) + Ku(𝑡) = f(𝑡) (2.1)

where M ∈ R𝑁,𝑁 , C ∈ R𝑁,𝑁 and K ∈ R𝑁,𝑁 are the mass, damping and stiffness matrices
of analysed system. These matrices are as well called ”the structural matrices”. Term
u ∈ R𝑁,1 is the vector of generalized displacement, f ∈ R𝑁,1 is the vector of generalized
(external) forces acting on the system, 𝑁 is the number of degrees of freedom (DOF)
of the system and 𝑡 is time. The initial conditions of equation (2.1) are defined by the
following equations.

u(0) = u0

u̇(0) = v0
(2.2)

Equation (2.1) is often called the equation of motion in ”𝑁 space”. The solution of
(2.1) can be directly obtained only for special types of problems which were solved e.g.
in publications [80], [82] or [83].

The general approach for solving the equation of motion is based on transformation
to so-called ”2𝑁 space”. ”Problems which cannot be solved in 𝑁 space can always be
solved in 2𝑁 space provided the inverse of mass matrix exists” [84]. This method was
first presented by R. A. Frazer, W. J. Duncan and A. R. Collar in [85], but greatly
extended by Foss in [86] and by Caughey in [84]. The transformation to the ”2𝑁 space”
is accomplished by adding the identity equation (2.3) to the system of equations (2.1).

Mu̇(𝑡) − Mu̇(𝑡) = 0 (2.3)

Combination of equations (2.1) and (2.3) leads to matrix equation in ”2𝑁 space”.

Nẇ(𝑡) + Pw(𝑡) = g(𝑡) (2.4)

This form of the equation of motion yields the first order matrix pencil. The structure of
matrices in (2.4) is described in formula (2.5).

N =
⎡⎣ C M

M 0

⎤⎦ ; P =
⎡⎣ K 0

0 −M

⎤⎦ ; w(𝑡) =
⎡⎣u(𝑡)

u̇(𝑡)

⎤⎦ ; g(𝑡) =
⎡⎣ f(𝑡)

0

⎤⎦ (2.5)

The initial conditions of equation (2.4) are defined in (2.6).

w(0) = a =
⎡⎣ u0

v0

⎤⎦ (2.6)
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Premultiply equation (2.4) by the inverse of N yields the standard state space formu-
lation described by formula (2.7) and the structure of matrices are depicted in (2.8). The
initial conditions in state space are equal to one define by equation (2.6). The classification
of mathematical models was adopted from book [87].

ẏ(𝑡) = Ay(𝑡) + b(𝑡) (2.7)

N−1 =
⎡⎣ 0 M−1

M−1 −M−1CM−1

⎤⎦ ; A =
⎡⎣ 0 I

−M−1K −M−1C

⎤⎦
y(𝑡) = w(𝑡) ; b(𝑡) = N−1g(𝑡) (2.8)

y(0) = w(0) = a

It is necessary to point out the matrices N and P in the 2𝑁 space have symmetric
structure, but the matrix A in the state space is not symmetric. Equation (2.1) represents
the nonhomogeneous linear system of the second order, equations (2.4) and (2.7) represent
the nonhomogeneous linear systems of the first order.

Equation (2.9) yields the homogeneous linear system to a nonhomogeneous linear
system (2.7).

ẏ(𝑡) = Ay(𝑡) (2.9)

The solution of the nonhomogeneous linear system (2.7) can be obtained based on the
principle of superposition: ”Let yℎ = 𝛼1,𝛼2 be solution of (2.9), then any linear combi-
nation yℎ = 𝛼1ℎ1(𝑡) + 𝛼2ℎ2(𝑡) with coefficients ℎ1, ℎ2 is a solution of (2.9). If y = yℎ

and y = y𝑝 are solution of (2.9) and (2.7), respectively, then y = yℎ + y𝑝 is a solution
of (2.7); conversely, if y = y𝑝1,y𝑝2 are solutions of (2.7), then y = y𝑝1 − y𝑝2 is a solution
of (2.9)” [88]. Based on the principle of superposition, the solution of (2.7) is obtained
based on the homogeneous linear system (2.9).

The solution presented in subsequent sections works with the standard state space
formulation.

2.2 Solution of homogeneous linear system

This section describes the solution of the homogeneous part of equation (2.7). There are
two associated homogeneous linear systems to (2.7) and they are represented by equations
(2.10) and (2.11). To obtain the homogeneous solution, let b(𝑡) = 0.

ȯ(𝑡) = Ao(𝑡) (2.10)
q̇(𝑡) = A𝐻q(𝑡) (2.11)
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The superscript 𝐻 represents the conjugate transpose (or Hermitian transpose) of the
matrix. The vectors o(𝑡) and q(𝑡) have a similar structure as the vector y(𝑡).

o(𝑡) =
⎡⎣ d(𝑡)

ḋ(𝑡)

⎤⎦ ; q(𝑡) =
⎡⎣ n(𝑡)

ṅ(𝑡)

⎤⎦ (2.12)

Next consider the solution of equations (2.10) and (2.11) in form of (2.13) and (2.14),
respectively.

o(𝑡) = ̃︀𝛼𝑖 · 𝑒𝑠𝑡 (2.13)
q(𝑡) = ̃︀𝛽𝑖 · 𝑒𝜆𝑡 (2.14)

Terms ̃︀𝛼𝑖 and ̃︀𝛽𝑖 represent right and left eigenvectors in the state space, respectively, and
𝑠 and 𝜆 are the eigenvalues of matrix A. Vectors o(𝑡) and q(𝑡) have structure depicted
in (2.15).

d(𝑡) = ̃︀x𝑖 · 𝑒𝑠𝑡 ; n(𝑡) = ̃︀z𝑖 · 𝑒𝜆𝑡

ḋ(𝑡) = ̃︀x𝑖 · 𝑠 · 𝑒𝑠𝑡 ; ṅ(𝑡) = ̃︀z𝑖 · 𝜆 · 𝑒𝜆𝑡

̃︀𝛼𝑖 =
⎡⎣ ̃︀x𝑖

𝑠 · ̃︀x𝑖

⎤⎦ ; ̃︀𝛽𝑖 =
⎡⎣ ̃︀z𝑖

𝜆 · ̃︀z𝑖

⎤⎦
o(𝑡) =

⎡⎣ ̃︀x𝑖

𝑠 · ̃︀x𝑖

⎤⎦ · 𝑒𝑠𝑡 ; q(𝑡) =
⎡⎣ ̃︀z𝑖

𝜆 · ̃︀z𝑖

⎤⎦ · 𝑒𝜆𝑡

ȯ(𝑡) =
⎡⎣ ̃︀x𝑖

𝑠 · ̃︀x𝑖

⎤⎦ · 𝑠 · 𝑒𝑠𝑡 ; q̇(𝑡) =
⎡⎣ ̃︀z𝑖

𝜆 · ̃︀z𝑖

⎤⎦ · 𝜆 · 𝑒𝜆𝑡

(2.15)

The equations (2.16) and (2.17) yield the eigenvalue problem and they are derived from
equations (2.10) and (2.11) with application of (2.13) and (2.14).

(A − 𝑠I) ̃︀𝛼𝑖 = 0 (2.16)
(A𝐻 − 𝜆I)̃︀𝛽𝑖 = 0 (2.17)

Note: The conjugate transpose of the identity matrix is also the identity matrix, e.g. I𝐻=I.
The relation between eigenvalues 𝑠 and 𝜆 is derived in subsequent section 2.2.1. The

eigenvalues 𝑠 and 𝜆 are complex conjugate numbers which is described by (2.29). The
second equation can be transformed with the conjugate transpose which yields equations
(2.18) and (2.19).

(A − 𝑠I) ̃︀𝛼𝑖 = 0 (2.18)̃︀𝛽𝐻

𝑖 (A − 𝑠I) = 0 (2.19)

Both equations (2.18) and (2.19) contain term (A − 𝑠I). If (A − 𝑠I) is a non-singular
matrix the only solution of equations (2.18) and (2.19) are ̃︀𝛼𝑖 = 0 and ̃︀𝛽𝑖 = 0, respectively.
This case is called the trivial solution. To obtain a non-trivial solution, the determinant
of matrix (A − 𝑠I) has to be equal to zero, i.e. matrix (A − 𝑠I) has to be singular. The
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eigenvalues 𝑠 of matrix A are numbers for which |A − 𝑠I|= 0.
”The expression |A−𝑠I| is easily seen to be a polynomial in 𝑠 of degree 2𝑁 , the order

of A. If the distinct eigenvalues of A are 𝑠1, 𝑠2, . . . , 𝑠𝑖, then there exist positive integers
𝑔1, 𝑔2, . . . , 𝑔𝑖 such that

|A − 𝑠I|= (𝑠1 − 𝑠)𝑔1(𝑠1 − 𝑠)𝑔2 · · · (𝑠𝑖 − 𝑠)𝑔𝑖 (2.20)

and
𝑔1 + 𝑔2 + · · · + 𝑔𝑖 = 2𝑁 (2.21)

The numbers 𝑔1, 𝑔2, . . . , 𝑔𝑖 are called the multiplicities of the respective eigenvalues” [89].
Let 𝑠𝑖 be the eigenvalue of A with multiplicity 𝑔𝑖 and let 𝛾𝑖 be the nullity of matrix1

(A − 𝑠𝑘I); then 𝛾𝑖 ≤ 𝑔𝑖. It is necessary to point out the matrix (A − 𝑠𝑖I) has exactly
𝛾𝑖 linearly independent eigenvectors. If 𝛾𝑖 = 𝑔𝑖, ∀𝑠𝑖 then matrix (A − 𝑠𝑖I) has simple
structure. Conversely, a matrix which does not have simple structure is called defective.

2.2.1 Relation between eigenvalues 𝑠 and 𝜆 for system with sim-
ple structure

The lumped parameter system, defined by equation (2.7), has 2𝑁 eigenvalues and eigen-
vectors. Equations (2.16) and (2.17) have to be valid for each eigenvalue and associate
eigenvector. This leads to formulas (2.22) and (2.23).

A ̃︀𝛼𝑘 − 𝑠𝑘I ̃︀𝛼𝑘 = 0 (2.22)
A𝐻 ̃︀𝛽𝑙 − 𝜆𝑙Ĩ︀𝛽𝑙 = 0 (2.23)

First of all, it is necessary to define the relation between eigenvalues 𝑠𝑘 and 𝜆𝑙. To define
the relationship, (2.22) has to be transform with conjugate transpose.

̃︀𝛼𝐻
𝑘 A𝐻 − 𝑠𝑘 ̃︀𝛼𝐻

𝑘 I = 0 (2.24)

The overline represents the complex conjugate number. Equation (2.24) is right multiplied
by term ̃︀𝛽𝑘 which yields ̃︀𝛼𝐻

𝑘 A𝐻 ̃︀𝛽𝑘 + 𝑠𝑘 ̃︀𝛼𝐻
𝑘 Ĩ︀𝛽𝑘 = 0 (2.25)

Left multiplication of (2.23) by ̃︀𝛼𝐻
𝑘 for 𝑙 = 𝑘 yields (2.26).

̃︀𝛼𝐻
𝑘 A𝐻 ̃︀𝛽𝑘 + 𝜆𝑘 ̃︀𝛼𝐻

𝑘 Ĩ︀𝛽𝑘 = 0 (2.26)
1”The vectors q1, q2, . . . , q𝑛 are linearly independent if there exist constants 𝑎1, 𝑎2, . . . , 𝑎𝑛 (from the

field of the vectors 𝑞𝑖) which are not all zero and are such that 𝑎1q1 + 𝑎2q2 + · · · + 𝑎𝑛q𝑛 = 0. The same
vectors are linearly independent if previous formula is satisfied by 𝑎1 = 𝑎2 = · · · = 𝑎𝑛 only.

The rank 𝑟 is the largest number of linearly independent rows (or columns) of A.
If the square matrix A has rank 𝑛 − 𝛼 (0 < 𝛼 < 𝑛) then there are 𝛼 independent linear relations

between the columns of A, and we may say that A has degeneracy, or nullity, 𝛼.”[89]
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Subtraction of (2.26) from (2.25) yields formula (2.27).

(𝑠𝑘 − 𝜆𝑘) ̃︀𝛼𝐻
𝑘 Ĩ︀𝛽𝑘 = 0 (2.27)

Note: Multiplication of a vector with the identity matrix yields the original vector, e.g.̃︀𝛼𝐻
𝑘 Ĩ︀𝛽𝑘 = ̃︀𝛼𝐻

𝑘
̃︀𝛽𝑘.

Equation (2.27) is met in case if:

𝑠𝑘 − 𝜆𝑘 = 0 ∨ ̃︀𝛼𝐻
𝑘
̃︀𝛽𝑘 = 0 (2.28)

The aim of the eigenvalue problem is to find the non-trivial solution, which means the right
and left eigenvectors should be non-zero, e.g. ̃︀𝛼𝑘 ̸= 0 ∧ ̃︀𝛽𝑘 ̸= 0. Hence, the eigenvalues
𝑠𝑘 and 𝜆𝑘 are complex conjugate numbers.

𝑠𝑘 = 𝜆𝑘 (2.29)

The eigenvalues, right and left eigenvectors create a set of associated characteristics,
which means each eigenvalue has its own associated right and left eigenvector. There
are two possible types of those sets. If eigenvalues 𝑠𝑘 and 𝜆𝑘 are real, i.e. 𝑠𝑘 ∧ 𝜆𝑘 ∈ R,
then eigenvalues 𝑠𝑘 and 𝜆𝑘 are equal, which is clear from equation (2.29). The set of
associated characteristics is then created by the eigenvalue 𝑠𝑘, right eigenvector ̃︀𝛼𝑘 and
left eigenvector ̃︀𝛽𝑘. On the contrary, if eigenvalues 𝑠𝑘 and 𝜆𝑘 are complex, i.e. 𝑠𝑘 ∧𝜆𝑘 ∈ C,
then there exists an eigenvalue 𝜆𝑙 which is the complex conjugate of eigenvalue 𝜆𝑘 and
which is equal to eigenvalue 𝑠𝑘. This is based on the theorem, that if complex number 𝜆𝑘

is an eigenvalue of matrix A, then a complex conjugate of 𝜆𝑘 is also eigenvalue of matrix
A. Set of associated characteristics is created as same as in the previous case by the
eigenvalues 𝑠𝑘 and right eigenvector ̃︀𝛼𝑘, but with left eigenvector ̃︀𝛽𝑙.

2.2.2 Orthogonality properties of the eigenvectors for system
with simple structure

The purpose of this section is to determine the orthogonality properties of the eigenvectors̃︀𝛼𝑘 and ̃︀𝛽𝑙. To determine these properties, equation (2.22) is left multiplied by term ̃︀𝛽𝐻

𝑙

and equation (2.23) is left multiplied by term ̃︀𝛼𝐻
𝑘 .

̃︀𝛽𝐻

𝑙 A ̃︀𝛼𝑘 − 𝑠𝑘
̃︀𝛽𝐻

𝑙 ̃︀𝛼𝑘 = 0 (2.30)
̃︀𝛼𝐻

𝑘 A𝐻 ̃︀𝛽𝑙 − 𝜆𝑙 ̃︀𝛼𝐻
𝑘
̃︀𝛽𝑙 = 0 (2.31)

Equation (2.31) has to be transformed using conjugate transpose.

̃︀𝛽𝐻

𝑙 A ̃︀𝛼𝑘 − 𝑠𝑘
̃︀𝛽𝐻

𝑙 ̃︀𝛼𝑘 = 0 (2.32)̃︀𝛽𝐻

𝑙 A ̃︀𝛼𝑘 − 𝜆𝑙
̃︀𝛽𝐻

𝑙 ̃︀𝛼𝑘 = 0 (2.33)

Subtraction of (2.32) from (2.33) yields formula (2.34).

(𝑠𝑘 − 𝜆𝑙)̃︀𝛽𝐻

𝑙 ̃︀𝛼𝑘 = 0 (2.34)
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Terms 𝑠𝑘, 𝜆𝑙, ̃︀𝛽𝐻

𝑘 and ̃︀𝛼𝑘 are generally non-zero. Then (2.34) can be adjusted with the
usage of (2.29).

(𝑠𝑘 − 𝑠𝑙)̃︀𝛽𝐻

𝑙 ̃︀𝛼𝑘 = 0 (2.35)

If the eigenvalues 𝑠𝑘 and 𝑠𝑙 have multiplicity equals to one, then 𝑠𝑘 − 𝑠𝑙 ̸= 0. In that case,
equation (2.35) can be simplified to formula (2.36).

̃︀𝛽𝐻

𝑙 ̃︀𝛼𝑘 = 0 (2.36)

All eigenvectors are orthogonal to each other and they represent basis vectors. The basis
vector can be multiplied by a random constant and the resultant vector is still the basis
vector, and it is orthogonal to other eigenvectors. Hence, the eigenvectors can be adjusted
to fulfil condition (2.37). ̃︀𝛼𝐻

𝑘
̃︀𝛽𝑘 = 1 (2.37)

Note: Since ̃︀𝛼𝐻
𝑘
̃︀𝛽𝑘 = 1, then ̃︀𝛽𝐻

𝑘 ̃︀𝛼𝑘 = 1 because the result of the conjugate transform of
matrix multiplication is the complex conjugate number.
Equations (2.36) and (2.37) can be written by one matrix equation (2.38).

̃︀𝛼𝐻
𝑙
̃︀𝛽𝑘 = 𝛿𝑘𝑙 , (2.38)

where 𝛿𝑘𝑙 is the Kronecker delta.
It is useful to introduce the modal matrix of right eigenvectors in state space ̃︁X, the

modal matrix of left eigenvectors in state space ̃︀Z and the spectral matrix S, defined in
formulas (2.39). ̃︁X =

[︁ ̃︀𝛼1 . . . ̃︀𝛼𝑖 . . . ̃︀𝛼2𝑁

]︁
̃︀Z =

[︁ ̃︀𝛽1 . . . ̃︀𝛽𝑖 . . . ̃︀𝛽2𝑁

]︁

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠1 . . . 0 . . . 0
... . . . ... ...
0 . . . 𝑠𝑖 . . . 0
... ... . . . ...
0 . . . 0 . . . 𝑠2𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.39)

Equations (2.22) and (2.23) can be rewritten with application of modal matrices in state
space and spectral matrix to formulas (2.40) and (2.41).

Ã︁X −̃︁XS = 0 (2.40)
A𝐻 ̃︀Z − ̃︀ZS𝐻 = 0 (2.41)

Equation (2.38) can be rewritten as well to following form.
̃︀Z𝐻̃︁X = I (2.42)

If modal matrices in state space ̃︁X and ̃︀Z satisfy equation (2.42), the eigenvectors are said
to satisfy a biorthogonal condition.
Left multiplication of equation (2.40) by matrix ̃︀Z𝐻 yields following formula:

̃︀Z𝐻Ã︁X − ̃︀Z𝐻̃︁XS = 0 (2.43)
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Equation (2.43) can be simplified with the usage of formulas (2.42) to (2.44).

̃︀Z𝐻Ã︁X = S (2.44)

Modal matrices in state space ̃︁X and ̃︀Z can be rewritten based on equations (2.15).

̃︁X =
⎡⎣ ̃︀x1 . . . ̃︀x𝑖 . . . ̃︀x2𝑁

𝑠1̃︀x1 . . . 𝑠𝑖̃︀x𝑖 . . . 𝑠2𝑁 ̃︀x2𝑛

⎤⎦
̃︀Z =

⎡⎣ ̃︀z1 . . . ̃︀z𝑖 . . . ̃︀z2𝑁

𝑠1̃︀z1 . . . 𝑠𝑖̃︀z𝑖 . . . 𝑠2𝑁̃︀z2𝑁

⎤⎦ (2.45)

It is convenient to introduce matrices ̃︀x and ̃︀z, defined by equations (2.46).

̃︀x =
[︁ ̃︀x1 . . . ̃︀x𝑖 . . . ̃︀x2𝑁

]︁
̃︀z =

[︁ ̃︀z1 . . . ̃︀z𝑖 . . . ̃︀z2𝑁

]︁ (2.46)

Modal matrices in state space can be expressed based on matrices ̃︀x and ̃︀z by formulas
(2.47).

̃︁X =
⎡⎣ ̃︀x̃︀xS

⎤⎦ ; ̃︀Z =
⎡⎣ ̃︀z̃︀zS𝐻

⎤⎦ ; ̃︀Z𝐻 =
[︁ ̃︀z𝐻 , S̃︀z𝐻

]︁
(2.47)

2.2.3 Jordan canonical form

Every matrix A with a simple structure is connected by a similarity transformation to
the diagonal matrix of its eigenvalues. This is expressed by equation (2.40) which can be
left multiplied by term ̃︁X−1. ̃︁X−1Ã︁X = S (2.48)

In case of the general matrix, i.e. either the simple or defective matrix, it is necessary
to use a general transformation which is called the Jordan canonical form. ”Every square
matrix A is reducible to Jordan canonical form by a transformation of the type

̃︁X−1Ã︁X = J (2.49)

The Jordan matrix J is a quasi diagonal matrix having the eigenvalues of A on the diagonal
and the elements immediately above and parallel to the diagonal (superdiagonal) being
either 1 or 0” [84].

The structure of the Jordan matrix J is described by equation (2.50)

̃︁X−1Ã︁X =

⎡⎢⎢⎢⎢⎢⎢⎣
J𝑔1(𝑠1) 0 . . . 0

0 J𝑔2(𝑠2) . . . 0
... ... . . . ...
0 0 . . . J𝑔𝑘

(𝑠𝑘)

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.50)

where

𝑔1 + 𝑔2 + · · · + 𝑔𝑘 = 2𝑁 (2.51)
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Matrices J𝑔𝑖
(𝑠𝑖) are called the Jordan blocks and 𝑠𝑖 are the eigenvalues of matrix A which

are not necessarily distinct. The Jordan block J𝑔𝑖
(𝑠𝑖) can have two dissimilar structures.

If the multiplicity of respective eigenvalue 𝑠𝑖 is equal to the nullity of matrix (A − 𝑠𝑖I),
i.e. 𝑔𝑖 = 𝛾𝑖, then the structure of Jordan block J𝑔𝑖

(𝑠𝑖) is defined by (2.52).

J𝑔𝑖
(𝑠𝑖) = 𝑠𝑖I𝑔𝑖

(2.52)

where I𝑔𝑖
is the identity matrix of order 𝑔𝑖. Matrix (A − 𝑠𝑖I) has in this case 𝑔𝑖 linearly

independent eigenvectors, so-called ”ordinary eigenvectors”. A case when all eigenvalues
are distinct as well belongs to this category.

If the multiplicity of respective eigenvalue 𝑠𝑖 is higher than the nullity of matrix (A −
𝑠𝑖I), i.e. 𝑔𝑖 > 𝛾𝑖, then the structure of Jordan block J𝑔𝑖

(𝑠𝑖) is not described by (2.52) but
with (2.53).

J𝑔𝑖
(𝑠𝑖) = 𝑠𝑖I𝑔𝑖

+ H𝑔𝑖
(2.53)

Matrix H𝑔𝑖
is a square matrix of order 𝑔𝑖 which has ones in the superdiagonal and zeros

elsewhere. The matrix 𝐻𝑔𝑖
is nilpotent matrix2. For example, the Jordan block for

eigenvalue 𝑠𝑖 with multiplicity 𝑔𝑖 = 3 has form:

J3(𝑠𝑖) =

⎡⎢⎢⎣
𝑠𝑖 1 0
0 𝑠𝑖 1
0 0 𝑠𝑖

⎤⎥⎥⎦ (2.54)

The eigenvectors associated with the off-diagonal elements of the Jordan block which
are equal to 1 are called ”generalized eigenvectors”. The generalized right eigenvector ̃︀𝛼𝑖

and left eigenvector ̃︀𝛽𝑖 associated with the eigenvalue 𝑠𝑖 of multiplicity 𝑔𝑖 is defined by
the following equations.

(A − 𝑠𝑖I)𝑗 ̃︀𝛼𝑖 = 0 (2.55)̃︀𝛽𝐻

𝑖 (A − 𝑠𝑖I)𝑗 = 0 (2.56)

To determine the generalized eigenvectors, it is first of all necessary to obtain the ordinary
eigenvectors of A. Matrix (A − 𝑠𝑖I) has 𝛾𝑖 ordinary right and left eigenvectors which are
linearly independent. Text step is to find the smallest 𝑗 [ 𝑗 ≤ (𝑔𝑖 − 𝛾𝑖) ] such that

(A − 𝑠𝑖I)𝑗 = 𝑜(A − 𝑠𝑖I)𝑗+1 , (2.57)

where 𝑜 is a constant. Then it is possible to determine the generalized right eigenvectors̃︀𝛼𝑗
𝑖 and left eigenvectors ̃︀𝛽𝑗

𝑖 from equations (2.58) and (2.59).

(A − 𝑠𝑖I)𝑗 ̃︀𝛼𝑗
𝑖 = 0 (2.58)(︂̃︀𝛽𝐻

𝑖

)︂𝑗

(A − 𝑠𝑖I)𝑗 = 0 (2.59)

2A nilpotent matrix is a square matrix H such that H𝑘 = 0 for some positive integer 𝑘.
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The generalized eigenvectors ̃︀𝛼𝑗−𝑜
𝑖 and ̃︀𝛽𝑗−𝑜

𝑖 , 𝑜 = 1, 2, . . . , 𝑗−1 are determined from equa-
tions (2.60). ̃︀𝛼𝑗−1

𝑖 = (A − 𝑠𝑖I) ̃︀𝛼𝑗
𝑖

̃︀𝛽𝑗−1
𝑖 =

(︂̃︀𝛽𝐻

𝑖

)︂𝑗

(A − 𝑠𝑖I)

̃︀𝛼𝑗−𝑜
𝑖 = (A − 𝑠𝑖I)𝑗 ̃︀𝛼𝑗

𝑖

̃︀𝛽𝑗−𝑜

𝑖 =
(︂̃︀𝛽𝐻

𝑖

)︂𝑗

(A − 𝑠𝑖I)𝑗

(2.60)

The eigenvectors ̃︀𝛼1
𝑖 and ̃︀𝛽1

𝑖 are the ordinary eigenvectors.

2.2.4 Orthogonality properties of the eigenvectors for system
with general structure

The homogeneous solution of equation (2.7) for a system with general structure leads to
equations (2.61) and (2.62). These equations are similar to (2.40) and (2.41) which are
determined for systems with simple structure.

Ã︁X −̃︁XJ = 0 (2.61)
A𝐻 ̃︀Z − ̃︀ZJ𝐻 = 0 (2.62)

The orthogonality properties are determined similarly as in case of systems with the
simple structure which is derived in preceding section 2.2.2. They are described by equa-
tions (2.63) and (2.64), which represent the generalized form of equations (2.42) and
(2.44).

̃︀Z𝐻̃︁X = I (2.63)̃︀Z𝐻Ã︁X = J (2.64)

Equation (2.63) describes the direct relation between modal matrices in state space ̃︁X
and ̃︀Z. ̃︀Z𝐻 = ̃︁X−1 (2.65)

The full derivation of equations (2.61) - (2.65) is presented e.g. in [90].

2.2.5 Orthogonality properties of the eigenvectors for system
with general structure in 2𝑁 space

Even though the description of dynamic systems in the state space is more illustrative
for a description of the difference between the simple and defective systems, it is more
common and convenient to solve the equation of motion in the 2𝑁 space. Hence, this
section provides a derivation of fundamental equations for the solution of the homogeneous
equation of motion in the 2𝑁 space. The derivation of these equations is identical to the
derivation in the state space, but resultant formulas are used throughout the following
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sections, thus they are presented directly in this section. All following derivations in this
chapter are as well carried out in the 2𝑁 space.

The equation of motion in the 2𝑁 space is described by equation (2.4).

Nẇ(𝑡) + Pw(𝑡) = g(𝑡)

The eigenvalue problem in the 2𝑁 space is define by the following equations.

(𝑠𝑖N + P)𝛼𝑖 = 0 (2.66)
(𝜆𝑖N𝐻 + P𝐻)𝛽𝑖 = 0 (2.67)

Terms 𝛼𝑖 and 𝛽𝑖 represent right and left eigenvectors in the 2𝑁 space, respectively. The
eigenvalues 𝑠𝑖 and 𝜆𝑖 are complex conjugate numbers which is described by (2.29). The
second equation can be transformed with conjugate transpose which yields equations
(2.68) and (2.69).

(𝑠𝑖N + P)𝛼𝑖 = 0 (2.68)
𝛽𝐻

𝑖 (𝑠𝑖N + P) = 0 (2.69)

Equations (2.68) and (2.69) can be generalized into (2.70) and (2.71) with the introduction
of the Jordan matrix J and the modal matrices of right and left eigenvectors in 2𝑁
space X and Z, respectively. The modal matrix of right eigenvectors in 2𝑁 space X will
be hereinafter called the modal matrix of right eigenvectors. The modal matrix of left
eigenvectors will hereinafter refer to the modal matrix of left eigenvectors in 2𝑁 space Z.

NXJ + PX = 0 (2.70)
N𝐻ZJ𝐻 + P𝐻Z = 0 (2.71)

The biorthogonality condition in the 2𝑁 space has the form of (2.72). If equation
(2.72) is met, the modal matrices X and Z satisfy the biorthogonality condition with
respect to matrix N. Second condition, which is in the state space represented by (2.44),
has in the 2𝑁 space form of (2.73).

Z𝐻NX = I (2.72)
Z𝐻PX = −J (2.73)

The structure of modal matrices X and Z is similar to modal matrices in the state
space and it is represented by (2.74) and (2.75).

X =
[︁

𝛼1 . . . 𝛼𝑖 . . . 𝛼2𝑁

]︁
=

⎡⎣ x1 . . . x𝑘 . . . x2𝑁

𝑠1x1 . . . 𝑠𝑘x𝑘 . . . 𝑠2𝑁x2𝑛

⎤⎦
Z =

[︁
𝛽1 . . . 𝛽𝑖 . . . 𝛽2𝑁

]︁
=

⎡⎣ z1 . . . z𝑘 . . . z2𝑁

𝑠1z1 . . . 𝑠𝑘z𝑘 . . . 𝑠2𝑁z2𝑁

⎤⎦ (2.74)
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Let introduce matrices x and z by equations (2.75).

x =
[︁

x1 . . . x𝑘 . . . x2𝑁

]︁
z =

[︁
z1 . . . z𝑘 . . . z2𝑁

]︁
(2.75)

Modal matrices can be expressed based on equations (2.75) by formulas (2.76).

X =
⎡⎣ x

xJ

⎤⎦ ; Z =
⎡⎣ z

zJ𝐻

⎤⎦ ; Z𝐻 =
[︁

z𝐻 , Jz𝐻
]︁

(2.76)

Even though the descriptions in the state space and 2𝑁 space represent the same dynamic
system, the resultant modal matrices of left eigenvectors in the state space ̃︀Z and in the
2𝑁 space Z are not identical. The relation between these two matrices can be derived
based on a comparison of conditions (2.64) and (2.73). Equation (2.64) can be adjusted by
substituting relation between the state space and 2𝑁 space A=N−1P into the following
formula. ̃︀Z𝐻N−1P̃︁X = J (2.77)

Comparison of equations (2.73) and (2.77) leads to the following formulas.

Z𝐻 = −Ĩ︀Z𝐻N−1 ; X = ̃︁X (2.78)

2.3 Solution of nonhomogeneous linear system

The concern of this section is to solve a nonhomogeneous linear system (2.4) with a simple
structure. The derivation of the solution of a nonhomogeneous linear system with general
structure is beyond the scope of this publication, but it is presented e.g. in [91].

Equation (2.4) has the following form.

Nẇ(𝑡) + Pw(𝑡) = g(𝑡)

with the initial conditions defined by (2.6):

w(0) = a

It is possible to determine vector w(𝑡) based on the principle of superposition, which
is presented in section 2.1. Then a solution of the equation (2.4) can be expressed by
equation (2.79).

w(𝑡) = 𝛼1ℎ1(𝑡) + · · · + 𝛼𝑘ℎ𝑘(𝑡) + · · · + 𝛼2𝑁ℎ2𝑁(𝑡) (2.79)

Let h(𝑡) be a vector of constant coefficients defined by the formula:

h𝑇 (𝑡) =
[︁
ℎ1(𝑡) , . . . , ℎ𝑘(𝑡) , . . . , ℎ2𝑁(𝑡)

]︁
(2.80)
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Then the solution of equation (2.4) can be written in the form:

w(𝑡) = Xh(𝑡) (2.81)

It is possible to introduce (2.81) to equation (2.4) which yields (2.82).

NXḣ(𝑡) + PXh(𝑡) = g(𝑡) (2.82)

Equation (2.82) can be simplified by left multiplication by matrix Z𝐻 .

Z𝐻NXḣ(𝑡) + Z𝐻PXh(𝑡) = Z𝐻g(𝑡) (2.83)

Application of conditions (2.72) and (2.73) simplified equation (2.83) into the following
form. The Jordan matrix J is in case of the system with simple structure reduced to the
spectral matrix S.

ḣ(𝑡) − Sh(𝑡) = Z𝐻g(𝑡) (2.84)

Equation (2.84) can be adjusted with substitution:

𝜙(𝑡) = Z𝐻g(𝑡) (2.85)

The final equation is defined by the following formula:

ḣ(𝑡) − Sh(𝑡) = 𝜙(𝑡) (2.86)

Equation (2.86) for 𝑘-th element has form:

ℎ̇𝑘(𝑡) − 𝑠𝑘ℎ𝑘(𝑡) = 𝜙𝑘(𝑡) (2.87)

2.3.1 Solution of nonhomogeneous linear differential equation

The section describes the general solution of nonhomogeneous linear differential equation
(2.87). First of all, it is necessary to find a solution homogeneous equation, which is called
the homogeneous solution 𝑦ℎ(𝑡).

ℎ̇𝑘(𝑡) − 𝑠𝑘ℎ𝑘(𝑡) = 0 (2.88)

The separation of variables algorithm is used.

ℎ̇𝑘(𝑡) = 𝑠𝑘ℎ𝑘(𝑡) (2.89)

ℎ̇𝑘(𝑡)
ℎ𝑘(𝑡) = 𝑠𝑘 (2.90)

The next step is the integration of the differential equation.
∫︁ ℎ̇𝑘(𝑡)
ℎ𝑘(𝑡) d𝑡 =

∫︁
𝑠𝑘 d𝑡 (2.91)
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Once the integrations are performed, equation (2.91) yields an equation of the form

ln
[︁
𝐴0 · ℎ𝑘(𝑡)

]︁
= 𝑠𝑘𝑡 , (2.92)

where 𝐴0 is an arbitrary constant of integration. The equation has to be adjusted by
finding an antilogarithm.

𝐴0 · ℎ𝑘(𝑡) = 𝑒𝑠𝑘𝑡 (2.93)

ℎ𝑘(𝑡) = 1
𝐴0

· 𝑒𝑠𝑘𝑡 = 𝐴1 · 𝑒𝑠𝑘𝑡 (2.94)

The constant of integration 𝐴1 can be determined based on the initial condition.

ℎ𝑘(0) = 𝐴1 · 𝑒𝑠𝑘·0 (2.95)

𝐴1 = ℎ𝑘(0) (2.96)

The solution of the homogeneous equation has the form:

ℎ𝑘(𝑡) = 𝑦ℎ(𝑡) = ℎ𝑘(0)𝑒𝑠𝑘𝑡 (2.97)

The second part of the solution of a nonhomogeneous linear differential equation is finding
a particular solution 𝑦𝑝(𝑡). To find this solution, the method called the variation of
parameters is used, which uses the homogeneous equation, its result and as well the
constant of integration. The constant of integration is in this case a function of variable 𝑡.

ℎ𝑘(𝑡) = 𝑦𝑝(𝑡) = 𝐴1(𝑡) · 𝑒𝑠𝑘𝑡 (2.98)

To find the correct form of function 𝐴1(𝑡), it is necessary to determine its derivative with
respect to time.

ℎ̇𝑘(𝑡) = �̇�𝑝(𝑡) = �̇�1(𝑡) · 𝑒𝑠𝑘𝑡 + 𝐴1(𝑡) · 𝑠𝑘 · 𝑒𝑠𝑘𝑡 (2.99)

Introduction of 𝑦𝑝(𝑡) and �̇�𝑝(𝑡) to nonhomogeneous equation (2.87) yields formula:

�̇�1(𝑡) · 𝑒𝑠𝑘𝑡 + 𝐴1(𝑡) · 𝑠𝑘 · 𝑒𝑠𝑘𝑡 − 𝑠𝑘 · 𝐴1(𝑡) · 𝑒𝑠𝑘𝑡 = 𝜙𝑘(𝑡) (2.100)

�̇�1(𝑡) · 𝑒𝑠𝑘𝑡 = 𝜙𝑘(𝑡) (2.101)

�̇�1(𝑡) = 𝑒−𝑠𝑘𝑡 · 𝜙𝑘(𝑡) (2.102)

The function 𝐴1(𝑡) can be determined by the method of direct integration.

𝐴1(𝑡) =
∫︁
𝑒−𝑠𝑘𝑡 · 𝜙𝑘(𝑡) d𝑡 (2.103)

The particular solution 𝑦𝑝(𝑡) is set from the solution of 𝐴1(𝑡).

𝑦𝑝(𝑡) = 𝑒𝑠𝑘𝑡 ·
∫︁
𝑒−𝑠𝑘𝑡 · 𝜙𝑘(𝑡) d𝑡 (2.104)
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The solution of equation (2.87) is obtained from homogeneous 𝑦ℎ(𝑡) and a particular 𝑦𝑝(𝑡)
solution based on the principle of superposition. Hence, the resultant solution is defined
by equation 𝑦(𝑡) = 𝑦ℎ(𝑡) + 𝑦𝑝(𝑡). Introduction of 𝑦ℎ(𝑡) and particular 𝑦𝑝(𝑡) solution into
(2.87) yields following formula.

(𝑦ℎ(𝑡) + 𝑦𝑝(𝑡))̇ − 𝑠𝑘 · (𝑦ℎ(𝑡) + 𝑦𝑝(𝑡)) = 𝜙𝑘(𝑡) (2.105)

�̇�ℎ(𝑡) + �̇�𝑝(𝑡) − 𝑠𝑘 · 𝑦ℎ(𝑡) − 𝑠𝑘 · 𝑦𝑝(𝑡) = 𝜙𝑘(𝑡) (2.106)

It is clear the homogeneous solution 𝑦ℎ(𝑡) resolves equation �̇�ℎ(𝑡) − 𝑠𝑘 · 𝑦ℎ(𝑡) = 0, which is
a homogeneous equation. The particular solution resolves the nonhomogeneous equation
�̇�𝑝(𝑡) − 𝑠𝑘 · 𝑦𝑝(𝑡) = 𝜙𝑘(𝑡). Introducing this result to equation (2.106) yields:

�̇�ℎ(𝑡) − 𝑠𝑘 · 𝑦ℎ(𝑡) + �̇�𝑝(𝑡) − 𝑠𝑘 · 𝑦𝑝(𝑡) = 𝜙𝑘(𝑡) (2.107)

0 + 𝜙𝑘(𝑡) = 𝜙𝑘(𝑡) (2.108)

Based on equation (2.108) it is clear that suggested solution 𝑦(𝑡) = 𝑦ℎ(𝑡)+𝑦𝑝(𝑡) is also the
solution of nonhomogeneous differential equation (2.87). Solution 𝑦(𝑡) is as well a general
solution of homogeneous version of (2.87) because of generality of the constant 𝐴1(𝑡). It
is convenient to adjust the particular solution to the following equation.

𝑦𝑝(𝑡) =
∫︁
𝑒𝑠𝑘·(𝑡−τ) · 𝜙𝑘(τ) dτ (2.109)

The final solution of (2.87) is obtained from the principle of superposition and it is defined
by equation (2.110).

ℎ𝑘(𝑡) = ℎ𝑘(0) · 𝑒𝑠𝑘𝑡 +
∫︁ 𝑡

0
𝑒𝑠𝑘(𝑡−τ) · 𝜙𝑘(τ) dτ (2.110)

2.3.2 Solution of nonhomogeneous linear system

The solution of nonhomogeneous linear differential equation (2.87) is used for the deter-
mination of the solution of equation (2.86). The initial conditions of nonhomogeneous
linear system (2.86) are defined by equation (2.6).

w(0) = a

This equation can be rewritten using equation (2.81).

Xh(0) = a (2.111)

Equation (2.111) is then left multiplied by term Z𝐻N.

Z𝐻NXh(0) = Z𝐻Na (2.112)
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Equation (2.112) can be simplified with condition (2.72).

h(0) = Z𝐻Na (2.113)

It is necessary to introduce the following matrix Γ(𝑡) for obtaining the solution of (2.86).

Γ(𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑒𝑠1𝑡 . . . 0 . . . 0
... . . . ... ...
0 . . . 𝑒𝑠𝑘𝑡 . . . 0
... ... . . . ...
0 . . . 0 . . . 𝑒𝑠2𝑁 𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑒S𝑡 (2.114)

The solution of (2.86) is analogical to equation (2.110).

h(𝑡) = Γ(𝑡)h(0) +
∫︁ 𝑡

0
Γ(𝑡− τ)𝜙(τ) dτ (2.115)

The final formula for the solution of (2.86) is obtained by application of equations (2.81),
(2.85) and (2.113).

w(𝑡) = XΓ(𝑡)Z𝐻Na + X
∫︁ 𝑡

0
Γ(𝑡− τ)Z𝐻g(τ) dτ (2.116)

2.3.3 Proof of solution correctness

The proof of solution correctness for w(𝑡) is performed simply by introducing w(𝑡) to
equation (2.4). First, it is necessary to differentiate the term w(𝑡) with respect to time.

𝜕w(𝑡)
𝜕𝑡

= ẇ(𝑡) = XΓ̇(𝑡)Z𝐻Na + X
𝜕

𝜕𝑡

⎡⎣ ∫︁ 𝑡

0
Γ(𝑡− τ)Z𝐻g(τ) dτ

⎤⎦ (2.117)

There are two terms in (2.117) which have to be adjusted. First, let’s look at the term
Γ̇(𝑡). The 𝑘-th element of matrix Γ(𝑡) is defined by the formula:

Γ(𝑡)𝑘,𝑘 = 𝑒𝑠𝑘·𝑡 (2.118)

The derivative of 𝑘-th element of Γ(𝑡) with respect to time is equal to:

Γ̇(𝑡)𝑘,𝑘 = 𝑠𝑘 · 𝑒𝑠𝑘·𝑡 (2.119)

The derivation of matrix Γ(𝑡) with respect to time is then defined by (2.118).

Γ̇(𝑡) = SΓ(𝑡) (2.120)

Second, the integral in the second term of (2.117) has to be differentiated with respect
to time. Because of the structure of the integral in square brackets, it is called an integral
depending on a parameter. The formula for differencing the integral with respect to a
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parameter is frequently called the Leibniz’s rule and the method is presented e.g. in [92].
The Leibniz’s rule is generally described by the following equation.

d
d𝛼

(︃∫︁ 𝜙2(𝛼)

𝜙1(𝛼)
𝑓(𝛼, 𝑡)d𝑡

)︃
=
∫︁ 𝜙2(𝛼)

𝜙1(𝛼)

𝜕

𝜕𝑡
𝑓(𝛼, 𝑡)d𝑡+𝑓

(︁
𝛼, 𝜙2(𝛼)

)︁
· d
d𝛼𝜙2(𝛼)−𝑓

(︁
𝛼, 𝜙1(𝛼)

)︁
· d
d𝛼𝜙1(𝛼)

(2.121)
Application of the Leibniz’s rule on integral in square brackets in (2.117) leads to the
formula:

𝜕

𝜕𝑡

⎡⎣ ∫︁ 𝑡

0
Γ(𝑡− τ)Z𝐻g(τ) dτ

⎤⎦=∫︁ 𝑡

0

𝜕[Γ(𝑡− τ)]
𝜕𝑡

Z𝐻g(τ) dτ + 1 · Γ(0)Z𝐻g(𝑡) − 0 · Γ(𝑡)Z𝐻g(0)

=
∫︁ 𝑡

0

𝜕[Γ(𝑡− τ)]
𝜕𝑡

Z𝐻g(τ) dτ + Γ(0)Z𝐻g(𝑡) (2.122)

To derive the final formula of integral in (2.117), it is necessary to define the derivative
of Γ(𝑡 − τ) with respect to time. As same as in previous case, the solution is illustrated
on 𝑘-th diagonal element of matrix Γ(𝑡− τ).

Γ(𝑡− τ)𝑘,𝑘 = 𝑒𝑠𝑘·(𝑡−τ) = 𝑒𝑠𝑘·𝑡 · 𝑒−𝑠𝑘·τ (2.123)

Then, the derivative of 𝑘-th element is equal to:

Γ̇(𝑡− τ)𝑘,𝑘 = 𝑠𝑘 · 𝑒𝑠𝑘·𝑡 · 𝑒−𝑠𝑘·τ = 𝑠𝑘 · 𝑒𝑠𝑘·(𝑡−τ) (2.124)

Derivative of Γ(𝑡− τ) with respect to time is defined by the following equation.

Γ̇(𝑡− τ) = SΓ(𝑡− τ) (2.125)

The final formula of integral in (2.117) is described by (2.119).

𝜕

𝜕𝑡

⎡⎣ ∫︁ 𝑡

0
Γ(𝑡− τ)Z𝐻g(τ) dτ

⎤⎦ =
∫︁ 𝑡

0
SΓ(𝑡− τ)Z𝐻g(τ) dτ + Γ(0)Z𝐻g(𝑡) (2.126)

Each diagonal element in matrix Γ(𝑡) for time 𝑡 = 0 is equal to:

Γ(0)𝑘 = 𝑒𝑠𝑘·0 = 𝑒0 = 1 (2.127)

Matix Γ(0) is then equal to the identity matrix.

Γ(0) = I (2.128)

Introducing (2.118), (2.119) and (2.128) into (2.117) leads to the final equation for ẇ(𝑡).

ẇ(𝑡) = XSΓ(𝑡)Z𝐻Na + X
[︃ ∫︁ 𝑡

0
SΓ(𝑡− τ)Z𝐻g(τ) dτ + Z𝐻g(𝑡)

]︃
(2.129)

With derived formulas for w(𝑡) and ẇ(𝑡), it is possible to perform the proof of solution
correctness by introducing (2.116) and (2.129) into (2.4).

N ·
{︃

XSΓ(𝑡)Z𝐻Na + X
[︃ ∫︁ 𝑡

0
SΓ(𝑡− τ)Z𝐻g(τ) dτ + Z𝐻g(𝑡)

]︃}︃
+

P ·
(︃

XΓ(𝑡)Z𝐻Na + X
∫︁ 𝑡

0
Γ(𝑡− τ)Z𝐻g(τ) dτ

)︃
= g(𝑡)

(2.130)
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Equation (2.130) can be expanded and adjusted to formula (2.131).

NXSΓ(𝑡)Z𝐻Na + NXS
∫︁ 𝑡

0
Γ(𝑡− τ)Z𝐻g(τ) dτ + NXZ𝐻g(𝑡)+

PXΓ(𝑡)Z𝐻Na + PX
∫︁ 𝑡

0
Γ(𝑡− τ)Z𝐻g(τ) dτ = g(𝑡)

(2.131)

Formula (2.131) can be simplified by factoring out term Γ(𝑡)Z𝐻Na from 1st and 4th term.
It is as well possible to factor out the integral from 2nd and 5th term.

(NXS+PX)·(Γ(𝑡)Z𝐻Na)+(NXS+PX)·
[︃ ∫︁ 𝑡

0
SΓ(𝑡−τ)Z𝐻g(τ) dτ

]︃
+NXZ𝐻g(𝑡) = g(𝑡)

(2.132)
Based on equation (2.70), it is clear that (NXS + PX) = 0. Equation (2.132) can be
simplified by (2.72) which lead to identity (2.133).

g(𝑡) = g(𝑡) (2.133)

Equation (2.133) is true proposition, which means the vector w(𝑡) is the solution of
differential equation (2.4).

2.3.4 Simplification of equation for w(𝑡)
Term w(𝑡) is defined by equation (2.81)

w(𝑡) = Xh(𝑡)

This equation can be specified based on the structure of matrices w(𝑡) and X.

u(𝑡) = xh(𝑡) (2.134)
u̇(𝑡) = xSh(𝑡) (2.135)

The derivative of equation (2.134) with respect to time is described by formula:

u̇ = xḣ(𝑡) (2.136)

Equation (2.84) is used for subsequent derivation.

ḣ(𝑡) − Sh(𝑡) = Z𝐻g(𝑡)

This equation is left multiplied by matrix x

xḣ(𝑡) − xSh(𝑡) = xZ𝐻g(𝑡) (2.137)

The first term in (2.137) represents derivative of term u with respect to time from equation
(2.136), the second term represents as well derivative of term u with respect to time but
from equation (2.135). Introducing (2.135) and (2.136) to (2.137) leads to (2.138).

u̇ − u̇ = x
[︁

z𝐻 , Sz𝐻
]︁ ⎡⎣ f

0

⎤⎦ (2.138)
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Based on the first equation, the following equation can be deduced.

xz𝐻f = 0 (2.139)

Equation (2.4) is generally nonhomogeneous. Therefore, the vector f is not equal to the
zero vector and equation (2.139) can be simplified to (2.140).

xz𝐻 = 0 (2.140)

2.4 Inverse vibration problem

Generally, there are two types of problems in physics and engineering. The so-called ”di-
rect problems” (or ”forward problems”) are dealing with the determination of behaviour
of a specified system based on its properties. On the other hand, the so-called ”inverse
problems” determine the properties of the system from its behaviour. P. C. Sabatier de-
fines these approaches by the following statement. ”Any physical model can be described
by a mapping - say ℳ - of a set 𝒞 of ’theoretical parameters’ into a set ℰ of ’results’. ℰ
contains the set of ’calculated results’ ℳ(𝒞), ’imprecise data’, and also many other ele-
ments if ℰ has been defined in a simple way (this last remark also applies to 𝒞). ’Solving
the direct problem’ is equivalent to giving a precise description of ℳ. ’Solving the inverse
problem’ or ’interpreting data 𝑒 ∈ ℰ ’, is the task of constructing the reciprocal images of
one or several elements of ℰ that are close to 𝑒 for any 𝑒 ∈ ℰ” [93].

In vibration theory, the direct problem means the determination of eigenvalues and
eigenvectors based on the properties of the analysed system. The solution of the direct
vibration problem is presented in previous sections of this chapter. The inverse vibration
problem refers to the estimation of the properties of a system based on the eigenvalues and
corresponding eigenvectors. The approaches for resolving the inverse vibration problem
can be divided based on a used mathematical model, to undamped systems and damped
systems.

2.4.1 Continuous undamped problems

Historically first inverse vibration problems were solved for continuous undamped systems.
The first types of vibration, analysed by the inverse vibration problem approach, were
the transverse vibration of strings and the longitudinal or torsional vibrations of rods.
These problems are described by the Sturm-Liouville equation which can appear in three
different forms depending on the resolved problems. The Sturm-Liouville equation may
be written in the form:

𝑊 𝐼𝐼(𝑥) + (𝜆− 𝑓(𝑥))𝑊 (𝑥) = 0 (2.141)

Note: The Roman numerals in superscript represent derivation of function with respect
to 𝑥, which is spatial coordinate.

The first solution of the inverse vibration problem with the Sturm-Liouville equation
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was presented by V. Ambarzumian in [94] but the fundamental paper on this topic was
presented by G. Borg in [95]. Borg’s results were simplified and extended by N. Levinson
[96], and later further extended by H. Hochstadt in [97] and [98].

The transverse vibration of strings is described by the following version of the Sturm-
Liouville equation.

𝑊 𝐼𝐼(𝑥) + 𝜆𝜌(𝑥)𝑊 (𝑥) = 0 (2.142)

The inverse vibration problem with equation (2.142) was first solved by M. G. Krein who
presented his results in [99], [100] and [101]. R. Courant and D. Hilbert show in [102]
that equations (2.141) and (2.142) can be transformed into each other.

The third variant of the Sturm-Liouville equation describes the longitudinal or tor-
sional vibrations of rods and it has the form of (2.143).[︁

𝐴(𝑥)𝑊 𝐼(𝑥)
]︁𝐼

+ 𝜆𝐴(𝑥)𝑊 (𝑥) = 0 (2.143)

The inverse vibration problem for equation (2.143) was first solved by B. M. Levitan in
[103] and his work was extended by M. M. Sondhi and B. Gopinath in [104].

The second type of inverse vibration problems, which was solved analytically, was
problems defined by the Euler-Bernoulli equation (2.144). This equation describes the
lateral vibration of the beam.

d2

d𝑥2

(︃
𝐸𝐼(𝑥)d2𝑊 (𝑥)

d𝑥2

)︃
= 𝜌𝐴(𝑥)Ω2

0𝑊 (𝑥) (2.144)

The Euler-Bernoulli equation is a fourth-order differential equation. The first, who resolve
the inverse vibration problem for (2.144) was J. R. McLaughlin. He presented his results
in papers [105], [106], [107] and [108].

2.4.2 Discrete undamped problems

”A simple type of discrete vibrating systems is one made up of a number of concentrated
masses connected by some arrangement of strings, springs, or rods. ... The inverse
problem consists in reconstructing the system from the eigenvalues” [109]. The eigenvalues
of undamped discrete systems are derived from equation (2.145).

det(K − 𝜆M) = 0 (2.145)

The inverse vibration problem for the discrete system defined by equation (2.145) was first
studied by F. R. Gantmakher and M. G. Krein in [110]. Subsequent researches worked
with the adjusted variant of formula (2.145).

B = M−1/2KM−1/2 (2.146)
det(𝜆I − B) = 0 (2.147)

The matrix B is a symmetric, tridiagonal, positive definite matrix with nonzero (negative)
co-diagonal elements and because of its properties, it falls into the class of Jacobian

138



matrices. First, who resolved the inverse vibration problem with the Jacobian matrix was
H. Hochstadt who presented his results in [111].

”Inverse problems for tridiagonal matrices may be viewed as special cases of inverse
problems for band matrices. Pentadiagonal matrices occur in the discretization of fourth-
order differential systems, of which the lateral vibrations of an Euler-Bernoulli beam
provide an important example” [109]. The first who concerned with the theory of the
inverse problem for the lateral vibrations of the beam was V. Barcilon in [112] and [113],
but the first who presented the inverse vibration problem with pentadiagonal matrix was
G. M. L. Gladwell in [114].

Methods for description of undamped vibrating systems presented in sections 2.4.1
and 2.4.2 are intensively described in publications [109] and [115].

2.4.3 Discrete damped problems

The direct vibration problem for the damped, lumped-parameter systems works with
the equation of motion (2.1). The first who derived formulas for the determination of
structural matrices was O. Daněk. He used equation (2.4) which represents the first order
matrix pencil and published a series of papers on this topic. First, he published the inverse
formulas for systems with simple structure [116], then as well for systems with general
structure [117]. The final formulas, derived by O. Daněk and presented in [118], are
applicable for systems with a general structure represented by equations (2.148)-(2.150).

M−1 = xJz𝐻 (2.148)
K−1 = −xJ−1z𝐻 (2.149)
C = −MxJ2z𝐻M (2.150)

The proper derivation of these equations are presented in section 2.5.
The form of equations (2.148)-(2.150) implies the mass matrix, stiffness matrix and

the Jordan matrix have to be non-singular, otherwise, it is not possible to restore the
structural matrices.

The work of O. Daněk was adopted by L. Starek and D. J. Inman. They derived the
inverse formulas for cases that violate assumptions about the non-singularity of matrices
M, K and J. First, the inverse formulas without any restriction for the stiffness matrix
K were presented in [119], created only by L. Starek. The formulas were subsequently
adjusted and presented in [120]. The formulas presented in those papers allow to deter-
mine the matrix K even if it is singular, but it is still not possible to restore the matrix
K if matrix J is singular. The matrix J is singular if at least one eigenvalue is equal to
zero, which occurs e.g. for eigenvalues associated with the rigid-body modes. Starek and
Inman presented the inverse formulas with no restriction for matrices K and J in [121].

Starek and Inman as well derived the inverse formulas for a case, when the structural
matrices are symmetric and the mass matrix is positive definite, which represents a com-
mon type of dynamic systems. They published the resultant formulas for two types of

139



systems, both stable (all eigenvalues have the negative real part), but one for the un-
derdamped modes (all associated eigenvalues have the nonzero imaginary part) [122] and
another for the overdamped modes (imaginary part of all associated eigenvalues are equal
to zero) [123]. Starek and Inman summarized all their versions of the inverse formulas in
paper [124]. After all adjustments of the inverse formulas, created by Starek and Inman,
it is possible to restore the structural matrices with only one restriction. The mass matrix
M has to be non-singular.

Derivation of the inverse formulas for the systems with simple structure was covered
as well by F. Pochylý in [125].

A different approach for the solution of the inverse vibration problem was developed
by P. Lancaster and J. Maroulas who solved the inverse problem with the spectral theory
of matrix polynomials. ”By a matrix polynomial, sometimes known as a 𝜆-matrix, we
understand a matrix-valued function of a complex variable of the form L(𝜆) = ∑︀𝑙

𝑖=0 A𝑖𝜆
𝑖,

where A0,A1, . . . ,A𝑙 are 𝑛 × 𝑛 matrices of complex numbers. For the time being, we
suppose that A𝑙 = I, the identity matrix, in which case L(𝜆) is said to be monic” [126].
The order of 𝜆-matrix is equal to the highest power of 𝜆 appearing among the elements
in the formula:

D𝑙(𝜆) = A𝑙𝜆
𝑙 + A𝑙−1𝜆

𝑙−1 + · · · + A1𝜆+ A0 (2.151)

Based on the previous definition, homogeneous form of equation (2.1) is intimately con-
nected with matrix polynomial of order 2, homogeneous form of equations (2.4) and (2.7)
are connected with matrix polynomials of order 1, which is in case of equations (2.7) a
monic matrix polynomial.

Lancaster and Maroulas published the inverse formulas for 𝜆-matrix of general order
in [127]. A similar approach was used by O. Daněk in paper [128].

2.5 Derivation of inverse formulas

The concern of section 2.2 is to define the direct eigenvalue problem for damped lumped
parameter vibrating systems. Inputs to the algorithm are the structural matrices M, C
and K and outputs are the Jordan matrix J and modal matrices X and Z.

The focus of this section is to find formulas for the inverse eigenvalue problem for
damped vibrating systems, which means the structural matrices are found based on the
Jordan matrix and modal matrices. The derivation presented in this section leads to
formulas (2.148)-(2.150) which were derived by O. Daněk.

Generally, there are two types of inverse vibration problems, which differ by the struc-
ture of matrices J, X and Z. In case that all three matrices are square matrices of order
2𝑁 , then all eigenvalues and eigenvectors are known. This is called the "full problem".
On the other hand, if modal matrices are rectangular and the Jordan matrix is square of
order less than 2𝑁 , then only a few eigenvalues and eigenvectors are known and it is called
the "partial problem". Even though the partial problems are more common in engineering
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practice, all papers mentioned in section 2.4.3 were dealing with the full problems.
The system is fully described by the Jordan matrix J and the first half of modal ma-

trices x and z which is clear from the structure of modal matrices X and Z. Matrices x
and z are rectangular matrices of order 𝑁 × 𝑏, where 𝑏 = 2𝑁 for the full problems and
𝑏 < 2𝑁 for the partial problems. Rectangular matrices can be divided into three types.
Let 𝑁 × 𝑏 be a order of matrix x (or z). ”Then we say that the matrix is a fat matrix if
𝑁 < 𝑏, a square matrix if 𝑁 = 𝑏 and a thin matrix if 𝑁 > 𝑏” [129]. The inverse formulas
are different for fat and thin rectangular matrices x and z. Both versions of the inverse
formulas work for square matrices x and z.

The following derivation of the inverse formulas is not possible without application of
a pseudoinverse3 (in this case the Moore–Penrose inverse) of the rectangular matrix for
the derivation of the inverse formulas. The pseudoinverse of the matrix is represented by
superscript +.

Formulas defining the inverse eigenvalue problem for damped vibrating systems for
both fat and thin rectangular matrices x and z are determined from equations (2.72),
(2.73) and (2.140), which are here again mentioned. As well structures of matrices N, P,
X and Z are again depicted.

Z𝐻NX = I

Z𝐻PX = −J

xz𝐻 = 0

N =
⎡⎣ C M

M 0

⎤⎦ ; P =
⎡⎣ K 0

0 −M

⎤⎦
X =

⎡⎣ x
xJ

⎤⎦ ; Z =
⎡⎣ z

zJ𝐻

⎤⎦
The first equation, (2.73), can be adjusted to formula (2.152) by following steps.

Z𝐻PX = −J[︁
z𝐻 , Jz𝐻

]︁ ⎡⎣ K 0
0 −M

⎤⎦⎡⎣ x
xJ

⎤⎦ = −J

[︁
z𝐻 , Jz𝐻

]︁ ⎡⎣ Kx
−MxJ

⎤⎦ = −J

z𝐻Kx − Jz𝐻MxJ = −J (2.152)
3A pseudoinverse A+ of matrix A is a generalization of the inverse matrix (which is usable only for

a square matrices). ”The matrix A+ fulfilling following 4 conditions is called the pseudoinverse or the
Moore-Penrose inverse of A. [130]”

AA+A = A ; A+AA+ = A+

(AA+)𝐻 = AA+ ; (A+A)𝐻 = A+A
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Adjustments of equation (2.72) lead to formula (2.153).

Z𝐻NX = I[︁
z𝐻 , Jz𝐻

]︁ ⎡⎣ C M
M 0

⎤⎦⎡⎣ x
xJ

⎤⎦ = I

[︁
z𝐻 , Jz𝐻

]︁ ⎡⎣ Cx + MxJ
Mx

⎤⎦ = I

z𝐻Cx + z𝐻MxJ + Jz𝐻Mx = I (2.153)

There are two different versions of the inverse formulas that differ in the type of
rectangular matrices x and z. The equations (2.152) and (2.153) are basic equations for
derivations of the inverse formulas for both fat and thin rectangular matrices x and z.

2.5.1 Inverse formulas for fat rectangular matrices x and z

The adjustments of equations (2.152) and (2.153) requires a multiplication of rectangular
matrices x and z with its pseudoinverse. Following formulas are valid for a fat rectangular
matrices x and z.

xx+ = I ; x+x ̸= I

zz+ = I ; z+z ̸= I (2.154)(︁
z𝐻
)︁+

z𝐻 = I ; z𝐻
(︁
z𝐻
)︁+

̸= I

The mass matrix M can be determined from (2.153) by right multiplication of equation
by matrix z𝐻 . The resultant equation can be simplified by equation (2.140), i.e. xz𝐻 = 0.

z𝐻Cxz𝐻 + z𝐻MxJz𝐻 + Jz𝐻Mxz𝐻 = z𝐻

z𝐻MxJz𝐻 = z𝐻 (2.155)

Equation (2.155) can be simplified with conditions (2.154) by left multiplication by term(︁
z𝐻
)︁+

. The simplification leads to formula (2.157) which defines the mass matrix M from
matrices J, x and z.

MxJz𝐻 = I (2.156)
M−1 = xJz𝐻

M = (xJz𝐻)−1 (2.157)

The stiffness matrix K is determined from (2.152) by right multiplication by term
J−1z𝐻 . Resultant equation can be simplified using equation (2.140).

z𝐻KxJ−1z𝐻 − Jz𝐻MxJJ−1z𝐻 = −JJ−1z𝐻

z𝐻KxJ−1z𝐻 = −z𝐻 (2.158)

142



Last equation can be simplified by left multiplication by term
(︁
z𝐻
)︁+

.

KxJ−1z𝐻 = −I

K−1 = −xJ−1z𝐻

K = (−xJ−1z𝐻)−1 (2.159)

Last structural matrix, which has to be determined, is the damping matrix C. It can
be obtained from (2.153) which is right multiplied by term Jz𝐻 . Resultant equation can
be adjusted by equation (2.156).

z𝐻CxJz𝐻 + z𝐻MxJ2z𝐻 + Jz𝐻MxJz𝐻 = Jz𝐻

z𝐻CxJz𝐻 + z𝐻MxJ2z𝐻 + Jz𝐻 = Jz𝐻

z𝐻CxJz𝐻 + z𝐻MxJ2z𝐻 = 0 (2.160)
z𝐻CxJz𝐻I + z𝐻MxJ2z𝐻MxJz𝐻 = 0

z𝐻(C + MxJ2z𝐻M)xJz𝐻 = 0

Last equation can be simplified by left multiplication by term
(︁
z𝐻
)︁+

.

(C + MxJ2z𝐻M)xJz𝐻 = 0

This equation can be adjusted by right multiplication by term (xJz𝐻)−1, which represents
the mass matrix. Equation (2.157) assumes the mass matrix is non-singular which means
the inverse of matrix multiplication xJz𝐻 exists. The resultant equation for the damping
matrix C is (2.161).

(C + MxJ2z𝐻M)xJz𝐻(xJz)−1 = 0

(C + MxJ2z𝐻M) I = 0

C = −MxJ2z𝐻M (2.161)

The derivation of formulas in this section was inspired by work of F. Pochylý [125].
Equations (2.157), (2.159) and (2.161) are identical to equations (2.148)-(2.150), which
were derived by O. Daněk.

Note: Derivation of the inverse formulas for the fat rectangular matrices x and z is
as well possible without the Moore–Penrose inverse. The matrix multiplications xx𝐻 and
zz𝐻 yield non-singular matrices, i.e. the following formulas are valid for fat rectangular
matrices.

(xx𝐻)−1xx𝐻 = xx𝐻(xx𝐻)−1 = I ; (zz𝐻)−1zz𝐻 = zz𝐻(zz𝐻)−1 = I (2.162)

On the other hand, matrix multiplications x𝐻x and z𝐻z yield a singular matrices.
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2.5.2 Inverse formulas for thin rectangular matrices x and z

Thin rectangular matrices x and z fulfill different conditions than the conditions defined
by equation (2.154). The conditions for the thin matrices are defined by formulas (2.163).

x+x = I ; xx+ ̸= I

z+z = I ; zz+ ̸= I (2.163)
z𝐻
(︁
z𝐻
)︁+

= I ;
(︁
z𝐻
)︁+

z𝐻 ̸= I

The mass matrix M can be determined as same as for the fat matrices from (2.155),
but it is necessary to use right multiplication by term

(︁
z𝐻
)︁+

. The simplification leads to
formula (2.164).

z𝐻MxJ = I (2.164)

The mass matrix is in case of thin rectangular matrices x and z defined by equation
(2.165).

M =
(︁
z𝐻
)︁+

J−1x+ (2.165)

The correctness of formula (2.165) is verified simply by substituting this formula into the
equation (2.164).

z𝐻
(︁
z𝐻
)︁+

J−1x+xJ = I

I = I

Using conditions (2.163), the correctness of formula for the mass matrix has been verified.
The procedure for determination of the stiffness matrix K is as same as in previous

section based on equation (2.158) which is adjusted by right multiplication by term
(︁
z𝐻
)︁+

.
This yields a following formula.

z𝐻KxJ−1 = −I (2.166)

The stiffness matrix is for thin rectangular matrices x and z defined by formula (2.167).

K = −
(︁
z𝐻
)︁+

Jx+ (2.167)

The correctness of this formula is, as same as in case of the mass matrix, verified by
substituting equation (2.167) into (2.166) which yields:

z𝐻
[︂

−
(︁
z𝐻
)︁+

Jx+
]︂
xJ−1 = −I

I = I

Derivation of the inverse formula for damping matrix in case of the thin rectangular
matrices x and z is based on equation (2.160). The mass matrix is expressed by equation
(2.165) which is valid for thin rectangular matrices.

z𝐻CxJz𝐻 + z𝐻
(︁
z𝐻
)︁+

J−1x+xJ2z𝐻 = 0

z𝐻CxJz𝐻 = −Jz𝐻 (2.168)
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The damping matrix is in case of thin rectangular matrices given by formula (2.169).

C = −
(︁
z𝐻
)︁+

x+ (2.169)

The correctness of the solution is like in previous cases proven by inserting equation
(2.169) into (2.168).

z𝐻
[︂

−
(︁
z𝐻
)︁+

x+
]︂
xJz𝐻 = −Jz𝐻

−Jz𝐻 = −Jz𝐻

I = I

2.5.3 Inverse formulas for square matrices x and z

The special case of order of matrices x and z arises, when matrices are square. In other
words, if exactly one-half of all eigenvalues and associated eigenvectors are known, the
matrices x and z are square. Conditions (2.154) for the fat rectangular matrices and
(2.163) for the thin rectangular matrices are combined for a square matrices to conditions
(2.170).

xx+ = I ; x+x = I

zz+ = I ; z+z = I (2.170)(︁
z𝐻
)︁+

z𝐻 = I ; z𝐻
(︁
z𝐻
)︁+

= I

It is not necessary to use the Moore–Penrose inverse, because the matrices x and z are
square and invertible. Therefore, the conditions (2.170) can be rewritten to conditions
(2.171).

xx−1 = I ; x−1x = I

zz−1 = I ; z−1z = I (2.171)(︁
z𝐻
)︁−1

z𝐻 = I ; z𝐻
(︁
z𝐻
)︁−1

= I

The structural matrices can be restored for the square matrices x and z either from
equations (2.157), (2.159) and (2.161) or from equations (2.165), (2.167) and (2.169).

2.5.4 Overview of inverse formulas

The inverse formulas for all types of rectangular matrices x and z were derived in previous
sections. This section summarized these formulas.

If the number of input eigenvalues and associated eigenvectors 𝑏 is greater than or
equal to number of degrees of freedom (𝑏 ≥ 𝑁), then the structural matrices can be
restored from equations (2.157), (2.159) and (2.161).

M = (xJz𝐻)−1

K = (−xJ−1z𝐻)−1

C = −MxJ2z𝐻M
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On the contrary, in case when the number of available eigenvalues and associated
eigenvectors 𝑏 is less than or equal to the number of degrees of freedom (𝑏 ≤ 𝑁), then the
structural matrices are defined by equations (2.165), (2.167) and (2.169).

M =
(︁
z𝐻
)︁+

J−1x+

K = −
(︁
z𝐻
)︁+

Jx+

C = −
(︁
z𝐻
)︁+

x+

Even though all of these equations define formulas for the structural matrices, it is
possible to directly restore the structural matrices only for the full problems, i.e. all
eigenvalues and associated eigenvectors are known. In case of the partial problems, an
algorithm for creating the structural matrices with required eigenvalues and eigenvectors
is more complicated.

2.6 Algorithms for identification of structural matri-
ces

This section presents algorithms for the determination of the structural matrices for the
full (all eigenvalues and eigenvectors are known) and partial (incomplete set of eigenvalues
and eigenvectors is known) problems.

The inputs to each algorithm are the Jordan matrix J, or in case of a system with the
simple structure the spectral matrix S, and matrices x and z, which represents first halves
of modal matrices. If the inputs to the algorithm are obtained from the Experimental
modal analysis (EMA), it is common that the eigenvalues and associated mode shapes
are measured. The first half of the right eigenvector x𝑖 creates the mode shape. The
structure of algorithms for determination of the structural matrices assumes, that only
matrices J (or S) and x are known.

2.6.1 Full problem

In case of the full problem, it is possible to restore the structural matrices directly from
the inverse formulas (2.157), (2.159) and (2.161). The algorithm for the full problems is
described by the following steps.

1. Input: J and x
Input matrices have order J ∈ C2𝑁,2𝑁 and x ∈ C𝑁,2𝑁 .

2. Determination of matrix z
First half of modal matrix of left eigenvectors can be determined from homogeneous
equation (2.140).

xz𝐻 = 0
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Number of rows 𝑎 of the matrix z, determined from previous equation, is less than or
equal to 𝑁 (𝑎 ≤ 𝑁). Matrix z has to contain identical number of rows as matrix x,
i.e. 𝑎 = 𝑁 . If number of rows of matrix z is less than 𝑁 , then matrix z has to be
enlarged, which can be achieved by duplication of existing rows of matrix z. It is
clear, that final configuration of matrix z fulfil equation (2.140).
Note: In case, when matrix z is known, the second step is skipped.

3. Determination of M, C and K
The structural matrices are in case of the full problem restored from the following
equations.

M = (xJz𝐻)−1

K = (−xJ−1z𝐻)−1

C = −MxJ2z𝐻M

4. Verification of solution correctness.
Verification of correctness of derived structural matrices is performed by solving the
eigenvalue problem with these matrices. If the resultant Jordan matrix and modal
matrices are identical to the input matrices, then the derived structural matrices
are correctly determined.

2.6.2 Partial problem with fat matrices x and z

The partial problem means that not all eigenvalues and associated eigenvectors are known.
It is not possible to create one algorithm, which would be applicable for all partial prob-
lems, because there are different inverse formulas for fat or thin matrices x ∈ C𝑁,𝑏 and
z ∈ C𝑁,𝑏, where 𝑏 is the number of known eigenvectors. There are as well other difficul-
ties, which complicate the construction of the structural matrices, but they are mentioned
within a description of algorithms. The main issue, which makes a the construction of the
algorithm for the partial problems difficult, is, that it is not possible to directly restore
the structural matrices from inverse formulas.

The algorithm for the partial problems with fat matrices x and z is described by the
following steps.

1. Input: J and x
Input matrices have order J ∈ C𝑏,𝑏 and x ∈ C𝑁,𝑏, where 𝑏 > 𝑁 .

2. Determination of matrix z
First half of modal matrix of left eigenvectors can be determined from homogeneous
equation (2.140).

xz𝐻 = 0

Similarly to the algorithm for the full problems, a number of rows 𝑎 of the matrix z,
determined from the homogeneous equation, is less than or equal to 𝑁 (𝑎 ≤ 𝑁). If
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the number of rows of matrix z 𝑎 is less than 𝑁 , then matrix z has to be enlarged,
which can be achieved by duplication of existing rows of matrix z.
Note: In case, when matrix z is known, the second step is skipped.

3. Determination of M1, C1 and K1

The structural matrices are in case of the partial problem with fat matrices x and
z restored from the following equations.

M1 = (xJz𝐻)−1

K1 = (−xJ−1z𝐻)−1

C1 = −MxJ2z𝐻M

The matrices M1, C1 and K1 are square matrices of order 𝑁 .

4. Creating matrices N1 and P1

Matrices N1 and P1 are created based on equation (2.5) which defines these matrices
in following form.

N1 =
⎡⎣ C1 M1

M1 0

⎤⎦ ; P1 =
⎡⎣ K1 0

0 −M1

⎤⎦
5. Obtaining matrices J1 and X1

Solution of eigenvalue problem with matrices M1, C1 and K1 produces the Jordan
matrix J1 and the modal matrix of right eigenvectors X1. It is necessary to point
out the matrices J1 and X1 are not equal to input matrices J and X, i.e. the ma-
trices J1 and X1 do not contain input eigenvalues and eigenvectors.
The matrices J1 and X1 are square matrices of order 2𝑁 , which means the matrix
J has smaller order than the matrix J1 and matrix x has less columns than the
matrix X1

Note: It is possible to obtain the modal matrix of left eigenvectors Z1 directly from
solution of eigenvalue problem, but it is as well possible to obtain matrix Z1 from
homogeneous equation (2.140).

6. Generating adjusted matrices J2 and X2

Matrices J1 and X1 are square matrices of order 2𝑁 , which means it is possible to
use the algorithm for the full problems, described in section 2.6.1. But before that
it is necessary to create a square matrices J2 and X2 of order 2𝑁 , which contain
original eigenvalues and eigenvectors. The Jordan matrix J2 can be generated by
combination of matrices J and J1, which contains 2𝑁 − 𝑏 eigenvalues from matrix
J1. The modal matrix of right eigenvectors X2 consists of matrix X and matrix X1,
which contains 2𝑁 − 𝑏 eigenvectors from matrix X1.

J2 =
⎡⎣ J , 0

0 , J1

⎤⎦ ; X2 =
[︁

X , X1

]︁
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Note: Matrix x2 creates a first half of matrix X2 which is clear from equation (2.76).

7. Determination of matrix z2

First half of the modal matrix of left eigenvectors can be determined from homoge-
neous equation (2.140).

x2z𝐻
2 = 0

As same as in the second step of algorithm for the full problems, the matrix z2 has
𝑎 rows, where 𝑎 ≤ 𝑁 . If a number of rows is less than 𝑁 , then the rows of z2 have
to be enlarged by duplicating existing rows till the number of rows of z2 is equal to
𝑁 .
In case, when matrix z2 is known from previous step, this step is skipped.

8. Determination of final form of M, C and K
The structural matrices are in case of the full problem restored from the following
equations.

M = (x2J2z𝐻
2 )−1

K = (−x2J−1
2 z𝐻

2 )−1

C = −Mx2J2
2z𝐻

2 M

9. Verification of solution correctness.
Verification of correctness of derived structural matrices is performed by solving the
eigenvalue problem with matrices M, C and K. If the resultant spectral matrix
and modal matrices are identical to the input matrices J and X, then the derived
structural matrices are correctly determined.

2.6.3 Partial problem with thin matrices x and z

The main complication in the generation of the algorithm for the partial problem with
thin rectangular matrices x and z is the determination of matrix z. It is not possible
to obtain matrix z directly from the solution of homogeneous equation (2.140), because
the solution of the equation with the square or thin rectangular matrix x is trivial if the
rank of matrix x is equal to the number of known eigenvectors. This is generally true
for systems with a simple structure. The matrix z can be determined from the adjusted
homogeneous equation, defined in this section.

The structure of the algorithm is similar to the algorithm for the partial problems
with fat matrices x and z, which was described in the previous section. Hence, identical
steps in the algorithm are mentioned without further description.

The algorithm for the partial problems with fat matrices x and z is described by the
following steps.
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1. Input: J and x
Input matrices have order J ∈ C𝑏,𝑏 and x ∈ C𝑁,𝑏, where 𝑏 < 𝑁 .

2. Determination of matrix z
It is not possible to obtain matrix z from homogeneous equation (2.140), which
is explained above. To obtain matrix z, it is necessary to obtain matrix Q from
homogeneous equation (2.172) first.

xx𝐻Q = 0 (2.172)

Matrix z is then defined by following formula.

z𝐻 = x𝐻Q (2.173)

As well as in algorithm for the partial problems with fat rectangular matrices, a
number of rows 𝑎 of the matrix z is less than or equal to 𝑁 (𝑎 ≤ 𝑁). Hence, if
the number of rows of matrix z 𝑎 is less than 𝑁 , then matrix z has to be enlarged,
which can be achieved by duplication of existing rows of matrix z.
Even though matrix z is not obtained from equation (2.140), it has to fulfil this
homogeneous solution.
Note: In case, when matrix z is known, the second step is skipped.

3. Determination of M1, C1 and K1

Unlike to algorithm for the partial problem with fat rectangular matrices x and z,
it is necessary in this case restore the structural matrices from equations (2.165),
(2.167) and (2.169).

M1 =
(︁
z𝐻
)︁+

J−1x+

K1 = −
(︁
z𝐻
)︁+

Jx+

C1 = −
(︁
z𝐻
)︁+

x+

The matrices M1, C1 and K1 are square matrices of order 𝑁 .

4. Following steps in the algorithm is the same as points 4.-9. in algorithm described
in section 2.6.2.

2.6.4 Partial problem with square matrices x and z

If matrix x is square and if rank of matrix x is equal to its order, then ”the homogeneous
system of equations xz𝐻 = 0 has a unique (namely, the trivial) solution” [129]. Hence, it
is not possible to obtain the matrix z from matrix x either from equation (2.140) or from
equations (2.172) and (2.173). The structural matrices can be resolved from a square
matrices J ∈ C𝑁,𝑁 x ∈ C𝑁,𝑁 either if the first half of modal matrix of left eigenvectors z
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is known or from the algorithm for the partial problems with thin rectangular matrices x
and z.

If matrix z is known, then it is possible to use algorithms for the partial problems
with either fat or thin matrices x and z because both sets of inverse formulas defined in
section 2.5.4 can be used for square matrices x and z.

On the contrary, if matrix z is not known, the algorithm for the thin rectangular
matrices x and z can be used, but inputs to the algorithm have to be adjusted. The Jordan
matrix J and matrix x have to be divided into two sets of eigenvalues and associated
eigenvectors, which is shown in following equation. The division of matrices J and x is
arbitrary.

J =
⎡⎣ J𝑎 , 0

0 , J𝑏

⎤⎦ ; x =
[︁

x𝑎 , x𝑏

]︁
The Jordan matrices J𝑎 and J𝑏 are square matrices of order less than 𝑁 and greater than
or equal to 1. The matrices x𝑎 and x𝑏 are thin rectangular matrices with number of
columns equal to the order of matrices J𝑎 and J𝑏, respectively.

With those adjustments, the algorithm for the partial problems with thin matrices x
and z can be used in the following form.

1. Input: J𝑎 and x𝑎

Input matrices have orders J𝑎 ∈ C𝑏,𝑏 and x𝑎 ∈ C𝑁,𝑏, where 𝑏 < 𝑁 .

2. Determination of matrix z𝑎

Matrix z𝑎 can be determined from solution of equations (2.172) and (2.173).

x𝑎x𝐻
𝑎 Q = 0

z𝐻
𝑎 = x𝐻

𝑎 Q

3. Determination of M𝑎, C𝑎 and K𝑎

the structural matrices are restored from equations (2.165), (2.167) and (2.169).

M𝑎 =
(︁
z𝐻

𝑎

)︁+
J−1x+

𝑎

K𝑎 = −
(︁
z𝐻

𝑎

)︁+
Jx+

𝑎

C𝑎 = −
(︁
z𝐻

𝑎

)︁+
x+

𝑎

4. Creating matrices N𝑎 and P𝑎

Matrices N𝑎 and P𝑎 are create based on (2.5) from matrices M𝑎, C𝑎 and K𝑎.
5. Obtaining matrices J𝑐 and X𝑐

Solution of eigenvalue problem with matrices M𝑎, B𝑎 and K𝑎 produces the Jordan
matrix J𝑐 and the modal matrix of right eigenvectors X𝑐.

6. Generating adjusted matrices J2 and X2

Matrices J𝑐 and X𝑐 are square matrices of order 2𝑁 , but they do not generally con-
tain input eigenvalues and eigenvectors. It is necessary to create a square matrices
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J𝑑 and X𝑑 of order 2𝑁 , which would contain original eigenvalues and eigenvectors.
The Jordan matrix J2 can be generated by combination of matrices J𝑎, J𝑏 and
matrix J𝑐, which contains 𝑁 eigenvalues from matrix J𝑐. The modal matrix of
right eigenvectors X2 consists of matrices X𝑎, X𝑏 and matrix X𝑐, which contains 𝑁
eigenvectors from matrix X𝑐.

J2 =

⎡⎢⎢⎣
J𝑎 , 0 , 0
0 , J𝑏 , 0
0 , 0 , J𝑐

⎤⎥⎥⎦ ; X2 =
[︁

X𝑎 , X𝑏 , X𝑐

]︁

X𝑎 =
⎡⎣ x𝑎

x𝑎J𝑎

⎤⎦ ; X𝑏 =
⎡⎣ x𝑏

x𝑏J𝑏

⎤⎦
7. Following steps in the algorithm are the same as points 7.-9. in algorithm described

in section 2.6.2.

2.6.5 Partial problem with selection of additional eigenvalues

Structure of each algorithm for the partial problems, described in the previous three sec-
tions, has two main parts. The concern of the first part of algorithms is finding additional
eigenvalues and additional mode shapes (first half of right eigenvectors). These additional
eigenvalues and mode shapes are used for the creation of new Jordan matrix J2 ∈ C2𝑁,2𝑁

and the first half of modal matrix of right eigenvectors x2 ∈ C𝑁,2𝑁 , respectively. The
second part of algorithms is a solution of the full problem with new matrices J2 and x2.

The problem of such an approach, described in the previous paragraph, is the fact
that it is not possible to influence the additional eigenvalues and associated eigenvectors.
The resultant system may contain eigenvalues with positive real part and such system is
potentially unstable whereas the analysed system could be stable. Or some additional
eigenvalue can have imaginary part close to the imaginary part of some eigenvalue from
the input set. This would lead to the different response of system if the external load
would have frequency close to eigenfrequency of these eigenvalues.

To avoid above mentioned problems and taking into account the structure of algo-
rithms for the partial problems, the question arises: would it be possible to determine
additional eigenvectors associated with a chosen set of additional eigenvalues, which would
not influence behaviour of the system? The answer to this question is given by the fol-
lowing derivation.

The eigenvalue problem is defined by equation (2.70).

NXJ + PX = 0

The concern of this section is solving the partial problems, thus let’s assume that 𝑏

eigenvalues and 𝑏 right eigenvectors are known. Left eigenvectors can be either known
or determined from procedures, defined in sections 2.6.2 and 2.6.3. In other words, the
matrices J ∈ C𝑏,𝑏, X ∈ C2𝑁,𝑏 and Z ∈ C2𝑁,𝑏 are known. The underlining of terms is used to
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distinguish matrices from matrices J, X and Z from equation (2.70), which represents the
square matrices. Then underlined matrices have to fulfil the biorthogonality conditions
(2.72) and (2.73).

Z𝐻NX = I

Z𝐻PX = −J

Since the partial problem is solved and modal matrices X and Z are square in case
of the full problem, the matrices X and Z are thin rectangular matrices. For matrices
X and Z have equations (2.163), which are valid for thin rectangular matrices, following
form.

X+X = I ; XX+ ̸= I

Z+Z = I ; ZZ+ ̸= I

Z𝐻
(︁
Z𝐻

)︁+
= I ;

(︁
Z𝐻

)︁+
Z𝐻 ̸= I

The matrices N and P can be expressed from the biorthogonality conditions by following
formulas.

N =
(︁
Z𝐻

)︁+
X+ (2.174)

P =
(︁
Z𝐻

)︁+
J X+ (2.175)

The correctness of formulas (2.174) and (2.175) is verified simply by substituting those
formulas to the biorthogonality conditions (2.72) and (2.73).

Equation (2.70) can be adjusted to (2.176) by expressing matrices N and P by equa-
tions (2.174) and (2.175), respectively.(︁

Z𝐻
)︁+

X+XJ +
(︁
Z𝐻

)︁+
J X+X = 0 (2.176)

It is clear from equation (2.176), if X = X (which is valid, because right eigenvectors in
matrix X are solution of equation (2.70)), then equation (2.176) is simplified to following
equation.

J = J

This equation implies that 𝑏 eigenvalues and 𝑏 eigenvectors represent the solution of the
eigenvalue problem.

Equation (2.176) can be used for determination of 2𝑁 − 𝑏 additional eigenvalues and
associated eigenvectors. Square matrices J and X can be divided into two parts. First
part of these matrices is constituted from known matrices J and X because it was proven
these matrices represent the solution of the eigenvalue problem. The second part of the
matrix J creates the Jordan matrix with additional eigenvalues Λ and the second part of
the matrix X represents the modal matrix of associated additional right eigenvectors T.
The structure of matrices J and X is described in the following formulas.

J =
⎡⎣ J , 0

0 , Λ

⎤⎦ ; X =
[︁

X , T
]︁
,
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The basic idea of the developed approach is, that the set of additional eigenvalues is
chosen and generally arbitrary. However, it is assumed in the following derivation that all
eigenvalues have multiplicity equal to one, which means the matrix Λ is diagonal matrix
as same as the spectral matrix S. Matrices Λ and T have the following structure.

Λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ𝑏+1 . . . 0 . . . 0
... . . . ... ...
0 . . . Λ𝑏+𝑖 . . . 0
... ... . . . ...
0 . . . 0 . . . Λ2𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T =

[︁
T𝑏+1 . . . T𝑏+𝑖 . . . T2𝑁

]︁
,

where Λ𝑖 is additional eigenvalue and T𝑖 is associated additional right eigenvectors.
Further adjustments of equation (2.176) can be done by left multiplication by matrix

Z𝐻 .

Z𝐻
(︁
Z𝐻

)︁+
X+XJ + Z𝐻

(︁
Z𝐻

)︁+
J X+X = 0

X+XJ + J X+X = 0 (2.177)

Equation (2.177) can be rewritten for (𝑏 + 𝑖)-th eigenvalue and (𝑏 + 𝑖)-th associated
eigenvector to (2.178).

X+T𝑏+𝑖Λ𝑏+𝑖 + J X+T𝑏+𝑖 = 0 , (2.178)

where (𝑏 + 𝑖)-th eigenvalue is a number, therefore equation (2.178) can be rewritten to
form:

(Λ𝑏+𝑖X+ + J X+)T𝑏+𝑖 = 0 (2.179)

Equation (2.179) represents a homogeneous equation. The rank of matrix in paren-
theses is equal to the number of known right eigenvectors 𝑏. Therefore, the solution of
homogeneous equation (2.179) is matrix of order 2𝑁 × (2𝑁 − 𝑏), which contains 2𝑁 − 𝑏

additional right eigenvectors.
It was proven, that there are two possible approaches for the determination of the

modal matrix of additional right eigenvectors T. The first approach is based on the solu-
tion of homogeneous equation (2.179) individually for every single additional eigenvalue.
The matrix, obtained from solution of (2.179), has 2𝑁 − 𝑏 additional right eigenvectors.
One right eigenvector, associated with the chosen eigenvalue, has to be selected from this
matrix. In second approach, homogeneous equation (2.179) is solved only for one addi-
tional eigenvalue. The number of additional right eigenvectors in the resultant matrix
is equal to a number of additional eigenvalues and they are associated with each other
arbitrarily.

The above described derivation can be used for restoring the structural matrices by
the following algorithm.
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1. Input: J and x
Input matrices have orders J ∈ C𝑏,𝑏 and x ∈ C𝑁,𝑏, where 𝑏 < 2𝑁 .

2. Determination of matrix X
The modal matrix of right eigenvectors has order X ∈ C2𝑁,𝑏 and it is arranged from
matrices J and x. Structure of matrix X is defined by equation (2.76).

X =
⎡⎣ x

x J

⎤⎦
3. Selection of additional eigenvalues

The additional eigenvalues should be chosen in order to minimize the effect of addi-
tional eigenvectors on the response of the system. The additional eigenvalues should
have a negative real part, which means they should not destabilize the system, and
they should not be in a range of assumed excitation. One of the suggested solutions
of this step is to set all additional eigenvalues to be negative real numbers.
Output of this step is the Jordan matrix J or order 2𝑁 × 2𝑁 .

4. Determination of additional eigenvectors
As previously written, this step can be accomplished by two ways. Both approaches
works with equation (2.179).

(Λ𝑏+𝑖X+ + J X+)T𝑏+𝑖 = 0

A. Solution of (2.179) for all additional eigenvalues
The homogeneous equation is solved individually for each additional eigenval-
ues and associated eigenvector is selected from resultant 2𝑁 − 𝑏 eigenvectors.

B. Solution of (2.179) only for one chosen additional eigenvalue
Homogeneous equation is solved only for one chosen additional eigenvalue. The
resultant matrix has 2𝑁 − 𝑏 columns, which represents 2𝑁 − 𝑏 eigenvectors.
Then 2𝑁 − 𝑏 additional eigenvalues and resultant eigenvector are associated
with each other arbitrarily.

This step in both approaches produces a square modal matrix of right eigenvectors
X of order 2𝑁 .
The following steps in the algorithm are the same as steps 2-4 in the algorithm
for the full problems, presented in section 2.6.1 and they are herein only briefly
mentioned. It is necessary to point out the following steps do not work with modal
matrix of right eigenvectors X, but only with its first half, i.e. with the matrix x.

5. Determination of matrix z
First half of modal matrix of left eigenvectors can be determined from homogeneous
equation (2.140).

xz𝐻 = 0
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The matrix z has 𝑎 rows, where 𝑎 ≤ 𝑁 . If a number of rows is less than 𝑁 , then
the rows of z have to be enlarged by duplicating existing rows till the number of
rows of z is equal to 𝑁 .
Warning: This step cannot be skipped even if the matrix z is known at the begin-
ning of the algorithm. Order of matrix z is 𝑁 × 𝑏, but required matrix z has to have
order 𝑁×2𝑁 . It is possible to use known left eigenvectors, but first the homogenous
equation (2.140) has to be solved and then appropriate left eigenvectors in matrix
z can be replaced by known eigenvectors.

6. Determination of M, C and K
The structural matrices are restored from following equations.

M = (xJz𝐻)−1

K = (−xJ−1z𝐻)−1

C = −MxJ2z𝐻M

7. Verification of solution correctness.
Verification of correctness of derived structural matrices is performed by solving
the eigenvalue problem with these matrices. If resultant spectral matrix and modal
matrices contain input eigenvalues and eigenvectors, then the derived structural
matrices are correctly determined.

2.6.6 Overview of algorithms for solution of the inverse vibra-
tion problem

The algorithms for the full problems and for partial problems with selection of additional
eigenvalues allow to restore the structural matrices for all possible structures of the input
matrices J and x. Even though the algorithms for partial problems for fat, thin and
square matrices x and z, presented in sections 2.6.2 - 2.6.4, have some limitations in their
application (e.g. system can be unstable), it would not be possible to derive the algo-
rithm for partial problems with selection of additional eigenvalues (section 2.6.5) without
derivation and understanding of these three algorithms.

Even though the resultant system, defined by the structural matrices, has the same
spectral and modal properties as the original system, i.e. the Jordan matrix J and modal
matrix of right eigenvectors X are identical, it is necessary to mention two issues, which
are related to the solution of the inverse vibration problem.

The first issue is the original and resultant structural matrices do not have to be iden-
tical. In other words, if the direct vibration problem is solved first, i.e. matrices J and
X are obtained from known structural matrices, and then the inverse vibration problem
is resolved, the input and output structural matrices do not have to be equal, although
they have the same eigenvalues and eigenvectors. The reason is that the formulas for the
solution of the inverse vibration problem for discrete damped systems are derived from
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a homogeneous equation of motion. The homogeneous equation can be multiplied by an
arbitrary non-singular matrix (of correct order) and the resultant solution is equivalent,
which implies the resultant structural matrices are generally complex. The original and
resultant structural matrices are identical if and only if at least one of the original struc-
tural matrices M, C and K is known, which is mentioned in work [120].

The second issue arises in case the input right (and possibly left) eigenvectors are not
normalized. Then the input matrices do not satisfy the biorthogonality conditions in form
of equations (2.72) and (2.73) (, where the new structural matrices occur in the matrices
N and P). This problem can occur if the eigenvectors are determined experimentally,
because then the matrices N and P, needed for the normalization, are not known. If the
eigenvectors are not normalized, then the biorthogonality conditions have to be modified
to form of equations (2.180) and (2.181).

Z𝐻NX = D (2.180)
Z𝐻PX = −DJ (2.181)

The term D represents an arbitrary diagonal matrix, which has to be determined. The
derivation of equations for inverse vibration problem and as well for direct vibration
problem with the biorthogonality conditions (2.180) and (2.181) means a revision of whole
derivation. However, this idea is beyond a scope of the presented work and it could be
used as an inspiration for upcoming researches.

2.7 Fluid-structure interaction with inverse vibration
problem

The concern of this section is application of the algorithms for the solution of the inverse
vibration problem for the determination of a mathematical model of mutual interaction
between a flexible body and fluid in which the body is submerged. This type of interaction
is called the fluid-structure interaction (FSI).

Historically, the first analysed FSI problem was related to the determination of an
accurate period of pendulums vibrating in ambient fluid and to find the corrective term
for the specification of deviation in a period of vibrating pendulums in vacuum and in
ambient fluid. First who experimentally solved this problem was in 1786 P. L. G. Du
Buat who presented his results in [131]. He concluded the period of a pendulum vibrating
in fluid is affected by its mass as well as by the inertia of ambient fluid. The resultant
inertia of pendulum is the function of its mass and ”added mass” from the fluid.

F. W. Bessel in 1928 confirmed and extended Du Buat’s results, although Bessel was
not familiar with Du Buat’s work (which was either forgotten or overlooked at that time).
Based on the experimental work, Bessel found out it is necessary to take into account
the effect of the inertia of ambient fluid as well as its buoyancy into solution of vibrating
pendulum. The buoyancy effect of the fluid diminishes the stiffness of the pendulum.
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Bessel presented his research in [132]. The results of Bessel’s experimental work were
confirmed and even extended by F. Baily, who created a vacuum experimental device for
testing pendulums submerged in fluid and performed hundreds of experiments for a great
variety of conditions presented in 1832 in [133].

The first analytical method for analysis of the motion of pendulums submerged in the
fluid was introduced in 1832 by S. D. Poisson [134]. He employed the Euler equation
and the equation of motion of a pendulum for a sphere pendulum suspended by a wire.
Poisson’s computations agree with experiments of Du Buat and Bessel.

Remarkable work on the topic of interaction between vibrating pendulum and ambi-
ent fluid was created by G. G. Stokes, one of two authors of the Navier-Stokes equation,
which is the equation of motion of viscous fluid substances. The research ”On the Effect
of the Internal Friction of Fluids on the Motion of Pendulums” [135], published in 1851,
contains the expression for determination of the effect of motion of a pendulum in fluid
on the period and as well on the vibration of the pendulum. This research led Stokes to
define ”the index of friction of the fluid” which is nowadays called the dynamic viscosity
coefficient. Stokes found a good agreement of his theory with the experiments of Baily.

The summary of the results of research on the mutual interaction of a vibrating pendu-
lum and ambient in fluid, i.e. the first solved FSI problem, was presented in [136]. There
are two main conclusions from the solution of this FSI problem, which are observable
with the naked eye. First, the eigenfrequency as well as the period of free vibration of the
pendulum is lower in liquid than in air or vacuum. And second, "the rate of decrease of the
arc of vibration" (formulation of Stokes), i.e. the damping ratio of pendulum vibration in
the liquid is much higher than in air or vacuum. Based on these two conclusions it is clear
the eigenvalues in a vacuum and in the fluid are generally different. These conclusions
are applicable for all FSI problems which is the main purpose of this section.

Based on the work of Du Buat, Bessel and Stokes it is clear the ambient fluid sig-
nificantly influences the behaviour of solid by the added mass, damping and stiffness,
collectively called the added effects. In case of the FSI problem for the system with linear
behaviour, the equation of motion for damped system (2.1), derived by Rayleigh, has to be
supplemented by the added effects terms. The following equation (2.182) represents the
mathematical model of mutual interaction between a flexible vibrating body and ambient
fluid and it coincides with equation (1.21).

(M + m)ü(𝑡) + (C + c)u̇(𝑡) + (K + k)u(𝑡) = f(𝑡) (2.182)

The sum of the structural matrices and added effects matrices creates the general
matrices of analysed system, more specifically the mass matrix of general system ̂︁M, the
damping matrix of general system ̂︀C and the stiffness matrix of general system ̂︁K. The
equation of motion for the FSI problem has with the general matrices form:

̂︁Mü(𝑡) + ̂︀Cu̇(𝑡) + ̂︁Ku(𝑡) = f(𝑡) (2.183)
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In the first FSI analyses, identical eigenvectors (i.e. mode shapes) have been assumed
for structures in vacuum and fully submerged in fluid. If the influence of ambient fluid
on the eigenvectors is negligible, then it is possible to restore the general matrices of the
system, consisting of the structure and ambient fluid, in case of the full problem from the
following equations.

̂︁M−1 = (M + m)−1 = x̂︀Jz𝐻 (2.184)̂︁K−1 = (K + k)−1 = −x̂︀J−1z𝐻 (2.185)̂︀C = C + c = −̂︁Mx̂︀J2
z𝐻̂︁M (2.186)

Term ̂︀J is the Jordan matrix of system consisting of the structure and ambient fluid. Since
the effect of fluid on the eigenvector is negligible, the right and left eigenvectors, which
form the matrices x and z, are determined from analysis of structure without ambient
fluid.

In 1986, M. C. Junger and D. Feit presented results of their work in [137], where they
found out that the eigenvectors (i.e. mode shapes) of structure vibrating in a fluid are
slightly deformed compared to the eigenvectors in a vacuum. In case when the eigenvectors
of the submerged structure are known, the inverse formulas for the full problem are defined
by the following equations.

̂︁M−1 = (M + m)−1 = ̂︀x̂︀Ĵ︀z𝐻 (2.187)̂︁K−1 = (K + k)−1 = −̂︀x̂︀J−1̂︀z𝐻 (2.188)̂︀C = C + c = −̂︁M̂︀x̂︀J2̂︀z𝐻̂︁M (2.189)

The matrix ̂︀x is the first half of the modal matrix of right eigenvectors of structure sub-
merged in fluid in 2𝑁 space and matrix ̂︀z represents the first half of modal matrix of left
eigenvectors of structure submerged in fluid in 2𝑁 space.

With usage of the inverse formulas (2.184)-(2.186), or (2.187)-(2.189) it is possible to
restore the general matrices of structure submerged in fluid by algorithms presented in
section 2.6. Unfortunately, it is not possible to separate the global matrices into the struc-
tural matrices and the added effects matrices because of reasons, summarized in section
2.6.6.

The following sections of this chapter present two applications of the algorithms for
restoring the general matrices of structure submerged in fluid. The first application rep-
resents the free beam submerged in the water and the second application models the
fixed beam (as well called the clamped beam) submerged in water. However, before the
applications could be described, it is necessary to present the method, which was used
for the experimental determination of the eigenvalues. Therefore, it is first necessary to
define the basics of the experimental modal analysis, and then the method for experimen-
tal determination of the eigenvalues is presented. It is necessary to note the eigenvectors
were in both applications determined by computational modeling and not by experimental
modeling.
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2.8 Experimental modal analysis

The experimental modal analysis (EMA), which is as well called modal testing, is defined
as ”the processes involved in testing components or structures with the objective of ob-
taining a mathematical description of their dynamic or vibration behaviour” [138]. The
mathematical description is generally provided by the eigenvalues and the eigenvectors.
The input to EMA is either the dynamic response of the system due to free vibration, or
the force response due to external loading. The measured data can be processed either in
the frequency domain or in the time domain. The ratio between the response of the system
and the applied force is in the frequency domain called the frequency response functions
(FRFs), and in the time dimain in is called the impulse response functions (IRFs). ”The
IRFs are normally calculated from the FRFs by an inverse Fourier transform” [139].
The response of the system can be measured in many points and the excitation force can

be applied in multiple points as well. All the measurements are in the frequency domain
represented by the frequency response function matrix, and in the time domain by the
impulse response function matrix. The element of the frequency response function matrix
𝐻𝑗𝑘 is for viscous damping given by the following formula.

𝐻𝑗𝑘(𝜔) =
𝑁∑︁

𝑟=1

𝐵𝑟 + i𝜔𝐷𝑟

Ω2
0,𝑟 − 𝜔2 + i2𝜁𝑟Ω0,𝑟𝜔

, (2.190)

where Ω0,𝑟 and 𝜁𝑟 are the undamped eigenfrequency (as well called the natural frequency)
and damping ratio of 𝑟-th mode of vibration, respectively. Terms 𝐵𝑟 and 𝐷𝑟 represents
a complex constants connected with the 𝑟-th mode of vibration. If the frequency of the
excitation is equal to the undamped eigenfrequency, then the numerator can be expressed
by one complex constant 𝑟𝐴𝑗𝑘, which is called the modal constant.

𝐻𝑗𝑘(𝜔 = 𝜔𝑟) =
𝑁∑︁

𝑟=1

𝑟𝐴𝑗𝑘

Ω2
0,𝑟 − 𝜔2 + i2𝜁Ω0,𝑟𝜔

(2.191)

The element of the impulse response function matrix ℎ𝑗𝑘, which is the analogue of 𝐻𝑗𝑘

it the time domain, is defined by the formula:

ℎ𝑗𝑘(𝑡) =
2𝑁∑︁
𝑟=1

𝑟𝐴𝑗𝑘e𝑠𝑟𝑡 , (2.192)

where 𝑠𝑟 is the eigenvalue of the 𝑟-th mode of vibration.

2.8.1 Classification of modal analysis identification techniques

There are many existing methods for the identification of the modal parameters of systems.
Those methods are called the modal analysis identification techniques. The concern of this
section is not to cover the methods, but only to give a classification of the identification
techniques. This classification is adopted from paper [139] created by N. M. M. Maia and
J. M. M. Silva.
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Fig. 2.1: Classification of the modal analysis identification techniques [139]

The basic criterion for the classification is whether the data are processed in the time
domain or in the frequency domain, which is as well clear from the previous section. This
categorization as well determines whether the frequency response function of the impulse
response function is used.

Another standpoint for the classification is a number of locations, where the response
of the system is measured and as well a number of points, where the excitation is used.
In the theory of the experimental modal analysis, there are four possibilities connected
with this type of classification:

1. SISO (single-input single-output) - one response due to one force
2. SIMO (single-input multiple-output) - multiple responses due to one force
3. MIMO (multiple-input multiple-output) - multiple responses due to multiple forces
4. MISO (multiple-input single-output) - one response due to multiple forces
Another important parameter of methods for identification of the mathematical model

of the analysed system is how many modes of vibration are simultaneously analyses.
Historically first methods analysed the system parameters mode by mode, which means
only parameters of one mode of vibration were identified in one step of the analysis.
Those techniques are known as single-degree-of-freedom (SDOF) methods. On contrary,
methods that identify various modes of vibration simultaneously are called multi-degree-
of-freedom (MDOF) methods.

Last but not least, it is possible to categorize the identification techniques based on
the output from the algorithm. Methods that evaluate the modal parameters, which are
undamped eigenfrequency, damping ratio and modal constant associated with each mode
of vibration, are called the indirect methods. On the other hand, methods that estimate
directly the dynamic properties of the system in terms of mass, damping and stiffness
coefficients are called the direct methods.

The classification of the modal analysis identification techniques is illustrated in figure
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2.1, which is adopted from paper [139]. The scheme in figure 2.1 as well presents the
classification of all modal analysis identification techniques, which were developed and
used in industry praxis. The reasons for presenting this section are both to show the vast
spectrum of modal analysis identification techniques and also to enable the classification
of the method presented in the subsequent section.

2.8.2 Free vibration of single-degree-of-freedom systems

The following two sections are focused on the derivation of free and harmonically forced
vibration of the single-degree-of-freedom system. The main purpose of those two sections
is to derive the frequency response function of the SDOF system. Even though the
presented derivation is generally known, there are several quantities, which are defined
within the derivation, and which are used in subsequent sections. Therefore it is useful
to present the entire derivation and properly define all important quantities.

First, the free vibration of the SDOF system is analysed. Therefore, the homogeneous
form of the equation of motion is used.

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑥(𝑡) = 0 , (2.193)

where the terms 𝑚, 𝑐 and 𝑘 represent the mass, damping and stiffness parameter of the
SDOF system, respectively.

Equation (2.193) can be solved by the Laplace transform L . Several formulas, created
based on the Laplace transform, which are used in the following derivation, are presented
in equations (2.194).

L {𝑘𝑥} = 𝑘̃︀𝑥
L {𝑐�̇�} = 𝑐[𝑠̃︀𝑥− 𝑥(0)]

L {𝑚�̈�} = 𝑚[𝑠2̃︀𝑥− 𝑠𝑥(0) − �̇�(0)]

L {𝐹0ei𝜔𝑡} = 𝐹0
1

𝑠− i𝜔

(2.194)

Equation (2.193) is transferred using the Laplace transform into formula (2.195).

𝑚[𝑠2̃︀𝑥− 𝑠𝑥(0) − �̇�(0)] + 𝑐[𝑠̃︀𝑥− 𝑥(0)] + 𝑘̃︀𝑥 = 0 , (2.195)

where 𝑠 is the eigenvalue. Initial conditions are in the case of free vibration defined by
the following formulas.

𝑥(0) = 0
�̇�(0) = 0

(2.196)

Equation (2.195) is adjusted with initial conditions (2.196) into formula (2.198).

𝑠2𝑚̃︀𝑥+ 𝑠𝑐̃︀𝑥+ 𝑘̃︀𝑥 = 0 (2.197)
(𝑠2𝑚+ 𝑠𝑐+ 𝑘)̃︀𝑥 = 0 (2.198)
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Trivial solution of equation (2.198) is defined by equation (2.199).

̃︀𝑥 = 0 (2.199)

The non-trivial solution of equation (2.198) is obtained from the solution of formula
(2.200), which represents the quadratic equation.

𝑠2𝑚+ 𝑠𝑐+ 𝑘 = 0 (2.200)

The solution of quadratic equation is provided by the quadratic formula whose application
on (2.200) results in equation (2.204). It is clear that even though the SDOF system has
only one DOF, it has two eigenvalues.

𝑠1,2 = −𝑐±
√︁
𝑐2 − 4𝑚𝑘

2𝑚 (2.201)

𝑠1,2 = − 𝑐

2𝑚 ±

√︁
𝑐2 − 4𝑚𝑘

2𝑚 (2.202)

𝑠1,2 = − 𝑐

2𝑚 ± i
√︃

4𝑚𝑘 − 𝑐2

4𝑚2 (2.203)

𝑠1,2 = − 𝑐

2𝑚 ± i

⎯⎸⎸⎷ 𝑘

𝑚
−
(︃
𝑐

2𝑚

)︃2

(2.204)

Further adjustments of equation (2.204) are derived for two extremal values of damping.
First, the damping is assumed to be zero, i.e. 𝑐 = 0. This case represents the undamped
system. The eigenvalues are in such case pure imaginary numbers. Equation (2.206),
which represents the imaginary parts of the eigenvalues for the undamped system, is
called the undamped eigenfrequency Ω0, or as well the natural frequency.

𝑠1,2 = ±i
√︃
𝑘

𝑚
(2.205)

Ω0 =
√︃
𝑘

𝑚
(2.206)

The second extremal case arises if the radicand in equation (2.201) is equal to zero. Then
the eigenvalue is the real number. The value of damping is in such case defined by formula
(2.208).

𝑐2 − 4𝑚𝑘 = 0 (2.207)
𝑐 =

√
4𝑚𝑘 (2.208)

The value of damping 𝑐 defined by formula (2.208) is called the critical damping 𝑐𝑐.
Following derivation leads to modification of formula for 𝑐𝑐, which is used in the subsequent
derivation.

𝑐𝑐 =
√︁

4𝑚𝑘 (2.209)

𝑐𝑐 = 2
√︁
𝑚𝑘 (2.210)

𝑐𝑐 = 2
√︁
𝑚Ω2

0𝑚 (2.211)
𝑐𝑐 = 2Ω0𝑚 (2.212)
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Another modal parameter, which is commonly used in engineering praxis, is the damp-
ing ratio 𝜁, which ”is defined as the ratio of the damping constant to the critical damping
constant” [140].

𝜁 = 𝑐

𝑐𝑐

(2.213)

The damping can be defined based on the undamped eigenfrequency and damping ratio.

𝑐 = 𝜁𝑐𝑐 = 𝜁2Ω0𝑚 (2.214)

The eigenvalues of the SDOF system can be defined solely based on the undamped
eigenfrequency and damping ratio, which is presented in equation (2.217).

𝑠1,2 = −2𝜁Ω0𝑚

2𝑚 ± i

⎯⎸⎸⎷Ω2
0 −

(︃
𝜁2Ω0𝑚

2𝑚

)︃2

(2.215)

𝑠1,2 = −𝜁Ω0 ± i
√︁

Ω2
0 − 𝜁2Ω2

0 (2.216)

𝑠1,2 = −𝜁Ω0 ± iΩ0

√︁
1 − 𝜁2 (2.217)

The eigenvalues are complex numbers and they are often presented in form of equation
(2.218).

𝑠1,2 = 𝛼± iΩ𝑑 (2.218)

The real part of the eigenvalues 𝛼 defines the stability of the system. The SDOF system
is stable if 𝛼 is negative, and it is unstable for positive values of 𝛼. The imaginary part
of the eigenvalues is called the damped eigenfrequency Ω𝑑 and it defines the frequency of
damped vibration.

𝛼 = −𝜁Ω0 (2.219)
Ω𝑑 = Ω0

√︁
1 − 𝜁2 (2.220)

2.8.3 Harmonically excited vibration of single-degree-of-freedom
systems

The equation of motion for the SDOF system has generally form:

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑥(𝑡) = 𝑓(𝑡) (2.221)

Let the harmonic excitation be represented by formula (2.222), where 𝜔 is excitation
frequency.

𝑓(𝑡) = 𝐹0ei𝜔𝑡 (2.222)
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Then the equation of motion (2.221) can be modified by the Laplace transform with
formulas (2.194) into equation (2.223).

𝑚[𝑠2̃︀𝑥− 𝑠𝑥(0) − �̇�(0)] + 𝑐[𝑠̃︀𝑥− 𝑥(0)] + 𝑘̃︀𝑥 = 𝐹0
1

𝑠− i𝜔 (2.223)

Let’s assume the identical initial condition as in the case of free vibration, defined by
(2.196). Then the previous formula is simplified into equation (2.224).

𝑠2𝑚̃︀𝑥+ 𝑠𝑐̃︀𝑥+ 𝑘̃︀𝑥 = 𝐹0
1

𝑠− i𝜔 (2.224)

It is necessary to perform the inverse Laplace transform L −1 to obtain the solution
of equation (2.224) which is represented by formulas (2.225) and (2.226). The theory of
the Laplace transform is presented e.g. in [140].

𝑥 = 𝐹0

(i𝜔)2𝑚+ i𝜔𝑐+ 𝑘
ei𝜔𝑡 (2.225)

𝑥 = 𝐹0

𝑘 − 𝜔2𝑚+ i𝜔𝑐
ei𝜔𝑡 (2.226)

As same as in the case of the free vibrations of the SDOF system, the solution of
harmonically excited vibration of single-degree-of-freedom systems can be determined
with usage of the modal parameters. The following modifications use only the previously
derived formulas.

𝑥 =
𝐹0

𝑚
𝑘

𝑚
− 𝜔2 + i𝜔 𝑐

𝑚

ei𝜔𝑡 (2.227)

𝑥 =
𝐹0

𝑚

Ω2
0 − 𝜔2 + i𝜔2𝜁Ω0𝑚

𝑚

ei𝜔𝑡 (2.228)

𝑥 =
𝐹0

𝑚
Ω2

0 − 𝜔2 + i2𝜁𝜔Ω0
ei𝜔𝑡 (2.229)

For the further adjustments, both numerator and denominator of equation (2.229) are
multiplied by term 1/Ω2

0.

𝑥 =

𝐹0

𝑚Ω2
0

1 − 𝜔2

Ω2
0

+ i2𝜁 𝜔Ω0

ei𝜔𝑡 (2.230)

Equation (2.230) can be simplified into (2.232) by introduction of the ratio of the frequency
of excitation 𝜔 to the undamped eigenfrequency Ω0. It is called the frequency ratio 𝜂𝜔.

𝜂𝜔 = 𝜔

Ω0
(2.231)

𝑥 =

𝐹0

𝑘
1 − 𝜂2

𝜔 + i2𝜁𝜂𝜔

ei𝜔𝑡 (2.232)
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The numerator of fraction in equation (2.232) represents the ratio of amplitude of the
excitation force to the stiffness parameter of the SDOF system. Therefore it is called the
deflection under the static force 𝐹0 and it is marked as 𝛿𝑠𝑡.

𝛿𝑠𝑡 = 𝐹0

𝑘
(2.233)

Application of the deflection under the static force 𝐹0 modifies equation (2.232) into:

𝑥 = 𝛿𝑠𝑡ei𝜔𝑡

1 − 𝜂2
𝜔 + i2𝜁𝜂𝜔

(2.234)

The numerator in formula (2.234) is a complex function of the excitation frequency 𝜔 in
the frequency domain. Therefore the numerator is linked up into a single quantity marked
𝑍 and defined by (2.235).

𝑍 = 𝛿𝑠𝑡ei𝜔𝑡 (2.235)

Introduction of term 𝑍 into formula (2.234) leads to:

𝑥 = 𝑍

1 − 𝜂2
𝜔 + i2𝜁𝜂𝜔

(2.236)

The frequency response function of the SDOF system under excitation given by for-
mula (2.222) is given by equation (2.237).

𝐻(𝑖𝜔) = 𝑥

𝑍
= 1

1 − 𝜂2
𝜔 + i2𝜁𝜂𝜔

(2.237)

2.8.4 SDOF Response Fit Method

The method, which was used for the identification of the eigenvalues in this thesis, is called
the SDOF response fit method. It belongs to the category of the SDOF modal analysis
methods. Based on the classification of the modal analysis identification techniques,
presented in section 2.8.1, and the scheme of the classification in fig. 2.1, it is clear
the SDOF methods are indirect methods defined in the frequency domain. It means the
inputs to the algorithm are the frequency response functions and the outputs are the
modal parameters, which are the undamped eigenfrequency, damping ratio and modal
constant associated with each mode of vibration.

The SDOF approach for the determination of the dynamic characteristics of systems
does not mean the complex system is reduced to the single-degree-of-freedom system.
Rather, it implies only one mode of vibration is analyses in one step of the analysis.
Therefore, all modes of vibration of interest are analysed, however, the modes are analyses
sequentially, and not simultaneously which is more common in recent methods that use
the MDOF approach.

The reason for analysing all modes of interest simultaneously is not only the recent
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increase of capabilities of modern computers but as well the MDOF methods overcome
the limitations of the SDOF methods. The main limitation of SDOF methods is that very
close modes of vibration cannot easily be analyses. The modes are classified as close if they
have similar or almost identical values of the damped eigenfrequencies. This limitation
can be minimised or even eliminated by the careful setting of the algorithm for each
analysed mode individually, however, in some cases, this method is simply inapplicable.
This advice indicates as well other limitations of SDOF methods. The operator has to be
acquainted with all limitations and settings of the method and the algorithm for SDOF
methods almost cannot be automated. This also implies the SDOF methods are time
consuming. Notwithstanding the limitations of the SDOF methods, they are still used by
modal test engineers. The main reason is the methods, which have simple algorithms, are
able to produce very accurate results in comparison with MDOF methods.

The SDOF methods exploit the fact that the dynamic behaviour of the majority
of systems is in the vicinity of the resonance govern by the only mode of vibration.
This means that in the vicinity of each resonance, one of the terms in the series, which
is presented in equation (2.190) and which represents the frequency response function,
dominates over all other terms. Equation (2.190) is here presented once again for better
orientation in derivation.

𝐻𝑗𝑘(𝜔) =
𝑁∑︁

𝑟=1

𝐵𝑟 + i𝜔𝐷𝑟

Ω2
0,𝑟 − 𝜔2 + i2𝜁𝑟Ω0,𝑟𝜔

Without any simplification, equation (2.190) can be rewritten into two parts, which is
shown in the following equation.

𝐻𝑗𝑘(𝜔) = 𝐵𝑟 + i𝜔𝐷𝑟

Ω2
0,𝑟 − 𝜔2 + i2𝜁𝑟Ω0,𝑟𝜔

+
𝑁∑︁

𝑠=1
𝑠 ̸=𝑟

𝐵𝑠 + i𝜔𝐷𝑠

Ω2
0,𝑠 − 𝜔2 + i2𝜁𝑠Ω0,𝑠𝜔

(2.238)

Based on the SDOF assumption, in the vicinity of 𝑟-th damped eigenfrequency, the second
term in equation (2.238) can be represented by complex constant 𝑟𝐸𝑗𝑘, which is described
by equation (2.239).

𝐻𝑗𝑘(𝜔)𝜔≃Ω𝑑
∼=

𝐵𝑟 + i𝜔𝐷𝑟

Ω2
0,𝑟 − 𝜔2 + i2𝜁𝑟Ω0,𝑟𝜔

+ 𝑟𝐸𝑗𝑘 (2.239)

Another assumption can be made in the vicinity of 𝑟-th damped eigenfrequency for the
first term in equation (2.239). The numerator of the first term is approximately inde-
pendent of excitation frequency 𝜔 and therefore it can be expressed by only one complex
constant, which is an approximation of the modal constant. The final form of the fre-
quency response function with all assumptions of the SDOF approach is defined by formula
(2.240).

𝐻𝑗𝑘(𝜔)𝜔≃Ω𝑑
∼= 𝑟𝐹 𝑗𝑘

Ω2
0,𝑟 − 𝜔2 + i2𝜁𝑟Ω0,𝑟𝜔

+ 𝑟𝐸𝑗𝑘 (2.240)

Equation (2.240) creates a starting point for all SDOF methods. However, even though
it was found out that formula (2.240) can provide accurate results if the limitations of
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the SDOF approach are taken into account, all SDOF methods use other simplifications
or approximation for acquiring the final approach for the determination of the modal pa-
rameters. The main idea of the SDOF response fit method is to directly use the frequency
response function defined by formula (2.240). The measured data are transferred to the
frequency domain and then the non-linear regression, or more specifically the non-linear
least squares, was used to fit data around the resonance with a function defined by equa-
tion (2.240). The unknown parameters are the modal parameters.

The objective of performing the experimental modal analysis in this thesis is to obtain
the inputs to the algorithms for the solution of the inverse vibration problem for the FSI.
The frequency response function is created from two inputs, one is the measure signal from
the sensor of system response and another signal is measured on the excitation device.
Even though it is possible to measure both response and excitation in water, such devices
that can be used in water are very expensive and they were not at disposal for presented
measurement. The only sensor, which was possible to use was sensor for measurement of
the system response in water.

In case of performing a measurement of the free decay of the system, the excitation
is performed by a single impact which takes a very short time. The frequency content
of such excitation signal is theoretically independent of frequency 𝜔. It was verified that
this statement is correct at least for the lowest frequencies up to some limitary frequency
which is determined by the used experimental device. Therefore, for a band of lowest
frequencies, the excitation is frequency independent. The frequency response function is
defined as the ratio between the response of the system and the applied force. Hence,
if only the response of the system is measured and the excitation is in analysed range
independent of frequency, then the response of the system has identical trend as the FRF,
but it is multiplied by a generally complex and unknown constant. For such specific case,
the relation between the response in measured point 𝑥 and FRF 𝐻𝑗𝑘 is governed by the
following formula

𝑥 = 𝐻𝑗𝑘(𝜔)𝑌 , (2.241)

where 𝑌 is complex constant.
The response of the system can be defined by formula (2.243), which is created as a

combination of equations (2.240) and (2.241).

𝑥 = 𝑟𝐹 𝑗𝑘𝑌

Ω2
0,𝑟 − 𝜔2 + i2𝜁𝑟Ω0,𝑟𝜔

+ 𝑟𝐸𝑗𝑘𝑌 (2.242)

As same as in the solution of the harmonically excited vibration of the SDOF system,
which is presented in section (2.8.3), the numerator and denominator of equation (2.243)
can be multiplied by term 1/Ω2

0, which results in the formula:

𝑥 =
𝑟𝐹 𝑗𝑘𝑌

Ω2
0

1 − 𝜂2
𝜔 + i2𝜁𝑟𝜂𝜔

+ 𝑟𝐸𝑗𝑘𝑌

Ω2 (2.243)
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The numerator of the resultant equation consists of three constant and therefore it can be
combined into a single complex constant 𝑍. As well the second term in equation (2.243)
consists of three constant, hence it is as well combined into one complex constant 𝐺.
Described modification are presented in formula (2.243).

𝑥 = 𝑍

1 − 𝜂2
𝜔 + i2𝜁𝑟𝜂𝜔

+𝐺 (2.244)

There is an obvious similarity between equations (2.236), which describes the response
of the SDOF system under the harmonic excitation, and (2.244), which is used for the
determination of the modal parameters in experimental modeling presented in subsequent
sections. However, not all modal parameters are possible to obtain from equation (2.244).
The undamped eigenfrequency and damping ratio can be evaluated from this approach,
however, the modal constant is not possible to determine, because it is hidden in the
complex constant 𝑍, which is multiplied by an unknown complex constant.

The modal constant is the main quantity for the determination of the eigenvectors in
the EMA. It is not possible to obtain the eigenvectors without the modal constant. This is
the main reason, why only the eigenvalues were determined from experimental modeling
in this thesis and the eigenvectors are in subsequently presented applications determined
based on computational modeling. The determination of the eigenvectors is synoptically
described e.g. in publication [141].

The SDOF response fit method was created by Vladimír Habán and it was first pre-
sented in the diploma thesis of Kristýna Grešáková [142] presented in 2018. This thesis
used the assumption, that the influence of other modes that the analyses one is negligible,
i.e. 𝑟𝐺𝑗𝑘 = 0. Therefore, equation (2.244) was simplified into formula (2.245).

𝑥 = 𝑍

1 − 𝜂2
𝜔 + i2𝜁𝑟𝜂𝜔

(2.245)

Equation (2.244) has to be modified for purposes of the application of the non-linear
regression analysis. The complex parameters have to determined based on their real and
imaginary parts. The following substitutions are introduced for modifications of equation
(2.244).

𝑍 = 𝑍𝑅𝑒 + i𝑍𝐼𝑚 (2.246)
𝐺 = 𝐺𝑅𝑒 + i𝐺𝐼𝑚 (2.247)

𝐿𝑅𝑒 = 1 − 𝜂2
𝜔 (2.248)

𝐿𝐼𝑚 = 2𝜁𝑟𝜂𝜔 (2.249)
𝐿 = 𝐿𝑅𝑒 + i𝐿𝐼𝑚 (2.250)

Equation (2.244) is modified with substitutions presented in formulas (2.246)-(2.250) into
equation (2.251).

𝑥 = 𝑍𝑅𝑒 + i𝑍𝐼𝑚

𝐿𝑅𝑒 + i𝐿𝐼𝑚

+𝐺𝑅𝑒 + i𝐺𝐼𝑚 (2.251)
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The main motivation behind modifications of equation (2.244) is to adjust the denom-
inator of the first term to be a real number, which is achieved by multiplying the first term
by a fraction with identical numerator and denominator, which are equal to the complex
conjugate to the denominator of the first term. The final form of equation (2.244), which
can be used for the non-linear regression, is described by formula (2.256).

𝑥 = 𝑍𝑅𝑒 + i𝑍𝐼𝑚

𝐿𝑅𝑒 + i𝐿𝐼𝑚

· 𝐿𝑅𝑒 − i𝐿𝐼𝑚

𝐿𝑅𝑒 − i𝐿𝐼𝑚

+𝐺𝑅𝑒 + i𝐺𝐼𝑚 (2.252)

𝑥 = (𝑍𝑅𝑒 + i𝑍𝐼𝑚)𝐿𝑅𝑒 − i(𝑍𝑅𝑒 + i𝑍𝐼𝑚)𝐿𝐼𝑚

𝐿𝑅𝑒
2 + i𝐿𝑅𝑒𝐿𝐼𝑚 − i𝐿𝑅𝑒𝐿𝐼𝑚 − i2𝐿𝐼𝑚

2 +𝐺𝑅𝑒 + i𝐺𝐼𝑚 (2.253)

𝑥 = 𝑍𝑅𝑒𝐿𝑅𝑒 + i𝑍𝐼𝑚𝐿𝑅𝑒 − i𝑍𝑅𝑒𝐿𝐼𝑚 − i2𝑍𝐼𝑚𝐿𝐼𝑚

𝐿𝑅𝑒
2 + 𝐿𝐼𝑚

2 +𝐺𝑅𝑒 + i𝐺𝐼𝑚 (2.254)

𝑥 = 𝑍𝑅𝑒𝐿𝑅𝑒 + 𝑍𝐼𝑚𝐿𝐼𝑚 + i(𝑍𝐼𝑚𝐿𝑅𝑒 − 𝑍𝑅𝑒𝐿𝐼𝑚)
𝐿𝑅𝑒

2 + 𝐿𝐼𝑚
2 +𝐺𝑅𝑒 + i𝐺𝐼𝑚 (2.255)

𝑥 = 𝑍𝑅𝑒𝐿𝑅𝑒 + 𝑍𝐼𝑚𝐿𝐼𝑚

𝐿𝑅𝑒
2 + 𝐿𝐼𝑚

2 + i𝑍𝐼𝑚𝐿𝑅𝑒 − 𝑍𝑅𝑒𝐿𝐼𝑚

𝐿𝑅𝑒
2 + 𝐿𝐼𝑚

2 +𝐺𝑅𝑒 + i𝐺𝐼𝑚 (2.256)

Formula (2.256) was tested on both applications, which are presented in subsequent
sections. As well, the adjusted form of this equation, where the complex constant 𝐺 was
neglected, i.e. 𝐺 = 𝐺𝑅𝑒+i𝐺𝐼𝑚 = 0, and which is defined by equation (2.257), was tested in
both applications. It was found out that the complex constant 𝐺 has small values for well
separated modes, but it is questionable, whether the complex constant 𝐺 can be neglected.
However, there was almost no difference between resultant undamped eigenfrequencies and
damping ratios in comparison of both approaches. Therefore, the simpler version, defined
by equation (2.257), was used for the determination of all eigenvalues in the experimental
modeling presented in this thesis.

𝑥 = 𝑍𝑅𝑒𝐿𝑅𝑒 + 𝑍𝐼𝑚𝐿𝐼𝑚

𝐿𝑅𝑒
2 + 𝐿𝐼𝑚

2 + i𝑍𝐼𝑚𝐿𝑅𝑒 − 𝑍𝑅𝑒𝐿𝐼𝑚

𝐿𝑅𝑒
2 + 𝐿𝐼𝑚

2 (2.257)

The SDOF response fit method was compared with another SDOF method called the
Circle-Fit Method, which was created by C. C. Kennedy and C. D. P. Pancu and it was
presented in 1947 in paper [143]. The resultant undamped eigenfrequencies and damping
ratios from both methods were in good agreement. However, the comparison of measured
data and resultant mathematical model show smaller errors in the SDOF response fit
method.

It is surprising fact that the SDOF response fit method was not presented in any
former research paper. It is possible that such paper has been forgotten, but there is no
reference in extensive publications on the topic of the experimental modal analysis, such
as the work of D. J. Ewins [138] or publications of N. M. M. Maia and J. M. M. Silva [144]
and [145]. It can be assumed that the idea behind the SDOF response fit method came to
mind of many researchers, however in the time when many SDOF methods were created,
there were limitations in the capabilities of computer hardware. And in times when the
computers were able to perform such algorithm, the MDOF methods were becoming more
popular.
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The SDOF response fit method is an extraordinary method in comparison with other
SDOF methods because it used only the basic assumption of all SDOF methods, however,
no other assumption is used. The basic SDOF assumption states there is one dominant
mode of vibration in the vicinity of the resonance and the effect of other modes can be
covered by some substitution term. It would be interesting to use the SDOF response
fit method for the determination of all three modal parameters and to determine the
eigenvectors of the system as well, however, this research is beyond a scope of the presented
thesis.

2.9 Application 1 - Beam with free ends

Ø1100

11
39

tank

water surface

50

55
0

80
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Fig. 2.2: Drawing with design of experiment with free beam

The derived algorithms for the solution of the inverse vibration problem were first
tested for a determination of the global matrices of the beam with free ends submerged
in water. For a purpose of the presented research, it was suitable to use the experimental
work published in the master thesis of K. Grešáková [142], which was supervised by V.
Habán. The experimental part of the thesis dealt with the determination of eigenfrequen-
cies and damping ratios of a beam with free ends in air and submerged in water.

At this point, I would like to thank V. Habán who provided the measured data from
accelerometers, which are crucial for the determination of eigenvalues.

The design of the experiment, dimensions of the beam and the whole experimental
apparatus are depicted in figure 2.2. The beam was made out of steel and the material
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Tab. 2.1: Material properties of steel used for simulation of beam with free ends

Quantity Value

Density 𝜌 7850 kg m−3

Young’s modulus 𝐸 2,1 × 1011 Pa
Poisson’s ratio 𝜐 0,3

properties are presented in table 2.1. The free end on the top end of the beam was re-
alized by suspension on two cables. The geometry of the used container (made out of
polypropylene), location of water surface, location of the beam in water and suspension
of the beam are shown as well in drawing in fig. 2.2. (Note: All dimensions in fig. 2.2 are
in millimetres, however, the length of cables does not correspond to actual length.) The
experiment with the beam in air was realized with the same length of suspending cables.
The real design of the experiment is shown in pictures 2.3 and 2.4.

Fig. 2.3: Design of experiment [142] Fig. 2.4: Detail of submerged beam [142]

2.9.1 Determination of eigenvalues from experiment

Data, measured by accelerometers, were transferred from the time domain to frequency
domain by Discrete Fourier transform (DFT). Resultant amplitude spectrums are de-
picted in figure 2.5 for beam in air and for fully submerged beam in water in fig. in 2.6
(position of the beam is depicted in fig. 2.2).
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Fig. 2.5: Amplitude spectrum in air
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Fig. 2.6: Amplitude spectrum in water

It was decided to evaluate only the eigenvalues associated with lateral mode shapes of
the beam. The reasons for this decision are explained in section 2.9.2. The peaks marked
with a cross in amplitude spectrums in figs. 2.5 and 2.6 represent the eigenfrequencies as-
sociated with the lateral mode shapes. Other peaks in the amplitude spectrums represent
eigenfrequencies of torsional mode shapes. It is an interesting fact that the fourth lateral
eigenfrequency changes the order with the second torsional eigenfrequency in comparison
of measurements in air and in water.

Table 2.2 contains the resultant eigenvalues 𝜆 and damped eigenfrequencies Ω𝑑 of
lateral vibration of the beam in air and in water. The eigenvalues and damped eigenfre-
quencies were evaluated based on the SDOF response fit method. Eight eigenvalues of the
beam in air and six eigenvalues of the beam in water were obtained from measurements.
The amplitude spectrum of the free beam in water, presented in fig. 2.6, shows the ex-
ample of the limitation of not only the SDOF response fit method but all methods which
are based on the SDOF approach. Evaluation of the seventh and eighth eigenvalue (com-
plex conjugate pair) of beam submerged in water was not possible, because the second
torsional eigenfrequency was so close that it was not possible to obtain correct results.

Tab. 2.2: Eigenvalues and eigenfrequencies of lateral vibration of beam in air and water

Beam in air Beam in water

𝜆 [rad s−1] Ω𝑑 [Hz] 𝜆 [rad s−1] Ω𝑑 [Hz]

1 −0,68 ± 659,61i 104,98 −0,78 ± 465,95i 74,16
2 −0,93 ± 1825,44i 290,53 −1,36 ± 1305,80i 207,82
3 −1,50 ± 3589,52i 571,29 −2,06 ± 2615,44i 416,26
4 −2,13 ± 5948,01i 946,66 — 702,82
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2.9.2 Analytical determination of eigenvalues and eigenvectors
- undamped vibrations

In the previous section 2.8.4 is pointed out that it was not possible to obtain the eigen-
vectors from the experimental modeling, due to the fact that the experimental equipment
for measuring the excitation in water was not available. Therefore, it was necessary to
obtain the eigenvectors from the computational modeling.

The analytical approach for the determination of eigenvectors was chosen. The main
reason for this decision was the possibility to describe the vibration of the beam in only
a few points, which would create the global matrices of analysed system of small order.
This would make control of the correctness of algorithms much easier. As well it was
very useful for debugging and testing algorithms. The second reason for usage of the
analytical approach was the Finite element method (FEM) was not possible to use for the
determination of the global matrices of analysed system, because the FEM would create
eigenvalues equal to zero for a beam with free ends and it would make the spectral matrix
singular. It is not possible to directly use the inverse formulas if the spectral matrix or
the Jordan matrix is singular, which is clear from equations presented in section 2.5.4.

The theory of lateral vibration of beam is used for a determination of eigenvalues and
eigenvectors, therefore only modes associated with the lateral mode shapes were taken
into account. The analysed beam has a rectangular cross section and the modes associ-
ated with the torsional mode shapes cannot be in such case easily solved with analytical
methods. This is the main reason for the utilization of only lateral modes of vibration.
The derivation of eigenvalues and eigenvectors for undamped lateral vibration of the beam
is used first. Then the results of the undamped vibration approach are used for the de-
termination of eigenvalues and eigenvectors in case of damped lateral vibration of beam.

The derivation of eigenvalues and eigenvectors for undamped lateral vibration of the
beam is adopted from textbooks [140] and [146]. The beam is described by its density 𝜌,
cross-sectional area 𝐴(𝑥), which can vary in direction of the beam center line, but it is
constant in solved case, and the flexural rigidity 𝐸𝐼(𝑥), where 𝐸 is the Young’s modulus
and 𝐼(𝑥) is the moment of inertia of beam cross section about the axis which goes in
direction of the width of the beam and it passes through the center of the cross-section of
the beam. These parameters fully defined the beam for the analysis of lateral vibration.

Figure 2.7 shows a beam in bending and the free-body diagram of element of a beam in
bending is shown in fig. 2.8 (both pictures were redrawn based on [140]). Term 𝑙 denotes
the length of the beam, 𝑤(𝑥, 𝑡) represents the transverse displacement at any point of the
center line at time 𝑡, 𝑓(𝑥, 𝑡) is the external force per unit length of the beam, 𝑄(𝑥, 𝑡) is
the shear force and 𝑀𝑏 is the bending moment.

The so-called ”simple-beam theory” is used for the determination of eigenvalues
and eigenvectors. The theory assumes that rotation of the element is negligible in com-
parison with the vertical translation and shear deformation of element is small compared
to the bending deformation. The simple-beam theory is valid for the relatively large ratio
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Fig. 2.8: Free-body diagram of beam element

between the length of the beam and its height. The ratio should be higher than 10. This
ratio equals 91,67 in the solved case, therefore this assumption is met.

Based on the free-body diagram, it is possible to derive the fundamental equation of
motion. The force equation of motion in the vertical direction is defined by equation
(2.258). [︃

𝑄(𝑥, 𝑡) + 𝜕𝑄(𝑥, 𝑡)
𝜕𝑥

d𝑥
]︃

−𝑄(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)d𝑥 = 𝜌𝐴(𝑥)d𝑥𝜕
2𝑤(𝑥, 𝑡)
𝜕𝑡2

(2.258)

The last term in the equation represents the inertia force of the element.
The moment equation of motion about the 𝑦 axis, which is axis normal to 𝑥 and 𝑧

axes and passing through point 𝑂 and the center of the cross section, leads to formula
(2.259).[︃
𝑀𝑏(𝑥, 𝑡)+𝜕𝑀𝑏(𝑥, 𝑡)

𝜕𝑥
d𝑥
]︃
−𝑀𝑏(𝑥, 𝑡)+

[︃
𝑄(𝑥, 𝑡)+𝜕𝑄(𝑥, 𝑡)

𝜕𝑥
d𝑥
]︃
d𝑥+𝑓(𝑥, 𝑡)d𝑥d𝑥

2 = 0 (2.259)

Based on the simple-beam theory, the inertia moment is ignored because it is associated
with the rotation of the element.

Ignoring terms involving second powers in d𝑥 and canceling appropriate terms, equa-
tion (2.259) can be simplified into the following form.

𝜕𝑀𝑏(𝑥, 𝑡)
𝜕𝑥

+𝑄(𝑥, 𝑡) = 0 (2.260)

The shear force 𝑄(𝑥, 𝑡) can be expressed from the previous equation as a function of the
bending moment 𝑀𝑏(𝑥, 𝑡).

𝑄(𝑥, 𝑡) = −𝜕𝑀𝑏(𝑥, 𝑡)
𝜕𝑥

(2.261)

The force equation of motion (2.258) can be adjusted by considering the previous equation
and canceling appropriate terms, which lead to equation (2.262).

−𝜕2𝑀𝑏(𝑥, 𝑡)
𝜕𝑥2 + 𝑓(𝑥, 𝑡) = 𝜌𝐴(𝑥)𝜕

2𝑤(𝑥, 𝑡)
𝜕𝑡2

(2.262)

This equation must be fulfilled over the length of the beam, i.e. in 𝑥 ∈< 0; 𝑙 >. Equation
(2.262) relates the transverse displacement 𝑤(𝑥, 𝑡), the bending moment 𝑀𝑏(𝑥, 𝑡) and the
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external force per unit length of the beam 𝑓(𝑥, 𝑡).
The relationship between the bending moment 𝑀𝑏(𝑥, 𝑡) and the transverse displace-

ment 𝑤(𝑥, 𝑡) can be expressed by equation 2.263, which is taken from the Euler–Bernoulli
beam theory. The theory was created by Leonard Euler and Daniel Bernoulli circa 1750,
who used important discoveries of Jacob Bernoulli.

𝑀𝑏(𝑥, 𝑡) = 𝐸𝐼(𝑥)𝜕
2𝑤(𝑥, 𝑡)
𝜕𝑥2 (2.263)

Inserting equation (2.263) into formula (2.262) leads to the equation of motion for forced
lateral vibration of beams. The beam is generally nonuniform.

− 𝜕2

𝜕𝑥2

[︃
𝐸𝐼(𝑥)𝜕

2𝑤(𝑥, 𝑡)
𝜕𝑥2

]︃
+ 𝑓(𝑥, 𝑡) = 𝜌𝐴(𝑥)𝜕

2𝑤(𝑥, 𝑡)
𝜕𝑡2

(2.264)

If the beam is uniform, which is the solved case, the equation of motion for forced lateral
vibration reduces to the following form.

−𝐸𝐼 𝜕
4𝑤(𝑥, 𝑡)
𝜕𝑥4 + 𝑓(𝑥, 𝑡) = 𝜌𝐴

𝜕2𝑤(𝑥, 𝑡)
𝜕𝑡2

(2.265)

For the determination of eigenvalues and eigenvector, i.e. to solve the eigenvalue
problem, it is necessary to solve the free vibration, which is characterized by 𝑓(𝑥, 𝑡) = 0.
The equation of motion for free lateral vibration of a uniform beam is described by formula
(2.266).

−𝐸𝐼 𝜕
4𝑤(𝑥, 𝑡)
𝜕𝑥4 = 𝜌𝐴

𝜕2𝑤(𝑥, 𝑡)
𝜕𝑡2

(2.266)

In case of free vibrations, the solution of (2.266) becomes separable in space and in time.
Letting

𝑤(𝑥, 𝑡) = 𝑊 (𝑥)𝐹 (𝑡) (2.267)

and using the separation of variables method, it can be proven 𝐹 (𝑡) is a harmonic function.
One particular solution for 𝐹 (𝑡) is:

𝐹 (𝑡) = 𝑒𝑠𝑡 , (2.268)

where 𝑠 is the eigenvalue and it is generally a complex number. Introducing formula
(2.268) into equation (2.267) lead to:

𝑤(𝑥, 𝑡) = 𝑊 (𝑥)𝑒𝑠𝑡 (2.269)

Term 𝑊 (𝑥) represents the amplitude of transverse displacement. If 𝑠 is the eigenvalue,
then 𝑊 (𝑥) is a function that defines the mode shape associate with the eigenvalue 𝑠.

Adjusting of equation (2.266) with the usage of formula (2.269) leads to the formulation
of the eigenvalue problem defined by equation (2.270).

−𝐸𝐼
𝜕4
[︁
𝑊 (𝑥)𝑒𝑠𝑡

]︁
𝜕𝑥4 = 𝜌𝐴

𝜕2
[︁
𝑊 (𝑥)𝑒𝑠𝑡

]︁
𝜕𝑡2

−𝐸𝐼 𝜕
4𝑊 (𝑥)
𝜕𝑥4 𝑒𝑠𝑡 = 𝜌𝐴𝑊 (𝑥)𝜕

2𝑒𝑠𝑡

𝜕𝑡2

−𝐸𝐼 𝜕
4𝑊 (𝑥)
𝜕𝑥4 𝑒𝑠𝑡 = 𝜌𝐴𝑊 (𝑥)𝑠2𝑒𝑠𝑡 (2.270)
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Equation (2.270) can be adjusted by canceling term 𝑒𝑠𝑡. In the case of free undamped
vibration, the eigenvalue is a pure imaginary number, and therefore it is possible to
substitute the eigenvalue 𝑠 by the undamped eigenfrequency Ω0. (The undamped eigen-
frequency Ω0 has the same unit as the eigenvalue, i.e. [rad s−1]). With these changes,
equation (2.270) can be rewritten to the formula:

−𝐸𝐼 𝜕
4𝑊 (𝑥)
𝜕𝑥4 = Ω2

0𝜌𝐴𝑊 (𝑥) (2.271)

Since the time dependence is eliminated and equation (2.271) is a function of only one
variable 𝑥, it is possible to replace partial derivatives with respect to 𝑥 by total derivatives
with respect to 𝑥. Equation (2.272) represents the Euler-Bernoulli equation for uniform
beam.

−𝐸𝐼 d4𝑊 (𝑥)
d𝑥4 = Ω2

0𝜌𝐴𝑊 (𝑥) (2.272)

Rearranging of the previous equation leads to formula (2.273).

d4𝑊 (𝑥)
d𝑥4 + 𝜃4𝑊 (𝑥) = 0 (2.273)

The amplitude of transverse displacement 𝑊 (𝑥) must fulfil boundary conditions. Term 𝜃

is defined by the following equation.

𝜃4 = Ω2
0𝜌𝐴

𝐸𝐼
(2.274)

The general solution of differential equation (2.273), which can be simply verified, is
the sum of trigonometric and hyperbolic functions, defined by the following equation.

𝑊 (𝑥) = 𝐵1 sin(𝜃𝑥) +𝐵2 cos(𝜃𝑥) +𝐵3 sinh(𝜃𝑥) +𝐵4 cosh(𝜃𝑥) , (2.275)

where 𝐵𝑖 are constants of integration, which can be determined based on the boundary
conditions.

It is easier to derive final formulas for undamped eigenfrequencies and undamped mode
shapes with the introduction of so-called "Krylov functions".

2.9.3 Krylov functions

The Krylov functions are named after their founder A. N. Krylov, who was a Russian
mathematician, physicist, engineer and shipbuilder. Krylov published his results about
vibrations of beams in [147], where the Krylov functions were first defined. Krylov defined
four functions, which are combinations of the trigonometric and the hyperbolic functions.
Krylov originally used nomenclature 𝑆(𝑥), 𝑇 (𝑥), 𝑈(𝑥) and 𝑉 (𝑥) in his publications, and
this thesis sticks to Krylov’s nomenclature.

Krylov’s idea was to find functions, which would make a process of determination of the
eigenvalues and eigenvectors of beams simpler. He wanted to find functions that would
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have for a point 𝑥 = 0 following properties.
Note: The Roman numerals in superscript represent the derivation of function with re-
spect to 𝑥.

𝑆(0) = 1 ; 𝑆𝐼(0) = 0 ; 𝑆𝐼𝐼(0) = 0 ; 𝑆𝐼𝐼𝐼(0) = 0
𝑇 (0) = 0 ; 𝑇 𝐼(0) = 1 ; 𝑇 𝐼𝐼(0) = 0 ; 𝑇 𝐼𝐼𝐼(0) = 0
𝑈(0) = 0 ; 𝑈 𝐼(0) = 0 ; 𝑈 𝐼𝐼(0) = 1 ; 𝑈 𝐼𝐼𝐼(0) = 0
𝑉 (0) = 0 ; 𝑉 𝐼(0) = 0 ; 𝑉 𝐼𝐼(0) = 0 ; 𝑉 𝐼𝐼𝐼(0) = 1

(2.276)

Krylov found out the properties defined in equations (2.276) are fulfilled by the following
functions:

𝑆(𝑥) = 1
2

[︃
cosh(ℎ𝑥) + cos(ℎ𝑥)

]︃

𝑇 (𝑥) = 1
2

[︃
sinh(ℎ𝑥) + sin(ℎ𝑥)

]︃

𝑈(𝑥) = 1
2

[︃
cosh(ℎ𝑥) − cos(ℎ𝑥)

]︃

𝑉 (𝑥) = 1
2

[︃
sinh(ℎ𝑥) − sin(ℎ𝑥)

]︃
(2.277)

These functions constitute the Krylov functions. Term ℎ represents arbitrary constant.
The Krylov functions have very useful properties that appear in differentiating with

respect to 𝑥 because one Krylov function is differentiated to another Krylov function.

d𝑆(𝑥)
d𝑥 = 𝑆𝐼(𝑥) = ℎ

2

[︃
cosh(ℎ𝑥) + cos(ℎ𝑥)

]︃
= ℎ𝑉 (ℎ𝑥)

𝑇 𝐼(𝑥) = ℎ𝑆(ℎ𝑥)
𝑈 𝐼(𝑥) = ℎ𝑇 (ℎ𝑥) (2.278)
𝑉 𝐼(𝑥) = ℎ𝑈(ℎ𝑥)

Note: The following formulas show differentiation of the hyperbolic function.

d
d𝑥 sinh(ℎ𝑥) = ℎ cosh(ℎ𝑥)
d
d𝑥 cosh(ℎ𝑥) = ℎ sinh(ℎ𝑥)

Other useful properties of Krylov functions appear in their repeated differentiation.

𝑆𝐼(ℎ𝑥) = ℎ𝑉 (ℎ𝑥)
𝑆𝐼𝐼(ℎ𝑥) = ℎ𝑉 𝐼(ℎ𝑥) = ℎ2𝑈(ℎ𝑥)
𝑆𝐼𝐼𝐼(ℎ𝑥) = ℎ2𝑈 𝐼(ℎ𝑥) = ℎ3𝑇 (ℎ𝑥)
𝑆𝐼𝑉 (ℎ𝑥) = ℎ3𝑇 𝐼(ℎ𝑥) = ℎ4𝑆(ℎ𝑥)

(2.279)

Krylov derived additional functions, which are the combination of Krylov functions.
These functions are defined by following formulas and they are appointed to simplify the
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formulas in derivations of the eigenvalues and eigenvectors of beams.

𝑃1(𝑥) = cos(ℎ𝑥) cosh(ℎ𝑥) + 1 = 2
[︁
𝑆2(ℎ𝑥) − 𝑇 (ℎ𝑥)𝑉 (ℎ𝑥)

]︁
𝑃2(𝑥) = cos(ℎ𝑥) cosh(ℎ𝑥) − 1 = 2

[︁
𝑇 (ℎ𝑥)𝑉 (ℎ𝑥) − 𝑈2(ℎ𝑥)

]︁
𝑃3(𝑥) = 2 cos(ℎ𝑥) cosh(ℎ𝑥) = 2

[︁
𝑆2(ℎ𝑥) − 𝑈2(ℎ𝑥)

]︁
𝑃4(𝑥) = 2 sin(ℎ𝑥) sinh(ℎ𝑥) = 2

[︁
𝑇 2(ℎ𝑥) − 𝑉 2(ℎ𝑥)

]︁
=

= 4
[︁
𝑇 2(ℎ𝑥) − 𝑆(ℎ𝑥)𝑈(ℎ𝑥)

]︁
= 4

[︁
𝑆(ℎ𝑥)𝑈(ℎ𝑥) − 𝑉 2(ℎ𝑥)

]︁
(2.280)

𝑃5(𝑥) = cos(ℎ𝑥) sinh(ℎ𝑥) + sin(ℎ𝑥) cosh(ℎ𝑥) =
= 2

[︁
𝑆(ℎ𝑥)𝑇 (ℎ𝑥) − 𝑈(ℎ𝑥)𝑉 (ℎ𝑥)

]︁
𝑃6(𝑥) = sin(ℎ𝑥) cosh(ℎ𝑥) − cos(ℎ𝑥) sinh(ℎ𝑥) =

= 2
[︁
𝑇 (ℎ𝑥)𝑈(ℎ𝑥) − 𝑆(ℎ𝑥)𝑉 (ℎ𝑥)

]︁
Krylov used the Krylov functions for modification of the differential equation (2.275),

which is function of amplitude of transverse displacement 𝑊 (𝑥), into equation (2.281).

𝑊 (𝑥) = 𝐷1𝑆(𝜃𝑥) +𝐷2𝑇 (𝜃𝑥) +𝐷3𝑈(𝜃𝑥) +𝐷4𝑉 (𝜃𝑥) (2.281)

The constants of integration 𝐵𝑖, used in equation (2.275), are not equal to constants
of integration 𝐷𝑖 but they are related to each other, which is proven by the following
derivation.

𝑊 (𝑥) = 𝐷1
1
2

[︃
cosh(𝜃𝑥) + cos(𝜃𝑥)

]︃
+𝐷2

1
2

[︃
sinh(𝜃𝑥) + sin(𝜃𝑥)

]︃
+

+𝐷3
1
2

[︃
cosh(𝜃𝑥) − cos(𝜃𝑥)

]︃
+𝐷4

1
2

[︃
sinh(𝜃𝑥) − sin(𝜃𝑥)

]︃

= 1
2

[︃
𝐷1 cosh(𝜃𝑥) +𝐷1 cos(𝜃𝑥) +𝐷2 sinh(𝜃𝑥) +𝐷2 sin(𝜃𝑥) +

+𝐷3 cosh(𝜃𝑥) −𝐷3 cos(𝜃𝑥) +𝐷4 sinh(𝜃𝑥) −𝐷4 sin(𝜃𝑥)
]︃

= 1
2

[︃
(𝐷2 −𝐷4) sin(𝜃𝑥) + (𝐷1 −𝐷3) cos(𝜃𝑥) +

+(𝐷2 +𝐷4) sinh(𝜃𝑥) + (𝐷1 +𝐷3) cosh(𝜃𝑥)
]︃

The relations between constants 𝐵𝑖 and 𝐷𝑖 are obvious from the comparison of the last
equation and equation (2.275) and it is defined by the following formulas.

𝐵1 = 1/2(𝐷2 −𝐷4) ; 𝐵2 = 1/2(𝐷1 −𝐷3)
𝐵3 = 1/2(𝐷2 +𝐷4) ; 𝐵4 = 1/2(𝐷1 +𝐷3)

(2.282)

This means equations (2.275) and (2.281) are equivalent.
Another advantage of the usage of Krylov functions is shown for 𝑥 = 0, where the
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equation (2.281) and its derivative with respect to 𝑥 has the following form (which is
clear from (2.276)).

𝑊 (0) = 𝐷1

𝑊 𝐼(0) = 𝐷1𝑆
𝐼(0) +𝐷2𝑇

𝐼(0) +𝐷3𝑈
𝐼(0) +𝐷4𝑉

𝐼(0)
= 𝐷1𝜃𝑉 (0) +𝐷2𝜃𝑆(0) +𝐷3𝜃𝑇 (0) +𝐷4𝜃𝑈(0)
= 𝜃𝐷2 (2.283)

𝑊 𝐼𝐼(0) = 𝜃2𝐷3

𝑊 𝐼𝐼𝐼(0) = 𝜃3𝐷4

𝑊 𝐼𝑉 (0) = 𝜃4𝐷1

Based on equations (2.283) it is clear that the coordinate of the elastic curve of a beam
at 𝑥 = 0 and its derivative with respect to 𝑥 are dependent on only one constant 𝐷𝑖.

The derivatives of equation (2.281) are required for the following derivation and they
are defined by formulas (2.284).

𝑊 (𝑥) = 𝐷1𝑆(𝜃𝑥) +𝐷2𝑇 (𝜃𝑥) +𝐷3𝑈(𝜃𝑥) +𝐷4𝑉 (𝜃𝑥)
𝑊 𝐼(𝑥) = 𝜃

[︁
𝐷1𝑉 (𝜃𝑥) +𝐷2𝑆(𝜃𝑥) +𝐷3𝑇 (𝜃𝑥) +𝐷𝑈(𝜃𝑥)

]︁
𝑊 𝐼𝐼(𝑥) = 𝜃2

[︁
𝐷1𝑈(𝜃𝑥) +𝐷2𝑉 (𝜃𝑥) +𝐷3𝑆(𝜃𝑥) +𝐷𝑇 (𝜃𝑥)

]︁
(2.284)

𝑊 𝐼𝐼𝐼(𝑥) = 𝜃3
[︁
𝐷1𝑇 (𝜃𝑥) +𝐷2𝑈(𝜃𝑥) +𝐷3𝑉 (𝜃𝑥) +𝐷𝑆(𝜃𝑥)

]︁
𝑊 𝐼𝑉 (𝑥) = 𝜃4

[︁
𝐷1𝑆(𝜃𝑥) +𝐷2𝑇 (𝜃𝑥) +𝐷3𝑈(𝜃𝑥) +𝐷𝑉 (𝜃𝑥)

]︁
The deflection of the beam is proportional to 𝑊 (𝑥), the slope of the beam is propor-
tional to 𝑊 𝐼(𝑥), the bending moment is proportional to 𝑊 𝐼𝐼(𝑥) and the shear force is
proportional to 𝑊 𝐼𝐼𝐼(𝑥).

2.9.4 Analytical determination of eigenvalues and eigenvectors
- undamped vibrations - 2nd part

The general solution of differential equation (2.273) has with usage of the Krylov functions
form of equation (2.281).

𝑊 (𝑥) = 𝐷1𝑆(𝜃𝑥) +𝐷2𝑇 (𝜃𝑥) +𝐷3𝑈(𝜃𝑥) +𝐷4𝑉 (𝜃𝑥)

Equation (2.281) describes the deflection of the beam. The slope of beam 𝑊 𝐼(𝑥), the
bending moment 𝑀𝑏 and the shear force 𝑄 are defined by equations (2.285)-(2.287).

𝑊 𝐼(𝑥) = 𝜃
[︁
𝐷1𝑉 (𝜃𝑥) +𝐷2𝑆(𝜃𝑥) +𝐷3𝑇 (𝜃𝑥) +𝐷4𝑈(𝜃𝑥)

]︁
(2.285)

𝑀𝑏(𝑥) = −𝐸𝐼𝑊 𝐼𝐼(𝑥) = −𝜃2𝐸𝐼
[︁
𝐷1𝑈(𝜃𝑥) +𝐷2𝑉 (𝜃𝑥) +𝐷3𝑆(𝜃𝑥) +𝐷4𝑇 (𝜃𝑥)

]︁
(2.286)

𝑄(𝑥) = −𝐸𝐼𝑊 𝐼𝐼𝐼(𝑥) = −𝜃3𝐸𝐼
[︁
𝐷1𝑇 (𝜃𝑥) +𝐷2𝑈(𝜃𝑥) +𝐷3𝑉 (𝜃𝑥) +𝐷4𝑆(𝜃𝑥)

]︁
(2.287)
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The purpose of this derivation is to determine the eigenvalues and eigenvectors of the
beam with free ends. The shear force and bending moment balance have to be fulfilled
at the free ends, which means the natural boundary conditions (BC) has to be used. The
natural BC at the free ends of the beam lead to equations:

𝑥 = 0 : 𝑀𝑏(0) = 𝐸𝐼
𝜕2𝑤(𝑥, 𝑡)
𝜕𝑥2

⃒⃒⃒⃒
⃒
𝑥=0

= 0 (2.288)

𝑄(0) = 𝜕

𝜕𝑥

[︃
𝐸𝐼

𝜕2𝑤(𝑥, 𝑡)
𝜕𝑥2

]︃⃒⃒⃒⃒
⃒
𝑥=0

= 0 (2.289)

𝑥 = 𝑙 : 𝑀𝑏(𝑙) = 𝐸𝐼
𝜕2𝑤(𝑥, 𝑡)
𝜕𝑥2

⃒⃒⃒⃒
⃒
𝑥=𝑙

= 0 (2.290)

𝑄(𝑙) = 𝜕

𝜕𝑥

[︃
𝐸𝐼

𝜕2𝑤(𝑥, 𝑡)
𝜕𝑥2

]︃⃒⃒⃒⃒
⃒
𝑥=𝑙

= 0 (2.291)

In case when the transverse displacement 𝑤(𝑥, 𝑡) is separable in space and in time, equa-
tions (2.288)-(2.291) can be rearranged in the following equations.

𝑥 = 0 : 𝑀𝑏(0) = 𝐸𝐼
d2𝑊 (𝑥)

d𝑥2

⃒⃒⃒⃒
⃒
𝑥=0

= 0 (2.292)

𝑄(0) = 𝐸𝐼
d3𝑊 (𝑥)

d𝑥3

⃒⃒⃒⃒
⃒
𝑥=0

= 0 (2.293)

𝑥 = 𝑙 : 𝑀𝑏(𝑙) = 𝐸𝐼
d2𝑊 (𝑥)

d𝑥2

⃒⃒⃒⃒
⃒
𝑥=𝑙

= 0 (2.294)

𝑄(𝑙) = 𝐸𝐼
d3𝑊 (𝑥)

d𝑥3

⃒⃒⃒⃒
⃒
𝑥=𝑙

= 0 (2.295)

The derived equations (2.286) and (2.287) can be applied for 𝑥 = 0.

𝑀𝑏(0) = −𝜃2𝐸𝐼
[︁
𝐷1𝑈(0) +𝐷2𝑉 (0) +𝐷3𝑆(0) +𝐷4𝑇 (0)

]︁
= 0 (2.296)

𝑄(0) = −𝜃3𝐸𝐼
[︁
𝐷1𝑇 (0) +𝐷2𝑈(0) +𝐷3𝑉 (0) +𝐷4𝑆(0)

]︁
= 0 (2.297)

Taking into consideration equations (2.276), equations (2.296) and (2.297) lead to the
following equations.

𝑀𝑏(0) = −𝜃2𝐸𝐼𝐷3 ⇒ 𝐷3 = 0 (2.298)
𝑄(0) = −𝜃3𝐸𝐼𝐷4 ⇒ 𝐷4 = 0 (2.299)

Equations (2.286) and (2.287) for the bending moment and the shear force have for 𝑥 = 𝑙

the following form.

𝑀𝑏(𝑙) = −𝜃2𝐸𝐼
[︁
𝐷1𝑈(𝜃𝑙) +𝐷2𝑉 (𝜃𝑙) +𝐷3𝑆(𝜃𝑙) +𝐷4𝑇 (𝜃𝑙)

]︁
= 0 (2.300)

𝑄(𝑙) = −𝜃3𝐸𝐼
[︁
𝐷1𝑇 (𝜃𝑙) +𝐷2𝑈(𝜃𝑙) +𝐷3𝑉 (𝜃𝑙) +𝐷4𝑆(𝜃𝑙)

]︁
= 0 (2.301)

Based on equations (2.298) and (2.299), it is clear the constants of integration 𝐷3 and 𝐷4

are equal to zero. These results lead to the following simplifications of equations (2.300)
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and (2.301).

𝑀𝑏(𝑙) = −𝜃2𝐸𝐼
[︁
𝐷1𝑈(𝜃𝑙) +𝐷2𝑉 (𝜃𝑙)

]︁
= 0 (2.302)

𝑄(𝑙) = −𝜃3𝐸𝐼
[︁
𝐷1𝑇 (𝜃𝑙) +𝐷2𝑈(𝜃𝑙)

]︁
= 0 (2.303)

By canceling terms outside of square brackets, equations can be rearranged into:

𝐷1𝑈(𝜃𝑙) +𝐷2𝑉 (𝜃𝑙) = 0 (2.304)
𝐷1𝑇 (𝜃𝑙) +𝐷2𝑈(𝜃𝑙) = 0 (2.305)

Equation (2.305) implies the constant 𝐷2 has form:

𝐷2 = 𝐷1𝑇 (𝜃𝑙)
𝑈(𝜃𝑙) (2.306)

Substituting term 𝐷2 into formula (2.304) leads to equation (2.307).

𝐷1𝑈(𝜃𝑙) + 𝐷1𝑇 (𝜃𝑙)
𝑈(𝜃𝑙) 𝑉 (𝜃𝑙) = 0 (2.307)

Canceling term 𝐷1 in (2.307) and multiplying the equation by term 𝑈(𝜃𝑙) leads to:

𝑈2(𝜃𝑙) + 𝑇 (𝜃𝑙)𝑉 (𝜃𝑙) = 0 (2.308)

Multiplying equation (2.308) by (−2) results in the equation that represents the function
𝑃2 derived by Krylov.

𝑃2(𝜃𝑙) = 2
[︁
𝑇 (𝜃𝑥)𝑉 (𝜃𝑥) − 𝑈2(𝜃𝑥)

]︁
= cos(𝜃𝑥) cosh(𝜃𝑥) − 1 = 0 (2.309)

Resultant equation has the following form.

cos(𝜃𝑥) = 1
cosh(𝜃𝑥) (2.310)

Equation (2.310) is the transcendental equation, which means it does not have closed-form
solutions. Graphical representation of equation (2.310) is presented in figure 2.9. Intro-
ducing term 𝜅𝑖 by equation (2.311) makes formulation of the final formula for eigenvalues
simpler.

𝜅𝑖 = 𝜃𝑖𝑙 (2.311)

It is clear from figure 2.9, there are infinite solutions of equation (2.310), i.e. the
constant 𝜅𝑖 has an infinite number of values. Since the length of the beam is a assigned
parameter, the term 𝜃 has an infinite number of values. Term 𝜃 is defined by formula
(2.274) which contains assigned parameters 𝜌, 𝐴, 𝐸 and 𝐼. This implies, the beam has
an infinite number of undamped eigenfrequencies Ω0.

Solution of equation (2.310) was determined numerically and it is presented in the
following equation.

𝜅𝑖 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4,73 for 𝑖 = 1
7,85 for 𝑖 = 2
2𝑖+ 1

2 𝜋 for 𝑖 > 2
(2.312)
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Fig. 2.9: Graphical solution of equation (2.310)

Equation (2.274), which defines the constant 𝜃, can be rewritten for an infinite number
of values 𝜃𝑖 into form:

𝜃4
𝑖 =

Ω2
0,𝑖𝜌𝐴

𝐸𝐼
(2.313)

Based on equations (2.311) and (2.312), the undamped eigenfrequencies Ω0,𝑖 can be de-
termined by the following steps.

𝜅𝑖 = 𝜃𝑖𝑙

𝜅4
𝑖 = 𝜃4

𝑖 𝑙
4

𝜅4
𝑖 =

Ω2
0,𝑖𝜌𝐴

𝐸𝐼
𝑙4

Ω2
0,𝑖 =

(︃
𝜅𝑖

𝑙

)︃4
𝐸𝐼

𝜌𝐴

Ω0,𝑖 =
(︃
𝜅𝑖

𝑙

)︃2√︃
𝐸𝐼

𝜌𝐴
(2.314)

Equation (2.314) represents the formula for the determination of the undamped eigenval-
ues of the beam with free ends.

The mode shapes, which create the first half of the eigenvectors, are equal to the am-
plitude of transverse displacement 𝑊 (𝑥). As same as in case of the eigenvalues, there is
an infinite number of mode shapes of the beam which is proven by subsequent derivation.

The boundary conditions imply the constants of integration 𝐷3 and 𝐷4 are equal to
zero. Equation (2.281) can be rewritten to form:

𝑊 (𝑥) = 𝐷1𝑆(𝜃𝑥) +𝐷2𝑇 (𝜃𝑥) (2.315)

This equation can be further adjusted by expressing the constant of integration 𝐷2 by
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equation (2.306).

𝑊 (𝑥) = 𝐷1𝑆(𝜃𝑥) + 𝐷1𝑇 (𝜃𝑙)
𝑈(𝜃𝑙) 𝑇 (𝜃𝑥)

𝑊 (𝑥) = 𝐷1

[︃
𝑆(𝜃𝑥) + 𝑇 (𝜃𝑙)

𝑈(𝜃𝑙)𝑇 (𝜃𝑥)
]︃

(2.316)

The constant of integration 𝐷1 can be equal to an arbitrary value, which means the value
𝐷1 = 1 can be chosen.

𝑊 (𝑥) = 𝑆(𝜃𝑥) + 𝑇 (𝜃𝑙)
𝑈(𝜃𝑙)𝑇 (𝜃𝑥) (2.317)

Equation (2.317) includes term 𝜃𝑙, which has infinite number of values. The substitution
term 𝜅𝑖 is used for product 𝜃𝑙. Equation (2.311) implies the term 𝜃𝑖 can be expressed by
formula:

𝜃𝑖 = 𝜅𝑖

𝑙
(2.318)

The final formula for the 𝑖-th mode shapes of the beam with free ends is defined by
equation (2.319).

𝑊𝑖(𝑥) = 𝑆

(︃
𝜅𝑖
𝑥

𝑙

)︃
+ 𝑇 (𝜅𝑖)
𝑈(𝜅𝑖)

𝑇

(︃
𝜅𝑖
𝑥

𝑙

)︃
(2.319)

First four mode shapes are depicted in fig. 2.10 and fig. 2.11 shows mode shapes 5-8.

2.9.5 Damped lateral vibrations of beams

The previous sections presented the analytical determination of undamped eigenvalues
and eigenvectors of the beam with free ends. This derivation is extremely useful for the
determination of damped eigenvalues and eigenvectors of the beam with free ends, which
is a concern of this section. The damped eigenvalues and eigenvectors of the beam with
free ends are used for testing of algorithms determined previously in this chapter.

As same as in case of undamped vibrations, the free vibrations are investigated for
the determination of eigenvalues and eigenvector of damped vibrations. The equation
of motion for free lateral undamped vibration of a uniform beam, described by formula
(2.266), has to be modified by adding the term expressing damping of the system.

Damping is introduced to the analysis by the concept of proportional damping. ”The
particular advantage of using a proportional damping model in the analysis of structures
is that the modes of such a structure are almost identical to those of the undamped version
of the model. Specifically, the mode shapes are identical and the natural frequencies are
very similar to those of the simpler undamped system” [138]. In solved case, damping of
the uniform beam is modeled as directly proportional to the stiffness, i.e. the proportional
damping 𝑐𝑝𝑟𝑜𝑝 is defined by formula:

𝑐𝑝𝑟𝑜𝑝 = 𝛽𝐸𝐼
𝜕4

𝜕𝑥4

[︃
𝜕𝑤(𝑥, 𝑡)
𝜕𝑡

]︃
, (2.320)

184



0,0 0,1375 0,275 0,4125 0,55
x [m]

-1,0

-0,5

0,0

0,5

1,0

W
(x

)
[1

]

Fig. 2.10: Mode shapes 1-4 of beam with free ends
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Fig. 2.11: Mode shapes 5-8 of beam with free ends

where 𝛽 is the stiffness multiplier. Adding term 𝑐𝑝𝑟𝑜𝑝 from equation (2.320) into the
equation of motion for free lateral undamped vibration of uniform beam (2.266) leads
to the differential equation of motion for free lateral damped vibration of uniform beam
(2.321).

−𝐸𝐼 𝜕
4𝑤(𝑥, 𝑡)
𝜕𝑥4 − 𝛽𝐸𝐼

𝜕4

𝜕𝑥4

[︃
𝜕𝑤(𝑥, 𝑡)
𝜕𝑡

]︃
= 𝜌𝐴

𝜕2𝑤(𝑥, 𝑡)
𝜕𝑡2

(2.321)

The first term in equation (2.321) is the stiffness force, the second term represents the
damping force and the third term is the inertia force.

As same as in the derivation of undamped vibration of the beam with free ends, the
solution of equation of motion (2.321) is separable in space and in time and the time
function 𝐹 (𝑡) is a harmonic function (as in equation (2.268)). Both of these assumptions

185



lead to the expression of the transverse displacement by equation (2.322).

𝑤(𝑥, 𝑡) = 𝑊 (𝑥)𝐹 (𝑡)
𝐹 (𝑡) = 𝑒𝑠𝑡

𝑤(𝑥, 𝑡) = 𝑊 (𝑥)𝑒𝑠𝑡 , (2.322)

where 𝑠 is the eigenvalue.
Using equation (2.322) as the substitution of term 𝑤(𝑥, 𝑡), the equation of motion

(2.321) can be modified into:

−𝐸𝐼
𝜕4
[︁
𝑊 (𝑥)𝑒𝑠𝑡

]︁
𝜕𝑥4 − 𝛽𝐸𝐼

𝜕4

𝜕𝑥4

⎧⎨⎩𝜕
[︁
𝑊 (𝑥)𝑒𝑠𝑡

]︁
𝜕𝑡

⎫⎬⎭ = 𝜌𝐴
𝜕2
[︁
𝑊 (𝑥)𝑒𝑠𝑡

]︁
𝜕𝑡2

(2.323)

Differentiating equation (2.323) is described in the following two equations.

−𝐸𝐼 𝜕
4𝑊 (𝑥)
𝜕𝑥4 𝑒𝑠𝑡 − 𝛽𝐸𝐼

𝜕4
[︁
𝑊 (𝑥)𝑒𝑠𝑡𝑠

]︁
𝜕𝑥4 = 𝑠2𝜌𝐴𝑊 (𝑥)𝑒𝑠𝑡 (2.324)

−𝐸𝐼 𝜕
4𝑊 (𝑥)
𝜕𝑥4 𝑒𝑠𝑡 − 𝑠𝛽𝐸𝐼

𝜕4𝑊 (𝑥)
𝜕𝑥4 𝑒𝑠𝑡 = 𝑠2𝜌𝐴𝑊 (𝑥)𝑒𝑠𝑡 (2.325)

Canceling term 𝑒𝑠𝑡, factoring out the fourth derivation of the transverse displacement with
respect to 𝑥 and reordering equation (2.325) leads to:

(1 + 𝑠𝛽)𝐸𝐼 𝜕
4𝑊 (𝑥)
𝜕𝑥4 + 𝑠2𝜌𝐴𝑊 (𝑥) = 0 (2.326)

Rearranging of the previous equation leads to formula (2.327).
d4𝑊 (𝑥)

d𝑥4 + 𝜍4𝑊 (𝑥) = 0 (2.327)

𝑊 (𝑥) must fulfil the boundary conditions. Term 𝜍 is defined by the following equation.

𝜍4 = 𝑠2

1 + 𝑠𝛽

𝜌𝐴

𝐸𝐼
(2.328)

Equation (2.327) has the same structure as the equation of motion of undamped beam
(2.273). Solution of (2.327) is analogous to the solution of the undamped beam presented
in section 2.9.4 and it can be describe by the Krylov functions. The general solution of
differential equation (2.327) has form of equation (2.281).

𝑊 (𝑥) = 𝐷1𝑆(𝜍𝑥) +𝐷2𝑇 (𝜍𝑥) +𝐷3𝑈(𝜍𝑥) +𝐷4𝑉 (𝜍𝑥)

The boundary conditions of the beam with free ends are defined by equations (2.329)-
(2.332).

𝑥 = 0 : 𝑀𝑏(0) = 𝐸𝐼
d2𝑊 (𝑥)

d𝑥2

⃒⃒⃒⃒
⃒
𝑥=0

= 0 (2.329)

𝑄(0) = 𝐸𝐼
d3𝑊 (𝑥)

d𝑥3

⃒⃒⃒⃒
⃒
𝑥=0

= 0 (2.330)

𝑥 = 𝑙 : 𝑀𝑏(𝑙) = 𝐸𝐼
d2𝑊 (𝑥)

d𝑥2

⃒⃒⃒⃒
⃒
𝑥=𝑙

= 0 (2.331)

𝑄(𝑙) = 𝐸𝐼
d3𝑊 (𝑥)

d𝑥3

⃒⃒⃒⃒
⃒
𝑥=𝑙

= 0 (2.332)
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The bending moment and the shear force are described by equations (2.333) and (2.334).

𝑀𝑏(𝑥) = −𝜍2𝐸𝐼
[︁
𝐴𝑈(𝜍𝑥) +𝐵𝑉 (𝜍𝑥) + 𝐶𝑆(𝜍𝑥) +𝐷𝑇 (𝜍𝑥)

]︁
= 0 (2.333)

𝑄(𝑥) = −𝜍3𝐸𝐼
[︁
𝐴𝑇 (𝜍𝑥) +𝐵𝑈(𝜍𝑥) + 𝐶𝑉 (𝜍𝑥) +𝐷𝑆(𝜍𝑥)

]︁
= 0 (2.334)

For 𝑥 = 0, equations (2.333) and (2.334) can be rewritten to form:

𝑀𝑏(0) = −𝜍2𝐸𝐼
[︁
𝐷1𝑈(0) +𝐷2𝑉 (0) +𝐷3𝑆(0) +𝐷4𝑇 (0)

]︁
= 0 (2.335)

𝑄(0) = −𝜍3𝐸𝐼
[︁
𝐷1𝑇 (0) +𝐷2𝑈(0) +𝐷3𝑉 (0) +𝐷4𝑆(0)

]︁
= 0 (2.336)

Taking into consideration elementary properties of the Krylov functions defined by equa-
tions (2.276), equations for the bending moment (2.335) and for the shear force (2.336)
can be modified into the following equations.

𝑀𝑏(0) = −𝜍2𝐸𝐼𝐷3 ⇒ 𝐷3 = 0 (2.337)
𝑄(0) = −𝜍3𝐸𝐼𝐷4 ⇒ 𝐷4 = 0 (2.338)

Equations for the bending moment and the shear force have for 𝑥 = 𝑙 and for 𝐷3 = 𝐷4 = 0
the following form.

𝑀𝑏(𝑙) = −𝜍2𝐸𝐼
[︁
𝐷1𝑈(𝜍𝑙) +𝐷2𝑉 (𝜍𝑙)

]︁
= 0 (2.339)

𝑄(𝑙) = −𝜍3𝐸𝐼
[︁
𝐷1𝑇 (𝜍𝑙) +𝐷2𝑈(𝜍𝑙)

]︁
= 0 (2.340)

By canceling terms outside of square brackets, equations (2.339) and (2.340) can be rear-
ranged into:

𝐷1𝑈(𝜍𝑙) +𝐷2𝑉 (𝜍𝑙) = 0 (2.341)
𝐷1𝑇 (𝜍𝑙) +𝐷2𝑈(𝜍𝑙) = 0 (2.342)

Second equation (2.342) implies the constant 𝐷2 has form:

𝐷2 = 𝐷1𝑇 (𝜍𝑙)
𝑈(𝜍𝑙) (2.343)

Substituting term 𝐷2 into equation (2.341) leads to the following formula.

𝐷1𝑈(𝜍𝑙) + 𝐷1𝑇 (𝜍𝑙)
𝑈(𝜍𝑙) 𝑉 (𝜍𝑙) = 0 (2.344)

Canceling term 𝐷1 and multiplying equation (2.344) by term 𝑈(𝜍𝑙) leads to:

𝑈2(𝜍𝑙) + 𝑇 (𝜍𝑙)𝑉 (𝜍𝑙) = 0 (2.345)

Multiplying equation (2.345) by (−2) results in equation (2.346) which represents the
function 𝑃2 derived by Krylov.

𝑃2(𝜍𝑙) = 2
[︁
𝑇 (𝜍𝑥)𝑉 (𝜍𝑥) − 𝑈2(𝜍𝑥)

]︁
= cos(𝜍𝑥) cosh(𝜍𝑥) − 1 = 0 (2.346)
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Resultant equation has following form.

cos(𝜍𝑥) = 1
cosh(𝜍𝑥) (2.347)

Equation (2.347) can be simplified as same as in case of equation (2.310) by introduction
of term 𝜅, which is in case of the damped vibration of the beam defined by equation:

𝜅𝑖 = 𝜍𝑙 (2.348)

Equation (2.347) is the transcendental equation (as same as equation (2.310)) which has
an infinite solutions, i.e. the constant 𝜅𝑖 has an infinite number of values. Since the length
of the beam is assigned parameter, the term 𝜍 has also an infinite number of values. Term
𝜍 is defined by formula (2.328) which contains assigned parameters 𝜌, 𝐴, 𝐸 and 𝐼. This
implies, the beam has an infinite number of eigenvalues 𝑠.

Solution of formula (2.347) is presented in equation (2.312).

𝜅𝑖 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4,73 for 𝑖 = 1
7,85 for 𝑖 = 2
2𝑖+ 1

2 𝜋 for 𝑖 > 2

The formula for definition of the eigenvalues 𝑠𝑖 can be derived from equation (2.348)
by the following steps.

𝜅𝑖 = 𝜍𝑖𝑙

𝜅4
𝑖 = 𝜍4

𝑖 𝑙
4 = − 𝑠2

𝑖

1 + 𝑠𝑖𝛽

𝜌𝐴

𝐸𝐼
𝑙4

𝜅4
𝑖 = − 𝑠2

𝑖

1 + 𝑠𝑖𝛽

𝜌𝐴

𝐸𝐼
𝑙4

− 𝑠2
𝑖

1 + 𝑠𝑖𝛽
= 𝛿2 , (2.349)

where term 𝛿 is defined by the following equation.

𝛿2 = 𝜅4
𝑖

𝑙4
𝐸𝐼

𝜌𝐴
(2.350)

Equation (2.349) can be subsequently adjusted into equation (2.351).

− 𝑠2
𝑖

1 + 𝑠𝑖𝛽
= 𝛿2

𝑠2
𝑖 − 𝛿2(1 + 𝑠𝑖𝛽) = 0
𝑠2

𝑖 + 𝛿2𝛽𝑠+ 𝛿2 = 0

The last equation represents a quadratic equation which is solved by the quadratic for-
mula.

𝑠𝑖;1,2 = 1
2

[︃
− 𝛿2𝛽 ±

√︁
𝛿4𝛽2 − 4𝛿2

]︃

𝑠𝑖;1,2 = 1
2

⎡⎣− 𝛿2𝛽 ± 2𝛿
√︃

1 − 𝛿2𝛽2

4

⎤⎦ (2.351)
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Equation (2.351) represents the general formula for damped eigenvalues of the beam with
free ends.

If the following condition (2.352) is fulfilled the system is underdamped, which means
all eigenvalues have a nonzero imaginary part, and therefore they are complex numbers.

𝛿𝛽

2 < 1 (2.352)

Condition (2.352) is valid for the analysed beam, which is clear from experimental mea-
surement (presented in section 2.9.1). Formula for damped eigenvalues can be even further
adjusted for underdamped systems.

𝑠1,2 = 1
2

⎡⎣− 𝛿2𝛽 ± i2𝛿
√︃

−
(︂
𝛿𝛽

2

)︂2
+ 1

⎤⎦
𝑠1,2 = −𝛿2𝛽

2 ± i𝛿
√︃

−
(︂
𝛿𝛽

2

)︂2
+ 1 (2.353)

Equation (2.353) defines the eigenvalues of the underdamped beam with free ends.
The mode shapes are equal to the amplitude of transverse displacement 𝑊 (𝑥) which is

a function of location 𝑥. As same as in case of the eigenvalues, there is an infinite number
of mode shapes of the beam which is proven by subsequent derivation.

The constants of integration 𝐷3 and 𝐷4 are equal to zero, which was determined in
equations (2.337) and (2.338). Equation (2.281) can be rewritten to form:

𝑊 (𝑥) = 𝐷1𝑆(𝜍𝑥) +𝐷2𝑇 (𝜍𝑥) (2.354)

The constant of integration 𝐷2 is defined by equation (2.343).

𝑊 (𝑥) = 𝐷1𝑆(𝜍𝑥) + 𝐷1𝑇 (𝜍𝑙)
𝑈(𝜍𝑙) 𝑇 (𝜍𝑥)

𝑊 (𝑥) = 𝐷1

[︃
𝑆(𝜍𝑥) + 𝑇 (𝜍𝑙)

𝑈(𝜍𝑙)𝑇 (𝜍𝑥)
]︃

(2.355)

The constant of integration 𝐷1 can be equal to an arbitrary value, which means the value
𝐷1 = 1 can be chosen.

𝑊 (𝑥) = 𝑆(𝜍𝑥) + 𝑇 (𝜍𝑙)
𝑈(𝜍𝑙)𝑇 (𝜍𝑥) (2.356)

Equation (2.356) includes term 𝜍𝑙, which has infinite number of values. The substitution
term 𝜅𝑖 is used for product 𝜍𝑙. Equation (2.348) implies the term 𝜍𝑖 can be expressed by
formula:

𝜍𝑖 = 𝜅𝑖

𝑙
(2.357)

The final formula for the damped mode shapes of the beam with free ends is defined by
equation (2.358).

𝑊𝑖(𝑥) = 𝑆

(︃
𝜅𝑖
𝑥

𝑙

)︃
+ 𝑇 (𝜅𝑖)
𝑈(𝜅𝑖)

𝑇

(︃
𝜅𝑖
𝑥

𝑙

)︃
(2.358)
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Equation (2.358) is identical to equation (2.319), which defines the undamped mode
shapes of beam with free ends. This result implies the proportional damping model
produces identical mode shapes as the model which does not consider any damping. The
mode shapes are presented in the previous section, more precisely first four mode shapes
are depicted in fig. 2.10 and fig. 2.11 shows mode shapes 5-8.

2.9.6 Determination of eigenvalues from analytical solution

The eigenvalues of the damped beam with free ends are defined by formula (2.353).

𝑠1,2 = −𝛿2𝛽

2 ± i𝛿
√︃

−
(︂
𝛿𝛽

2

)︂2
+ 1

The constants 𝛿 and 𝛽 are two unknowns parameters. Term 𝛿 is described by formula
(2.350) and it is defined based on the material properties (tab. 2.1) and geometry of beam
(fig. 2.2).

On the contrary, the stiffness multiplier 𝛽, which is used for the description of the
proportional damping, has to correctly determined to match up the eigenvalues deter-
mined from measurement and analytical description. It is necessary to point out that
proportional damping ”is suitable for single DOF vibration system because it depends
on the dominant natural frequency and damping ratio. For multiple DOF systems and
continuum vibration systems, it is difficult to identify the dominant natural frequency
and modal damping ratio” [148].

The second eigenfrequency was selected as the dominant eigenfrequency based on the
amplitude spectrum of the beam measured in the air depicted in fig. 2.5. The stiffness
multiplier 𝛽 is defined in [148] by equation (2.359).

𝛽 = 2𝜁𝑖

Ω𝑑,𝑖

, (2.359)

where 𝜁𝑖 is 𝑖-th damping ratio of the 𝑖-th mode of vibrations and Ω𝑑,𝑖 is the 𝑖-th damped
eigenfrequency. The damping ratio was evaluated from the real part of the second
eigenvalue and from the second eigenfrequency. The stiffness multiplier is equal to
𝛽 = 5,6 × 10−7 s in solved case. In a comparison of analytical solution and measure-
ment, the imaginary parts of eigenvalues, i.e. the damped eigenfrequencies, are in good

Tab. 2.3: Comparison of measurement in air and analytical solution for free beam in air

Measurement Analytical solution

𝜆 [rad s−1] Ω𝑑 [Hz] 𝑠 [rad s−1] Ω𝑑 [Hz]

1 −0,68 ± 659,61i 104,98 −0,12 ± 662,57i 105,45
2 −0,93 ± 1825,44i 290,53 −0,93 ± 1824,94i 290,45
3 −1,50 ± 3589,52i 571,29 −3,59 ± 3580,52i 569,86
4 −2,13 ± 5948,01i 946,66 −9,81 ± 5918,81i 942,01
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agreement. The real parts of eigenvalues determined analytically differ from results of
the measurement. Comparison of eigenvalues of the beam in the air determined from
measurement and based on the analytical solution is shown in table 2.3, where the eigen-
values determined from experimental modeling are marked as 𝜆 and term 𝑠 represents the
eigenvalues determined analytically.

2.9.7 Application of algorithm for full problems

The concern of this section is to use the eigenvalues and mode shapes determined for the
damped beam with free ends for testing of the algorithm for full problems, presented in
section 2.6.1. The algorithm is used for derivation of the structural matrices for beam in
air and for determination of the general matrices of mutual interaction between the beam
and ambient fluid.

The discretization of the beam is done in 10 points, which means the resultant matrices
in the 𝑁 space should be square matrices of order 10. The inverse formulas are defined in
the 2𝑁 space, therefore it is necessary to determine 20 eigenvalues and 20 mode shapes.

The beam with free ends has all eigenvalues distinct, which is clear from equation
(2.353). This leads to the conclusion the system has a simple structure, which means the
Jordan matrix J is reduced to the diagonal spectral matrix S. Ten complex values are
needed for the creation of the spectral matrix because each complex value from equation
(2.353) represents two eigenvalues that are complex conjugate numbers. The spectral
matrix of the system in the air is lined up from the eigenvalue with the smallest real part
to the eigenvalue with the highest real. If two eigenvalues have equal real parts, the first
eigenvalue in the spectral matrix is the one with the positive imaginary part. The main
diagonal of the spectral matrix is specified in appendix M by formula (M.1).

The first half of the modal matrix of right eigenvectors in 2𝑁 space x is defined by
equation (2.358). Since the eigenvalues are complex conjugate pairs, the eigenvectors are
as well complex conjugate pairs. The matrix x presented in appendix M by formula (M.3).

The structural matrices of the damped beam with free ends generated by the algorithm
for full problems are shown in appendix M, where the mass matrix M is defined by
equation (M.4), the damping matrix C is represented by equation (M.5) and relation
(M.6) defines the stiffness matrix K.

The same algorithm for the full problem is used for the determination of the global
matrices of interaction between the beam and ambient fluid. First, it is necessary to
obtain the input matrices ̂︀S and ̂︀x. The assumption that the influence of ambient fluid on
eigenvectors is negligible was used, which can be described by equation ̂︀x = x. Based on
the experimental measurement of the beam in water it is clear the eigenvalues are affected
by fluid. The spectral matrix S with eigenvalues of the beam without ambient fluid is
modified in a way the first 6 eigenvalues of the system in the air are replaced by the first
6 eigenvalues of the system in the water. Other eigenvalues are not modified but it does
not affect the resultant dynamic response of the system. The highest eigenvalue of the
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beam submerged in the water equals −2,06 ± 2615,44i rad s−1 and the lowest unmodified
eigenvalue of system in the air equals −2,13 ± 5948,01i rad s−1, which means all unmodified
eigenvalues have greater absolute value of real part and the imaginary part is in unmodified
eigenvalues more than 2 times higher. Therefore, the modes of vibrations that correspond
to unmodified eigenvalues are damped rapidly and their influence on the dynamic response
of the system is negligible because their undamped eigenfrequencies are much higher. The
vector of main diagonal of the spectral matrix of the beam fully submerged in water is
shown in appendix N by formula (M.1).

As it was written previously, the algorithm for the full problem was used for the
determination of the global matrices of FSI in this case. They are are depicted in appendix
N, where equation (N.4) defines the mass matrix of general system ̂︁M, the damping matrix
of general system ̂︀C is defined by equation (N.5) and formula (N.6) defines the stiffness
matrix of general system ̂︁K.

2.9.8 Application of algorithm for partial problems

The eigenvalues and mode shapes of the damped beam with free ends are used as well for
testing of the algorithm for partial problems with the selection of additional eigenvalues
presented in section 2.6.5. To compare algorithms for the full problems and partial prob-
lems, discretization of the beam is done in 10 points, which is the same as in the previous
section.

Only half of the input matrices are used as known inputs, which means 10 eigenvalues
and associated eigenvectors are known. This implies 10 additional eigenvalues have to be
selected and 10 eigenvectors have to be determined from homogeneous equation (2.179).

The procedure for determination of the structural matrices of the damped beam with
free ends and the global matrices of interaction between the beam and ambient fluid was
identical as in case of the full problem. The spectral matrices have orders S ∈ C𝑁,𝑁 and̂︀S ∈ C𝑁,𝑁 and the first half of modal matrices of right eigenvectors have orders x ∈ R𝑁,𝑁

and ̂︀x ∈ R𝑁,𝑁 , where 𝑁 in number of known inputs and therefore 𝑁 = 10.
As mentioned in section 2.6.5, the additional eigenvalues should be chosen in order

to minimize the effect of the additional eigenvectors on the response of the system. The
suggested set of additional eigenvalues contains the eigenvalues, which are only negative
real numbers. All additional eigenvalues are distinct because the structure of the resultant
system should remain simple. The spectral matrix of additional eigenvalues is in both
cases identical and it is described by equation (2.360).

Λ = diag
(︁ [︁

−1 + 0i, −2 + 0i, −3 + 0i, −4 + 0i, −5 + 0i,

−6 + 0i, −7 + 0i, −8 + 0i,−9 + 0i, −10 + 0i
]︁ )︁

rad s−1 (2.360)

The resultant spectral matrix for determination of the structural matrices of damped
beam with free ends is presented in appendix O in equation (O.1). The spectral matrix
of the general system, which represents interaction between the beam and ambient fluid
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is described by equation (P.1) presented in appendix P.
Even though the first half of the spectral matrices of beam in air and in water are not

identical, the modal matrices of associated additional right eigenvectors T are identical,
which is evident from the structures of matrices x shown in equations (O.3) for the fixed
beam (appendix O) and equation (P.3), which represents the FSI (appendix P).

The resultant structural matrices of damped beam with free ends M, C and K are
presented in appendix O in equations (O.4), (O.5) and (O.6). The resultant global ma-
trices of interaction between the beam and ambient fluid ̂︁M, ̂︀C and ̂︁K are presented in
appendix P in equations (P.4), (P.5) and (P.6).

2.10 Application 2 - Fixed beam

The application of the beam with free ends, which is presented in the previous section,
was a very useful application for the development and testing of the algorithms for the
solution of the inverse vibration problem. All five algorithms, which are presented in sec-
tions 2.6.1-2.6.5, were developed and tested on the application of the beam with free ends.
The development and testing of these algorithms was a long process and hence it was nec-
essary to use a test case, for which the run of the algorithm would be short. Therefore,
it was suitable to create a case with very small input matrices. The application with the
beam with free ends used the spectral matrix and modal matrices of order 20. The order
of matrices was selected mainly for a fast run of algorithms. Another important reason
for the selection of such order of input matrices was the resultant matrices, as same as
the input matrices, can be presented due to the small dimensions. It is difficult to show
square matrices of higher orders because they can’t fit on normal paper size.

It is appropriate to note that the algorithms were tested as well for other input matri-
ces, however, the input matrices were created arbitrarily for purposes of testing and they
did not model any real case. It was suitable to perform such testing because the result
of the testing showed the algorithms are robust and can be used for any general case.
However, the results of these tests are not presented in this thesis, because it would not
give any additional information in comparison with the first application, where the beam
with free ends was used.

Even though the application with the beam with free ends was very useful for the
generation of robust algorithms, the first application was very simplified for purposes of
the analysis of algorithms. These simplifications can give rise to doubts about the pos-
sibilities of application of developed algorithms for real problems, where the order of the
input matrices are much higher, the eigenvectors cannot be determined analytically and
the numerical approach has to be used. Therefore, the second application was carried
out. The second application uses the fixed beam model, which means the experimental
apparatus should model the beam with the fixed boundary condition on one end and the
other end is free. The fixed beam is also called the clamped beam.

There were more reasons for selecting the fixed beam model as the second application.
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First, the fixed beam represents a simple example for experimental modeling. Further-
more, simulation of the fixed beam model by the Finite element method does not result
in the singular spectral matrix, which is a problem of the free beam model, because the
eigenvalues associated with the rigid body modes are equal to zero and hence the resul-
tant spectral matrix is singular. Therefore, the mode shapes are in case of the second
application created numerically by the Finite element method. And last but not least,
there was a problem to determine the seventh and eighth eigenvalues for the beam with
free ends submerged in water in the first application by the SDOF response fit method. In
the amplitude spectrum for the free beam submerged in water presented in fig. 2.6, there
is the eigenfrequency associated with the torsional mode shape very close to the damped
eigenfrequency of the seventh and eighth eigenvalues. In such cases, it is not possible
to evaluate the eigenvalue by the SDOF response fit method. Therefore the geometry of
the fixed beam model was designed to have distinct eigenfrequencies at least for the first
several eigenvalues.

2.10.1 Design and manufacture of fixed beam model

The fixed boundary condition in the theory of solid mechanics means the solid is connected
to the rigid support and there is no deflection and slope of the solid in the contact area
after application of loading. However, it is not possible to obtain this boundary condition
in reality, because it is in contradiction with the general axiom of solid mechanics, which
states that every solid is deformable, and therefore, the support has to deform as well.
To model the fixed boundary condition, it is necessary to create as stiffest support of the
structure as possible to create a model, in which the deflection and slope of the contact
area between the solid and support would be negligible.

There are several options, how to create fixed boundary conditions, which were pre-
sented in research papers. However, in case the material of the solid and support are
weldable, then the most effective and at the same time the most accessible method for
connection of the solid and support is welding. Therefore it was decided the model of the
fixed beam would be manufactured by welding the beam on a very thick plate. A circular
plate with a thickness of 40 mm was used as the support. The beam with a rectangular
cross section with a width of 60 mm and thickness of 6 mm was selected. The length
of the beam was determined based on the computational modeling and the process of
determination of the beam length is described in a subsequent section.

At this point, I would like to thank Ing. Václav Havlásek, who is the welding engineer
and he provided several consultations on the topic of technology of welding, which should
be used in the presented case and which would lead to the highest stiffness of the support
as possible. V. Havlásek as well provided supervision during the testing of the weld, which
is presented in the subsequent section.

The geometry of the model of the fixed beam is shown in figs. 2.12 and 2.13, where
the front and top views are depicted. The aim was to create as best representation of
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Fig. 2.12: Fixed beam geometry - front view
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Fig. 2.13: Fixed beam geometry - top view

the fixed boundary condition as possible. Therefore the correct technology of welding
had to be selected. Based on consultations with V. Havlásek, the fillet weld with the leg
size equals to 5 mm was used for modeling of the fixed support. The technology for the
creation of the weld had the following steps. First, the longer edge of the beam in the
contact area was chamfered. Then both the beam and circular plate were preheated at
temperature 180 ∘C, which was controlled by the contactless thermometer. Later on, the
beam and circular plate were welded by the fillet weld. After the manufacturing of the
weld, it is very important to secure that the weld gets cold very slowly, which normally
has to be done by some additional heating device, e.g. by the furnace. However, in the
presented case, if both structures are preheated properly, then the circular plate has so
much accumulated heat, that the structure gets cold sufficiently slowly even without any
additional heating device.

The actual geometry of the fixed beam model is depicted in fig. 2.14 (the eye loops
were used for manipulation). The detail of the fillet weld is presented in fig. 2.15. It is
necessary to note that the color of the plate and the weld is not rust, but it was caused
by submerging of the specimen into the water for purposes of the experimental modal
analysis.

2.10.2 Testing of the fillet weld

The fillet weld represents the crucial part of the fixed beam model. Therefore, a series of
tests were carried out for checking of quality control check of the fillet weld. The non-
destructive testing of the weld was performed before the experimental modal analysis was
carried out. Three methods of non-destructive testing were used for testing of the fillet
weld, the capillary method, which is used for detection of cracks pointing to the surface,
the magnetic powder method, which detects the surface cracks, and the ultrasonic testing
of the weld was used because it can detect the defects within the weld pointing to the
surface. Reports from the testing of the fillet weld by the capillary method and magnetic
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Fig. 2.14: Real geometry of used fixed beam Fig. 2.15: Detail of the fillet weld

powder method are presented in appendices Q and R, respectively.
All three tests, which were performed in the non-destructive testing of the fillet weld

showed that both the count and size of the surface cracks and cracks pointing to the surface
are in agreement with requirements of the standard ČSN EN ISO 5817, which provides
quality levels of imperfections in fusion-welded joints in all types of steel, titanium, nickel
and their alloys. The ultrasonic testing of the fillet weld proved that there were no defects
within the weld that would point to the surface. Based on the standard ČSN EN ISO
5817, the analysed fillet weld belongs to level B, which is the highest level. (Note: The
standard ČSN EN ISO 5817 defines three levels of welded joints, B, C, D, where the level
B represents the welds with the highest quality. There is no level A.)

After the non-destructive testing, the experimental modal analysis with the fixed beam
model was carried out. And after the completion of the experimental modal analysis, the
destructive testing of the fillet weld was carried out. The model was cut to pieces by the
band saw and then the metallographic testing and the hardness test were carried out.
The metallographic testing is performed in order to investigate the internal imperfection,
inclusions and weld cavities. The report from the metallographic testing is presented in
appendix S and the test showed that there are no defects in the fillet weld which are not
permitted by the welding standards.

The last test of the fillet weld of the fixed beam model was the hardness test. The
welding standard defines that the difference between the hardness within the weld joint
measured in two near points should be small, and therefore there should not be any sudden
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changes in the hardness within the weld joint. The hardness test is performed both in
the parent material and in the heat-affected zone. The report from the hardness test is
printed in appendix T and the test did not find any violation of the standard. As same
as in case of the non-destructive testing, the results of the destructive testing showed the
analysed fillet weld belongs to the level B based on the standard ČSN EN ISO 5817.

The testing of the filled weld was an extensive process and it might seem that it was
not necessary to perform all tests. However, the weld joint represents a part of the model
which could significantly influence the results of measurements, and hence the quality of
manufacturing of the weld was very important and it had to be investigated. Therefore
the high quality of the fillet weld, which results from the testing, is a very important
outcome.

2.10.3 Design of experiment

After reading the heading of this section, the reader would be tempted to leaf through
the previous pages, because it may seem, that the section about the determination of the
beam length, which is mentioned in section 2.10.1, is missing. However, it was necessary
to design the experiment before the suitable length of the beam could be determined
because the design of experiments creates boundary conditions for the determination of
the beam length.

The identical polypropylene container, which was used in the experimental modal anal-
ysis of the beam with free ends, was used in measurements with the fixed beam model.
It was necessary to secure that the specimen would not moves during the measurement
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Fig. 2.16: Drawing with design of experiment with fixed beam
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because the tipping or rocking or any other movement of the specimen would negatively
influence the measurement because the results would not be comparable with the numer-
ical model, which would model the fixed beam. Therefore, two steel props were used to
prevent any movement of the circular plate. The tapped holes, which were as well used
for the eye loops depicted in fig. 2.14, were used for correct connection of the plate and
the props. The design of the experiment is presented in fig. 2.16. This configuration
of the experiment was used for measurements with the fixed beam model in air and as
well for the fully submerged specimen in water, which is the configuration depicted in fig.
2.16.

2.10.4 Determination of beam length

The important criterion for the design of the specimen for the second application was
to create a system, which would have distinct damped eigenfrequencies at least for the
first several eigenvalues. It would be possible to perform optimization with many input
parameters to obtain the best possible configuration, however, such analysis would take a
long time. The specimen should model the fixed beam and based on the theory of beam
vibration, the main parameter, which affects the eigenfrequencies is the length of the
beam. Of course, there are other parameters that affect the eigenfrequencies of beams.
However, the influence of decrease of length can be very simply evaluated by measurement,
because it can be achieved by truncation of the beam, which is obviously much simpler
than the prolongation of the beam.

The length of the beam was determined based on a comparison of results of the modal
analysis with different lengths of the fixed beam, which were performed by the Finite
element method. Two types of numerical modal analysis were performed. The first type
of modal analysis used the model of the fixed beam, which is presented in figs. 2.12 and
2.13. The fillet weld was as well modeled. The damping was in analyses in the design stage
neglected. However, since the specimen was made out of steel, it could be assumed that
the damping of the system is small and therefore the resultant undamped eigenfrequencies
should be very close to the damped eigenfrequencies of actual system.

Another type of simulations model the submerged beam similarly to the design of
experiment (fig. 2.16), hence the computational model consists of the fixed beam model
and ambient water. The fillet weld was as well modeled. This type of modal analysis is
called the acoustic modal analysis. The geometry of the fluid domain is the same as in
fig. 2.16, with one exception that the steel props were not model in geometry. The water
level is in all cased 50 mm above the top face of the beam. The structural damping was
neglected, but the damping of the fluid was covered in analyses.

Six variants of the fixed beam model were used in simulations, where the beam lengths
were 550 mm, 500 mm, 450 mm, 400 mm, 350 mm and 300 mm. Used lengths of the beam
are deliberately ordered from the highest to the lowest because the results of numerical
analyses were compared with the results of the experimental modal analysis, where the
beam was truncated between two measurements and therefore it was necessary to perform
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Tab. 2.4: Eigenfrequencies of fixed beam model for different lengths

Length of beam

Mode 550 mm 500 mm 450 mm 400 mm 350 mm 300 mm

1 16,5 20,1 24,8 31,5 41,4 56,6
2 103,6 125,6 155,5 197,4 258,7 353,9
3 160,4 193,7 238,6 300,9 391,1 528,5
4 284,0 313,6 350,0 396,0 456,0 537,3
5 290,0 351,6 435,2 552,3 723,9 989,6
6 568,4 689,1 852,7 1082,0 1387,8 1643,0
7 857,3 947,7 1059,5 1201,5 1417,4 1935,9
8 939,9 1139,2 1389,6 1723,2 2188,0 2837,1
9 955,4 1142,8 1409,1 1787,2 2339,4 2859,7
10 1403,9 1602,5 1797,1 2046,3 2377,1 3190,2
11 1446,3 1701,2 2103,3 2665,5 3456,2 4167,6
12 1959,9 2290,6 2579,5 2953,4 3484,7 4182,6
13 2060,6 2373,9 2794,0 3141,7 3588,2 4741,8
14 2287,6 2515,5 2933,0 3713,1 4651,5 5671,4
15 2494,6 2950,8 3421,2 3942,0 4846,1 6574,1
16 2606,8 3023,1 3539,2 4314,8 5364,0 6829,4
17 2709,0 3155,5 3895,3 4924,8 5983,2 7375,4
18 3343,1 3809,5 4334,2 5027,5 6413,2 8570,1
19 3399,1 4043,7 4986,4 6222,1 7466,0 8868,4
20 4137,3 4657,7 5328,2 6293,7 8153,5 9289,1

Tab. 2.5: Eigenfrequencies of fixed beam model submerged in water for different lengths

Length of beam
Mode 550 mm 500 mm 450 mm 400 mm 350 mm 300 mm

1 11,7 14,2 17,6 22,4 29,6 40,8
2 73,5 89,5 111,2 142,0 187,4 258,5
3 158,8 191,8 236,2 297,9 384,4 453,5
4 208,5 254,1 294,7 333,6 387,3 523,3
5 239,0 263,9 316,4 404,7 535,4 739,9
6 415,3 506,9 632,3 811,2 778,3 777,9
7 722,0 798,5 893,3 1013,8 1172,3 1304,1
8 781,5 853,7 1066,0 1367,2 1649,3 1926,3
9 946,2 1131,8 1376,5 1707,8 2015,2 2285,2
10 1060,8 1297,1 1518,7 1731,6 2128,6 2470,2
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the measurement in the presented order. The first 20 eigenfrequencies determined from
numerical analyses, where solely the beam was modeled, are presented in table 2.4 and
the first 10 eigenfrequencies determined from the acoustic modal analyses are shown in
table 2.5. The mode shapes associated with the eigenfrequencies were as well interpreted
and they are presented in both tables by the color of each cell. Yellow color represents
the bending mode shapes, where the movement of the system is realized in direction of
the axis with a lower moment of inertia of beam cross section. Green color represents the
bending mode shapes, where the movement of the system is realized in direction of the
axis with a higher moment of inertia of the beam cross section and these mode shapes are
in subsequent sections called ”Bending 2”. The torsional mode shapes are marked by red
color and blue color represents the tensile mode shapes.

It was useful to find associate mode shapes to each presented eigenfrequencies because
it is very difficult to excite the mode shapes, marked by green and blue color, and there-
fore it is not necessary to take these mode shape into consideration. The results of the
computational modeling were compared with the measured eigenvalues for each length of
the beam. It was not possible to experimentally determine the eigenfrequencies associ-
ated with the tensile modes shapes and mode shapes called ”Bending 2”. However, for all
other modes of vibration were the results of computational modeling and measurements
in good agreement.

The beam length 400 mm was selected for the second application because all eigen-
frequencies in the analysed range, which can be excited, are well separated and therefore
there was a high odds that all modes of vibration in the analysed ranged should be eval-
uated by the SDOF response fit method.

2.10.5 Determination of eigenvalues from experiments

Fig. 2.17: Actual design of experiment with fixed beam model
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The design of the experiment, which is presented in section 2.10.3, was used for the
experimental modal analysis. The actual setup of the experiment is presented in fig.
2.17. There are several possibilities how to mount the accelerometer to the measured
system, e.g. by beeswax, or screw, which has to be part of the accelerometer. In the
presented case, the accelerometer was attached to the beam by the springy clip. The
clip and the mounting of the accelerometer are depicted in fig. 2.18. The position of the
accelerometer was chosen deliberately to cover both bending and torsional mode shapes.

Fig. 2.18: Attachment of the accelerometer to the specimen

Another measurement with an identical setup but in the steel reservoir (and not in
the polypropylene container) was carried out in order to investigate the effect of the
propylene container on the resultant eigenvalues. The actual configuration of the second
measurement of the fixed beam model is presented in appendix U in figs. U.1 and U.2.
The comparison of results from both setups of the experiment showed that the resul-
tant eigenvalues are identical and therefore the container in the presented case does not
influence the results.

Fig. 2.19: Amplitude spectrum for the fixed beam model in air
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Fig. 2.20: Amplitude spectrum for the fixed beam model in water

The resultant response of the system, measured by accelerometers in the time domain,
were transferred to the frequency domain and acquired amplitude spectrums are depicted
in figs. 2.19 and 2.20 for the fixed beam model in air and for fully submerged beam in
water, respectively. It is not possible to designate the spectrums on the figs. 2.19 and
2.20 as the frequency response functions, because they represent only the response of
the system whereas the frequency response function is defined as the ratio between the
response of the system and the applied force.

The eigenvalues of the system were evaluated by the SDOF response fit method, and
they are presented in tables 2.7 and 2.8 for the fixed beam model in air and in water,
respectively, which are presented in the subsequent section, where are the experimentally
determined eigenvalues compared with results of computational modeling. It was possible
to evaluate all modes of vibration, except the modes associated with the tensile mode
shapes and mode shapes designated as ”Bending 2”, because these modes were not possible
to excite.

2.10.6 Computational model of fixed beam

The second application showed limitations of current implementation of derived algo-
rithms for the solution of the inverse vibration problem. The algorithms were tested in
programming languages MATLAB and Python, which incorporate specialized libraries for
solution of e.g. the direct eigenvalue problem or the homogeneous matrix equations. The
solution of the direct eigenvalue problem with implementation from the libraries is possi-
ble only for limited order of input matrices. This limitation had to be taken into account
and it influenced the size of the computational mesh for the analysis of the fixed beam
model. However, this limitation is connected with the capability of used programming
languages, their used libraries and as well with the limitations in author’s programming
knowledge and skills. Therefore this limitation can be removed by better implementation
of the algorithms.

Because of the limitations of the order of input matrices, the computational model
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had to be reduced and the model, which was used for the determination of the length of
the beam, was not able to use due to the number of DOFs. Therefore, it was necessary to
create a reduced computational model. Several variants of the model’s geometry and size,
which is defined by the number of DOFs, were tested and the resultant eigenvalues were
compared with experimentally evaluated eigenvalues. It was found out that there is no
difference in resultant eigenvalues in analyses with and without the cylindrical plate, but
the weld has to be modeled in order to obtain correct eigenvalues. These outcomes lead
to the simplification of the computational domain and the final computational domain,
which is used for the determination of input matrices to the algorithms for the solution
of the inverse vibration problem, is depicted in fig. 2.21. The fixed boundary condition
was applied to the plane between the weld joint and the cylindrical plate.

6
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7 393

Fig. 2.21: Drawing of computational domain for FEM analysis

Damping was, as same as in application 1, introduced to the analysis with the concept
of proportional damping. Contrary to application 1, the damping matrix is in application
with the fixed beam model proportional not only to the stiffness matrix but as well to
the mass matrix. Such type of damping is called the Rayleigh damping and it is defined
by equation (2.361).

C = ̃︀𝛼M + ̃︀𝛽K (2.361)

Terms ̃︀𝛼 and ̃︀𝛽 are called the mass matrix multiplier and the stiffness matrix multiplier,
respectively.

The beam was made out of steel with the designation S235JR. All material parame-
ters, which were used for FEM computation with computational domain depicted in fig.
2.21, are presented in table 2.6.

The computational mesh, used for discretization of the computational domain pre-
sented in fig. 2.21, consisted of hexahedral elements with quadratic basis function and
each node of the mesh had three translational degrees of freedom. The whole model
contained 5832 DOFs, which defined the order of matrices of the system.

The eigenvalues and damped eigenfrequencies determined in the FEM simulation of
the fixed beam model without ambient fluid are presented in table 2.7. This table contains
not only results of computation, but there also are presented the resultant eigenvalues and
damped eigenfrequencies from experiment with the fixed beam model in air. It is impor-
tant to note the resultant eigenfrequencies presented in table 2.7 are not identical to the
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Tab. 2.6: Material properties of steel used for simulation of fixed beam model

Quantity Value

Density 𝜌 7850 kg m−3

Young’s modulus 𝐸 2,1 × 1011 Pa
Poisson’s ratio 𝜐 0,3
Mass matrix multiplier ̃︀𝛼 1,685 s−1

Stiffness matrix multiplier ̃︀𝛽 1,75 × 10−7 s

eigenfrequencies presented in table 2.4. Table 2.4 presents the results of the simulation,
where the cylindrical plate is modeled and the damping is neglected, therefore, the ta-
ble contains the undamped eigenfrequencies. On the other hand, the eigenfrequencies
in table 2.7 were determined based on computation with computational domain from
fig. 2.21, damping was included in the computation and the table presents the damped
eigenfrequencies.

Tab. 2.7: Results for fixed beam model in air

Experiment Computation

No 𝜆 [rad s−1] Ω𝑑 [Hz] 𝜆 [rad s−1] Ω𝑑 [Hz] Mode shape

1 −0,87 ± 196,43i 31,26 −0,85 ± 198,61i 31,61 Bending
2 −8,03 ± 1230,20i 195,79 −0,98 ± 1242,77i 197,79 Bending
3 — — −1,17 ± 1923,50i 306,13 Bending 2
4 −3,70 ± 2505,38i 398,74 −1,39 ± 2491,17i 396,48 Torsional
5 −17,78 ± 3459,55i 550,60 −1,90 ± 3478,31i 553,59 Bending
6 −4,24 ± 6762,22i 1076,24 −4,91 ± 6814,72i 1084,60 Bending
7 −4,17 ± 7595,45i 1208,85 −5,84 ± 7558,65i 1203,00 Torsional
8 — — −11,42 ± 10 992,37i 1749,49 Bending 2
9 −9,91 ± 11 172,95i 1778,23 −11,93 ± 11 258,27i 1791,81 Bending
10 −6,25 ± 12 933,21i 2058,38 −15,35 ± 12 874,38i 2049,02 Torsional

Even though the results of the experiment and computation are in good agreement,
there are interesting differences between bending and torsional mode shapes. All damped
eigenfrequencies associated with the bending mode shapes determined from the experi-
ment have lower values than eigenfrequencies obtained from the computation. On the
other hand, all damped eigenfrequencies associated with the torsional mode shapes are in
experiment higher than in computation.

Several computations with different setups were tested for understanding and expla-
nation of this phenomenon. It was found out this phenomenon is caused by the geometry
of fillet weld. The actual geometry of fillet weld is depicted in fig. 17 and it is clear from
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this picture that the outline of the weld at the surface of the cylindrical plate is not a
rectangle, which is a case of the computational domain used for the FEM simulations,
but the corners are rounded. The simulation with the modified geometry of the fillet weld
with rounded edges was carried out and the differences between the results of computation
and experiment were similar both for bending and torsional mode shapes.

However, the modified computational domain had to contain with more elements in or-
der to correctly cover the geometry of the fillet weld, and hence the final number of DOFs
exceeds the limit for the current implementation of derived algorithms for the solution of
the inverse vibration problem, which is mentioned at beginning of this section. Therefore,
the computational domain, which is shown in fig. 2.21, was used for the determination
of input matrices for testing of algorithms because the computational mesh consists of an
acceptable number of DOFs and the results are in good agreement with measurement.

The results of the experiment with the fixed beam model, which is fully submerged in
water, are presented in table 2.8. The table contains as well the damped eigenfrequencies
determined by the acoustic modal analysis. The results of experimental modeling and
acoustic modal analysis presented in table 2.8 are in good agreement.

Both tables 2.7 and 2.8, which describe results of computations and experiments with
the fixed beam model, contain also information about the type of mode shape, which is
associated with each eigenvalue. This was very important for understanding why some
eigenvalues are not present in measured data from experiments. Another important point,
why it was necessary to examine the associated mode shapes, is that the eighth eigen-
frequency in air changes the order in the submerged state with the ninth eigenfrequency,
which can be determined only from the investigation of mode shapes. This is a very
important point for the determination of modal and spectral matrices of the FSI problem
and it is more deeply presented in the subsequent section.

Tab. 2.8: Results for fixed beam model in water

Experiment Computation

No 𝜆 [rad s−1] Ω𝑑 [Hz] Ω𝑑 [Hz] Mode shape

1 −2,35 ± 139,34i 22,18 22,45 Bending
2 −19,73 ± 882,71i 140,49 141,95 Bending
3 — — 297,92 Bending 2
4 −12,33 ± 2110,08i 335,83 333,63 Torsional
5 −19,39 ± 2558,22i 407,15 404,68 Bending
6 −19,12 ± 5059,51i 805,25 811,17 Bending
7 −20,68 ± 6409,63i 1020,12 1013,83 Torsional
8 −21,24 ± 8533,97i 1358,22 1367,16 Bending
9 — — 1707,77 Bending 2
10 −35,85 ± 10 951,96i 1743,06 1731,60 Torsional

205



2.10.7 Application of algorithm for inverse vibration problem

It is not possible to print the square matrices of order 5832 on normal paper size and
therefore it is not possible to show the resultant matrices determined by the algorithms
for the solution of the inverse problem for the second application. However, this section
describes the main steps of the algorithms and points out the potential issues, which could
lead to incorrect results.

The second application for testing of derived algorithms for the solution of the inverse
vibration problem was not intended for determination of the structural matrices of the
fixed beam model in air, because the determination of the structural matrices of system,
in which the ambient fluid is neglected, is a well defined problem. However, it was possible
to compare resultant spectral and modal matrices determined directly from the FEM and
from the structural matrices resulting from the solution of the inverse vibration problem.

The application of the algorithm for the full problems, which is described in section
2.6.1, is straightforward in case of the determination of the structural matrices of the
fixed beam model. It is necessary to determine all eigenvalues and eigenvectors of the
system. However, it means that it is necessary in case of the application with the fixed
beam model to obtain 11 664 eigenvalues and eigenvectors, which is two times the number
of DOFs. The procedure of determination of all eigenvalues and eigenvectors is time con-
suming even for such small model. The next steps of algorithm are described in section
2.6.1, however, those steps are also time consuming, because the algorithm in case of the
second application works with square matrices of order 11 664.

Even though the resultant structural matrices are not identical to the input structural
matrices, which were generated by the Finite element method, the spectral matrix and
the modal matrices determined from FEM and from the solution of the inverse vibration
problem contains input eigenvalues and eigenvectors. Nevertheless, it does not mean the
input and output eigenvalues are identical. The values are slightly different due to the
rounding errors. The differences between the input and output eigenvalues in application
with the beam with free ends were irrelevant because all input eigenvalues were distinct.
However, in application with fixed beam model, some of the 11 664 eigenvalues had similar
real and also imaginary parts.

The last step of all algorithms is called ”the verification of solution correctness”. The
solution is identified as correct if all output modes of vibration are in the input spectrum.
If all eigenvalue in the input spectral matrix (or in general case in the Jordan matrix) are
distinct, then it is possible to compare only the eigenvalues of input and output spectral
matrices. However, if the input spectrum contains two eigenvalues with similar real and
also imaginary parts, then it is necessary to compare both eigenvalue and the associated
mode shape of input and output modes of vibration. Therefore, the last step of all algo-
rithms has to be performed carefully in order to verify the correctness of the solution.

It might seem that the algorithm for partial problems with the selection of additional
eigenvalues can be used for the reduction of computational time for the solution of the
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direct problem because it is possible to determine only a few eigenvalues and the others
are selected. Nevertheless, there is no reason for the usage of any algorithm for the solu-
tion of the inverse vibration problem if the direct eigenvalue problem is well defined. The
algorithm for partial problems with the selection of additional eigenvalues was, as same as
the full algorithm, only tested for comparison with results of FEM. Twenty eigenvalues,
which are presented in table 2.7, and their associated eigenvectors were used as the known
modes of vibration. As same as in application 1, the set of additional eigenvalues was
chosen in order to minimize the effect of the additional eigenvectors on the response of the
system, and therefore all additional eigenvalues were negative real numbers and they were
distinct from each other. The spectral matrix of additional eigenvalues Λ has a similar
structure as in the application for the beam with free ends, which is in equation (2.360),
but in application 2 the Λ has order equal to 11 644 and hence the additional eigenvalue
with the highers real part was equal to 𝜆 = (−11 644 + 0i) rad s−1. The output spectral
matrix and modal matrices contain all 20 known modes of vibration and therefore the
output structural matrices were correctly determined.

The main purpose of the second application was to create the matrices of the general
system for the FSI problem with the fixed beam model submerged in water. The usage of
algorithms for the full problems and for partial problems with the selection of additional
eigenvalues is identical to application 1, which is described in sections 2.9.7 and 2.9.8.

In the application of the algorithm for the full problem, the spectral matrix and modal
matrices from FEM simulation with the fixed beam model without ambient fluid are used
for the creation of input matrices. The spectral matrix was adjusted by inserting 16
eigenvalues determined by EMA, which are presented in table 2.8, to proper positions in
the spectral matrix. Based on comparison of tables 2.7 and 2.8 it is clear the eighth eigen-
frequency in air changes the order in the submerged state with the ninth eigenfrequency.
Therefore it was necessary to connect the inserted eigenvalue with the correct associated
eigenvector and then it was necessary to reshape both spectral matrix and modal matrix
of right eigenvectors in order to obtain the input matrices, where the 𝑖-th eigenvalue would
have the associate eigenvector in 𝑖-th column of the modal matrix of right eigenvectors.
The eigenvalue, which was not determined from the experiment, was simply not changed.

The influence of ambient fluid on eigenvectors was assumed to be negligible. There-
fore the modal matrix of right eigenvectors determined from the FEM analysis was used.
Other steps of the algorithm for the full problems were in case of the FSI problem the
same as in case of determination of the general matrices of the beam with free ends, which
was submerged in water.

The application of the algorithm for partial problems with the selection of additional
eigenvalues was as well performed with the assumption that the influence of ambient fluid
on eigenvectors is negligible. The 16 eigenvalues, which were determined from the EMA
was used as know eigenvalues. The same structure of the spectral matrix of additional
eigenvalues Λ was used for the determination of matrices of the general system, hence
11 648 additional eigenvalues were defined. Similarly to the algorithm for the full prob-
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lems, it was necessary to reshape the input matrices, due to alteration of the order of
eigenvalues.

The resultant general matrices of the fixed beam model submerged in water contained
the measured eigenvalues both for algorithms for full problems and partial problems, and
therefore bot algorithms can be used for the determination of matrices in case of the FSI
problems.

2.11 Conclusion and thesis outcomes in inverse vi-
bration problems

The second chapter of this doctoral thesis dealt with the derivation of algorithms for the
solution of the inverse vibration problems and the application of derived algorithms for the
determination of the matrices of the system in case of the fluid-structure interaction. The
inverse vibration problems are closely connected with the direct vibration problem and it
is simply impossible to understand the inverse vibration problems without understanding
the direct vibration problems. Therefore, it was necessary to cover the direct vibration
problems in the first sections of this chapter.

Five types of algorithms for the solution of the inverse vibration problems are presented
in this thesis. The algorithm for the full problems was first presented in paper [116], which
was published by O. Daněk in 1979. The main outcome of this doctoral thesis in a solution
of the inverse vibration problems is derivation of algorithms for the partial problems. The
partial problem represents a case when not all eigenvalues and associated eigenvectors of
the system are known and these problems are more common in engineering practice, and
it could be said that the full problems are very rare in praxis. The algorithms presented
in this thesis are the very first algorithms for the solution of the partial problem. This
thesis presents four algorithms for the solution of the partial problems:

• Algorithm for the partial problems with fat matrices x and z
• Algorithm for the partial problems with thin matrices x and z
• Algorithm for the partial problems with square matrices x and z
• Algorithm for the partial problems with selection of additional eigenvalues

The algorithms for partial problems with fat, thin or square matrices x and z cover all po-
tential configurations of input matrices. However, the eigenvalues and eigenvectors, which
complete the known eigenvalues and eigenvectors, and which are determined within the
algorithm, can have an arbitrary value. Therefore the new system constituted by one
of the algorithms could be negatively affected by the modes of vibration, which are de-
termined within the algorithm, and the resultant behaviour of the new system could be
different in comparison with the original system.

The algorithm for the partial problems with the selection of additional eigenvalues is
not at the same level as the other three algorithms, but it goes over their limits, because
the additional eigenvalues are in the algorithm selected by the user, and the entire area
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of partial problems, which was solved by three algorithms, can be covered by only one
general-purpose algorithm. However, it would not be possible to derive the algorithm
without understanding partial problems with fat, thin or square matrices x and z. There-
fore, the full problems should be solved by the algorithm for the full problems and the
algorithm for the partial problems with the selection of additional eigenvalues should be
used for the solution of the partial problems.

The solution of the inverse problem was an overlooked part of the dynamic. It was
understandable because in a time when the only algorithm for the solution of the full
problems was available, the solution of the inverse vibration problem for the cases with a
higher number of DOFs seemed to be impracticable. However, the solution of the inverse
vibration problem with the algorithm for the partial problems with the selection of addi-
tional eigenvalues use only the fundamental eigenvalues and their associated eigenvectors
as the input to the algorithm and the other modes of vibration are created to not influence
the dynamic behaviour of the system, which is defined by a set of fundamental modes of
vibration. Therefore, it is necessary to emphasize the importance of the algorithm for the
partial problems with the selection of additional eigenvalues, because it could be used for
modeling systems in many areas, where it is not possible to directly derive the general
matrices of the system.

The main disadvantage of all algorithms for the solution of the inverse vibration prob-
lems is that it is necessary to determine the input eigenvalues and eigenvectors. Therefore,
if the eigenvalues and eigenvectors are not known, it is always necessary to build an ex-
periment for real problems. Hence the algorithms cannot be used in the design stage,
where the eigenvalues are not known. Consequently, the algorithms for the solution of the
inverse vibration problem will always be the complementary method, which will be used
in very specific cases. Nevertheless, there are many cases in the field of fluid-structure
interaction, where the measurement of the eigenvalues is often part of the investigation
process. The algorithms for the inverse vibration problems can be employed in such cases.

Another drawback of algorithms for the solution of the inverse vibration problems is
that it is difficult to understand the theory behind the inverse vibration problems, which is
important for the development of the algorithms. It was an interesting fact for the author
that many specialists in the field of dynamics of structures do not know the difference be-
tween the mode shapes and the eigenvectors. And even less of them knows that there are
two types of eigenvectors, the right and left eigenvectors. It is understandable because the
right and left eigenvectors are identical for problems with symmetric structural matrices.
Those problems represent a majority in engineering practice and the problems, in which
the left eigenvectors are dissimilar to the right eigenvectors are not solved very often.
However, it is always useful to know and to understand the most general approaches for
the solution of problems.

The main limitation of the current implementation of derived algorithms for the solu-
tion of the inverse vibration problem is that they can be used only for problems with a
small number of DOFs. The current implementations of derived algorithms were created
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in programming languages Python and MATLAB, which incorporate specialized libraries,
e.g. for the solution of the direct eigenvalue problem. And these libraries are possible to
use only for limited order of input matrices. However, this limitation is connected with
the capability of used programming languages, their used libraries and as well with the
limitations in author’s programming knowledge and skills. Therefore this issue can be
removed by better implementation of the algorithms.

The algorithms for the full problems and for the partial problems with the selection
of additional eigenvalues were tested on two applications. The first application uses the
beam with free ends, which is fully submerged in water. The eigenvalues and eigenvectors
were determined analytically for obtaining the input matrices of small order, which could
be presented in this thesis. This application shows all steps for performing the derived
algorithm.

The second application analyses the fixed beam model submerged in water. The main
purpose of the second application is to show the procedure of solution of the inverse vi-
bration problem with derived algorithms for the problem with a higher number of degrees
of freedom. There are many interesting issues, which have to be solved correctly in order
to obtain the correct solution and they are presented in section 2.10.

Both applications assume that the influence of ambient fluid on the eigenvectors is
negligible. M. C. Junger and D. Feit were the first who determined that the eigenvectors
of structure vibrating in the ambient fluid are different in comparison with eigenvectors
in a vacuum. For cases where the influence of the ambient fluid cannot be neglected, the
general matrices of the FSI problem can be determined from equations (2.187)-(2.189).
It would be interesting to investigate the differences between the output matrices of two
FSI problems, one determined from the eigenvectors in a vacuum and the other created
from eigenvectors in water. The eigenvectors of structure submerged in the fluid can be
determined either from experiment or from the acoustic modal analysis. However, this
research was beyond a scope of this thesis.

The indispensable part of the preprocessing stage for the arrangement of the input
matrices to the algorithms is the determination of the eigenvalues and eigenvectors, which
are most often obtained from the experimental modal analysis. There are many existing
methods for the determination of the modal parameters. Both applications employed the
SDOF response fit method, which is described in section 2.8.4. Even though the SDOF
methods are not used in modern software tools for identification of the modal parameters
of systems from the EMA, the SDOF response fit method has an interesting potential,
because the algorithm of the method is very simple and the method yields accurate results
in comparison with original measured data and as well with the Circle-Fit Method.

There is still a lot of work in the development of algorithms for the solution of the
inverse vibration problems before it would be possible to use them for real problems,
where the discretization of the computational domain should be performed by hundreds
of thousands or even millions of elements. However, the application of algorithms for the
solution of the inverse vibration problems can be used in situations, where the other con-
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ventional methods are not able to provide any solution. And above all the algorithm for
the partial problems with the selection of additional eigenvalues provides very interesting
possibilities in the modeling complex problems, such as the fluid-structure interaction.
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NOMENCLATURE

Acronym Description Unit

C complex numbers [1]

R real numbers [1]

𝛼 real part of eigenvalue [rad s−1], [Hz]

̃︀𝛼 mass matrix multiplier [s−1]

𝛼𝑖 right eigenvector in 2𝑁 space [1]

̃︀𝛼𝑖 right eigenvector in state space [1]

𝛽 stiffness multiplier [s]

𝛽 angle for derivation in 1.5.1 [rad]

̃︀𝛽 stiffness matrix multiplier [s]

𝛽𝑖 left eigenvector in 2𝑁 space [1]

̃︀𝛽𝑖 left eigenvector in state space [1]

Γ diagonal matrix [1]

𝛾 nullity of matrix [1]

Δp pressure difference [Pa]

𝛿 substitution term [s]

𝛿𝑖𝑗 Kronecker delta [1]

𝛿𝑠𝑡 deflection under the static force [m]

𝜀 eccentricity ratio [1]

𝜀 angle for derivation in 1.5.1 [rad]

𝜀𝑖𝑗𝑘 Levi-Civita tensor [1]

𝜁 damping ratio [1]

𝜁ax axial flow friction factor in annular seal [1]

𝜂 dynamic viscosity [Pa s]

𝜂𝜔 frequency ratio [1]
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𝜂𝑇 turbulent viscosity [Pa s]

𝜂 efficiency of pump [1]

Θ conversion matrix [N]

𝜃 substitution term [m−4]

𝜄 auxiliary term [N2 m−2]

𝜅 attitude matrix [1]

𝜅𝑖 substitution term [1]

Λ𝑖 additional eigenvalue [rad s−1]

Λ Jordan matrix with additional eigenvalues [rad s−1]

𝜆 eigenvalue [rad s−1]

𝜈 kinematic viscosity [m2 s−1]

𝜉 rotation around vertical axis [rad s−1]

𝜋 mathematical constant 𝜋 .= 3,141 592 653 59 [1]

𝜌 density [kg m−3]

𝜎𝑖𝑗 Cauchy stress tensor [Pa]

𝜍 substitution term [s m−4]

τ time [s]

ϒ characteristic of annular seal ϒ = 𝜁𝑎𝑥𝐿/𝐶𝑟 [1]

𝜐 Poisson’s ratio [1]

𝜑 rotation around horizontal axis [rad s−1]

𝜙 angular coordinate of moving coordinate system [rad]

𝜙 angular coordinate of polar coordinate system [rad]

𝜙𝑅𝑆𝐼 initial phase of RSI force [rad]

𝜙 substitution vector [1]

𝜒 pre-swirl ratio [1]

Ψ flow coefficient [1]
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Ψ angle for derivation in 1.5.1 [rad]

Ψ transformation matrix [1]

Ω𝑑 damped eigenfrequency [rad s−1], [Hz]

Ω𝑑,1 first damped eigenfrequency [rad s−1], [Hz]

Ω𝑤 whirl-frequency ratio [1]

Ω whirl frequency [rad s−1]

Ω0 undamped eigenfrequency [rad s−1], [Hz]

Ω vector of whirl frequency [rad s−1]

𝜔 angular velocity, frequency [rad s−1]

𝜔𝑖𝑛𝑠 running speed for onset of instability [rad s−1]

𝜔n critical speed of rotor in air [rad s−1]

𝜔 vector of angular velocity [rad s−1]

A area [m2]

Ai constant of integration [1]

𝐴 point on rotor surface

𝑟𝐴𝑗𝑘 modal constant of 𝑟-th mode of vibration [s−1]

A matrix of system in state space [1]

a number of rows of matrix

a distance between centre of stator and point 𝐴 [m]

a vector of initial conditions in 2𝑁 space [1]

𝐵 horizontal distance between centre of stator and cen-
tre of rotor

[m]

𝐵𝑟 complex constant of 𝑟-th mode of vibration [s−1]

Bi constants of integration [1]

b number of columns of matrix

b vector of excitation in state space [1]

𝐶 vertical distance between centre of stator and and
point 𝐴

[m]
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C , cxx , cyy direct added damping [kg s−1]

̃︀C , c𝜑𝜑, c𝜉𝜉 direct added rotational damping [kg m s−1]

Cr clearance [m]

C * dimensionless direct added damping [1]

C,Cij damping matrix of system [kg s−1]

̂︀C, ̂︀Cij damping matrix of general system [kg s−1]

c, cxy, cyx cross-coupled added damping [kg s−1]

c𝜑x , c𝜑y, c𝜉x , c𝜉y cross-coupled added damping due to displacement [N s m−1]

̃︀c, c𝜑𝜉, c𝜉𝜑 cross-coupled added rotational damping [kg m s−1]

cx𝜑, cx𝜉, cy𝜑, cy𝜉 cross-coupled added damping due to rotation [N s rad−1]

c* dimensionless cross-coupled added damping [1]

𝑐𝑐 critical damping [kg s−1]

𝑐 damping of SDOF system [kg s−1]

cprop proportional damping [kg s−1]

c, cij added damping matrix [kg s−1]

̃︀c, ̃︀cij damping matrix of rotor [kg s−1]

𝐷𝑟 complex constant of 𝑟-th mode of vibration [s−2]

Di constants of integration [1]

D arbitrary diagonal matrix [1]

d vector of generalized displacement for homogeneous
equation

[m], [rad]

ḋ vector of generalized velocity for homogeneous
equation

[m s−1], [rad s−1]

E Young’s modulus [Pa]

e eccentricity [m]

𝑟𝐸𝑗𝑘 complex constant of 𝑟-th mode of vibration [1]

erot eccentricity of rotor [m]
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es steady-state rotor eccentricity [m]

F0 amplitude of excitation force [N]

Fr radial force component [N]

Fr/e restitution force coefficient [N m−1]

FRSIx magnitude of horizontal component of RSI force [N]

FRSIy magnitude of vertical component of RSI force [N]

F *
r dimensionless radial force component [1]

𝑟𝐹 𝑗𝑘 modal constant of 𝑟-th mode of vibration for SDOF
approach

[1]

Fr ,B radial force generated by the Bernoulli effect [N]

Fr ,L radial force generated by the Lomakin effect [N]

Ft tangential force component [N]

Ft/e tangential force coefficient [N m−1]

F *
t dimensionless tangential force component [1]

Fx horizontal force component [N]

F0x horizontal component of hydraulic radial force [N]

Fy vertical force component [N]

F0y vertical component of hydraulic radial force [N]

F,Fi vector of force [N]

F0 vector of hydraulic radial force [N]

̃︀Fexp vector of complex amplitudes of force [N]

FRSI vector of RSI force [N]

f external force per unit length [N m−1]

fΩ whirl-to-rotation ratio [1]

f , fi vector of generalized (external) forces [N], [N m]

g multiplicity of respective eigenvalue [1]

𝐺 complex constant of 𝑟-th mode of vibration [1]
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g vector of excitation in 2𝑁 space [1]

g gravity [1]

H film thickness [m]

H conjugate transpose of a matrix

𝐻𝑗𝑘 frequency response function [1]

H head of pump [m]

H matrix having ones in the superdiagonal and zeros
elsewhere

[1]

ℎ𝑗𝑘 impulse response function [1]

h arbitrary constant [1]

h vector of constant coefficients [1]

hexp complex mobility matrix [N m−1]

I moment of inertia of beam cross section [m4]

I identity matrix [1]

J Jordan matrix [rad s−1]

̂︀J Jordan matrix of structure submerged in fluid [rad s−1]

K , kxx , kyy direct added stiffness [N m−1]

̃︁K , k𝜑𝜑, k𝜉𝜉 direct added rotational stiffness [N]

K * dimensionless direct added stiffness [1]

K,Kij stiffness matrix of system [N m−1]

̂︁K,̂︁Kij stiffness matrix of general system [N m−1]

k, kxy, kyx cross-coupled added stiffness [N m−1]

̃︀k, k𝜑𝜉, k𝜉𝜑 cross-coupled added rotational stiffness [N]

kx𝜑, kx𝜉, ky𝜑, ky𝜉 cross-coupled added stiffness due to rotation [N rad−1]

k𝜑x , k𝜑y, k𝜉x , k𝜉y cross-coupled added stiffness due to displacement [N m rad−1]

k* dimensionless cross-coupled added stiffness [1]

𝑘 stiffness of SDOF system [N m−1]
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k, kij added stiffness matrix [N m−1]

̃︀k, ̃︀kij stiffness matrix of rotor [N m−1]

kexp complex stiffness matrix [N m−1]

𝐿 substitution complex constant [1]

Ls length of rotor in annular seal [m]

l length of beam [m]

Mb bending moment [N m]

M , mxx , myy direct added mass [kg]

̃︁M , m𝜑𝜑, m𝜉𝜉 direct added rotational mass [kg m]

Mr radial moment component [N m]

M * dimensionless direct added mass [1]

MT torque [N m]

Mt tangential moment component [N m]

Mx yawing moment [N m]

My pitching moment [N m]

M z moment of force about 𝑧 axis [N m]

M,Mij mass matrix of system [kg]

̂︁M, ̂︁Mij mass matrix of general system [kg]

M,M i vector of moment of force [N m]

mexp weight of rotor [kg]

mj component of external normal vector [1]

m, mxy, myx cross-coupled added mass [kg]

̃︁m, m𝜑𝜉, m𝜉𝜑 cross-coupled added rotational mass [kg m]

mx𝜑,mx𝜉,my𝜑,my𝜉 cross-coupled added mass due to rotation [N s2]

m𝜑x ,m𝜑y,m𝜉x ,m𝜉y cross-coupled added mass due to displacement [N s2 m]

m* dimensionless cross-coupled added mass [1]
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𝑚 mass of SDOF system [kg]

m,mij added mass matrix [kg]

̃︁m,̃︁mij mass matrix of rotor [kg]

N number of degrees of freedom [1]

Nb number of impeller blades [1]

N matrix of system in 2𝑁 space [1]

n revolutions per minute [min−1]

n vector of generalized displacement for homogeneous
equation

[m], [rad]

ṅ vector of generalized velocity for homogeneous
equation

[m s−1], [rad s−1]

O point in free body diagram 2.8

o constant [1]

o vector of system response in 2𝑁 space for homoge-
neous equation

[1]

Pi additional functions derived by A. N. Krylov [1]

P matrix of system in 2𝑁 space [1]

p pressure [Pa]

pin static pressure on inlet to the pump [Pa]

pout static pressure on outlet of the pump [Pa]

Q shear force [N]

Qm mass flow rate [kg s−1]

Q auxiliary matrix [1]

q vector of system response in 2𝑁 space for homoge-
neous equation

[1]

R radius of rotor in annular seal [m]

Rimpeller outer radius of impeller [m]

Rstator radius of stator [m]

Re Reynolds number [1]
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Re* combined Reynolds number [1]

Reax axial Reynolds number [1]

Rec critical value of Reynolds number [1]

ReΩ whirl Reynolds number [1]

Re𝜔 circumferential Reynolds number [1]

R rotation matrix [1]

r radial coordinate of moving cartesian coordinate sys-
tem

[m]

r radial coordinate of polar coordinate system [m]

rrot amplitude of rotor whirl motion [m]

r, ri position vector [m]

S surface [1]

S(x) Krylov function [1]

S spectral matrix [rad s−1]

Sdiag vector of main diagonal of spectral matrix [rad s−1]

̂︀Sdiag vector of main diagonal of spectral matrix of structure
submerged in fluid

[rad s−1]

s eigenvalue [rad s−1]

T transpose of matrix

Ta Taylor number [1]

Tac critical value of Taylor number [1]

T (x) Krylov function [1]

T modal matrix of additional right eigenvectors [1]

T𝑖 additional right eigenvector [1]

𝑡 time [s]

t* tangential coordinate of moving cartesian coordinate
system

[m]

t tangential coordinate of polar coordinate system [m]
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U1 circumferential velocity of stator [m s−1]

U2 circumferential velocity of rotor [m s−1]

U (x) Krylov function [1]

U vector of circumferential velocity [m s−1]

u, uj vector of generalized displacement [m], [rad]

u̇, u̇j vector of generalized velocity [m s−1], [rad s−1]

ü, üj vector of generalized acceleration [m s−2], [rad s−2]

u0 vector of initial generalized displacement [m], [rad]

̃︀uexp vector of complex amplitudes of displacement [N]

V1 radial velocity of stator [m s−1]

V2 radial velocity of rotor [m s−1]

V (x) Krylov function [1]

vax axial velocity [m s−1]

vax axial velocity averaged over seal clearance [m s−1]

vcir circumferential velocity [m s−1]

vcir ,inlet circumferential velocity at inlet to seal averaged over
seal clearance

[m s−1]

vcir circumferential velocity averaged over seal clearance [m s−1]

vi component of velocity vector [m s−1]

v𝐴 vector of velocity on rotor surface [m s−1]

v0 vector of initial generalized velocity [m s−1], [rad s−1]

W amplitude of transverse displacement [m]

w transverse displacement [1]

w vector of system response in 2𝑁 space [1]

X modal matrix of right eigenvectors in 2𝑁 space [1]

̃︁X modal matrix of right eigenvectors in state space [1]

x horizontal coordinate [m]
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xi coordinate attitude vector [m]

x first half of modal matrix of right eigenvectors in 2𝑁
space

[1]

x𝑖 first half of right eigenvector in 2𝑁 space [1]

̂︀x first half of modal matrix of right eigenvectors of struc-
ture submerged in fluid in 2𝑁 space

[1]

̃︀x first half of modal matrix of right eigenvectors in state
space

[1]

̃︀x𝑖 first half of right eigenvector in state space [1]

y vertical coordinate [m]

Y complex constant [m]

yh solution of homogeneous linear differential equation [1]

yp particular solution of nonhomogeneous linear differen-
tial equation

[1]

y+ dimensionless wall distance [1]

y vector of system response in state space [1]

Z complex constant [m]

Z modal matrix of left eigenvectors in 2𝑁 space [1]

̃︀Z modal matrix of left eigenvectors in state space [1]

z axial coordinate [m]

z first half modal matrix of left eigenvectors in 2𝑁 space [1]

z𝑖 first half of left eigenvector in 2𝑁 space [1]

̂︀z first half of modal matrix of left eigenvectors of struc-
ture submerged in fluid in 2𝑁 space

[1]

̃︀z first half of modal matrix of left eigenvectors in state
space

[1]

̃︀z𝑖 first half of left eigenvector in state space [1]

× cross product

+ pseudoinverse matrix

L () Laplace transform of ()
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L −1() inverse Laplace transform of ()

BC Boundary condition(s)

CFD Computational Fluid Dynamics

DFT Discrete Fourier transform

DOF degree(s) of freedom

EMA Experimental modal analysis

FDM Finite difference method

FEM Finite element method

FFT Fast Fourier transform

FRF Frequency response function

FSI Fluid-structure interaction

FVM Finite volume method

IRF Impulse response function

ISG impeller sidewall gap

MDOF Multi-degree-of-freedom

RANS Reynolds-averaged Navier-Stokes equations

RSI Rotor-stator interaction

RSM Reynolds-stress turbulence model

SDOF Single-degree-of-freedom

SST Shear-Stress Transport k-𝜔 turbulence model

TDR Turbulence dissipation rate

TKE Turbulence kinetic energy
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A TESTING OF PRESSURE INLET BC

Tab. A.1: Overview of tested inlet total pressures and resultant static pressures from CFD
analysis 1

Laminar flow Turbulent flow

𝑝𝑖𝑛,𝑎𝑛,𝑡𝑜𝑡 [Pa] 𝑝𝑖𝑛,𝑎𝑛 [Pa] 𝑝𝑖𝑛,𝑎𝑛,𝑡𝑜𝑡 [Pa] 𝑝𝑖𝑛,𝑎𝑛 [Pa]

3 513 383 1 930 249,0 3 513 383 3 013 022,6
7 000 000 3 247 114,9 4 000 000 3 390 583,0
7 600 000 3 457 761,6 4 100 000 3 467 268,4
7 700 000 3 492 587,9 4 120 000 3 482 569,6
7 750 000 3 509 968,8 4 140 000 3 497 863,1
7 759 500 3 513 275,4 4 160 000 3 513 141,3
7 759 600 3 513 310,1 4 160 100 3 513 217,6
7 759 700 3 513 344,8 4 160 200 3 513 296,0
7 759 800 3 513 379,5 4 160 300 3 513 372,4
7 759 809 3 513 382,6 4 160 313 3 513 382,3
7 759 810 3 513 382,9 4 160 314 3 513 383,1
7 759 811 3 513 383,3 4 160 315 3 513 383,9
7 759 900 3 513 414,2 4 160 400 3 513 448,8
7 760 000 3 513 448,9 4 160 500 3 513 525,2
7 770 000 3 516 910,9 4 180 000 3 528 414,3
7 780 000 3 520 392,1 4 200 000 3 543 683,5
7 790 000 3 523 874,2 4 300 000 3 619 824,0
7 800 000 3 527 319,1 4 400 000 3 695 725,9
7 900 000 3 561 909,3 4 500 000 3 771 369,0
8 000 000 3 596 476,9 5 000 000 4 146 134,7
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Tab. A.2: Overview of tested inlet total pressures and resultant static pressures from CFD
analysis 2

Laminar flow Turbulent flow

𝑝𝑖𝑛,𝑎𝑛,𝑡𝑜𝑡 [Pa] 𝑝𝑖𝑛,𝑎𝑛 [Pa] 𝑝𝑖𝑛,𝑎𝑛,𝑡𝑜𝑡 [Pa] 𝑝𝑖𝑛,𝑎𝑛 [Pa]

3 513 383 1 747 033,1 3 513 383 2 600 490,7
7 000 000 3 114 441,4 4 000 000 2 991 371,5
8 000 000 3 475 014,5 4 650 000 3 498 768,2
8 050 000 3 491 033,4 4 660 000 3 506 473,0
8 100 000 3 508 767,3 4 668 900 3 513 327,6
8 113 000 3 513 376,3 4 668 950 3 513 366,0
8 113 019 3 513 383,0 4 668 972 3 513 383,0
8 113 050 3 513 394,0 4 690 000 3 513 404,5
8 113 100 3 513 411,7 4 670 000 3 514 174,3
8 150 000 3 526 475,2 4 680 000 3 521 871,4
8 200 000 3 544 164,2 4 690 000 3 529 565,5
8 250 000 3 561 816,7 4 700 000 3 537 255,5
9 000 000 3 824 183,2 5 000 000 3 766 328,7
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B ANALYSIS 1 - TURBULENT FLOW

, , , , , , , ,

Fig. B.1: Components of force in analysis 1 for 𝑓Ω = 0,5 in case of turbulent flow
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,
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Fig. B.2: Components of force in analysis 1 for 𝑓Ω = 0,75 in case of turbulent flow
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Fig. B.3: Components of force in analysis 1 for 𝑓Ω = 1 in case of turbulent flow
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Fig. B.4: Components of force in analysis 1 for 𝑓Ω = 1,25 in case of turbulent flow
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Fig. B.5: Components of force in analysis 1 for 𝑓Ω = 1,5 in case of turbulent flow
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Fig. B.6: Regression analysis for 𝐹𝑟 in analysis 1 in case of turbulent flow
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Fig. B.7: Regression analysis for 𝐹𝑡 in analysis 1 in case of turbulent flow
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C ANALYSIS 1 - LAMINAR FLOW

, , , , , , , ,

Fig. C.1: Components of force in analysis 1 for 𝑓Ω = 0,5 in case of laminar flow

, , , , , ,

Fig. C.2: Components of force in analysis 1 for 𝑓Ω = 0,75 in case of laminar flow
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Fig. C.3: Components of force in analysis 1 for 𝑓Ω = 1 in case of laminar flow

, , , , , , ,

Fig. C.4: Components of force in analysis 1 for 𝑓Ω = 1,25 in case of laminar flow
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Fig. C.5: Components of force in analysis 1 for 𝑓Ω = 1,5 in case of laminar flow
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Fig. C.6: Regression analysis for 𝐹𝑟 in analysis 1 in case of laminar flow
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Fig. C.7: Regression analysis for 𝐹𝑡 in analysis 1 in case of laminar flow
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D ANALYSIS 2 - TURBULENT FLOW

, , , , , , , ,

Fig. D.1: Components of force in analysis 2 for 𝑓Ω = 0,5 in case of turbulent flow

, , , , , ,

,

,

,

,

,

,

,

,

Fig. D.2: Components of force in analysis 2 for 𝑓Ω = 0,75 in case of turbulent flow
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Fig. D.3: Components of force in analysis 2 for 𝑓Ω = 1 in case of turbulent flow
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Fig. D.4: Components of force in analysis 2 for 𝑓Ω = 1,25 in case of turbulent flow
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Fig. D.5: Components of force in analysis 2 for 𝑓Ω = 1,5 in case of turbulent flow
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Fig. D.6: Regression analysis for 𝐹𝑟 in analysis 2 in case of turbulent flow
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Fig. D.7: Regression analysis for 𝐹𝑡 in analysis 2 in case of turbulent flow
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E ANALYSIS 2 - LAMINAR FLOW

, , , , , , , ,

Fig. E.1: Components of force in analysis 2 for 𝑓Ω = 0,5 in case of laminar flow

, , , , , ,

Fig. E.2: Components of force in analysis 2 for 𝑓Ω = 0,75 in case of laminar flow
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Fig. E.3: Components of force in analysis 2 for 𝑓Ω = 1 in case of laminar flow

, , , , , , ,

Fig. E.4: Components of force in analysis 2 for 𝑓Ω = 1,25 in case of laminar flow
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, , , , , ,

Fig. E.5: Components of force in analysis 2 for 𝑓Ω = 1,5 in case of laminar flow

Fig. E.6: Regression analysis for 𝐹𝑟 in analysis 2 in case of laminar flow
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Fig. E.7: Regression analysis for 𝐹𝑡 in analysis 2 in case of laminar flow
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F ANALYSIS 3

, , , , , , , ,

Fig. F.1: Components of force in analysis 3 for 𝑓Ω = 0,5

, , , , , ,

Fig. F.2: Components of force in analysis 3 for 𝑓Ω = 0,75
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Fig. F.3: Components of force in analysis 3 for 𝑓Ω = 1

, , , , , , ,

Fig. F.4: Components of force in analysis 3 for 𝑓Ω = 1,25
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Fig. F.5: Components of force in analysis 3 for 𝑓Ω = 1,5
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Fig. F.6: Regression analysis for 𝐹𝑟 in analysis 3
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Fig. F.7: Regression analysis for 𝐹𝑡 in analysis 3
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G ANALYSIS 4

, , , , , , , ,

Fig. G.1: Components of force in analysis 4 for 𝑓Ω = 0,5

, , , , , ,

Fig. G.2: Components of force in analysis 4 for 𝑓Ω = 0,75
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Fig. G.3: Components of force in analysis 4 for 𝑓Ω = 1

, , , , , , ,

Fig. G.4: Components of force in analysis 4 for 𝑓Ω = 1,25
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Fig. G.5: Components of force in analysis 4 for 𝑓Ω = 1,5
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Fig. G.6: Regression analysis for 𝐹𝑟 in analysis 4
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Fig. G.7: Regression analysis for 𝐹𝑡 in analysis 4
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H ANALYSIS 5 - PERIODS OF MOVEMENT

H.1 Positions of rotor for whirl frequency Ω = 0,5𝜔

Ω

ω

Fig. H.1: Initial position (𝑡 = 0) Fig. H.2: 1st period of rotation (𝑡 = 2𝜋/𝜔)

Fig. H.3: 2nd period of rotation (𝑡 = 4𝜋/𝜔)
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H.2 Positions of rotor for whirl frequency Ω = 0,75𝜔

Ω

ω

Fig. H.4: Initial position (𝑡 = 0) Fig. H.5: 1st period of rotation (𝑡 = 2𝜋/𝜔)

Fig. H.6: 2nd period of rotation (𝑡 = 4𝜋/𝜔) Fig. H.7: 3rd period of rotation (𝑡 = 6𝜋/𝜔)

Fig. H.8: 4th period of rotation (𝑡 = 8𝜋/𝜔)
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H.3 Positions of rotor for whirl frequency Ω = 𝜔

Ω

ω

Fig. H.9: Initial position (𝑡 = 0) Fig. H.10: 1st period of rotation (𝑡 = 2𝜋/𝜔)
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H.4 Positions of rotor for whirl frequency Ω = 1,25𝜔

Ω

ω

Fig. H.11: Initial position (𝑡 = 0) Fig. H.12: 1st period of rotation (𝑡 = 2𝜋/𝜔)

Fig. H.13: 2nd period of rotation (𝑡 = 4𝜋/𝜔) Fig. H.14: 3rd period of rotation (𝑡 = 6𝜋/𝜔)

Fig. H.15: 4th period of rotation (𝑡 = 8𝜋/𝜔)
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H.5 Positions of rotor for whirl frequency Ω = 1,5𝜔

Ω

ω

Fig. H.16: Initial position (𝑡 = 0) Fig. H.17: 1st period of rotation (𝑡 = 2𝜋/𝜔)

Fig. H.18: 2nd period of rotation (𝑡 = 4𝜋/𝜔)
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I ANALYSIS 5 - FORCE ON ROTOR WITHIN AN-
NULAR SEAL

,
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, , , , , , , ,

Fig. I.1: Components of force on rotor in the annular seal for 𝑓Ω = 0,5
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, , , , , ,

Fig. I.2: Components of force on rotor in the annular seal for 𝑓Ω = 0,75
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Fig. I.3: Components of force on rotor in the annular seal for 𝑓Ω = 1
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Fig. I.4: Components of force on rotor in the annular seal for 𝑓Ω = 1,5
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J ANALYSIS 5 - FREQUENCY SPECTRA OF FORCE
ON ROTOR WITHIN ANNULAR SEAL

Fig. J.1: Frequency spectrum of horizontal force component on rotor in the annular seal
for 𝑓Ω = 0,5

Fig. J.2: Frequency spectrum of vertical force component on rotor in the annular seal for
𝑓Ω = 0,5
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Fig. J.3: Frequency spectrum of horizontal force component on rotor in the annular seal
for 𝑓Ω = 0,75

Fig. J.4: Frequency spectrum of vertical force component on rotor in the annular seal for
𝑓Ω = 0,75
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Fig. J.5: Frequency spectrum of horizontal force component on rotor in the annular seal
for 𝑓Ω = 1

Fig. J.6: Frequency spectrum of vertical force component on rotor in the annular seal for
𝑓Ω = 1
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Fig. J.7: Frequency spectrum of horizontal force component on rotor in the annular seal
for 𝑓Ω = 1,5

Fig. J.8: Frequency spectrum of vertical force component on rotor in the annular seal for
𝑓Ω = 1,5
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K ANALYSIS 5 - MATHEMATICAL MODEL OF
FORCE ON ROTOR WITHIN ANNULAR SEAL

, , , , , , , ,
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,

Fig. K.1: Mathematical model of horizontal force component on rotor in the annular seal
for 𝑓Ω = 0,5
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, , , , , , , ,

Fig. K.2: Mathematical model of vertical force component on rotor in the annular seal
for 𝑓Ω = 0,5
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Fig. K.3: Mathematical model of horizontal force component on rotor in the annular seal
for 𝑓Ω = 0,75
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, , , , , ,

Fig. K.4: Mathematical model of vertical force component on rotor in the annular seal
for 𝑓Ω = 0,75
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, , , , , , , ,

Fig. K.5: Mathematical model of horizontal force component on rotor in the annular seal
for 𝑓Ω = 1

, , , , , , , ,

Fig. K.6: Mathematical model of vertical force component on rotor in the annular seal
for 𝑓Ω = 1
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Fig. K.7: Mathematical model of horizontal force component on rotor in the annular seal
for 𝑓Ω = 1,5
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Fig. K.8: Mathematical model of vertical force component on rotor in the annular seal
for 𝑓Ω = 1,5
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L ANALYSIS 5 - COMPONENTS OF HYDRAULIC
REACTION FORCE

, , , , , , , ,

Fig. L.1: Components of hydraulic reaction force in the annual seal in analysis 5 for
𝑓Ω = 0,5

, , , , , ,

Fig. L.2: Components of hydraulic reaction force in the annual seal in analysis 5 for
𝑓Ω = 0,75
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, , , , , , , ,

Fig. L.3: Components of hydraulic reaction force in the annual seal in analysis 5 for 𝑓Ω = 1

, , , , ,

Fig. L.4: Components of hydraulic reaction force in the annual seal in analysis 5 for
𝑓Ω = 1,5
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M STRUCTURAL MATRICES OF BEAM WITH
FREE ENDS - FULL PROBLEM

Sdiag =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0,12 + 662,57i
−0,12 − 662,57i
−0,93 + 1824,94i
−0,93 − 1824,94i
−3,59 + 3580,52i
−3,59 − 3580,52i
−9,81 + 5918,81i
−9,81 − 5918,81i

−21,89 + 8841,66i
−21,89 − 8841,66i
−42,70 + 12 349,06i
−42,70 − 12 349,06i
−75,69 + 16 440,98i
−75,69 − 16 440,98i

−124,87 + 21 117,38i
−124,87 − 21 117,38i
−194,84 + 26 378,20i
−194,84 − 26 378,20i
−290,76 + 32 223,35i
−290,76 − 32 223,35i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

rad s−1 (M.1)

S = diag(Sdiag
𝑇 ) (M.2)
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N GENERAL MATRICES OF BEAM WITH FREE
ENDS SUBMERGED IN WATER - FULL PROB-
LEM

̂︀Sdiag =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0,78 + 465,95i
−0,78 − −465,95i
−1,36 + 1305,80i
−1,36 − −1305,80i
−2,06 + 2615,44i
−2,06 − −2615,44i
−9,81 + 5918,81i
−9,81 − −5918,81i

−21,89 + 8841,66i
−21,89 − −8841,66i
−42,70 + 12 349,06i
−42,70 − −12 349,06i
−75,69 + 16 440,98i
−75,69 − −16 440,98i

−124,87 + 21 117,38i
−124,87 − −21 117,38i
−194,84 + 26 378,20i
−194,84 − −26 378,20i
−290,76 + 32 223,35i
−290,76 − −32 223,35i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

rad s−1 (N.1)

̂︀S = diag(̂︀Sdiag
𝑇 ) (N.2)
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⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
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̂︁ M
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⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦10
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̂︁ K=
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O STRUCTURAL MATRICES OF BEAM WITH
FREE ENDS - PARTIAL PROBLEM

Sdiag =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0,12 + 662,57i
−0,12 − −662,57i
−0,93 + 1824,94i
−0,93 − −1824,94i
−3,59 + 3580,52i
−3,59 − −3580,52i
−9,81 + 5918,81i
−9,81 − −5918,81i

−21,89 + 8841,66i
−21,89 − −8841,66i
−1,00 + 0,00i
−2,00 − 0,00i
−3,00 + 0,00i
−4,00 − 0,00i
−5,00 + 0,00i
−6,00 − 0,00i
−7,00 + 0,00i
−8,00 − 0,00i
−9,00 + 0,00i

−10,00 − 0,00i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

rad s−1 (O.1)

S = diag(Sdiag
𝑇 ) (O.2)
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P GENERAL MATRICES OF BEAM WITH FREE
ENDS SUBMERGED IN WATER - PARTIAL PROB-
LEM

̂︀Sdiag =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0,78 + 465,95i
−0,78 − −465,95i
−1,36 + 1305,80i
−1,36 − −1305,80i
−2,06 + 2615,44i
−2,06 − −2615,44i
−9,81 + 5918,81i
−9,81 − −5918,81i

−21,89 + 8841,66i
−21,89 − −8841,66i
−1,00 + 0,00i
−2,00 − 0,00i
−3,00 + 0,00i
−4,00 − 0,00i
−5,00 + 0,00i
−6,00 − 0,00i
−7,00 + 0,00i
−8,00 − 0,00i
−9,00 + 0,00i

−10,00 − 0,00i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

rad s−1 (P.1)

̂︀S = diag(̂︀Sdiag
𝑇 ) (P.2)
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Q TESTING OF WELD - MAGNETIC POWDER
METHOD
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F-PP 14-013 sheet 1/ 2

Basic data about the tested object

Name of the part Sample No.

Drawing number

Place of testing

Welder number

NDT requirement

Testing assignment:

Test method:

Details of the test object

Weld After repair After welding Blasted

Weld root Before heat treatment   Stained       

Basic material After heat treatment Grinding

Inner side             Other 

Outer side        

Details of test equipment and test conditions

Type Rank Application Time

Method                          color Degreaser *** spraying ***

Intensity of white light  500 lx Penetrant *** spraying 15 min

Surround temperature       19°C Cleaner *** abrasion ***

Developer *** spraying 2; 15 min

Finding

Note

Evaluation

Admissibility criteria          Attachment / image

Satisfies All is OK

Not suitable

Testing technician

Qualification level

Card number Date: 08.03.2019

The report may be reproduced only in its entirety and only with the consent of the testing laboratory. The results relate only to the above-mentioned test items.

Surface condition

ČSN EN ISO 23 277 level 2

MP

Level II

101-00521

1 nonlinear

No. Type Size in mm Location

nonlinear 3 see annex

3 see annex

2

***

***

Thickness of the material

Welding method

Quality verification of welded joints.

EN ISO 17 638

Protocol on NDT test by magnetic powder method
No. 03/19

Diffu-therm BRE

Diffu-therm BDR

Diffu-therm BRE

Diffu-therm BRE

Material

Weld type

Test performedTested

***Fixed beam

***

Laboratory of Victor Kaplan 

Department of Fluid Engineering

***

FILLET WELD

6 ; 40

135
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Příloha k protokolu č. No. 03/19

Drawing, photo:
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R TESTING OF WELD - CAPILLARY METHOD
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F-PP  14-015 sheed 1/ 2

Basic data about the tested object

Name of the part Sample No.

Drawing number

Place of testing

Welder number

NDT requirement

Testing assignment:

Test method:

Details of the test object

Weld After repair After welding Blasted

Weld root Before heat treatment   Stained       

Basic material After heat treatment Grinding

Inner side             Other 

Outer side        

Details of test equipment and test conditionsí

Type Rank Application Time

Method                          color Degreaser *** spraying ***

Intensity of white light  500 lx Penetrant *** spraying 15 min

Surround temperature       19°C Cleaner *** abrasion ***

Developer *** spraying 2; 15 min

Finding

Note

Evaluation

Admissibility criteria          Attachment / image

Satisfies All is OK

Not suitable

Testing technician

Qualification level

Card number Date: 11.03.2019

The report may be reproduced only in its entirety and only with the consent of the testing laboratory. The results relate only to the above-mentioned test items.

ČSN EN ISO 23 277 stupeň 2

MP

Level II

101-00521

Location

nonlinear 3 see annex1

Diffu-therm BRE

Diffu-therm BDR

Diffu-therm BRE

No. Type Size in mm

135

Quality verification of welded joints.

EN ISO 3452-1

Tested Test performed Surface condition

Fixed beam ***

Protocol on NDT test by capillary method
No. 01/19

2 nonlinear 3 see annex

*** Material ***

Laboratory of Victor Kaplan 

Department of Fluid Engineering
Weld type FILLET WELD

*** Thickness of the material 6 ; 40

Diffu-therm BRE

*** Welding method
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Annex to the Protocol No. 01/19 sheed 2/2

Drawing, photo:

indikace 2 indikace 1

319





S TESTING OF WELD - METALLOGRAPHIC TEST
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F PP - LS 14 - 018

    stamping       forging        casting workpiece

X

X

Sheet (metal base)                    t = 40 mm

Sheet metal (vertical profile)              t = 6 mm

Operator:   

Signature:

Examined samples No. 1 and No. 2 have no internal defects. 

ME/006/2020

Used instruments, meters:

20.7.2020

Joint material thickness:                                                 

External order:

Date:

Posuvné měřítko, č.kalibrace: 689/93 

Mikroskop, v.č.1113090200007 

PROTOCOL FROM METALLOGRAPHIC TESTING

Manufacture, welding and composition of parts and aggregates

SAMPLE No. 1 and No. 2                            
Ing. MICHAL HAVLÁSEK                                                  

VUT BRNO

Rated:

Number of protocol:

Welded construction:

Aggregate:

Pages No.: 31 Total of 

pages

Material defects

Defect part "B"

Defect part "C"

Dimension defects

Determination of state after measurement and testing

OK COMPLIES WITH STANDART

Evalution of measurement, comments

Defects of composition

Mistakes of outward process

Mistakes of termic process

Other defects

Exact determination of defects  ( location, number, importance )

IWE

Preparation of samples for metallographic cutting

Elementary categories of defects

Product according to technical documentation / OK
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F-PP-LS 14-018

Page 2 Total of 

pages 3

    

           

METALLOGRAPHIC SPECIMEN samples 1 and 2                                                                                                                       
CONTRACTING AUTHORITY:                                                                                      

VUT BRNO, Ing. MICHAL HAVLÁSEK

MEASURING PROTOCOL

Metallographic specimen
IMAGES OF WELDING JOINTS AND GEOMETRIC 

DIMENSIONS OF WELDS OF MEASURED SAMPLES
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T TESTING OF WELD - HARDNESS TEST
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HARDNESS TEST IN WELDED METAL-HEAT AFFECTED ZONE-BASIC MATERIAL  
 

1 
 

sheed 1/2 

Protocol:  HV-007/20 

HARDNESS TEST IN THE FIELD OF WELDING JOINT                       

Client:      VUT BRNO / Ing. MICHAL HAVLÁSEK 

                                                  

PROCESSED FOR:  VUT BRNO 

Cutting method: Band saw  

PART:  Sample No. 2 - two welds  

OPERATOR / DATE : IWE / 3. 3.2020 
 

  

   

Hardness test according to: EN ISO 9015-1   / method: HV10 

Ussed device:  Dura Scan 20GS   serial number: #DS521706 
                     

             

      

t=6mm 

 t=40mm 

18 
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HARDNESS TEST IN WELDED METAL-HEAT AFFECTED ZONE-BASIC MATERIAL  
 

2 
 

 

                sheed 2/2 

Protocol:  HV-007/20        

   

MEASURED VALUES HV: 

 

 

 

  

                                                                     

 

 

                                                                                                                                                 

 

 

 

 

 

 

 

Result. 

Welding did not significantly change the hardness of the material either in the weld metal or in the 

heat affected zone, so as to affect the dynamic strength of the joint in the test process. 

 

 

 

1 HV    160 

2 HV    178 

3 HV    186 

4 HV    187 

5 HV    188 

6 HV    181 

7 HV    170 

8 HV    176 

9 HV    172 

10 HV    159 

11 HV    157 

12 HV    158 

13 HV    185 

14 HV    191 

15 HV    205 

16 HV    180 

17 HV    153 

18 HV    146 
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U SETUP OF EXPERIMENT IN STEEL RESER-
VOIR

Fig. U.1: 2nd configuration of experiment Fig. U.2: Detail of fixed beam
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