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ABSTRACT 

 

Jute is an important natural fiber which has a great potential to produce multipurpose products 

in daily routine life. Unprocessed raw fiber is being utilized as an input source to textile sector 

for products with high mechanical properties. Jute is one of the longest and most commonly 

used natural fibers for various technical applications. It is obtained from the inner bark of the 

plant's stem. Jute is being known as Golden Fiber due to its golden and silky shine. These 

fibers are composed of the plant materials like cellulose (major component of plant fiber) and 

lignin (major components of wood). In this specific study, inexpensive jute fibrous waste has 

been utilized to extract the cellulose particles.  

Oxidation of cellulosic materials is required in many fields like textile processing, natural fiber 

reinforced composites and medical utilization etc. In present study, jute fibers were treated 

with ozone gas to remove lignin for further utilization of these oxidized fibers. 

This study was designed to explore the possibility of ozone treatment as a greener oxidation 

process of jute fibers. Ozone gas was being used for the treatment of jute fibers for different 

time periods in a humid atmosphere.  

Several characterization techniques, namely physical appearance, fiber mechanical properties, 

copper number, Fourier Transform Infrared (FTIR) spectroscopy, Wide-angle X-ray diffraction 

(WAXD), scanning electron microscopy (SEM), moisture regain percentage and lightness 

values (L) were used to assess the effect of ozone treatment on jute fibres. Results showed that 

fiber tensile properties weaken gradually as a function of ozone treatment time and surface 

functional groups alter accordingly. Physically the fiber bundles were split into brittle single 

fibers and the lightness value increased from brownish shade to lighter colour. 

It was clear that physical properties of jute fibers were degraded drastically after certain time 

of treatment and chemical properties were changed with the change in functional groups 

present in the fiber morphology. Ozone degrades lignin and slightly solubilizes the 

hemicellulose fraction, improving resultant fiber morphology for further use. It was concluded 

in this research that ozonation is a very good and greener substituent of chemical oxidation of 

cellulose fibers especially jute. 

In subsequent step, untreated, chemical (alkali) and ozone pre-treated jute fibers were 

hydrolyzed by cellulase enzymes for separation of longer jute micro crystals (JMC). The 
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influence of non-cellulosic contents on the enzyme hydrolysis and morphology of obtained 

micro crystals was presented. 

Later, jute micro crystals were incorporated into poly (lactic acid) matrix to prepare composite 

films by solvent casting. The reinforcement behavior was evaluated from tensile tests, dynamic 

mechanical analysis, and differential scanning calorimetry. 

In the end, a good level of agreement for maximum reinforcement was confirmed at certain 

percentage of loading of JMC when compared with predicted values from different mechanical 

models. 

Quadratic regression was applied to the actual values of tensile modulus of composites 

corresponding to volume fraction of reinforcement and the obtained prediction model was 

developed using generalized rule of mixture. This model can be used for the prediction of the 

system properties. 
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ABSTRAKT 

 

Juta je důležité přírodní vlákno, které má velký potenciál pro výrobu víceúčelových výrobků v 

každodenním běžném životě. Nezpracované surové vlákno je využíváno jako vstup v textilním 

odvětví pro produkty s dobrými mechanickými vlastnostmi. Juta je jedním z nejdelších a 

nejčastěji používaných přírodních vláken pro různé technické aplikace. Získává se z vnitřních 

vrstev stonku rostliny. Juta je známa jako ―zlaté vlákno‖ díky své zlatému odstínu a 

hedvábnému lesku. Vlákna juty se skládají z rostlinných materiálů jako je celulóza (hlavní 

složka rostlinných vláken) a ligninu (hlavní složky dřevní hmoty). V této konkrétní studii byl 

použit vláknitý odpad juty k extrakci částic celulózy. 

Oxidace celulózových materiálů je důležitá v mnoha oblastech např. při zpracování textilií, 

kompozitních materiálů z přírodních vláken a využití v lékařství atd. V této studii jutová 

vlákna byla vystavena účinku ozónu pro odstranění ligninu k dalšímu využití takto 

oxidovaných vláken. 

Tato studie byla navržena tak, aby bylo možné zkoumat možnost úpravy ozónem jako 

ekologičtější oxidační proces jutových vláken. Ozón byl používán k úpravě jutových vláken po 

různou dobu expozice a to za přítomnosti vody. 

Získané vlastnosti jutových vláken byly analyzovány pro posouzení účinku ozónu pomocí 

např. změn fyzikálních vlastností, mechanických vlastností vláken, měďného čísla, Fourier 

Transform Infrared (FTIR) spektroskopie, širokoúhlé rentgenové difrakce (WAXD), rastrovací 

elektronové mikroskopie (SEM), procenta vlhkosti a hodnoty jasu vzorků (L). Výsledky 

ukázaly, že pevnost v tahu vláken postupně klesá v závislosti na době zpracování a dochází 

také ke změnám funkčních skupin v povrchu účinkem ozónu. Ze svazků vláken se oddělily 

jednotlivé vláken a došlo k zesvětlení nahnědlého odstínu vláken. 

Je jasné, že fyzikální vlastnosti jutových vláken se drasticky mění po expozici ozónu. Mění se i 

chemické vlastnosti jutových vláken, což se projevuje změnami funkčních skupin ve vlákně. 

Ozón degraduje lignin a mírně napadá frakce hemicelulózy, což má za následek zlepšení 

výsledné morfologie vláken pro další použití. Z provedeného výzkumu plyne, že ozonizace je 

velmi dobrá a ekologičtější náhrada chemické oxidace celulózových vláken, zejména juty. 

V následujícím kroku jsou neupravená, chemicky (alkalicky) a ozónem opravená vlákna juty 

hydrolyzována celulázovými enzymy pro separaci celulózových mikrokrystalů z juty (JMC). 



Cellulose Micro Particles from Jute 2016 

 

xiii 

 

Byl prezentován vliv necelulózových složek na enzymovou hydrolýzu a morfologii získaných 

mikrokrystalů. 

Následně byly mikrokrystaly juty začleněny do matrice z kyseliny polymléčné pro přípravu 

kompozitní fólie litím. Chování výztuže bylo hodnoceno na základě zkoušky pevnosti v tahu, 

dynamické mechanické analýzy a diferenční skenovací kalorimetrie. 

Byla potvrzena dobrá míra shody mezi zvýšením pevnosti kompozitu přídavkem JMC a 

predikovanými  hodnotami z různých mechanických modelů. 

Kvadratická regrese byla aplikována na aktuální hodnoty modulu pružnosti kompozitu v 

závislosti na objemu frakce výztuže a pomocí zobecněného pravidla směsi byl získán predikční 

model. Tento model lze využít pro predikci vlastností kompozitního systému. 
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 خلاصہ

ٹ

َ

 
 
ٹپ

 

 َ  سکی سنوعات ب سانے ک س ل سے سہ سمعمول سکی سزندگی سکی سمختلف سنوعیتری  سرشہ  سے  سو  سمارر  سرزز سمز سیک  سی سم  سُد س

س سکا سبنیاد  سرشہ  سٹیکسٹائل سکی سصنعت سمیں سیچھی سطاقت سزیلی سمضبوط سنوعات ب سانے ک سبہت سیچھی سصلاحیت سرکھتا سے ۔ سی ٹ

ٹ

َ

 
 
ٹ ل سے سخام سمال س ل سطور سپر سیستعمال سہوتا سے  س۔ سپ

 

 َ نوعات ب س ل سے سیستعمال سہو ک سزیلے سسب س ستکنیکی سمختلف س س

پودے سکی سچھال س ل سیندرزنی سخلیوں سسے س سرشہ  س س ک سزیلے سریشوں سمیں سسے سیک  سے ۔یہسے سلمبے سیزر سزیادہ سیستعمال سہو

یپنی سسنہر  سیزر سریشمی سچمک سکی سزجہ سسے س" سسنہرے سریشے" س ل سطور سپر سمعرزف سے ۔ س سیزر سحاصل سکیا سجاتا سے   

 س ل س

 

 َ  س

َ

 
 
 س)لکڑ  سسیلولوز س)پودزں س ل سریشوں سٹیہ سریشے سپ

 

ن

 

ل گن

ٹکا سبنیاد  سجز( سکا سمُر سکا سبنیاد  سجز س( سیزر س ّ
 

 سہوے  سیں۔۔ سک

ٹ سیزرس سمذکورہ ستحقیقی سمطالعہ سمیں سسیلولوز سمائیکرزی ٹ

َ

 
 
ٹنینو سذریب سحاصل سکر ک س ل سے سپ

 

 َ  س ل سستے  سائع  سدہہ سریشوں س س

  کو سیستعمال سکیا سگیا۔

ٹس سسیلولوز سکی ستکسید سبہت سسارے سشعبوں سبشمول سٹیکسٹائل سپرزسیسنگ، سقدری  سریشوں سسے سمضبوطی سلینے سزیلے سکمپوز ٹ

ٹ  
ّ
 

ٹ سیستعمایزر سط

َ

 
 
ٹلاب سزغیرہ سمیں سمطلوب سے ۔ سپ

 

 َ ٹ س

ل 

 سکودزر سکر ک س ل سے سیززز س ل سریشوں سمیں سوجو د س

 

ن

 

گن

گیس س سن

یب سحاصل سکر ک س ل سے سیستعمال سکیے سجا سسکیں۔ سنینو سیزرمائیکرز سزیںریشے سبعد سی ٹ سیستعمال سکی سگئی ستا سکہ سزہ س
 
ذر   

ٹ

َ

 
 
ٹپ

 

 َ  سکیا سگیا سھا ستّب سیس سقیق ک سکر سمُرتکسید س ل سیمکاناب سکو ستلاش سکر ک س ل سے س س ل سریشوں سکی سماولل سدزت  سمل  س

ٹجس سمیں سریشوں سکو سیک  سمر

َ

 
 
ٹطوب سماولل سمیں سمختلف سیزقاب س ل سساتھ سیزززن سگیس س ل سساتھ سرکھا سگیا۔ سپ

 

 َ  س ل س س

ریشوں سپر سیزززن سگیس سکا سیثر سجانچنے س ل سے سمختلف ستریکیب سیستعمال سکی سگئیں سجِن سمیں سجسمانی سخدزخال سکا سمعائنہ، سمیکانی س



Cellulose Micro Particles from Jute 2016 

 

xv 

 

گ سخصوصیاب، سکاپر سنمبر

 

 ن
سکن
سفا رم سینفریریڈ سسپیکٹرز سسکوپی، سزیئیڈ سیینگل سییکس سرے سڈیئی سفریکشن، س

 

ن
، سفوریئر سٹری

ٹ
 
نگت سکی ستبدیلی سشامل سیں۔۔ سنتائج سسے سظاہر سہوی سکہ سیلیکٹرین سمائیکرز سسکوپی، سنمی سدزبار سہ سحاصل سکر ک سکی سخصوصیت سیزر سر

تھ سی  سطحی  سعالل سروزپوں سمیں سریشوں سکی سطاقت س ل سخویص سمیں سیزززن سگیس س ل سمل سسے سبتدریج سکمی سہوئی سیزر سسا

ڈ

َ  

 
ّ
ٹبھی ستبدیلی سزقوع سپذیر سہوئی سیزر سظاہر  سطورپر سریشوں س ل سب

 

 

 
ہ سل س

 

ڈسن
  
ڈہ سعَل

  
زیحد سریشوں سمیں ستقسیم سہوے  سہ سیززر سعَل

  گئے۔ سریشوں سکی سرنگت سبھی سگہرے سبھورے سرنگ سسے سبدل سکر سہلکے سبھورے سرنگ سمیں ستبدیل سہوی  سگئی۔

ٹ

َ

 
 
ٹپ

 

 َ ٹ س
 
َ

ی سخصوصیاب سکمز سریشوں سکی س

بعّ

زر سیزرخریب سہو ک س ل سساتھ سساتھ سین س ل سیندر سوجو د سعالل سروزپوں س ل س

 س ل سخاتمے س ل سساتھ سساتھ سہیمی س سی تبدیل سہو ک سسے سکیمیائی سخصوصیاب سبھی ستبدیل سہو

 

ن

 

ل گن

گئیں۔ سیزززن سگیس س ک س

یب سحاصل سکر ک س ل
 
وجززں سہو سگئیں۔ س سےسیلولوز سکا سکچھ سحصہ سبھی ستحلیل سکر سدیا سجس سسے سریشوں سکی سخصوصیاب سذر

ٹ سیس

َ

 
 
ٹقیق ک سسے سیہ سنتیجہ سیخذ سکیا سگیاکہ سیزززن سگیس سکا سمل سسیلولوز سریشوں سخاص سطور سپر سپ

 

 َ  سکی سمل  ستکسید س ل سے س س

  کیمیائی سمل  ستکسید سکا سیک  سماولل سدزت  سنعم سیلبدل سے ۔

ٹبعد سی ٹ

َ

 
 
ٹزیں سپ

 

 َ  س س ل سخام سریشوں، سکیمیائی سمل  ستکسید سکیے سگئے سریشوں سیزر سیزززن س ل سذرعے  سمل  ستکسید سکیے سگئے س

ٹ

َ

 
 
ٹریشوں سکی سسیلولیز سخامرزں سکی سمدد سسے سآب سپاشیدگی سکی سگئی ستا سکہ سپ

 

 َ یب س س
 
 س ل سسبتاًللمبے سیزر سزیادہ سکارآمد سمائیکرز سذر

وجو د س ل سیندر سحاصل سکیے سجا سسکیں۔ سیس سطرح سسیلولیز سخامرزں س ل سذرعے  سآب سپاشیدگی س ل سمل سمیں سریشوں  
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ٹ سسیلو سلوز ک سوجید سکا سیثر سپیش سکیا سگیا۔ سپھر سین سحاصلغیر س
 
کس سمیں سڈیل سکر سیب سکو سپولی سلیکٹک سییسڈ س ل سمیٹر دہہ سمائیکرز سذر

ٹکمپوز ٹ

ف 

ل سسکیننگ سٹ س

 

ش

 

ی ن

م ستیار سکی سگئی سجس سکی سطاقت سمیں ستبدیلی سکا سیندیزہ سمیکانی ستجرباب، سمتحرک سمیکانی ستجزیہ سیزر سڈیفر

ل

  کیلور  سمیٹر  سسے سکیا سگیا۔

یی  سکمک س ل سنتیجے سمیں سحاصل سدہہ سی سآخر سمیں سکمپوز ٹ
 
بتدیئی سمعامل سکا سمختلف سمیکانی سماڈلوں س ل سپیش سگوئی سٹ س ل سیندر سذر

ٹقدیرکردہ سی
ّ ُ

یی  سکمک سکی سیک  سخاص سفی سصد  س)ح
 
( سداریر س ا سین سمیں سابلی م سمعاہ ہ سپایا س ل سساتھ سوجیزنہ سکیا سگیا ستو سذر

 گیا۔

ٹکمپوز ٹ
ّ ُ

یی  سکمک س ل ستناسب س)فی سصد  سح
 
شا ئل سمعامل س ل سیزپر سوریر  سرت ک سکا سیٹ سمیں سذر

 

ن ن 

َ

ن
صول س( سیزر سحاصل سدہہ س

ٹلاگو سکرے  سہوئے سمُر ّ
 

 ل س سٹکمپوز ٹتیار سکردہ س س ل سمومی  سقادےے س ل سیستعمال س ل سحت  سیک  سماڈل ستیار سکیا سگیا سو ک

کر ک س ل سے سیستعمال سہو سسکتا سے ۔ سپیش سگوئیٹ ل سمتعلّقخویص س  

  

 

:مطلوبہ سیم  سیلفاظ  

ٹسیلو 

َ

 
 

ٹ سلوز، سخامرزں س ل سذرعے  سآب سپاشیدگی، سپ

 

 َ تکسید، سیزززن س، سمل س  س   
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CHAPTER 1 

INTRODUCTION 

With the rise of living standards of people the demand for textiles has increased 

significantly in the last few decades. However, the increased demands also brought the 

challenges to cater the disposal of significant amount of wastes generated during the 

processing. Generally textile wastes are classified as either pre-consumer or post-

consumer textile waste. Pre-consumer textile waste is the leftovers or byproducts from 

textile, fiber-or cotton industries. On the other hand, post-consumer textile wastes are 

the wastes of textile products such as fleece, flannel, corduroy, cotton, denim, wool, and 

linen. These wastes are generally discarded as landfills or incinerated as an alternative 

fuel source. In recent years, research on recycling and reuse of textile wastes, instead of 

landfilling or incineration, has gained a lot of importance due to the increased awareness 

of environmental concerns (Wang 2006), (Horrocks 1996). This is because, textiles in 

landfill biodegrade to form methane gas which is released into the air and is not suitable 

for human consumption. Similarly incineration of textile wastes leads to release of toxic 

fumes which are hazardous in nature. European Union (EU) typically being more 

progressive on environmental issues have implemented laws (Directive 2000/53/CE) to 

prevent the landfilling of waste materials. 

In the context of environment protection and current disposal of the textile 

wastes, it becomes essential to recover useful products from the wastes for economic 

reasons. Traditionally, textile wastes are converted to individual fiber stage through 

cutting, shredding, carding, and other mechanical processes (Horrocks 1996; Wang 

2006). The fibers are then rearranged into products for applications in garment linings, 

household items, furniture upholstery, automotive carpeting, automobile sound 

absorption materials, carpet underlays, building materials for insulation and roofing felt, 

and low-end blankets. In this way, textile waste industries were emerged typically as 

shredders, shoddy producer, laundry and wiping rag producer. However, due to recent 

increase in competition and reduced profit margins in these industries, it has become 

important to search for new recycling techniques of waste textiles in order to utilize 

them for high end applications. One such interesting way is to separate the nanofibrils or 

Nano crystals from the textile wastes and subsequently incorporate them as fillers into 
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high performance composite materials (Klemm et al. 2006; Yuen et al. 2009; Khalil et 

al. 2012). In this way, the exploration of these inexpensive industrial fiber wastes as bio 

resource for making industrial products will open new avenues for the utilization and at 

the same time add value to the creation of economy. 

Among various raw materials, cellulose fibers are popularly used in the textile 

industry due to their high aspect ratio, acceptable density, good tensile strength and 

modulus (Yuen et al. 2009). These properties make them attractive class of textile 

materials traditionally used in manufacture of yarn by spinning process. But, due to 

certain limitations of the spinning process, shorter fibers (i.e. below 10 mm) generated 

during mechanical processing are not suitable to reuse in yarn manufacture and 

consequently result into the waste (Yuen et al. 2009). Generally fibers have been used 

for variety of applications depending on their length (Stevens and Müssig 2010).Here 

the idea of separation of nanostructures from waste fibers and subsequently 

incorporating them as fillers in nanocomposite films could provide cost-effective 

solutions to the struggling textile industries. 

The micro/nanostructures of cellulose have gained significant amount of 

importance due to its higher mechanical properties. The crystalline segments in cellulose 

have a greater axial elastic modulus than the synthetic fiber Kevlar, and their mechanical 

properties are within the same range as those of other reinforcement materials such as 

carbon fibers, steel wires and carbon nanotubes (Klemm et al. 2006; Khalil et al. 2012). 

The nanostructures of cellulose are considered as bundles of molecules which are 

elongated and stabilized through hydrogen bonding. The remarkable improvements in 

mechanical properties of cellulose nanostructures, in range of 130-170 GPa, are 

considered due to this parallel arrangement of molecular chains which are present 

without folding (Klemm et al. 2006). Previous work on composites made from cellulose 

nanostructures showed improved strength and stiffness with a little sacrifice of 

toughness, reduced gas/water vapor permeability, lower coefficient of thermal 

expansion, and increased heat deflection temperature (Dufresne et al. 1999; Khalil et al. 

2012). These properties thus could promise in replacement of conventional petroleum 

based composites by new, high performance, and lightweight green nanocomposite 

materials. 
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Figure 1. Classification of Different Textile Fibers 

Nanocomposites are a relatively new generation of composite materials where at 

least one of the constituent phases has one dimension of less than 100 nm (Klemm et al. 

2006). This new family of composites is reported to exhibit remarkable improvements in 

material properties when compared to conventional composite materials. The small size 

of the reinforcement leads to an enormous surface area and thereby to increased 

interaction with the matrix polymer on molecular level, leading to materials with new 

properties. Well dispersed nano particles can improve tensile properties and even 

improve the ductility because their small size does not create large stress concentrations 

in the matrix. The small size also increases the probability of structural perfection and 

will in this way be a more efficient reinforcement compared to micro sized 

reinforcements (Dufresne et al. 1999).  

The utilization of different types of cellulosic wastes has been studied in the past 

in order to obtain cellulose nanostructures at reasonably lower cost. The variety of 

agricultural wastes like coconut husk fibers (Rosa et al. 2010), cassava bagasse 

(Pasquini et al. 2010), banana rachis (Zuluaga et al. 2009), mulberry bark (Li et al. 

2009), soybean pods (Wang and Sain 2007), wheat straw and soy hulls (Alemdar and 

Sain 2008)and cornstalks (Reddy and Yang 2005)are investigated for extraction of 

cellulose nanostructures. However, there is no information available in literature on 
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utilization of cellulosic wastes of textile industries in spite of large amount of short 

fibers are generated during the mechanical processing of yarn manufacture. 

Although the cellulose nanostructures have a great potential for reinforcement 

into biopolymers, the major challenge in order to use them is the extraction. The variety 

of techniques like acid hydrolysis (Liu et al. 2010), enzymatic hydrolysis (Satyamurthy 

et al. 2011), ultrasonication (Li et al. 2012), high pressure homogenization (Leitner et al. 

2007), etc. have been employed. However, most of these techniques used in the 

extraction are time consuming, expensive in nature and low in yields (Klemm et al. 

2006). The commonly used strong acid hydrolysis method has a number of important 

drawbacks such as potential degradation of the cellulose, corrosivity and environmental 

incompatibility (Thomas and Pothan 2009). In order to promote the commercialization 

of cellulose nanofibrils, the development of more flexible and industrially viable 

processing technique is needed. The core part of thesis describes the enzymatic 

hydrolysis of jute fibers pretreated with ozone gas in a controlled atmosphere as a 

practical and greener method to disintegrate the jute fibrous waste to obtain longer micro 

crystals of cellulose in bulk quantity.  

Due to limited availability of petroleum resources and increased concerns over 

disposal from clean environment point of view, research on renewable materials have 

gained importance in recent years (Klemm et al. 2006; Khalil et al. 2012). Within the 

period of 2005 and 2009, global market on the demand of biodegradable polymers was 

double in size. Among all countries in the World, Europe had the largest growth in the 

range of 5–10 % on the use of biodegradable polymers in 2009. Moreover, the total 

consumption of biodegradable polymers has been grown at an average annual rate of 

nearly 13 % from 2009 to 2014 in North America, Europe and Asia (Platt 2006). 

Nowadays significant amount of research is being carried out to further increase the 

market potentials of these materials by reducing their higher price and by improving 

their properties for different applications. The development of biocomposite materials 

by incorporation of renewable reinforcing elements is considered as one of the favorable 

solution to meet these requirements (Klemm et al. 2006).  

Over the last two decades, reinforcement potentials of lignocellulose fibers have 

been investigated in numerous studies of biocomposites made from PLA (Lunt 1998; 

Petersen et al. 2001; Petersson and Oksman 2006; Sanchez-Garcia et al. 2008; Jonoobi 
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et al. 2010). However, the reinforcement potentials of lignocellulose fibres are found not 

enough to meet demands of high performance applications. In addition, there is no clear 

trend in improvement of mechanical properties after addition of lignocellulosic fibres 

(Petersen et al. 2001; Petersson and Oksman 2006; Jonoobi et al. 2010). For instance, 

Oksman (Oksman et al. 2003) produced 30 wt. % flax fibre reinforced PLA 

biocomposites where only little improvement in tensile strength from 50 MPa to 53 MPa 

and significant improvement in initial modulus from 3.4 GPa to 8.3 GPa was reported. 

On the contrary Plackett (Plackett et al. 2003) found the significant improvement in 

tensile strength from 55 MPa to 100 MPa and similar improvement in initial modulus 

from 3.5 GPa to 9.4 GPa for 40 wt. % loading of jute fibres into the biopolymer PLA. In 

another study, Bax and Mussig (Bax and Müssig 2008) also used 30 wt. % flax fibres to 

reinforce PLA where tensile strength was improved from 44.5 MPa to 54.1 MPa and 

initial modulus was improved from 3.1 GPa to 6.31 GPa.  

This pattern of non-consistent improvements in properties of lignocellulosic 

fibres composites are explained due to the variations in properties of lignocellulosic 

fibres derived from different resources (Dufresne et al. 1999; Klemm et al. 2006). Table 

1 shows the properties of different types of fibers (Mohanty et al. 2005). As the 

individual lignocellulosic fibres are made from the packing of several micro/nano 

cellulose fibrils together, the number of defects present in the structure varies from 

source to source. One of the basic ideas to further improve fiber and composite 

properties is to eliminate the macroscopic flaws by disintegrating the fibers, and 

separating the almost defect-free, highly crystalline nanofibrils. This can be achieved by 

exploiting the hierarchical structure of the natural fibers (Klemm et al. 2006; Yuen et al. 

2009; Khalil et al. 2012). 
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Table 1. Mechanical properties of textile fibers (Mohanty et al. 2005) 

 

 

1.1. Morphology of lignocellulose fibers 

Lignocellulose fibers are basically constituted of cellulose, lignin and 

hemicellulose. Each fiber is essentially a composite in which rigid cellulose micro fibrils 

are embedded in a soft matrix mainly composed of lignin (Mohanty et al. 2005). The 

chemical composition as well as the morphological microstructure of fibers is extremely 

complex due to the hierarchical organization of the different compounds present at 

various compositions. Depending on the type, the chemical composition of 

lignocellulose fiber varies (Table 2).  
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Table 2. Chemical composition of textile fibers (Mohanty et al. 2005) 

 

 

Cellulose is main lignocellulosic component of cell wall in plants along with 

hemicellulose, lignin, pectin and waxes (Rowell 2012). The simple molecular structure 

of cellulose is given in figure 2. Cellulose is linear polymer of β-d-

anhydroglucopyranoside with 1, 4 β-glycosidic linkage. The structure is supported by 

the free secondary OH groups at C-2, C-3 position and primary OH group at C-6 

position (Rowell 2012).  

Hemicellulose is a generic term for the various polysaccharides other than 

cellulose found in native plants (Fig. 2). They are amorphous polysaccharides which are 

composed from a mixture of carbohydrates comprising 3-6 membered units (Rowell 

2012). They consist of polysaccharides of comparatively low molecular weight built up 

from hexoses, pentoses and uronic acid residues. The chemical composition of 

hemicelluloses is extraordinarily similar to cellulose (e.g. polymers of various pentoses 

such as xylose, arabinose, and hexoses like glucose, mannose, galactose, etc.).The main 

parts are straight chain of d-xylose residues, with two side branches of d-xylose 

residues. In addition there are other side branches formed from single residues of 4-0-

methyl glucoronic acid, to the extent of one for every seven xylose units. 

Lignin is a complex dendritic network of phenyl propene which acts as binder in 

cellulose fiber to give the exact morphology for plant cell wall (Rowell 2012). The main 
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repeat unit is 3-(4-hydroxy phenyl) prop-2-eneol having a methoxyl group in the ortho 

position of the phenolic ring (Fig. 2). Lignin is considered to be a thermoplastic polymer 

exhibiting a glass transition temperature of around 90
o
 C and melting temperature of 

around 170
o
C. 

Pectin is a generic term for a group of polysaccharides characterized by high 

uronic acid content, the presence of methyl ester groups, and measurable quantity of 

acetyl esters. It is heteropolysaccharide of 1-4 linked galacturonic acid with methyl 

esters of different sugar units (Rowell 2012). 

 

 

Figure 2. Molecular structure of cellulose, hemicellulose and lignin 

 

A single lignocellulose fiber consists of several cells (except in cotton). These 

cells are formed out of cellulose-based crystalline micro fibrils, which are connected to a 

complete layer by amorphous lignin and hemicellulose (Fig. 3). To form a multiple layer 

composite lignocellulosic fiber, multiples of such cellulose–lignin–hemicellulose layers 

in one primary and three secondary cell walls stick together. About several hundred to 

10 million of glucose units condense to form a straight chain of a polysaccharide unit in 

the form of cellulose nanofibrils. The free OH groups in one polysaccharide thread have 

higher possibilities to form hydrogen bonds with another thread. Therefore a number of 
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nanofibrils bind through intermolecular hydrogen-bonding with each other to form 

microfibers and then to microscopic cellulose fibers. 

 

 

 

Figure 3. Hierarchical structure of cellulose extracted from plants(Rojas et al. 2015) 

The study (Kalia et al. 2011) regarded the micro fibril itself as being made up of 

a number of crystallites, each of which separated by a para crystalline region and later 

termed it as elementary fibril. According to this concept, the elementary fibril is formed 

by the association of many cellulose molecules, which are linked together in repeating 

lengths along their chains. In this way, a strand of elementary crystallites is held together 

by parts of the long molecules reaching from one crystallite to the next, through less 

ordered inter-linking regions (Fig. 4). Their structure consists of a predominantly 

crystalline cellulosic core which is covered with a sheath of para crystalline 

polyglucosan material surrounded by hemicelluloses. As they are almost defect free, the 

modulus of these sub entities is close to the theoretical limit for cellulose. 
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Figure 4. Arrangement of cellulose molecules in fiber (Wallenberger and Weston 2004) 

Among various natural plant fibers, jute fibers are extensively used in textile 

industries for variety of applications. Jute’s silky texture, its biodegradability, and its 

resistance to heat and fire make it suitable for use in industries as diverse as fashion, 

travel, luggage, furnishings, and carpets and other floor coverings (Kalia et al. 2011). 

Jute fibers have also been used as reinforcement for partitions, paneling, false ceilings, 

and other furniture. Extensive studies are carried out in past to fabricate jute/epoxy, 

jute/polyester, and jute/phenol-formaldehyde composites for applications such as low-

cost housing materials, silos for grain storage, and small fishing boats (Kalia et al. 

2011).  

Jute fibers are obtained from the stem of plants. The suitable climate for growing 

jute (warm and wet climate) is offered during the monsoon season. The temperatures 

ranging from 20ºC to 40ºC and relative humidity of 70%-80% are favorable for its 

successful cultivation. India has its highest cultivation area, largely concentrated in the 

east and the north-eastern states. The popular varieties of Jute are: Tossa Jute-

Corchorusolitorius (Golden yellow color) and White Jute-Corchoruscapsularis (Silvery 

color). The properties of these varieties are given in table 3. 

http://en.wikipedia.org/w/index.php?title=Tossa_Jute&action=edit
http://en.wikipedia.org/w/index.php?title=Tossa_Jute&action=edit
http://en.wikipedia.org/w/index.php?title=Corchorus_olitorius&action=edit
http://en.wikipedia.org/w/index.php?title=Corchorus_olitorius&action=edit
http://en.wikipedia.org/w/index.php?title=Corchorus_olitorius&action=edit
http://en.wikipedia.org/w/index.php?title=White_Jute&action=edit
http://en.wikipedia.org/wiki/Corchorus_capsularis
http://en.wikipedia.org/wiki/Corchorus_capsularis
http://en.wikipedia.org/wiki/Corchorus_capsularis
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Table 3. Properties of different varieties of jute fibers 

 

Jute contains the highest proportion of the stiff natural cellulose in comparison 

with other lignocellulose fibers. The chemical composition of jute fibers constitutes as 

cellulose 55–65%, lignin 10–15%, pentosans 15–20%. In addition, jute contains minor 

constituents such as fats and waxes 0.4—0.8%, inorganic matter of 0.6—1.2%, 

nitrogenous matter 0.8—1.5% and traces of pigments. In total it amounts about 2%. 

Cellulose forms the bulk of the ultimate cell walls with the molecular chains lying 

broadly parallel to the direction of the fiber axis. The hemicellulose and lignin are 

located in the areas between neighboring cells, where they form the cementing material 

of middle lamella, providing strong lateral adhesion between the ultimate fibers.  

In recent years, renewable materials have gained significant importance due to 

limited availability of petroleum resources and increased awareness of environmental 

concerns. The natural fibers are increasingly replacing glass, carbon and other synthetic 

fibers in composite applications (Rwawiire et al. 2015). Jute is commonly used as 

reinforcement in composites due to its higher strength and higher aspect ratio. In 

addition, jute has another important inherent properties such as biodegradability, 

moderate moisture regain, good thermal and acoustic insulation and low price (Johnson 

et al. 2016). Nevertheless, for further growth of jute fiber based composites, it is 

necessary to overcome certain drawbacks. Jute fibers have few disadvantages such as 

high moisture absorption, swelling, low toughness, limited compatibility with some 

matrices, low processing temperature, low thermal stability, high biodegradability, and 

low dimensional stability (Ranganathan et al. 2016). To overcome these drawbacks, 

considerable efforts have been made by the researchers such as surface modification of 

jute fibers, isolation of elementary cellulose fibrils/crystals, etc. 
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Jute fibers consist of lignin (12–14 %), hemicellulose (21–24 %), cellulose (58–

63 %), fats and waxes (0.4–0.8 %), inorganic matter (0.6–1.2 %), nitrogenous matter 

(0.8–1.5 %) and traces of pigments (Militký and Jabbar 2015; Jabbar et al. 2016). 

However, the presence of non-cellulosic substances found to hinder the reaction between 

hydroxyl groups of fibers and polymer matrices, which consequently deteriorated the 

mechanical properties of composites (Baheti et al. 2014). In order to have better bonding 

between fibers and matrix, the non-cellulosic contents should be removed. The various 

surface treatments such as sodium hydroxide, peroxide, organic and inorganic acids, 

silane, anhydrides and acrylic monomers have been attempted by researchers in previous 

works to improve the compatibility between fibers and matrix (Baheti et al. 2014). 

However, such chemical treatments are not environment friendly and require more 

energy, time and water. The motivation of present work was to search for alternative and 

relatively greener techniques for surface modification of jute fibers.  

The oxidation of jute fibers using ozone gas is one of the alternatives over 

chemical treatments for removal of lignin. Ozone is an oxidizing agent with a strong 

oxidation potential of 2.07 V (Sargunamani and Selvakumar 2006). It is an unstable 

allotrope of oxygen containing three atoms. Ozone is highly reactive towards 

compounds incorporated with conjugated double bonds and functional groups of high 

electron densities (Perincek et al. 2007). Due to high content of C=C bonds in lignin, 

ozone treatment of jute fibers is likely to remove lignin by release of soluble compounds 

of less molecular weight such as organic acids. Therefore, the ozone treatment is 

environment friendly, causes minimal degradation of cellulose and hemicelluloses, and 

requires less energy, time and water (Benli and Bahtiyari 2015). The effectiveness of 

ozone treatments in the textile wet processing has already been demonstrated. The ozone 

treatment was found suitable for bleaching of cotton (Perincek et al. 2007). In another 

study, the effect of ozone was found to improve the whiteness degree and dye ability of 

Angora rabbit fibers (Perincek et al. 2008). The study of ozone treatment on silk 

reported it to turn into yellowish, harsh and without luster (Sargunamani and 

Selvakumar 2006).  

More recently separation of individual cellulose fibrils or crystals is reported in 

many research works for achieving extremely higher mechanical properties suitable in 

high performance composites (Guo et al. 2016). In order to disintegrate fibers to the 

level of mechanically strong cellulose elementary fibrils without complete dissolution, it 
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is necessary to work on chemically less aggressive hydrolysis concepts. The ozone pre-

treatment of jute fibers before the action of enzyme hydrolysis is considered to be 

advantageous in this aspect. Due to removal of lignin by ozone pre-treatment, the jute 

fibers are expected to have less strength and more open structure. In this way, even a 

less concentration of cellulase enzyme or less hydrolysis time is likely to provide 

extensively entangled networks, higher strength and higher aspect ratio of the cellulose 

elementary fibrils. Cellulases are a group of multi component enzyme systems produced 

by microorganisms that help in the degradation of cellulose. The filamentous fungus 

Trichodermareesei is one of the most efficient producers of extra cellular cellulase 

enzyme (Nakayama and Imai 2013). There are further two sub-groups of cellulase that 

affect crystalline and amorphous regions of cellulose separately. Cellobiohydrolase 

attacks the crystalline structure of cellulose, whereas endogluconase catalyzes the 

hydrolysis of amorphous cellulose (Satyamurthy et al. 2011). 

In present study, jute fibers were pre-treated with ozone gas for removal of 

lignin. The change in single fiber strength, fiber surface morphology, whiteness, 

moisture absorbency, etc. of jute fibers due to ozone pre-treatment is discussed in detail. 

For comparison purpose, chemical pre-treatment of jute fibers was also carried out. In 

subsequent step, untreated, chemical and ozone pre-treated jute fibers were hydrolyzed 

by cellulase enzymes for separation of longer jute micro crystals. The influence of non-

cellulosic contents on the enzyme hydrolysis and morphology of obtained micro crystals 

was investigated. Later, 3 wt. % of jute micro crystals were incorporated into poly 

(lactic acid) (PLA) matrix to prepare composite films by solvent casting. The 

reinforcement behavior was evaluated from tensile tests, dynamic mechanical analysis, 

and differential scanning calorimetry. 

Cellulose is considered as one of the most abundant biological polymer existing 

naturally. Utilization of cellulose in composites is very famous nowadays. Natural 

cellulosic fibers are hydrophilic in nature and not uniform along the length. In result, 

these fibers exhibited poor compatibility with polymer matrices. Cellulose can be used 

in composites due to good specific mechanical properties and low coefficient of thermal 

expansion. So it becomes necessary to modify the fiber surface for better binding or to 

disintegrate them for increased surface area to get their maximum mechanical benefit in 

composites. To derive the elementary units of cellulosic substrates different methods are 
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being utilized but still much consideration is required for cost effectiveness and 

environmental protection of the globe already affected to a critical extent.         

Many Techniques based on mechanical, chemical and joint chemical-mechanical 

actions were being utilized for the separation of individual cellulose crystals/fibrils 

(Krishnamachari et al. 2009; Baheti and Militky 2013). Many important drawbacks like 

environmental incompatibility and potential degradation of the cellulose are associated 

with chemical method of fiber disintegration like strong acid hydrolysis (Klemm et al. 

2006). Whereas the main hindrance of high energy consumption is associated with 

mechanical processes for fiber disintegration (Prasad et al. 2005; Krishnamachari et al. 

2009; Baheti and Militky 2013). The cost efficient cellulose fiber disintegration or 

isolation without severe degradation is still not very easy. Scientists are seeking for 

some environment friendly and relatively less costly methods for fiber 

treatment/disintegration to micro/nano scale. 

Ozone gas is an advanced oxidizing agent having a powerful oxidation potential 

of 2.07 eV (Sargunamani and Selvakumar 2006). This gas has been used for the 

oxidation of cellulose to improve the functionality of fluoromonomer. The combination 

of ozone and fluorocarbon treatments on cotton can increase the contact angle due to 

higher efficiency of the water repellent polymer on the surface of the ozone-gas treated 

fibers (Gashti et al. 2013). Ozone gas treatment has the great potential of savings the 

precious utilities of our daily life like time, energy and water. This treatment also 

reduces the hazardous impact on environment, especially chemical oxygen demand 

(COD) values, of the processes (Eren and Anis 2009).  

Besides the surface treatments for the oxidation of cellulose, many other surface 

treatments including physical, chemical, physicochemical and biological methods are 

being tried for other purposes applicable on natural as well as synthetic fibers (Gashti et 

al. 2011). For example, atmospheric air-plasma has been tried on polyester fiber to 

improve the performance of nano-emulsion silicone. This pretreatment modifies the 

surface of polyester fibers and increases the reactivity of substrate toward nano-

emulsion silicone resulting in the decreased moisture absorption due to uniform coating 

of the silicone emulsion on the surface of fibers (Parvinzadeh and Ebrahimi 2011).  Thin 

film plasma functionalization of polyethylene terephthalate has been suggested to induce 

Bone-like hydroxyapatite Nano crystals for the its utilization in the field of tissue 

engineering (Parvinzadeh Gashti et al. 2014).  
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Corona discharge ionization is another physical surface treatment for polyester to 

be anionized which will have an increased reactivity of the fibers towards cationic dyes 

(Parvinzadeh Gashti et al. 2015). 

Ozone gas treatment has the great potential of savings the precious utilities of our 

daily life like time, energy and water. This treatment also reduces the hazardous impact 

on environment, especially chemical oxygen demand (COD) values of the processes 

(Eren and Anis 2009). 

Ozone treatment is a workable source for some of the treatments in different 

areas such as pretreatment of waste water before disposal to the environment or 

treatment of waste water for reusing in the processes (Tzitzi et al. 1994; Lopez et al. 

1999). Many scientists have reported their work related to ozone gas utilization for 

different treatments of textile fibers i.e., cotton (Prabaharan and Rao 2001; Perincek et 

al. 2007), polyester (Eren and Anis 2009; Eren et al. 2012), wool and angora rabbit hair 

(Perincek et al. 2008), nylon (Lee et al. 2006), poly lactic acid (Eren et al. 2011), and 

silk (Sargunamani and Selvakumar 2006). Researchers are trying for the optimization of 

cotton fabrics bleaching parameters like water content in the cotton woven fabric, pH 

and the temperature using Ozone gas (Prabaharan and Rao 2001; Perincek et al. 2007). It 

is also being tried for the multiple reuse of water bath for bleaching of cotton fabrics and 

in the field of drinking water for color and odor elimination (Lopez et al. 1999; Arooj et 

al. 2014). 

As Ozone gas is used in water treatment and fabric finishing processes, etc., it is 

interesting to use this gas to treat/oxidize the cellulosic fibers. Keeping in view this idea 

the present study was designed to explore the possibility of using ozone for the advanced 

oxidation of jute fiber. The aim of this study was to investigate low cost and energy 

efficient fiber treatment method with low environmental impact. This oxidized jute may 

then be utilized for different applications such as medical field or for the production of 

cellulose Nano fibrils or Micro/Nano crystals. 

Ozone gas is an irritating gas with pale blue color. It is heavier than air and it is 

produced using an Ozone generator in which dry air or oxygen is passed through a very 

strong electric field which splits the diatomic oxygen molecule (O2) into two highly 

excited oxygen atoms (O
-
) under corona discharge principle. By combining these 

unstable oxygen atoms with other oxygen molecules, as illustrated in figure 5, Ozone 

gas is produced (Manning et al. 2002). 
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Figure 5. Oxygen-Ozone-Oxygen Cycle 
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CHAPTER 2 

AIMS AND OBJECTIVES 

 

The objectives of the study are 

 

 

2.1 Extraction and characterization of jute micro/nano particles 

 

The main objective of the work is to obtain jute based cellulose micro/nano 

particles on large scale quantity from waste jute fibers using environment friendly 

method of extraction. The enzymatic hydrolysis method was utilized for the extraction 

of cellulose particles from oxidized jute. The fibers used for the enzymatic hydrolysis 

were pretreated with Ozone gas for the environment friendly oxidation. These oxidized 

fibers were then used as a substrate for the enzymatic hydrolysis which is also not a 

hazardous method for environment.  

In this work, enzymatic hydrolysis of untreated, chemically pretreated and the 

jute fibers pretreated by Ozone gas was carried out to check the effect of pretreatment on 

the hydrolysis process as well as on the quality of the obtained microcrystals. 

Particle size distribution of untreated jute micro crystals (UTJMC), chemical 

treated jute micro crystals (CTJMC) and ozone treated jute micro crystals (OTJMC) 

obtained after enzyme hydrolysis was studied on Malvern zetasizer nano series. 

Deionized water was used as dispersion medium for the particles. It was ultrasonicated 

before characterization. In addition, morphology of enzyme hydrolyzed UTJMC, 

CTJMC and OTJMC was observed on scanning electron microscope (SEM). 

For Ozone pretreatment, three parameters affecting the oxidation of jute fibers by 

ozonation i.e. oxygen flow rate, ozonation power and time of treatment were also 

optimized before enzymatic hydrolysis using Box-Behnken design and response surface 

modeling was done in order to get the optimum level of deterioration in fiber tenacity 

and the weight loss. 
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2.2 Reinforcement of biopolymer by cellulose particles. 

 

The obtained enzymatically hydrolyzed cellulose particles were then 

incorporated into a biodegradable polymer matrix as reinforcement. Poly lactic acid 

(PLA) biopolymer was used as a matrix for preparation of composite films which can be 

used in the applications of biodegradable food packaging, agriculture mulch covers, etc. 

The incorporation of JMC is expected to improve the mechanical and thermal properties 

of semi-crystalline polymeric films. The improvements in mechanical properties were 

investigated from the morphology and crystallization behavior of composite films using 

differential scanning calorimetry, tensile tests, dynamic mechanical analysis tests etc. In 

order to have the basic understanding of the stiffening, strengthening and toughening 

properties of JMC in polymeric matrix, the critical evaluation of experimental results 

with theoretical models is also performed. The popular theories of composites like rule 

of mixture, Halpin-Tsai, Cox-Krenchel and percolation are employed for validation of 

obtained results. In the end, a prediction model was developed using generalized rule of 

mixture to predict the system property corresponding to volume fraction of 

reinforcement along with interaction effect of volume fractions of reinforcement (JMC) 

and matrix i.e. PLA.  
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CHAPTER 3 

OVERVIEW OF THE CURRENT STATE OF THE PROBLEM 

 

3.1 Extraction of cellulose Micro/Nanostructures 

 Isolation, characterization, and search for applications of novel forms of cellulose 

(i.e. crystallites, nano crystals, whiskers and nano fibrils) are generating much activity 

these days (Klemm et al. 2006; Khalil et al. 2012). Such isolated cellulosic materials 

with one dimension in the nanometer range are referred to generically as nanocelluloses. 

Novel methods for their production range from top-down methods involving enzymatic, 

chemical, physical methodologies (Fig. 6) to the bottom-up production from glucose by 

bacteria. Depending on the source and extraction method, the size and shape of the 

nanocellulose structures are different. In a unique manner, these nanocelluloses combine 

important cellulose properties such as hydrophilicity, broad chemical-modification 

capacity, and the formation of versatile semi crystalline fiber morphologies due to the 

large surface area of these materials. On the basis of their dimensions, functions, and 

preparation methods, nanocelluloses are classified in three main subcategories as 

nanocrystalline cellulose (NCC), nanofibrillated cellulose (NFC) and bacterial 

nanocellulose (BNC) (Klemm et al. 2006).  

The NFC is composed of more or less individualized cellulose nanofibrils, 

presenting lateral dimensions in the order of 10 to 100 nm, and length generally in the 

micrometer scale, and consisting of alternating crystalline and amorphous domains. The 

micro fibrils have a high aspect ratio and exhibit gel-like characteristics in water, with 

pseudo plastic and thixotropic properties. The NFC fibers are obtained by a simple 

mechanical shearing disintegration process. The process for isolating NFC consists of 

the disintegration of cellulose fibers along their long axis (Klemm et al. 2006). 
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Figure 6. Types of cellulose nanostructures(Abraham et al. 2011) 

 

The NCC also known as whiskers, consist of rod like cellulose crystals with 

widths and lengths of 5–70 nm and between 100 nm and several micrometers, 

respectively. They are generated by the removal of amorphous sections of a purified 

cellulose source by acid hydrolysis, often followed by ultrasonic treatment. Although 

similar in size to NFC, they have very limited flexibility, as they do not contain 

amorphous regions but instead exhibit elongated crystalline rod like shapes (Klemm et 

al. 2006). 

The BNC also called bacterial cellulose, microbial cellulose, or bio cellulose is 

formed by aerobic bacteria, such as acetic acid bacteria of the genus Gluconacetobacter, 

as a pure component of their biofilms. These bacteria are wide-spread in nature where 

the fermentation of sugars and plant carbohydrates takes place. In contrast to NFC and 

NCC materials isolated from cellulose sources, BNC is formed as a polymer and 

nanomaterial by biotechnological assembly processes from low-molecular weight 

carbon sources, such as d-glucose. The bacteria are cultivated in common aqueous 

nutrient media, and the BNC is excreted as exopolysaccharide at the interface to the air. 

The resulting form-stable BNC hydrogel is composed of a nanofibrils network of 20–

100 nm diameters enclosing up to 99 % water. This BNC proved to be very pure 

cellulose with a high weight-average molecular weight (Mw), high crystallinity, and 

good mechanical stability (Klemm et al. 2006).  
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3.1.1 Mechanically induced destructuring strategy 

 Multiple mechanical shearing actions applied to cellulosic fibers release more or 

fewer individual micro fibrils or nanofibrils. Different mechanical treatment procedures 

have been reported to prepare NFC. They mainly consist of steam explosion, high-

pressure homogenization and grinding (Leitner et al. 2007; Satyamurthy et al. 2011; Li 

et al. 2012).  

3.1.1.1 Steam explosion. 

It is a thermomechanical process to breakdown the structural components of 

cellulose. The process is accompanied with heat carried by steam. Steam at high 

pressure penetrates the lignocellulosic biomass through diffusion. The sudden release of 

pressure generates shear force which hydrolyze the glycosidic bond and hydrogen bonds 

between the glucose chains, leading to the formation of nanofibrils (Deepa et al. 2011). 

3.1.1.2 Homogenization. 

The fibers are passed through a valve at high pressure and exposed to a pressure 

drop to atmospheric condition when the valve is released resulting in high shear force on 

the fiber surface (Fig. 7). However, this production route is normally associated with 

high energy consumption for fiber delamination (Leitner et al. 2007). Extensive 

clogging of the homogenizer was also found to be a chronic problem. Therefore, 

different pretreatments have been proposed to facilitate this process, for example, 

mechanical cutting, acid hydrolysis, enzymatic pretreatment, and the introduction of 

charged groups through carboxymethylation or 2,2,6,6-tetramethylpiperidine-1-oxyl 

(TEMPO)-mediated oxidation (Lee et al. 2009).  
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Figure 7. Homogenization (Leitner et al. 

2007) 

 

Figure 8. 

Cryocrushing(Chakraborty 

et al. 2005) 

 

Figure 9. Ball milling (Liimatainen et al. 

2011) 

3.1.1.3 Cryocrushing. 

The fibers are first frozen in liquid nitrogen. The embrittled glassy fibers are then 

subjected to high speed crushing (Fig. 8). The high shear and impact forces acting on the 

fibers turn them to powder comprising micro fibrils. The cryocrushed fibers may then be 

dispersed uniformly into water suspension using a disintegrator (Chakraborty et al. 

2005). 

3.1.1.4 Ball milling. 

Ball milling process is a mechanical process which relies on the energy released 

at the point of collision between balls as well as on the high grinding energy created by 

friction of balls on the wall as shown in (Fig. 9). When the mill rotates, balls are picked 

up by the mill wall and rotate around the wall due to centrifugal force leading to 

grinding of material due to frictional effect. On the other hand there is also reverse 

rotation of disc with respect to mill which applies centrifugal force in opposite direction 

leading to transition of balls on opposite walls of mill giving impact effect (Liimatainen 

et al. 2011).  

 The milling machine stresses the maximum number of individual particles in a 

powder mass to undergo plastic deformation or initiate fracture with a minimum of 

energy. The motion of the milling medium and the charge varies with respect to the 

movement and trajectories of individual balls, the mass of balls, degree of energy 

applied during impact, shear attrition and compression forces on powder particles shown 

in figure 10 (Suryanarayana 2004). For brittle materials, particle fracture is well 

described by Griffith theory. According to the theory, stress F , at which crack 
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propagation leading to catastrophic failure (fracture) occurs in the particle, is 

approximated by Eq. (1) (Khait et al. 2001) 

c

E
F


     (1) 

where c is the length of the crack, E is the modulus of elasticity and γ  is the surface 

energy of  the milled substance. When stress at the crack tip equals the strength of 

cohesion between atoms, the crack becomes unstable and propagates, leading to fracture. 

 

Figure 10. Different forces in ball milling process (Suryanarayana 2004) 

 

3.1.2 Chemically induced destructuring strategy 

Cellulose Nano crystals are generated by the liberation of crystalline regions of 

the semi crystalline cellulosic fibers by hydrolysis with mineral acids. This chemical 

process starts with the removal of polysaccharides bound at the fibril surface and is 

followed by the cleavage and destruction of the more readily accessible amorphous 

regions to liberate rod like crystalline cellulose sections (Brito et al. 2012). The 

hydronium ions penetrate the cellulosic material in the amorphous domains, promoting 

the hydrolytic cleavage of the glycosidic bonds and releasing individual crystallites (Liu 

et al. 2010).When the appropriate level of glucose-chain depolymerization has been 

reached, the acidic mixture is diluted, and the residual acids and impurities are fully 

removed by repeated centrifugation and extensive dialysis. The hydrolysis is followed 

by a mechanical process, typically sonication, which disperses the Nano crystals as a 

uniform stable suspension. The structure, properties, and phase-separation behavior of 

cellulose-nanocrystal suspensions are strongly dependent on the type of mineral acid 

used and its concentration, the hydrolysis temperature and time, and the intensity of the 
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ultrasonic irradiation (Brito et al. 2012).Different strong acids have been shown to 

successfully degrade cellulose fibers, but hydrochloric and sulfuric acids have been 

extensively used. However, phosphoric, hydrobromic and nitric acids have also been 

reported for the preparation of crystalline cellulosic nanoparticles (Brito et al. 2012).  

The other processes allowing the release of crystalline domains from cellulosic fibers 

have also been reported, including enzymatic hydrolysis treatment (Filson et al. 2009), 

TEMPO oxidation (Habibi et al. 2006), hydrolysis with gaseous acid (Lu and Hsieh 

2010), and treatment with ionic liquids (Man et al. 2011). 

3.2 Hornification of cellulose micro/nanofibrils 

The issue of the redispersion of micro/nanocellulose after drying is difficult, as 

irreversible aggregation of the fibrils occurs in a process known as ―hornification‖, 

which results in a material with ivory-like properties that can neither be used in 

rheological applications nor dispersed for composite applications (Diniz et al. 2004). 

The main strategy to prevent hornification has been the introduction of a steric barrier or 

electrostatic groups to block cooperative hydrogen bonding of the cellulose chains 

(Köhnke et al. 2010). Among the most useful additives are polyhydroxy-functionalized 

admixtures, particularly carbohydrates or carbohydrate related compounds, such as 

glycosides, carbohydrate gums, cellulose derivatives (e.g., CMC), starches, 

oligosaccharides, seaweed extracts, and glycol compounds (Köhnke et al. 2010).  

3.3 Applications in biodegradable composites 

The replacement of long cellulosic fibers by cellulosic material of smaller axial 

ratios is an interesting option for composite preparation. With their better dispersibility 

and their lower susceptibility to bulk moisture absorption, a theoretical elastic modulus 

of 138 GPa (comparable to that of steel), and a large surface area of several hundreds of 

square meters per gram (Klemm et al. 2006; Khalil et al. 2012), cellulose 

micro/nanofibrils are more efficient filler candidates. The small dimensions of cellulose 

micro/nanofibrils enable direct contact between cellulose and matrix polymers, allowing 

for a large contact surface and thus excellent adhesion. Favier et al. (Favier et al. 

1995)were the first to demonstrate the reinforcing properties of cellulose Nano crystals. 

They prepared PBA latex composite which showed a significant improvement in the 

matrix modulus in the rubbery state. Following this advance, the incorporation of 

cellulose nanostructures from different sources into composite materials with enhanced 
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properties has been investigated thoroughly and summarized in several review articles 

(Habibi et al. 2010). The cellulose nanostructures have been incorporated into a wide 

range of polymer matrices, including polysiloxanes (Grunert and Winter 2000), 

polysulfonate (Oksman et al. 2006b), poly(caprolactone) (Morin and Dufresne 2002), 

styrene butyl acrylate latex (Paillet and Dufresne 2001), poly(oxyethylene) (Samir et al. 

2004), poly(styrene-co-butylacrylate) (Favier et al. 1995), cellulose acetate butyrate 

(Petersson et al. 2009), carboxymethyl cellulose (Choi and Simonsen 2006), poly(vinyl 

alcohol) (Chauve et al. 2005), poly(vinyl acetate) (de Menezes et al. 2009), epoxides 

(Tang and Weder 2010), polyethylene (Chazeau et al. 1999), polypropylene (Marcovich 

et al. 2006), poly(vinyl chloride) (Cao et al. 2009), polyurethane (ORTS et al. 2004), and 

water borne polyurethane (Wang et al. 2006). Their incorporation into biopolymers, 

such as starch-based polymers (Grunert and Winter 2002), soy protein (Siqueira et al. 

2010), chitosan (Azeredo et al. 2010)or poly(lactic acid) (Oksman et al. 2006a), poly 

(hydroxyoctanoate) (Noishiki et al. 2002), and polyhydroxybutyrates (Angles and 

Dufresne 2000) have also been reported. 

Apart from applications of cellulose nanofibrils in composites, their use in health 

care areas are also promising due to their high strength and stiffness combined with low 

weight, biocompatibility and renewability (Ohkawa et al. 2009). Cellulose nanofibrils 

can also be used as a rheology modifier in foods, paints, cosmetics and pharmaceuticals 

(Chen et al. 2013). In cosmetics, nanocellulose is suitable as an additive in skin-

cleansing cloths and as part of disposal diapers, sanitary napkins, and incontinence pads 

(Fathi-Azarbayjani et al. 2010).  

3.4 Investigation of mechanical properties of composites 

The important properties which contribute to the mechanical properties of 

composites are interaction between matrix and reinforcement, matrix crystallinity, trans 

crystallization phenomenon and moisture uptake (Jonoobi et al. 2011). The increase in 

matrix crystallinity due to addition of cellulose nanostructures is studied by Dufresne 

(Dufresne 2013). They reported an increase in the crystallinity of their plasticized starch 

matrix as the whisker content was increased. Trans crystallization is the phenomenon 

whereby a highly oriented layer of a semi crystalline polymer forms at the matrix/filler 

interface (Dufresne 2013). Such layers only develop under specific conditions and affect 

the quality of interactions between the matrix components. Dufresne et al. (Dufresne 

2013)invoked trans crystallization of PHA latex by cellulose whisker surfaces to explain 
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the enhanced performance of the composite. The quality of cellulose-matrix adhesion 

was found to diminish especially in case of hydrophobic matrices due to moisture on the 

surfaces of hydrophilic cellulose reinforcements (Dhakal et al. 2007). 

In addition, the effectiveness of reinforcement is often addressed by percolation 

theory, which can predict long-range connectivity in the matrix during film formation 

(Celzard et al. 2009). It was reported from previous studies that percolated network of 

nanofibrils could slow down the propagation of cracks during the fracture and 

consequently improve the mechanical properties of composites (Qua et al. 2009). This 

extended network is presumably generated through hydrogen-bond formation between 

the cellulose Nano crystals, whose packing structure depends on the distribution and 

orientation of the rods as well as their aspect ratios. In principle, the higher the aspect 

ratio, the lower the percolation threshold, which defines the critical value at which 

continuous connectivity between fillers, first arises. 

3.5 Validation of mechanical models 

In order to explore the reinforcement potentials of nanofibrils in matrix, the 

comparison of obtained experimental results with available mechanical models is of 

great interest (Li et al. 2009). The experimental results of initial modulus obtained from 

tensile testing are ultimately compared with predicted modulus obtained from theoretical 

models of rule of mixture, Halpin Tsai and Cox Krenchel which are based on filler-

matrix interactions. However it was necessary to consider also the filler-filler 

interactions due to tendency of cellulose nanofibrilsto generate a percolated network of 

nanofibrils via hydrogen bonding between adjacent nanofibrils.  

3.5.1 The rule of mixtures model 

It is used to predict the modulus of composite as combination of filler modulus 

and matrix modulus by taking volume weighted average of the individual phase 

properties as given in Eq. (2) 

  mrrr EXEXE  1  (2) 

where E is composite modulus; Eris reinforcement modulus; Em is matrix modulus and 

Xr is volume fraction of reinforcement. The volume fractions of nanoreinforcements can 

be calculated using following Eq. (3) 
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Where Wr is weight % of reinforcements, ρr is density of the reinforcement and ρm is 

density of the matrix polymer.  

3.5.2 The Halpin-Tsai model 

It is used to predict the modulus of composite material as a function of aspect 

ratio of filler assuming they are linearly oriented in the matrix. The Halpin-Tsai theory is 

usually used for aligned fiber composites (Agarwal et al. 2006), but it has also been used 

before to predict the modulus of nanocomposites (Helbert et al. 1996; Wu et al. 2004; 

Petersson and Oksman 2006). The Halpin–Tsai Eq. (4) was chosen since it demanded 

the least amount of assumptions about dispersion of fillers in matrix.  

      (4) 

The shape parameter of reinforcement was calculated from the Eq. (5) 

      (5) 

where  

3.5.3 The Cox-Krenchel model 

Since Halpin-Tsai theory does not consider orientation of fillers into the matrix, 

Cox-Krenchel theory (Krenchel 1963) is used to predict the modulus based on random 

orientation of fillers in matrix. The similar Eq. (6) was used before for carbon nanotube 

composites (Gómez-del Río et al. 2010). 

      (6) 

where  is the length correction factor, is orientation factor and the assumed value is 

3/8 (Krenchel 1963) when the fillers are oriented randomly in plane. The  was 

calculated from the Eq. (7)  

 
          (7) 

where l is the filler length and r is the radius.  
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  (8) 

where  depends on the geometrical packing of fillers, and it is chosen to be π/4, 

considering the square packing. 

3.5.4 The percolation theory model 

The previous studies have indicated that not only the filler-matrix interaction but 

also the filler-filler interactions are important when considering the reinforcing 

capability of cellulose nanofibrils (Favier et al. 1995; Saïd Azizi Samir et al. 2004). As 

jute nanofibrils are also hydrophilic in nature, they have strong tendency to generate a 

percolated network via hydrogen bonding between adjacent nanofibrils. In order to 

consider the filler-filler interactions, the percolation theory was used to predict the 

modulus of composite material using Eq. (9) (Sorrentino et al. 2011) 

 (9) 

where  is a percolation volume fraction and given by Eq. (10) 

 (10) 

where  is a percolation threshold given in Eq. (11) (Das et al. 2011) when fillers are 

strongly interconnected by a 3D network 

 (11) 

 

3.6 Generalized Rule of Mixtures 

The Simple Rule of Mixtures is often utilized in the prediction of various 

material properties such as modulus, electrical, thermal conductivity etc. However, in 

most cases, the prediction models as shown above underperform and don’t accurately 

predict the system properties due to the fact that there exists various interactions in the 

system (Pan et al. 2000). 

(Nielsen 1978) showed that the system property can be calculated by a generalized rule 

of mixtures as shown below: 

                         (12) 

          (    )     (    )      (13) 

where    is the system property and    is the properties of the two constituent 

components.   is the volume fraction and         whereas I is the coefficient 
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representing the intensity of the interactions in a two component system. The 

significance of I can be explained as follows: 

1.     which implies that the interaction between the two components enhances 

the overall system property. 

2.     implies that the interaction reduces the system property. 

3.     shows that the interactions do not exist and the equation reduces to the 

simple Rule of Mixtures. 

Eq. (13) can be simplified in the form of 

                  (14) 

 

where     ;   

  (       ) and  

  (  ) 
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CHAPTER 4 

METHOD USED AND STUDIED MATERIAL 

 

4.1 Materials 

Short waste jute fibers were obtained from Jute mills of South Asia. The fibers 

were measured to have a density of 1.58 g/cm3, modulus of 20 GPa, tensile strength of 

440 MPa and elongation at break of 3 %. PLA was purchased from Nature Works LLC, 

USA through local supplier Resinex, Czech Republic. The PLA had a density of 1.25 

g/cm
3
 and the average molecular weight (Mw) of 200,000. The chloroform, which was 

used as solvent, purchased from Thermofisher Czech Republic. The TEXAZYM AP 

cellulase enzyme was provided by the company INOTEX in Czech Republic. The 

optimal pH in range of 4.5-5.5 and temperature in range of 50-60 °C was selected for 

enzyme activity. 

In this work, Ozone Generator with identification name plate as ―TRIOTECH 

GO 5LAB-K, made in Czech Republic‖ was used and the power setting was kept 

constant at 50% for all treated samples. An Oxygen Concentrator ―Krober 

MEDIZINTECHNIK, Germany‖ with a controllable output Oxygen flow rate was used 

as an oxygen supplier/feeder to the Ozone Generator. 

 

4.2 Ozone Treatment of Jute fiber 

The substrate fibers of Jute waste were placed in a humid ozonized atmosphere 

for different times. The outlet gases of the system were analyzed and measured the mass 

flow of ozone as 4.5 mg/L. The output concentrated oxygen flow rate from Oxygen 

Concentrator was adjusted at 5.0 L/minute and this oxygen was being fed to the Ozone 

Generator. As humid atmosphere is more effective for the reaction of Ozone with 

lignocellulosic material, so this treatment was done in humid atmosphere (Saha et al. 

2010).  

As the Oxygen provided by Oxygen Concentrator and Ozone produced by Ozone 

Generator in series are dry in nature. So a humidification system was developed in the 

way of Ozone to the jute samples. Due to this system the dry nature of Ozone was 

changed to humid one as shown in figure 11. The jute samples were removed from the 
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container after each one hour. The ozone treated fibers were immediately pounded in 

nonionic surfactant solution for one hour to remove the residual ozone. A concentration 

of 1 g/L of nonionic surfactant in distilled water was used for this solution. After that 

distilled water was used for rinsing the treated fibers and then dried in an oven at 105 °C 

for 3 hours. So according to plan there were six samples as shown in table 4. 

 

Table 4. Ozone treatment plan of jute fiber 

Jute Fiber Sample number 
Ozone treatment 

Time (hours) 

Untreated 01 0 

Treated With 

O3 Gas 

02 1 

03 2 

04 3 

05 4 

06 5 

  

 

 

 

 

Figure 11.Schematic diagram of the Ozone Treatment Setup. 
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4.3 Optimization of Ozone Treatment by Response surface 

methodology: 

4.3.1 Objective: 

During Ozone treatment of jute fibres for oxidation, different factors were 

affecting the oxidation phenomenon. These factors include oxygen flow rate from 

oxygen concentrator, ozonation power of the ozone generator and time for ozone 

treatment. All of those factors affect the resultant oxidized fibres. Tenacity of the treated 

jute fibre and the resultant weight loss of the substrate were selected for measuring the 

effect of ozone treatment. To get the optimum settings for those parameters, response 

surface methodology was utilized to get some optimum value of treatment. 

The objective of present study is to optimize these three parameters of ozone 

treatment for oxidation i.e. oxygen flow rate (OX), ozonation power of the generator 

(OP) and ozone treatment time (OT) with use of Box-Behnken design and response 

surface methodology. 

In recent years, response surface methodology has been widely used as an 

optimization tool in various kinds of industrial process (Lundstedt et al. 

1998).Conventionally, the classical method (one-at-a-time) provides for changing one 

independent variable while maintaining all others at a fixed level, which is extremely 

time-consuming and expensive for a large number of variables. The major disadvantage 

is the lack of inclusion of the interactive effects among variables. However, it could not 

lead to real optima in many cases. Consequently, procedures for optimization of factors 

by multivariate techniques have been encouraged, as they are faster, more economical, 

and effective and allow more than one variable to be optimized simultaneously (Aslan 

and Cebeci 2007). Owing to its powerful efficiency, response surface methodology is 

now being routinely used for optimization of widely various systems. Among the 

various response surface approaches, it was found that three common multilevel designs 

such as central composite design, Box–Behnken design, and Doehlert matrix have been 

frequently utilized for the final optimization of desired processes (Aslan and Cebeci 

2007).  

Box–Behnken design is a spherical, rotatable, or nearly rotatable second-order 

design. It is based on three-level incomplete factorial design, which consists of the 

center point and middle points of the edges from a cube. Their primary advantage is in 
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addressing the issue of where the experimental boundaries should be, and in particular to 

avoid treatment combinations that are extreme (Aslan and Cebeci 2007). 

From the literature and the experience on the ozone treatment, a range of levels 

were set for the independent variables i.e. factors to be optimized as shown in the table 

5. As the tenacity of the fiber going on decreasing trend through the span of oxidation 

and weight loss of jute fiber goes on increasing with the ozone treatment. Weight loss of 

about 7% of the original weight was set as a target not to affect the cellulosic portion of 

the fiber. As the objective of oxidation in this work was just to remove maximum non-

cellulosic content of jute and to save the cellulosic content for further process of 

hydrolysis to get micro crystals. 

 

Table 5. Values and levels of independent variables 

Independent variables Symbol 
Levels 

Low (-1) Centre (0) High (+1) 

Oxygen Flow Rate (L/min) OX 4 5 6 

Ozone Generator Power (%) OP 25 50 75 

Ozonation Time (hours) OT 2 4 6 

 

From these upper, middle and lower values of the independent variables, 15 runs of 

different settings were designed with the help of software ―design expert‖. After the 

design of experiment the responses i.e. Loss in tenacity and the weight loss of the fibre 

after oxidation Ozone treatment were obtained and tabulated in the table 6 alongwith 

their settings described in the runs. 

The mathematical relationship between the three independent variables and response 

was approximated by the second order polynomial given in Eq. (15) and Eq. (16) 

 

Tenacity (cN/Tex) = β0 + β1OX + β2OP + β3OT+ β12OX x OP +β13OX x OT + 

β23OP x OT+ β11OX 
2 

+ β22OP
2
+ β33OT

2
   (15) 

 

Weight Loss (%) = µ0 + µ1OX + µ2OP + µ3OT+ µ12OX x OP +µ13OX x OT + 

µ23OP x OT + µ 11OX 
2 
+ µ 22OP

2 
+ µ 33OT

2
  (16) 
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where β0 and µ0are model constants; β1, β2, β3 and µ1,µ2,µ3 are linear coefficients; β12, 

β13,  β23 and µ12, µ13, µ23are cross product coefficients and β11, β22, β33 and µ11,µ22,µ33are 

the quadratic coefficients. The coefficients, i.e. the main effect (βi) (µi) and two factor 

interactions (βij) (µij) have been estimated from the experimental results using the 

mathematical software package DESIGN EXPERT. 

4.3.2 Construction of model equation 

The experimental results obtained for tenacity of jute fibre after ozonation and 

weight loss percentage in Box-Behnken design (Table 6) were fitted to a full quadratic 

second order model equation by applying multiple regression analysis using the 

DESIGN EXPERT software. The model equation representing tenacity and weight loss 

percentage was expressed as a function of OX, OP and OT for actual values of variables 

as given in Eq. (17) and Eq. (18) respectively. 

 

Tenacity (cN/Tex) =  

+56.33458 + 2.05542OX -0.51338OP-6.98417OT-6.60000 x 10 
-3

OX x OP 

+0.47125OX x OT +0.010450OP x OT -0.53417OX 
2 

+ 2.75333 x 10 
-3

OP
2
-

0.024167OT
2
          (17) 

 

Weight Loss (%) = 

-12.56917 + 0.060417OX + 0.26427OP + 3.08271OT-0.019600OX x OP – 

0.27125OX x OT - 9.50000 x 10 
-3

OP x OT + 0.27458OX 
2 

– 

4.92667 x 10 
-4 

OP
2 

+8.64583 x 10 
-3

OT
2 
      (18) 

 

4.3.3 Specifications of Original (Untreated Jute) Sample 

 

Tenacity    =  44.9 cN/Tex 

Elongation at Break   =  3.28% 

Weight    =  100% 
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Table 6. Box-Behnken design of experimental runs with results 

Run Independent variables in Ozonation Observed Response 

variables 

(OF) 

Oxygen flow 

rate  

(L/min) 

(OP) 

Ozonation 

power  

(%) 

(OT) 

Ozone treatment 

time  

(hrs) 

Tenacity 

(cN/Tex) 

Weight loss  

(%) 

1 6 75 4 8.18 9.2 

2 5 75 6 5.15 10.5 

3 4 25 4 25.89 3.4 

4 6 50 6 6.07 9.98 

5 5 75 2 20.78 6.1 

6 4 50 6 6.98 9.5 

7 4 75 4 12.64 8.78 

8 6 50 2 21.90 5.85 

9 5 50 4 15.98 6.95 

10 5 25 6 13.45 7.95 

11 4 50 2 26.58 3.2 

12 6 25 4 22.09 5.78 

13 5 50 4 16.01 6.8 

14 5 25 2 31.17 1.65 

15 5 50 4 16.05 6.72 

4.3.4 Three dimensional surface plots 

Corresponding to the runs of design of experiment and described in table 6, three 

dimensional surface plots along with the contour diagrams for the responses can be 

drawn. The trend of the interaction of two independent variables keeping the third at 

constant level can be elaborated by these shapes. 

 Figures 12 and 13 depict the effect of ozone power and the rate of oxygen flow 

on tenacity and weight loss of jute fibre respectively. Keeping the third independent 

variable i.e. time for ozone treatment at mid-level of design, both the variables have 

direct effect on the change in tenacity and weight loss. 
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Figure 12. Effect of Ozone power and Oxygen Flow rate on Tenacity of Jute fiber. 

 

 

Figure 13. Effect of Ozone power and Oxygen Flow rate on weight loss. 
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Figure 14. Effect of Ozone Treatment time and Oxygen Flow rate on Tenacity of Jute Fiber. 

 

 

Figure 15. Effect of Ozone Treatment time and Oxygen Flow rate on weight loss. 
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In figures 14 and 15 relationship of ozonation time and oxygen flow rate is 

drawn against tenacity and weight loss of jute fibre after oxidation by ozone gas. In this 

case ozonation power is kept constant at medium level of design i.e. at 50%. The 

tenacity of the fibre deteriorates with the ozonation time directly and nearly same is the 

case with the oxygen flow rate from oxygen concentrator. If oxygen is more readily 

available for the conversion to ozone in the ozone generator, more ozone is being 

generated giving higher oxidation potential per unit time. 

Decrease in tenacity and the weight loss of jute fibre is directly related to the 

oxidation of the fibre. In figure 16 and 17, ozonation time and the power of ozone 

generator are plotted against tenacity and weight loss of jute fibre after certain levels of 

oxidation. 

Lignin is a protective layer for the lignocellulosic fibres like jute. First target of 

oxidation by ozone gas is lignin content in the jute fibre. With the passage of oxidation 

time, this deterioration effect goes to hemicellulose and then ultimately to cellulose. The 

responses in this design (tenacity and weight loss) were continually being affected by 

oxidation process; we have to make some target to get optimum values for response.  

As the aim of oxidation was to remove lignin but to a certain limit so that we 

may not deteriorate the quality of crystal obtained ultimately after enzyme hydrolysis. It 

is being decided to take the minimum value of tenacity but set target for weight loss was 

7%. 

4.3.5 Optimised parameters for tenacity and weigth loss after oxidation 

 

Using software of DESIGN EXPERT, independent variable parameters including 

oxygen flow rate, ozone power and time for ozone treatment was optimized keeping in 

view minimum tenacity value and target for weight loss of fibers at 7%. Following 

optimum values were derived from the software after processing the data of design of 

experiment and the values of responses in the runs designed by the same software. 

 

Oxygen flow rate   =  5.160 Liters per minute 

Ozone power of generator  =  50.271% and  

Time for ozone treatment  =  4.024 hours 
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Figure 16. Effect of Ozone Treatment time and Ozone power on Tenacity of Jute fiber. 

 

 

Figure 17. Effect of Ozone Treatment time and Ozone power on weight loss. 
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4.4 Characterization of Ozonized waste jute fibers 

4.4.1 Fiber Topography: 

The surface topography of jute fibers (untreated and ozone treated) was observed 

by scanning electron microscope. An accelerated voltage of 20 kV was selected for SEM 

images on TS5130-Tescan Scanning Electron Microscope. 

4.4.2 FTIR analysis: 

Fourier Transform Infrared Spectroscopy (FTIR) analysis was utilized for the 

quantitative study about the removal of lignin and modification of internal physical 

microstructure of the jute fibers after ozone treatment. It was done on Nicolet 6700 

reflection ATR technique on an adapter with a diamond crystal. 

4.4.3 WAXD for evaluation of crystalline structure: 

The crystalline structure of the jute substrate before and after the action of Ozone 

gas, was investigated by the using Wide-angle X-ray Scattering by means of an X’Pert 

Pro System (PANalytical, Netherlands) with Cu Kα (λ = 0.154 nm) source and operating 

at 40 kV and 30 mA. Prior to the measurements, the jute fibers were grounded to obtain 

powder specimens. The diffraction profiles were obtained in the 2θ range 10 – 35° with 

0.02° step.  

4.4.4 Fiber tensile properties: 

VIBRODYNE Lenzing Instruments was used for measuring the tensile 

properties including fiber Tenacity and Elongation at Break Percentage of untreated and 

ozone treated jute fibers. A crosshead speed of 10 mm/min, pre-tension of 2000 mg and 

a gauge length of 10 mm was used for the tensile properties measurement. Average and 

standard deviation of 50 observed values for each sample were calculated. 

4.4.5 Degree of Reflectance and Lightness Value: 

Spectraflash600 was being used to measure the degree of reflectance 

corresponding to the wavelength in the visible light range. L, a & b values were also 

found out on the same equipment. The change in the shade of the jute samples after 

Ozone treatment was described by graphical representation of the L (Lightness) values 

of the samples. 
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4.4.6 Moisture absorption: 

The moisture absorption behavior of untreated and Ozone a treated jute fiber was 

also assessed by measuring moisture regain percentage values of the samples. For this 

purpose preconditioned samples in a standard atmospheric conditions (temperature = 20 

± 2°C  and relative humidity = 65 ± 4%) for 24 hours were placed in an oven at 105°C 

for drying up to the point where there was no further loss in mass (Oven Dry mass). 

Moisture regain percentages of the samples were then calculated using general formula 

as mass of water present in the material expressed as a percentage of its oven dry mass. 

 

Moisture Regain % = 
                       

                                        
         (19) 

 

4.4.7 Copper number: 

The Copper number is the weight of Copper from Cu
2+

 to Cu
+
 state which is reduced 

by 100 gm of dry cellulose and is a measure of its inter and intra chain breakdown. It is 

an expression of the reducing power of degraded celluloses. Oxidation of cellulose can 

produce ring fission of the glucose residues, resulting in the formation of aldehyde 

groups at carbon atoms 2 and 3. The copper number was measured using a (CSN 80 

0600) standard Czech test method for the determination of the weight of copper in 

cellulose materials (Maqsood et al. 2016). 
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CHAPTER 5 

SUMMARY OF RESULTS ACHIEVED 

 

5.1 Oxidation of Jute fibers by Ozone 

The usage of Ozone gas was increased greatly over the last two decades and have 

been used for the treatment of ground and industrial wastewaters (Kasprzyk-Hordern et 

al. 2003). Ozone affects lignin and hemicellulose giving water soluble products without 

damaging cellulose. 

5.1.1 Apparent changes in jute fibers after ozone treatment 

All ozonized samples of the jute fibrous waste are displayed in figure 18 and an 

obvious change in colour relative to the untreated sample is observed.  

 

 

Figure 18. Apparent change in color of untreated and Ozone treated samples of jute 

5.1.2 Lightness Value of jute fibers: 

The Lightness values of untreated jute fibers and the fibers after 1-5 hours of 

ozone treatment were observed. These samples were analyzed at SPECTRAFLASH600 
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and lightness (L) values of the samples elaborated clearly the bleaching effect of 

Ozonation (Fig. 19). Corresponding to the results, it is obvious that after one hour of 

treatment there is significant change in the colour of the fiber. Consequently, it can be 

seen that with the increase in ozone treatments the colour lightness level of the fiber is 

also changed, however, after four hours of treatment, there is not marked difference in 

the L value of the sample. At this stage the shade of the fibers became almost same. For 

example, the L value of the treated fibers after 4 hours was observed 74.06 in 

comparison with the L value of 55.52 for untreated jute fibers whereas the value of L for 

one hour treated fiber was 70.74. The rate of ozone reaction was very rapid during the 

first hour of treatment as double bonds and other functional groups of chromophores 

were suddenly slashed by the ozone. After three hours of ozone treatment the brownish 

shade of jute was faded very slightly. 

Results display that with more time of ozone treatment, the degree of lightness 

was improved as mass transfer efficiency was enhanced by increasing the applied ozone 

time.  In this way more time was available for ozone to react with chromophoric double 

bonds present in gray jute fibers (Świetlik et al. 2004; Sargunamani and Selvakumar 

2006). The lightness of ozonized fiber samples improved with increase in ozone 

treatment time up to four hours; however, after that there was a very slight improvement 

in lightness of jute samples but it may have a degrading effect on cellulose. Hence, an 

ozone treatment of up to four hours was supposed to be optimum time for the acceptable 

degree of oxidation of cellulose. 

 

Figure 19. Lightness values of Ozone Treated Jute Fiber (SPECTRAFLASH600) 
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5.1.3 FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR): 

Fourier Transform Infrared (FTIR) Spectroscopy results were taken for the 

untreated and treated Jute samples to check the non-cellulosic contents in the substrate 

before and after the action of ozone.  Functional groups assignments and their respective 

interactions of Jute fiber can be deduced using FTIR Spectra (Fig. 20). Natural fibrous 

specific bands and their corresponding bonding interactions have been studied by 

numerous researchers (Meyabadi and Dadashian 2012; AlMaadeed et al. 2013). There is 

some variation in the reported bands from one researcher to another; however the 

difference is not too significant because most natural fibrous materials are made up of 

celluloses, hemicelluloses and lignin. 

Obvious spectral differences in the mid-infrared region (4000-400 cm
−1

) of jute 

fiber before and after exposure to ozone gas at different intervals are presented in figure 

20. Well-define band at 3341 cm
-1 

in raw jute fiber corresponds to intramolecular 

bonding of H and OH groups in carbohydrate of cellulose and hemi cellulose. It was 

decreased to low wave number ~ 3337 cm
-1 

after exposure to ozone gas indicated 

breaking of breaking of the hydrogen bond between O–H groups of cellulose (Duan and 

Yu 2015). The peak around 2950 cm
-1 

and 2951 cm
-1 

is specific for C-H stretching 

vibrations (methyl and methylene group of cellulose and hemi cellulose) in raw biomass 

were changed to low wave number ~ 2920 cm
-1

 and high wave number ~ 2954 cm
-1

, 

respectively. Such changes could be correlated with alteration in organic content of jute 

fiber (Jabasingh and Nachiyar 2012). The band at 2870 cm
-1

 (CH stretching modes) was 

disappeared after treatment of jute fiber with ozone for 1, 2, 3 and 4 hours, however, it 

was observed at 2867 cm
-1 

after 5
th

 hour. Another band at 2852 cm
-1 

in raw biomass was 

shifted to ~2850 cm
-1 

after treatment.
 

Bands at 1737 cm
-1 

is attributed to C=O stretching of the carbonyl and acetyl 

groups in the 4-O-methyl glucano acetyl xylan component of hemicellulose in the raw 

jute, shifted to low wave number at ~ 1734 cm
-1

. This decreased in band intensity give 

evidence of acetylation many ester bonds between jute fiber and ozone (Jabasingh and 

Nachiyar 2012). It also shows partial removal of hemicelluloses and more cleavage of 

lignin chains after ozonation treatment (Duan and Yu 2015). So far, two bands at 1594 

cm
-1

 and 1504 cm
-1

 represents lignin were disappeared after treatment could be result of 

improvement in fiber surface by removing lignin (Punyamurthy et al. 2012). Another 

two peaks at 1537 cm
-1

 (C=C stretching, lignin) and 1424 cm
-1

 (CH2 bending, cellulose) 
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were changed to ~ 1539 cm
-1

 and ~ 1428 cm
-1

, respectively. Peaks at 1647 cm
-1

 (COO
-
, 

pectin) and 1458 cm
-1

 (CH2 bending, cellulose) was altered to ~ 1644 cm
-1

 and ~ 1455 is 

attributed to the splitting of lignin aliphatic side chains (Sun et al. 2000).  

Peaks at 1370, 1316, 1238, 1157 and 1103 cm
-1

raw jute fiber samples are due to 

cellulose related group were changed to variable extent after treatment indicated 

successful interaction of ozone with jute fiber that may result in removal of impurities 

from fiber surface. The absorption band at 1316 cm
−1

 can be attributed to the 

symmetrical deformation of NO2 in the cellulose azo compound (Islam et al. 2011). 

Absorption peaks at 1048 and 897 cm
−1

 are associated with C-O stretching and 

β-glycosidic linkages of the glucose ring of cellulose were shifted to high wave number 

(Zhang et al. 2006). These absorptions are consistent with those of a typical cellulose 

backbone (Sarkar et al. 1948) and showed that the structure of cellulose had not been 

smashed after the ozonation. It could be summarized that ozone treatments removed 

most of the lignin and cellulose contents and changed nature of fiber. 

 

 

 

Figure 20. FTIR Spectra of Untreated and Ozone treated Jute samples 

5.1.4 Mechanical Properties of Ozone treated Jute Fibers 

5.1.4.1 Tenacity: 

For the comparative study of the tensile properties of untreated and treated fibers, 

Standard Test Method for Tensile Strength and Young’s Modulus of Fibers (ASTM 

C1557-14) was followed and the tenacity measured for the untreated jute fiber was 

Untreated 

1 hour treated 

3 hours treated 

 
2 hours treated 

 

5 hours treated 

 

4 hours treated 
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found to be 44.16 cN/Tex. Ozone treated fibers showed declined values of tenacity with 

the increasing of treatment time (Fig. 22). The treated sample with corresponding time 1, 

2, 3, 4 and 5 hours exhibited the value of tenacity as 31.61, 23.12, 19.75, 16.01 and 8.12 

cN/Tex respectively.  This decrease may be attributed to significant delignification and 

destruction of cellulosic chains through the ozone treatment (Maqsood et al. 2016).  

5.1.4.2 Elongation at Break (%): 

The elongation at break examined according to the Standard Test Method for the 

untreated jute fiber (Saha et al. 2010) and it was observed to be 3.28%. Ozone treated 

samples showed declined values with the increasing of treatment time as shown in figure 

23. The treated samples corresponding to treatment time 1, 2, 3, 4 and 5 hours revealed 

2.32, 2.14, 1.89, 1.80 and 1.04 % of Elongation Percentage at Break correspondingly. 

The elongation at break in these fibers also decreased very much with the increment of 

treatment time. The fall in elongation at break from 3.28 % to 1.04 % could be 

correlated to disbanding of amorphous region after ozonation of jute fibers. 

 

 

Figure 21. Vibrodyne equipment used for tensile properties of Jute fiber. 
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Figure 22. Decreasing trend of Tenacity with ozone treatment time (Error Bars = ± 2δ) 

 

 

Figure 23. Elongation at Break (%) with Ozone treatment time (Error Bars = ± 2δ) 

Many scientists have connected the resulting change in mechanical properties of 

the treated samples with chemical changes in keratin structure and amino groups. On 

this basis, the change in the mechanical properties can be correlated with the change in 

chemical groups and amino acids with the treatment time as detected from FTIR spectra 

(Fig. 20). The witnessed change in the mechanical properties can be related to the 

change in both fiber bonding and carboxyl group contents. Generally, the mechanical 

properties of ozone treated jute samples were changed. 
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5.1.5 Copper number: 

The copper number is the weight of copper from the Cu
2+

 to Cu
+
 state, which is 

reduced by 100 gm of dry cellulose and is a measure of its inter and intra chain 

breakdown. It is an expression of the reducing power of degraded cellulose. The 

oxidation of cellulose can produce the ring fission of glucose residues, resulting in the 

formation of aldehyde groups at carbon atoms 2 and 3 (Karmakar 1999). It was 

measured to assess the degradation of cellulose by ozonation and the formation of 

aldehyde groups in this experiment. Results show that the copper number increased with 

the increase in treatment time gradually i.e., 2.26 after two hours and 2.35, 2.44, 2.43 

after three to five hours respectively (Table 7). The value of the copper number at 4 hour 

of ozone treatment is high and at this point oxidation is enough for the some useful 

purposes like production of micro/Nano crystals of cellulose. After five hours of 

treatment copper number has a slight decrease looking abnormal which may be due to 

some noise or human error. 

 

Table 7. Copper number of the samples 

Jute Fiber Sample Number Copper number 

Untreated 01 1.2 

Treated with O3 

02 2.26 

03 2.26 

04 2.35 

05 2.44 

06 2.43 

 

5.1.6 Moisture absorption: 

The moisture absorption tendency of ozonized jute fiber was increased as 

compared to untreated jute fibers. The moisture regain percentage value of 5 hours 

ozonized jute fibers was enhanced up to 22.3%, whereas untreated jute fibers had only 

10.5% moisture regain. This behavior was observed and it might be the result of 

increased uneven surfaces of ozone treated jute fibers which increased the pores and 

specific surface area simultaneously for moisture absorption. The deterioration of 
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amorphous region after the ozone treatment can be another reason for increased moisture 

absorbance capacity (Baheti et al. 2016a). 

5.1.7 Evaluation of crystalline structure by XRD: 

WAXD results were taken for the untreated and ozonized Jute samples to 

analyze the influence of the ozone treatment on crystalline structure of studied material. 

In figure 24 the comparison of the X-ray diffraction profiles recorded for all studied Jute 

samples are presented. In the 2θ range 10 – 32° the characteristic diffraction peaks 

located at 2θ 14.7°, 16.2° and 22.6° corresponding to (101), (   ̅) and (002) lattice 

planes of α form of native cellulose structure are visible (Kiessig et al. 1939).  

 

 

Figure 24. X-ray Diffraction Profiles of Untreated and Ozone Treated Samples of Jute Fiber 

 

The changes between the obtained X-ray diffraction profiles are insignificant 

therefore, to evaluate the impact of ozone treatment on the crystalline structure were 

carried out numerical analysis of X-ray profiles and ware estimated structural parameter 

such as crystallinity degree and size of crystalline area. The analysis of diffraction 

patterns was carried out using the method of Hindeleh and Johnson, consisting in the 

best possible fitting the theoretical to experimental curves through the addition of peaks 
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corresponding to the X-ray diffraction of on crystalline areas and X-ray scattering on 

amorphous halo (Fig. 24). The theoretical curve determined allowed us to calculate the 

integration area under the curves of crystalline and amorphous components, which made 

it possible to determine the content of crystalline phase (Xc – crystallinity degree) 

according to the equation:  

 

   (%) = 
  

       
             (20) 

 

where AA and AC are the integral intensities of the amorphous halo and the peaks 

from the crystalline phase, respectively. Additionally, the size of crystalline areas 

perpendicular to lattice planes (hkl) was determined by measuring the width of 

diffraction peak using Scherrer’s formula: 

 

 (   ) (%) = 
  

      
             (21) 

 

where: L(hkl) – average size of crystalline areas perpendicular to lattice planes 

(hkl) , θ – Bragg angle for planes (hkl), λ – wavelength of X-ray radiation (for CuKα λ = 

0,154 nm), B – half width of the diffraction peak for planes (hkl), K – Scherrer’s 

constant that for polymer is equal to 1. The calculation of the all analyzed crystalline 

structures factors were calculated by the using of WAXSFIT software (Rabiej and 

Rabiej 2005). 

In table 8, change of the crystalline structures factors are presented. As it is 

clearly presented the surface ozone treatment process increases slightly the crystallinity 

of the material which also confirms by the growth of crystalline areas. 

Table 8. Crystalline parameters of studied samples. 

Sample  (   ) 

(nm) 

 (   ̅) 

(nm) 

 (   )  

(nm) 

   

(%) 

Untreated 3.63 4.92 3.54 68.5 

1h 3.81 4.97 3.60 69.1 

2h 3.81 5.18 3.64 69.8 

3h 3.82 5.36 3.65 70.1 

4h 3.82 5.31 3.68 70.0 

5h 3.87 5.32 3.68 70.4 
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5.1.8 Fiber Topography/SEM Images: 

Samples were analyzed under the scanning electron microscope (SEM) to check 

the changes in fiber surface appearance due to the Ozone treatment (Fig. 25).Clear 

changes in surface morphologies were observed after ozone treatment. SEM images 

showed a comparatively smooth surface for untreated fibers; however, after ozonation, 

all the fibers exhibited uneven surfaces (Castle and Zhdan 1997). Image was taken at 

grid of 200 micrometer to view the surface of untreated jute fiber in spite of 100 

micrometer grid as the fibers were in bundles. The reasoning of SEM images at 100 

micrometer grid of treated samples at 4 hours and 5 hours times were as shown in figure 

25 (b) and (c) had been taken at a grid of 100 micrometer. The untreated sample viewed 

with SEM revealed that the fibers were closely packed with each other in bundles. In 

case of untreated jute fibers, there were many substances like lignin, hemicellulose, 

pectin and waxy elements etc. on the surface of jute fibers. On the other hand, the ozone 

gas created many modifications on the surface of the fiber. Comparing figure 25(a) and 

25(b, c), the extreme difference in the topography between the treated and untreated 

fibers can easily be seen. The multi-cellular nature of a jute fiber strand is more clearly 

shown in figure 25(b, c). Contrary to the untreated fiber, ozonized fibers were free from 

surface debris and overgrowths. This was certainly the result of the removal of lignin 

and some part of hemicellulose from both the surface and the intercellular spaces during 

the ozonation process. With Ozone treatment the bond between individual fibers 

damaged considerably along with increased rough surface. Results clearly exhibited that 

with the increase in treatment time of ozone the roughness in fiber surface is also 

increasing.  

 

a) Untreated   b) 4 hour treatment  c) 5 hour treatment 

Figure 25. SEM Images of Untreated and Ozone Treated Samples of Jute Fiber 
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5.2 Preparation for enzymatic hydrolysis of jute fibers 

5.2.1 Pre-treatment of short jute fibers 

In order to remove the non-cellulosic contents in jute fibers, chemical and ozone 

pre-treatment was carried out before the enzyme hydrolysis. 

5.2.1.1 Chemical pre-treatment.  

It was carried out sequentially with 4 % sodium hydroxide (NaOH) at 80 
o
C for 1 

hour and with 7 g/l sodium hypochlorite (NaOCl) at room temperature for 2 hours under 

pH 10-11. Subsequently, the fibers were antichlor treated with 0.1 % sodium sulphite at 

50 
o
C for 20 min.  

5.2.1.2 Ozone pre-treatment.  

Jute fibers were treated with ozone gas for the duration of four hours. For 

effective ozone treatment, one humidification system was introduced between Oxygen 

Concentrator Krober MEDIZINTECHNIK and Ozone Generator TRIOTECH GO 

5LAB-K as shown in figure 26. The jute fibers were pre-humidified by spraying 50 % 

water (w/w) and then vertically hung inside the container for ozone treatment of 4 hours. 

The ozone concentration 4.5 mg/L with charging time of 1.5 min was used. The oxygen 

production setting of 5.0 L/minute was used as an input source for the Ozone Generator. 

After ozone treatment, the jute fibers were washed with 1 g/L nonionic surfactant for 1 

hour in order to remove residual ozone. The fibers were then rinsed by distilled water 

and dried at 105 
o
C in an oven for 3 hours. 

 

Figure 26. Set up for ozone treatment of jute fibers 
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5.2.2 Characterization of pre-treated jute fibers 

5.2.2.1 Surface topography of pre-treated fibers.  

The surface topography of untreated jute fibers (UTJF), chemical treated jute 

fibers (CTJF) and ozone treated jute fibers (OTJF) was observed using scanning electron 

microscope. SEM images were taken on TS5130-Tescan SEM at 20 kV accelerated 

voltage.  

5.2.2.2 FTIR analysis.  

The removal of lignin and modification of internal physical microstructure of the 

jute fibers after ozone treatments was evaluated by FTIR analysis. It was performed on 

Nicolet 6700 reflection ATR technique on an adapter with a crystal of diamond.  

5.2.2.3 Single fiber strength.  

The single fiber strength of untreated, chemical and ozone treated jute fiber was 

evaluated from VIBRODYNE Lenzing Instruments in order to know the change in 

mechanical properties. The single fiber strength was performed with a gauge length of 

10 mm at a crosshead speed of 10 mm/min and at pre-tension of 2000 mg. Total 50 

readings were taken and then average was calculated. In the end, the additional 

properties like moisture absorption, whiteness index, etc. were also determined. 

 

5.3 Enzyme hydrolysis of pre-treated short jute fibers 

The enzyme hydrolysis was carried out in the test tubes containing 5 g/L 

untreated, chemical and ozone treated jute fibers under 3 % v/v of cellulase enzyme 

concentration. The pH of solution was adjusted to 4.8 with the help of 0.05 M acetic 

acid/sodium acetate buffer. The test tubes were incubated at 55 °C in a heating bath of 

distilled water for 6 days. Subsequently, the samples were immediately heated to 80 °C 

for 15 min to deactivate the enzyme and further cooled to room temperature. Then, the 

mixture was transferred into centrifuge bottles. A Hettich centrifuge EBA 20 

(Tuttlingen, Germany) was used to separate the solution from the treated materials. The 

precipitates were continuously washed with distilled water and centrifuged at 1400 rpm. 

The obtained suspension was further subjected to ultrasonic treatment in order to 

separate the individual micro crystals. Later, the suspension was transferred in solvent 
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isopropanol to avoid hornification of jute micro crystals during drying. In this way, 

untreated jute micro crystals (UTJMC), chemical treated jute micro crystals (CTJMC) 

and ozone treated jute micro crystals (OTJMC) were obtained.  

 

5.4 Characterization of jute micro crystals 

Particle size distribution of UTJMC, CTJMC and OTJMC obtained after 6 days 

of enzyme hydrolysis was studied on Malvern zetasizer nano series. Deionized water 

was used as dispersion medium for the particles. It was ultrasonicated for 5 min with 

bandelin ultrasonic probe before characterization. Refractive index of 1.52 was used to 

calculate particle size of jute powder. In addition, morphology of enzyme hydrolyzed 

UTJMC, CTJMC and OTJMC was observed on scanning electron microscope (SEM) of 

TS5130-Tescan at accelerating voltage of 20 kV. The amount of 0.01 g of jute powder 

was dispersed in 100 ml acetone. The drop of the dispersed solution was placed on 

aluminum foil and gold coated after drying. 

 

5.5 Preparation of PLA composite films 

The composite films of 3 wt. % filler content were prepared by mixing the 

calculated amount of UTJMC, CTJMC and OTJMC into chloroform solution of 5 wt. % 

PLA using a magnetic stirrer. The stirring was performed at room temperature for 3 

hours. The composite mixture was further ultrasonicated for 10 min on Bandelin 

Ultrasonic probe mixer with 50 horn power. The final mixtures were then casted on a 

Teflon sheet. The films were kept at room temperature for 2 days until they were 

completely dried and then removed from the Teflon sheet. One neat PLA film was also 

prepared without addition of jute micro crystals for comparison purpose. 

5.5.1 Differential scanning calorimetry (DSC). 

 The melting and crystallization behavior of the neat and composite films was 

investigated on DSC 6 Perkin Elmer instrument using ―pyris‖ software under nitrogen 

atmosphere with sample weight of 10 mg. The sample was heated from 25 
o
C to 200 

o
C 

at a rate of 5 
o
C/min. The crystallinity (%) of PLA was estimated from the enthalpy for 

PLA content in the composites, using the ratio between the heat of fusion of the studied 

material and the heat of fusion of an infinity crystal of same material from equation (22) 
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  %100% 0  HwHityCrystallin    (22) 

 

where ∆H is heat of melting of sample, ∆Ho is heat of melting of 100 % crystalline PLA 

i.e. 93 J/g (Baheti and Militky 2013) and w is mass fraction of PLA in composite. 

5.5.2 Dynamic mechanical analysis (DMA). 

 Dynamic mechanical properties of composite films were tested on DMA 

DX04T RMI instrument, Czech Republic in tensile mode. The measurements were 

carried out at constant frequency of 1 Hz, strain amplitude of 0.05 %, temperature range 

of 35-100 
o
C, heating rate of 5 

o
C/min and jaw distance of 30 mm. The samples were 

prepared by cutting strips from the films with a width of 10 mm. Four samples were 

used to characterize each material.  

5.5.3 Tensile testing. 

 Tensile testing was carried out using a miniature material tester Rheometric 

Scientific MiniMat 2000 with a 1000 N load cell at a crosshead speed of 10 mm/min. 

The samples were prepared by cutting strips from the films with a width of 10 mm. The 

length between the grips was kept 100 mm. The total number of ten samples was used to 

characterize each material. The interaction of jute micro crystals and PLA matrix was 

investigated from the morphology of composite films using FESEM of Zeiss at 7 kV 

accelerated voltage. 
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CHAPTER 6 

EVALUATION OF RESULTS AND NEW FINDINGS 

 

6.1 Influence of pre-treatment on jute fibers 

6.1.1 Surface morphology of fibers used for enzyme hydrolysis. 

The removal of non-cellulosic contents after the action of chemical and ozone 

pre-treatment was studied from the morphology of jute fibers. According to the SEM 

photographs shown in figure 27 (a), it can be clearly seen that untreated jute fibers have 

a smooth surface and the individual fibers are closely packed together in bundle form. 

However, when jute fibers were subjected to chemical and ozone pre-treatment, the 

bond between individual fibers weakened significantly. From figure 27 (b), the 

chemically treated jute fiber revealed significant reduction in fiber diameter and higher 

fibrillation tendency, which indicated removal of non-cellulosic contents to the greater 

extent including lignin, hemicelluloses and pectin (Baheti et al. 2014). 

Nevertheless, ozone treated jute fibers in figure 27 (c) exhibited uneven rough surfaces, 

peeling and breaking, which indicated only partial removal of non-cellulosic contents 

such as lignin but not hemicelluloses or pectin.  

 

a) UTJF   b) CTJF   c) OJTF 

Figure 27. SEM image of Different Jute fibers used for Enzymatic Hydrolysis 

6.1.2 FTIR spectroscopy. 

FTIR analysis was carried out to confirm the presence of non-cellulosic contents 

in jute fibers after the action of ozone pre-treatment. Figure 28 shows the FTIR spectra 
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of UTJF and OTJF. A broad absorption band in the range of 3300-3500 cm
-1

 represented 

OH stretching vibrations of cellulose and hemicelluloses. The peak at 1738 cm
-1

 is 

attributed to acetyl and uronic ester groups of hemicellulose or the ester linkage of 

carboxylic group of ferulic and p-coumaric acids of lignin and hemicelluloses (Baheti et 

al. 2014). This peak was found to decrease in the spectrum of OTJF to explain the partial 

removal of lignin after ozone pre-treatment. The peak at 1642 cm
-1 

represents aromatic 

vibration of benzene ring in lignin. The absorption band at 1537 cm
-1

 is due to CH2 

bending in lignin, whereas the peak at 1423-1460 cm
-1

 is due to OH in-plane bending 

(Biagiotti et al. 2004). The band at 1236 cm
-1

 corresponds to C-O stretching of acetyl 

group of lignin(Neto et al. 2013). The reduced height of these peaks in OTJF confirmed 

removal of lignin after ozone treatment. The peaks at 1030 cm
-1

 and 995 cm
-1

 are 

associated with C-O stretching and C-H rock vibrations of cellulose(Neto et al. 2013). 

The growth of these peaks in spectra of OTJF over UTJF showed increase in the 

percentage of cellulosic components after ozone treatment. 

 

Figure 28. FTIR spectra of untreated and ozone treated jute fibers 

6.1.3 Mechanical properties. 

From figure 29 and table 9, the tenacity and breaking elongation of jute fibers 

was found to reduce after chemical and ozone treatment. The maximum reduction in 

tenacity was observed in case of OTJF, where it dropped from 44.16 cN/tex to 16.01 

cN/tex after four hours of ozone treatment. This behavior is attributed to non-uniform 

removal of lignin and subsequent formation of more uneven rough surfaces, peeling, 

breaking and fibrillation of jute fibers after the ozone treatment shown in figure 27 (c). 
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The drop in breaking elongation from 3.28 % to 1.80 % could be related to dissolution 

of amorphous region after ozone treatment of jute fibers. This clearly showed that 

crystalline structure of jute fibers could not be disintegrated and rupture of cellulose 

macromolecules could be avoided by proper control over ozone induced surface 

modification of fibers. In spite of more fibrillation, CTJF was found to have higher 

mechanical properties than OTJF. This was due to more uniform removal of non-

cellulosic substances from jute fibers after chemical pre-treatment shown in figure 27 

(b). Maximum fiber strength of untreated jute fiber is attributed to presence of lignin, 

which holds the number of fibrils together in bundle form shown in figure 27 (a). The 

pattern of mechanical properties of UTJF, CTJF and OTJF was also evident from SEM 

images and FTIR analysis discussed in the previous sections. 

 

Figure 29. Single fiber strength of untreated and pre-treated jute fibers 

 

Table 9. Mechanical properties of untreated and pre-treated jute fibers 

Sample name 
Initial modulus    

YM1 (cN/tex) 

Tenacity 

(cN/tex) 

Elongation 

(%) 

UTJF 898.64±140.48 44.16±8.81 3.28±0.67 

CTJF 266.28±73.78 28.39±6.34 6.98±1.10 

OTJF 201.32±84.74 16.01±4.37 1.80±0.28 
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6.1.4 Moisture absorption. 

The ozone treated jute fiber was found to have maximum moisture absorption 

tendency than untreated jute fibers. The moisture regain of ozone treated jute fibers was 

found near 22.3 %, whereas 10.5 % for untreated jute fibers. This behavior is attributed 

to the increased uneven rougher surfaces of ozone treated jute fibers, which provided 

additional specific surface area and pores for moisture absorption. Another reason for 

more moisture absorbency could be weakening of amorphous region after the ozone 

treatment. 

6.1.5 Whiteness index. 

The untreated jute fibers showed the apparent change in colour with respect to all 

treated samples shown in figure 30. The captured images were analyzed in grey scale 

and whiteness index was measured. The whiteness index of chemically treated jute fiber 

was found 225, followed by 200 for ozone treated jute fiber and 150 for untreated jute 

fibers. This is due to uniform and maximum removal of non-cellulosic contents after 

chemical pre-treatment. Nevertheless, ozone treatment was found promising for 

oxidation of natural pigments present in jute fibers. 

 

Figure 30. Change in color of jute fibers after pre-treatments 

 

6.2 Influence of enzyme hydrolysis on pre-treated jute fibers 

The separated jute micro crystals after 6 days of enzyme hydrolysis are shown in 

figure 33. The particle size distribution of jute crystals obtained from UTJF, CTJF and 

OTJF are depicted in figure 32 respectively. The pre-treatment of jute fibers was found 

to have significant effect on particle size reduction and particle size distribution of 

obtained jute micro crystals. The average particle size of UTJMC, CTJMC and OTJMC 

was observed as 5392 nm, 3743 nm and 4238 nm respectively from dynamic light 
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scattering measurements. This clearly indicated easier separation of individual micro 

crystals after pre-treatment of jute fibers. On the other hand, the maximum resistance for 

enzyme hydrolysis was found in case of UTJF due to presence of non-cellulosic contents 

which hold the fiber bundle together (Abraham et al. 2011). 

 

Figure 31. Enzyme hydrolyzed jute micro crystals 

 

Figure 32. Particle size distribution of jute micro crystals 

The enzyme hydrolysis of OTJF was found to result into bigger crystals having 

wider size distribution than CTJF. This behavior is attributed to non-uniform and partial 

removal of non-cellulosic contents by ozone treatment, which further offered relatively 

higher resistance for diffusion of cellulase enzyme into the jute fibrous 

structure(Satyamurthy et al. 2011). This resulted into uneven dissociation of glucosidic 

bonds from surface to core of the cellulose in ozone treated jute fibers and consequent 

non-uniform separation of micro crystals having wider size distribution. The similar 

results were also evident from SEM images shown in figure 33(a), figure 33(b) and 
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figure 33(c). The micro crystals obtained after ozone pre-treatment found to exhibit both 

cylindrical and spherical morphology as shown in figure 33(c), whereas those obtained 

after chemical pre-treatment revealed only cylindrical morphology with higher aspect 

ratio shown in figure 33(b).  

 

a) UTJMC  b) CTJMC  c) OJTMC 

Figure 33. SEM images of Jute Micro Crystals obtained by Enzyme Hydrolysis 

The yield of obtained crystals was calculated from the percentage of ratio of dry 

mass of micro crystals to the initial dry mass of jute. The obtained lower yield of less 

than 10 % in all cases indicated significant amount of conversion of cellulose into 

glucose, cellobiose, cellotriose, and cellotetraose by the action of enzymes (Soni et al. 

2015). 

 

6.3 PLA composite films 

According to the procedure given in section 5.5, different functional properties 

of the neat PLA films along with the PLA films incorporated with the jute micro crystals 

were measured. The descriptions of the measured properties are described below. 

6.3.1 Thermal behavior of PLA composite films. 

DSC analysis was carried out to study the thermal behavior of PLA after addition 

of UTJMC, CTJMC and OTJMC. Table 10 shows the results of glass transition (Tg), 

followed by cold crystallization (Tcc), and melting point (Tm). It was observed from 

figure 34 that Tg value of PLA increased only marginally after incorporation of CTJMC 

and OTJMC, and reduced after addition of UTJMC. This indicated lesser flexibility of 

PLA chains due to some improvements in intermolecular interactions, steric effects, and 
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the cross linking density between pre-treated jute micro crystals and PLA 

(Krishnamachari et al. 2009). As compared to Tg, the melting temperature Tm of PLA 

was found to increase significantly after addition of CTJMC and OTJMC. This behavior 

is attributed to increase of PLA crystallinity after addition of CTJMC and OTJMC as 

reported in table 10 (Baheti et al. 2013). The lower cold crystallization peak observed in 

case of composite films of CTJMC and OTJMC further indicated nucleating behavior of 

pre-treated jute micro crystals for development of crystallinity through trans 

crystallization phenomena (Dufresne et al. 1999). The absence of cold crystallization 

peak in UTJMC/PLA sample showed inability of UTJMC to develop PLA crystallinity. 

This behavior is attributed to the non-cellulosic substances (i.e. wax) present on the 

surface of UTJMC, which reduced the interaction between PLA and UTJMC.  

Table 10. Behavior of neat and composite PLA films on application of heat 

Sample 
Tg 

(
o
C) 

Tcc 

(
o
C) 

Tm 

(
o
C) 

∆H  

(J/g) 

Crystallinity 

(%) 

Neat PLA 42.35±0.30 98.85±1.10 147.49±0.10 17.33±2.80 18.63 

3% UTJMC+PLA 40.01±0.43 - 153.00±0.18 19.26±3.21 21.35 

3% CTJMC+PLA 44.84±0.34 96.88±1.39 155.47±0.14 24.53±2.34 27.19 

3% OTJMC+PLA 45.01±0.47 96.52±1.22 154.32±0.13 23.09±2.03 25.59 

 

 

 

Figure 34. Differential scanning calorimetry of neat and composite PLA films 
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6.3.2 Thermo-mechanical properties of PLA composite films 

The dynamic mechanical analysis was performed to get an idea about 

reinforcement potentials of jute micro crystals obtained before and after pre-treatments 

of jute fibers. The load bearing capacity of neat and composite PLA films is shown in 

figures 35 & 36 along with table 11. From evaluation of figure 35, all samples of PLA 

composite films were found to exhibit higher storage modulus results at 35 
o
C as 

compared to neat PLA film. This behavior is attributed to the efficient stress transfer 

from PLA to stiff jute micro crystals at 35 
o
C(Petersson and Oksman 2006). The 

maximum reinforcement was provided by jute micro crystals obtained after pre-

treatment (i.e. CTJMC and OTJMC) than those obtained from raw untreated jute fibers 

(i.e. UTJMC). The storage modulus of PLA composites at 35 
o
C increased from 3.09 

GPa to the level of 4.11 GPa, 5.16 GPa and 5.13 GPa after the addition of UTJMC, 

CTJMC and OTJMC, respectively. This trend is attributed to rough surface of OTJMC 

and less non-cellulosic substances in CTJMC, which dispersed them uniformly within 

PLA matrix and consequently resulted into maximum surface area of micro crystals 

interacting with PLA. The least improvement in case of PLA/UTJMC can be attributed 

to the poor bonding of UTJMC with PLA due to presence of non-cellulosic contents like 

wax on the surface of UTJMC.  

 

Table 11. Storage modulus of neat and composite PLA films at different temperature 

Sample name 
E’ (35 

o
C)  

(GPa) 

E’ (60 
o
C)  

(GPa) 

Neat PLA 3.09±0.20 0.48±0.02 

3 % UTJMC+PLA 4.11±0.72 0.16±0.01 

3 % CTJMC+PLA 5.16±0.58 0.24±0.01 

3 % OTJMC+PLA 5.13±0.51 0.17±0.01 
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Figure 35. Storage modulus of neat and composite PLA films 

 

Figure 36. Damping factor of neat and composite PLA films 

The concept of addition of jute micro crystals for improvement of load bearing 

capacity of PLA was found negative at higher temperature of 60 °C. With the increase in 

temperature from 35 to 60 °C, the storage modulus of PLA composite films was dropped 

at faster rate than neat PLA film. This showed inability of jute micro crystals to restrict 

the motion of PLA chains at higher temperature and thus poor transfer of stress from 

matrix to micro crystals. This behavior was found not in agreement with previous results 

(Baheti et al. 2013). The reasons could be micro scale dimensions of jute crystals, which 

were unable to penetrate between the PLA chains.  

The ratio of loss modulus to storage modulus is defined as mechanical loss factor 

or tan delta. The damping properties of the material give the balance between the elastic 
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phase and viscous phase in a polymeric structure (Baheti et al. 2016b). Figure 36 

showed that the tan delta peak of PLA was positively shifted after the addition of all 

different types of jute micro crystals. The maximum shift of 5 
o
C was reported in case of 

CTJMC/PLA composites due to their clean surfaces for maximum interaction with PLA. 

This subsequently restricted segmental mobility of the PLA chains around them and 

improved the damping factor of composites. 

6.3.3 Tensile properties of PLA composite films 

The stress–strain curve of neat PLA and its composite films is shown in figure 

37, whereas average values and standard deviations of mechanical properties are 

reported in table 12. It is clear from results that PLA composite films of pre-treated jute 

micro crystals show higher mechanical properties than those jute micro crystals obtained 

from untreated jute fibers. The maximum increase in tensile strength and initial modulus 

was found in case of CTJMC/PLA, which is an indication of better stress transfer across 

the interphase due to good interfacial bonding between CTJMC and PLA 

matrix(Mathew et al. 2005). This behavior is attributed to less non-cellulosic contents in 

CTJMC, which consequently improved their compatibility with PLA matrix as 

compared to other jute micro crystals. The higher mechanical properties of OTJMC/PLA 

over UTJMC/PLA composite films are attributed to rough uneven surfaces of OTJMC, 

which provided increased surface area of interaction than UTJMC. 

Table 12. Tensile properties of neat and composite PLA films 

Sample name 
Initial modulus  

(GPa) 

Tensile strength  

(MPa) 

Yield point 

elongation (%) 

Neat PLA 1.04±0.03 25.98±0.13 4.84±0.72 

3 % 

UTJMC+PLA 
1.41±0.07 22.72±0.47 1.60±0.50 

3 % 

CTJMC+PLA 
1.63±0.04 34.92±0.39 2.14±0.41 

3 % 

OTJMC+PLA 
1.55±0.03 30.40±0.41 1.96±0.47 
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Figure 37. Stress-strain curve of neat and composite PLA films 

Moreover, the increase in crystallinity of PLA discussed in section 6.3.1 was also 

found to have significant effect on mechanical properties. With increase in crystallinity, 

the brittleness of PLA also increased. This subsequently resulted into reduction in yield 

point elongation and increase in initial modulus of all PLA composites. In addition, the 

tendency of stress concentrations due to stiff nature of jute micro crystals could also be 

considered for reduction in yield point elongation. 

6.3.4 Microscopic evaluation of different composite films 

In order to get clear idea of interaction between PLA and different jute micro 

crystals, the morphology of composite films was investigated under FESEM 

microscopy. The absence of voids, intact position of fillers, interfacial bonding between 

fillers and matrix, and absence of agglomerations of fillers decide the intensity of filler–

polymer adhesion (Garlotta et al. 2003). It is clear from figure 38 (a), 38 (b) and 38 (c) 

that the presence of non-cellulosic contents and roughness of jute crystals affect the 

homogeneous dispersion and tendency of agglomerations in composites. From figure 38 

(b) and figure 38 (c), the composite films of CTJMC and OTJMC revealed uniform 

dispersion with minimum agglomerations due to their respective clean and rough 

surfaces having minimum percentage of non-cellulosic contents. The intact position of 

CTJMC and OTJMC confirmed stronger interaction between them and PLA due to their 

uniform wetting. On the other hand, figure 38 (a) for composites films of UTJMC 

showed significant agglomerations as a result of poor bonding caused by their smooth 
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surfaces having more non-cellulosic substances. The gap around the surface of UTJMC 

in PLA confirmed their poor interfacial adhesion. 

 

a) UTJMC/PLA  b) CTJMC/PLA  c) OJTMC/PLA 

Figure 38. Morphology of different composite films 

 

6.4 Comparison of experimental results with mechanical models 

 

It was clear from figure 39 that experimental results were situated below the 

predictions of rule of mixture, Halpin-Tsai, Cox-Krenchel and percolation theories, 

however relatively close agreement was found up to 3 wt. % loading of JMC. With 

increase in JMC loading, the difference between experimental results and predicted 

values of rule of mixture and percolation theories became wider. This indicated lack of 

filler to filler interaction between individual JMC crystals for formation of percolated 

network. The effect of higher JMC loading was found negligible for improvement in 

predicted values of Halpin-Tsai and Cox-Krenchel theories. The constant predicted 

values of Halpin-Tsai and Cox-Krenchel theories above 3 wt% JMC loading indicated 

achievement of threshold in improvement of mechanical properties for particular 

dimensions of JMC. The experimental results were found to fit closely with Cox-

Krenchel theory, which indicated random orientation of JMC in PLA composite films. 

In this way, maximum reinforcement ability of prepared JMC was verified between 1 to 

3 wt% loading from mechanical models and experimental results. The following values 

given in table 13 were used for theoretical calculations: 
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Table 13. Input parameters of mechanical models 

Parameter Value 

Modulus of PLA ( ) 1.04 GPa 

Modulus of JMC ( ) 70 GPa 

Density of JMC ( ) 1.58 g/cm
3
 

Density of PLA ( ) 1.25 g/cm
3
 

Diameter of JNF 5000 nm [Fig. 32] 

Length of JNF 50 µm 

 

 

 

 

Figure 39. Comparison of Initial modulus with mechanical models 

 

 

6.5 Prediction Model using Generalized Rule of Mixtures 

When we consider simple rule of mixtures, it is often utilized in the prediction of 

various material properties such as modulus, electrical, thermal conductivity etc. 

However, in most cases, the prediction models underperform and don’t accurately 

predict the system properties. It is due to the fact that there are various interactions 

present in the system. 

The values of tensile modulus of the composites were plotted against the volume 

fraction of jute micro crystals and a multiple linear regression is applied. 
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Figure 40. Prediction model using multiple linear regression 

Figure 40 shows the multiple linear regression equation of the composite system 

as described below: 

                            (23) 

Corresponding to Eq. (13), Eq. (14) and Eq. (23), we can modify the equation in terms 

of the composite modulus ―E‖ and    (the volume fraction of reinforcement i.e. JMC) as 

follows: 

                       
       (24) 

where         ;       (       ) and (      )  (  )  or 

         

              

        

It is evident that interaction between the volume fractions of reinforcement 

(JMC) and matrix (PLA) in this particular system of composite films preparation 

enhances the overall composite system property (Tensile modulus) by at least 2.8%. 

It is worth mentioning that the accuracy of generalized rule of mixtures predicts the 

component system up to 70.67% as shown by R
2
 value. 
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CONCLUSIONS 

The present study was focused on the development of environment friendly approach for 

surface treatment of jute fibers and subsequent separation of individual cellulose micro 

crystals. The sequential action of ozone pre-treatment followed by enzyme hydrolysis 

was selected for this purpose. At first, jute fibers were pre-treated with ozone gas for the 

duration of four hours. For comparison purpose, one sample with chemical treatment of 

jute fibers was also prepared. The effect of pre-treatments on mechanical properties and 

surface morphology of jute fibers was investigated. The maximum deterioration in 

mechanical properties was found in case of ozone treated jute fibers than chemically 

treated jute fibers. The tenacity was dropped from 44.16 cN/tex to 16.01 cN/tex after 

four hours of ozone treatment. Under SEM, more uneven rough surfaces, peeling, 

breaking and fibrillation of jute fibers were observed due to partial removal of non-

cellulosic contents after ozone treatment. On the other hand, chemical treatment 

revealed significant reduction in fiber diameter and higher fibrillation due to maximum 

removal of non-cellulosic contents. In addition, the moisture absorbency of ozone 

treated fibers was found higher than untreated and chemical treated jute fibers.  

Later, enzyme hydrolysis was carried out to separate longer cellulose micro crystals 

from jute fibers. The pre-treatment of jute fibers was found to have significant effect on 

particle size reduction and particle size distribution of obtained jute micro crystals. The 

rate of refinement of untreated fibers having non-cellulosic contents was found slower 

than treated jute fibers due to strong holding of fiber bundles by non-cellulosic contents. 

The average particle size of 5392 nm, 3743 nm and 4238 nm was found for crystals 

obtained from untreated, chemically treated and ozone treated fibers respectively. This 

indicated easier separation of individual micro crystals after ozone pre-treatment. The 

enzyme hydrolysis of ozone treated fibers was found to result into bigger crystals of 

both cylindrical and spherical morphology having wider size distribution. 

When jute micro crystals were incorporated in PLA matrix, the maximum reinforcement 

was provided by crystals obtained after pre-treatment than those obtained from raw 

untreated jute fibers. These improvements in mechanical properties are attributed to their 

rough uneven surface, higher percentage of cellulosic contents and smaller particle size. 

The SEM morphology of fractured surfaces also confirmed homogeneous dispersion and 

fewer tendencies of agglomerations due to fewer amounts of non-cellulosic contents and 
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roughness of jute crystals. Nevertheless, the role of jute micro crystals as reinforcement 

of PLA was found negative at higher temperature of 60 °C. This showed inability of 

larger jute micro crystals to restrict the motion of PLA chains at higher temperature and 

thus poor transfer of stress from matrix to micro crystals. In this way, the present study 

showed a green process for reusing of waste jute fibers and converting them into useful 

cellulose powder for reinforcement in composite materials. Moreover, the ozone 

treatment was found attractive in terms of less energy, time and water with additional 

advantage of minimum degradation of cellulose. 

Finally, experimental results of Initial modulus were compared with predicted modulus 

of mechanical models. A good level of agreement was observed from 1 to 3wt % 

loading of jute micro crystals and close fit with Cox-Krenchel theory indicated random 

orientation of micro crystals in PLA matrix. In this way, this study showed a green 

process for reusing of waste jute fibers and converting them into useful cellulose powder 

for reinforcement in composite materials. 

By applying quadratic regression to the plotted actual values of obtained tensile modulus 

of composite corresponding to different volume fraction of jute micro crystals in the 

system, we got a quadratic equation using generalized rule of mixture explaining 

interaction of the volume fraction of jute micro crystals and PLA as well. Using this 

generalized rule of mixture the predicted model can be utilized for the prediction of 

tensile modulus corresponding to volume fraction of reinforcement and the interaction 

between volume fractions of reinforcement and matrix. 
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