
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ

FACULTY OF ELECTRICAL ENGINEERING
AND COMMUNICATION
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF RADIO ELECTRONICS
ÚSTAV RÁDIOELEKTRONIKY

PARALLELISM IN DIGITAL SIGNAL PROCESSING
PARALELISMUS V ČÍSLICOVÉM ZPRACOVÁNÍ SIGNÁLŮ

DOCTORAL THESIS - SHORT VERSION
DIZERTAČNÍ PRÁCE - ZKRÁCENÁ VERZE

AUTHOR Ing. Roman Mego
AUTOR PRÁCE

SUPERVISOR doc. Ing. Tomáš Frýza, Ph.D.
ŠKOLITEL

BRNO 2020

Keywords
digital signal processing, VLIW architecture, software development, signal-flow graph

Klíčová slova
digitální zpracování signálů, V L I W architektura, vývoj softwaru, graf signálových toků

Rukopis dizertační práce je uložen na:

Ústav rádioelektroniky
Fakulta elektrotechniky a komunikačních technologií
Vysoké učení technické v Brně
Technická 3082/12
616 00 Brno

II

Contents
Introduction 1

1 State of the art 2

1.1 System classification 2
1.1.1 Single instruction, single data (SISD) 2
1.1.2 Single instruction, multiple data (SIMD) 2
1.1.3 Multiple instructions, single data (MISD) 3
1.1.4 Multiple instructions, multiple data (MIMD) 3
1.2 Individual cases of processor architectures 3
1.2.1 Scalar central processing units (CPU) and digital signal processors (DSP) 3
1.2.2 Graphics processing units (GPU) 4
1.2.3 Very long instruction word (VLIW) 4
1.2.4 Multicore systems with shared memory 4
1.2.5 Multicore systems with distributed memory 4
1.2.6 Multicore systems with hybrid distributed-shared memory 5
1.3 Programming methods 5
1.3.1 Low-level languages 5
1.3.2 High-level languages 5
1.4 Standard optimization methods 6

2 The objectives of the dissertation thesis 8

3 Effectiveness of software development tools 9

3.1 Multicore DSP TMS320C6678 9
3.2 Test cases 10
3.2.1 Data and thread parallelism using OpenMP 10
3.2.2 Algorithm parallelization in OpenMP 10
3.2.3 Measured performance of OpenMP 11
3.2.4 Low-level optimizations of the algorithms on the V L I W architecture 13
3.2.5 High-level and low-level comparison 14
3.2.5.1 Low-level assembly 14
3.2.5.2 Linear assembly 15
3.2.5.3 High-level language 16
3.2.6 Comparison of the libraries with different structure 17

4 Impact of the software efficiency to the power consumption 18

4.1 Theoretical power consumption increase on multi-unit systems 18
4.2 Practical test cases 19
4.3 Experimental Results 19

5 Instruction mapping tool for DSPs 22

III

5.1 Architecture definition 22
5.2 Algorithm description 23
5.3 Mapping process 24
5.3.1 Node sorting 24
5.3.2 Functional unit allocation 26
5.3.3 Signal allocation 28

6 Experimental results 29

6.1 Basic behavior of algorithm mapping 29
6.1.1 Values stored in memory 32
6.2 Optimization impact 34
6.2.1 Node priority 34
6.2.2 Functional unit priority 35
6.3 Comparison to other methods 36

7 Conclusion 38

IV

Introduction
The signal processing is the field of electrical engineering which is used for acquiring,
modifying and evaluating signals using mathematics operations. In these days, it is used
practically in every type of applications around us, such as multimedia, communication,
medicine or industrial control. In the beginnings of the electronics, the signal processing
was performed only with analogue circuits such as active or passive filters, additive
mixers, integrators, derivators, voltage-controlled oscillators, phase-locked loops and so
on. These circuits were able to provide enough resources to implement such complex
systems like radars and television broadcasting.

Later in 1960s, the digital signal processing became the next field of electrical
engineering and computer science. It was caused by availability of required hardware
components. But this did not lead to the massive deployment of the applications,
because the price of computers was quite limiting. The digital signal processing was
used mainly in military, medical and research applications. In the 2000s, the hardware
became inexpensive, so the digital signal processing replaced analogue circuits in the
applications of everyday life.

Digital signal processing is the application of mathematics operations on discrete
quantized signal. The algorithms can be implemented in general computer, digital signal
processors or on specialized hardware based on field-programmable gate arrays (FPGA)
and application-specific integrated circuits (ASIC). The system parameters are highly
dependent on application purpose. The main advantages of the digital signal processing
on programmable circuits over its analog equivalent are high accuracy, cheaper
implementation of complex algorithms, wide offer of interfaces for data recording and
its easy modification without touching the electrical connection. The last advantage
leads to the software which is one of the key aspects of the final performance.

This dissertation thesis is focused on software part of the digital signal processing
applications, especially on parallel architectures. The result will be a tool, that help to
optimize the software with generated parts in the assembly language. The first part of
thesis shows the overview of the architectures that can be used on data processing and
methods of the programming. The second part demonstrates the behavior of various
methods of creating software, especially on multicore very long instruction word
(VLIW) processor, and its impact on the application performance. The last part
introduces the tool for instruction mapping suitable for creating cores of digital signal
processing algorithm cores.

1

1 State of the art
There are many options how to realize digital processing in these days. Every
realization is made of the hardware part and the software part. This chapter is dealing
with the hardware resources for digital processing and the possibilities of creating the
software.

1.1 System classification
One of the most known classifications of the computer architectures is the Flynn's
taxonomy [1]. This classification is based on the number of concurrent instructions and
data streams. The processors can be divided according to Flynn's taxonomy into the
following groups:

• Single instruction, single data (SISD)

• Single instruction, multiple data (SIMD)

• Multiple instructions, single data (MISD)

• Multiple instructions, multiple data (MIMD)

1.1.1 Single instruction, single data (SISD)
The first group of the Flynn's taxonomy is SISD. Systems belonging to this group are
the simplest. They can process only one instruction in one instruction cycle. They also
are not able to process multiple data at once, so there is no parallelism. This group
might include classic scalar architectures such as complex instruction set computers
(CISC) [2] or reduced instruction set computers (RISC) [3]. The advantage is the
simplicity of implementation, which requires only one functional unit, and low
requirements in software design [4].

1.1.2 Single instruction, multiple data (SIMD)
The next group of the Flynn's taxonomy is SIMD. These systems are able to handle
larger amount of data with a single instruction. Vector and matrix operations are typical
for this group, so the processors are sometimes called the vector processors [4]. The
disadvantage is that the classic high-level programming languages, such as ANSI C, are
not able to utilize the full potential. For this reason, the optimized libraries, special
macros or the unusual programming languages are used.

2

1.1.3 Multiple instructions, single data (MISD)
The systems from the MISD group are quite unusual. They are commonly used in
special fault-tolerant applications. Data are processed on independent functional units
and the results are compared, what reduces the chance of the errors. Except this feature,
it provides no benefit like the increase of the computing power [4].

1.1.4 Multiple instructions, multiple data (MIMD)
MIMD systems use several mutually independent functional units, which can handle
different data. In practice, the majority of systems are made of multi-core processors
with shared or distributed memory. In this case, every processing unit has its own
thread, which is not dependent on the others. It offers flexibility in the parallel
processing of the data. This category also includes processors based on very long
instruction word (VLIW). Core of the V L I W architecture consist of the multiple
functional units, so it can execute multiple instructions in one instruction cycle [4].

1.2 Individual cases of processor architectures
Some specific processor and computer architectures were mentioned in the description
of Flynn's taxonomy, which can be used for the digital processing. The next text deals
with these architectures.

1.2.1 Scalar central processing units (CPU) and digital signal
processors (DSP)

Scalar processors have been used since the birth of the first computers until now. The
program is executed sequentially in the order of instructions in the memory. Over the
time, there were made various requirements during its development. This has to led to
expanding of the instruction set and thus to the increasing of the arithmetic logic unit
(ALU). After some time, it was found that most of the applications can be created with
use of only a small number of instructions. This gave the opportunity to create the
RISC, which makes the A L U smaller, the execution of instructions faster, and the
compilers could be better optimized [5].

Classic processors CISC and RISC are adjusted mainly for control applications.
Average application of this type performs branch operation on every 7 t h instruction [6].
Digital signal processing algorithms are different. They are characterized mainly by
regular running in loops and periodic memory access. Digital signal processing
applications also includes many algebraic operations, typical multiply and accumulate
(MAC), fused multiply-add (FMA), vector operations or saturated arithmetic [7][8][9].
For this reason, digital signal processors (DSP) were created with similar architecture to

3

the RISC processors. The DSPs can use the idea of separate buses for data and
instructions from Harvard architecture, what increases throughput [10].

1.2.2 Graphics processing units (GPU)
Classic CPUs are oriented to the complex controlling of application and data processing
in one thread, sometimes with use of cache memory. GPUs are oriented to parallel data
processing with high throughput. It is achieved with the high number of computing
cores [11]. One GPU can contain hundreds of them. This number is achieved at the cost
of their simplicity, so they are not suitable for control applications. GPUs are therefore
used in combination with CPUs as the coprocessor [12].

1.2.3 Very long instruction word (VLIW)
Core of the processor based on V L I W [13] [14] architecture contains multiple functional
units with ability to execute multiple instructions at once. It is the instruction-level
parallelism like in the superscalar processors, but with one difference. Superscalar
processor maps the instruction dynamically from the stream of the single instructions
[15]. Software for V L I W is made of instruction packets, which are created statically
during the software compilation. Thanks to this, the V L I W core structure can be
simplified. This makes the space for the additional functional units, its functionality or
the increase of the clock frequency. The V L I W processors usually find its place in
signal processing or multimedia applications. The instruction-level parallelism is used
mainly in the implementation of DSP algorithm cores.

1.2.4 Multicore systems with shared memory
Multicore systems with shared memory contain several independent CPUs with direct
access to the local memory, which is usually R A M . This model could be applied to
various architectures such as CISC, RISC, DSP or their combination, so the system
could be homogeneous or heterogeneous. The most known systems from this group are
multicore PCs, but they are also used in embedded systems for medical systems, radar
systems etc. The parallelism is created through threads. During the processing, the input
signal is divided into several parts, which are processed separately. The iterations must
be independent on each other, so not all algorithms can be parallelized in this way [16].

1.2.5 Multicore systems with distributed memory
Multicore systems with distributed memory are similar to the systems with shared
memory from the parallelism principle point of view. The difference is that every
processor has its own address space. When access to the different memory space is
needed, data are transmitted in the message through the communication network. These

4

systems are used in the HPC typically for simulation of the physical effects such as fluid
flow or electromagnetic fields with very detailed models [16].

1.2.6 Multicore systems with hybrid distributed-shared memory
These systems combine previously mentioned systems. The shared memory systems
with multiple CPUs or GPUs with its own memory space are interconnected with
network like system with distributed memory. These systems can be scaled to the
desired application respecting the advantages and disadvantages of the combined
systems.

1.3 Programming methods
The performance of the final application is not only dependent on the device, but also
on the software. It is really important part of the application, because the well optimized
code could make better performance on the low-cost hardware than the bad written code
running on the high-priced device. There are several methods of creating the final code
which has its pros and cons. This subsection will introduce some methods of creating
software.

1.3.1 Low-level languages
The low-level programming languages provide only little abstraction from processor
instruction set. Low-level code could be converted directly to the machine code without
using a compiler. The software written in low-level language could be really fast and the
result binary code could be small. This kind of programming was common in the past
because of lack of high-level language compilers, but nowadays is used only for:

• embedded systems with small resources

• optimizing of the critical part of the software

• creating hardware drivers and system code

The next reason, why it is not used, is the economical aspect. The software
development takes a long time and the code is highly dependent on the processor
architecture and instruction set, so it is not easy portable between different devices [17]
[18].

1.3.2 High-level languages
The high-level languages provide strong abstraction from the hardware. Instead of
dealing with the instructions, registers and memory addressing, the high-level languages
deal with the variables and arithmetic expressions. The code is better readable than the
assembly code. Thanks to the strong abstraction, it is also easy portable. High-level

5

languages include for example the FORTRAN [19], BASIC [20][21], C [22], C++ [23],
C# [24] or Java [25]. After the compilation, some of them could be executed directiy on
the machine, but some of them needs interpreter. The price for possibility to easy write
complex code, which is also portable, is a smaller efficiency and the larger size of the
final binary program. This is caused by the inability of the direct translation of the
elements into the machine code. Even if the compilers are still being developed to
generate more optimized code [26], they are not able to handle some special cases. The
following examples refer to the standard C/C++ expressions:

• inability to express special DSP operation such as addition, subtraction and
multiplication with saturation

• inability to express vector operations

• inability to mark the independent part of programs which can be run in parallel
due to sequential character of notation

• inability to process data on parallel functional units/cores (split iterations of
loops)

These deficiencies are removed using the special optimized libraries provided by
processor manufacturers [27][28][29] or by the third party [30], compiler extensions,
such OpenMP [31] for program execution on shared memory system or MPI [32] for
distributed memory system or with special programming languages like C U D A [33] for
general-purpose processing on GPU. There are also some projects such as [34] that are
able to handle the instruction level parallelism more effective.

1.4 Standard optimization methods
Optimizations are set of analyze and transform operations performed on source code
achieving to run it faster or consume less hardware resources. These operations finds
and replaces parts of code with more efficient alternatives. The compilers use two main
techniques to determine the code parts to optimize [35]:

• control flow analysis

• data flow analysis

Control flow analysis is based on the examination of the control statements which
can cause branch in the program such as loops, conditions and function calls. In this
case, the optimizations are applied on the possible paths of program execution.

Data flow analysis is another type of optimization, which analyzes the usage of data
in the program. This can be used for reducing number of variables, optimize loading of
constants and data transfer. Several optimization techniques are described in [26] and
[35]. The well known methods include:

6

redundancy elimination

constant propagation optimization

useless code elimination

inline expansion

2 The objectives of the dissertation thesis
There are many possibilities how to realize digital signal processing systems. It does not
matter if the signal processing is performed on the scalar processor or the multicore
system, the software is still the most critical part that specifies the final efficiency. The
modern compilers could produce quite effective code, usually on scalar architectures,
because these compilers were developed for a long time and they are frequently used.
But there are other architectures which are not commonly used in applications and they
are using some enhanced type of parallelism, not only pipelining, so the compilers could
be less effective. The V L I W architecture meets this condition, because its instruction
parallelism must be specified at compile time.

For this reason, the dissertation thesis will be focused on the software part of the
signal processing systems, mainly the parallelism. The objectives are as follows:

• Prove that the software development tools for instruction-level parallelism are
less effective than the tool for data parallelism or task parallelism.

• Create the effective tool for the software developing of digital signal processing
application suitable for architectures using instruction-level parallelism,
especially V L I W processors.

The second objective consists of the followed points:

• Create the general model of V L I W processor or any general-purpose processor
which will be used by the tool to final assembly code.

• Create an algorithm for DSP algorithm assignment to the available hardware
resources.

• Implement an optimization method to effective mapping of the functional units
and registers.

8

3 Effectiveness of software development
tools

The software plays the key role in the whole signal processing system based on DSP.
This chapter will show the effectiveness of the widely used programming approaches
focused on parallelism. The dissertation thesis is aimed on the instruction parallelism
when the software execution is determined at compilation time. Also, the instruction
level parallelism should be compared with the data parallelism. For that reason, the
multicore V L I W based DSP will be used in the next benchmarks.

This chapter will demonstrate the programming methods of signal processing
applications from higher-level to low-level. The high-level approach will include data
processing in multiple threads to show the suitability on computations in different areas.
The next high-level approach will be pure single threaded execution of the algorithms to
be compared with the low-level approach when V L I W architecture is used. This high-
level case will be compared with the low-level assembly language and linear assembly
language, which is not available for all architectures.

There are not so many silicon manufacturers producing V L I W DSPs which meets
the requirements and are also easily available. Texas Instruments (TI) offers DSPs from
C6000 family, which are based on V L I W architecture and they are also made in
multicore variants. There ale also multiple development kits based on these DSPs. The
most of them are with the C64x [36] cores, which is older series supporting only fixed-
point arithmetic, and with the C66x [37] cores with floating-point support. The choose
will be decided from the newer C66x, because it will show also the handling of the
floating-point arithmetic. From the availability of the evaluation boards, the
TMS320C6678 [38] was chosen. This DSP fits perfectly, because it is multicore fixed-
point V L I W based DSP allowing wide demonstration cases in fields of instruction-level
and threading parallelism. The processor and the development board will be described
in detail later in this chapter.

The first part of chapter describes the structure of used processor, its features and
properties, and the used development board as well. The second part is evaluating the
DSP algorithms created with the high-level and low-level languages in instruction-level
parallelism point of view. The high-level language also demonstrates the thread level
parallelism using OpenMP.

3.1 Multicore DSP TMS320C6678
The TMS320C6678 is a multicore fixed/floating-point digital signal processor and it is
containing of eight C66x DSP cores [37]. Each core consists of two data paths, two sets
of thirty-two 32-bit registers, and two sets of four functional units. Each functional unit

9

is primary used for a different type of operations. In addition to standard operations, the
DSP is capable to execute SIMD instructions for fixed-point and floating-point
instructions, where 8 and 16-bit operands are packed into the single 32-bit word, or
single precision floating-point values are packed into the register pairs. These SIMD
instructions are especially for additions and multiplications (DADD2, MPY2, DADDSP,
DMPYSP, QMPYSP, etc.) [39]. The DSP can also perform complex multiplication or
multiplication of complex vectors by the complex matrices. Detailed description of the
DSP functionality can be found in [38].

3.2 Test cases
Testing of the software behavior is divided into 2 groups. The first group explores the
performance of the code from the data and thread parallelism, the second examines the
performance from the instruction level parallelism. A l l of the evaluations were
performed on the real hardware which was previously described.

3.2.1 Data and thread parallelism using OpenMP
OpenMP [31] uses thread based parallelism with fork-join model. This means, that
application start in one thread and if it come to parallel section, it creates another thread.
When this team of threads completes their work, they synchronize and terminate except
master thread. These threads can be section work-sharing and loop work-sharing [40].

3.2.2 Algorithm parallelization in OpenMP
This part is dealing with a parallelization of selected signal processing algorithms. It is
especially finite impulse response (FIR) filter, discrete Fourier transform (DFT) and
Fast Fourier transform (FFT). These algorithms allow easy parallelization on the loop.
Each of them has different character comparing the others.

FIR filter is implemented according to (3.1) from [41]. This type of filter was
selected, because it does not require feedback, which could not be simply parallelized.
Final code contains 2 nested for-loops, but only outer loop is parallel. However,
OpenMP support nested parallelism, inner loop is performed sequentially. It is because
the number of physical cores is less than number of signal samples and there is no space
where to execute other threads.

N - l

y„=Z*n-A (3-i)
k= 0

Structure of the DFT implementation (3.2) is similar to the FIR filtration (3.1). The
output sample is given by the sum of products of input signal and another variable. It
consists of 2 nested for-loops. The difference is that there are complex calculations and

10

the inner loop goes through full length of the signal. This means, that the amount of
processed data is much higher in compared to the FIR filter. According to [41], DFT is
given by

J V - l

k=Z„<
— i 2 Ttkn

(3.2)
n= 0

where x is input signal with length of JV in time domain. The X is output signal in
frequency domain also with the length of JV.

For the demonstration of FFT, the Cooley-Tukey algorithm [42] was chosen. This
algorithm is one of the most used in the practical implementations of the signal
processing algorithms. The structure is different from the previous implementations.
Figure 3.1 schematically shows progress of used loops in algorithm.

x[0]

x[4]

x[2]

x[6]

x[l]

x[5]

x[3]

x[7]

0

(X I
0 0

1 fw/1
iX« AAA/ I
2 i

:><: (/ m l
3

• X : xAi-

X[0]

X[l]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

Figure 3.1: FFT radix-2 with highlighted loop iterations

Final parallel code cannot run without operating system, which controls threads. TI
provides real-time kernel called SYS/BIOS [43] or DSP/BIOS [44]. It is designed to use
in embedded applications which requires real-time scheduling.

3.2.3 Measured performance of OpenMP
The execution time of whole function call represents the performance of implemented
algorithms. Dependence of execution time on number of created threads and length of
input signal was measured. For determining how the performance of algorithms was
influenced with changing of these parameters and by the OpenMP runtime, the
execution time of sequential versions (without OpenMP pragmas) of algorithms was
chosen as reference (Table 3.1).

11

Table 3.1: Measured reference time

Length of
the signal FIR DFT FFT

16 2 us 157 us 16 us

32 4 us 605 us 39 us

64 8 us 2457 us 93 us

128 16 us 9911 us 215 us

256 32 us 39832 us 491 us

512 63 us 159782 us 1105 us

1024 126 us 640102 us 2456 us

2048 252 us - 5405 us

4096 507 us - 11810 us

8192 1025 us - 25791 us

Figure 3.2 shows the relative increase of performance. The X axis represents number
of cores processing the signal, the Y axis carries the length of the processed signal and
the Z axis shows the speedup relative to the reference time from Table 3.1. From graphs
can be seen, that performance of all algorithms with OpenMP directives are slower
when there is only master thread. It is because the process of thread creating is still
active, even if the maximum number of threads is set to 1. It is the same reason why the
relative speedup is not the same as the number of created threads. In addition, threads
are communicating with each other and accessing to the same memory, because inputs
and outputs are defined as shared variables.

a) b) c)

Figure 3.2: Relative speedup of a) FIR filter, b) DFT, c) FFT

12

Table 3.2 shows the measured times that are needed to create the new threads. On
FIR filter and DFT algorithm, it is created only once. When program compute FFT, the
parallel region is created regularly depended on length of input array.

Table 3.2: Time needed to create parallel region

Number of threads Time

1 17 us

2 34 us

3 36 us

4 39 us

5 42 us

6 45 us

7 48 us

8 52 us

If the processing is made of the small number of instructions or the length of
processed data is short, it does not worth it to parallelize the loops. It is because the time
required for creating threads and time while these threads communicate with each other
can be approximately the same or bigger than the execution time of the actual time of
calculation. In addition, the behavior of the hyper-thread enabled processor could be
found in [45]. This makes threading parallelism suitable to apply on processed data with
the same algorithm core, not for its creation. The algorithm core creation should be
performed by optimization on the low-level, which will be shown in next part of this
chapter.

3.2.4 Low-level optimizations of the algorithms on the VLIW
architecture

The low-level programming approach allows the programmer to utilize the functional
units of the V L I W processor as much as possible. For the next examination, the FFT
was chosen again. Now, the algorithm is not written to work in loops with variable-
length input signal, but it is written to process fixed vectors with 4, 8 and 16 samples.
The function's computing performance was measured in CPU cycles. A l l measurements
were evaluated for a single-core DSP version only.

Table 3.3 summarizes the computing demands of functions written in C language
and low-level assembly as well. The function name FFT4R represents a function for real
FFT with N = 4, FFT16C is the function for complex FFT with N = 16, etc.

13

Table 3.3: FFT implementation performance comparison

Function Input C implementation Low-level Relative
speedup

Function Input

Data
path

CPU
cycles

Data
path

CPU
cycles

Relative
speedup

FFT4R 4-point real A+B 46 A 19 2.42

FFT4C 4-point complex A+B 80 A 24 3.33

FFT8R 8-point real A+B 123 A 34 3.62

FFT8C 8-point complex A+B 205 A 42 4.88

FFT16R 16-point real A+B 425 A 88 4.83

FFT16C 16-point complex A+B 642 A 100 6.42

The C code was compiled by commercially available compiler for C6000
Optimizing Compiler v7.3.1 from TI. By exploring the disassembly code, the usage of
both DSP data path A and B was affirmed. It can be seen, for a single FFT calculation
between 46 CPU cycles (for JV = 4 real values) and 642 CPU cycles (for JV = 16
complex values) is needed.

Low-level implementation of the previous functions takes from 19 (for JV = 4 real
values) to 100 CPU cycles (for JV = 16 complex values). The relative speedup is from
2.4 (for JV = 4 real values) up to 6.4 (for JV = 16 complex values). The next improvement
is the utilization of only one data path. It means that if there is need to compute multiple
transforms in row, the speedup can be twice as it is now achieved only with copying the
code into the data path B.

3.2.5 High-level and low-level comparison
Previous parts are exploring the speed of execution of low-level and high-level
implementation. Now, the text will show the difference in the structure of the compiled
code. It will be shown on the 4-point FFT with complex inputs. The code is based on the
FFT4C function from previous demonstration. The low-level code was rewritten into
the linear assembly and C language respecting the same order of the operations. The
optimizations were disabled for better recognition of the disassembled parts.

3.2.5.1 Low-level assembly
The low-level language offers the most accurate way to optimize the code. The software
developer has full control over the processor functionality and timing. It makes this
method suitable for creating time critical parts of software, such as the DSP cores.
Developing software in the low-level assembly requires more time and the final code
can be used only on the specific architecture. For these reasons, the low-level assembly

14

is not used for creating the complex software or the libraries. The part of low-level
implementation of the FFT is shown in Figure 3.3. The first ADDSP (single precision
floating-point addition, see [39]) operation is the equivalent of the first addition
operation of the C code from Figure 3.6.

LDDW .Dl *A4++[2] , A17 :A16
LDDW • Dl * A 4 — [1] , A19 :A18
ADDSP .LI A6, A8, A6

I| SUBSP .SI A6, A8, A8
|| LDDW .Dl *A4++[2] , A21 :A2 0

ADDSP .LI A7, A9, A7
I| SUBSP .SI A7, A9, A9
|| LDDW .Dl *A4++[1] , A2 3 :A22

Figure 3.3: Hand-written assembly code

3.2.5.2 Linear assembly
Linear assembly language is very similar as the classic assembly language, where the
developer uses specific instructions, but does not care about timing and usage of
functional units and registers. This method is alternative for the TMS320C6000
architecture family DSPs [46]. This feature should help to reduce developing time [47].

The FFT algorithm from the previous case in the linear assembly language contains
instructions in the same order as in the low-level assembly code, but the register names
were replaced by the symbolic titles. The functional units were removed as well. The
part of the linear assembly code is shown in Figure 3.4.

ldw * p X [6] , i n 6
ldw * p X [7] , i n 7
addsp inO, i n 4 , mO
addsp i n l , i n 5 , ml
subsp inO, i n 4 , m2

Figure 3.4: Example of linear assembly code

In the disassembly form of the example code (Figure 3.5) can be seen one data path
A is used, similar tot the low-level assembly, but the instructions are executed
sequential, even if there is a possibility to combine them into one instruction packets.
The example is the instructions ADDSP and S U B S P , which use already loaded
independent data, but SUBSP waits for the completion of the ADDSP instruction. The
addition and subtraction of two floating-point numbers can be performed by the
functional units .L and .S [39]. The arguments of the operations are also different. In
addition, the compiler waits for the result with NOP (no operation) instruction before
executing the following operation.

15

LDW.D1T1 *+A4 [6] , A19
LDW.D1T1 *+A4[7],A18
ADDSP.L1 A7, A9,A17
.fphead p, 1, W, BU, nobr, n o s a t , 0000011b
NOP 3
ADDSP.L1 A6, A8, A16
NOP 3
SUBSP.L1 A7, A9, A9
NOP 3

Figure 3.5: Disassembly of the algorithm written in linear assembly

3.2.5.3 High-level language
The high-level programming languages are useful for creating complex software,
because it reduces developing time. They are also suitable for creating the libraries for
the multiple platforms, because the source code is portable to different architectures.

Tested algorithm is made as separate function in the C language, with one input
pointer to signal samples vector. The temporary results are stored into the local
variables. The code contains only 16 arithmetic operations and the part of final
disassembled code from TIs C6000 compiler v7.3.1 is shown in Figure 3.6.

f f t 4 d i t c:
0000^ 3~34 0~ 07FFEC52 ADDK.S2 -40,B15
0000£ 3344 AC4 5 STW.D2T1 A4,*B15[1]
18 A6 = pX[0] + pX [4] ;
0000£ 3346 6246 MV.L1 A4, A3
0000£ 3348 9247 | | MV.L2X A4, B4
0000£ 334a 904D LDW.D2T2 *B4[4],B4
0000£ 334c 018C0264 || LDW.D1T1 *+A3[0] ,A3
0000£ 3350 020C979A FADDSP.L2X B4,A3,B4
0000£ 3354 2C6E NOP 2
0000£ 3356 DC45 STW.D2T2 B4,*B15 [2]

Figure 3.6: Disassembly of the FFT algorithm written in C

There can be seen, that the compiler is using both data paths A and B. It could be a
good idea to use all possible resources, but in this cases with similar range it is not
effective because the data transfer between data paths must be realized through the
cross-path, which is limited on single value per cycle. The next think to notice is that the
code is executed mostly sequentially, one instruction after the other. The other issue is
the frequent access to the memory. Other information about usage of the functional units
can be found in [48].

16

3.2.6 Comparison of the libraries with different structure
The method for implementing DSP algorithm should be considered for the application.
It is typically compromise between the effort and code portability on one side and the
code performance on the other.

Table 3.4: Performance comparison of the different approach of the C libraries for FFT

Size
Cycles

Size
Non-optimized FFTW TI-DspLib

8 5 909 893 145

16 10 520 2 080 171

32 35 628 4 862 244

64 60 804 15 400 373

128 193 058 33 990 818

256 321 088 77 314 1483

Table 3.4 shows the performance, given in CPU cycles, of three FFT libraries on the
TMS320C6678. The first non-optimized library was implemented only for the testing
purposes. Everything is computed during the runtime, including the twiddle factors. The
second is the FFTW [30], which was configured for the general C compiler, because it
does not have any support of the special instructions for the target DSP processor. The
twiddle factors and other parameters are precomputed before the FFT execution. The
last one is the TI's DSP library for C6000 [27]. The FFT parameters are also
precomputed, but it is optimize using the low-level assembly parts. The disadvantage is
that this code cannot be used on different architectures. The difference of the libraries
performance is significant. The optimized FFTW library is about 6.5 times faster than
unoptimized library for small vectors and about 4 times faster for larger vectors. The
low-level library (TI-DspLib) is about 6.5 times faster than optimized C library for
small vector and about 53 times faster for larger vector.

17

4 Impact of the software efficiency to the
power consumption

The previous chapter showed how the different approaches of software creation affect
the final performance of the application. This has an influence on the final time of data
processing. But there is also another aspect which is affected. It is the amount of energy
which is consumed while the application is running. This chapter will show the behavior
of the real systems from the view of the power consumption when the program is
executed on different number functional units and cores.

4.1 Theoretical power consumption increase on multi-
unit systems

As it was mentioned, the software performance could have also impact on the power
consumption of the system. In case of the scalar systems, the relation between the total
energy and time is clear. The energy is given by

E=Pt (4.1)

but only under assumption that the power requirements are the same for every
operation. The input power P contains the static power of the processor Ps, dynamic
power of the A L U PD and the background power PB, which includes the other circuits in
the system.

The situation in parallel systems is slightly different. In case that the total input
power P changes only with the dynamic power PD of the functional units. The total
energy in this case is given by

E={N-PD + Ps + PB)-t. (4.2)

In simply case when the N units will compute the result in time t and the same
algorithm will be computed in time N-t with single unit the system with single unit will
be more efficient when

{N-PD + Ps + PB)t>{PD + Ps + PB)-t. (4.3)

The equation (4.3) has the solution only when

JV<1 (4.4)

what means that it cannot happen, because the real systems have at least one functional
unit. So, even when the multicore system is fully loaded and its power consumption is at

18

its maximum value, its final consumed energy is less than the same result is achieved on
the system with single A L U .

4.2 Practical test cases
The previous theoretical power consumption assumes the linear increase of the input
power with the number of working functional units and some background power input
for additional circuits. At this point, the ratio between static and dynamic power is
unknown. This part will identify the real impact of the software optimization.

Several functions were proposed for measuring the difference of the DSP power
consumption. The functions combine usage of all functional units for fixed or floating­
point operations and data loading or storage as well. The power consumption was
measured when one (A) or both data paths (A+B) were used for processing. The
dependence on number of running DSPs cores was observed, as well. A l l functions were
programmed in low-level assembly language to reach the requested operations and the
codes were executed from the L2 cache memory of each core. The proposed test cases
are as follows:

• Empty loop

• Load/Store operations

• Fixed-point operations

• Floating-point operations

• FFT routines

4.3 Experimental Results
The evaluation board has no possibility to measure power consumption of individual
parts. But the power consumption can be measured relatively from the idle power level.
For the measuring reasons, the power supply adapter was replaced by the regulated
laboratory power supply unit Diametral P230R51D and power consumption was
measured with two multimeters Agilent 34405A (for current and voltage). The
multimeters can communicate with PC through the USB, so the samples can be captured
in a synchronous way and the final power consumption can be calculated. For data
capturing, the simple application using .NET and VISA drivers was programmed. Each
measurement was done 10-times with frequency of fm e a s u r e = 2 Hz and the final value
were determined as the mean function from the samples. The experimental workplace is
shown in Figure 4.1.

19

Figure 4.1: Workplace for the measuring the power consumption

The results for routines executed at data path A (half of DSP core), data paths A and
B, and the real FFT functions are shown in Figures 4.2, 4.3 and 4.4 respectively.
Remark: the idle power consumption of the development board was measured when all
DSP cores were stopped. This value is representing the background consumption of the
board (FPGA, clock generators, memory, emulator...) and the static power of the DSP;
the value was 10.93 W.

A few experimental conclusions can be observed. First, the loading and storing
operations do not have the same complexity; the loading data into the register file is
more power demanding then the storing operation. It relates with the operations'
duration - i.e. instruction for loading double words (LDDW) needs 5 CPU cycles and
instruction for storing double words (STDW) is a single-cycle instruction only. Second
obvious result is the bigger power demanding of floating-point operations then the
consumption of the fixed-point instructions. Finally, in spite of average function units'
loads of real FFT routines (54 % for real and 59 % for complex version, respectively),
the average power consumption is closed to the simplest test case tided "Empty Loop".

20

Figure 4.2: Power consumption of theoretical test cases at data path A

Figure 4.3: Power consumption of theoretical test cases at data paths A and B

Figure 4.4: Power consumption of FFT routines at data paths A and B

21

5 Instruction mapping tool for DSPs
The following section presets the functionality of the proposed approach. The purpose
of the technique is to ease the optimization process of the signal processing algorithm
by generating the low-level assembly code. The user defined code is independent on the
target architecture, so it could be reused in different projects.

The first part of the following text shows the definitions of the input data, which
contains target architecture and algorithm description. The second part describes the
mapping process itself.

5.1 Architecture definition
The target processor architecture is one of two input information needed to generate
low-level assembly code. The architecture is stored in JavaScript Object Notation
(JSON) format [49]. The stored object is divided into two parts. The first part consists of
the structure with available resources, the second is the list of supported instructions.

The hardware resources model is based on TMS320C6678. It is a multicore fixed
and floating-point digital signal processor (DSP) by Texas Instruments (TI), integrating
eight C66x cores [37]. Each core consists of two identical data paths A and B, where
each data path contains four functional units and thirty-two 32-bit general purpose
registers. The functional units .L, .S, . M and .D are not equal, and every unit is designed
for a different purpose and supports different instructions.

Each data path is defined by functional units and registers. The registers can be
joined into the groups representing the data types supported by instructions.

The instruction set is given for the whole architecture. There are three types of
instructions. The first is arithmetic instruction for basic mathematic operations. The
second is memory instruction for data loading into the registers or data movement into
the memory. The last is a general function. It is intended for operations which do not fit
into the previous categories.

Each instruction has defined its format, function, timing, supported functional units.
Arithmetic operations have also defined supported data types. Most of the parameters
need not be explained in detail, except of the timing. The timing is described by the
number of instruction cycles needed in 3 stages of pipelining. The example is shown in
Figure 5.1.

22

Pipeline stage 1 2 3 4 5 6 7

Read

Write

Unit in use

s r c l l
src2_l

s r c l h
src2_h

ds t j d s t h

. L / . S . L / . S

Figure 5.1: Execution progress ofADDDP instruction

During the execution of ADDDP [39] (double precision floating-point addition)
instruction, the functional unit .L (or .S) is fully utilized in the first two cycles and
cannot be used to start an execution of the next instruction. In addition, it reads input
arguments from 2 register pairs, so they cannot be overwritten with other values. From
the 3 r d to the 5 t h instruction cycle, there are no extra requirements for the registers or the
functional units. In that time, they can be used for other purposes. In the last two
instruction cycles, the result is stored back into the registers, so the values previously
stored there should not be needed anymore. The results can be used in the 8 t h instruction
cycle here.

5.2 Algorithm description
As mentioned, the proposed method uses the signal-flow graph-based approach, which
is similar to the HDL. The algorithm description contains two basic elements, signals
and nodes.

The signal is equivalent to the variable in C language. The difference is that the
variable in standard high-level languages can be reassigned multiple times whereas in
the tools description it can be assigned only once.

The second element in the algorithm description is the node. It is practically the
operation on the signals. The example of the operation can be algebraic operation,
memory loading/storing or constant definition.

Figure 5.2 shows the graphical representation of the example code. It has 3 signals
X, Y and W which can be compared to the input arguments of the function in C language.
Signal X is pointer to array with input values, signal Y is pointer to output array and W is
other input parameter. There are also signals A, B, C, D and TMP which are used for
temporary results. Note, the operations are not needed to be written in the same order as
they should be processed.

23

INPUT POINTER X
INPUT POINTER Y

TMP = B * W

Figure 5.2: Signal-flow diagram from example algorithm

5.3 Mapping process
The goal of the mapping process is to assign operations from the algorithm to the
hardware resources of the target processor. The process begins by the parsing of input
files describing both the algorithm and the target architecture. The parsed algorithm is
stored as list of nodes and signals. Some of the operations can be composed of the
multiple nodes, typically the memory operations where the pointer is firstly modified to
point the desired place in memory and then this pointer is used to store or load value.

The nodes and signals structure contains additional information, such as assigned
instruction, functional unit or registers which will be needed later for algorithm
mapping on the processor resources. At this point, only instructions can be assigned to
the node according to its operation.

5.3.1 Node sorting
When the algorithm is parsed, the relations between nodes can be found. It is realized
by pairing the input and output signals of nodes. This creates the possible execution
order of the nodes. Multiple nodes can have assigned the same execution level
independently on the architecture. This parameter is only informative to the next steps
to ensure correct functionality.

24

INPUT 1 INPUT 2 INPUT 3

Execution Level = 0

Execution Level = 1

Execution Level = 2

C : Execution Level = 0

Execution Level = 1

OUTPUT

Figure 5.3: Determining execution level

Figure 5.3 shows how the execution level is determined. Nodes which process input
signals have the execution level equal to zero (node 1). This means that they can be
executed immediately after launch. If node processes at least one signal which is result
of another node, its execution level will be higher than the highest value of the nodes
that create its input signals (nodes 2, 3). Constants (node C) have execution level equal
to zero at the beginning of this process to ease assignment on the other nodes. After all
nodes have its level assigned, the constants are moved right before the all nodes which
use its value.

When the execution levels are determined, the list with nodes can be sorted
according this parameter. At this point, the algorithm can be mapped to the functional
units, but the result will be highly depending on the algorithm definition in the input
file. For this reason, additional parameters are added for possible increase of
performance.

h Oh s Functional unit utilization

Result written to the register

Figure 5.4: Instruction execution order based on CPU cycles

The first parameter is the number of instruction cycles. Figure 5.4 shows three
pipelined instructions executed on the same functional unit. The left case is the ideal
order, when the first executed instruction takes 5 CPU cycles and the last 3 cycles. The
result is written to registers at the same time. The case on the right side is the worst

25

case, when the instructions are executed in the reverse order. The execution of all
instruction takes 7 CPU cycles instead of 5.

| [Functional unit utilization

| | Result written to the register

Figure 5.5: Instruction execution order based on number of supported functional units

The second parameter is the number of supported functional units where the
instruction can be executed. Figure 5.5 shows the situation on two functional units A
and B and five instructions. The sorter instruction (3 CPU cycles) can be executed on
both functional units. The longer instruction (4 CPU cycles) can be executed only on
functional unit A . The number on top indicates the order of instruction mapping. The
case on the left side is the worst case, when the short instructions are allocated first and
after that allocation continues with longer instructions. The result is that the functional
unit is executing only instruction and the rest is executed on the functional unit A . The
execution of all instructions takes 7 CPU cycles. The situation on right side is ideal,
because the longer instructions were allocated first, so they are not blocked by the
shorter instructions. The execution now takes 5 CPU cycles.

5.3.2 Functional unit allocation
Before the allocating functional unit for instruction, the node needs to have defined
minimal start cycle, when the instruction can be allocated. This cycle can be determined
when the instructions from the previous execution level are mapped. These operations
create the signals which are processed by currendy mapped node. The only special cases
are nodes with execution level equal to zero and therefore can be executed immediately
at the beginning of the algorithm.

26

I [Functional unit utilization

| | Result written to the register

Figure 5.6: Determining first possible CPU cycle for execution

Figure 5.6 shows the instruction on execution level N which depends on the results
from the three instructions on lower levels. The last result from these instructions is
written on 5 t h CPU cycle, so the examined instruction could be executed on 6 t h CPU
cycle. If there will be another instruction on the lower level which gives result after 5 t h

CPU cycle but it is not used in examined instruction, this information is irrelevant and
the minimal possible execution start of the examined instruction is not changed.

The instruction mapping into the functional unit is similar to the first-fit method in
memory management which means that the instruction is mapped into the first suitable
position. The difference is that this allocation process must consider two dimensions,
functional unit and time, not only single dimension like in memory management. The
tool can be also set to take the priority on the functional unit examination.

Allocation without priority is actually equivalent of the first-fit method. The tool
starts examining the functional units in the usage map from the first possible instruction
cycle, which can be used to execute selected instruction. When it finds that any of the
functional units is unused, it places the node into the map. When there is no free
functional unit, it moves on the next instruction cycle and repeats the process.

When the instructions are mapped without any functional unit priority, the result will
be dependent on the functional unit order in the architecture definition. The first simple
method prefers the functional units that supports the least number of instructions present
in the algorithm, so there is a bigger chance that the allocated node will not block the
next operations. The order of the functional unit examination is fixed through the
process.

The next method is similar to the previous one. The difference is that the order of the
functional unit examination is dynamic according to the instructions in the remaining
unallocated nodes. In each node allocation step, it finds a number of possible upcoming
nodes which can be possibly executed on each functional unit. The highest priority has
the functional unit with the smaller number as in the previous method.

27

5.3.3 Signal allocation
Signal can be allocated to registers only when all nodes are mapped, because there is
relation between the node's execution time and the signals lifetime. The lifetime of the
signal means the time, when the registers hold the value from the given node which
created the signal and other nodes cannot rewrite this value. The registers are not
allocated during the whole algorithm process, but only for the necessary time.
Generally, the lifetime of the signal starts with the value write and ends with the last
read of the target nodes. Special cases are input and output signals of the algorithm. The
input signal registers are allocated from the first instruction cycle and the output signal
registers keeps their values until the end of the algorithm.

Nodes Signal Nodes Signal

B Functional unit utilization

• Result written to the register

1
Figure 5.7: Determining signal lifetime

Figure 5.7 shows two cases of the signal lifetime determining. The first (left) shows
the situation when the signal is used by two nodes. Signal lifetime starts one CPU cycle
after instruction value write. This one cycle delay is caused by the possibility of using
the same register for input and output by single cycle instructions. The signal lifetime
ends after the last instruction read of the second target node.

The second case shows the situation with instructions which needs more than one
CPU cycle for reading and writing. The lifetime end is after the read like in the previous
case. The difference is in the lifetime start, which is not after writing as it may seem
from the previous situation, but it is after the first CPU cycle of the write. The behavior
of determining the lifetime start and end is technically the same in both cases.

When the signals have given its lifetime, they are allocated to the registers in similar
way as the nodes. The two-dimensional map of the register usage in time is created and
the registers are placed into the map like first-fit method.

After this procedure, the final low-level assembly code can be generated, or the
others information files such as overview of usage maps as well.

28

6 Experimental results
The goal of the proposed mapping technique is to use a potential of V L I W architectures,
which is to process data on multiple functional units in parallel operations. Because the
target architecture uses pipelining, not only the number of used functional units will be
evaluated, but also the usage ratio. For evaluation, several algorithms were implemented
with the aim to the possibility of the parallel execution, especially FFT and matrix
multiplication.

6.1 Basic behavior of algorithm mapping
First tests were performed on algorithm versions without memory access. The input
values are stored in registers and results are stored back to registers as well. The
available results are explained on illustrative 4-point FFT radix-2 with time decimated
complex input. The algorithm has 8 (4 real and 4 complex) input and 8 output signals.
The operations are only additions and subtractions. The simplification is achieved by
twiddle factor

Wn=e N (6.1)
JV

are only additions and subtractions. The simplification is achieved by twiddle factor

W"e{l,-l,j,-j}. (6.2)

The algorithm description without signal definitions is shown in Figure 6.1. This
code is also abstracted from the instruction set of the target processor despite the fact
that syntax variability is more like assembly language than a high-level language.

The algorithm can be visualized through the generated DOT file [50] [51] (see
Figure 6.2). The rectangle symbols represent input, output and internal signals and the
ovals represent all mathematical operations.

29

B l RE = A l RE + A2 RE
B l IM = A l IM + A2 IM
B2 RE = A l RE - A2 RE
B2 IM = A l IM - A2 IM
B3 RE = A3 RE + A4 RE
B3 IM = A3 IM + A4 IM
B4 RE = A3 RE - A4 RE
B4 IM = A3 IM A4 IM

CI RE = B l RE • B3 RE
CI IM = B l IM + B3 IM
C2 RE = B2 RE + B4 IM
C2 IM = B2 IM - B4 RE
C3 RE = B l RE - B3 RE
C3 IM = B l IM - B3 IM
C4 RE = B2 RE - B4 IM
C4 IM = B2 IM - B4 RE

Figure 6.1: Source code of the 4-point FFT (without signal definition)

The whole algorithm description is shown in Figure 6.1. This code is also abstracted
from the instruction set of the target processor despite the fact that syntax variability is
more like assembly language than a high-level language.

The algorithm can be visualized through the generated DOT file [50] [51] (see
Figure 6.2). The rectangle symbols represent input, output and internal signals and the
ovals represent all mathematical operations.

A3 RE A4 RE A l RE A2 RE A l IM A2 IM A3 IM A4 IM A3_ RE

add

B3_RE

add

C1_RE

A4_ RE

V

B l _ RE

(sub)

C3_ RE

A l . RE

(^add J

B4_ RE

A2 _RE

'
(s u b J

B2_ .IM

r

add

1
C4_ .IM

A l . .IM

B2_ RE

\

add

\
C2_ RE

A2_ .IM

add

B4 IM

1

C4_ RE

B3_ .IM

s i b)

\

C3_ _IM

Figure 6.2: Graphical representation of the 4-point FFT

The final code generated for 32-bit fixed-point number representation is shown in
Figure 6.3 with the appropriate comments with operations from the original code, where
|| sign marks parallel execution of instructions. The tool mapped the algorithm only into
data path A . Due to parallelism, the instructions are executed up to 3 at the same time.

30

The NOP operation is only for filling the last execution cycle when all output data is
available in the registers for the next use and can be replaced.

ADD
SUB
ADD
ADD
ADD
SUB
SUB
ADD
SUB
ADD
SUB
ADD
SUB
SUB
SUB
SUB
NOP

.LI

.SI

.Dl

.LI

.SI

.Dl

.LI

.SI

.Dl

.LI

.SI

.Dl

.LI

.SI

.Dl

.Dl

A l , A3, A9
AO, A2, A10
AO, A2, A8
A4, A6, A12
A5, A7, A13
A l , A3, A l l
A5, A7, A4
A8, A12, AO
A4, A6, A7
A10, A4, A2
A l l , A7, A3
A9, A13, A l
A9, A13, A5
A10, A4, A6
A8, A12, A4
A l l , A7, A7

B l
B2
B l
B3
B3
B2
B4
CI
B4
C2
C2
CI
C3
C4
C3
C4

IM
RE
RE
RE
IM
IM
IM
RE
RE
RE
IM
IM
IM
RE
RE
IM

A l
A l
A l
A3
A3
A l
A3
B l
A3
B2
B2
B l
B l
B2
B l
B2

IM
RE
RE
RE
IM
IM
IM
RE
RE
RE
IM
IM
IM
RE
RE
IM

+

+

+

+

+

+
+

A2
A2
A2
A4
A4
A2
A4
B3
A4
B4
B4
B3
B3
B4
B3
B4

IM
RE
RE
RE
IM
IM
IM
RE
RE
IM
RE
IM
IM
IM
RE
RE

Figure 6.3: Generated source code for the 4-point FFT with fixed-point representation

Execution time of the code compiled for 32-bit integer values is 7 instruction cycles.
For comparison, processing of the single precision floating-point data takes 12
instruction cycles.

The output implementation in the integer data representation uses 3 functional units,
because the . M unit has not defined the ADD or SUB operations. For the floating-point
data representation, the .D unit is also unused for its incapability of floating-point
operations.

The usage of the registers is practically constant during the program execution. It is
given by the character of the implemented algorithm, where the input values ale
replaced by the same number of the internal variables. The code for the integer data type
slightly increases the allocated registers, because the first temporary results are known
before the deallocation of the input values. The code for the floating-point data type
does not do that, because the floating-point operations take more instruction cycles for
its execution.

The usage of the resources is shown in Table 6.1. There are two types of average
usage. The first is for allocated usage, which is computed only for functional units and
registers which are used. The second is total usage, which is computed for all resources
in data path. The unit usage in the integer cases is higher for two reasons. The first is
that not all units are able to perform floating-point operations. The second is, that the
floating-point takes longer time to execute, so there can be some gaps in the code. The

31

register usage represents the number of user slots from all registers in the data path,
which can be used for data storage during the execution.

Table 6.1: Average hardware resources usage on selected algorithms

Algorithm Data
type

Instruction
cycles

Allocated usage [%] Total usage [%]
Algorithm Data

type
Instruction

cycles Functional
unit Registers Functional

unit Registers

Mat. mpy
2x2

Int32 13 46.15 73.08 23.08 18.27
Mat. mpy
2x2 Float 15 40.00 63.33 20.00 15.83 Mat. mpy
2x2

Double 15 40.00 63.33 20.00 31.67

Mat. mpy
3x3

Int32 32 70.31 81.56 35.16 50.98 Mat. mpy
3x3 Float 36 41.67 71.43 32.25 46.88

FFT4R

Int32 5 80.00 76.00 60.00 23.75

FFT4R Float 9 66.67 73.61 33.33 18.40 FFT4R

Double 10 80.00 78.75 40.00 39.38

FFT4C

Int32 7 76.19 66.33 57.14 29.02

FFT4C Float 12 66.67 79.17 33.33 19.79 FFT4C

Double 12 66.67 79.17 33.33 39.58

FFT8R
Int32 13 73.08 74.23 73.08 46.39

FFT8R
Float 22 57.58 74.43 43.18 37.22

FFT8C
Int32 20 70.00 86.00 70.00 53.75

FFT8C
Float 30 62.22 82.55 46.67 43.85

6.1.1 Values stored in memory
The following case counts with the input values stored in the data memory. This means
that the input of the algorithms is only the pointer to that data. Also the result will be
stored back to the memory, so it will be comparable to the classic high-level language
functions.

The mathematical structure of the algorithm is the same as in the previous case. The
difference is in the input/output signal definitions. Instead of 8 input and 8 output
signals with values, the algorithm has 2 input pointers, one for access to values from
memory and one for storing the results.

Figure 6.4 shows the signal flow diagram of the 4-point FFT with the complex input.
Compared to the implementation with the input samples stored in the registers, the final
implementation contains more signals and operations. It is given by the multioperation

32

nodes, which are creating another signals and operations for achieving desired result.
These nodes are memory loading and storing which in first step creates the constant
with the offset, then modifies the pointer and finally loads or stores the value. Table 6.2
shows the performance of the implemented algorithms. The resource utilization is
obviously smaller than in previous case. The code which performs the algorithm is
usually about 1/3 of the total execution time. The rest is the code for memory
operations. The loading and storing can be performed only on .D unit.

Figure 6.4: Graphical representation of the 4-point FFTwith memory operations

Figure 6.5: Functional unit usage in FFT4 (32-bit integer, data in memo

33

Table 6.2: Average hardware resources usage on selected algorithms (data in memory)

Algorithm Data
type

Instruction
cycles

Allocated usage [%] Total usage [%]
Algorithm Data

type
Instruction

cycles Functional
unit Registers Functional

unit Registers

Mat. mpy
2x2

Int32 33 45.45 52.27 45.45 19.60
Mat. mpy
2x2 Float 32 46.88 54.26 46.88 18.65 Mat. mpy
2x2

Double 52 51.92 44.49 51.92 30.59

Mat. mpy
3x3

Int32 64 59.77 50.48 59.77 41.02 Mat. mpy
3x3 Float 63 60.71 46.43 60.71 34.82

FFT4R

Int32 33 60.61 51.52 45.45 17.71

FFT4R Float 34 58.82 46.32 44.12 17.37 FFT4R

Double 61 61.20 48.52 45.90 30.33

FFT4C

Int32 39 68.38 28.90 51.28 19.87

FFT4C Float 41 65.04 59.27 48.78 18.52 FFT4C

Double 73 65.75 50.27 49.32 31.42

FFT8R
Int32 63 53.17 54.14 35.17 32.14

FFT8R
Float 66 50.76 56.86 50.76 30.21

FFT8C
Int32 78 58.97 53.96 58.97 37.10

FFT8C
Float 85 54.12 53.00 54.12 34.78

6.2 Optimization impact
The previous cases showed results of the instruction mapping without any modification
of operation allocation. The tool supports several kinds of priorities during mapping
process, which should help to improve generated code. The next part will show the
results these methods.

6.2.1 Node priority
The priority of the node mapping can be set to decisions based on the number of
functional units or the number of instruction cycles needed to execute assigned
instruction. The first part of Table 6.3 shows the selected algorithms with memory
operations where the methods of node priority mapping were applied. The performance
is compared with the result from the previous part with no optimization. The matrix
multiplications do not take any benefit of these methods, but FFT algorithms can be
executed up to 12 % faster. These top improvements apply on FFT algorithms with
floating-point representation and real signal input. The results for algorithm which have

34

input values prepared in registers are not showed, because the execution times of
generated codes were the same.

There are two types of algorithms with none, or in significant improvements. The
first type is where the operations have the same features. This is the case of the
algorithms with values prepared in registers. The second type are the algorithms where
the instructions cannot be easily moved to another functional unit. This is the case of the
matrix multiplication. The big part of the instructions performs multiplication which can
be done only with . M units. Also the memory operations can be performed only on .D
units.

On the other side, the algorithms with the highest improvement contain wide variety
of instructions. This creates the space for manipulation with the instruction mapping
process, but on proposed cases, the results of these two methods are practically the
same.

6.2.2 Functional unit priority
The next method how to improve the final performance of the code is mapping priority
of the functional units. This is based on statistics how many potential operations can be
performed on each functional unit. There are two options how the priority is set. The
first is the global priority which is given by the number and it is fixed for the
architecture. The second is dynamically changing according to remaining unmapped
nodes. The results are showed in the second part of Table IV. The performance is
compared with the case when the architectures functional units were defined in the
worst-case order for each examined algorithm. Now it can be seen that the difference of
the execution time can be up to 37 %.

35

Table 6.3: Priority mapping improvements (data in memory)

Algorithm Data
type

Node priority improvement
[%]

Functional unit priority
improvement [%]

Algorithm Data
type Units

priority
Cycles

priority
Global
priority

Dynamic
priority

Mat. mpy 2x2

Int32 0.00 0.00 21.43 28.57

Mat. mpy 2x2 Float 0.00 0.00 23.81 23.81 Mat. mpy 2x2

Double -3.85 -3.85 33.33 33.33

Mat. mpy 3x3
Int32 -3.13 -3.13 32.63 37.89

Mat. mpy 3x3
Float 0.00 0.00 33.68 33.68

FFT4R

Int32 6.06 9.09 25.00 25.00

FFT4R Float 11.76 11.76 22.73 22.73 FFT4R

Double 3.28 3.28 27.38 27.38

FFT4C

Int32 -2.56 -2.56 29.09 29.09

FFT4C Float 4.88 4.88 24.07 24.07 FFT4C

Double 4.11 4.11 28.43 28.43

FFT8R
Int32 6.35 7.94 26.74 26.74

FFT8R
Float 12.12 12.12 26.67 26.67

FFT8C
Int32 2.56 2.56 29.09 29.09

FFT8C
Float 9.41 9.41 23.42 23.42

Table 6.3 shows the comparison of the worst case and these two methods of priority
mapping. As with the previous methods the algorithms where the input values were
prepared in registers, there was no or not significant improvement. For that reason, table
shows only implementations with memory operations.

The difference from the previous cases is that the improvement is significant even
for the matrix multiplication. The speed-up of the code execution can be relatively high,
which is about 25 %. The maximal improvement was for integer matrix multiplication
3x3, with 37 %. This could be unexpected result, because in previous cases this
algorithm had slightly worse performance after mapping with priority than the original
one.

6.3 Comparison to other methods
The results from the proposed tool were compared with the standard methods of
programming. Table 6.4 shows the selected execution times of methods mentioned in
the thesis, including data loading and storing into the memory. The hand-written

36

assembly code depends only how it is written. The C code is equivalent of the code
passing into the tool's generator. This code was optimized with -02 settings. The
unoptimized code was about 3 to 4-times slower. The Texas Instrument DSP library for
C66x is distributed as static library archives and the change of optimization does not
have an effect on the results.

Table 6.4: Comparison of tool results with the standard methods

Algorithm Mapping tool ASM code C code TI-DspLib

FFT4R 34 19 46 -
FFT4C 41 24 80 -
FFT8R 66 34 123 -
FFT8C 85 42 205 145

It can be seen that the hand-written assembly code is achieving the best
performance. But the code generated by the tool is executed 2.4-times faster than the
compiled C code and 1.7-times faster than the DSP library. The DSP library cannot be
compared with the smaller input data, because it has limitation of minimum 8 complex
or 32 real values on the input.

37

7 Conclusion
The doctoral thesis was focused on the digital signal processing systems, especially on
the software part. The first part of the text introduced the various architectures that can
be used for signal processing. It also showed the possibilities of the software realization
from the low-level assembly language to the high-level languages with the extensions
for parallel processing of the data. For the high-level languages, the basic optimization
method which are nowadays used were also introduced.

The second part of the thesis was aimed for software component of the digital signal
processing and the new trend which is moving into the parallel data processing. This
part practically showed the methods of creating software for parallel architectures from
instruction level parallelism to the thread and data parallelism. For this purpose, the
DSP TMS320C6678 was chosen because it can handle all of these types of software
creating methods. This demonstration showed how the software can affect the final
performance of the DSP system. It does not influence only the final execution time, but
also the consumed energy.

Data and thread parallelism are good for processing of big amount of data which can
be separated into the smaller parts and executed on separated processor cores. But this
method is absolutely unsuitable for creating the cores of algorithms itself. This is
because the data processing is executed in separated threads which are running on the
different cores. This requires the host operating system to create these threads and if
necessary, the inter-process communication and synchronization as well. If the core
functions of the algorithms will be implemented this way, the overhead of the operating
system for threads could be comparable to the processing itself.

The implementation of the DSP core functions is more effective as simple functions.
The high-level languages such as ANSI C or low-level assembly language can be used
on that purpose. But V L I W architectures, which is also TMS320C6678, are on the
market shorter time than the scalar architectures, so the compilers are not so effective,
he assembly languages can achieve considerably higher performance. The disadvantage
is that the creating software for V L I W architecture requires more concentration.

For that reason, the aim of the thesis is to create a tool which can help to create
optimized parts of the code in the assembly language for V L I W processors. This tool is
presented in the third part of the thesis. The tool is intended to generate assembly code
for desired architecture from abstracted code. The target architecture is not fixed and
can be defined by user without tool modification. The tool uses signal-flow graph
approach to find the relations between the operations, which are subsequently mapped
into the functional units. The mapping of the operations is not linked by the order of the
operations in the algorithm definitions as it can be in standard high-level language

38

compilers. This helps better to find the possible parallel instructions which can be
executed on different functional units at the same time. The results can be optionally
affected by enabling the automatic consideration of mapping priority which could
increase the performance if the generated code. The tool itself is written as console
application in C++, which can be compiled on Windows and Unix based systems.

The approach of the tool was verified by several DSP algorithms which can be used
as core function of bigger complex algorithm. The tool utilizes the functional units to
possible maximum. The performance of generated code was compared to the hand­
written assembly code, equivalent C code and DSP library provided by processor
vendor. The assembly code has still the best performance, but the generated code
exceeded the C code and provided DSP library by the execution time. On the other
hand, because the tool uses the memory operations only for getting input data and
storing the results to avoid the bottleneck which can be caused by stack access, the tool
cannot be used for generating complex functions, but it can be still used for optimizing
parts of code with assembly language. These parts can be also reused only by
regenerating the code on another architecture, which could not be possible if these
optimized parts were written directly.

39

References
[I] Michael J. Flynn. Very high-speed computing systems. 1966. Proceedings of the

IEEE. ISSN: 0018-9219.
[2] Manoj Franklin. Computer architecture and organization: From software to

hardware. Upper Saddle River: Pearson Education. 2012. ISBN: 0136156703.
[3] Albert Zomaya. Parallel and distributed computing handbook. New York:

McGraw-Hill. 1996. ISBN: 0-07-073020-2.
[4] Michael J. Flynn. Some Computer Organizations and Their Effectiveness. 1972.

IEEE Transactions on Computers. ISSN: 0018-9340.
[5] Alan J. George. An overview of RISC vs. CISC. 1990. Twenty-Second

Southeastern Symposium on System Theory. ISBN: 0-8186-2038-2.
[6] Jurij Silc, Borut Robic, Theo Ungerer. Processor Architecture: From Dataflow to

Superscalar and Beyond. Heidelberg: Springer. 1999. ISBN: 978-3-642-58589-0.
[7] Steven W. Smith. The Scientist & Engineer's Guide to Digital Signal Processing.

San Diego: California Technical Pub. 1997. ISBN: 0966017633.
[8] Dake Liu. Embedded DSP Processor Design: Application Specific Instruction Set

Processors. Amsterdam: Elsevier. 2008. ISBN: 978-0-12-374123-3.
[9] Haris Javaid, Sri Parameswaran. Pipelined multiprocessor system-on-chip for

multimedia. New York: Springer. 2014. ISBN: 978-3-319-01112-7.
[10] Frantz Gene. Digital signal processor trends. 2000. IEEE Micro. ISSN: 0272-

1732.
[II] David Blythe. Rise of the Graphics Processor. 2008. Proceedings of the IEEE.

DOI 10.1109/JPROC.2008.917718.
[12] Marko J. Misic, Dorde M . Durdevic, Milo V. Tomasevic. Evolution and trends in

GPU computing. 2012. Proceedings of the 35th International Convention MIPRO.
ISBN: 978-1-4673-2577-6.

[13] Philips Incorporated. An Introduction to Very Long Instruction Word Computer
Architecture. 1997. Pub# 9397-750-01759.

[14] Cliff Young, Joseph A . Fisher, Paolo Faraboschi. Embedded Computing.
Amsterdam: Elsevier. 2005. ISBN: 978-1-4933-0365-6.

[15] John Paul Shen. Modern processor design: fundamentals of superscalar
processors. Long Grove: Waveland Press. 2013. ISBN: 9781478607830.

[16] Barney Blaise. Introduction to Parallel Computing. [Online]. 2016.
<https://computing.llnl.gov/tutorials/parallel_comp/>.

[17] Randall Hyde. The Art of Assembly Language. San Francisco: No Starch Press.
2003. ISBN: 978-1886411975.

[18] Agner Fog. Optimizing subroutines in assembly language: An optimization guide
for x86 platforms. [Online]. 2018. <https://www.agner.org/optimize/
optimizing_assembly.pdf >.

40

http://computing.llnl.gov/tutorials/parallel_comp/
http://www.agner.org/optimize/

[19] ISO/IEC 1539-1:2010, Information technology - Programming languages -
Fortran - Part 1: Base language

[20] Ecma International. ECMA-55 Minimal BASIC, 1st edition. [Online]. 1978.
<http://www.ecma-international.org/publications/files/ECMA-STWITHDRAWN/
ECMA-55,%201st%20Edition,%20January%201978.pdf>.

[21] Ecma International. ECMA-116 BASIC, 1st edition. [Online]. 1986.
<http://www.ecma-international.org/publications/files/ECMA-STWITHDRAWN/
ECMA-116,%201st%20edition,%20June%201986.pdf>.

[22] ISO/IEC 9899:2011, Information technology - Programming languages - C
[23] ISO/IEC 14882:2014, Information technology - Programming languages - C++
[24] ISO/IEC 23270:2006, Information technology - Programming languages - C#
[25] James Gosling et al. The Java Language Specification, Java SE 8 Edition.

[Online]. 2015. <https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf>.
[26] Keith Cooper, Linda Torczon. Engineering a Compiler. San Francisco: Morgan

Kaufmann. 2012. ISBN: 978-0120884780.
[27] Texas Instruments Incorporated. TMS320C67x DSP library programmer's

reference guide. [Online]. 2010. <http://www.ti.com/lit/ug/spru657c/
spru657c.pdf>.

[28] A R M Limited. CMSIS - Cortex microcontroller software interface standard.
[Online]. 2016. <http://www.arm.com/products/processors/cortex-m/cortex-
microcontroller-software-interface-standard.php>.

[29] Microchip Technology Incorporated. DSP library for PIC32. [Online]. 2016.
<http://www.microchip.com/SWLibraryWeb/product. aspx?product=DSP
%20Library%20for%20PIC32>.

[30] M . Frigo, S. G. Johnson. The design and implementation of FFTW3. 2005.
Proceedings of the IEEE, doi: 10.1109/JPROC.2004.840301.

[31] OpenMP Architecture Review Board. The OpenMP API specification for parallel
programming. [Online]. 2014. <http://www.openmp.org/>.

[32] Open MPI Project. Open MPI: Open Source High Performance Computing.
[Online]. 2014. <http://www.open-mpi.org/>.

[33] Edward Kandrot, Jason Sanders. Cuda by Example: an Introduction to
General-Purpose GPU. Upper Saddle River, NJ: Addison-Wesley. 2014. ISBN:
978-0131387683.

[34] S. Rajagopalan, S. P. Rajan, S. Malik, S. Rigo, G. Araujo, K. Takayama. A
retargetable V L I W compiler framework for DSPs with instruction-level
parallelism. 2001. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, doi: 10.1109/43.959861.

[35] William von Hägen. The Definitive Guide to GCC. Berkeley: Apress. 2006.
ISBN: 978-1-59059-585-5.

41

http://www.ecma-international.org/publications/files/ECMA-STWITHDRAWN/
http://www.ecma-international.org/publications/files/ECMA-STWITHDRAWN/
http://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
http://www.ti.com/lit/ug/spru657c/
http://www.arm.com/products/processors/cortex-m/cortex-
http://www.microchip.com/SWLibraryWeb/product
http://www.openmp.org/
http://www.open-mpi.org/

[36] Texas Instruments Incorporated. TMS320C64x/C64x+ DSP CPU and Instruction
Set Reference Guide. [Online]. 2010. <http://www.ti.com/lit/ug/spru732j/
spru732j.pdf>.

[37] Texas Instruments Incorporated. TMS320C66x CorePac user guide. [Online].
2013. <http://www.ti.com/lit/ug/sprugwOc/sprugwOc.pdf>.

[38] Texas Instruments Incorporated. TMS320C6678 Multicore Fixed and
Floatingpoint Digital Signal Processor. [Online]. 2014.
<http://www.ti.com/liťgpn/tms320c6678>.

[39] Texas Instruments Incorporated. TMS320C66x DSP CPU and instruction set
reference guide. [Online]. 2010. <http://www.ti.com/lit/ug/sprugh7/sprugh7.pdf>.

[40] Barney Blaise. OpenMP. [Online]. 2013. <https://computing.llnl.gov/tutorials/
openMP/>.

[41] Sen M . Kuo, Bob H. Lee. Real-time digital signal processing. New York: Wiley &
Sons. 2001. ISBN: 0-470-84137-0.

[42] James W. Cooley, John W. Tukey. An Algorithm for the Machine Calculation of
Complex Fourier Series. 1965. Mathematics of Computation, doi:
10.2307/2003354.

[43] Texas Instruments Incorporated. SYS/BIOS (TI-RTOS Kernel) v6.45 User's
Guide. [Online]. 2015. <http://www.ti.com/liťug/spruex3p/spruex3p.pdf>.

[44] Texas Instruments Incorporated. TMS320 DSP/BIOS v5.42 User's Guide.
[Online]. 2015. <http://www.ti.com/lit/ug/spru423i/spru423i.pdf>.

[45] Roman Mego, Tomas Fryza. Performance of parallel algorithms using OpenMP.
2013. 23rd International Conference Rádioelektronika. ISBN: 978-14673-5516-2.

[46] Texas Instruments Incorporated. TMS320C6000 programmer's guide. [Online].
2011. <http://www.ti.com/lit/ug/sprul98k/sprul98k.pdf>.

[47] Steven A . Tretter. Communication system design using DSP algorithms with
laboratory experiments for the TMS320C6713 DSK. New York: Springer. 2008.
ISBN: 978-0-387-74886-3.

[48] Tomas Fryza, Roman Mego. Low level source code optimizing for
single/multi/core digital signal processors. 2013. 23rd International Conference
Rádioelektronika. ISBN: 978-1-4673-5516-2.

[49] Ecma International. ECMA-404 The JSON Data Interchange Format, 1st Edition.
[Online]. 2013. <http://www.ecmainternational.org/publications/files/ECMA-ST/
ECMA-404.pdf>.

[50] Emden Gansner, Eleftherios Koutsofios, Stephen North, Kiemphong Vo. A
Technique for Drawing Directed Graphs. 1993. IEEE Transactions on Software
Engineering, doi: 10.1109/32.221135.

[51] Emden Gansner, Eleftherios Koutsofios, Stephen North. Drawing graphs with dot.
[Online]. 2006. <http://www.graphviz.org/Documentation/dotguide.pdf>.

42

http://www.ti.com/lit/ug/spru732j/spru732j.pdf
http://www.ti.com/lit/ug/spru732j/spru732j.pdf
http://www.ti.com/lit/ug/sprugwOc/sprugwOc.pdf
http://www.ti.com/li�gpn/tms320c6678
http://www.ti.com/lit/ug/sprugh7/sprugh7.pdf
http://computing.llnl.gov/tutorials/
http://www.ti.com/li�ug/spruex3p/spruex3p.pdf
http://www.ti.com/lit/ug/spru423i/spru423i.pdf
http://www.ti.com/lit/ug/sprul98k/sprul98k.pdf
http://www.ecmainternational.org/publications/files/ECMA-ST/
http://www.graphviz.org/Documentation/dotguide.pdf

Curriculum vitae
Roman Mego

Research
interests

Education

Academic
appointments

Computer
skills

Technicka 3082/12
616 00 Brno

Czech Republic

E-mail: roman.mego@vutbr.cz

Control, communication and signal processing applications in
embedded systems and its optimization.

since 2012 Brno University of Technology, Brno, Czech Republic

Doctor of Philosophy (Ph.D.), Electronics and Communication
Thesis: Parallelism in digital signal processing

2010 - 2012 Brno University of technology, Brno, Czech Republic

Master's degree (Ing.), Electronics and Communication
Thesis: RFID based access system in rooms

2007 - 2010 Brno University of Technology, Brno, Czech Republic

Bachelor's degree (Be), Electronics and Communication
Thesis: PC oscilloscope - hardware part

2012 - 2017 Department of Radio Electronics, Brno, University
of Technology
2014 - 2016 Research assistant in communication systems
(PEKOS) projects
2015 - 2017 Research assistant in Systems for effective
hardware modeling and software mapping

Programming languages

• C/C++, C# - Advance
• V H D L - Intermediate
• MatLab, G N U Octave - Intermediate

C A D systems

• KiCad, Eagle - Advance

• FreeCAD, AutoCad - Intermediate

Documents and graphics editors

• MS Office, Libre Office - Advanced

• Gimp, Inkscape, RawTherapee - Intermediate

Others

• Linux server administration - Intermediate

mailto:roman.mego@vutbr.cz

Experience • since 2011 ModemTec - Research and development, embedded
system design, signal processing and communication

• 6/2012 - 8/2012 Freescale Semiconductor - student internship
• 2005 - 2006 DcaLaser - CNC programming and technical

documentation conversion

Language • Slovak - Native speaker
skills • English - Intermediate

Abstract
The doctoral thesis is focused on the systems for digital signal processing, its
architecture and possibilities of software development. The text discussed the basic
classification of computer systems from the view of parallel processing. It also
demonstrates the behavior of the low-level and high-level programming languages on
the multicore digital signal processors based on V L I W architecture. The aim of the
dissertation thesis is to develop a tool that can be used to implement any DSP algorithm
on the any V L I W processor with efficiency of the low-level programming languages,
but with the advantages of the high-level programming languages. Result is the software
that uses a signal-flow graph approach to describe an algorithm, and generates the low-
level assembly code.

Abstrakt
Dizertační práce je zaměřena na systémy pro číslicové zpracování signálů, jejich
architekturu a možnosti vývoje softwaru. Text pojednává o základním rozdělení
počítačových systémů z hlediska paralelního zpracování dat. Rovněž demonstruje
chování nízkoúrovňových a vysokoúrovňových programovacích jazyků
na vícejadrovém signálovém procesoru založeném na architektuře V L I W Cílem
dizertační práce je vytvořit nástroj, který může být použitý při implementaci DSP
algoritmů na V L I W procesory s efektivností nízkoúrovňových programovacích jazyků,
ale s výhodami vysokoúrovňových programovacích jazyků. Výsledkem je software,
který využívá pro popis algoritmů graf signálových toků a generuje kód v jazyce
symbolických adres.

Mego, Roman. Parallelism in digital signal processing: short version of doctoral thesis.
Brno: Brno University of Technology, Faculty of Electrical Engineering and
Communication, Department of Radio Electronics. 2020. Supervised by doc. Ing.
Tomas Fryza, Ph.D.

