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Abstrakt 
Disertační práce se zabývá metodami a prostředky pro hodnocení kvality obrazu ve 
videosekvencích, což je velmi aktuální téma, zažívající velký rozmach zejména v souvis­
losti s digitálním zpracováním videosignálů. Přestože již existuje relativně velké množství 
metod a metrik pro objektivní, tedy automatizované měření kvality videosekvencí, jsou 
tyto metody zpravidla založeny na porovnání zpracované (poškozené, například kompri­
mací) a originální videosekvence. Metod pro hodnocení kvality videosekvení bez reference, 
tedy pouze na základě analýzy zpracovaného materiálu, je velmi málo. Navíc se takové 
metody převážně zaměřují na analýzu hodnot signálu (typicky jasu) v jednotlivých obra­
zových bodech dekódovaného signálu, což je jen těžko aplikovatelné pro moderní kompri­
mační algoritmy jako je H.264/AVC, který používá sofistikovené techniky pro odstranění 
komprimačních artefaktů. 

V práci je nejprve podán stučný přehled dostupných metod pro objektivní hodno­
cení komprimovaných videosekvencí se zdůrazněním rozdílného principu metod využíva­
jících referenční materiál a metod pracujících bez reference. Na základě analýzy možných 
přístupů pro hodnocení video sekvencí komprimovaných moderními komprimačními al­
goritmy je v dalším textu práce popsán návrh nové metody určené pro hodnocení kvality 
obrazu ve videosekvencích komprimovaných s využitím algoritmu H.264/AVC. 

Nová metoda je založena na sledování hodnot parametrů, které jsou obsaženy v trans­
portním toku komprimovaného videa, a přímo souvisí s procesem kódování. Nejprve je 
provedena úvaha nad vlivem některých takových parametrů na kvalitu výsledného videa. 
Následně je navržen algoritmus, který s využitím umělé neuronové sítě určuje špičkový 
poměr signálu a šumu (peak signal-to-noise ratio - P SNR) v komprimované videosekvencí 
- plně referenční metrika je tedy nahrazována metrikou bez reference. Je ověřeno několik 
konfigurací umělých neuronových sítí od těch nejjednodušších až po třívrstvé dopředné 
sítě. Pro učení sítí a následnou analýzu jejich výkonnosti a věrnosti určení PSNR jsou 
vytvořeny dva soubory nekomprimovaných videosekvencí, které jsou následně kompri­
movány algoritmem H.264/AVC s proměnným nastavením kodéru. 

V závěrečné části práce je proveden rozbor chování nově navrženého algoritmu v pří­
padě, že se změní vlastnosti zpracovávaného videa (rozlišení, prokládání, střih), případně 
kodéru (počtu snímků kódovaných v jedné skupině, formát skupiny). Chování algoritmu 
je analyzováno až do plného vysokého rozlišení zdrojového signálu (full HD - 1920 x 1080 
obrazových bodů). 

Abstract 
The doctoral thesis is focused on methods and tools for image quality assessment in 
video sequences, which is a very up-to-date theme, undergoing a rapid evolution with 
respect to digital video signal processing, in particular. Although a variety of metrics for 
objective (automated) video sequence quality measurement has been developed recently, 
these methods are mostly based on comparison of the processed (damaged, e.g. with 
compression) and original video sequences. There are very few methods operating without 
reference, i.e. only on the processed video material. Moreover, such methods are usually 
analyzing signal values (typically luminance) in picture elements of the decoded signal, 
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which is hardly applicable for modern compression algorithms such as the H.264/AVC as 
they use sophisticated techniques to remove compression artifacts. 

The thesis first gives a brief overview of the available metrics for objective quality 
measurements of compressed video sequences, emphasizing the different approach of full-
reference and no-reference methods. Based on an analysis of possible ideas for measuring 
quality of video sequences compressed using modern compression algorithms, the thesis 
describes the design process of a new quality metric for video sequences compressed with 
the H.264/AVC algorithm. 

The new method is based on monitoring of several parameters, present in the trans­
port stream of the compressed video and directly related to the encoding process. The 
impact of bitstream parameters on the video quality is considered first. Consequently, an 
algorithm is designed, employing an artificial neural network to estimate the peak signal-
to-noise ratios (PSNR) of the compressed video sequences - a full-reference metric is thus 
replaced by a no-reference metric. Several neural network configurations are verified, 
reaching from the simplest to three-layer feedforward networks. Two sets of video se­
quences are constructed to train the networks and analyze their performance and fidelity 
of estimated PSNRs. The sequences are compressed using the H.264/AVC algorithm with 
variable encoder configuration. 

The final part of the thesis deals with an analysis of behavior of the newly designed 
algorithm, provided the properties of the processed video are changed (resolution, cut) 
or encoder configuration is altered (format of group of pictures coded together). The 
analysis is done on video sequences with resolution up to full HD (1920 x 1080 pixels, 
progressive) 

Klíčová slova 
H.264/AVC, MPEG-4 Part 10, umělá neuronová síť, kvalita videa, objektivní hodnocení, 
metrika pro hodnocení kvality, PSNR 
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ment, quality metric,PSNR 
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Introduction 1 

In the days that analog signal's form was dominant in video processing, scanning, trans­
mission and recording systems, determining video quality was not really a challenging 
issue. Several simple features sufficed to measure the overall video quality [10] . Among 
these measurements, let us mention the frequency response, conveniently measurable in 
transmission channels using special lines in television broadcast signals, signal to noise 
ratio, etc. Several test signals could easily be used to determine the overall performance 
of the whole system. With the recent advent of digital video processing systems, these 
measures are no longer usable. For digital video systems, the quality evaluation methods 
must be changed. Performance of a digital video processing (or transmission) system can 
vary significantly, depending on the actual video content. 

Since its outset, commonly dated to be around the year 1950, digital video image 
coding research has been growing constantly. As uncompressed digital video samples 
represent a huge amount of data, an obvious goal of researchers ever since the digital video 
processing came into play was to reduce the statistical and perceptual redundancies of the 
video image data to either comply with a certain storage or communications bandwidth 
restrictions with the best possible picture quality, or to provide a certain picture quality 
service with the lowest possible bandwidth used. 

In lossless compression systems, only the statistical redundancy of the digital video 
data is reduced. This approach has the advantage of not reducing the visual quality of 
the video content (compared to the uncompressed digital original), however the resulting 
bit rate reduction of such systems is often insufficient. This is why lossy compression 
techniques overwhelm in present-day systems. Lossy compression always introduces com­
pression artifacts - encoder-specific degradations of the video image, e.g. block artifacts 
and staircase effect for DCT-based techniques (such as M P E G - 1 , MPEG-2 , H.261, H.263), 
blur (for M P E G - 1 , MPEG-2 , MPEG-4 - H.264/AVC), etc. Although these artifacts do 
not necessarily have to be noticed by the observer, it is always a challenging task to 
determine where the bound of visibility lies. Anyway, it is not only video compression 
that introduces video image quality degradation. With digital video scanning, recording 
and transmission systems, different types of errors may occur. Depending on the sys­
tem properties and error types, these errors may have different impact on the resulting 
perceived video quality. 

As human observer is the target consumer of the video content, the one and only 
perfect quality measure is always the observer's opinion on the perceived video quality. 
However, human observers can hardly be used every time quality needs to be evaluated. 
Human observers are used in so-called subjective tests. Recent research in digital video 
quality measurement methods is aiming to develop algorithms, which are able to estimate 
subjective results automatically. These computational techniques are also referred to as 
the objective quality tests. There has been a great deal of research in the area of objective 
quality assessment methods. However, no such method has been developed so far to fully 
substitute the objective testing in terms of performance. 



CHAPTER 1. INTRODUCTION 2 

In Chapter 2 of this doctoral thesis, the contemporary objective methods and the 
corresponding subjective tests are briefly summarized. The state-of-the-art in digital 
video quality is described and the pros and cons of the available metrics are discussed. The 
last section of Chapter 2 defines the objectives of the doctoral thesis. Chapter 3 describes 
a new metric for no-reference video quality assessment, starting with the theoretical 
background needed for the understanding of the new solution in Sections 3.1 and 3.2. 
From Sec. 3.3 on, the novel solution and the actual original contribution of the thesis 
is dealt with. Chapter 4 describes the set of video sequences that were used for the 
design and performance testing of the newly designed algorithm. Chapter 5 deals with 
performance analysis of the algorithm when the characteristics of the inputs are changing. 
The doctoral thesis concludes in Chapter 6. 



State of Knowledge 2 

As mentioned in Chapter 1, the perfect video quality measure is the observer's opinion 
on the perceived quality. Although a minor research is still active in the area of subjective 
quality [19], these methods are quite well understood and standardized. However, they 
will be briefly mentioned in this text as they are used as a benchmark for the objective 
tests. As such, their understanding is necessary, even though my research is oriented in 
objective quality assessment methods. 

2.1 Subjective Quality Assessment 
The routines for subjective image and video quality assessment are formalized in rec­
ommendation ITU-R BT.500-11 [11] and ITU-T P.910 [13]. In these recommendations, 
the viewing conditions are described, the material and observer selection, assessment 
routines and data analysis methods are defined. While the ITU-T P.910 is intended 
for multimedia applications, the ITU-R BT.500-11 should be used for television system 
quality assessment. 

Basically, there are two manners in which the subjective tests may be defined: with 
single stimulus methods, only one image or one video sequence is available for quality 
rating, i.e. no original is given for comparison. The double stimulus methods give access 
to an "original" or undistorted material, and thus comparison is possible. 

2.2 Full-Reference Objective Methods 
The full-reference (FR) objective quality assessment methods have one idea in common. 
For the quality evaluation, an original material is always provided for comparison. Obvi­
ously, this is the feature of double stimulus subjective methods, which may be used as a 
benchmark of F R objective metrics. 

P i x e l based metrics 

The first method to be mentioned here is, of course, the peak signal-to-noise ratio (PSNR). 
It is a very simple quality measure, given by [47] 

2 
m 

P S N R = 1 0 1 o g 1 0 — , [dB] (2.1) 

where m is the maximum value a pixel can take and M S E is the mean squared error, 
given by [47] 

-i T M N 
M S E = E E E [ / ( M , j ) - mi,j)]2, [-] (2.2) 

1 • 1V1 • IN k = 1 . = 1 j = 1 
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Figure 2.1: Quality metrics operating with a) full reference, b) reduced reference, c) no 
reference. 

for a video sequence consisting of T frames of M x N pixels. The symbols f(k,i,j) 
and f(k,i,j) represent the luma pixel values of the original and the distorted video, 
respectively. 

H u m a n visual system model ing 

The PSNR, yet widely used for its simplicity, is often criticized for not correlating well 
with the subjective tests [22]. More sophisticated methods have been developed, using 
different approaches. In Fig. 2.2, a framework of one such approach is shown. It is 
called the error sensitivity approach. This framework covers some of the basic features 
of the human visual system (HVS) and is used in many quality assessment methods [3, 
21, 34, 42, 43, 46, 47]. The input of such system is created by the luma pixel values of 
both the original and the degraded image or video. Please note some of these metrics 
are originally designed for static images only, but can easily be used for video sequences 
when applied frame-by-frame [3, 21, 34, 46]. In the preprocessing block, usually color space 
conversion and gamma correction is performed. After this, one of the human visual system 
features is modeled - the contrast sensitivity function (CSF). In the channel decomposition 
block, usually a bank of filters is used to divide the data into different frequency bands 
(orientation is very often considered as well). In each of these bands, masking - another 
typical feature of the HVS - is simulated. At the end, the error data is pooled to form a 
quality measure. 

The objective quality metrics that use human visual system modeling are in their 
nature very universal. They do not need any prior knowledge about the distortions 
within the video image. Consequently, they do not need any information about the video 
processing, recording or transmission system, which introduces video quality degradation. 
However, this universality requires a considerably high price to be paid: an original for 
comparison has to be provided and the human visual system must be understood well 
enough. Unfortunately, the HVS is so complex that we are not yet able to capture all of 
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Figure 2.2: A framework of error sensitivity based quality metrics. 
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Figure 2.3: Diagram of the SSIM system. 

its features. Any progress in such modeling is closely linked to vision research. No HVS 
metric has yet been developed to satisfy the needs of F R quality assessment - subjective 
tests are still used for system performance evaluation (see Section 2.5). 

S t ructura l s imilar i ty 

A different approach was presented in [41], which compares the structure of the respective 
images, rather than simulating the responses of the HVS. The scheme of such system is 
shown in Fig. 2.3 [41, 49]. In principle, three measures are compared for the two images: 
luminance (represented by pixel mean luma value), contrast (represented by standard 
deviation) and structure. This metric, as shown in [26], performs very well compared to 
the simplest pixel based metric. However, the correlation with subjective tests is still not 
high enough. 

2.3 Reduced-Reference Objective Methods 
The reduced-reference (RR) metrics lie half-way between the F R and no-reference (NR) 
metrics. In principle, some features are extracted from the original image/video, trans­
mitted along with the signal and used for the quality measurement at the receiver end. 
The bottleneck of these methods is in that additional data must be stored or transmitted, 
which requires changes in the way video data is stored. Of course, R R metric can be used 
as F R metrics, with the only difference in data they use for comparison. A n example of 
one such metric can be found in [48]. 
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2.4 No-Reference Objective Methods 
The no-reference video quality assessment metrics cannot rely on any information about 
the original material. What information is then available at the receiver side and can be 
used for measurement? Usually, no-reference metrics use some a-priori information about 
the processing system. For example, a usual D V B - T broadcasting system using MPEG-2 
source coding is known to have the block artifacts as the most annoying impairment [6]. 
Tracking these artifacts down in the video image may provide enough information to 
judge the overall quality. 

No-reference analysis using pixel values 

The block artifact detection approach is used in DVQ analyzer - video quality mea­
surement equipment supplied by Rohde & Schwarz and is briefly described in [6]. The 
principle of the method is in assumption that block artifacts create a regular grid with 
constant distances. Neighboring pixel differences are computed for the whole image and 
averaged in such manner that only 16 values remain (since MPEG-2 is supposed to cre­
ate 16 x 16 blocks). If the average pixel value difference is significantly larger on block 
boundaries, a statement can be made that block artifacts are present in the image. Such 
process was implemented and described in [27]. In [18], a no-reference algorithm was 
presented capable of detecting block artifacts in a block-by-block manner and, as an ex­
tension, detects flatness of the image. A no-reference block and blur detection approach is 
introduced in [9], designed to measure quality of J P E G and JPEG2000 images. Another 
no-reference algorithm for block artifact detection was described in [40], extending the 
conventional approach with masking effect implementations. 

Another common distortion, blur, can also be used for quality evaluation. Of course, 
depending on the characteristics of the processing system (whether or not the system is 
likely to introduce blur). A n interesting metric was presented in [17]. A very similar 
approach is also used in [14]. In principle, these metrics analyze how steep the changes 
in pixel values within the line are. The main difference is that [17] analyzes not only the 
horizontal direction, but measures blur in four directions instead. 

A interesting no-reference approach was used in [35], using a learning algorithm to 
assess the overall quality of an image. The metric uses pixel values of a decoded picture, 
which was subject to J P E G or JPEG2000 compression. 

No-reference analysis using transform coefficients and encoded stream values 

In [23], a metric was presented for JPEG2000 compressed static images. The JPEG2000 
standard uses wavelet transform. The authors analyze the wavelet coefficients to gain 
a quality measure. A n observation was made that in natural images, these coefficients 
have some characteristic properties. If the wavelet coefficients do not behave in a desired 
manner, a quality degradation can be expected. However, this metric is only applicable for 
wavelet transform compressed images, and thus not applicable for any of the wide-spread 
present-day video compression standards. 

Anyway, coefficient analysis for video sequences is also possible. In [7], such analysis 
was performed for MPEG-2 compressed video sequences. First of all, a statistical dis­
tribution analysis was performed to say which of the features available in the MPEG-2 
transport stream may be used for evaluation. Over twenty features are then used to feed 
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an artificial neural network for learning and consequently for quality evaluation. For this 
metric, a correlation as high as 0.85 was achieved by the authors. 

A different approach was published recently [5], where the authors compute PSNR 
values of a H.264/AVC (see Sec. 3.1) using transform coefficient and quantization param­
eter values, which means computation can be done on the encoded bit stream only. In 
fact, it is a similar approach as what I am working on. However, I use a different set 
of parameters and a different means of computation. It is worth mentioning that the 
framework of the system described in Chapter 3 [26] was published earlier than [5]. 

2.5 Standardization Efforts 
To establish standards in the field of video quality assessment, Video Quality Experts 
Group (VQEG) was formed in 1997. The majority of participants are active in the Inter­
national Telecommunication Union (ITU). V Q E G combines the expertise and resources 
found in several ITU Study Groups to work towards a common goal. 

So far, two phases of tests were performed to define and recommend procedures for full-
reference quality assessment. As Phase I (2000) was completed with limited success [37], 
Phase II tests were conducted in 2003 [38]. In this phase, out of seven proposed F R 
metrics, at least five were stated to be performing reasonably well (average correlation 
with subjective test scores as high as 0.91). 

The V Q E G will continue its work with testing of H D T V and Multimedia video se­
quences. Furthermore, reduced-reference and no-reference tests are planned. However, 
for all of these test, only test plans have been defined so far [39]. 

2.6 Aims of Dissertation 
The goal of the doctoral thesis is to bring a new approach to objective digital video quality 
assessment. Lots of research has already been done in full-reference and reduced-reference 
quality assessment. Originally, my research was oriented in evaluation of the performance 
of existing metrics [26, 27, 24, 25]. However, not enough information to implement the 
existing metrics is often available. In addition, such work has already been done by the 
V Q E G (see Chapter 2.5). 

Anyway, the reduced-reference objective methods are still not very well defined and 
understood, especially for the emerging video compression standards. The objectives of 
the doctoral thesis can thus be stated as follows: 

- develop a framework of a new metric suitable for no-reference objective video qual­
ity assessment of compressed video conforming to one of the most recent video 
compression standards - the H.264/AVC [12]. Design in detail and implement a 
metric capable of replacing a full-reference metric with a no-reference approach, 

- construct a video sequence database for metric performance evaluation, 

- performance analysis methodology. Analyse the performance of the new metric for 
different encoder configurations and different video sequence characteristics. 
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2.7 Conclusion 
We have made an overview of the available video quality metrics and defined the state-of-
the-art in digital video quality assessment. A n evaluation of some of the available metrics 
was published in [24, 26, 27, 25]. Based on this, the aims of the doctoral thesis were 
defined. 



A New Metric for 
H .264 /AVC. 

3 

3.1 The H.264/AVC Video Encoding 
The 'Advanced Video Coding" standard is known as ITU-T Recommendation H.264 
[12, 44] and as ISO/IEC 14496 (MPEG-4) Part 101. These two documents are formally 
identical, as the standard was developed by a Joint video team (JVT) of ISO/IEC Motion 
picture experts group (MPEG) and the ITU-T Video coding experts group (VCEG) [45]. 
These two groups have a very fertile background in the development of video coding 
techniques - let us mention at least the MPEG-1 and the very successful MPEG-2 by 
the M P E G group, vastly used today in digital television broadcasting, DVD-video, etc., 
and, on the other hand, the V C E G ' s H.261 videoconferencing standard and its more 
efficient successor H.263. The Joint Video Team efforts concluded in 2003, when the 
H.264/MPEG-4 Part 10 standard was first published. The standard will be noted as the 
H.264/AVC throughout the remaining text of this thesis. 

The H.264/AVC was designed to cope with a broad range of applications, such as 
broadcasting (cable, satellite, terrestrial, DSL), video storage, conversational services, 
video-on-demand streaming, multimedia messaging services [20]. Obviously, for such 
a diverse set of applications, the range of bit rates must be correspondingly broad to 
cover applications from mobile device video (like D V B - H , for instance) to H D T V video 
broadcasting. The system is designed as flexible to meet such requirements. 

In the following sections, the basic principles of the H.264/AVC will be described to 
provide a ground for a description of the new quality metric 

3.1.1 The data format 
Basically, all the coding of the H.264/AVC is divided into two layers: the video coding 
layer (VCL) and the network abstraction layer (NAL) [12]. The video encoding itself is 
all done in the V C L , and the output is V C L data. This data is consequently mapped 
into N A L units, containing a header and a payload - the RBSP (raw byte sequence 
payload). The purpose of such separation into two layers is such that we can easily 
make a distinction between the coding-specific features and procedures and the way the 
encoded data is treated afterwards (storage, transmission, etc.). 

The advantage for our purpose of designing a quality assessment algorithm is then 
such that we can completely look away from the N A L operations (we do not make analysis 
of erroneous bit streams) and only focus on the V C L itself. 

1 The M P E G - 4 is describing much more than only the M P E G - 4 Part 10. A brief list of its current 
Parts can be found in Table 3.1. The parts 23 to 25 are not yet finished (December 2007). 
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Table 3.1: Parts of the MPEG-4 (ISO/IEC 14496) standard. [45] 

Par t N o . Descr ip t ion 

Part 1 Systems: Scene description, multiplexing of audio, video and related 
information, synchronisation, buffer management, intellectual property 
management. 

Part 2 Visual: Coding of 'natural' and 'synthetic' visual objects. 
Part 3 Audio: Coding of natural and synthetic audio objects. 
Part 4 Conformance Testing: Conformance conditions, test procedures, test bit 

streams. 
Part 5 Reference Software: Publicly-available software that implements most 

tools in the Standard. 
Part 6 Delivery Multimedia Integration Framework:Asession protocol for multi­

media streaming. 
Part 7 Optimised Visual Reference Software: Optimised software implementa­

tion of selected Visual coding tools. This Part is a Technical Report (and 
not an International Standard). 

Part 8 Carriage of MPEG-4 over IP: Specifies the mechanism for carrying 
MPEG-4 coded data over Internet Protocol (IP) networks. 

Part 9 Reference Hardware Description: V H D L descriptions of MPEG-4 cod­
ing tools (suitable for implementation in ICs). This Part is a Technical 
Report. 

Part 10 Advanced Video Coding: Efficient coding of natural video. International 
standard. 

Part 11 Scene description and Application Engine. 
Part 12 ISO Base Media File Format. 
Part 13 Intellectual Property Management and Protection Extensions. 
Part 14 MPEG-4 File Format. 
Part 15 A V C File Format. 
Part 16 Animation Framework Extension. 
Part 17 Timed Text subtitle format. 
Part 18 Font Compression and Streaming. 
Part 19 Synthesized Texture Stream. 
Part 20 Lightweight Scene Representation. 
Part 21 M P E G - J Graphical Framework extension (GFX). 
Part 22 Open Font Format Specification (OFFS) based on OpenType. 
Part 23 Symbolic Music Representation. 
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Figure 3.1: H.264/AVC encoder block diagram. 

3.1.2 The encoding process 
Before we move on to detailed description of the encoder features that we use for qual­
ity assessment, it is necessary to briefly describe the function of the encoder / decoder 
of H.264/AVC as a whole. Please note that the standard only defines the syntax and 
semantics of the conforming bit streams, along with instructions on the decoding pro­
cess [12, 20]. The encoder and decoder structure is not strictly given and can vary in 
different implementations. The structure described in the following paragraphs is, how­
ever, very likely to be common for most of the implementations of the standard. 

Let us have a look at the encoder structure in Fig.3.1 (the figure is taken from [20] 
with modifications). We can observe two paths in the encoder: a "forward path" - from 
left to right, and a "reconstruction path" - from right to left. The paths are divided with 
a dashed line in Fig. 3.1. The following description is based on an explanation given 
in [20]. We will only describe the inputs as frames, however when processing interlaced 
video, fields may be encoded instead of frames. 

Encoder 

Now consider the forward path of the encoder. The frames are not encoded as a whole 
- blocks of 16 by 16 pixels within them (macroblocks) are processed one by one (see 
Section 3.1.3). For each macroblock, a prediction P is formed first. To achieve this, the 
encoder must decide whether the macroblock will be Intra predicted or Inter predicted 
(more in Sections 3.1.4 and 3.1.5, respectively). The main difference is what data is used 
for prediction: Inter predicted macroblocks are derived using pixels in different frames 
(one such frame is depicted in the figure as Reference frame), whereas Intra predicted 
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Figure 3.2: H.264/AVC decoder block diagram. 

macroblocks can only use neighboring pixels within the same frame (or, more precisely, 
take advantage of pixel data of an encoded and subsequently decoded neighbors within 
the frame being processed - notice in Fig. 3.1 that the reference is taken after going 
through the forward path as well as the reconstruction path). 

After forming the prediction P, the predicted values are substracted from the corre­
sponding samples in the original frame, which forms a residual block. The residual block 
is further transformed and the transform coefficients are quantized to reduce redundancy 
(see Section 3.1.6). At the end, the quantized transform coefficients are reordered and 
entropy coded using two different algorithms [12]. The entropy coded bit stream is then 
sent to the Network Abstraction Layer, which takes care of proper transmission or storage 
of the compressed data. 

The reconstruction path of the encoder provides a reconstructed frame, which shows 
what the frame after the whole proccess of compression and decompression will look like. 
It is necessary for providing the output of the whole encoding and decoding process. In 
Intra prediction, the blocks in the reconstructed frame are further used for prediction. 
The block named Filter in the block diagram represents an adaptive deblocking filter, 
intended to smooth areas where block artifacts caused by compression are likely to appear. 
It improves the viewer's impression on the reconstructed video quality [20]. 

Decoder 

To illustrate the correspondence between the encoder and the decoder of H.264/AVC, the 
decoder in Fig. 3.2 [20] is drawn in an unusual direction from right to left. The bit stream 
taken from the N A L is first subject to entropy decoding and reordering of transform 
coefficients. Inverse quantization and inverse quantization are then performed to produce 
a difference block. A prediction block is then added to it to form a reconstructed block, 
which is at the end adaptively smoothed by the deblocking filter. 
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Table 3.2: Slice types and allowed macroblock types. 

Slice type Descr ipt ion Profile(s) 
I (Intra) Only Intra predicted macroblocks (each 

predicted from previously coded data 
within the same slice). 

A l l 

P (Predicted) Contains Inter predicted macroblock and 
Intra predicted macroblocks. 

A l l 

B (Bi-predictive) Contains Inter predicted macroblocks us­
ing two reference pictures and Intra pre­
dicted macroblocks. 

Extended and Main 

SP (Switching P) Facilitates switching between coded 
streams. Contains Inter predicted and/or 
Intra predicted macroblocks. 

Extended 

SI (Switching I) Facilitates switching between coded 
streams. Contains a special type of intra 
coded macroblocks. 

Extended 

3.1.3 Macroblocks, slices, frames 
As noted earlier, the frames (fields) are not encoded as a whole at once, but the processing 
is done on blocks of a fixed size of 16 by 16 luma samples (and the corresponding block of 
chroma samples, a blocks of 8 by 8 samples of chroma Cr and a blocks of 8 by 8 samples 
for chroma Cb samples). These blocks are called macroblocks. They are numbered in 
raster scan order within a frame [20]. 

The macroblocks are organized in slices. The number of macroblocks in a slice is not 
fixed and doesn't even have to be the same within one picture. A slice may contain an 
integral number of macroblocks from one to the total number of macroblocks within a 
picture. The important thing about slices is that they can only contain certain types 
of macroblock depending on the slice type. The slice types and the respective allowed 
macroblock types are listed in Table 3.2 [20]. 

For motion compensated (Inter) prediction, one or several previously encoded pictures 
can be used as reference. The encoder and decoded maintain one or two lists of previously 
encoded and decoded pictures. In is worth noting that the time order of pictures (frames) 
in the original video doesn't imply the availability of pictures for prediction. In other 
words, we can predict from "future" blocks in time order - the time order of frames 
doesn't have to be the same as the decoding order. 

3.1.4 Intra prediction 
The H.264/AVC encoder is still operating on blocks like the MPEG-2 encoder [12, 20]. 
However, its function is more sophisticated. In the A V C , every block in the frame is 
predicted using previously encoded and decoded data. Every frame is divided in pixels 
called macroblocks, which are treated separately (see Section 3.1.3). Macroblocks are 
organized in slices, in which only a specified prediction can be used according to slice 
type. Basically, two different means of prediction can be used: for Intra prediction mode, 
prediction is done from previously decoded samples in the same slice (neighboring data). 
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For Inter prediction, motion vectors are used to predict from areas in previously coded 
data or even from future frames. 

For Intra prediction, only the data in the current slice (and frame) can be used. 
This means, in the decoder all the predicted pixel values are only determined by the 
neighboring previously decoded pixels. There are different modes in which the Intra 
prediction of luma samples2 can be performed [12]: 

- Intra 16 x 16 luma prediction modes, 

- Intra 8 x 8 luma prediction modes, 

- Intra 4 x 4 luma prediction modes. 

Intra 4 x 4 luma predict ion 

For Intra 4 x 4 luma prediction, the available modes together with simple sketches can be 
seen on Fig.3.3 [20]. Let us describe the process of the prediction for one of the schemes 
- the Intra 4 x 4 vertical prediction mode. As inputs for the prediction, 8 samples 
above, 4 samples to the left and one diagonal sample are taken. These luma samples 
are marked with blue color and indexed with capital letters A to M in Fig. 3.3. The 
output of the prediction process is a block of 16 samples, marked orange in Fig. 3.3. 
For vertical prediction mode, the predicted samples are derived only from the samples 
above the predicted area. In each column, the predicted luma values are copies of the 
reference samples right above the columns - all the predicted samples in first column are 
exact copies of sample A , for instance. A similar derivation is done for all the modes, 
however for some of them the computation of the predicted samples may be rather more 
complicated. 

Intra 8 x 8 luma predict ion 

For Intra 8 x 8 luma prediction, again one of nine modes can be selected. As the mode 
schemes are similar to those shown in Fig 3.3 for Intra 4 x 4 prediction, no closer descrip­
tion will be given here. Of course, as we need to predict larger blocks, we also need more 
reference samples to use as inputs for the prediction. Hence we need twice as long row 
and twice as long column of reference samples, compared to the configuration for 4 x 4 
prediction [12]. 

Intra 16 x 16 luma predict ion 

The last option of Intra prediction is to predict the whole macroblocks of 16 x 16 samples 
without further dividing them into smaller areas. As defined in H.264/AVC, only four 
prediction schemes are available, as we can only use the 16 neighboring samples to the top 
of the predicted area and 16 neighboring samples to the left. The situation is illustrated 
in Fig. 3.4, with the four different modes shown in a) to d) [20]. 

Further and more detailed description of the respective prediction modes and predicted 
sample calculations is beyond the scope of this thesis and is not necessary for our later 
considerations. 

2Likewise, such modes are defined for chroma sample prediction. However, we will only consider luma 
coding now. 
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Figure 3.4: Intra 16 x 16 prediction modes. 
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There is one more mode to be mentioned - the "I_PCM" mode, which enables the 
encoder to transmit the sample values directly, without undergoing the chain of Intra 
prediction, transformation, quantization and entropy coding [12]. This scheme may be 
advantageous in some situations. 

3.1.5 Inter prediction 
Similarly to Intra prediction, the block size for Inter prediction is not fixed in H.264/AVC. 
It can be changed from 16 x 16 down to 4 x 4. This scheme is called the tree structured 
motion compensation. In addition to this, prediction can be used in quarter-pixel ac­
curacy. As described in Section 3.1.4, Intra prediction of a luma macroblock can be 
performed on a whole 16 x 16 macroblock, four 8 x 8 blocks or sixteen 4 x 4 blocks. For 
Inter coded macroblock, the luminance component of each macroblock (16 x 16 samples) 
may be split up in four ways and motion compensated either as one 16 x 16 macroblock 
partition, two 16 x 8 partitions, two 8 x 16 partitions or four 8 x 8 partitions. If the 8 x 8 
mode is chosen, each of the four 8 x 8 sub-macroblocks within the macroblock may be 
split in further 4 ways. These partitions and sub-macroblocks give rise to a large number 
of possible combinations within each macroblock. The way macroblock partitions and 
sub-macroblock partitions can be organized is shown in figures 3.5 and 3.6, respectively. 
In addition to all the prediction modes, a macroblock may be Direct coded, which means 
no information is transmitted and the macroblock si simply copied from the reference 
picture. 

A separate motion vector is required for each partition or sub-macroblock. Each 
motion vector must be coded and transmitted, and the choice of partition(s) must be 
encoded in the compressed bit stream. Choosing a large partition size means that a 
fewer bits are required to signal the choice of motion vector(s) and the type of partition 
but the motion compensated residual may contain a significant amount of energy in 
areas with high detail. Choosing a small partition size may give a lower-energy residual 
after motion compensation but requires a larger number of bits to signal the motion 
vectors and choice of partition(s). The choice of partition size therefore has a significant 
impact on compression performance. In general, a large partition size is appropriate for 
homogeneous areas of the frame and a small partition size may be beneficial for detailed 
areas. 
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Figure 3.6: Sub-macroblock partitions. 

3.1.6 Quantization 
After prediction, the residuals must be encoded. The H.264/AVC standard uses three 
transforms depending on the residual data to be coded: 

- Hadamard transform for the 4 x 4 array of luma D C coefficients in Intra macroblocks 
predicted in 16 x 16 mode, 

- Hadamard transform for the 2 x 2 array of chroma DC coefficients (in any mac­
roblock) , 

- DCT-based transform for all other 4 x 4 blocks in the residual data. 

H.264/AVC assumes scalar quantization. The basic forward quantizer operation is [20] 

Zij = round(Yij/Qstep), (3.1) 

where Yij are the transform coefficients, Qstep is a quantizer step size and Zij are the 
quantized coefficients. A total of 52 Qstep values are supported by the standard, indexed 
by a Quantization Parameter - QP. 
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3.2 Artificial Neural Networks 
This Section describes the basic and essential theory on artificial neural networks. In 
later Sections, we will use them as a tool for video quality measurements, which cannot 
be achieved without loss of continuity unless we define the basic terms. 

In their infancy, artificial neural networks (ANNs), were technical tools trying to 
model the biological neural networks. Over the years, however, they have developed into 
a strong instrument for data processing, classification and clustering. They are used 
in a wide range of applications, reaching from signal processing to financial prognoses. 
One common thing for all ANNs is that they consist of very simple units, but often 
very many units are used. The network structures may vary significantly - from single 
neuron units to complex structures with feedbacks. The most common type, however, 
are feedforward backpropagation networks, which will be described in this chapter. The 
word backpropagation in the name is related to the way the networks are trained - errors 
propagate back throught the network to adjust the neuron parameters. 

The power of artificial neural networks is in their adaptability - we can train the 
networks to adapt to some given inputs. We should define two ways in which the ANNS 
may be trained, the supervised and unsupervised learning. In unsupervised learning, 
the network is given a set of training examples with no target outputs. In this case, 
the network is trained to classify similar inputs to groups, for instance. In supervised 
learning, the A N N is given a set of inputs with the desired outputs. During the training 
process, the network parameters are adjusted in order to get close or equal to the targets. 
We will only focus on supervised learning here, as it is suitable for our application. 

3.2.1 Neuron model 
The basic model of a neuron (a network unit) is shown in Fig. 3.7. It can be described 
by a series of functional transformations. First of all, assume a linear combination of M 
input variables xi, x2, • • •, XM as [2] 

M 

a = ^WiXi + b, (3.2) 
i=i 

or in vector representation as [2, 4] 

a = wx + b. (3.3) 

Here w is a row vector and x is a column vector. The symbol b in Eq. 3.2 and 
Eq. 3.3 represents bias, a constant which is added to the weighted sum of inputs. In some 
literature, the Equation 3.2 is written as [16] 

M 

a = J2wiXi, (3.4) 
i=0 

where the bias seems to have disappeared. However, the bias is still present, but is 
denoted as a value of the weight vector wo with a fixed corresponding input XQ — 1. The 
value a may be denoted as output unit activation. It is used as an input to the transfer 
function of activation function f to form the neuron output y as [4] 

/ M \ 

f^WiXi + bj = / ( w - x T + 6 V = f(a) = f[Ylwixi + b) =f w - x J +b . (3.5) 
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Figure 3.7: Neuron model. 

The function / is not limited to a certain function, many variants can be used. The 
most common choices are as follows: 

Hard - l imi t transfer function. This is the simplest case and the neuron using hard-
limiting transfer function is called perceptron. The function can be written as fol­
lows [16]: 

f r \ i 1 for a > 0 . . 
/ l ( a ) = \ 0 otherwise ' ( 3 " 6 ) 

Alternatively, a symmetric hard-limiting function can be used, given by [4] 

, / x _ / 1 for a > 0 . . 
h { a > ~ { - 1 otherwise ' ( 3 ' 7 ) 

Linear transfer function. The hard-limiting transfer function has its output limited to 
only two values and can thus be used for clustering or data classification. However, 
if a range of output values is needed rather than a binary output, using a linear 
transfer function in the form [4] 

Ma) = a (3.8) 

may be beneficial. A n interesting point about linear networks is mentioned in [4]: 
any multi-layer artificial neural network (only consisting of neurons with linear 
transfer functions) can be replaced by a single-layer network with linear units. 
Thus, for one desired output, we only need one linear neuron unit to examine the 
capabilities of a linear network. 

Linear neurons can be trained to learn an affine function of their inputs, or to find 
a linear approximation to a nonlinear function. A linear network cannot, of course, 
be made to perform a nonlinear computation. 

Sigmoid transfer function. In case the artificial neural network is supposed to rep­
resent nonlinear functions of its inputs, a linear network does not suffice and so 
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introduce a nonlinear transfer function of the neurons is introduced. A neuron 
whose output is a nonlinear function of its inputs is needed, and, at the same time, 
the output needs to be a differentiable function of the inputs. One such solution is 
the sigmoid unit, whose transfer function is given by [2] 

/ 4 (c) = a(a) = — ( 3 . 9 ) 

The sigmoid transfer function is very much like the perceptron hard-limiting transfer 
function - it applies a threshold to the linear combination of the neuron inputs. 
However, the threshold output is a continuous function of its inputs [16]. This is 
beneficial the for gradient descent learning algorithm, described in Section 3.2.2. 

3.2.2 Network training 
The real power of the artificial neural networks lies in their ability to adapt in order to 
give desired outputs. However most problems will probably be simulated by multi-layer 
networks, let the training algorithms for the simplest networks - single neuron units - be 
described first. 

Perceptron t ra in ing rule 

Although the applicability of a perceptron is limited to linearly separable problems, let 
us begin with understanding how to train this basic unit. There are several training 
algorithms available, out of which the perceptron training rule [4, 16] will be described 
at this point. Other algorithms, such as delta rule, can be found in [15, 16], and some 
will be noted in later sections. These algorithms provide the basis for training networks 
of many units. 

The initial step in the perceptron training rule is to set up random weights and a 
random bias. Then, for each of the training examples, the output is computed and 
the weights are modified in case the perceptron micslassifies the training example. This 
process is repeated, iterating through the training examples as many times as needed until 
the perceptron classifies all the training examples correctly. The weights are updated 
according to the perceptron training rule, which updates the weight Wi associated with 
input Xi. One update step is then [16] 

Wi <= Wi + Awi (3.10) 

for one weight. For the whole weight vector, the expression can be written as 

w ^ w + A w . (3.11) 

Similarly, the bias will be updated as [16] 

b^b + Ab. (3.12) 

For each training example, the input vector x and the corresponding correct (target) 
output t is available. After setting the initial random weights and random bias, the 
perceptron output y can be computed using Eq. 3.5. There are then three cases that can 
occur for a single neuron [4]: 
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1. If the output is correct (y — t), the weight vector is not updated, A w = 0. 

2. If the neuron output is 0 and should have been 1 (y — 0 and t — 1), the transposed 
input vector x T is added to the weight vector w, A w = x T . 

3. If the neuron output is 1 and should have been 0 (y — 1 and t — 0), the transposed 
input vector x is substracted from the weight vector w, A w = — x T . 

These three cases can be written with a single expression as [4] 

A w = (t - y)xT = ex T , (3.13) 

where the term e is the classification error. Now recall the Eq. 3.4, where the neuron bias 
was denoted as a member of the weight vector with a constant corresponding input of 1. 
Obviously, the bias update step is 

A 6 = ( * - y ) ( l ) = e. (3.14) 

The degree to which the weights are changed at each step may be controlled by a 
parameter called learning rate, denoted by r\ [2, 4, 16]. It is a small positive constant, 
reducing the weight update speed. With the learning rate, the Equations 3.13 and 3.14 
get the form [4] 

A w = r]{t — y ) x T = 7?exT (3.15) 

and 
A6 = 77(*-y)(l) = 77e, (3.16) 

respectively. The perceptron training rule is guaranteed to find a solution in a finite 
number of iterations, provided the solution exists. 

Gradient descent a lgor i thm 

The perceptron learning rule is only applicable for perceptron training, i.e. only hard-
limiting units can be trained. However, we might need a different unit trained. For 
this, the gradient descent algorithm (or the delta rule) will now be introduced, based 
on the LMS (least mean squares) algorithm. For simplicity, only a linear unit will be 
considered, whose transfer function is pure linear function, and so its output y is equal 
to the weighted sum a (see Fig. 3.7). We will see that this algorithm can be used for any 
unit whose transfer function is differentiable. For simplicity, the notation introduced in 
Eq. 3.4 will be used, where the bias is a member of the weight vector w as Wo. 

Let us define the training error as [16] 

EM = ^J2(td-yd)\ (3.17) 
U d=l 

where D is the set of training examples, tj, is the desired (target) output for training 
example d and y^ is the linear neuron output for the training example d. The error 
function represents the mean squared error for all the training examples. The error, of 
course, depends on the set of the training examples as well, but as it is assumed that this 
set is not changing during training, it is not explicitly written in Eq. 3.17. 
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Figure 3.8: Error of different hypotheses. 

Now imagine the whole hypothesis space with the possible weight vectors and their E 
values. For a linear unit with two inputs, the situation may be as shown in Fig. 3.8. The 
hypothesis space of a linear unit is always parabolic with a single minimum. Of course, 
the specific parabola will depend on the particular choice of training examples [16]. 

As the goal is find the weight vector for which the error is minimal, the best choice 
is to alter the weights in the direction of the steepest descent of E in each iteration. To 
calculate the direction of the steepest descent along the error surface, the derivative of E 
with respect to each component of weight vector w [16] can be used: 

VE(w) 
dE dE dE 
8WQ ' dwi' ' 8WM 

(3.18) 

The gradient can then be used to compute the training step A w (see Eq. 3.11) in the 
form 

A w = - t ) V % ) , (3.19) 

where rj is the learning rate. For each weight Wi of the weight vector w we can write 

AWi = —Tj 
dE 
dwi 

(3.20) 

To be able to efficiently update the weight vector in each iteration, way to compute the 
gradient at each step is needed. For this, consider the derivative of E from equation 3.17 
with respect to one weight component as [16] 

DE d 1 D 

dwi dwi D d = 1 

J2 (fd - VdY (3.21) 
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which leads to 
Q p 1 D Q 

Substituting yd from Eq. 3.5 and considering the transfer function of a linear unit is 
identity results in 

ff = § f > - ^ f e - w - x , ) (3.23) 

For a linear unit, we can write [16] 

d 
dwi 

and thus 

(td - w • X d ) = -xid, (3.24) 

2 D 

A W J = —TJ (td - Vd) Xid- (3.25) 
u d=i 

The number of training examples D is a constant and as such can be absorbed into the 
learning rate rj. Finally, the weight training step is derived in the form 

D 

Awi = rj 53 {td - Vd) %id- (3.26) 
d=l 

Recall that the notation introduced in Eq. 3.4 is used, where the bias is denoted as w0 

and its corresponding input is always xod = 1. For the bias training step, this leads to 

D 

Ab = Aw0=riJ2 (td - Vd) • (3.27) 
d=l 

The Equations 3.26 and 3.27 define the training steps of weights and the bias for a 
linear unit in one iteration, i.e. in one presentation of the set of training examples. For a 
unit with a different transfer function, Eq. 3.22 would have to be used and the derivative 
according to the particular transfer function computed. 
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3.3 PSNR Estimation 
In the following, the description of the new video quality metric is provided, which is the 
actual original contribution of the thesis. 

Consider a configuration shown in Fig. 2.1a). A video material undergoes a process, 
at the end of which we are trying to evaluate the quality of the resulting video. What we 
have available is the original and the processed video sequence, so we can easily compare 
them to get a quality measure such as the simplest one - the PSNR, described by Eq. 2.1. 
Although the PSNR does not give a perfect information about the perceived quality [22], 
it is the most common metric and is well understood and very often used. 

In the configuration shown in Fig. 2.1c), we do not have access to the original material 
when trying to evaluate the quality. Consequently, it is much more difficult to get an 
objective, exactly defined score. 

For the H.264/AVC, the number of available no reference quality metrics is very 
limited (see Sec. 2.4). Objective metrics for image quality measurement depending on 
the compression itself are still in their infancy. What will be described in the following 
sections is a no-reference metric operating on the encoded bit stream only, which estimates 
the PSNR - a value which needs the original as well as the decoded material as inputs to 
be computed. What are the possible applications of such "PSNR Estimator"? Apart from 
fast quality evaluation of compressed bit streams before or after their transmission, it may 
easily be used to evaluate the quality and the weak spots of a statistically multiplexed 
broadcast channel, for instance. 

3.3.1 The framework 
In Fig. 3.9, a simple scheme of the new metric is shown [31], [32]. The metric operates 
on the H.264/AVC compressed bit stream, which brings the benefit of quick processing 
without the necessity of decoding the actual pixel content. For simplicity, in the beginning 
it works with files stored on a computer hard disk. A n extension for streaming video will 
then be straightforward. 

In the block called Feature extractor, the bit stream is parsed and all but the desired 
parameter values is discarded. The selected parameters will be described in detail in 
Section 3.4. After extracting the parameter values, a Mapping algorithm comes into play 
to form a quality measure. 

MPEG-4 A V C 
compressed 
bitstream 

Feature 
extractor 

Quantization 
parameter 

Prediction type 
(block size) 

Mapping Quality 
measure 

Figure 3.9: Scheme of the PSNR Estimator. 
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3.4 Feature Extractor 
The Feature extractor forms the first part of the new quality metric. A n application has 
been developed to parse the bit stream and to store the desired parameter values. As no 
user interaction is needed for its function, the application is written in C language as a 
command line program. 

Basically, the H.264/AVC defines two levels in which the data is handled - the video 
coding layer (VCL) and the network abstraction layer (NAL), see Section 3.1.1. While 
the V C L deals with the information and processes needed to decode a video sequence, 
the N A L is defined to handle encoded data in terms of transmission and storage. To be 
able to extract the bit stream parameters, both the N A L and V C L decoding needs to be 
considered. 

To achieve both N A L and V C L decoding, the J V T JM11 reference decoder [33] is 
used and modified, implementing several functions to store the extracted data. The 
reference software is written in C language and includes H.264/AVC encoder and decoder. 
According to the license, users are free to use and/or modify the reference software for 
their purposes. Practical applicability of the software for video encoding and decoding is 
not very high as the software implementation is very slow. As encoder input, raw Y U V 
video sequences are used. The encoding process can easily be controlled by modifying 
input parameters. Decoding fully relies on data present in the encoded bit stream. 

When running the modified decoder, the parameter values are stored in a separate 
file for each frame. Special care was taken when modifying the decoder to gain access 
to the desired data before the actual pixel decoding starts. Consequently, the final video 
quality metric will rely on the data present in the bit stream and thus computational 
complexity will be reasonably low. The output format is M A T L A B compatible .mat 
file. This will make the development of the mapping algorithm much easier using the 
M A T L A B toolboxes. 

3.4.1 Intra predicted pictures 
Figures 3.10 - 3.13 represent the first frames of the two encoded sequences with different 
target bit rates. These sequences were downloaded from [1] and are in CIF resolution 
(352 x 288 pixels). In each of these images, the top left (a) part shows the decoded image. 
The top right part (b) displays a block type grid, illustrating what block sizes are used 
throughout the frame. The bottom right part of the figure shows the same data in a 
different representation: the lighter the color of the area, the smaller blocks are used for 
prediction. Please note all of the frames are Intra coded only (first slice of the sequence 
must always be Intra coded, in this case the whole frame consists of only one slice), only 
three different sizes are thus possible as only 16 x 16, 8 x 8 and 4 x 4 modes are available 
for Intra coded slices. The same analysis is possible for Inter coded slices as well, and 
will be described later. However, it is obvious that the quality rating of Inter coded video 
image areas strongly depends on the data from which the area is predicted. As such, the 
analysis on Intra coded slices is the first step. 

To sum up, the list of extracted parameters for intra coded pictures (frames, fields or 
slices) will be as follows: 

- % of Intra 16 x 16 predicted luma blocks, 
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- % of Intra 8 x 8 predicted luma blocks. 

- % of Intra 4 x 4 predicted luma blocks. 

- % of L . P C M luma blocks (directly encoded - see Section 3.1.4), 

- Quantization parameter3 for the actual picture. 

As an example, the parameter values for frames displayed in Figures 3.10 - 3.13 are 
listed in Table 3.3. Note the changing size of encoded blocks. It is obvious that for higher 
bit rates (where higher PSNR is achievable), finer structure is used for prediction. 

There are different profiles defined in the H.264/AVC, the Baseline profile being the 
simplest and implementing only a limited set of features [12]. The sequences analyzed 
in this section are encoded using the High profile as it implements the widest range of 
options. Regarding the Intra coded frames, the difference between the respective profiles 
is in that only the High profile is capable of using Intra 8 x 8 block prediction. 

Table 3.3: Parameters of the encoded sequences, frame 0. 

sequence Foreman Foreman Tempete Tempete 
PSNR [dB] 33.83 40.08 30.59 36.33 
bit rate [kbps] 106 1004 156 827 
Intra 16x16 17.2 % 15.4 % 4.8 % 2.8 % 
Intra 8x8 49.5 % 29.5 % 52.0 % 19.7 % 
Intra 4x4 33.3 % 55.1 % 43.5 % 77.5 % 
L P C M 0.0 % 0.0 % 0.0 % 0.0 % 
QP 35 25 35 28 
Figure 3.10 3.11 3.12 3.13 

Figure 3.10: Foreman sequence, frame 0, PSNR = 33.83 dB, QP = 35. 

3 Although the H.264/AVC defines variability of the quantization parameter within a slice, the JM11 
reference encoder does not use this feature. This is why only one number of the quantization parameter 
is given in the description and only one number is extracted from the encoded sequence. 
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Figure 3.13: Tempete frame, PSNR = 36.66 dB, QP = 28 
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3.4.2 Inter predicted pictures 
In Figures 3.14 - 3.17, block type maps for Inter predicted pictures are given. The used 
sequences are the same as for Intra predicted pictures and the Figures are similar to 
those for Intra predicted pictures. Of course, in Inter predicted pictures, blocks may be 
predicted from other pictures using Inter prediction and motion compensation. A whole 
set of Inter block types is then available. The Figures are organized as follows: The top 
left part shows the decoded frame, the top right right part (b) displays a block type grid, 
part (c) shows the block type map for Intra coded blocks and the part (d) shows the block 
type map for Inter coded blocks. I_PCM and Direct coded macroblocks are not displayed 
for simplicity (they will appear as black in both block type maps). Again, the lighter 
the color of the blocks in parts (c) and (d), the smaller blocks are used for prediction. 

According to the H.264/AVC specification [12], in Inter predicted pictures blocks may 
be encoded using either Intra or Inter prediction modes, which means for PSNR prediction 
of Inter coded pictures, the same parameters as defined in previous subsection for Intra 
coded pictures should be used, i.e. 

- % of Intra 16 x 16 predicted luma blocks, 

- % of Intra 8 x 8 predicted luma blocks, 

- % of Intra 4 x 4 predicted luma blocks, 

- % of L P C M luma blocks (directly encoded - see Section 3.1.4), 

- Quantization parameter for the actual picture. 

In addition, parameters describing the Inter predicted part of the picture will be used. 
These are 

- % of Inter 16 x 16 predicted luma blocks, 

- % of Inter 1 6 x 8 o r 8 x l 6 predicted luma blocks, 

- % of Inter 8 x 8 predicted luma blocks, 

- % of Inter 8 x 4 or 4 x 8 predicted luma blocks, 

- % of Inter 4 x 4 predicted luma blocks, 

- % of Direct luma blocks (directly encoded - see Section 3.1.5). 

Note that as only block sizes for each type of prediction are considered in our approach, 
no distinction is made in the shape of the block - 1 6 x 8 blocks are treated same as 8 x 16 
blocks, for instance. 

Observe the behavior of the block types within the coded pictures. For low quality, 
highly compressed pictures, the PSNR remains low and the quantization parameter is 
high, which is a signal of rough quantization and a significant loss of details in trans­
form coefficients. Regarding the block types, low quality pictures tend to be predicted 
using larger blocks, both for Intra predicted and Inter predicted area. This effect is very 
illustratively shown in Figure pairs 3.14 - 3.15 and 3.16 - 3.17 
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Table 3.4: Parameters of the encoded sequences, frame 5. 

sequence Foreman Foreman Tempete Tempete 
PSNR [dB] 30.83 37.61 28.03 31.15 
bit rate [kbps] 33.01 500.63 48.36 500.76 
Intra 16x16 3.03 % 1.77 % 0.51 % 0 % 
Intra 8x8 0 % 0 % 0 % 0 % 
Intra 4x4 0 % 4.04 % 0.25 % 1.01 % 
L P C M 0 % 0 % 0 % 0 % 
Inter 16x16 20.71 % 28.53 % 29.29 % 35.86 % 
Inter 16x8 (8x16) 2.78 % 21.21 % 4.04 % 19.70 % 
Inter 8x8 0 % 11.17 % 0.19 % 8.33 % 
Inter 8x4 (4x8) 0 % 5.49 % 0.06 % 5.93 % 
Inter 4x4 0 % 0.76 % 0 % 1.14 % 
Direct 73.48 % 27.02 % 65.66 % 28.03 % 
QP 43 27 43 33 
Figure 3.14 3.15 3.16 3.17 

Again, let us give an example of the extracted parameter values for encoded sequence 
frames, see Tab. 3.4. 

As Inter predicted blocks are derived from other blocks in other pictures (see Sec. 3.1.5), 
the resulting signal-to-noise ratio of the predicted block will strongly depend on the SNR 
of the reference data. This brings results in a necessity of taking another set of parameters 
into account - the referenced PSNR. Fortunately, the situation is quite simple as long as 
only the Baseline profile is considered. Each of the Inter predicted blocks is derived from a 
reference block in one of the previously decoded pictures [12]. In the H.264/AVC decoder, 
the decoded pictures are stored for reference in two lists (ListO and L i s t l , [12, 20]). A n 
index to a list is then carried in the bit stream to tell which picture to predict from and is 
our clue to the PSNR of the reference picture. Unfortunately, when applying our quality 
metric as a no-reference tool, real PSNR of the reference picture will not be available. In 
the phase of designing the algorithm, the PSNR values computed using comparison with 
the original will be used. After that, the PSNR values our algorithm estimated for the 
previous (reference) pictures will be used. More on this topic will follow in Sec. 3.5.4. 

It was stated that for the Inter predicted blocks, the PSNR should be derived from 
the reference picture PSNR as well. Thus, for each Inter block type ratio (i.e. 16 x 16 
inter blocks, 16 x 8 or 8 x 16 inter blocks, 8 x 8 inter blocks, 8 x 4 or 4 x 8 inter blocks, 
4 x 4 inter blocks, direct blocks) an average reference PSNR (refPSNR) from the reference 
pictures needs to be computed. In addition to the parameters listed in Tab. 3.4, for each 
inter predicted frame the following set of parameters can thus be defined: 

- 16 x 16 block reference PSNR, 

- 16 x 8 or 8 x 16 block reference PSNR, 

- 8 x 8 block reference PSNR, 

- 8 x 4 or 4 x 8 block reference PSNR, 

- 4 x 4 block reference PSNR. 



CHAPTER 3. A NEW METRIC FOR H.264/AVC. 30 

Rather than averaging the PSNR directly, it is desirable to calculate the PSNR using 
the mean squared error of the area used for prediction. Expressing M S E from Eq. 2.1 
leads to 

2 
m M S E = -pggg-. (3.28) 

10 io 

Calculating an overall mean squared error M S E of an area consisting of N\ blocks within 
a picture having the mean squared error MSEi and peak signal-to-noise ratio P S N R i , N2 

blocks within a picture with M S E 2 and PSNR 2 , etc. yields 

iVi • MSEi + N2 • M S E 2 + ... + Nx- M S E X M S E 
JVi + N2 + ... + Nx 

N-j-m2 _i_ N2-m2 , , Nx-m2 

PSNR! ~T PSNR2 ~t~ • • • ~t~ PSNRr  
10 10 10 10 10 10 _ 

Nx + N2 + ... + Nx 

m2 ( NA 4- N , 2 4- 4- N * il" I PSNRi I PSNR9 r • • • ~1 PSNR, 
io io ^ io io 2 irr 

Aq + N2 + ... + Nx 

(3.29) 

m2 Ef=i PSNR,-
10 io 

where x is the total number of different PSNRs in the reference pictures the prediction 
is done from. 

Substituting the result of Eq. 3.29 back into Eq. 2.1 gives the overall reference PSNR 
for one block size as 

2 
m refPSNR= 101og10 

& 1 ° M S E 
10 log m ' ^ N -

10 m> Eti (3'3°) 
10 10 

X X 
PSNR: 

1=1 7 = 1 10 10 

M a i n profile 

While the Baseline profile does not support bi-directional Inter prediction, such feature 
is available in the Main profile. For each bi-directionally predicted block, the only thing 
that gets complicated compared to the Baseline profile setting is that there is not only 
one reference PSNR as defined in Eq. 3.30 for each predicted block size, but there are 
two references - for one prediction direction each. 

Consider all blocks within a picture that are Inter coded using one block size ( 8 x 8 , 
for instance). Each such block can thus be predicted from one reference picture (in one 
direction) or from two reference pictures (bi-directionally). To put the correct PSNR of 
the reference into Eq. 3.30, the PSNR^ of the block B should be derived as follows: 

1. The block is predicted only in one direction - the PSNR of its reference picture will 
be used as the block P S N R B 
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Figure 3.15: Foreman sequence, frame 5, PSNR = 37.61 dB, QP = 27. 
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Figure 3.17: Tempete sequence, frame 5, PSNR = 31.15 dB, QP = 33 
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2. The block is predicted bi-directionally - the P S N R of the reference area will be 
calculated similarly to the expression in Eq. 3.30. Assume the block B is predicted 
from two blocks Bl and B2. The P S N R of the reference pictures is known ( P S N R ^ i 
and P S N R ^ ) - Based on the expression in Eq. 3.30, the reference P S N R for the 
block B is 

P S N R B = 101og102 - 101og10 P S N R B 1
 2 T ^ H ^ . (3.31) 

l O ^ o ^ 1 + l O ^ o ^ 2 

Extended and H i g h profiles 

The H.264/AVC defines the Extended profile, High profile, High 10 profile, High 4:2:2 
profile and High 4:4:4 profile apart from those described in previous sections (Baseline 
and Main profile) [12]. However, there are no additional features to take care of in 
our approach - the only interesting feature in the Extended profile is that it introduces 
special macroblock types for switching purposes. The possibility of block size analysis is, 
however, still available. The parameters and calculations described above for all these 
profiles will thus be used. 
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3.5 Mapping 
Now that all the necessary parameters are extracted, let us move forward to the design 
of the mapping algorithm. For this, a set of training video sequences can be used, each 
encoded with the JM11 encoder software. The selected training set will be described later. 
For each sequence in the training set, the parameters defined in Section 3.4 are extracted. 
Furthermore, the target PSNR value for every frame is available, as the encoded and 
decoded sequences can be compared with the original. The desired mapping algorithm 
thus uses supervised learning - in other words, for each presentation of inputs, the desired 
output is known as well. 

In the following chapters, artificial neural networks (see Chapter 3.2) will be consid­
ered as the mapping algorithm, trying to reach maximum correlation of the estimated and 
real PSNR and to minimize the mean squared error of PSNR values. As the inputs differ 
vastly in case of Intra and Inter predicted pictures, each group will be treated separately, 
designing two different artificial neural networks. 

Two sets of encoded sequences were constructed: 

Tra in ing set. A set of 10 original sequences is used. Each sequence is encoded using 
the JM11 reference encoder with varying target bit rates. As the encoder allows us 
to define the initial quantization parameter for the sequence, this feature is used as 
well. This results in a set of the total 40 different encoded sequences. For each frame 
in each sequence, the PSNR is computed (the JM11 reference encoder computes the 
PSNR by default, the JM11 reference decoder computes the PSNR provided the 
original sequence is available). 

Evaluat ion set. For evaluation of the designed mapping algorithm, an evaluation set 
is constructed. It is a set of 7 different video sequences, each encoded with four 
different encoder settings. This results in a set of 28 different sequences. Again, the 
desired PSNR is computed, but the mapping algorithm (the artificial neural net­
work) does not have access to these values. After the network makes its estimation 
of PSNR, the estimated value will be compared to the real one. 

Both the training set and the evaluation set consist of short sequences in CIF resolution 
(352 x 288 pixels). More details on the sequences can be found in Sec. 4.1. 

3.5.1 Intra Predicted pictures, linear network 
Let us begin with the simplest configuration of an artificial neural network. As the 
outputs should be in a continuous range of values rather than discrete, the perceptron 
configuration with thresholding transfer function is not usable. A linear unit will be 
used instead. As noted in Sec. 3.2.1, every network made up of linear units may be 
substituted by a single linear unit with equal performance. For the input parameters 
defined in Sec. 3.4.1, the situation is shown in Fig. 3.18. At this point, with video 
sequences compressed in the High profile will be considered as it is the only profile that 
uses all the macroblock types inlcuding the Intra 8 x 8 predicted blocks. Extension to 
other profiles will be discussed later. The used H.264/AVC reference encoder settings 
are identical to those given with the software as examples for the High profile video 
encoding [33]. A l l the input parameters are normalized to stay in the range from 0 to 1 
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Figure 3.18: Linear neuron unit estimating PSNR for Intra predicted pictures. 

Table 3.5: Weight and bias values for a linear unit trained with Intra predicted pictures 

Input description Input Weight Weight value 
% of Intra 4 x 4 blocks / 100 X\ Wi 11.75 
% of Intra 8 x 8 blocks / 100 X2 w2 13.10 
% of Intra 16 x 16 blocks / 100 x3 

w3 22.41 
% of L P C M blocks / 100 £ 4 u>4 0.000 
Quantization parameter / 52 x5 w5 -43.98 

b 47.26 

- the percentage inputs are divided by a factor of 100 and the quantization parameter is 
divided by 52, as it is the maximum that the quantization parameter can take according 
to the H.264/AVC standard. To train the linear unit, the M A T L A B Neural Network 
toolbox is used, namely the function train, which trains the linear network using the 
gradient descent algorithm (see Sec. 3.2.2). Suppose the input vectors are available in 
matrix input and the desired network outputs (targets) are stored in vector target. The 
M A T L A B code to train such network may then be as follows: 

net = newlin([0 1;0 1;0 1;0 1;0 1],1); 

net.trainParam.epochs = 2500; 

net = train(net,input.target); 

Table 3.5 shows the weight and bias values after 2500 epochs (iterations), where the 
minimal mean squared error for the training set is reached. The learning rate is rj = 0.01. 

For the estimated PSNR, we can write 

PSNREst = 47.26 + x i • 11.75 + x2 • 13.10 + x3 • 22 Al + x5 • (-43.9£ (3.32) 

The description of inputs X\ to x 5 can be found in Tab. 3.5. Obviously, the input x± has 
no effect as its weight is equal to zero. In the High profile configuration of the JM11 
encoder that is used, no L P C M blocks are present. However, this input is not discarded 
at this point as it may be useful when a different training set is used. 

Fig. 3.19 shows how the mean squared error for the training and the evaluation set is 
changing with the increasing number of epochs. After 2500 epochs, we reach the mean 
squared error of the training set 0.681. For the evaluation set, the M S E after 2500 epochs 
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Training epochs [-] 

Figure 3.19: Mean squared error with increasing number of training epochs. Linear unit. 
Intra frames. 

is as low as 1.214. It is obvious that after about 800 epochs, the minimum M S E for the 
evaluation set is reached and then it increases as the training goes on. 

Fig. 3.20 shows a similar graph for the correlation coefficient between the real and 
the estimated PSNR. The correlation ceofhcient for the training set is 0.983 after 2500 
epochs. For the evaluation set, its value is 0.971 after 2500 epochs. Finally, Fig. 3.21 
shows the scatter plot diagram of the real and the estimated PSNR for the evaluation 
sequence set. 
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Figure 3.20: Correlation coefficient with increasing number of training epochs. Linear 
unit, Intra frames. 
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Figure 3.21: Scatter plot diagram: Estimated PSNR values plotted versus real values for 
evaluation set. Linear unit, Intra frames. 
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Table 3.6: 2-layer sigmoid unit network: results. 

Training set Evaluation set 
Configuration M S E M S E Correlation coef. 
1 logsig - 1 lin 0.682 1.408 0.9657 
2 logsig - 1 lin 0.703 1.513 0.9627 
3 logsig - 1 lin 0.702 1.457 0.9641 
4 logsig - 1 lin 0.711 1.547 0.9616 
5 logsig - 1 lin 0.621 1.059 0.9728 
1 tansig - 1 lin 2.722 2.073 0.9494 
2 tansig - 1 lin 0.702 1.217 0.9673 
3 tansig - 1 lin 0.681 1.386 0.9663 
4 tansig - 1 lin 0.690 1.431 0.9610 
5 tansig - 1 lin 0.656 1.192 0.9702 

3.5.2 Intra predicted pictures, sigmoid unit network 
As linear neuron units have only a limited ability to get along with more complicated 
classification tasks, let us experiment with a more complicated network using different 
neuron units and see if we can reach an improvement in prediction performance. 

Several two-layer artificial neural networks were constructed, with the first layer made 
up of a variable number of sigmoid units and the second layer created by a single linear 
unit (only one unit is in the second layer as we want the network to output only one value). 
Again, the networks are trained in M A T L A B , using the gradient descent algorithm. The 
performance of the network, measured as the correlation coefficient of the estimated and 
target PSNRs of the evaluation set can be seen on Fig. 3.22 and Fig. 3.23 developing over 
the training process. Please note that the networks are trained to minimize the mean 
squared error over the training set of video sequences. The correlation coefficient is used 
as a measure of generalization ability of the network. Networks having one to five sigmoid 
units in the first layer [15] are considered. Furthermore, two different sigmoid transfer 
functions are used, both available in M A T L A B [4]: the logsig transfer function, given 
by Eq. 3.9, and the tansig transfer function, given by 

a(a) = - 2 - - 1, (3.33) 
v ' 1 + e~2n 

where a is the weighted sum in the unit (see Fig. 3.7). The two functions are quite similar 
in shape. The main difference is that the tansig function may have negative outputs. 

The training process is quite slow, results in the first 6000 epochs are shown in the 
graphs. However, all the networks are trained until 20000 epochs are reached. 

It is important to note that there is a lot of unstability in the training process as 
every time the network is created, different initial weights and biases are set. Therefore 
the convergence can not always be assured for the gradient descent algorithm. 

3.5.3 Intra predicted pictures, multi-layer perceptron 
Adding one more layer to the network presented in the previous section leads to the multi­
layer perceptron configuration. The first - input layer, commonly has as many units as 
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Figure 3.23: The training process of an A N N having a variable number of logsig units in 
the hidden layer. 
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there are inputs to the network [2]. The second - hidden layer has variable number of 
units trying to get the best possible results. In this section, let us experiment with the 
number of hidden units and try to reach the best possible results. Finally, the last -
output layer has as many units as there are desired outputs from the system, in this case 
only one value is required thus a single unit will be used. 

Similarly to the two-layer networks, units with tansig and logsig transfer functions 
are considered. Rather than constructing a whole network from units of one type, one 
transfer function is used for the input layer neurons and the other for the hidden layer 
neuron units. The training process is the same as for the previous network configurations. 
The results obtained for networks with 5 tansig units in the input layer, a variable number 
of logsig units in the hidden layer and one linear unit in the output layer are listed in 
Tab. 3.7. The best results are reached with eight units in the hidden layer. The results 
for such network are typed in bold in Tab. 3.7. Such network can be created and trained 
in M A T L A B using the following commands: 

net = newff([0 1;0 1;0 1;0 1;0 1], [5 8 1], 

'tansig' 'logsig' 'purelin','traingd','learngdm','mse'); 

net.initFcn = 'initlay'; 

net.layersl.initFcn = 'initnw'; 

net.trainParam.epochs = 20000; 

net.trainParam.lr = 0.005; 

net = train(net,input.target); 

However, initial conditions influence the training a lot and even though special care 
is taken to set appropriate initial conditions before the training (using the settings of 
net. initFcn and net. layersl. initFcn parameters), the results are not the same when 
performing the training twice for a selected network configuration. We also experimented 
with 5 logsig units in the input layer and a variable number of tansig units in the hidden 
layer. The results are far not as good as those obtained with tansig units in the input 
and logsig units in the hidden layer (networks having 1-3 hidden tansig units could not 
be trained to give reasonable outputs, best results were achieved with nine hidden units -
M S E over the training set 0.5698, M S E over the evaluation set 0.5956 and the correlation 
coefficient for the evaluation set 0.9833). 

Matrices 3.34 - 3.39 give the network weights and biases corresponding to the network 
that achieved the best results: A multi-layer perceptron with 5 tansig units in the input 
layer, 8 logsig in the hidden layer and one linear unit in the output layer. The notation 
corresponds to Eq. 3.3. 

0.5359 
0.0554 
1.3493 
0.5849 
2.4489 

-2.0997 
-1.3242 

0.6811 
2.9838 
2.1919 

0.2520 
2.4851 
0.6804 
2.4966 
1.6106 

3.1786 
0.8467 
0.1193 
1.6820 
0.4137 

0.3937 
1.3157 
3.1576 
0.1193 
3.8296 

(3.34) 

5.1307 1.2507 2.5854 -2.2952 -0.9445 (3.35) 
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Table 3.7: Multi-layer perceptron: results. 

Training set Evaluation set 
Configuration M S E M S E Correlation coef. 

5 tansig - 1 logsig - 1 lin 0.860 1.700 0.9521 
5 tansig - 2 logsig - 1 lin 0.593 0.729 0.9786 
5 tansig - 3 logsig - 1 lin 0.658 0.511 0.9839 
5 tansig - 4 logsig - 1 lin 0.621 1.480 0.9647 
5 tansig - 5 logsig - 1 lin 0.567 0.789 0.9792 
5 tansig - 6 logsig - 1 lin 0.638 0.543 0.9836 
5 tansig - 7 logsig - 1 lin 0.570 0.698 0.9818 
5 tansig - 8 logsig - 1 lin 0.541 0.584 0.9835 
5 tansig - 9 logsig - 1 lin 0.647 0.907 0.9760 
5 tansig - 10 logsig - 1 lin 0.670 0.880 0.9805 

w2 

-1.8854 2.8590 0.4646 3 3502 3 9028 
2.7528 -0.3113 3.4268 - 2 7093 2 7022 
2.0718 1.3019 -1.0678 3 1970 -1 8585 
4.0367 -0.0438 -2.7313 0 2466 - 0 1005 
1.1069 2.6695 1.3508 1 3090 3 3722 

-2.5610 1.4260 2.4003 -1 8859 - 0 6846 
1.5111 -2.0741 -1.7041 - 0 9599 - 2 8877 
2.0874 -0.3491 -1.6028 - 2 7243 -1 9105 

3.3692 -2.2772 -1.5902 0.6252 1.3665 -1.5697 3.8134 4.2850 
(3.37) 

W , 7.1935 7.1380 -1.1475 6.1820 5.3185 1.0553 6.6130 7.8723 (3.38) 

6.324 J . (3.39) 
For the first layer of neurons, the matrix in Eq. 3.34 gives the input weights, each row 

in the matrix representing the weights of one neuron. Similarly, each value in Eq. 3.35 
represents a bias for one neuron unit. To obtain outputs l i from the input layer (a column 
vector), multiplication is performed as 

l i = W i x + b i , (3.40) 

where the elements in the input vector x are defined in Tab. 3.5. The outputs of subse­
quent layers are then computed in a similar manner. 

So far, only sequences coded in High profile H.264/AVC were considered. It is the 
only profile that uses 8 x 8 blocks for Intra prediction. The other profiles are limited 
to the remaining modes, however they are quite unlikely to use the I_PCM prediction 
mode in most encoder implementations. For all but the High profile, we come to three 
parameter determining the PSNR for Intra frames - the percentage of 16 x 16 blocks, 
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percentage of 4 x 4 blocks and the quantization parameter value. The number of input 
parameters is limited compared to the High profile and a certain loss of PSNR prediction 
accuracy can be expected even though the considerations and networks mentioned above 
are suitable universally for all the profiles. 

Let us now use the best performing network from Tab. 3.7 to estimate PSNR of Intra 
frames coded in the Baseline, Main and Extended profiles. To make the encoder work in 
the selected profiles, several parameters need to be modified in the input configuration 
file. For the Extended profile, for instance, the parameters would be as follows: 

ProfilelDC = 88 # Profile IDC 

#(66=baseline, 77=main, 88=extended; FREXT Profiles: 

# 100=High, 110=High 10, 122=High 4:2:2, 144=High 4:4:4) 

LevellDC = 20 # Level IDC (e.g. 20 = level 2.0) 

Transform8x8Mode = 0 # (0: only 4x4 transform, 

# 1: allow using 8x8 transform additionally, 2: only 8x8 transform) 

In order to make the encoder work for Baseline profile, bi-directional prediction has 
to be disabled for Inter coded frames using the parameter 

NumberBFrames = 0 # Number of B coded frames inserted (0=not used). 

For further details on the encoder settings and encoder control using the file en­
coder . cf g, see [36]. 

In our experiments, the Baseline, Main, and Extended profile all code the Intra frames 
with the same results. Using the multi-layer perceptron network derived in 3.5.3, PSNR is 
estimated for all the profiles. The resulting correlation coefficient of the real and estimated 
PSNR for the evaluation set of sequences is 0.9600, and the mean squared error of the 
predicted values is 4.5294. These results are far not as good as those achieved for the High 
profile, but they are reasonable assuming the input set of parameters is in fact reduced 
by one quarter. The scatter plot diagrams of the real and the estimated PSNR values for 
video sequence Intra frames coded in the High and in the Extended profiles are shown in 
Fig. 3.24 and 3.25, respectively. 

Finally, let us try how the linear unit derived in Sec. 3.5.1 behaves with the Extended 
profile coded frames, for instance. The correlation coefficient is lower compared to the 
results of the multi-layer perceptron and reaches 0.9424. On the other hand, the mean 
squared error decreases to 2.6949. The corresponding scatter plot diagram is given in 
Fig. 3.26. 
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Figure 3.24: Scatter plot diagram: Real versus estimated PSNR values for Intra coded 
pictures from the evaluation set. High profile, multi-layer perceptron network. 
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Figure 3.25: Scatter plot diagram: Real versus estimated PSNR values for Intra coded 
pictures from the evaluation set. Extended profile, multi-layer perceptron network. 
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Figure 3.26: Scatter plot diagram: Real versus estimated PSNR values for Intra coded 
pictures from the evaluation set. Extended profile, linear network. 
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3.5.4 Inter predicted pictures 
For the Inter predicted pictures, again two sets of video sequences are used - the train­
ing set and the evaluation set. However, as there is a slight difference in the required 
variability, the encoder settings are different from those used for the Intra frame network 
training. More details on the encoder settings can be found in Sec. 4.1. 

When estimating the PSNR for Inter predicted pictures, the PSNR of the first frame 
in a sequence needs to be estimated first, as it is consequently used for reference. For 
this, the multi-layer perceptron is used as it reached the best results in the previous 
section. The artificial neural network inputs for Inter frame PSNR estimation are shown 
in Fig. 3.27. 

To design the network, the reference PSNR approach presented in Sec. 3.4.2 is used 
(Eq. 3.30, 3.31). A flowchart of the process of preparing network inputs and outputs for 
training is displayed in Fig. 3.28. For Inter frames, the situation is complicated compared 
to the Intra frames, as the reference PSNR of those frames, from which the blocks within 
the actual frame are predicted, are needed. In the training phase, the real PSNR of each 
frame is available. The real PSNR can thus be put in Eq. 3.30 and 3.31. The algorithm 
shown in Fig. 3.28 is performed for each frame in each sequence within the training set. 
The calculated parameters are then stored in a matrix to be used for batch network 
training. 

When the artificial neural network is trained, its verification over the evaluation set 
can be done. The estimated PSNR values are reached with an algorithm similar to the one 
shown in Fig. 3.28. The most important difference is that the real PSNR of the sequence 
frames is not available any more, so what is used to calculate the reference PSNR for the 
Inter predicted data in Eq. 3.30 and 3.31 is the network's own output (estimated PSNR) 
related to the reference frame. Of course, the last block in the flowchart - real PSNR 
calculation - is replaced by neural network PSNR estimation when verifying the network 
performance. Unlike for Intra predicted pictures, the linear network configuration does 
not suffice for the estimation of PSNR for inter predicted pictures. In the Baseline profile, 
prediction is done only in one direction, and the reference PSNR for each of the Inter 
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Figure 3.27: Parameters needed for Inter picture PSNR estimation. 
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Figure 3.28: Preparing inputs for training of an artificial neural network. 
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prediction block sizes is computed using Eq. 3.30. In the higher profiles, Eq. 3.31 is used 
first for each block in a frame predicted from two reference pictures. The consequent 
operations are the same for all profile configurations.The multi-layer perceptron is used 
as a mapping tool, with varying number of units in the hidden layer. 

The first fifteen frames of the training set sequences are encoded and used for the 
training. The GOP (Group of pictures) format is IBPBPBP. . . (I - Intra coded frame, P 
- Inter coded frame, B - Inter coded frame with bi-directional prediction) Only one GOP 
per sequence is used. To verify the results, 15 frames of the evaluation set sequences 
are encoded with the same GOP settings. The GOP size of 15 frames is selected as it 
is the shortest GOP usually used for IPTV, for instance (the typical GOP lengths here 
are 15 - 250 frames). To verify the network performance for longer GOPs, the trained 
networks are used to estimate PSNRs of 30-frame GOPs as well. Different networks for 
each H.264/AVC profile are considered, and generalization ability of a network trained 
with the High profile is tested - whether or not it gives satisfactory results for different 
profile configurations. 

One network per profile 

In this configuration, both the training and the evaluation set sequences are encoded in 
the Baseline, Main, Extended and High profiles. The main aspects, as noted above, are 
that the Baseline profile does not use bi-directional prediction, and that the High profile 
is the only one to use Intra 8 x 8 predicted blocks. 

For each profile, the total of 10 network configurations are trained. As the multi-layer 
perceptron with tansig transfer function units in the input layer and logsig transfer 
function units in the hidden layer reaches best results in our consideration for Intra frames, 
the same approach is used for Inter frames. As there are 17 parameters (see Fig. 3.27) as 
inputs to the network for Intra frames, all the considered networks have 17 tansig units 
in the input layer. The number of logsig units in the hidden layer is variable, reaching 
from one to ten. Finally, the output layer only includes one linear unit. 

The results for the Baseline profile are listed in Tab. 3.8. There is one difference 
compared to all the other profiles - as the Baseline profile doesn't support bi-directional 
prediction, the GOP format is IPPPPP. . . instead of IBPBPBP. . . As expected, the 
mean squared error of estimated PSNRs in the training set is decreasing as the number of 
hidden units in the network increases. Rather more interesting are the values of the mean 
squared error and the correlation coefficient for the estimated PSNRs in the evaluation 
set. The M S E first decreases as new units are added to the hidden layer of the network. 
When a certain number of units is present in the hidden layer, the M S E values do not 
decrease monotonically any more, but stay in a certain range. Adding more units into 
the hidden layer is not likely to strongly improve the results for the evaluation set. This 
is why the tests are not performed for more than ten units in the hidden layer (it will 
be more obvious for other profiles that adding hidden units does not necessarily lead 
to improvement). However, for the Baseline profile, the best results are reached with 
ten units in the hidden layer. Fig. 3.29 shows the scatter plot diagram of the real and 
estimated PSNR values for the first 15 frames of the evaluation set sequences encoded 
in the Baseline profile. In this case, the evaluation set sequences are used in the same 
encoder configuration as the training sequences, having 15 frames in a GOP. To test the 
algorithm's stability for longer GOPs, let us test its behavior for twice as long GOPs -
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Table 3.8: Inter coded pictures, Baseline profile: results. 

Training set Eval. set 15 frames Eval. set 30 frames 
Hidden units M S E M S E Corr coef. M S E Corr coef. 

1 0.2204 13.377 0.8460 17.710 0.8460 
2 0.0514 28.954 0.6951 39.303 0.7295 
3 0.0460 18.209 0.7640 18.573 0.8354 
4 0.0351 9.910 0.8647 10.956 0.8978 
5 0.0292 8.046 0.8921 8.987 0.9204 
6 0.0286 9.524 0.8692 12.160 0.8872 
7 0.0229 5.179 0.9318 6.562 0.9411 
8 0.0235 6.198 0.9207 5.933 0.9497 
9 0.0165 7.672 0.8991 8.962 0.9237 
10 0.0141 4.931 0.9350 4.721 0.9576 

Fig. 3.30 shows the scatter plot diagram in this case. The network performs reasonably 
well here, too. Ass seen in Tab. 3.8, both the correlation coefficient and the M S E have 
improved compared to the 15-frame GOP (this doesn't mean the algorithm generally 
performs better for longer GOPs, this depends on the video sequence itself). 

Let us describe the Main and Extended profiles in a single paragraph. The reason is 
simple - both profiles are using the same features we are dealing with, and - with the 
encoder settings we are using - give similar, if not identical results. In our configuration, 
the encoder behaves identically for both profiles, which means it selects the same predic­
tion modes and, moreover, the resulting PSNRs are equal. Tab. 3.9 and Tab. 3.10 give 
the PSNR estimation results for both profiles, taking both 15-frame and 30-frame GOPs 
into account. It is obvious that increasing the number of units in the hidden layer does 
not necessarily lead to improvement - the best results are reached for three hidden units 
in the Main profile and seven units in the Extended profile, but as the encoded sequences 
are identical, the difference is caused by different initial weights in the artificial neural 
networks rather than anything else. The results are something worse than those for the 
Baseline profile - for bi-directionally predicted frames, the algorithm's performance is 
lower. 

The High profile supports bi-directional prediction and 8 x 8 Intra prediction. The 
results for the High profile are given in Tab. 3.11. The algorithm performs best with three 
hidden units, with the correlation coefficient reaching 0.8979 and the M S E as low as 5.523 
for 15-frame GOPs. The scatter plot diagram for such configuration and 30-frame GOP 
is shown in Fig. 3.31. Fig. 3.32 shows how the real and estimated PSNR develops in time 
for the 30-frame GOPs. A l l the three plots represent values for the "coastguard sequence" 
(see Sec. 4), with different encoder settings. The plots a), b), c) conform to encoder 
settings no. 1, 2, 3 in Tab. 4.2, respectively. 

One network over different profiles 

In the previous considerations, the artificial neural networks were trained separately for 
each H.264/AVC profile. Let us now try to use one single network through different 
profiles and observe its performance. As the High profile supports in fact all the prediction 
modes available in the H.264/AVC standard, it is straightforward it should be used to 
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Table 3.9: Inter coded pictures, Main profile: results. 

Training set Eval. set 15 frames Eval. set 30 frames 
Hidden units M S E M S E Corr coef. M S E Corr coef. 

1 0.0856 9.927 0.7903 13.482 0.8319 
2 0.0719 9.725 0.7990 26.159 0.6370 
3 0.0626 7.912 0.8379 9.319 0.8842 
4 0.0530 10.028 0.7909 13.679 0.8258 
5 0.0424 9.452 0.8030 20.348 0.7347 
6 0.0379 11.969 0.7465 16.321 0.7851 
7 0.0338 10.006 0.7887 19.604 0.7379 
8 0.0283 10.280 0.7821 15.740 0.8094 
9 0.0297 7.790 0.8443 13.156 0.8342 
10 0.0290 10.544 0.7793 23.787 0.7070 

Table 3.10: Inter coded pictures, Extended profile: results. 

Training set Eval. set 15 frames Eval. set 30 frames 
Hidden units M S E M S E Corr coef. M S E Corr coef. 

1 0.0844 10.898 0.7686 15.566 0.8125 
2 0.0770 10.334 0.7837 11.643 0.8576 
3 0.0549 9.154 0.8088 12.908 0.8409 
4 0.0530 11.456 0.7555 17.172 0.7920 
5 0.0445 7.448 0.7599 13.976 0.8271 
6 0.0377 11.169 0.8005 14.030 0.8220 
7 0.0348 9.870 0.8813 8.862 0.8930 
8 0.0292 5.988 0.7041 18.996 0.7463 
9 0.0280 7.393 0.8496 8.509 0.8971 
10 0.0249 11.137 0.7627 16.907 0.7829 

Table 3.11: Inter coded pictures, High profile: results. 

Training set Eval. set 15 frames Eval. set 30 frames 
Hidden units M S E M S E Corr coef. M S E Corr coef. 

1 0.0730 7.106 0.8680 8.479 0.8962 
2 0.0712 6.975 0.8695 7.735 0.9058 
3 0.0533 5.523 0.8979 5.719 0.9314 
4 0.0484 7.763 0.8552 10.720 0.8759 
5 0.0463 7.448 0.8522 11.778 0.8568 
6 0.0412 5.680 0.8997 6.290 0.9258 
7 0.0322 6.975 0.8631 9.219 0.8865 
8 0.0293 5.920 0.8986 8.993 0.8896 
9 0.0298 8.597 0.8337 11.161 0.8624 
10 0.0170 18.560 0.7320 21.450 0.7926 
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Figure 3.29: Scatter plot diagram: Estimated versus real PSNR values for Inter frames. 
15 frames in a GOP. Baseline profile. 
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Figure 3.30: Scatter plot diagram: Estimated versus real PSNR values for Inter frames. 
30 frames in a GOP. Baseline profile. 
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Figure 3.31: Scatter plot diagram: Estimated versus real PSNR values for Inter frames. 
30 frames in a GOP. High profile. 

train such universal network. Among the networks trained for the High profile (see 
Tab. 3.11), the network with three hidden units performs best. Using the network for 
video sequences compressed in the remaining profiles (15-frame GOPs) gives the following 
results: 

Extended and Main profiles give identical results (the reasons were mentioned above). 
Using the network trained for High profile, the correlation coefficient reaches 0.8605 and 
the M S E is 9.0312. For the Baseline profile, the correlation coefficient and the M S E are 
0.8716 and 11.4092, respectively. 

Interesting results can be obtained when using a network trained for the Baseline 
profile with ten hidden units (the last row in Tab. 3.8). In this case, for the Extended 
and High profiles the correlation coefficient and M S E are 0.8824 and 5.8800, respectively. 
For the High profile, the values are 0.8653 and 6.7384, respectively. Even though network 
trained for the profile supporting the least features is used at this moment, the results 
are surprisingly good for the "higher" profiles. The results are comparable to those ob­
tained when both the training and evaluation of the network is done for a single encoder 
configuration. 

A different network configuration 

In the previous text, a multi-layer perceptron was considered with tansig transfer func­
tion units in the input layer and logsig transfer function in the hidden layer, assuming 
this configuration shall give better results as it gives the best results for Intra frames. 
We experimented with an inverse configuration as well (logsig units in the input layer, 
tansig units in the hidden layer), but no significant improvement was achieved. 
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Figure 3.32: Real (black) and estimated (red) PSNR in the first 30 frames in a "coast­
guard" sequence (Fig. 4.2b) with different encoder settings. 
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3.6 Conclusion 
In Chapter 3, we presented a method to estimate PSNR values of compressed video 
sequences conforming to the H.264/AVC standard. The algorithm does not make use 
of the original (uncompressed) video material to compute the PSNR, and thus can be 
classified as a no-reference metric. 

The whole metric framework, along with the design details and its performance tests 
are results of my own original research. They were published in [28, 29, 30, 31, 32]. 



Video Sequence Database 4 

This section describes the set of video sequences used for the development and testing of 
the new metric for H.264/AVC. When designing the algorithm (Sec. 3), only sequences 
in low resolution are considered. For the performance testing (Sec. 5), a different set of 
video sequences is used, with resolution up to full HD (1920 x 1080 pixels, progressive). 
The video sequences will be described in this section and their characteristics will be 
considered. 

4.1 Low Resolution Sequences (Metric Design) 
For the design of the new metric and artificial neural network optimization, two sets of 
video sequences were constructed: the training set and the evaluation set. The training 
set consists of ten video sequences, while the evaluation set is made up of seven short 
video sequences. Special care is taken for both sets to cover a variety of characteristics 
- different content should be present in both, reaching from still scenes to scenes with 
fast motion, from smooth and low-detailed frames to complex and fine structures within 
a frame. Both the training and the evaluation sets include sport sequences, talking head 
sequences, nature views, etc. Fig. 4.1 shows the training sequences. For each sequence, 
frame 0, frame 10, frame 20 and frame 30 is shown to demonstrate the spatial activity or 
motion in a sequence besides the level of details within a frame. The evaluation sequences 
used to verify the network performance in the training process are displayed in Fig. 4.2. 

A l l the low resolution video sequences are freely available on the internet [1]. They 
are progressive coded in CIF resolution (352 x 288 pixels). The color coding is 4:2:0. 
However, we do not use chroma components in our considerations so in Fig. 4.1 and in 
Fig. 4.2, only grayscale images are displayed. 

Each sequence is encoded with variable encoder settings. The aim is to alter the 
encoder parameters in such manner that the encoder changes its decision on prediction 
modes and, of course, the sequence frames are coded with different PSNRs. For Intra 
frames, it was observed that the only parameter influencing the encoder's decision on the 
prediction modes is the quantization parameter (QP). Tab. 4.1 lists the QP values used 
in our experiments for Intra frames. The situation is different for Inter frame encoding -
another parameter is used to control the encoder behavior, the "Target bitrate" parameter. 
The list of the seven encoder configurations is given in Tab. 4.2. Please note that these 
are profile independent configurations. As the networks are trained for different profiles 
in Sec. 3.5, the configurations listed in Tab. 4.1 and Tab. 4.2 are used for each profile 
separately. 



Figure 4.1: CIF resolution sequences used for the training of the artificial neural networks. 
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Table 4.1: Variable encoder parameters used for training an artificial neural network for 
Inter frame PSNR estimation. 

Config no. Initial QP 
1 20 
2 25 
3 30 
4 35 

Table 4.2: Variable encoder parameters used for training an artificial neural network for 
Intra frame PSNR estimation. 

Config no. Initial QP Target bitrate [kbps] 
1 25 100 
2 25 1000 
3 35 100 
4 35 1000 
5 45 100 
6 45 1000 
7 45 5000 

4.2 Sequences for Performance Analysis 
Another set of video sequences was constructed for performance tests of the metric. 
To be able to test the metric performance in different conditions including varying video 
resolution, the test set consists of five sequences with resolution up to full HD (1920 x 1080 
pixels, progressive - 1080p). The five video sequences are displayed in Fig. 4.3, with the 
first frame in the sequence on the left, frame 5 in the center and frame 10 on the right. 
The sequences are publicly available [8]. 

A list of the available format is given in Tab. 4.3. A note 'original' with a certain 
format says that the sequence was taken as is from [8]. Some formats are derived from the 
1080p (the 576p format is downsampled from 1920 x 1080 to 1024 x 576 pixels and then 
cropped to 4:3 aspect ratio at 720 x 576). Regarding the color coding - all the sequences 
are in 4:2:0 chroma sampled, but again as we are only considering luma pixel values, the 
chroma format is not important and not mentioned in Tab. 4.3. 

Table 4.3: Performance analysis video sequences: available formats. 

Format ID Aspect Resolution format fps note 
1080p 16:9 1920 x 1080 progressive 50 original 
720p 16:9 1280 x 720 progressive 50 original 
576p 4:3 720 x 576 progressive 50 scaled, cropped from 1080p 
288p 4:3 352 x 288 progressive 50 scaled, cropped from 576p 
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Figure 4.3: High definition video sequences. 



Performance Analysis 5 

In this section, the proposed PSNR estimation algorithm will be tested for different 
encoder settings and for different resolution of the processed video. The artificial neural 
network configurations are fixed for a given encoder profile as derived in Sec. 3. 

5.1 Impact of Resolution 
A l l the experiments described in Chapter 3 were done on CIF format encoded video 
sequences - their resolution is 352 x 288 pixels. Such video sequences are likely to be used 
in mobile video transmission, such as D V B - H . Anyway, as the area where the H.264/AVC 
codec is used is very broad, let us try to extend our considerations for higher resolution 
videos. 

To verify the results for video sequences with higher resolution, video sequences en­
coded in 288p, 576p, 720p and 1080p formats (see Tab. 4.3) are used. It is clear that 
the sequences can hardly use the bitrate constraints defined for CIF (288p) sequences in 
Tab. 4.2. Our solution is in raising the target bitrate for each format in a defined manner 
- let us give an example for 576p sequences. Their resolution is 720 x 576 pixels, which 
means each frame consists of roughly four times as many pixels as a 288p frame. The 
target bitrate is thus quadrupled for such sequences. 

288p. To verify the performance for higher resolution video sequences, the sequences 
used in Chapter 3 can not be used as they are only available in CIF (288p) format. Instead, 
H D T V sequences shall be used, as described in Tab. 4.3 and Fig. 4.3. Performance of 
288p sequences should thus be evaluated as well for comparison purposes. Using the 
same settings as those used in Tab. 4.2, the sequences are encoded using the High profile 
H.264/AVC encoder. 

576p,720p,1080p. The higher resolution sequences were also encoded with High 
profile H.264/AVC encoder. Again, the settings in Tab. 4.2 are used. However, as the 
video frames include more pixels than the 288p frames, the target bitrate has to be 
changed accordingly in order to achieve comparable bit per pixel values. For example, 
the 576p format has 720 x 576 = 414720 pixels in a frame, which is approximately 4.09 
times more than in the case of 288p format with 352 x 288 = 101376 pixels. This means 
four times higher target bitrates are used for the 576p compared to those listed in Tab. 4.2 
for 288p. 

Tab 5.1 shows the correlation coefficient and the mean squared error of the real and 
the estimated PSNRs for video sequences with different resolutions encoded with High 
profile H.264/AVC encoder. For the PSNR estimation, the artificial neural network with 
three hidden units trained on High profile sequences is used (see Tab. 3.11). The results 
for high resolution sequences are comparable (in fact, slightly better) to those obtained 
for 288p sequences, which is the format the network was trained on. The scatter plot 
diagrams for the 288p sequences and 1080p sequences are shown in Fig. 5.1 and Fig. 5.2, 
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Table 5.1: PSNR Estimation results for video sequences with different resolution. 

Format ID M S E Corr coef. 
288p 8.165 0.8884 
576p 5.910 0.9113 
720p 4.291 0.9202 
1080p 5.711 0.8593 
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Figure 5.1: Scatter plot diagram: Estimated versus real PSNR values for 288p video 
sequences. 

respectively, illustrating the difference in the two extreme cases of low and high resolution. 
The scatter plot diagram for 720p sequences, which reached the best results, is shown in 
Fig. 5.3. The network trained on Baseline profile sequences was also tested (10 hidden 
units, Tab. 3.8), but the results were significantly worse (MSE in the range 6.830 - 12.291, 
correlation 0.7528 - 0.8402). Some results for the H D T V video sequences were published 
in [29]. As fewer encoder configurations were used for evaluation in the paper, the results 
are slightly different. 

5.2 Impact of Cut in a Sequence 
Let us now test the performance of the algorithm when processing a video sequence with 
a cut. To form such sequence, two short parts of sequences were merged, 25 frames each, 
resulting in a 50-frame video sequence with a cut right in the middle. The sequence in 
the beginning is the "paris" sequence (Fig. 4.2f), the second half of the sequence with cut 
is the "hall" sequence (Fig. 4.2c). These particular sequences are selected in order to be 
coded with significantly different resulting PSNR even when the encoder settings are the 
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Figure 5.2: Scatter plot diagram: Estimated versus real PSNR values for 1080p video 
sequences. 
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Figure 5.3: Scatter plot diagram: Estimated versus real PSNR values for 720p video 
sequences. 
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Figure 5.4: Real (black) and estimated (red) PSNR in a sequence with a cut. 

same. In order to keep an approximately constant PSNR through the whole 50-frame 
sequences, the encoder is set to have an initial QP 25 and the target bitrate is 250 kbps. 

Fig. 5.4 shows PSNR of three encoded video sequences developing over time. The top 
part of the plot displays 50 frames of the "paris" sequence, the center plot displays 50 
frames of the "hall" sequence and the bottom plot displays a sequence with a cut, with 
the first 25 frames taken from the "paris" sequence and the following 25 frames taken 
from the "hall" sequence. For the "paris" sequence, the real PSNR begins at about 40 dB 
and decreases to some 34 dB at frame 25. At this point, the estimation is quite close and 
the estimation error is about 1 dB (even though larger errors are present in frames 5-15). 
A more precise PSNR estimation can be observed for the "hall" sequence, where the real 
PSNR stays about 40 dB with no big fluctuations. Now let's have a look at the sequence 
with a cut (bottom plot in Fig. 5.4). The first half of the plot is identical to the top plot, 
belonging to the "paris sequence". At the point of the cut, the real PSNR decreases a 
bit to consequently raise again. The errors in PSNR estimation, especially for particular 
frames in the sequence, have grown rapidly. Anyway, the estimation error at the end of 
the sequence is about 2 dB 
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Figure 5.5: Real (black) and estimated (red) PSNR in sequences with different GOP 
formats. 

5.3 Impact of GOP format 
A l l High profile video sequence encoding in Chapter 3 were considered in only one GOP 
format, with one Intra (I) frame at the beginning of the sequence and P and B frames 
taking turns in the rest - the configuration was I B P B P B P . . . . In the following, different 
GOP formats, increasing the number of B frames inserted between I and P frames will 
be tested. 

Fig. 5.5 shows real (black) and estimated (red) PSNR for three different GOP con­
figurations in the first 50 frames of the sequence "hall". The plot in the top represents a 
sequence coded with one B slice inserted between P (I) frames ( I B P B P B P . . . ) , the plot 
in the middle is for a sequence with three B slices inserted ( I B B B P B B B P . . . ) , and the 
plot in the bottom is for a sequence with five B slices inserted ( I B B B B B P B B B B B P . . . ) . 

In these 50-frame sequences, the mean squared errors of the real and estimated PSNR 
values are 0.488, 1.683 and 1.633 for sequences with 1, 3 and 5 B frames inserted, re­
spectively. The PSNR estimating algorithm had troubles in frames 20 - 30 for all the 
sequences, where the estimated PSNR for B frames, especially, is much lower than the 
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real PSNR. In the sequences with increased number of B frames inserted, there are more 
consequent frames for which the estimated PSNR is too low - an error is PSNR esti­
mation is thus propagated until a new P frame is inserted. Generally, there is quite 
few information for the B frames in the bitstream, which results in less accurate PSNR 
estimation. 

5.4 Conclusion 
The proposed PSNR estimation algorithm has been tested for different properties of the 
input video sequences in terms of resolution and content (cut) and for different encoder 
configurations in terms of GOP structure. The performance in the respective cases has 
been discussed. 

The tests for varying video sequence resolution were published in [29]. 



Conclusions 6 

At the beginning of the doctoral thesis, an introduction to the problem of video quality 
assessment was done and the present-day methods available for video quality assessment 
and evaluation were presented. Digital video quality assessment itself is a very broad 
area and a big deal of research has been done in it in the worldwide scientific community. 
However numerous techniques for objective video quality assessment exist, there is still 
much space further where the limits can be pushed. 

The main contribution of the doctoral thesis is in designing a new no-reference metric 
for evaluating quality of video sequences compressed in the H.264/AVC standard. The 
idea is to extract the parameters, which may carry information about the quality of the 
encoded video. The designed metric reads the quantization parameter and the prediction 
modes used within a video frame. These parameters are then fed into an artificial neural 
network. The network is first trained on a set of examples - training sequences. Its per­
formance is then verified using a different set of compressed video sequences - evaluation 
sequences. 

For the network training, peak signal-to-noise ratios of the respective frames in the 
compressed video sequences are used as the network target output values. Even though 
the PSNR is no perfect quality measure, the benefit of our algorithm is in removing 
the necessity of having an original (uncompressed) video material available for PSNR 
calculations. We are estimating the PSNR solely from the encoded bit stream, which is 
easily applicable in any situation H.264/AVC encoded video is received. For example, the 
algorithm may be applied for detecting weak spots of a statistically multiplexed broadcast 
channel or to verify quality of a compressed video at the video content provider side before 
delivering it to the customer. 

Experiments were performed with several artificial neural network configurations. A n 
important point is that Intra coded frames (constrained in choice of prediction modes) 
are treated different from Inter coded frames (having all prediction modes available). 
However, in the best performing configuration among the tested network structures, the 
networks have the well-known and very common topology of a multi-layer perceptron. 
For Intra coded frames, the correlation of the results with the real peak signal-to-noise 
ratios reached as high as 0.9835. The situation is something worse for the Inter coded 
frames. In this case, the performance strongly depends on the choice of H.264/AVC profile 
when encoding the video sequences, as different profiles have different prediction modes 
available, not to mention that there are other tools enabled only in selected profiles, which 
may influence the PSNR. However, the reached correlation never dropped below 0.85 for 
the evaluation set sequence Inter frames. It is important to note that the algorithm 
was trained and verified only for one specific encoder. It shall be expected that for 
video encoded using different encoder implementations, different artificial neural networks 
would have to be trained. Algorithms to estimate PSNR of only the luma component of 
the encoded video sequences have been designed. The approach can be easily extended for 
chroma components as well, as chroma samples are predicted similarly to luma samples. 
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In Chapter 5, the behavior of the algorithm was analyzed when alternating some 
parameters of the encoded video or the encoder, always changing only one parameter. 
It has been verified that the algorithm is working with high-definition video and video 
sequences with a cut. It has difficulties in estimating PSNR for sequences where more 
subsequent B pictures are inserted. 

The designed algorithm can easily be implemented in different video applications, 
where H.264/AVC compressed (but error-free) video is received. One such example might 
be content verification, when a video content provider needs an information whether or 
not the compressed video has satisfactory quality to be delivered to the customer. 

The contribution of the doctoral thesis can be summarized in the following points: 

o design of a new no-reference quality metric for H.264/AVC compressed video se­
quences, 

o optimization of the metric's classification algorithm for a selected set of video se­
quences, 

o performance tests of the metric, verifying its universality for different video material 
and encoder configurations. 

Finally, constraints of the proposed solution should be considered and direction of 
consequent research suggested: 

o The proposed algorithm has only been tested for progressive video sequences. It 
should be verified whether it works for interlaced video or a modified approach 
should be used. 

o A l l the tests have been done with one particular encoder. It can be expected that 
for a different encoder implementation, the classification algorithm will have to be 
re-trained, as the encoder behavior is likely to be different. 

o Interested results may be obtained when changing the estimation target from PSNR 
to a different metric (better correlating with subjective scores) or to subjective 
scores. 
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Used Symbols and 
Abbreviations 

A N N Artificial neural network 

AVC Advanced video coding 

CIF Common intermediate format 

CSF Contrast sensitivity function 

D C T Discrete cosine transform 

D V B - T Digital video broadcasting: Terrestrial 

F R Full reference 

GOP Group of pictures 

H D T V High definition television 

HVS Human visual system 

ITU International telecommunication union 

J V T Joint video team 

LMS least mean squares 

M P E G Motion picture experts group 

M S E Mean squared error 

N A L Network abstraction layer 

NR No reference 

PSNR Peak signal-to-noise ratio 

QP Quantization parameter 

R R Reduced reference 

SSIM Structural similarity index 

V C L Video coding layer 

V Q E G Video quality experts group 



List of Figures 

2.1 Quality metrics operating with a) full reference, b) reduced reference, c) 
no reference 4 

2.2 A framework of error sensitivity based quality metrics 5 
2.3 Diagram of the SSIM system 5 

3.1 H.264/AVC encoder block diagram 11 
3.2 H.264/AVC decoder block diagram 12 
3.3 Intra 4 x 4 prediction modes 15 
3.4 Intra 16 x 16 prediction modes 15 
3.5 Macroblock partitions 17 
3.6 Sub-macroblock partitions 17 
3.7 Neuron model 19 
3.8 Error of different hypotheses 22 
3.9 Scheme of the PSNR Estimator 24 
3.10 Foreman sequence, frame 0, PSNR = 33.83 dB, QP = 35 26 
3.11 Foreman sequence, frame 0, PSNR = 40.08 dB, QP = 25 27 
3.12 Tempete sequence, frame 0, PSNR = 30.59 dB, QP = 35 27 
3.13 Tempete frame, PSNR = 36.66 dB, QP = 28 27 
3.14 Foreman sequence, frame 5, PSNR = 30.83 dB, QP = 43 31 
3.15 Foreman sequence, frame 5, PSNR = 37.61 dB, QP = 27 31 
3.16 Tempete sequence, frame 5, PSNR = 28.03 dB, QP = 43 32 
3.17 Tempete sequence, frame 5, PSNR = 31.15 dB, QP = 33 32 
3.18 Linear neuron unit estimating PSNR for Intra predicted pictures 35 
3.19 Mean squared error with increasing number of training epochs. Linear 

unit, Intra frames 36 
3.20 Correlation coefficient with increasing number of training epochs. Linear 

unit, Intra frames 37 
3.21 Scatter plot diagram: Estimated PSNR values plotted versus real values 

for evaluation set. Linear unit, Intra frames 37 
3.22 The training process of an A N N having a variable number of tansig units 

in the hidden layer 39 
3.23 The training process of an A N N having a variable number of logsig units 

in the hidden layer 39 
3.24 Scatter plot diagram: Real versus estimated PSNR values for Intra coded 

pictures from the evaluation set. High profile, multi-layer perceptron net­
work 43 

3.25 Scatter plot diagram: Real versus estimated PSNR values for Intra coded 
pictures from the evaluation set. Extended profile, multi-layer perceptron 
network 43 



LIST OF FIGURES 73 

3.26 Scatter plot diagram: Real versus estimated PSNR values for Intra coded 
pictures from the evaluation set. Extended profile, linear network 44 

3.27 Parameters needed for Inter picture PSNR estimation 45 
3.28 Preparing inputs for training of an artificial neural network 46 
3.29 Scatter plot diagram: Estimated versus real PSNR values for Inter frames, 

15 frames in a GOP. Baseline profile 50 
3.30 Scatter plot diagram: Estimated versus real PSNR values for Inter frames, 

30 frames in a GOP. Baseline profile 50 
3.31 Scatter plot diagram: Estimated versus real PSNR values for Inter frames, 

30 frames in a GOP. High profile 51 
3.32 Real (black) and estimated (red) PSNR in the first 30 frames in a "coast­

guard" sequence (Fig. 4.2b) with different encoder settings 52 

4.1 CIF resolution sequences used for the training of the artificial neural net­
works 55 

4.2 CIF resolution sequences used for the evaluation when designing the arti­
ficial neural networks 56 

4.3 High definition video sequences 58 

5.1 Scatter plot diagram: Estimated versus real PSNR values for 288p video 
sequences 60 

5.2 Scatter plot diagram: Estimated versus real PSNR values for 1080p video 
sequences 61 

5.3 Scatter plot diagram: Estimated versus real PSNR values for 720p video 
sequences 61 

5.4 Real (black) and estimated (red) PSNR in a sequence with a cut 62 
5.5 Real (black) and estimated (red) PSNR in sequences with different GOP 

formats 63 



List of Tables 

3.1 Parts of the MPEG-4 (ISO/IEC 14496) standard. [45] 10 
3.2 Slice types and allowed macroblock types 13 
3.3 Parameters of the encoded sequences, frame 0 26 
3.4 Parameters of the encoded sequences, frame 5 29 
3.5 Weight and bias values for a linear unit trained with Intra predicted pictures 35 
3.6 2-layer sigmoid unit network: results 38 
3.7 Multi-layer perceptron: results 41 
3.8 Inter coded pictures, Baseline profile: results 48 
3.9 Inter coded pictures, Main profile: results 49 
3.10 Inter coded pictures, Extended profile: results 49 
3.11 Inter coded pictures, High profile: results 49 

4.1 Variable encoder parameters used for training an artificial neural network 
for Inter frame PSNR estimation 57 

4.2 Variable encoder parameters used for training an artificial neural network 
for Intra frame PSNR estimation 57 

4.3 Performance analysis video sequences: available formats 57 

5.1 PSNR Estimation results for video sequences with different resolution. . . 60 


