
P A L A C K Ý UNIVERSITY O L O M O U C 
F A C U L T Y OF SCIENCE 

D E P A R T M E N T OF OPTICS 

MASTER'S THESIS 

Significance of Gaussian Entanglement 
Measures in Quantum Communication 

Author: Klára Baksová 
Study programme: General Physics and Mathematical Physics 
Field of study: General Physics and Mathematical Physics 
Form of study: Full-time 
Supervisor: doc. Mgr. Ladislav Mišta, Ph.D. 
Deadline of submitting the thesis: 2 August 2021 





UNIVERZITA P A L A C K É H O V OLOMOUCI 

PŘÍRODOVĚDECKÁ FAKULTA 

K A T E D R A OPTIKY 

DIPLOMOVÁ PRACE 

Význam měr gaussovské provázanosti v 
kvantové komunikaci 

Vypracovala: 
Studijní program: 
Studijní obor: 
Forma studia: 
Vedoucí práce: 

Klára Baksová 
N0533A110004 Obecná fyzika a matematická fyzika 
Obecná fyzika a matematická fyzika 
Prezenční 
doc. Mgr. Ladislav Mišta, Ph.D. 

Termín odevzdání práce: 2. srpen 2021 





Declaration 
I declare that I have written Master's Thesis "Significance of Gaussian Entanglement 
Measures in Quantum Communication" on my own under the guidance of doc. Mgr. 
Ladislav Mista, Ph.D. by using resources, which are referred to in the list of literature. 
I agree with the further usage of this document according to the requirements of the 
Department of Optics. 

Declared in Olomouc on August 2, 2021 

Klára Baksová 





Bibliographical identification 
Autor's first name and surname 
Title 

Type of thesis 
Department 
Supervisor 
The year of presentation 
Abstract 

Keywords 

Number of pages 
Number of appendices 
Language 

Klára Baksová 
Significance of Gaussian Entanglement 
Measures in Quantum Communication 
Master 
Department of Optics 
doc. Mgr. Ladislav Mišta, Ph.D. 
2021 
The Thesis builds on the results of the 
Bachelor thesis, which supported the pre
sumption of the equivalence of two Gaus
sian entanglement measures, later proved in 
[L. Lami, L. Mišta, Jr., and G. Adesso, 
arXiv:2010.15729 (2020)]. The first measure 
is Gaussian intrinsic entanglement, and the 
second one is Rényi-2 Gaussian entanglement 
of formation. Unification of these measures 
provides a unique computable Gaussian en
tanglement measure equipped with many im
portant properties. 
Recently, it was shown that for different 
types of abstract Gaussian cryptographic 
protocols, the measure constitutes the up
per bound on the Gaussian distillable key be
ing an entanglement measure quantifying the 
secrecy content in a given Gaussian quantum 
state. 
In this Thesis, we prove that the meas
ure is an upper bound on the secret key 
rate for any Gaussian quantum key distri
bution protocol and verify it for standard 
continuous-variable protocols. Further, we 
compare the considered measure with upper 
bounds on the secret key rate capacity of 
the channel derived from squashed entangle
ment and relative entropy of entanglement 
for pure-loss, thermal-loss, pure-amplifier, 
thermal-amplifier and additive-noise channel 
and show that it provides either equal or 
tighter upper bound than the squashed en
tanglement, but it always a looser upper 
bound the one based on the relative entropy 
of entanglement. 
quantum entanglement, Gaussian entan
glement measures, quantum cryptography, 
Gaussian quantum channels 
40 
0 
English 



Bibliografická identifikace 
Jméno a příjmení autora 
Název práce 

Typ práce 
Pracoviště 
Vedoucí práce 
Rok obhajoby práce 
Abstrakt 

Klíčová slova 

Počet stran 
Počet příloh 
Jazyk 

Klára Baksová 
Význam měr gaussovské provázanosti v 
kvantové komunikaci 
Diplomová 
Katedra optiky 
doc. Mgr. Ladislav Mišta, Ph.D. 
2021 
Tato práce navazuje na výsledky Bakalářské 
práce, které podpořily domněnku o ekvivalenci 
dvou Gaussovských měr kvantové provázanosti, 
později dokázanou v [L. Lami, L. Mišta, 
Jr., and G. Adesso, arXiv:2010.15729 (2020)]. 
První mírou je Gaussovská vnitřní kvantová 
provázanost a druhou je Rényi-2 Gaussovský 
entanglement formování. Sjednocení těchto měr 
dává vzniknout unikátní vypočitatelné Gaus
sovské míře kvantové provázanosti, vybavené 
mnoha důležitžmi vlastnostmi. 
Nedávno bylo ukázáno, že pro různé typy ab
straktních Gaussovských kryptografických pro
tokolů tvoří míra horní hranici na Gausovský 
destilovatelný klíč, kde kvantifikuje míru 
bezpečnosti daného Gaussovského kvantového 
stavu. 
V této práci jsme ukázali, že vzniklá míra tvoří 
horní hranici na rychlost generace tajného klíče 
pro libovolný Gaussovský kvantový protokol 
distribuce klíče a provedli ověření na stand
ardních protokolech se spojitými proměnnými. 
Dále jsme porovnali míru s horními hranicemi 
na kapacitu kanálu odvozenou ze squashed en-
tanglementu a relativní entropie entanglementu 
pro čistý ztrátový kanál, termální ztrátový 
kanál, čistý zesilující kanál, termální zesilující 
kanál a kanál s přidaným šumem, a ukázali, že 
daná míra tvoří horní hranici, která je stejná 
nebo těsnější než horní hranice odvozená ze 
squashed entanglementu, ale vždy volnější než 
horní hranice odvozená z relativní entropie en
tanglementu. 
kvantová provázanost, gaussovské míry 
kvantové provázanosti, kvantová kryptografie, 
gaussovské kvantové kanály 
40 
0 
anglický 





Contents 

Introduction 2 

1 Introduction to Quantum Entanglement and Its Quantification 4 
1.1 Quantum Entanglement 4 

1.1.1 Quantum Superposition 4 
1.1.2 Examples of an Entangled State 5 
1.1.3 Definition of Quantum Entanglement 5 

1.2 Entanglement Measures 6 
1.2.1 Axioms and Problems of Entanglement Measures 6 
1.2.2 Examples of Entanglement Measures 7 

2 Gaussian Intrinsic Entanglement and Gaussian Renyi-2 Entanglement 
of Formation 10 
2.1 Gaussian States 10 
2.2 Gaussian Intrinsic Entanglement 12 
2.3 Gaussian Renyi-2 Entanglement of Formation 13 

3 Significance of GIE in Quantum Cryptography 15 
3.1 Secret Key Agreement 15 
3.2 GIE As an Upper Bound on Secret Key Rate in C V Q K D 16 
3.3 Particular C V Q K D Protocols and Their Secret Key Rates 18 

3.3.1 Squeezed States and Homodyne Detection 21 
3.3.2 Coherent States and Homodyne Detection 22 
3.3.3 Squeezed States and Heterodyne Detection 23 
3.3.4 Coherent States and Heterodyne Detection 24 

3.4 Gaussian Channels 25 
3.5 GIE as an Upper Bound on Secret Key Rate in Particular C V Q K D 

Protocols 26 

4 GIE as an Upper Bound on Channel Capacity 28 
4.1 Channel Capacity 28 

4.2 Comparison of GIE with Known Upper Bounds on Channel Capacity . 29 

Conclusion 35 

References 36 

1 



Introduction 

Communication has always been an integral part of human existence. Nevertheless, 
people have not always wanted to share the information in the message with whoever. 
Consequently, they have started developing methods hiding the information in the mes
sage and making it detectable only for the stated receiver. This can be done by having 
an encoding key, which is used to encrypt the message into a cipher that is incompre
hensible for any eavesdropper but can be decrypted by anyone having the key. 
The first attempts are dated thousands of years ago, and they had been using a pen 
and paper to encrypt the message. Mechanical and electromechanical machines inven
ted in the twentieth century advanced the encryption methods but also the decoding 
techniques. 
Even though the key providing a "perfect secrecy" was introduced by Claude Shan
non [1], in practice, the communicating parties always had to trust some messenger or 
channel to distribute the key. 
A breakthrough was brought by quantum mechanics when Bannet and Brassard [2] 
came up with the techniques of quantum key distribution. There, the eavesdropper 
always leaves traces that are detectable for the communicating parties. This is caused 
by the no-cloning theorem [3], which forbids anyone to perfectly copy ensembles of 
non-orthogonal quantum states. 
Additionally, quantum mechanics provides another unique tool that plays a key role in 
quantum communication. It is quantum entanglement. 

Quantum entanglement is a purely quantum phenomenon with no analogy in the 
classical world. It is made possible by the superposition principle resulting from the 
linearity of quantum mechanics. 
If two quantum systems are entangled, their local properties become uncertain, while 
the global properties remain well defined. The resulting correlation between the sys
tems is what we call quantum entanglement. With revealing its usage in fundamental 
quantum information protocols, it has become an interest of broad research. 
One of the questions was the quantification of entanglement, which gave rise to the 
theory of entanglement measures. 

The theory of entanglement measures builds on several axioms that every good 
entanglement measure should satisfy. It should be a non-negative function that is zero 
on all separable states, and it should not increase under local operations and clas
sical communication (LOCC). Such a function is called an entanglement monotone [4]. 
Other axioms say that it should reduce to marginal von Neumann entropy on pure 
states it should be continuous, convex, additive on tensor product and asymptotically 
continuous function [5]. Above these mathematical properties, entanglement measures 
should be computable and usable in protocols. 
Even though many entanglement measures based on different approaches of entan-

2 



glement quantification were introduced, unfortunately, none of them satisfies all the 
required features, thus seeking for a good entanglement measure continues. 

The aim of our interest will be an entanglement measure called Gaussian intrinsic 
entanglement (GIE), which is a cryptographically motivated entanglement measure 
originating from intrinsic entanglement under the restriction to the Gaussian scenario 
[6]. 
During its investigation [6, 7, 8], the obtained results coincided with Gaussian con
vex roof entanglement measure called Gaussian Rényi-2 entanglement of formation 
(GR2EoF). This gave rise to the question of whether these two measures are equi
valent, which was proved in [9] for all Gaussian states with a covariance matrix with 
block-diagonal position-momentum block form, which includes all two-mode Gaussian 
states. The unification of these measures formed a unique entanglement measure, 
which is faithful, monotonie under all Gaussian L O C C , satisfies monogamy inequality 
[10] and Gaussian Rényi-2 version of Koashi-Winter monogamy relation [11], and it is 
additive on two-mode symmetric states. Above that, it is computable for many Gaus
sian states. 
However, the operational meaning of this measure was in question. 

To answer this question, we investigated GIE in the context of quantum commu
nication a showed that it sets a computable upper bound on the secret key rate for 
any Gaussian quantum key distribution (CV QKD) protocol. Additionally, we verified 
this by comparing it with known lower bounds on the secret key rate [12] in standard 
C V Q K D protocols [13, 14, 15]. 
Above that, we compared GIE with derived upper bounds on the secret key rate capa
city of the channel [16] derived from squashed entanglement [17] and relative entropy 
of entanglement [18]. That showed that GIE also forms a computable upper bound on 
this quantity for several quantum channels, in more detail, for the pure-loss channel, 
pure-amplifier channel, thermal-loss channel, thermal-amplifier channel and added-
noise channel. 
These results set the desired significance of GIE in quantum communication. 
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Chapter 1 

Introduction to Quantum 
Entanglement and Its 
Quantification 

In the first chapter, we will introduce one of the most interesting phenomenons that 
can be met exclusively in quantum physics. This phenomenon is quantum entangle
ment. Here, we will not only describe what quantum entanglement is, but we will also 
introduce its quantification. 

1.1 Quantum Entanglement 
Quantum entanglement is a sort of correlation between quantum systems. Let us 

consider two isolated systems A and B, each of which is in some quantum state. Ac
cording to one of the postulates of quantum mechanics, each of these two states, such 
as every quantum state of an isolated system, corresponds to a vector ray in a Hilbert 
space. In Dirac's symbolic, a column vector is denoted by \ip), so let us use this sym
bolic and denote the states of our systems \ip)A and \4>)B. 
Firstly, we will show step by step how some two states can be entangled, so the defin
ition of quantum entanglement is clear. 

1 .1 .1 Quantum Superposition 
Quantum entanglement is made possible by the superposition principle. This means 

that quantum state \ip) can be in the superposition of two distinct states, e.g. |0) and 
|1), then it is written as their linear combination 

\<p) = a\O)+0\l), (1.1) 

where a and /3 are complex numbers and squares of their absolute values \a\2 and \/3\2 

correspond to the probabilities of finding the system in corresponding states |0) and 
|1), hence \a\2 + \(3\2 = 1. 
A good physical example of this phenomenon can be a single photon sent to a beam 

I 2 2 

splitter with some reflectance r and transmittance t, for which applies \r\ + \t\ — 1. 
Let us denote the the state, in which the photon is transmitted and can be found in the 
horizontal arm of the beam splitter with probability \t\2, |—>), and the state, in which 
the photon is reflected and can be found in the vertical arm with probability |r | 2 , |1). 
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Thus, if we do not perform the measurement in the individual arms, after passing the 
beams splitter, photon is in a superimposed state of these two states, i.e. 

\<P)ph. oton t | - > ) + r | t ) . (1.2) 

The superposition can be experimentally verified by constructing Mach-Zehnder inter
ferometer and observing interference effects from both arms while a single photon is 
sent to the input [19]. 

1.1.2 Examples of an Entangled State 
By understanding the quantum superposition, we have good background to under

stand quantum entanglement as well. 
Before we introduce rigorous mathematical and physical definitions in the following 
sub-chapter, we will set another physical example. Let it be an interaction between a 
two-level atom with a single-mode electromagnetic field. To make it even simpler, let 
us work with only a discrete single-photon field. 
In such an approximation, if the atom is in an excited state |e) at the beginning, the 
field is in a vacuum state |0). However, after some time, the atom can transfer into the 
ground state \g) by spontaneously emitting the photon and the field state becomes |1). 
Then, the wave-function of the whole system at some time t is a linear combination of 
these two options 

where a(t) is a probability amplitude of finding the atom in the excited state at time 
t and (3{t) is a probability amplitude of finding the atom in the ground state with the 
emitted photon at time t. 
Here the atom and field mode are entangled and we say that the state of the system 
(1.3) is an entangled state. This property allows us to know the information of the 
field state by measuring the atom state and vice versa. 
Such a type of correlation can be generated on many other systems, for instance half-
spin particles that are entangled in their spins or pairs of photons that are entangled 
in their polarization. This is widely used in quantum information theory, where these 
correlations are used to perform quantum communication. 

1.1.3 Definition of Quantum Entanglement 
The knowledge of previous sub-chapters can be mathematically defined as follows. 

Let M'A and M'B be the Hilbert spaces of our systems A and B from the beginning 
of this chapter and \ip)A and \<f>)B be their states. Thus, if a global state l ^ ) ^ cannot 
be written as a product state of these states, i.e. 

then the state \ ^ ) A B is called entangled. Otherwise, it is called separable. 
This definition applies for pure states, i.e. states, where the state vector \ip) contains 
the maximal attainable information about the state. 
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Due to the imperfections of real experimental equipment, we can succeed in pre
paring our systems in a certain state \ifij) only with some probability pj. Thus, we say 
that the prepared state is mixed and describe it with a density matrix 

(1.5) 
3 

Hence, in the context of mixed states, a state p is called entangled if it cannot be 
written as a mixture of product states, i.e. 

To define entanglement in physical terms, we will use its usage in quantum communic
ation mentioned above. 
Let us imagine two parties communicating via a quantum channel. Since every channel 
is lossy, the transmitted information is depreciated. To increase the amount of shared 
information the parties can either improve the quality of performed individual local 
operations or they can use classical communication to coordinate the quantum opera
tions of the opposite party. Nevertheless, local operations and classical communication 
(LOCC) can create only the states of the form of the right-hand side of Eq. (1.6). 
Therefore, quantum entanglement can be defined as a sort of quantum correlation that 
cannot be created by L O C C [5]. 

Having quantum entanglement defined, we want to know how can we quantify 
it. This can be done by establishing a theory of entanglement measures. It is highly 
motivated by many other cases alongside quantitative characterization of entanglement. 
For instance, entanglement measures bound some hardly computable quantities [20], 
they are an essential tool in proving impossibility [21] and limitations [22] in several 
quantum information protocols. 
In terms of experiment, entanglement measures are used to estimate quality of prepared 
entangled states [23], entangling gates [24] and establishment of some protocols, such 
as entanglement distillation [25]. 

1 .2.1 Axioms and Problems of Entanglement Measures 
Entanglement measure is a type of mathematical function of certain quantum state 

parameters, which fulfills conditions associated with properties of entanglement. These 
conditions constitute eight axioms of entanglement measures. Firstly, entanglement 
measure should be a non-negative function. Secondly, it should be zero on all separ
able states. Thirdly, it should not increase under L O C C . A function satisfying these 
three axioms is so-called entanglement monotone [4]. Further, it should reduce to von 
Neumann entropy on pure states, it should be continuous, convex, additive on tensor 
product and asymptotically continuous function [5]. 
Any good entanglement measure ought to satisfy all these axioms. 

Now a natural question arises: 'How can we find such a function?' 
Well, there is no unique answer. Since there are many angles, from which we can look 

1.2 Entanglement Measures 
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at the entanglement, there have been multiple ideas of entanglement quantification. 
However, all the introduced entanglement measures so far have their drawbacks. 
Firstly, they may not satisfy some of the axioms mentioned above, which can cause 
their unreasonable behaviour on some classes of states. Secondly, they may not fit into 
the context of any physical protocol and thus lack any physical meaning. Last but not 
least, some of the entanglement measures are almost impossible to compute. 
Let us introduce some of the known entanglement measures. 

1.2.2 Examples of Entanglement Measures 
One of the best well known entanglement measures is so-called logarithmic negativity 

[26] defined as 
EN(j>)=log\\p'TA\\1, (1.7) 

where pTA denotes the partial transpose of p with respect to party A and the trace 
norm | | p T A | | i is defined as | | p T A | | i = tr\pTA\. 
Logarithmic negativity is an easily computable entanglement monotone and it has its 
operational interpretation as a cost of entanglement under positive partial transpose 
(PPT) preserving operations [27]. This can be also interpreted as entanglement quan
tification pursuant to how much a partial transpose of the given state deviates from a 
physical state. However, a partial transposition itself is not a physical operation, i.e. 
it cannot be carried out in a laboratory, so this operational interpretation is rather 
vague. Additionally, it also lacks convexity. 

Other well known entanglement measures are entanglement of distillation [28] and 
entanglement of formation [29]. These measures have very good operational meaning 
in the context of entanglement distillation, which is a process using L O C C operations 
to increase quantum entanglement up to almost maximally entangled states at the cost 
of reducing the number of states on the output compared to the number of states on 
the input that are non-maximally entangled. Thereafter, entanglement of distillation 
defines the number of maximally entangled states per copy, which can be distilled 
from n identical copies of a given non-maximally entangled state in the asymptotic 
limit n —> oo. However, such calculation requires optimization over all possible L O C C 
operations, which makes it almost impossible to compute. Also it vanishes on bound-
entangled states [30], i.e. the entangled states from which cannot be distilled a pure 
state. 
On the other hand, entanglement of formation is defined as a number of maximally 
entangled states needed to prepare copies of particular state [28]. It can be readily 
seen that it is a dual measure of entanglement of distillation. Moreover, it bounds it 
from above. Nevertheless, even though entanglement of formation has its operational 
meaning, it is computable only for qubits [31] and symmetric Gaussian states [32]. 
Additionally, its additivity is still in doubt. 

For the time being, the most promising approach to quantify entanglement is quan
tification based on a classical cryptographical protocol called secret key agreement 
(SKA). Very briefly, in this protocol, there are two honest parties, Alice and Bob, hav
ing random variables A and B, and an eavesdropper Eve having her random variable 
E. Alice and Bob communicate via an insecure channel, to which Eve has a full access. 
Their goal is to generate a secret key, about which Eve has minimal possible inform
ation. To do so, variables of Alice and Bob have to be correlated by so-called secret 
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correlations [33, 34]. 
The motivation to entanglement quantification based on S K A has originated from the 
analogue between the definition of quantum entanglement and the definition of secret 
correlations in S K A . Secret correlations are defined as correlations that cannot be es
tablished by local operations and public communication (one can see that it is very 
similar to LOCC) and they can be quantified using so-called intrinsic information [35] 

I(A;B±E) = inf [I(A;B\E)\, (1.8) 
E->E 

where the infimum is taken over all conditional probability distributions P(E\E) de
fining a new random variable E and 

I(A;B\E) =H(A\E)-H(A\B,E) (1.9) 

is conditional mutual information between A and B. Here, H(X\Y) is the conditional 
Shannon entropy given by H(X\Y) = H(X,Y) — H(Y), where H(X,Y) and H{Y) are 
joint and marginal Shannon entropies [36]. 
Now, it is known that relation between secret correlations and quantum entanglement 
is even mathematically provable and also that we can rigorously pass from S K A to 
quantum key distribution, which will be described in Chapter 3. Several entanglement 
measures have been born by using intrinsic information to quantify entanglement. 
Undoubtedly, the most significant is squashed entanglement [37] 

Esg (PAB) = inf U l p (A; B\E) : p A B = T^EPABE\ , (IAO) 

where Ip (A; B\E) is the quantum conditional mutual information of PABE [38] 

Ip {A; B\E) := S{AE) + S{BE) - S(ABE) - S{E) (1.11) 

and S(X) is the von Neumann entropy of the system. According to this equation, 
squashed entanglement can be interpreted as an infimum of quantum conditional mu
tual information IP(A; B\E) of an extension of the investigated quantum state PAB 
with respect to all the extensions PABE-

Squashed entanglement is so important because it is the only known entanglement 
measure that satisfies all eight required axioms, while it also has an operational mean
ing in the context of S K A . Unfortunately, it is extremely hard to be evaluated. 

Another entanglement measure originating from S K A was introduced by Gisin and 
Wolf. The speech is about classical measure of entanglement [33] 

H {PAB) = mm max (J (A; B | E)) ] , (1.12) 
{»} \{k)},{|s/>} / 

where the infimum is taken over all purifications \1/ = J2Z \fP~z$z ® z such that PAB = 
Trjt?E(P\p) holds on over all bases {\z)} of J4?E, the maximum is over all bases {\x)} of 
J#A and {\y}} of Jf?B, and PXYz(x,y,z) := \(x,y,z\^}\2. 
This entanglement measure is faithful, since it is positive iff PAB is entangled, and it 
also reduces to von Neumann entropy on pure states. However, its monotonicity under 
L O C C has not been proved and its evaluation is very hard for most of the mixed states. 
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If we change the order of optimization in (1.12), we get another entanglement 
measure called intrinsic entanglement (IE) [6] 

E1(PAB)= sup { inf' [I(A;BiE)]\, (1.13) 
{\A),\B)} l l l ^ l * } } J 

where A (Alice) and B (Bob) are two subsystems of entangled state PAB, E (Eve) is 
the purifying subsystem and |\&) is a purification of state PAB, i-e. T r s = PAB-
It can be readily seen that relation E± < p applies according to min-max inequality 
[39]. Due to the change of the optimization, IE can provide better computability than 
classical measure of entanglement. 

Even though there are several other approaches of entanglement quantification (e.g. 
geometric measures [40]), we will close this Chapter with two entanglement measures 
originating from entropic quantities. 
The first of them is relative entropy of entanglement [41, 42] generated by quantum 
relative entropy [43]. It is defined in terms of relative entropy between an entangled 
state and its closest separable state, i.e. 

ER(p) = min S(p\\a')=S(p\\a), (1.14) 
a'eS> 

where @ is the set of separable states, S(p\\a) = Tr(plogp — plogcr) and a = a(p) is 
the closest separable state. It is an entanglement monotone, for pure states it reduces 
to von Neumann entropy [40, 41] and it is convex. However, its general closed formula 
has not been found for many states. 

Here, let us remark that relative entropy of entanglement possesses some kind of 
geometric intuition (not in the true sense of the word, since quantum relative entropy 
is not a true metric, as it is not symmetric and does not satisfy the triangle inequal
ity). One can see that there is no unique view to each entanglement measure. Another 
example is an entanglement of formation mentioned above, which can be derived by 
minimization of mean von Neumann entropy of an ensemble realizing a considered 
density matrix [44], yet it is usually mentioned in the context of entanglement distilla
tion. 

The last mentioned will be entanglement quantification using the Renyi-a entropies 
[45] defined as 

Sa(p) = (l-a)-1lnTr(pa), (1.15) 

with a > 0 and a ^ l . 
They reduce to von Neumann entropy in the limit a —> 1 and they are a good family 
of quantities for studying correlations in quantum states of composite systems. For 
a bipartite pure state PAB any of the Renyi-a entropies evaluated on reduced density 
matrix of one of the subsystems is an entanglement monotone, which gives rise to 
Renyi-a entanglement [46]. Moreover, any such measure can be extended to mixed 
states via conventional convex roof techniques [47, 48]. Further, in the case of Renyi 
entropy of order 2 (a = 2) it has been proven that originated Renyi-2 measure of 
entanglement satisfies 'monogamy' inequality [10, 49]. In [50] it has been shown that 
this entanglement quantification is expedient in the context of Gaussian states and it 
gave rise to entanglement measure called Gaussian Renyi-2 entanglement of formation 
(GR2EoF), which plays an important role in this Thesis and it will be more discussed 
in the following chapter. 
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Chapter 2 

Gaussian Intrinsic Entanglement 
and Gaussian Renyi-2 
Entanglement of Formation 

The work on this Thesis was inspired by the unification of two ostensibly different 
Gaussian entanglement measures, which are Gaussian intrinsic entanglement (GIE) 
and Gaussian Renyi-2 entanglement of formation (GR2EoF) [9]. This unification 
transferred one's properties to the other and led to the rise of a unique, monogam
ous Gaussian entanglement monotone, which is computable for many classes of states. 
In this chapter, we will start with introducing Gaussian states, then we will separately 
define both of the measures and we will discuss their properties. 
Another important fact is the operational significance of these measures, which is re
served for Chapter 3. 

2.1 Gaussian States 
Gaussian states are very important states in quantum physics not only because they 

can be easily prepared in experiments [51] but also because they possess several math
ematical advantages. Even though they occur in continuous variable (CV) systems 
with dim J$? = oo, they are characterized by a finite number of parameters. In more 
detail, they can be fully described by a vector of first moments and by the covariance 
matrix (CM) of second moments. 

They earned their name due to the Gaussian shape of their Wigner function. 

In the case of a general TV-mode system with Hilbert space 
N 

j?N = (g)<m, (2.1) 
i=l 

where J^l are Hilbert spaces of particular single modes, Gaussian states are described 
by 27V quadrature operators Xi,pi,x2,P2, • • • %N,PN, where Xj and Pi are canonically 
conjugated and they fulfill canonical commutation rules 

[xi,pj] = iSij, [xi,Xj] = [pi,Pj] = 0, (2.2) 
where Sij is the Kronecker symbol. 
We will introduce a vector of these operators 

r = (XA,PA, • • .xN,pN)T (2.3) 
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and rewrite canonical commutation rules as 

[ri,rj] = iVtNij, (2.4) 

where 

= © -°i J ) <2-5> 

is the so-called symplectic matrix. 
Now, we are equipped to introduce above-mentioned 27V x 1 vector of first moments d 
with elements di = (r^) = Tr(prj) and 2N x 2N C M 7 with elements 

lij = (r-ifj + rfi) - 2 (r-i) (r ,) . (2.6) 

In further work, we will assume d = 0, as arbitrary d can be displaced to zero without 
any impact on the entanglement properties of the state. 
Any physical state must satisfy Heisenberg uncertainty principle, which in the terms 
of C M 7 is written as [52] 

7 + i f i > 0 . (2.7) 

Thus, any real C M 7 > 0 satisfying Eq.(2.7) represents some Gaussian state. 

If we want to transform a C M in such a way that Gaussian character of the state 
remains preserved, we need to use Gaussian unitary operations, which are represented 
by a real 2N x 2N symplectic matrix S satisfying the condition 

SttNST = ttN. (2.8) 

Hence, the C M transforms as 
7' = S-fST. (2.9) 

Additionally, according to the Williamson's theorem [53], any TV-mode C M 7 can be 
brought by corresponding symplectic transformation S into the Williamson's normal 
form 

S<yST = diag (1/1,1/1, • • • ,vN,vN), (2.10) 

where i>\ > v2 > • • • > VN a r e the so-called symplectic eigenvalues. 

From the previous statements, it has been suggested that for working with Gaussian 
states it is convenient to use CMs. Above that, we can even simplify our work without 
loss of any generality by working with the standard form of CMs [54], which for a 
two-mode Gaussian state is 

1AB 

( a 0 o \ 
0 a 0 Cp 
Or 0 b 0 

^0 C.p 0 

(2.11) 

where cx > \cp\ > 0. Any two-mode C M can by brought to the standard form (2.11) 
by local Gaussian unitary operations. 
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Two-Mode Squeezed Vacuum 

In this Thesis, we will work with entangled Gaussian states. A n example of such 
a state is the two-mode squeezed vacuum state |TMSV) . In the Fock basis [55] the 
two-mode squeezed vacuum state (TMSV) is written as [12] 

- oo 

|TMSV) = - = = V (tanhr)™ \n,n), (2.12) 
Vcosh r ^ 

where r is the squeezing parameter. 
In the terms of C M , the elements of C M in standard form (2.11) for two-mode squeezed 
vacuum state are a = b = jz^2 and cXtP = jz^2 and therefore the C M of T M S V can 
be written as 

T M S V 

/l+Il o 0 \ 
1 — Y 2 1—T2 

n i + T 2 n 2T 
u 1—T2 1—T2 

2T n 1+T 2
 n 

1 — Y 2 1—T2 

2T n 1+T 2 

1 - T 2 , 
\ o 0 

(2.13) 

where T = tanhr G [0,1). 

In the limit of infinite squeezing, r —> oo (T —>• 1), we obtain perfect correla
tion among quadratures x and perfect anti-correlation among quadratures p (2.2), i.e., 
x\ = X2 and p\ = —p2- Such a state is a well known E P R entangled state [56]. 

The individual modes of T M S V are mixed thermal states and they can be obtained 
by tracing over the redundant mode, i.e. the states 

1 oo 

PA(B) = TrB(A) ( |TMSV) (TMSV|) = £ (tanhr) 2" \n) (n\ (2.14) 

of variance V = cosh(2r) and an effective average number of photons n = sinh 2(r). 

2.2 Gaussian Intrinsic Entanglement 
Gaussian intrinsic entanglement (GIE) is a cryptographically motivated Gaussian 

entanglement measure. It is a special case of IE (1.13) under the restriction to so-called 
Gaussian scenario, i.e. the cases, in which all states, measurements and channels are 
Gaussian. 
For two-mode state PAB with C M JAB with purifying subsystem E, GIE is defined as 
[6] 

E? (PAB) := sup mt[I(A;B\E)}, (2.15) 

where 

n A ] B \ E ) = 1 - l n ( d e \ a A d e t a B ) . (2.16) 

Further, 
<?AB = 1AB\E + FA © r B , (2.17) 
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(TA,B are local sub-matrices of GAB and YA (^B) is a single-mode C M of pure-state 
Gaussian measurement on a mode A (£>). 
Next, 

1AB\E = lAB ~ lABE {lE + ^E)'1 IABE {2A8) 

is a C M of conditional mutual state PAB\E [57]. This state is obtained by a Gaussian 
measurement with C M on purifying subsystem E [8]. 

GIE possess some of the important properties of entanglement measures. It van
ishes on separable states and it does not increase under Gaussian local trace-preserving 
operations and classical communication [6] . Moreover, its optimum is always reached 
by homodyne and heterodyne detection, hence it is physically meaningful. 

GIE was analytically calculated for two-mode Gaussian states including all sym
metric partial minimum uncertainty states, weakly mixed asymmetric squeezed thermal 
states with partial minimum uncertainty, and weakly mixed symmetric squeezed thermal 
states [6]. The obtained results showed up to be equal to another Gaussian entangle
ment measure GR2EoF, which led to a conjecture of equivalence of these two measures. 
Later, we extended the results of GIE for the class of Gaussian states with minimum 
negativity for fixed global and local purities (GLEMS) [8] and our results supported 
the conjecture of the equivalence. 

2.3 Gaussian Renyi-2 Entanglement of Formation 
Gaussian Renyi-2 Entanglement of Formation (GR2EoF) is Gaussian entanglement 

measure originating from Renyi-2 entropy, which is a special case of Renyi-a entropies 
(1.15) with a = 2 [9] 

S2{p) = ^ bidet 7 =: M ( 7 ) . (2.19) 

For bipartite pure states, Renyi-a entropies evaluated on the reduced density matrix 
of one subsystem are an entanglement monotone [4]. Such measures can be universally 
extended to mixed states via conventional convex roof techniques [47, 48]. Above that, 
Renyi-2 entropy has been proven to satisfy monogamy inequality [10, 49] for mul-
tiqubit states [46, 58]. Finally, in [50] it has been shown that Renyi-2 entropy satisfies 
the strong subadditivity inequality for arbitrary Gaussian states of quantum harmonic 
systems, which allows employing Renyi-2 entropy to define valid measures of various 
correlations in quantum information theory including quantum entanglement. 

The convenient properties of Renyi-2 entropy led to defining GR2EoF [50] 

EF,2{1AB):= inf M(aA), (2.20) 
aABpuve 

where quantum CMs a are so-called seeds of the Gaussian measurements [9] for cor
responding modes. 

As we already outlined at the beginning of this Chapter, GR2EoF coincide with all 
the obtained results of GIE [6, 7, 8], which led to the question, whether these entangle
ment measures are equivalent in general. This has been proven in [9] for all normal CMs 
with an arbitrary number of modes and notably for all two-mode CMs. Hence, all the 
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properties of GR2EoF and GIE have been unified. This led to a formation of a unique 
entanglement measure, which is faithful, it is monotonie under all Gaussian L O C C , 
it satisfies monogamy inequality [10] and Gaussian Rényi-2 version of Koashi-Winter 
monogamy relation [11], and it is additive on two-mode symmetric states. Above that, 
it is computable for many Gaussian states. 
A very important property of any entanglement measure is its operational meaning. 
Luckily, GIE seemed to be a good candidate to provide this feature. In the following 
chapter, we will show the proof of GIE upper bounding secret key rate in continuous-
variable quantum key distribution protocols. 

In the rest of the Thesis, we will call the considered entanglement measure GIE 
but we will mind that some of the following attainments can refer to papers that were 
originally published in the context of GR2EoF. 
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Chapter 3 

Significance of GIE in Quantum 
Cryptography 

Some entanglement measures have revealed to have an important significance in 
quantum cryptography. In fact, they can serve as upper bounds on secret key rate [59] 
and capacity [17, 18]. The question was whether GIE has this meaning as well. 

In this chapter, we will show a proof of GIE generating an upper bound on the 
secret key rate for a generic Gaussian channel in the continuous-variable quantum key 
distribution [9]. Moreover, we will verify the claim by evaluating GIE for particular 
C V Q K D protocols. 

3.1 Secret Key Agreement 
Firstly, we will remind the classical secret key agreement outlined in Chapter 1. In 

this protocol, we have three parties, Alice, Bob and Eve. 
Generally, in secret communication, Alice and Bob want to communicate a message 
and prevent Eve from eavesdropping on it. To do so, they want to share a secret key, 
so Alice can encode the message into the secret key to turn the message into a cipher, 
which for Eve is unreadable. Then, Bob can decode the cipher by using the secret 
key. Nevertheless, Eve can apply decoding algorithms onto the cipher, break it and 
gain some information about the message from it. Naturally, Alice and Bob want to 
generate such a cipher that will be unbreakable. This is possible by generating a key 
of the same length as the length of the message. If the key is truly random, never 
reused and secure, then the cipher is unbreakable [1]. Arising question is when the key 
is truly secure. In practice, Alice and Bob always have to rely on some communication 
channel to distribute the key. The classical key distribution, also known as secret key 
agreement is described as follows. 

Alice and Bob are two honest parties with variables A and B, and they communicate 
through a public channel. The third party, Eve, is an eavesdropper having a variable 
E. Eve has full access to a triple of random variable ABE distributed according to 
a probability distribution PABE (Fig- 3.1). Alice and Bob have many copies of their 
variables, and their goal is to use them to generate a secret key in such a way that 
Eve's information about the key is negligible [60]. 

To achieve this, Alice and Bob have to apply secret key distillation, error correction 
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EVE 

PUBLIC CHANNEL 

Figure 3.1: Secret key agreement protocol 

and privacy amplification [12]. Thereafter, their net gain of the secret key is the secret 
key rate [12] 

K(A : B\\E) = H{A) - H(A\B) - H(A : E) = H(A : B) - H(A : E), (3.1) 

where H(X) is a Shannon entropy and H(X\Y) is a conditional entropy [36, 61]. 
Unfortunately, it is generally almost impossible to compute, however it can be bounded. 
Usually, when someone wants to compute the secret key rate, they compute its lower 
bound to know the "worst-case scenario". 
On the other hand, one of its upper bounds is already mentioned intrinsic information 

It has been shown that the secret key distribution can be perfectly secure using 
quantum key distribution (QKD) methods [63]. 
To pass to the quantum protocols, to which we will refer as continuous variable (CV) 
quantum key distribution (QKD) protocols [64], we replace the probability distribution 
PABE by a quantum state vector \1/ e .J^A ® ® where J£^(J£b, ,WE) is the 
Hilbert space of Alice's (Bob's, Eve's) system. After all the parties carry out their 
measurements, they obtain the probability distribution PABE- It should be add that 
Eve can carry out generalized measurements, i.e. measurements, in which the set 
{\z)} is not in general orthonormal basis but any set generating M'E and fulfilling 
the completeness condition J2z \z) (z\ = H-jrB- Henceforth, Alice's and Bob's partial 
distribution PAB is analogical with the partial state PAB = Tr^ B(P^,) [65]. 

3.2 GIE As an Upper Bound on Secret Key Rate 
in C V QKD 

As we now know, intrinsic information upper bounds secret key rate in classical 
S K A , from which we can rigorously pass to the quantum version of this protocol. 
Therefore, let us adopt intrinsic information in Q K D [66, 67]. There, Alice and Bob 

(3.4) [62, 35]: 
K(A : B\\E) < I {A : B | E). (3.2) 
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share distributed bipartite quantum state pAB- They perform measurements {n^} 
and {n#} over the corresponding subsystems to obtain a probability distribution PAB-
Eve may perform many different eavesdropping strategies, each of them carried out 
by measurements {HE} and giving her a tripartite states PABE- Thus, each strategy 
extends the probability distribution PAB to 

PABE = Tr (UA ® TlB ® UEPABE) • (3.3) 

This constitutes a set & of possible extensions. 
Accordingly, the intrinsic information is defined as [66, 67] 

I(A; B I E) = inf I (A; B\E), (3.4) 

where I (A; B\E) is the classical conditional mutual information. 

Now, we will show that GIE upper bounds the intrinsic information (3.4). To do 
so, we want the minimization of the classical conditional mutual information in Eq. 
(3.4) to be carried over measurements instead of the set & . We can achieve this by 
rewriting the distributions (3.3) as follows. 

Firstly, in Eq. (3.3) states PABE represent all possible extensions of PAB = T r s (PABE)-
Every extension can be created by an action of a trace preserving completely-positive 
map <§E on Eve's part of a purification \^)ABE of the state PAB = Tr^ ( \ ^ ) A B E (^|), 
i.e., PABE = (H-ab ® $E) (\^)ABE 0^1)- Thus we can rewrite Eq.(3.3) as 

PABE = Tr [UA ®I1B® n E £ E {\V)ABE (*|)]. (3.5) 

Secondly, we want to get rid of the map SE in (3.5). Here, we will use the fact, that 
to every map there exists a dual map S* defined by the relation TrL4<f(.B)] = 
Tr[£*(A)B] and thus T r [ H ^ (\V)ABE = T r [ ^ ( H £ ) \V)ABE <tf|]. 
Due to the unitality (i.e. a property preserving the completeness relation) of the dual 
map $*, its acting on the measurement generates new measurements on subsystem 
E U*E :— &E(\1_E). Finally, we can rewrite Eq. (3.5) as 

PABE = 
T r ( n A ® n B ® n ^ | * ) A B S ( * | ) . (3.6) 

It should be added that the measurements {n^} and {He}, and an arbitrary fixed 
purification \ ^ ) A B E in the previous equations are Gaussian. 

Finally, we can prove that GIE upper bounds intrinsic information by the following 
sequence of equations and inequalities: 

I(A:B±E) = inf I(A:B\E) 
{n^} 

< inf IM(A : B \ E ) 1 A B E + V E ( S ) V B ( S ) V E 

i E 
< sup inf IM (A : £ | £ ) 7 A S B + r A f f i r s e r £ 

1 A , i B E 

The first equality follows from employing the representation of the distribution PABE 
(3.6) and the minimization over measurements {U*E} is carried over all measurements 
on subsystem E, since the set of all measurements can be mapped onto itself by the 

(3.7) 

= E°{1AB). 
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special case of $E (resp. its dual map <fj), which is an identity map. 
The following inequality follows from the restriction to Gaussian measurements, which 
reduces the set, over which the minimization is carried, so the infimum must be always 
equal or greater. Further, the restriction reduces the conditional mutual information 
to the log-determinant form (2.16). 
The second inequality follows from maximization the the infimum over the set of all 
Gaussian measurements on subsystems A and B. The resulting expression is nothing 
else but the definition of GIE (2.15). 

Here we showed that GIE upper bounds intrinsic information and thus also secret 
key rate in any Gaussian C V Q K D protocol, which gives it a significant meaning in 
these protocols. 
In the following section, we will introduce specific C V Q K D protocols with their lower 
bounds on the secret key rate published in [12], so we can compare them to the GIE 
results for these protocols in the last section of this chapter and thus verify the claim 
introduced here for specific examples. 

3.3 Particular C V QKD Protocols and Their Secret 
Key Rates 

So far, we have discussed C V Q K D in rather mathematical terms to introduce the 
quantities related to these protocols. Now, let us move to a less abstract explanation 
and show some specific C V Q K D protocols. To do so, we will simply outline the prin
ciple of protocols, in which entanglement is not needed [12], to understand the idea of 
a generation of the secret key between Alice and Bob. 

Squeezed States Protocol 

In this protocol, Alice can either prepare a x-squeezed vacuum state and encode a 
random Gaussian-distributed variable a into the x-displacement applied to the squeezed 
vacuum state (d : (0,0) —> (a,0)), or prepare a p-squeezed vacuum state and encode 
the variable a into the p-displacement (d : (0,0) —> (0,a)). This is shown in Fig. 3.2. 

She randomly chooses between squeezing and displacing in x and p and sends these 
states to Bob. 
Bob does not know, which states he receives, so he randomly chooses to measure either 
x or p. Bob's measurement is carried out by balanced homodyne detection. 
After Bob has measured all the pulses, Alice announces whether she displaced x or 
p in each round. Bob keeps only the cases, in which they have agreed on the same 
quadrature. 
Now, they share a string of random variables a. 
To find out, whether their communication was eavesdropped by a third party, they 
apply a reconciliation protocol [68]. This is done via classical communication, in which 
they publish a part of their secret key. The reconciliation can be direct (the classical 
communication is done in the same direction as the quantum communication) or re
verse (the classical communication is done in the opposite direction as the quantum 
communication). Based on the amount of found errors, they decide whether the com-
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Figure 3.2: x-squeezed states displaced along x and p-squeezed states displaced along 
p. 

munication was secure. 

Coherent States Protocol 

In coherent states protocol, Alice encodes a random bi-variate Gaussian-distributed 
variable (ax,ap) into the (x,p)-displacement applied to the vacuum. She sends the gen
erated coherent state centred in d = (ax,ap) to Bob (Fig. 3.3). 
Bob randomly chooses to measure either x or p. 

. P 

Figure 3.3: Alice's generated coherent states with random mean value (ax,ap). 

After measuring all the pulses, Bob discloses, whether he measured x or p and Alice 
keeps only ax or ap in accordance with the Bob's measurement. Finally, they apply the 
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reconciliation protocol. 

Entanglement Based Protocols 

The previous protocols are strictly equivalent to entanglement-based scheme, in 
which Alice generates an entangled E P R state and sends the mode B to Bob through 
a quantum channel. Then, she carries out a measurement on her mode A in order to 
project Bob's mode B to the respective state. 
The case, in which Alice applies homodyne measurement over her mode A corresponds 
to the squeezes states protocol. On the other hand, if she applies heterodyne measure
ment, it corresponds to the coherent states protocol. 
Moreover, Bob can also choose between homodyne and heterodyne detection (Fig. 3.4). 

Figure 3.4: Entanglement-based scheme: For beam-splitter transmittance Ta — 1 (Ta — 
1/2) Alice generates squeezed (coherent) states. Transmittance Tj, = 1 (Tf, = 1/2) 
corresponds to homodyne (heterodyne) measurement on Bob's side. 

Thus, we have four different C V Q K D entanglement-based protocols. 

In the following protocols, the E P R state prepared by Alice is the two-mode squeezed 
vacuum state (2.12) with variance /x and the quantum channel through which the mode 
B is sent is an insecure phase-insensitive Gaussian channel ^ [64] with transmissivity 
parameter T and added noise e. This forms a shared two-mode Gaussian state p^, with 
C M 7 £ . 
For this state we computed GIE and compared the results with derived lower bounds 
on the secret key rate for all four protocols published in [12]. There, the bounds were 
derived in the restriction to one-way reconciliation and individual attacks. In the re
striction to the individual attacks, Eve interacts individually with each Alice's pulse 
and she stores each ancilla in quantum memory [69]. She performs an individual meas
urement on each ancilla right after Alice and Bob announce, whether they measured 
quadrature x or p in each round. 
We denote the lower bounds of the secret key rate K D R in the case of direct reconcili
ation and KRR for the reverse reconciliation. As it is usually done for the simplicity, 
we will refer to these bounds as to secret key rates in the rest of this chapter, even 
though we will mind that they only bound the actual secret key rate (3.2) from below. 
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3.3.1 Squeezed States and Homodyne Detection 
The protocol with squeezed states and homodyne detection [15] can be equivalently 

replaced by entanglement-based protocol, where Alice and Bob share E P R state and 
they both apply homodyne measurements over their modes A and B (Fig. 3.5). The 

Figure 3.5: Entanglement based scheme of the protocol based on Alice sending squeezed 
states and Bob applying homodyne detection. 

secret key rates K were derived in the restriction to individual attacks and one-way 
reconciliation in [71, 12]. For the direct reconciliation, the secret key rate K^R reads 
as 

~V + X K DR log 
vx + i 

(3. 

with x 1-T + e, where T is the transmissivity parameter of the channel and e is the 
excess noise. Further, V is the variance of a thermal state and log is a base 2 logarithm. 
In the case of reverse reconciliation, the secret key rate KRR is 

K RR log (3.9) 
T(X + 1/V)\ • 

Considering infinite squeezing r —> oo (V = cosh(2r) —> oo), the previous equations 
reduce to 

and 

K DR 

K RR 

log 

log 
1 

log 

log 

1+T(e-1) 

1 
1 + T(e- 1) 

(3.10) 

(3.11) 

For the cases without any excess noise (e = 0), the equations (3.10) and (3.11) simplify 
to 

e=o, ( T K DR log 

and 

KRR E= log 

1 — T 

1 

(3.12) 

(3.13) 

Since the transmittance is always T < 1, it can be readily seen that KRR > KDR 
always applies for this protocol. 
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3.3.2 Coherent States and Homodyne Detection 
The protocol, in which Alice prepares coherent states and Bob performs homodyne 

measurement [13] is equivalent to the entanglement-based protocol, in which the het
erodyne measurement is carried out over Alice's mode A and Bob applies homodyne 
measurement over his mode B (Fig. 3.6). 

Figure 3.6: Entanglement based scheme of the protocol based on Alice sending coherent 
states and Bob applying homodyne detection. 

The secret key rates for direct reconciliation and reverse reconciliation read as [12] 

K 

and 

K RR 

DR log V + X 
VX + 1 

T 2 (x + l/V) (x + l )J ' 
Applying the infinite squeezing r —> oo as in the previous protocol, we get 

K DR log 

and 

K RR log 

1 + T(e 

1 
[1 + T (e - 1)] (1 + eT) 

For zero noise e — 0, the secret key rates simplify to 

K 
e=0 

DR log 
1 — T 

and 

K RR 
=0 1, 
= 2 l o S 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 
1 -T/ 

One can see that in the absence of the excess noise e, KRR > KDR applies again. 
Moreover, it can be readily seen that by comparing the equations (3.18) and (3.19) with 
secret key rates (3.12) and (3.13) in the previous protocol with homodyne detection on 
both modes, one finds that in the absence of excess noise, the secret key rates for the 
individual reconciliations are smaller for the protocol with heterodyne detection on the 
Alice's side and homodyne detection on the Bob's side. Specifically speaking, they are 
half. 
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3.3.3 Squeezed States and Heterodyne Detection 
This protocol is equivalent to an entanglement-based protocol, in which Alice carries 

out an homodyne measurement over mode A and Bob applies heterodyne measurements 
over mode B (Fig. 3.7). 
Then, the secret key rates are [12] 

Figure 3.7: Entanglement based scheme of the protocol based on Alice sending squeezed 
states and Bob applying heterodyne detection. 

K l l n J (V + X)[T(V + X) + 1] 
D R 2 g\(Vx + l)[T(VX + l) + V} 

and 

KRR = - log 
T(X+1/V) 

In the restriction to infinite squeezing, one gets 

i , r T2 

and 

h l ) U 2

 l 0 g 1 [1 + T (e - 1)] [2 + T (e - 1)] 

1 
KRR = - log 

1 + T(e-1) 
Once again, we will also show the results for s — 0, which are 

KDR = - l o g 
r-

and 

1 - T ) ( 2 - T ) 

1 
KRR = - log _ 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

Comparing the equations (3.24) and (3.25), after some simple algebra, one can find 
that KRR > KDR in the absence of the excess noise. 

Further, KDR is always larger in comparison to the result in the previous protocol 
(coherent states and homodyne detection), whilst the results of K R R are in the absnce 
of noise equal. 
Finally, comparing the results with the first protocol (squeezed states and homodyne 
detection), both secret key rates are larger than the results that we obtained in this 
section. 
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3.3.4 Coherent States and Heterodyne Detection 
The last protocol is the protocol based on coherent states and heterodyne detection 

[14], which is equivalent to the protocol with shared entangled E P R state, where both 
modes A and B are measured by heterodyne detection (Fig. 3.8). The secret key rates 

Figure 3.8: Entanglement based scheme of the protocol based on Alice sending coherent 
states and Bob applying heterodyne detection. 

for this protocol are [12] 

K DR log f (x+l)[T(V + x) + l] 
\(VX + l)[T(x + l) + l] 

and 

' R R l°g\T(VX + l)[T(x + l) + l}S' 
Using the same method as in all the previous protocols, we obtain for r —> oc 

T(l + eT) 

r T(VX + I) + V 

K DR. 

and 
K RR 

log 

log 

[l + T ( e - l ) ] ( 2 + eT) 

2 + T(e- 1) 
[l + T ( e - l ) ] ( 2 + eT) 

Finally, in the absence of the excess noise, the secret key rates reduce to 

K D R

 E= log 

and 

KRR E= log 1 + 

2(1 — T) 

T 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 
2(1 - T ) _ 

It is clear that for e = 0 the inequality K R R > K D R applies once again and so we can 
conclude that it does in all the considered protocols. 
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3.4 Gaussian Channels 
As we already outlined, in the previous protocols, Alice and Bob share two-mode 

Gaussian state with C M 7^., which is established by sending one of the modes of 
the two-mode squeezed vacuum state (2.12) with variance \i prepared by Alice through 
an insecure phase-insensitive Gaussian channel So . In this section, we will denote the 
transmittance of the channel ^ by r and the added noise by v. 

In general, quantum channels are completely positive (CP) trace-preserving maps, 
which is a class of irreversible operations transforming TV-mode C M as 

lout = XlinXT + Y, (3.32) 

where X and Y are 27V x 27V matrices and Y is symmetric [72]. 
Further, they satisfy the positivity condition 

Y + in - iXnXT > 0. (3.33) 

The vector of first moments d transforms as 

dout = Xdin. (3.34) 

Pure-Loss Channel 

For the pure loss channel Cp with transmittance r , the matrices in Eq. (3.32) are 
defined as X = y/rt and Y — (1 — r ) l . Such a channel can be constructed by a beam 
splitter with transmittance r . 

Thermal-Loss Channel 

In the addition to the transmittance r , the thermal-loss channel C is also defined 
by the added thermal noise v. Hence, the CP map is defined by X = \frt and Y = ut, 
with v — (1 — r)(2n +1), where n is the mean number of the photons in the environ
ment. It can be constructed by mixing the input signal with a thermal state of variance 
V = at the beam splitter with transmittance r. 

Thermal-Amplifier Channel 

In the case of thermal-amplifier channel A, we consider r > 1, so we call it an amp
lification parameter. Thus, it is defined by X = \Jr and Y = ut, with v — (r — l)(2n + 
+ !)• 
If there is no added thermal noise, i.e., n — 0, the channel is called Pure-Amplifier 
Channel Ap. 

We can summarize these attainments and rewrite the Eq. (3.32) in the terms of 
parameters r and v. Hence, a two-mode Gaussian state with C M 7 sent through such 
a single-mode Gaussian channel So transforms as 

Tin 3- lout = (1 © Vrt) iin (1 © y/^tf + (0 © vt), (3.35) 

where v — |1 — r\(2n + 1) with 0 < r < 1 for lossy channels and r > 1 for amplifying 
channels. 
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3.5 GIE as an Upper Bound on Secret Key Rate in 
Particular C V QKD Protocols 

Now, we want to know formulas of GIE for the states p^, in the cases of particular 
channels. 
If v > 1 + |r|, the channel is an entanglement breaking channel, entanglement vanishes 
and thus Ef = 0. 
Otherwise, GIE of the state p% with C M 7^ is [50] 

£ f ( 7 £ ) = ln[cosh(2r0)], (3.36) 

where r 0 represents the minimum two-mode squeezing [73] needed for establishing p?g. 
When a single mode of T M S V is sent by a channel ro is given by 

ro = - In 
4 2[z / -2Vrs inh(2r) + (1+r)cosh(2r)] 
x {3 + [2u - (1 - r) 2] cosh(4r) + r(3r + 2) + 4z/(l + r) cosh(2r) 

- 4 V V 2 - (1 - r ) 2 sinh(2r) [v cosh(2r) + 1 + r]}. 

(3.37) 

In the case of the infinite squeezing r —> 00 (T = tanhr —> 1 in (2.13)), we refer to 
the state of a Gaussian channel as the so-called Choi state p% 
limit we have 

l i m ^ o o / ^ . In this 

T = 1 

Choi 

.Choi 

2;y 
- I n 

- ( l - r ) 

: i - v ^ ) 4 

x i 4 

4 l n ^ 

(3.38) 

Hence, substituting the fist equation of (3.38) into the Eq. (3.36), GIE for a Choi state 
of thermal-loss (thermal-amplifier channel) is 

In 
(2n+ l ) ( r + 1) - Ay/rn(n + 1) 

(3.39) 

For pure-loss channel and pure-amplifier channel with n — 0 it reduces to 

(3.40) 

Now, we want to compare GIE to the secret key rates derived in the Section 3. To do 
so, we will translate the formula of GIE (3.39) into the corresponding variables, i.e., 
r <—> T and v = (1 — r)(2n+1) <—> T\- For the thermal-loss channel with 0 < T < 1 
the Eq. (3.39) reads in these variables as 

(l + m ( T + 1 ) - 2 , / t f(l + y ^ ) 2 - l 
In 

1 — T 
(3.41) 

Using straightforward algebra, which we supported by verification in mathematical 
software, we can conclude that formula (3.41) is larger than secret key rates for both 
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types of reconciliation in all four C V Q K D protocols in Section 3 up to the irrelevant 
choice of the logarithm base, as expected. 
This verifies the proof (3.7) on particular four C V Q K D protocols against individual 
attacks from Section 3 with thermal-loss channel in the limit of infinite squeezing. 
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Chapter 4 

GIE as an Upper Bound on 
Channel Capacity 

Besides upper bounding the secret key rate, another cryptographical significance of 
GIE has been found. In the case of the pure-loss channel Cp and the pure-amplifier 
channel Ap, the formula (3.40) is equal to the secret key rate capacity of the chan
nel derived from squashed entanglement (1.10) [17]. This motivates the investigation, 
whether it is an upper bound on the capacity of other channels and also the question, 
whether it can be claimed in general. Unfortunately, the general proof requires mono-
tonicity under L O C C , whilst GIE provides this only in the restriction to Gaussian local 
operations, so the general method cannot be applied [16]. 
Hence, in the first section, we will introduce the secret key rate capacity of the channel 
and in the second section, we will compare GIE with already known bounds on it. 

4.1 Channel Capacity 
To define the secret key capacity of the channel, we will borrow the notation from 

[16]. 
Here, the definition applies to the adaptive protocol for quantum or private commu
nication over an arbitrary quantum channel So. Alice and Bob have local registers a 
and b, each with a countable number of systems. They apply and adaptive L O C C A 0 

to their registers and, which prepares and initial state p ° b . 
In the first round, Alice picks a system a\ from her register a and sends it through the 
channel So. Bob receives the output system b\ and includes it into his register, which 
changes his register bih —> b. Then they apply another adaptive L O C C Ai onto their 
registers, which generates the state p* b. 
They can apply this procedure for n rounds, resulting in n uses of the channel So and a 
sequence of adaptive LOCCs V{\o,...,An}. The sequence V characterizes the protocol 
and provides the output state p" b . The output state is epsilon-close to some ideal 
target state 0™, with nRn bits, where Rn represents the number of bits per channel 
use, i.e., ||p" b — 4>n\\ < e in the trace norm. 
Hence, the generic two-way capacity is defined as 

C{Sf) := suplimi?„, (4.1) 
-p n 

which defines the capacity as the highest Rn at which a shared key can be reliably 
and securely generated using the channel many times in conjunction with unlimited 
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two-way classical communication over an authenticated public channel [17]. 

Now, if the target state <ftn is maximally-entangled state, capacity C (4.1) is the 
two-way entanglement-distribution capacity D 2 . Further, with two-way classical com
munication, the D2 is equal to the quantum capacity Q2. 
In the case of <f)n being a private state [74], then C is the secret key capacity K, which 
is also equal to the capacity of protocol with private transmission of classical bits, i . e. 
so called two-way private capacity P 2 . 
To summarize this, we can say that inequality 

Q2 = D2 < K = P2 (4.2) 

applies for the the particular types of capacity. 

It has been shown the the capacity P2 (and therefore all the other capacities in 
(4.2)) can be bounded from above using some known entanglement measures. 
In the following section, we will focus on the upper bounds derived from squashed en
tanglement (1.10) [17] and the best known upper bounds derived from relative entropy 
of entanglement (1.14) [18] and compare them with GIE. 

4.2 Comparison of GIE with Known Upper Bounds 
on Channel Capacity 

As mentioned above, the formula of GIE (3.40) for the pure-loss channel Cp and 
the pure-amplifier channel Ap coincides with the upper bound on the secret key rate 
capacity derived from squashed entanglement [17] up to the irrelevant choice of the 
base of the logarithm, which we will choose to be natural. 
We will continue the investigation for thermal-loss channel C (thermal-amplifier channel 
.4.), which is for the Choi state defined by Eq. (3.39), whereas the upper bound derived 
from squashed entanglement reads as [70] 

Esqc{T,n) In 
; i - r ) n + 1 + t 

'1 — r)n + 1 — r 
(4.3) 

To compare the Eq. (3.39) and Eq. (4.3), we will use the noise parametrized in 
accordance with the thermal noise (2.14) n = sinh2(r) and rewrite the equations in 
terms of x = tanh(r), which corresponds to substituting 

x 
n X 2 ' 

n+ 1 
x 

2 ' 
2n + 1 

X 

X 2 ' 
(4.4) 

and z = y/r. In terms of variables x and z, the thermal-loss channel L corresponds to 
the cases with 0 < z < 1 and x < z, and the thermal-amplifier channel corresponds to 
the cases with z > 1 and x < \. 
Using these substitutions one gets the formula (3.39) in the form of 

"(1 +x2)(l + z2) -Axz~ 
E? (7. In 

x-
and the formula (4.3) in the form of 

Esqc(z,x) = In 
1 + zz - 2x2z2 

1 -z2 

(4.5) 

(4.6) 
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Let us define the difference 

Ac(z,x) :=Esqc(z,x)-Ef(lc), 

which is obviously expressed as 

[l-x2)(l + z2 -2x2z2) 
Ac(x,z) = In 

; i + x2)(l + z2) -Axz 

(4.7) 

One can readily see that the case with x = 0 corresponds to the pure-loss channel Cp 

and Ac(z,0) = ln(l) = 0 as expected. AsO<x<z<l holds for the thermal-loss 
channel, it is correct to claim that 

z < A z > 
X 

(4.9) 
x 1 — x2 

holds as well. 

If we subtract the denominator from the numerator in the fraction (4.8), i . e., 

(1 - x2)(l + z2 - 2x2z2) - [(1 + x2)(l + z2) - Axz] 

' - - 1 > n. 
x I \ I — xz 

2x2(2-x2 

we will get a strictly positive result, which means that the argument of the logarithm 
in (4.8) is strictly larger than one and thus the difference Ac(z,x) is strictly positive. 
Finally, getting back into the variables r and n this results in the inequality 

Esqc(r,n)>Ef(lc) (4.11) 

We can apply the same principle onto the thermal-amplifier channel with z > 1 and 
x < - , since inequalities (4.9) hold again and thus 

EsqA(r,n)>Ef(lA) (4.12) 

Therefore, we can conclude that GIE is always equal or greater than the upper bound 
on the secret key rate capacity derived from squashed entanglement. 

Next, we will compare GIE with the upper bounds based on the relative entropy 
of entanglement (1.14), which is the best known upper bound on the secret key rate 
capacity of the channel. 
For the thermal-loss channel it is defined as [18] 

• In [(1 - r ) r n ] - h(n) for n < f 
0 otherwise 

with hin) = in + 1) ln(n + 1) — n l n n , and for the thermal-amplifier channel as 

In 

0 

—J - h(n) for n < ^ 

otherwise. 
(4.14) 

Substituting (4.4) and y/r = z into equations (4.13) and (4.14) we get 

ERc(z,x) 
In (1 - Z 2 ) ^ V T ^ h(x) for x < z, 

otherwise 
(4.15) 
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and 

E R A ( Z , X ) 
— h(x) for x < -, 

otherwise 

(4.16) 

with h(x) = 3̂̂ 2 In — J^-J hi TZ^2 • Now, we want to compare G I E with the bounds 
(4.15) and (4.16).To do so, we will analyze the difference 

ZC,A(Z>X) '•= e?(7C,A) - ERcA(z,x), 

which for the thermal-loss channel C reads as 

[l + x2)(l + z2) -Axz 
-c{z,x) In 

x-
+ - 2 X

 0 lnz + h(x). 
1 — xz 

(4.17) 

(4.18) 

The difference Ec(z,x) (4.17) is positive if it is bounded by zero from below, we can 
verify this by finding its minimum on the set characterized by the conditions for the 
thermal-loss channel, i.e., 0 < z < 1 and 0 < x < z. Since the set is an open triangle it 
may not have any minimum and thus we will investigate a larger closed set by including 
the boundaries of the considered triangle as well. 
Firstly, we will try to find the stationary points in the ^-direction, which correspond 
to the points fulfilling dEc/dz = 0, i.e., 

2(1 + x2)(x - z) 
dz z(l -x2) [(1 +x2)(l + z2) -Axz] 

0. (4.19) 

One can find that Eq. (4.19) has no solution for 0 < z < 1 and 0 < x < z and therefore 
the difference (4.17) has no extreme in the interior of the triangle. 
Thus, let us consider an open boundary line segment x = 0 and 0 < z < 1. Here the 
Eq. (4.18) reduces to 

Ec(z,0) =\n(l + z2), (4.20) 

which is obviously a monotonically increasing function with no extreme on the interval 
0 < z < 1. 
Taking another open boundary line segment z — 1 and 0 < x < 1, the difference (4.18) 
reduces to 

1 — xs 

Ec(l,x)=\n [YT^)\ +h{x)' 
Now, if we derive the Eq. (4.21) with respect to x, we will get 

2(x2 — xlnx2 — 1) 
2^2 

<0, 

(4.21) 

(4.22) 

where the inequality results from substituting x = y and use the logarithmic-
geometric mean inequality: 

b — a 
In b — In a 

> Vab if 0 < a < b. (4.23) 

The function (4.22) is monotonically decreasing and therefore there is no extreme on 
the considered line segment. 
The remaining open boundary line segment is the one defined with x = z and 0 < z < 1, 
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for which the difference is E.c(z,z) = 0 and any point of the segment can be an extreme. 

For the vertices of the triangle, one gets Ec(0,0) = 0 and Ec(l,0) = In2. 
Let us analyze the last vertex (1,1). Firstly, to see the behaviour of the function (4.17), 
we will analyze the line segments 

z = q+(l-q)t, x = t, t G [0,1] (4.24) 

starting at the point (q,0) on the z-axis, q G [0,1], and end at the point (1,1), under 
the limit £—>•!. This is given by 

L := \imEc[q + (1 - q)t,t] = q + In \(2-2q + q2) (4.25) 

Therefore, L G [0,1 — In 2, which implies that the least limit of the function (4.17) at 
the point (1,1) is zero. 
Summarizing the previous claims, we can conclude that on the considered closed tri
angle always applies Ec(z,x) > 0 and the equality holds only on the segment with 
x = 0 and 0 < z < 1. Further, the strict inequality Ec(z,x) > 0 holds on the original 
open triangle together with the line segment x — 0,0 < z < 1, which corresponds to 
the pure-loss channel Lv. For entanglement breaking channels quantities GIE (3.39) 
and relative entropy of entanglement (4.13) naturally vanish. Consequently, one finds 
that for thermal-loss channel, GIE is never less than the upper bound on the channel 
capacity derived from relative entropy of entanglement, i.e., 

E^{lc)>ERc{T,n). 

Moving to the thermal-amplifier channel A, Eq. (4.17) gives 

In 
[1 + x2)(l + z2) -Axz 

Xŕ 
In z + h(x) 

(4.26) 

(4.27) 

and the open set is characterized by the conditions for A, i.e., z > 1 and x < - , on 
which we want to proof the function (4.27) to be lower bounded by zero. 
Once again, we will work with a larger set, which is defined by the same inequalities 
but not strict, to include the boundary lines as well. 
Firstly, the derivative of (4.27) with the respect to z is 

8Z A 2(1 +x2)(xz - If 
dz z(l -x2)[(l + x 2 ) ( l + z2) -Axz}' 

(4.28) 

which set equal to zero no solution due to the inequality xz < 1. 
Considering the first boundary segment x = 0 and z < 1, the difference (4.27) reduces 
to 

EA(z,0) = In (l + I V (4.29) 

which is obviously monotonically decreasing function and thus it does not have any 
extreme for z < 1. 
As the second boundary segment, we will take the one defined with z — 1 and 0 < x < 1 
and which gives the same result as in the case of the thermal-loss channel, i.e., 

EA(1,X) Xx) (4.30) 
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so we can immediately say that there is not any extreme either. 
Taking the last boundary segment x — - and z > 1 gives the difference equal to zero 

-A Z-
z 

0 

and any point of the curve can be an extreme. 
Finally, we will investigate the vertices of the set. The first one gives 
In the infinitely distant vertex of the z-axis we get 

lim -A (z,0) = 0, lim EAlz-
Z - S - + Q O \ Z 

0. 

(4.31) 

..4(1,0) = In 2. 

(4.32) 

so one can see that the function (4.27) vanishes there. 
The last vertex is the point (1,1). To analyze it, we calculate the limits of the function 
along the segments of the lines starting in the point (q,0) on the z-axis, q G [1,2], and 
ending at the point 1,1, 

lim ~A[q + (1 - q)t,t] 2 - q + In -(2-2q + q2 (4.33) 

Here we can see that for q e [1,2] one gets L' 6 [1 — In 2,0] and thus the least limit of 
the function at the point (1,1) is equal to zero, which we wanted to proof. 
In conclusion, we can see that for the thermal-amplifier channel we get EA(z,x) > 0, 
where the equality holds only for x — - and z > 1. This implies that the strict in
equality EA(z,x) > 0 holds on the original open set and the segment x = 0, z > 1 
corresponding to the pure-amplifier channel Ap. For entanglement-breaking channels 
the investigated quantities always vanish. 
Therefore, we can conclude that for the thermal-amplifier channel GIE (3.39) is never 
less than the bound based on the relative entropy of entanglement (4.14), i.e., 

Ef(lA)>ERA(r,n). (4.34) 

Here showed that the upper bound on the secret key rate capacity of the channel 
based on the relative entropy of entanglement is always larger than GIE of the Choi 
state of the channel for all four investigated channels (C,A,Cp,Ap). 

Finally, we will investigate the upper bounds for another type of a channel, which 
is so-called additive-noise Gaussian channel characterized by the variance of the added 
noise £ > 0 and the channel is entanglement breaking if £ > 1. 
If £ < 1, GIE of a Choi state of the channel is defined by Eq. (3.36) [50] with 
ro = — l n \ / £ [73], while it vanishes otherwise, i.e., 

r , s (in(^f-) for £ < 1 , , 
Ef ( 7 a dd) = { J (4.35) 

[ 0 otherwise. 

The bound derived from the relative entropy of entanglement reads as [18] 

. s - 1 - ln£ for £ < 1, 
ERadd = H \ ' (4.36) 

otherwise. 
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After substituting into the difference 

S add(0 := E \ (7add) - ERadd(£) 

from the equations (4.35) and (4.36) we get 

(4.37) 

—add(£) 
0 for £ < 1, 

otherwise. 
(4.38) 

It is readily seen that 1 - f > 0 and f + 1 < v / 2 ( l + ^ 2) and thus the difference (4.38) 
is strictly positive for £ < 1. Considering also the entanglement-breaking channels, we 
can conclude that the inequality 

£ f ( 7 a d d ) > £ H a d d ( 0 (4.39) 

holds for the additive-noise Gaussian channel as well. 
Finally, we compare the bound based on GIE (4.35), the bound based on relative 
entropy of entanglement (4.36) and the one derived from squashed entanglement [70] 

E. «9add (0 
0 otherwise 
l n ^ j for £ < 1 , (4.40) 

in Fig(4.1). 
Based on all the results of this section, we can conclude that the GIE of a Choi 

Figure 4.1: The upper bounds on the capacity of additive-noise Gaussian channel based 
on GIE (blue line), relative entropy of entanglement (red dotted line) and squashed 
entanglement (green dashed line). 

state upper bounds the secret key rate capacity of the channel for all the investigated 
channels in this section and moreover, it always lies between the best known upper 
bound based on relative entropy of entanglement [18] and the one derived from squashed 
entanglement [17, 70]. 

34 



Conclusion 

After the unification of GIE with GR2EoF, its gained computability allowed and 
motivated further research of this measure. 
The Thesis aimed to show its significance in quantum communication. In Section 3.2 
we showed the general proof of GIE upper bounding the secret key rate in C V Q K D , 
followed by its verification for standard C V Q K D protocols in Section 3.5. 
Further, for the investigated quantum channels, we compared GIE with upper bounds 
on the secret key rate capacity of the channel in Section 4.2 and showed that it always 
lies above the best known upper bound derived from relative entropy of entanglement 
but it is always lower than or equal to the upper bound derived from squashed entan
glement. 
A l l these calculations were made in the restriction to a Choi state of the channel. Its 
investigation for the non-asymptotic regimes remains for further research. 
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