

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV

FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE

PARNÍ TURBÍNA PROTITLAKOVÁ BACKPRESSURE STEAM TURBINE

DIPLOMOVÁ PRÁCE DIPLOMA THESIS

AUTOR PRÁCE

BC. LIBOR MERTA

VEDOUCÍ PRÁCE SUPERVISOR doc. Ing. JAN FIEDLER, Dr.

BRNO 2012

NETISKNOUT

ZADÁNÍ DIPLOMOVÉ PRÁCE

Abstrakt

Předmětem diplomové práce je návrh protitlaké turbíny bez odběrů. Základem diplomové práce je návrh termodynamického výpočtu jednotlivých částí turbíny. V závislosti na zadaných parametrech páry a zvolených podmínkách výpočtu jsou zvolena vhodná konstrukční řešení. Součástí diplomové práce je také návrhový řez turbíny.

Abstract

The Diploma Thesis deals with a design of a backpressure turbine without any bleeds. The fundament of the Diploma Thesis is a thermodynamical calculation of particular parts of the turbine. Technical solutions are designed according to given details of a steam and chosen conditions of use.

Klíčová slova

Protitlaká parní turbína, termodynamický výpočet

Key words

Backpressure steam turbine, thermodynamical calculation

Bibliografická citace

MERTA, L. *Parní turbina protitlaková*. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2012. 75 s. Vedoucí diplomové práce doc. Ing. Jan Fiedler, Dr..

Prohlášení

Prohlašuji, že jsem práci vypracoval samostatně pod vedením vedoucího diplomové práce. Vycházel jsem při tom ze svých znalostí, odborných konzultací a literárních zdrojů.

V Brně, dne 25. 05. 2012

Podpis

Merta

Poděkování

Tímto bych rád poděkoval mému vedoucímu práce doc. Ing. Janu Fiedlerovi za vše, co pro mě během studia udělal. Můj dík patří také všem kolegům z firmy Siemens Industrial Turbomachinery, kteří mi vždy při psaní diplomové práce ochotně pomohli a poradili. Především si ale vážím nesmírné podpory mých rodičů a manželky během celého studia. Děkuji.

Obsah

ÚVOD	
1 Princip fungování turbíny a její jednotlivé části	9
1.1 Obecný popis stupně turbíny	9
1.2 Základní části návrhu turbíny	10
1.2.1 Skupinová regulace	10
1.2.2 Regulační stupeň	11
1.2.3 Vyrovnávací píst	11
1.2.4 Stupňová část	12
2 Zadání diplomové práce a předběžný výpočet základních parametrů turbíny	12
2.1 Zadání 12	
2.2 Základní parametry turbíny	
2.3 Tabelované výsledky	
3 Regulační stupeň	
3.1 Volba typu regulačního stupně	
3.2 Předběžný návrh A-kola	
3.2.1 Předběžný návrh – volba rychlostního poměru u/ciz, parametry páry	
3.2.2 Předběžný návrh – ostřik, vnitřní výkon	
3.2.3 Tabelované výsledky	
3.3 Podrobný výpočet A-kola	
3.3.1 Podrobný návrh – rychlostní trojúhelník regulačního stupně	
3.3.2 Podrobný návrh - volba profilů regulačního stupně	
3.3.3 Podrobný návrh - ztráty regulačního stupně	
3.3.4 Podrobný návrh – účinnost a výkon regulačního stupně	
3.3.5 Tabelované výsledky	
3.4 Dýzová regulace	
3.4.1 Tabelované výsledky	
4 Tepelný výpočet stupňové části	
4.1 Předběžný návrh stupňové části	
4.1.1 Předběžný návrh - volba lopatkování stupňové části	
4.1.2 Předběžný návrh – ztráty, účinnost a výkon stupňové části	40
4.1.3 Tabelované výsledky	
4.2 Celková axiální síla působící na turbínu:	46
4.2.1 Tabelované výsledky	
4.3 Návrh vyrovnávacího pístu	
4.3.2 Tabelované výsledky	

4.4 Tepelný výpočet skupiny přetlakových stupňů metodou <i>ca</i> / <i>u</i>	50
4.4.1 Podmínky výpočtu metodou <i>ca/ u</i>	50
4.4.2 Předběžné parametry páry na vstupu do RLŘ – reálný děj	51
4.4.3 Předběžné parametry páry na vstupu do RLŘ – izoentropická expanze	52
4.4.4 Předběžné parametry páry na vstupu do OLŘ	53
4.4.5 Finální návrh parametrů páry	54
4.5 Rychlostní trojúhelníky stupňové části	58
4.5.1 Tabelované výsledky	59
5 Převodovka	60
5.1 Výběr typu převodovky	60
5.2 Účinnost a výkon převodovky	62
5.3 Tabelované výsledky	64
6 Změna protitlaku	65
6.1 Vliv změny protitlaku	65
6.2 Vliv protitlaku na změnu výkonu	65
7 Závěrečné zhodnocení	66
7.1 Účinnosti a výkony	66
7.2 Spotřební charakteristika turbíny	67
7.3 Průběh expanze páry	68
ZÁVĚR	69
SEZNAM POUŽITÝCH ZDROJŮ	71
SEZNAM ZKRATEK	71
SEZNAM HLAVNÍCH VELIČIN	71
SEZNAM DOLNÍCH INDEXŮ	73
SEZNAM HORNÍCH INDEXŮ	74
SEZNAM OBRÁZKŮ	75

ÚVOD

Cílem této diplomové práce je vytvořit termodynamický a konstrukční návrh protitlaké turbíny dle zadaných parametrů. Obecně se jedná o tepelné zařízení sloužící k přeměně tepelné a kinetické energie vstupní páry na mechanickou rotační energii hřídele turbíny. Hřídel turbíny následně pohání buď generátor v případě výroby elektrické energie, nebo libovolné další průmyslové zařízení využívající jako pohon rotující hřídel (například kompresor, čerpadlo atd.). Důležitým znakem protitlakých turbín je fakt, že pára vystupující z turbíny má vyšší tlak než je tlak atmosférický. Navíc veškerá vyexpandovaná pára je využitá pro určitý navazující proces. Může se jednat o vytápění budov či jiné průmyslové využití. V závislosti na požadovaných fyzikálních veličinách výstupní páry dochází ke snížení či zvýšení výkonu turbíny při konstantních fyzikálních veličinách a konstantním průtoku vstupní páry.

Základním faktorem pro vytvoření tohoto návrhu je provozní režim turbíny, podle kterého dochází k volbě určitých parametrů či konstrukčních řešení. Jednou z nejdůležitějších informací je předpokládaná doba ročního provozu. Uvažujeme, že tato protitlaká turbína bude sloužit pro teplárenské účely s nízkým teplárenským modulem a vysokou roční dobou provozu. Především to znamená, že se budou preferována konstrukční řešení směřující k vyšší účinnosti turbíny i za cenu vyšších pořizovacích nákladů. Tato rozhodnutí se například týkají typu regulace průtoku či bandážování. Turbína bude pohánět generátor elektrické energie.

Návrh turbíny bude rozdělen do jednotlivých tematických celků. Jedná se především o předběžné určení základních parametrů turbíny, návrh regulačního stupně včetně regulace průtoku páry a návrh stupňové části. Závěr diplomové práce se věnuje celkovému zhodnocení parametrů turbíny a návrhu spojky mezi turbínou a generátorem. Součástí návrhu turbíny je také vytvoření spotřební charakteristiky turbíny, která ve spojitosti s uvedenými teoretickými poznatky přiblíží chování turbíny v závislosti na změně protitlaku. Podle navržených konstrukčních řešení a vypočítaných rozměrů turbíny je následně vytvořen zjednodušený návrhový řez turbíny.

1 Princip fungování turbíny a její jednotlivé části

Obrázek 1.1 znázorňuje tok hlavního proudu páry v turbíně. Při normálním provozu je rychlozávěrný ventil otevřený. Ostrá pára projde regulačními ventily a je vehnána do regulačního stupně, který pracuje s parciálním ostřikem. V regulačním stupni dojde k výraznému snížení parametrů páry. Následně pára projde jednotlivými stupni stupňové části, ve kterých vyexpanduje na tlak, který se rovná protitlaku navýšenému o tlakovou ztrátu výstupního hrdla. Jednotlivé části budou v dalších kapitolách do detailu popsány.

Obr. 1.1 Schéma průtoku páry turbínou

1.1 Obecný popis stupně turbíny

K expanzi páry a přenosu energie dochází během jejího průchodu jednotlivými stupni turbíny. Všechny stupně uvažované v této diplomové práci se skládají z lopatek rozváděcí statorové a oběžné rotorové lopatkové řady. Rozváděcí lopatky usměrňují proud páry tak, aby pod přesně stanoveným úhlem dopadl na oběžné lopatky, které směr proudění páry zase otočí a nasměrují do statorového lopatkování následujícího stupně.

Obr. 1.2 Rozvinutý válcový řez lopatkování [1]

Obr. 1.3 Značení rozváděcí a oběžné lopatkové řady

Uvnitř rozváděcí lopatkové řady dochází k expanzi páry a k přeměně tepelné energie na kinetickou. Celková entalpie páry je v rámci rozváděcí lopatkové řady konstantní a pára tedy nekoná žádnou práci. Při průchodu páry oběžnou lopatkovou řadou vytváří proudící pára točivý moment, kterým působí na rotor a dochází k přeměně části kinetické energie páry na rotační mechanickou energii rotoru. Právě zde, v oběžné lopatkové řadě, koná pára práci.

Míra expanze ve statorových a rotorových lopatkách záleží především na koncepci stupně. Jejich mírou je stupeň reakce ρ , který vyjadřuje poměr zpracovaného entalpického spádu na rotoru ku zpracovanému entalpickému spádu stupně. Běžně se používají tyto druhy stupňů:

- čistě rovnotlaké stupně $\rho = 0$, celá expanze páry ve stupni se uskuteční během průchodu rozváděcími lopatkami. V rotorových lopatkách nedochází k žádné expanzi.
- rovnotlaké stupně $\rho \approx 0.05$, 95 % expanze probíhá v rozváděcí části. Většinou se volí velmi nízký stupeň reakce z důvodu lepšího proudění v lopatkových kanálech.
- přetlakové lopatkování stupeň reakce je libovolný, nejčastěji se volí $\rho = 0.5$. V tomto případě je polovina entalpického spádu zpracovaná v rozváděcí lopatkové řadě, druhá polovina v oběžné lopatkové řadě.

Obr. 1.4 Expanze páry v čistě rovnotlakém a přetlakovém stupni

Stupeň reakce má také zásadní vliv na tvar rychlostních trojúhelníků. O rychlostních trojúhelnících bude napsáno více v dalších kapitolách.

1.2 Základní části návrhu turbíny

1.2.1 Skupinová regulace

Z důvodu vyšší termodynamické účinnosti při proměnném zatížení turbíny byla zvolená regulace průtoku pomocí dýzové regulace se třemi regulačními ventily. Dýzová regulace spočívá v průtoku páry jedním až třemi regulační ventily, čímž dochází k ostřiku různého počtu lopatek oběžné lopatkové řady regulačního stupně. Výhodou je, že zde nedochází k tak výraznému maření energie při škrcení páry jako při regulaci škrcením. Skupinová regulace včetně parciálního ostřiku je znázorněna na obrázku 1.5 [2] (v našem případě ale nedochází k regulaci trámcem).

Detailní návrh dýzové regulace je uveden v kapitole 3.

Obr. 1.5 Skupinová regulace včetně parciálního ostřiku [2]

1.2.2 Regulační stupeň

Regulační stupeň je zcela běžnou součástí parních turbín. V případě využití skupinové regulace, se za regulační stupeň považuje první stupeň, do kterého pára vteče po průchodu regulačními ventily. V souvislosti se skupinovou regulací je pára přivedena kanály od regulačních ventilů pouze k části lopatek oběžné lopatkové řady. Dochází zde k parciálnímu ostřiku. Regulace průtoku je realizována změnou zdvihu kuželky ventilu, což má vliv na průtočný průřez v regulačním orgánu. Parciální ostřik ve spojitosti s dýzovou regulací se volí především z důvodu prodloužení délky lopatky, což vede ke zvýšení účinnosti tohoto stupně potlačením okrajových ztrát. Zvlášť u regulačního stupně se při vysokých parametrech páry stává, že lopatky jsou příliš krátké, což má za následek příliš velké okrajové ztráty. Na druhou stranu při užití parciálního ostřiku vznikají ztráty parciálním ostřikem, které jsou způsobeny ventilací neostřiknutých lopatek a ztrát vznikajících na okrajích pásma ostřiku.

Pro tuto turbínu byl zvolen regulační stupeň v provedení A-kolo. Je to výhodné z důvodu, že zpracuje velký entalpický spád, což má za následek nejenom snížení počtu stupňů stupňové části, ale také ložiskové vzdálenosti. Samozřejmě se tím také sníží výrobní náklady. Navíc je A-kolo vhodné v kombinaci s dýzovou regulací, která vyžaduje parciální ostřik. Parciální ostřik se v praxi totiž používá výhradně u rovnotlakých stupňů, u kterých je tlak před a za oběžnou lopatkovou řadou přibližně stejný. V tomto případě byl zvolen stupeň reakce $\rho = 0,05$ s ohledem na lepší proudění lopatkovým kanálem.

Detailní návrh regulačního stupně je uveden v kapitole 3.

1.2.3 Vyrovnávací píst

Vyrovnávací píst se využívá z důvodu částečného vyrovnání axiální síly. Jeho užití umožní použít axiální ložisko o nižším maximálním dovoleným zatížení. Součástí vyrovnávacího pístu je labyrintová ucpávka, která snižuje únik páry vyrovnávacím pístem. Prostor za vyrovnávacím pístem je propojen s výstupním hrdlem potrubím. Umístění a přibližný návrh vyrovnávacího pístu je znázorněn na obr. 1.6.

Detailní návrh vyrovnávacího pístu a výpočtu axiální síly je uveden v kapitole 4.

Obr. 1.6 Schematický popis základních výpočtových částí turbíny

1.2.4 Stupňová část

Ve stupňové části dochází k expanzi přibližně 80 % entalpického spádu turbíny. Lopatkování stupňové části bylo na rozdíl od regulačního stupně zvolené jako přetlakové. Výpočet je realizován pomocí výpočtové metody c_a/u .

Detailní návrh stupňové části je uveden v kapitole 4.

Stupňová část je schematicky znázorněna na obr. 1.6.

2 Zadání diplomové práce a předběžný výpočet základních parametrů turbíny

2.1 Zadání

$p_A = 35 \ bara$
$t_A = 430^{\circ}C$
$M = 16,66 \ kg/s$
$p_p = 2,5 \ bara$
$p_{\Delta p} = 0,2 - 0,4 \ bar$
$n = 175 \ ot/sec$

Výpočet je realizován pomocí softwaru Excel, který je rozšířený o nástavbu parních tabulek X-steam. Není-li uvedeno jinak, výpočtové vztahy vychází ze zdroje [3].

2.2 Základní parametry turbíny

Cílem této kapitoly je především ověření zadaných jmenovitých otáček turbíny. Jednotlivé stavy pracovní látky jsou zobrazeny v obr. 2.1.

Obr. 2.1 i-s diagram pro pro předběžný výpočet turbíny

Zvolí se tlaková ztráta přívodního potrubí Δp_{pp} z intervalu (0,95 ÷ 0.98) [3]:

Volba:
$$\Delta p_{pp} = \frac{p_0}{p_A} = 0.98 [-]$$

Tlak páry na vstupu do regulačního stupně:

$$p_0 = p_A \times 0,98 \ [bar]$$

Přívodní rychlost páry na vstupu do regulačního stupně c_0 se volí přibližně 40 m/s [4]:

volba: $c_0 = 40 \text{ m/s}$

Z důvodů tlakových ztrát ve výstupním hrdle turbíny je nutné do výpočtů zahrnout ztrátu ve výstupním hrdle turbíny ξ_{vh} , která se volí z intervalu (0,96 ÷ 0,98) [3].

Volba: $\xi_{vh} = 0.02 [-]$

Tlak za posledním stupněm stupňové části:

$$p_n = \frac{p_p}{1 - \xi_{vh}}$$
 [bar] 2.01

Z parních tabulek (pomocí p_0, t_0) se určí hodnota měrné entalpie páry na vstupu do Akola:

$$i_0 = 3292, 2 kJ/kg$$

Z parních tabulek (pomocí p_0, t_0) se zjistí hodnota měrné entropie páry na vstupu do A-kola:

 $s_0 = 6,953 \ kJ/kg^{\circ}C$

Z parních tabulek (pomocí p_n, s_o) se určí měrná entalpie páry za posledním stupněm turbíny $i_{n,iz}$:

 $i_{n,iz} = 2680,4 \text{ kJ/kg}$

Celkový izoentropický spád na turbínu:

$$H_{iz} = i_0 + \frac{c_0^2}{2000} - i_{n,iz} \qquad [kJ/kg] \qquad 2.02$$

Základní odhad vnitřní termodynamické účinnosti turbíny $\eta_{tdi,odh}^{T}$

Odhad: $\eta_{tdi,odh}^{T} = 0.86 [-]$

Celkový entalpický spád na turbínu:

$$H = \eta_{tdi,odh}^{T} \times H_{iz} \qquad [kJ/kg] \qquad 2.03$$

Měrná entalpie páry za posledním stupněm	lopatek při uvažování reál	ného děje:
$i_n = i_0 - H$	[kJ/kg]	2.04
Předběžný vnitřní výkon turbíny:		
$P_i = M \times H$	[kW]	2.05
Mechanické ztrát turbíny z_{mech} se v této výkonu turbíny P_i .	o fázi výpočtu volí jako	1 % z předběžného

Volba: $z_{mech} = 87,9 \ kW$

Spojkový výkon:

$$P_{SP} = P_i - z_{mech} \qquad [kW] \qquad 2.06$$

Dle spojkového výkonu byly z obr. 2.2 určeny maximální otáčky převodovky n_{max}

Odečteno z grafu 2.2: $n_{max} = 12000 \text{ ot/min}$

Z důvodu bezpečnosti byla turbína navržena na provozní otáčky n, které jsou menší než n_{max} :

Volba: *n* = 10500 *ot/min* = 175 *ot/s*

Obr. 2.2 Graf závislosti výkonu převodovky na otáčkách [5]

2.3 Tabelované výsledky

Tab. 2.1	Tabelované	výsledky	základních	parametrů	turbíny
----------	------------	----------	------------	-----------	---------

Popis	Vztah	Označení	Hodnota	Jednotka
Tlaková ztráta přívodního potrubí		Δp_{pp}	0,98	[-]
Tlak páry na vstupu do regulačního stupně		p_0	34,30	bar
Přívodní rychlost páry na vstupu do RS		<i>c</i> ₀	40	m/s
Ztráta ve výstupním hrdle turbíny		ξ_{vh}	0,02	[-]
Tlak za posledním stupněm stupňové části	2.01	p _n	2,55	bar
Měrná entalpie páry na vstupu do A- kola		i ₀	3292,2	KJ/kg
Měrná entropie páry na vstupu do A- kola		s ₀	6,953	KJ/kg°C
Měrná entalpie páry za posledním stupněm turbíny		i _{n,iz}	2680,4	kJ/kg
Izoentropický spád turbíny	2.02	H _{iz}	613,3	kJ/kg
Účinnost turbíny		$\eta^T_{tdi,odh}$	0,86	[-]
Entalpický spád turbíny	2.03	Н	527,5	kJ/kg
Měrná entalpie páry za posledním stupněm lopatek (reálný děj)	2.04	i _n	2764,7	kJ/kg
Předběžný vnitřní výkon turbíny	2.05	P _i	8787,5	kW
Mechanické ztráty turbíny		Z _{mech}	87,88	kW
Spojkový výkon	2.06	P _{SP}	8699,6	kW
Maximální otáčky převodovky		n _{max}	12000	ot/min
Zvolené provozní otáčky turbíny		n	175	ot/s

3 Regulační stupeň

3.1 Volba typu regulačního stupně

A-kolo se volí z důvodu, že má vyšší účinnost než C-stupeň. Vstupní parametry páry jsou poměrně nízké, není tedy nutné výrazně zredukovat tlak.

3.2 Předběžný návrh A-kola

3.2.1 Předběžný návrh – volba rychlostního poměru u/ciz, parametry páry

Nejprve se z pevnostních důvodů zvolí obvodová rychlost na středním průměru u z doporučeného intervalu (160 ÷ 260 m/s) a následně se dopočítá střední průměr lopatkování regulačního stupně D^{RS} :

volba:
$$u = 231 \text{ m/s}$$

 $D^{RS} = \frac{u}{\pi \times n}$ [m] 3.01

Rychlostní poměr $\left(\frac{u}{c_{iz}}\right)$ se z důvodu termodynamické účinnosti volí z intervalu (0,4 ÷ 0,6)

[3]:

volba: $\left(\frac{u}{c_{iz}}\right) = 0,45 [-]$

Teoretická izoentropická absolutní rychlost páry na výstupu z dýzy:

Izoentropický spád zpracovaný regulačním stupněm se vypočítá jako rozdíl kinetických energií před a za regulačním stupněm:

$$h_{iz}^{RS} = \frac{c_{1iz}^2}{2} - \frac{c_0^2}{2} \ [kJ/kg]$$
 3.03

Grafické znázornění stavu páry před a za regulačním stupněm je zobrazeno na obr.3.1.

Obr. 3.1 i-s diagram předběžného návrhu expanze páry v regulačním stupni [3]

Při předběžném výpočtu regulačního stupně se uvažuje rovnotlaké lopatkování s nulovou reakcí.

Odečtením izoentropického spádu zpracovaným regulačním stupněm od měrné entalpie páry na vstupu se získá měrná entalpie páry na výstupu z regulačního stupně:

$$i_{2iz} = i_0 - h_{iz}^{RS}$$
 [kJ/kg] 3.04

Z parních tabulek (pomocí i_{2iz} , s_0) se zjistí tlak za regulačním stupněm:

$$p_2 = 22,0 \ bar$$

O proudění v dýze rozhoduje kritický tlak pro přehřátou vodní páru:

$$p_{krit} = \pi_{krit} \times p_0 = 0,546 \times p_0 \qquad [bar] \qquad 3.05$$

Je provedeno porovnání:

 $p_2 > p_{krit}$

Je tedy splněna podmínka, že tlak p_2 je větší než kritický tlak p_{krit} . Nebude tedy docházet ke kritickému proudění a s ním k odtrhávání proudu od stěny. Ověří se tlakový poměr $\frac{p_2}{p_0}$:

$$\pi_{RS} = \frac{p_2}{p_0} \qquad [-] \qquad 3.06$$

Provede se ověření [3] z pohledu průchodnosti páry dýzou.

$$\pi_{krit} < \frac{p_2}{p_0} < 0.8$$

Díky splnění výše uvedených podmínek lze použít nerozšířenou dýzu.

3.2.2 Předběžný návrh – ostřik, vnitřní výkon

Zvolí se rychlostní součinitel dýzy φ^{RS} z intervalu (0,95 ÷ 0,98) [3]:

Volba: $\varphi^{RS} = 0,965 [-]$

Velikost ztráty v dýze:

$$z_0 = \left(1 - \varphi^{RS^2}\right) \times h_{iz}^{RS} \qquad [kJ/kg] \qquad 3.07$$

Měrná entalpie páry za dýzou včetně ztráty v dýze:

$$i_1 = i_{2iz} + z_0$$
 [kJ/kg] 3.08

Z parních tabulek (pomocí p_2, i_1) se zjistí hodnota měrného objemu páry v_1 za dýzou regulačního stupně.

$$v_1 = 0,129 \ m^3/kg$$

Zvolí se výstupní úhel z rozváděcí mříže α_1 z intervalu (13°÷18°) [3].

Volba: $\alpha_1 = 15^{\circ}$

Délka výstupní hrany rozváděcí lopatky při totálním ostřiku:

$$l_{0t} = \frac{M \times v_1}{\pi \times D^{RS} \times c_{1iz} \times \varphi^{RS} \times \sin \alpha_1} \qquad [m] \qquad 3.09$$

Pro výpočet optimální délky rozváděcí lopatky l_{opt} je nutné určit:

• konstantu
$$\frac{b}{a}$$
 [3]
volba: $\frac{b}{a} = 0,04$ [-]
• dělení parciálního ostřiku s_1 dle obr. 3.2 [3]
volba: $s_1 = 1$ [-]

• experimentální konstanta pro A-kolo
$$\frac{c}{a}$$
 [3]
volba: $\frac{c}{a} = 0,147$ [-]
• součinitel δ :
 $\delta = \frac{c}{a} \times \frac{\left(\frac{u}{c_{iz}}\right)}{\left(\frac{n}{1000}\right)^{0.2} \times D^{0.5}}$ [-] 3.10
• součinitel α :
 $\alpha = \sqrt{\frac{D^{RS}}{\frac{b}{a} \times s_1 + \delta \times D^{RS}}}$ [-] 3.11

Optimální délka rozváděcí lopatky:

$$l_{opt} = \alpha \times \sqrt{l_{0t}} \qquad [m] \qquad 3.12$$

Po zaokrouhlení je skutečná délka lopatky l_0 .

Stanoví se redukovaná délka lopatky l_{red} na základě znalostí l_{0t} a l_{opt} . Tato délka odpovídá takové délce lopatky, při jejímž použití by bylo při parciálním ostřiku $\varepsilon = 1$ dosaženo stejné účinnosti.

Obr. 3.2 Zohlednění dělení parciálního ostřiku na segmenty [3]

Dle obr. 3.3 byla pomocí poměru $\frac{u}{c_{iz}}$ a redukované délky l_{red} určena redukovaná účinnost regulačního stupně $\eta_{u,graf}$:

Odečteno z 3.3: $\eta_{u,graf} = 0,74 [-].$

Určení parciálního ostřiku:

$$\varepsilon = \frac{l_{0t}}{l_0} \qquad \qquad [-] \qquad \qquad 3.14$$

Ze známé η_u se stanoví vnitřní termodynamická účinnost η_{tdi}^{RS} zahrnutím přídavných ztrát.

FSI EÚ OEI VUT Brno

Obr. 3.3 Redukovaná účinnost regulačního stupně [3]

Pro výpočet ztráty třením a ventilací se odečte z obr. 3.4 součinitel k.

Odečteno z obr.3.4: k = 2 [-]

Obr. 3.4 Ztráta třením a ventilací regulačního stupně [3]

Absolutní hodnota ztráty třením a ventilací RS:				
$z_5 = \frac{k}{M \times v_1}$	[kJ/kg]	3.15		
Poměrná ztráta třením a ventilací:				
$\xi_5 = rac{Z_5}{h_{iz}^{RS}}$	[-]	3.16		
Vnitřní účinnosti regulačního stupně:				
$\eta_{tdi}^{RS} = \eta_u - \xi_5$	[-]	3.17		
Měrná entalpie koncového bodu expanze v RS:				
$i_2 = i_0 + rac{c_0^2}{2} - \eta_{tdi}^{RS} imes h_{iz}^{RS}$	[kJ/kg]	3.18		
Vnitřní výkon regulačního stupně:				
$P_i^{RS} = M \times h_{iz}^{RS} \times \eta_{tdi}^{RS}$	[kW]	3.19		

3.2.3 Tabelované výsledky

Tab. 3.1 Tabelované výsledky předběžného výpočtu regulačního stupně

Popis	Vztah	Označení	Hodnota	Jednotka
Obvodová rychlost na středním průměru		и	231,0	m/s
Střední průměr lopatkování regulačního stupně	3.01	D ^{RS}	0,42	m
Rychlostní poměr		$\left(\frac{u}{c_{iz}}\right)$	0,45	[-]
Teoretická izoentropická absolutní rychlost páry na výstupu z dýzy	3.02	C _{1iz}	513,3	m/s
Izoentropický spád zpracovaný regulačním stupněm	3.03	h_{iz}^{RS}	131,0	KJ/kg
Měrná entalpie páry na výstupu z RS	3.04	i _{2iz}	3161,2	KJ/kg
Tlak za regulačním stupněm		p_2	22,0	bar
Kritický tlak pro přehřátou vodní páru	3.05	p_{krit}	18,7	bar
Tlakový poměr	3.06	π_{RS}	0,641	[-]
Rychlostní součinitel dýzy		$arphi^{RS}$	0,965	[-]
Ztráta v dýze	3.07	<i>z</i> ₀	9,0	kJ/kg
Měrná entalpie páry za dýzou včetně ztráty v dýze	3.08	i ₁	3170,2	kJ/kg

Měrný objem páry za dýzou		v_1	0,129	m ³ /kg
Výstupní úhel z rozváděcí mříže		α1	15,000	0
Délka výstupní hrany rozváděcí lopatky při totálním ostřiku	3.09	l _{0t}	0,013	m
Konstanta		$\frac{b}{a}$	0,04	[-]
Dělení parciálního ostřiku		<i>s</i> ₁	1	[-]
Experimentální konstanta pro A-kolo		$\frac{c}{a}$	0,15	[-]
Součinitel	3.10	δ	0,064	[-]
Součinitel	3.11	α	2,51	[-]
Optimální délka rozváděcí lopatky	3.12	l _{opt}	0,028	m
Zaokrouhlená skutečná délka rozváděcí lopatky		l ₀	0,028	m
Redukovaná délka lopatky	3.13	l_{red}	0,016	m
Redukovaná účinnost regulačního stupně		$\eta_{u,graf}$	0,74	[-]
Velikost parciálního ostřiku	3.14	ε	0,45	[-]
Součinitel		k	2	[-]
Absolutní hodnota ztráty třením a ventilací RS	3.15	Z_5	0,93	kJ/kg
Poměrná ztráta třením a ventilací	3.16	ξ_5	0,007	[-]
Vnitřní účinnost regulačního stupně	3.17	η_{tdi}^{RS}	0,73	[-]
Entalpie koncového bodu expanze v RS	3.18	i ₂	3197,8	kJ/kg
Vnitřní výkon regulačního stupně	3.19	P_i^{RS}	1599.0	kW

3.3 Podrobný výpočet A-kola

3.3.1 Podrobný návrh – rychlostní trojúhelník regulačního stupně

Při podrobném návrhu se vychází z veličin vypočítaných v předběžném návrhu.

Obr. 3.5 Rychlostní trojúhelník s označením rychlostí a úhlů [6]

Značení fyzikálních veličin je dle obr. 3.6 [3, vlastní úprava]

Obr. 3.6 i-s diagram průběhu expanze v redukčním stupni [3, vlastní úprava]

Zvolí se nenulový stupeň reakce ρ [3] z důvodu lepšího proudění páry oběžnými lopatkami.

Volba: $\rho = 0,05 [-]$

Tepelný spád zpracovaný ve statorové části RS:

$$h_{iz}^{S} = (1 - \rho) \times h_{iz}^{RS} \qquad [kJ/kg] \qquad 3.20$$

Tepelný spád zpracovaný v rotorové části RS:

$$h_{iz}^{R} = \rho \times h_{iz}^{RS} \qquad [kJ/kg] \qquad 3.21$$

Měrná entalpie za statorem při izoentropickém ději:

$$i_{1,iz} = i_0 - h_{iz}^S$$
 [kJ/kg] 3.22

Při izoentropickém ději zůstává hodnota entropie stejná před i za statorem regulačního stupně.

Z parních tabulek (pomocí $i_{1,iz}$, s_0) se určí velikost tlaku p_1 za statorem.

$$p_1 = 22,5 \ bar$$

Z hlediska kritického proudění je nutné porovnat vypočítaný tlak za dýzou a kritický tlak.

 $p_1 > p_{krit}$

Nedochází ke kritickému proudění a úhel profilu α_{1P} je roven výstupnímu úhlu proudu páry α_1 .

Stanoví se teoretická rychlost na výstupu z dýzy.

$$c_{1,iz} = \sqrt{2 \times (1 - \rho) \times h_{iz}^{RS} + c_0^2}$$
 [m/s] 3.23

Pro získání rychlostních součinitelů profilů dle obr. 3.7 je nutné odhadnout výstupní úhel α_2 [3] a dopočítat rozdíl $\Delta \alpha$ úhlů α_1 a α_2 . Z obrázku byly odečteny hodnoty rychlostního součinitele profilu pro dýzu φ .

Volba: $\alpha_2 = 100^{\circ}$

Odečteno z grafu 3.7: $\varphi = 0.98 [-]$

Obr. 3.7 Závislost rychlostních součinitelů φ a ψ na ohnutí proudu $\Delta \alpha$, $\Delta \beta$ [3] Skutečná absolutní rychlost páry na výstupu z dýzy:

$$c_1 = \varphi \times c_{1,iz} \qquad [m/s] \qquad 3.25$$

Relativní rychlost páry na výstupu z dýzy:

$$w_1 = \sqrt{c_1^2 + u^2 - 2 \times c_1 \times u \times \cos \alpha_1} \quad [m/s]$$
 3.26

Obvodová složka absolutní rychlosti páry na výstupu z dýzy:

$$c_{1u} = c_1 \times \cos \alpha_1 \qquad \qquad [m/s] \qquad \qquad 3.27$$

Obvodová složka relativní rychlosti páry na výs	stupu z dýzy:	
$w_{1u} = c_{1u} - u$	[m/s]	3.28
Axiální složky relativní i absolutní rychlosti jso	u totožné:	
$c_{1a} = w_{1a} = c_1 \times \cos \alpha_1$	[m/s]	3.29
Náběžný úhel relativní rychlosti β_1 :		
$\beta_1 = \arccos \frac{w_{1u}}{w_1}$	[°]	3.30
Předběžný výpočet výstupního úhlu relativní ry	chlosti β_2 [3]:	
$\beta_2 = 180 - [180 - (\beta_1 - 4)]$	[°]	3.31
Kontrola zvoleného úhlu se provede v kapitole	3.3.4.	
Rozdíl výstupního a náběžného úhlu relativní ry	ychlosti:	
$\Delta\beta=\beta_2-\beta_1$	[°]	3.32
Dle rozdílu $\Delta\beta$ se dle obr.3.7 určí rychlostní sou	učinitel profilu pro oběžnou	ı lopatku ψ.
Odečteno z obr. 3.7: $\psi = 0,924 [-]$		
Teoretická výstupní relativní rychlost páry vypo	očítaná ze zákonu zachová	ní energií:
$w_{2iz} = \sqrt{2 \times \rho \times h_{iz}^{RS} + w_1^2}$	[m/s]	3.33
Skutečná relativní rychlost páry:		
$w_2 = \psi \times w_{2iz}$	[m/s]	3.34
Absolutní rychlost páry na výstupu z oběžných	lopatek:	
$c_2 = \sqrt{w_2^2 + u^2 - 2 \times w_2 \times u \times co}$	$\overline{ps(180-\beta_2)}$ [m/s]	3.35
Obvodová složka relativní rychlosti páry na výs	stupu z oběžných lopatek:	
$w_{2u} = w_2 \times \cos \beta_2$	[m/s]	3.36
Obvodová složka absolutní rychlosti páry na vý	stupu z oběžných lopatek:	
$c_{2u} = w_{2u} + u$	[m/s]	3.37
Absolutní složka relativní rychlosti páry na výs	tupu z oběžných lopatek sn	něru jsou stejné:
$c_{2a} = w_{2a} = w_2 \times \sin \beta_2$	[<i>m</i> / <i>s</i>]	3.38
C_1 C_2 W_1 U	W ₂	

Obr. 3.8 Rychlostní trojúhelník regulačního stupně dle vypočítaných hodnot

Dopočítá se opravdový výstupní úhel absolutní rychlosti $\alpha_{2,vyp}$. Hodnota tohoto úhlu by měla být téměř totožná s odhadovaným úhlem α_2 , pomocí kterého byl z grafu odečten rychlostní součinitel pro dýzu φ .

$$\alpha_{2,vyp} = 90 + arctg \, \frac{|c_{2u}|}{c_{2a}} \qquad [^{\circ}] \qquad 3.39$$

FSI EÚ OEI	Parní turbina protitlaková	Bc. Libor Merta
VUT Brno		2012

Odhadnutá a vypočtená hodnota se liší pouze minimálně, není tedy nutné odhadovat úhel α_2 znovu a opakovat znovu daný výpočet.

Energetické ztráty v lopatkování:

• rozváděcí mříž:

$$z_0 = \frac{c_{1iz}^2}{2} \times (1 - \varphi^2)$$
 [kJ/kg] 3.40

• oběžná lopatková řada:

$$z_1 = \frac{w_{1iz}^2}{2} \times (1 - \psi^2) \qquad [kJ/kg] \qquad 3.41$$

Měrná entalpie páry za dýzou:

$$i_1 = i_{1,iz} + z_0$$
 [kJ/kg] 3.42

Měrná entalpie páry za oběžnou řadou lopatek včetně energetických ztrát lopatkování:

$$i_4 = i_1 - h_{iz}^R + z_1$$
 [kJ/kg] 3.43

Měrná entalpie páry za oběžnou řadou lopatek při izoentropické expanzi na rotoru:

$$i_{2,iz} = i_1 - h_{iz}^R$$
 [kJ/kg] 3.44

Z parních tabulek (pomocí s_1 , $i_{2,iz}$) se zjistí upřesněný tlak za lopatkovou řadou:

 $p_2 = 21.99 \ bar$

Z parních tabulek (pomocí p_1, i_1) se zjistí měrný objem za dýzou:

$$v_1 = 0,127 \ m^3/kg$$

Stanoví se výstupní délka rozváděcích lopatek:

$$l_0 = \frac{M \times v_1}{\pi \times D^{RS} \times \varepsilon \times c_1 \times \sin \alpha_1} \qquad [m] \qquad 3.45$$

Vlivem malého stupně reakce a s ním spojeným malým rozdílem měrných objemů před a za oběžnou lopatkovou řadou byl zvolen válcový průtočný kanál oběžné řady lopatek. Na obrázku 3.9 je znázorněn stupeň A-kola v válcovým průtočným kanálem oběžné řady lopatek.

Obr. 3.9 Válcový průtočný kanál A-kola [3]

Pro dopočet délky oběžných lopatek se volí přesah lopatek Δl z doporučeného intervalu $(1 \div 3)$ mm [7].

Volba: $\Delta l = 0,003 m$

Délka oběžných lopatek:

$$l_1 = l_2 = l_0 + \Delta l$$
 [*m*] 3.46

Ztráta výstupní rychlostí v regulačním stupni:

$$z_c = \frac{c_2^2}{2} \qquad [kJ/kg] \qquad 3.47$$

3.3.2 Podrobný návrh - volba profilů regulačního stupně

Dle vstupních a výstupních úhlů mříže byly zvoleny tyto lopatkové profily [3]:

	Označení	Rozsah	Vstupní	Výstupní	Optimální	Optimální
	profilu	Machova	úhly do	úhly z mříže	rozteč s/c	úhel
	_	čísla	mříže			nastavení γ
		[-]	[°]	[°]	[-]	[°]
Stator	TS÷2A	0,3÷0,9	70÷100	13÷17	0,7÷0,9	37÷46
Rotor	TR÷3A	0,3÷0,9	28÷45	24÷28	0,54÷0,64	77÷80

Tab. 3.2 Profily statorových a rotorových lopatek [3]

Z daných rozmezí byla zvolená optimální rozteč lopatek statoru $\left(\frac{s}{c}\right)_s$, optimální rozteč lopatek rotoru $\left(\frac{s}{c}\right)_R$, optimílní úhel nastavení statoru γ_s a optimální úhel nastavení rotoru γ_R . Pro dosažení vyšší účinnosti byly zvolené minimální možné délky tětiv profilů c_s a c_R [3].

Volba: $\left(\frac{s}{c}\right)_s = 0.8 [-]$ Volba: $\left(\frac{s}{c}\right)_R = 0.59 [-]$ Volba: $\gamma_S = 41^\circ$ Volba: $\gamma_R = (90^\circ - 78^\circ) = 12^\circ$ Volba: $c_S = 0.025 m$ Volba: $c_R = 0.025 m$

Pozn.: Výpočet není proveden z pevnostního hlediska - není součástí zadání diplomové práce.

Obr. 3.10 Označení rozměrů charakterizujících profil lopatky[3]

Šířka rozváděcích lopatek:		
$B_S = c \times \cos \gamma_S$	[m]	3.48
Šířka oběžných lopatek:		
$B_R = c \times \cos \gamma_R$	[m]	3.49
Rozteč rozváděcích lopatek:		
$s_S = c \times \left(\frac{s}{c}\right)_S$	[m]	3.50
Rozteč oběžných lopatek:		
$s_R = c \times \left(\frac{s}{c}\right)_R$	[m]	3.51
Počet lopatek rozváděcí lopatkové řady:		
$z_S = \frac{\pi \times D^{RS}}{s_S} \times \varepsilon$	[ks]	3.52
Počet lopatek oběžné lopatkové řady:		
$\pi \times DRS$		

 $z_R = \frac{\pi \times D^{RS}}{s_R} \qquad [ks] \qquad 3.53$

V seznamu vypočítaných hodnot jsou uvedené zaokrouhlené počty lopatek.

3.3.3 Podrobný návrh - ztráty regulačního stupně

Obvodová práce stupně:

$$a_u = \left(h_{iz}^{RS} + \frac{c_0^2}{2}\right) - z_0 - z_1 - z_c \qquad [kJ/kg] \qquad 3.54$$

Celková využitelná energie na regulačním stupni:

$$E_0 = h_{iz}^{RS} + \frac{c_0^2}{2} \qquad [kJ/kg] \qquad 3.55$$

Obvodová účinnost stupně:

$$\eta_u = \frac{a_u}{E_0} = \frac{\left(h_{iz}^{RS} + \frac{c_0^2}{2}\right) - z_0 - z_1 - z_c}{h_{iz}^{RS} + \frac{c_0^2}{2}} \qquad [-] \qquad 3.56$$

Pro výpočet vnitřní termodynamické účinnosti stupně je nutné nejprve spočítat poměrnou ztrátu třením (ventilací) disku, poměrnou ztrátu parciálním ostřikem a poměrnou ztrátu radiální mezerou.

Třecí součinitel $k_{t\bar{t}}$ se zvolí z intervalu (0,00045÷0,0008) [3]:

volba: $k_{tr} = 0,00062 [-]$

Průtočný průřez lopatkování:

$$S = \pi \times D^{RS} \times l_1 \times \varepsilon \times \sin \alpha_1 \qquad [m^2] \qquad 3.57$$

Poměrná ztráta třením (ventilací) disku:

$$\xi_5 = k_{t\check{r}} \times \frac{(D_{RS})^2}{S} \times \left(\frac{u}{\sqrt{2 \times h_{iz}^{RS}}}\right)^3 \qquad [-] \qquad 3.58$$

Ztráta třením (ventilací) disku z₅:

$$z_5 = E_0 \times \xi_5 \qquad [kJ/kg] \qquad 3.59$$

Poměrná ztráta parciálním ostřikem je tvořena dvěma složkami:

• ztráty vznikající ventilací neostříknutých oběžných lopatek (jejich zakrytí není uvažované):

$$\xi_{61} = \frac{0.065 \times (1-\varepsilon)}{\sin \alpha_1 \times \varepsilon} \times \left(\frac{u}{\sqrt{2 \times h_{iz}^{RS}}}\right)^3 \qquad [-] \qquad 3.60$$

• ztráty vznikající na okraji pásma ostřiku (je uvažován pouze jeden segment ostřiku=> $z_{segm} = 1 \ ks$):

$$\xi_{62} = \frac{c_S \times l_2}{S} \times \left(\frac{u}{\sqrt{2 \times h_{iz}^{RS}}}\right) \times \eta_u \times z_{segm} \quad [-]$$
 3.61

Celková poměrná ztráta parciálním ostřikem:

$$\xi_6 = \xi_{61} + \xi_{62} \qquad [-] \qquad 3.62$$

Ztráta parciálním ostřikem z_6 :

$$z_6 = E_0 \times \xi_6 \qquad [kJ/kg] \qquad 3.63$$

Výpočet poměrné hodnoty ztráty radiální mezerou s bandáží:

Radiální mezera [3]:

$$\delta_r = \frac{D^{RS}}{1000} + 0,0002 \qquad [m] \qquad 3.64$$

Průřez radiální mezery:

$$S_{1R} = \pi \times (D^{RS} + l_1) \times \delta_r \qquad [m^2] \qquad 3.65$$

Vypočítaná axiální mezera mezi statorovou a rotorovou lopatkovou řadou dle pokynů Siemens:

$$\delta_a = 0,008 \times (D^{RS} - l_1)$$
 [m] 3.66

Zvolí se průtokový součinitel $\mu_1[3]$:

Volba: $\mu_1 = 0.5 [-]$

Stupeň reakce na špici lopatky:

$$\rho_h = 1 - (1 - \rho) \times \frac{\frac{D^{RS}}{l_1}}{1 + \frac{D^{RS}}{l_1}} \qquad [-] \qquad 3.67$$

Zvolí se počet břitů bandáže z_r :

Volba: $z_r = 3 ks$

Obr. 3.11 Bandáž konce lopatky [3]

Ekvivalentní mezera:

$$\delta_{ekv} = \frac{1}{\sqrt{\frac{4}{\delta_a^2} + 1.5 \times \frac{z_{\rm r}}{\delta_{\rm r}^2}}} \qquad [m] \qquad 3.68$$

Poměrná ztráta radiální mezerou s bandáží:

$$\xi_7 = \delta_{ekv} \times \sqrt{\frac{\rho_{\tilde{s}}}{1-\rho}} \times \eta_u \times \frac{\pi \times (D^{RS}+l_1)}{S_{1R}} \quad [-] \qquad 3.69$$

Ztráta radiální mezerou *z*₇:

$$z_7 = E_0 \times \xi_7 \qquad [kJ/kg] \qquad 3.70$$

3.3.4 Podrobný návrh – účinnost a výkon regulačního stupně

Vnitřní termodynamická účinnost stupně:

$$\eta_{tdi}^{RS} = \frac{h}{E_0} = \frac{a_u - z_5 - z_6 - z_7}{E_0} = \eta_u - \xi_5 - \xi_6 - \xi_7 \qquad [-] \qquad 3.71$$

Vnitřní výkon regulačního stupně:

$$P_i^{RS} = M \times h_{iz}^{RS} \times \eta_{tdi} \qquad [kW] \qquad 3.72$$

Měrná entalpie páry za regulačním stupněm bez uvažování ztráty výstupní rychlosti:

$$i_2 = i_{2,iz} + z_1 + z_5 + z_6 + z_7$$
 [kJ/kg] 3.73

Z parních tabulek (pomocí p_2 , i_2) se zjistí měrný objem za oběžnou lopatkovou řadou:

$$v_2 = 0,130 \ m^3/kg$$
 $[m^3/kg]$ 3.74

Díky volbě přesahu Δl lopatkování regulačního stupně je nutné zkontrolovat výstupní úhel β_2 úpravou rovnice kontinuity:

$$\beta_{2,kontr} = 180 - \arcsin \frac{M \times v_2}{\pi \times D \times \varepsilon \times w_2 \times l_2} \quad [^{\circ}] \qquad 3.75$$

Rozdíl mezi dopočítaným úhlem $\beta_{2,kontr}$ a původně uvažovaným úhlem β_2 je minimální, nemusí tedy dojít k žádným dalším přepočtům.

Koncový bod expanze ve stupni:

$$i_{2c} = i_0 + \frac{c_0^2}{2} - h = i_0 + \frac{c_0^2}{2} - h_{iz} \times \eta_{tdi} \qquad [kJ/kg] \quad 3.76$$

Entalpie tohoto bodu se uvažuje za entalpii páry na vstupu do stupňové části, protože většina kinetické energie páry na výstupu z regulačního stupně se okamžitě přemění na teplo.

Obr. 3.12 i-s diagram navrhnutého regulačního stupně

3.3.5 Tabelované výsledky

Tab. 3.3 Tabelované výsledky – podrobný návrh regulačního stupně

Popis	Vztah	Označení	Hodnota	Jednotka
Stupeň reakce		Q	0,05	[-]
Tepelný spád zpracovaný ve statorové části RS	3.20	h_{iz}^S	124,4	kJ/kg
Tepelný spád zpracovaný v rotorové části RS	3.21	h^R_{iz}	6,5	kJ/kg
Vypočítaná měrná entalpie za statorem při izoentropickém ději	3.22	i _{1,iz}	3167,8	kJ/kg
Tlak za statorem RS		p_1	22,51	bar
Teoretická rychlost na výstupu z dýzy	3.23	C _{1,iz}	500,4	m/s
Odhadnutý vstupní úhel		α_1	15	ο
Odhadnutý výstupní úhel		α2	100	0
Rychlostní součinitel profilu pro dýzu		φ	0,980	[-]
Rozdíl náběžného a výstupního úhlu absolutní rychlosti	3.24	Δα	85	0
Skutečná absolutní rychlost páry na výstupu z oběžných lopatek	3.25	<i>C</i> ₁	490,4	m/s
Relativní rychlost páry na výstupu z oběžných lopatek	3.26	<i>w</i> ₁	273,9	m/s

Obvodová složka absolutní vstupní rychlosti	3.27	C _{1u}	473,7	m/s
Obvodová složka relativní vstupní rychlosti	3.28	W _{1u}	273,9	m/s
Axiální složka absolutní rychlosti	3.29	c _{1a}	126,9	m/s
Axiální složka relativní rychlosti	3.29	W _{1a}	126,9	m/s
Náběžný úhel relativní rychlosti	3.30	eta_1	28	0
Výstupní úhel relativní rychlosti	3.31	β_2	156	o
Rozdíl náběžného a výstupního úhlu relativní rychlosti	3.32	Δeta	129	0
Rychlostní součinitel profilu pro oběžnou lopatku		Ψ	0,924	[-]
Teoretická výstupní relativní rychlost páry	3.33	W _{2iz}	296,8	m/s
Skutečná relativní rychlost páry na výstupu z oběžných lopatek	3.34	<i>W</i> ₂	274,3	m/s
Absolutní rychlost páry na výstupu z oběžných lopatek	3.35	<i>C</i> ₂	111,7	m/s
Obvodová složka relativní výstupní rychlosti	3.36	W _{2u}	251,3	m/s
Obvodová složka absolutní výstupní rychlosti	3.37	C _{2u}	20,3	m/s
Axiální složka relativní výstupní rychlosti	3.38	W _{2a}	109,8	m/s
Axiální složka absolutní výstupní rychlosti	3.38	C _{2a}	109,8	m/s
Dopočítaný výstupní úhel absolutní rychlosti	3.39	$\alpha_{2,vyp}$	100	o
Energetická ztráta v lopatkování v rozváděcí mříži	3.40	<i>Z</i> ₀	5,0	kJ/kg
Energetická ztráta v lopatkování v oběžné lopatkové řadě	3.41	<i>Z</i> ₁	6,4	kJ/kg
Měrná entalpie za dýzou včetně energetických ztrát lopatkování	3.42	i ₁	3172,7	kJ/kg
Měrná entalpie páry za oběžnou řadou lopatek včetně energetických ztrát lopatkování	3.43	i ₄	3172,6	kJ/kg
Měrná entalpie páry za OLŘ při izoentropické expanzi na rotoru	3.44	i _{2,iz}	3166,2	kJ/kg
Tlak za lopatkovou řadou		p_2	21,99	bar

			•	
Měrný objem páry za dýzou RS			0,127	m ³ /kg
Výstupní délka rozváděcí lopatky	3.45	l ₀	0,028	m
Přesah lopatek		Δl	0,003	m
Délka oběžných lopatek	3.46	l_1, l_2	0,031	m
Ztráta výstupní rychlostí	3.47	Z _C	6,24	kJ/kg
Optimální rozteč lopatek statoru		$\left(\frac{s}{c}\right)_{s}$	0,80	[-]
Optimální rozteč lopatek rotoru		$\left(\frac{s}{c}\right)_{R}$	0,59	[-]
Optimální úhel nastavení statoru		γs	41	0
Optimální úhel nastavení rotoru		γ_R	12	0
Délka tětivy statoru		c _S	0,025	m
Délka tětivy rotoru		c _R	0,025	m
Šířka rozváděcích lopatek	3.48	B _S	0,019	m
Šířka oběžných lopatek	3.49	B_R	0,024	m
Rozteč rozváděcích lopatek	3.50	S _S	0,020	m
Rozteč oběžných lopatek	3.51	S _R	0,015	m
Zaokrouhlený počet statorových lopatek RS	3.52	Z_S	30	[ks]
Zaokrouhlený počet rotorových lopatek RS	3.53	Z_R	89	[ks]
Obvodová práce stupně	3.54	a _u	114,1	kJ/kg
Celková využitelná energie na RS	3.55	E ₀	131,8	kJ/kg
Obvodová účinnost stupně	3.56	η_u	0,87	[-]
Třecí součinitel		k _{tř}	0,00062	[-]
Průtočný průřez lopatkování	3.57	S	0,005	m ²

Poměrná ztráta třením (ventilací) disku	3.58	ξ5	0,002	[-]
Ztráta třením (ventilací) disku	3.59	Z_5	0,3	kJ/kg
Ztráty vznikající ventilací neostříknutých oběžných lopatek	3.60	ξ_{61}	0,014	[-]
Počet segmentů ostřiku		Z _{segm}	1	[ks]
Ztráty vznikající na okraji pásma ostřiku	3.61	ξ62	0,016	[-]
Celková poměrná ztráta parciálním ostřikem	3.62	ξ6	0,030	[-]
Ztráta parciálním ostřikem	3.63	Z ₆	3,9	kJ/kg
Radiální mezera	3.64	δ_r	0,001	m
Průřez radiální mezery	3.65	S _{1R}	0,001	m ²
Axiální mezera mezi rotorem a statorem	3.66	δ_a	0,003	m
Průtokový součinitel		μ_1	0,5	[-]
Stupeň reakce na špici lopatky	3.67	$ ho_h$	0,116	[-]
Počet břitů bandáže		Zr	3	ks
Ekvivalentní mezera	3.68	δ_{ekv}	0,0003	m
Poměrná ztráta radiální mezerou s bandáží	3.69	ξ7	0,026	[-]
Ztráta radiální mezerou	3.70	Z ₇	3,4	kJ/kg
Vnitřní termodynamická účinnost stupně	3.71	η_{tdi}^{RS}	0,81	[-]
Vnitřní výkon regulačního stupně	3.72	P_i^{RS}	1764,6	kW
Měrná entalpie za RS včetně ztrát regulačního stupně	3.73	i ₂	3180,2	kJ/kg
Měrný objem páry za oběžnou řadou RS	3.74	<i>v</i> ₂	0,130	m ³ /kg
Kontrola úhlu β_2	3.75	$\beta_{2,kontr}$	155,1	o

FSI EÚ OEI	Parní turbina protitlaková	Bc. Libor Merta
VUT Brno		2012

Koncový bod expanze ve stupni	3.76	i _{2c}	3187,0	kJ/kg	
-------------------------------	------	-----------------	--------	-------	--

3.4 Dýzová regulace

Výkon turbíny se bude regulovat pomocí dýzové regulace. Parciální ostřik se rozdělí dle výpočtu na tři dýzové skupiny. Uvažují se nerozšířené dýzy při nadkritickém proudění páry.

Konstanty pro přehřátou páru:

 $\pi_{krit} = 0,546 [-]$ $\chi_{max} = 0,667 [-]$

 $\chi_{max} = 0,007$

Uvažovaný maximální průtok páry:

$$M_{max} = 1,02 \times M \qquad [kg/s] \qquad 3.77$$

Konstanta turbíny:

$$k^{T} = \frac{p_{2}^{2} - p_{n}^{2}}{M^{2} \times 100} \qquad [-] \qquad 3.78$$

Tabulka 3.4 znázorňuje následující veličiny páry v závislosti na vzrůstajícím průtoku.

• tlak za regulačním stupněm p_2 dle zvoleného hmotnostního průtoku M^{DR} [kg/s]

$$p_2^{DR} = \sqrt{k^T \times M + \frac{p_n^2}{100}} \qquad [MPa] \qquad 3.79$$

• tlakový poměr π :

$$\pi = \frac{p_2^{\rm DR}}{p_0} \qquad [-] \qquad 3.80$$

• Jednotkový průtok minimálním průřezem σ :

$$\sigma = X_{max} \times \sqrt{\frac{p_0}{v_0 \times 10}} \times \sqrt{1 - \left[\frac{(\pi - \pi_{krit}) \times 0, 1}{1 - \pi_{krit} \times 0, 1}\right]^2}$$
 3.81

• Zjednodušený vztah pro proudění při $\pi < \pi_{krit}$:

$$\sigma = X_{max} \times \sqrt{\frac{p_0}{v_0 \times 10}} \qquad [kg/sm^2] \qquad 3.82$$

• Minimální průtočný průřez dýzových skupin:

$$(S_{min})^{DS} = \frac{M^{DR}}{\sigma} \qquad [m^2] \qquad 3.83$$

Tab. 3.4 Závislost zvolených fyzikálních veličin na průtoku

M^{DR}	[kg/s]	0	5	10	15	16,66	17	20
p_2^{DR}	[MPa]	0,26	0,70	1,34	1,98	2,20	2,24	2,63
æ	ГЛ	0,074	0,205	0,389	0,578	0,641	0,654	0,768
Л	[-]		$\pi < \pi$ (krit)		π>π(krit)	
σ	[kg/sm2]	4096,5	4096,5	4096,5	4086,2	4005,4	3978,6	3572,5
	[10-3							
$(S_{min})^{DS}$	m2]	0,0000	0,0012	0,0024	0,0037	0,0042	0,0043	0,0056

FSI EÚ OEI
VUT Brno

p _{krit} [Mpa] 1,87	1,87 1,87	1,87 1,87	1,87 1,87
------------------------------	-----------	-----------	-----------

Obr. 3.13 znázorňuje závislosti minimálního průtočného průřezu $(S_{min})^{DS}$ a tlaku za regulačním stupněm na průtoku. Z grafu je také zřejmá hranice podkritického a nadkritického proudění.

Obr. 3.13 Průtočný průřez dýz a změny tlaku za RS v závislosti na hmotnostním průtoku páry

Rozdělení dýzových skupin

Dýzové skupiny se zvolí tak, aby při maximálním průtoku odpovídal jejich celkový průtočný průměr minimálnímu průtočnému průřezu $(S_{min})^{DS}$ dle tabulky 3.4.

Průtočná plocha jedné dýzy S_D :

$$S_D = s_S \times l_0 \times \sin \alpha_1 \qquad [m^2] \qquad 3.84$$

Počet dýz pro maximální průtok páry $z_{D,max}$:

$$z_{D,max} = \frac{(S_{min})^{DS}}{S_D} \qquad [ks] \qquad 3.85$$

Počet dýz pro jmenovitý průtok páry $z_{D,j}$:

$$z_{D,j} = \frac{(s_{min})^{DS}}{s_D} \qquad [ks] \qquad 3.86$$

Dle počtu dýz pro maximální a jmenovitý výkon je vhodné rozdělit průtok páry do tří dýzových skupin.

Dle praktického využití se navrhne rozdělení dýz do jednotlivých dýzových skupin - viz tabulka 3.4.
Tab.	3.4	Počet	dýz	dýzo	vých	skupin
------	-----	-------	-----	------	------	--------

dýzová skupina	počet dýz
1	12
2	10
3	8

Obr. 3.14 Jednotlivé dýzové skupiny parciálního ostřiku

Obr. 3.15 Závislost průtoku páry na zdvihu ventilů skupinové regulace [5]

3.4.1 Tabelované výsledky

Tab. 3.5 Tabelované výsledky – skupinová regulace

Popis	Vztah	Označení	Hodnota	Jednotka
Konstanta pro přehřátou páru		Xmax	0,667	[-]
Maximální průtok páry turbínou	3.77	M _{max}	17,00	kg/s
Konstanta turbíny	3.78	k^T	0,017	[-]
Průtočná plocha jedné dýzy	3.84	S _D	0,00015	m ²
Počet dýz pro maximální průtok páry	3.85	Z _{D,max}	30	ks
Počet dýz pro jmenovitý průtok páry	3.86	Z _{D,j}	29	ks

4 Tepelný výpočet stupňové části

4.1 Předběžný návrh stupňové části

4.1.1 Předběžný návrh - volba lopatkování stupňové části

Dle obr. 4.1 [3] byla zvolena hodnota Parsonova čísla Pa_s :

Volba: $Pa_s = 0,667 [-]$

Obr. 4.1 Účinnost přetlakových stupňů [3]

Výpočet 1. stupně

Parsonovo číslo pro 1. stupeň:

$$Pa_1 = 0.9 \times Pa_s \qquad \qquad [-] \qquad \qquad 4.01$$

Zvolí se výstupní úhel prizmatické statorové lopatky α_1^{SC} :

Volba: $\alpha_1^{S\check{C}} = 19^\circ$

Z obr. 4.2 se pro zvolený výstupní úhel a Parsonovo číslo prvního stupně odečte hodnota poměru $\left(\frac{c_a}{u}\right)_1$:

Odečteno z obr. 4.2: $\left(\frac{c_a}{u}\right)_1 = 0.427[-]$

Obr. 4.2 Diagram pro výpočet skupiny přetlakových stupňů metodou ca/u [3]

Zvolí se délka lopatky prvního stupně l_1^{SC} .

Volba: $l_1^{S\check{C}} = 0,035 m$

FSI EÚ OEI

VUT Brno

Odhadne se hmotnostní průtok ucpávkou vyrovnávacího pístu $M_{VP,odh}$. Tato hodnota bude v dalších výpočtech (rovnice 6.06) přesně dopočítána a znovu dosazena do rovnice 5.02.

Volba:
$$M_{odh}^{VP} = 0,25 \ kg/s$$

Hmotnostní průtok páry vstupující do stupňové části turbíny:

$$M^{S\check{C}} = M - M^{VP}_{odh} \qquad [kg/s] \qquad 4.02$$

Pro jednodušší orientaci ve výpočtu stupňové části se provede přeznačení stavových veličin páry na vstupu do stupňové části oproti značení páry na výstupu z regulačního stupně. Uvažuje se, že pára na vstupu do stupňové části má entalpii i_{2c} a tlak p_2 .

$$p_1^{S\check{C}} = p_2 = 21,99 \ bar$$

$$i_1^{S\check{C}} = i_{2c} = 3187,0 \; kJ/kg$$

Z parních tabulek (pomocí $p_1^{S\check{C}}$, $i_1^{S\check{C}}$) se stanoví hodnota měrného objemu $v_1^{S\check{C}}$ na vstupu do stupňové části:

$$v_1^{S\check{C}} = 0,131 \ m^3/kg$$

Střední průměr lopatkování kanálu na vstupu do stupňové části:

$$D_1^{S\check{C}} = \frac{1}{\pi} \times \sqrt{\frac{M^{S\check{C}} \times v_1^{S\check{C}}}{n \times l_1^{S\check{C}} \times \left(\frac{c_a}{u}\right)_1}} \qquad [m] \qquad 4.03$$

Výpočet posledního stupně

Výpočet postupuje obdobně jako v případě 1. stupně.

Zvolí se Parsnovo číslo posledního stupně:

$$Pa_n = 0.9 \times Pa_s \qquad [-] \qquad 4.04$$

Zvolí se výstupní úhel statorové lopatky posledního stupně α_n^{SC} :

Volba: $\alpha_n^{S\check{C}} = 26^{\circ}$

Z obr. 4.2 se odečte hodnota poměru $\left(\frac{c_a}{u}\right)_n$:

Odečteno z grafu 4.2: $\left(\frac{c_a}{u}\right)_n = 0,595 [-]$

Běžně se nevolí délka lopatky posledního stupně. Zvolí se tedy poměr délky lopatky a středního průměru poměru $\left(\frac{l}{D}\right)_n$. Tento poměr by měl být dle podkladů firmy Siemens maximálně 0,25. V případě většího poměru by muselo dojít ke skrucování lopatek.

Volba: $\left(\frac{l}{D}\right)_n = 0.25 [-]$

Výpočet parametrů páry za posledním stupněm:

Při uvažování izoentropického děje se z parních tabulek (pomocí p_1^{SC} , i_1^{SC}) stanoví entropie $s_{n,iz}$:

 $s_{n,iz} = 6,983 \ kJ/kg^{\circ}C$

Tlak p_n byl již dopočítán v rovnici 2.01 a jeho hodnota je:

$$p_n = 2,55 \ bar$$

Z parních tabulek (pomocí $p_n, s_{n,iz}$) se stanoví hodnota měrné entalpie za posledním stupněm při izoentropickém ději $i_{n,iz}$:

$$i_{n,iz} = 2692,3 \, kJ/kg$$

Z parních tabulek (pomocí $p_n, i_{n,iz}$) se stanoví hodnota měrného objemu $v_{n,iz}$ za posledním stupněm při izoentropickém ději:

$$v_{n,iz} = 0,697 \ m^3/kg$$

Izoentropický spád stupňové části:

$$h_{iz}^{SC} = i_1^{SC} - i_{n,iz}$$
 [kJ/kg] 4.05

Zvolí se termodynamická účinnost stupňové části η_{tdi}^{SC} z intervalu (0,82 ÷ 0,87) [3]:

Volba: $\eta_{tdi,odh}^{S\check{C}} = 0.85 [-]$

Entalpický spád stupňové části:

$$h^{S\check{C}} = \eta^{S\check{C}}_{tdi,odh} \times h^{S\check{C}}_{iz} \qquad [kJ/kg] \qquad 4.06$$

Měrná entalpie v bodě "n" za posledním stupněm:

$$i_n = i_1^{SC} - h^{SC} \qquad [kJ/kg] \qquad 4.07$$

Z parních tabulek (pomocí p_n, i_n) se stanoví hodnota měrného objemu za posledním stupněm v_n při reálném ději:

$$v_n = 0,753 \ m^3/kg$$

Střední průměr lopatkování posledního stupně:

$$D_n^{S\check{C}} = \sqrt[3]{\frac{M_{S\check{C}} \times v_n}{\pi^2 \times \left(\frac{c_a}{u}\right)_n \times \left(\frac{l}{D}\right)_n \times n}} \qquad [m] \qquad 4.08$$

Obvodová rychlost na středním průměru lopatkování posledního stupně:

$$u_n^{S\check{C}} = \pi \times D_n^{S\check{C}} \times n \qquad [m/s] \qquad 4.09$$

 u_n^{SC} vyhověla pevnostní podmínce: $u_n^{SC} < 260 m/s$ [5]. Délka oběžné lopatky posledního stupně:

$$l_n^{S\check{C}} = D_n \times \left(\frac{l}{D}\right)_n \qquad [m] \qquad 4.10$$

Obvodová rychlost na vnitřním průměru lopatkování:

$$u_n = \pi \times (D_n - l_n) \times n \qquad [m/s] \qquad 4.11$$

 u_n odpovídá podmínce: $u_n < 200 m/s[3]$.

Střední obvodová rychlost stupňové části na středním průměru lopatkování:

$$u_s = \pi \times \frac{\left(D_n + D_1^{S\check{c}}\right)}{2} \times n \qquad [m/s] \qquad 4.12$$

Nezaokrouhlený počet stupňů stupňové části:

$$z_{nez} = \frac{Pa_s \times h_{iz}^{SC}}{u_s^2} \qquad [ks] \qquad 4.13$$

Zvolí se počet stupňů stupňové části:

Volba: z = 11 ks

4.1.2 Předběžný návrh – ztráty, účinnost a výkon stupňové části

Ztráta radiální mezerou

Vypočítá se jako aritmetický průměr poměrných ztrát radiální mezerou prvního a posledního stupně stupňové části.

První stupeň:

Vnější průměr lopatkování:

$$D_{1,vne}^{S\check{C}} = D_1^{S\check{C}} + l_1^{S\check{C}}$$
 [m] 4.14

Průměr rotoru:

$$D_{rot} = D_1^{S\check{C}} - l_1^{S\check{C}}$$
 [*m*] 4.15

Zvolí se výrobní tolerance $x_1^{S\check{C}}$ [3] pro výpočet radiální vůle $k_1^{S\check{C}}$:

Volba: $x_1^{S\check{C}} = 0,0001 m$

$$k_1^{S\check{C}} = D_{vne1}^{S\check{C}} + x_1^{S\check{C}}$$
 [mm] 4.16

Poměrná ztráta radiální mezerou prvního stupně:

$$\xi_{k,1} = \frac{0.3 + k_1^{S\check{C}}}{l_1^{S\check{C}}} \times 4,5 \qquad [-] \qquad 4.17$$

Poslední stupeň:

Vnější průměr lopatkování:

$$D_{n,vne}^{S\check{C}} = D_n^{S\check{C}} + l_n^{S\check{C}} \qquad [m] \qquad 4.18$$

Zvolí se výrobní tolerance $x_n^{S\check{C}}$ [3] pro výpočet radiální vůle $k_n^{S\check{C}}$:

Volba: $x_n^{S\check{C}} = 0,0002 \ m$

$$k_n^{S\check{C}} = D_{vne,n}^{S\check{C}} + x_n^{S\check{C}} \qquad [mm] \qquad 4.19$$

Poměrná ztráta radiální mezerou posledního stupně:

$$\xi_{k,n} = \frac{0,3+k_n}{l_n} \times 4,5 \qquad [-] \qquad 4.20$$

Ztráta radiální mezerou stupňové části:

Aritmetickým průměrem $\xi_{k,1}$ a $\xi_{k,n}$ bychom získali ztrátu radiální mezery stupňové části, která uvažuje přetékání pracovní látky přes okraj lopatek a vliv okrajové ztráty v provedení bez bandáží. U navrhované turbíny se ovšem uvažuje s bandážováním, proto se ztráta radiální mezerou sníží o zvýšenou účinnost bandáží η_b :

Volba:
$$\eta_b = 0.02 \ [-]$$

 $\xi_k = \frac{\xi_{k,1} + \xi_{k,n}}{2} - \eta_b \ [-]$
4.21

Ztráta rozvějířením

První stupeň:

Poměrná ztráta rozvějířením prního stupně:

$$\xi_{\nu,1} = \left(\frac{l_1^{S\tilde{C}}}{D_1^{S\tilde{C}}}\right)^2$$
[-] 4.22

Poslední stupeň:

Poměrná ztráta rozvějířením posledního stupně:

$$\xi_{\nu,n} = \left(\frac{l_n^{S\tilde{C}}}{D_n^{S\tilde{C}}}\right)^2 \tag{[-]}$$

Ztráta rozvějířením stupňové části:

$$\xi_{\nu} = \frac{\xi_{\nu,1} + \xi_{\nu,n}}{2}$$
[-] 4.24

Ztráta vlhkostí páry

Tato ztráta se neuvažuje, protože se výpočet nachází v oblasti přehřáté páry.

Součinitel zpětného využití ztrát

Z parních tabulek (pomocí $p_1^{S\check{C}}$, $i_1^{S\check{C}}$) se zjistí teplota $t_1^{S\check{C}}$ na vstupu páry do stupňové části:

 $t_1^{S\check{C}} = 374 \,^{\circ}C$

Z parních tabulek (pomocí $p_n, S_{n,iz}$) se zjistí teplota $t_{n,iz}$ za posledním stupněm stupňové části při izoentropické expanzi:

$$t_{n,iz} = 128 \,^{\circ}C$$

Z parních tabulek (pomocí p_n , i_n) se zjistí teplota t_n za posledním stupněm stupňové části při reálné expanzi:

$$t_n = 152 \ ^\circ C$$

Pro výpočet součinitele zpětného využití ztrát f je nutné převést teploty t_1^{SC} a t_n na Kelviny:

$$T_{1}^{S\check{C}} = 647 \ K$$

$$T_{n} = 425 \ K$$

$$f = \frac{z-1}{z} \times \left(1 - \eta_{tdi}^{S\check{C}}\right) \times \frac{t_{1}^{S\check{C}} - t_{n,iz}}{T_{1}^{S\check{C}} - T_{n}} \qquad [-] \qquad 4.25$$

Dle Parsonova čísla se dle obr. 4.1 zvolí účinnost přetlakových stupňů η_{∞} :

Odečteno z diagramu 4.1: $\eta_{\infty} = 0.947 [-]$

Vnitřní účinnost přetlakového lopatkování bez ztráty výstupní rychlosti:

$$\eta_i^{S\check{C}} = \eta_{\infty} \times (1+f) \times (1-\xi_k - \xi_v) \quad [-]$$
4.26

Ztráta výstupní rychlosti

Z důvodu zpřesnění vnitřní účinnosti přetlakového lopatkování je možné také zpřesnit měrnou entalpii páry na výstupu ze stupňové části:

$$\dot{i_n} = i_1^{S\check{C}} - \eta_i^{S\check{C}} \times h_{iz}^{S\check{C}} \qquad [kJ/kg] \qquad 4.27$$

Z parních tabulek (pomocí p_n , i_n) se zjistí hodnota zpřesněné entropie s_n a zpřesněné hodnoty měrného objemu v_n páry na výstupu ze stupňové části:

$$\dot{s_n} = 7,103 \ kJ/kg^{\circ}C$$

 $\dot{v_n} = 0,727 \ m^3/kg$

Výstupní axiální rychlost z posledního stupně stupňové části:

$$c_{a,n} = \frac{M_{S\check{C}} \times v_n}{\pi \times D_n^{S\check{C}} \times l_n^{S\check{C}}} \qquad [m/s] \qquad 4.28$$

Absolutní výstupní rychlost páry vystupující z oběžných lopatek spočítaná podle rychlostních trojúhelníků:

$$c_n = c_{a,n} \times \sqrt{\left[\frac{1}{tg(\alpha_n^{S\check{C}})} - \frac{1}{\left(\frac{c_a}{u}\right)_n}\right]^2 + 1} \qquad [m/s]$$

$$4.29$$

Ztráta výstupní rychlostí:

$$z_{c,n}^{SC} = \frac{c_n^2}{2}$$
 [kJ/kg] 4.30

Skutečný entalpický spád stupňové části při zahrnutí ztráty výstupní rychlosti:

$$\dot{h_i} = h_{iz}^{S\check{C}} \times \eta_i^{S\check{C}} - z_{c,n}^{S\check{C}} \qquad [kJ/kg] \qquad 4.31$$

Vnitřní termodynamická účinnost stupňové části turbíny zahrnující výstupní rychlost:

$$\eta_{tdi,c}^{S\check{C}} = \frac{h_i}{h_{iz}^{S\check{C}}} \qquad [-] \qquad 4.32$$

Vnitřní výkon stupňové části:

$$P_i^{S\check{C}} = h_i^{'} \times M^{S\check{C}} \qquad [kW] \qquad 4.33$$

4.1.3 Tabelované výsledky

tab. 4.1 Předběžný návrh stupňové části

Popis	Vztah	Označení	Hodnota	Jednotka
Parsonovo číslo		Pa _s	0,67	[-]
Parsonovo číslo prvního stupně	4.01	Pa ₁	0,60	[-]
Výstupní úhel statorové lopatky		$lpha_1^{S\check{C}}$	19	[°]
Poměr $\left(\frac{c_a}{u}\right)$ prvního stupně		$\left(\frac{c_a}{u}\right)_1$	0,43	[-]
Délka statorové lopatky		$l_1^{S\check{ ext{C}}}$	0,035	[m]
Hmotnostní průtok ucpávkou vyrovnávacího pístu		M_{odh}^{VP}	0,25	[kg/s]
Hmotnostní průtok páry vstupující do stupňové části	4.02	М ^{SČ}	16,41	[kg/s]
Tlak páry na vstupu do stupňové části		$p_1^{S\check{C}}$	21,99	bar
Měrná entalpie páry na vstupu do stupňové části		$i_1^{S\check{C}}$	3187,0	kJ/kg
Měrný objem páry na vstupu do stupňové části		$v_1^{S\check{C}}$	0,131	m ³ /kg
Střední průměr lopatkování kanálu na vstupu do stupňové části	4.03	$D_1^{S\check{C}}$	0,289	m
Parsonovo číslo posledního stupně	4.04	Pa _n	0,60	[-]
Výstupní úhel statorové lopatky posledního stupně		$lpha_n^{S\check{C}}$	26	[°]
Poměr $\left(\frac{c_a}{a}\right)$ posledního stupně		$\left(\frac{c_a}{a}\right)$	0,60	[-]

				· · · ·
poměru n-tého stupně		$\left(\frac{\iota}{D}\right)_n$	0,250	[-]
Entropie za posledním stupněm		s _{n,iz}	6,983	kJ/kg°C
Tlak za posledním stupněm		p_n	2,55	bar
Měrná entalpie za posledním stupněm při izoentropickém ději		i _{n,iz}	2692,3	kJ/kg
Měrný objem za posledním stupněm při izoentropickém ději		v _{n,iz}	0,697	m ³ /kg
Izoentropický spád stupňové části	4.05	$h_{iz}^{S\check{C}}$	494,7	kJ/kg
Odhadnutá termodynamická účinnost stupňové části		$\eta^{S\check{C}}_{tdi,odh}$	0,85	[-]
Entalpický spád stupňové části	4.06	$h^{S\check{C}}$	418,0	kJ/kg
Měrná entalpie v bodě n	4.07	i _n	2769,0	kJ/kg
Měrný objem za posledním stupněm při normálním ději		v _n	0,753	m ³ /kg
Střední průměr lopatkování posledního stupně	4.08	$D_n^{S\check{C}}$	0,354	[m]
Obvodová rychlost na průměru $D_n^{S\check{C}}$	4.09	$u_n^{S\check{C}}$	194,9	[m/s]
Délka oběžné lopatky posledního stupně	4.10	$l_n^{S\check{C}}$	0,1	[m]
Obvodová rychlost na vnitřním průměru posledního stupně	4.11	u _n	146,2	[m/s]
Střední obvodová rychlost	4.12	u _s	176,8	[m/s]
Nezaokrouhlený počet stupňů stupňové části	4.13	Z _{nez}	10,6	ks
Zvolený počet stupňů stupňové části		Z	11	ks
Vnější průměr lopatkování prvního stupně SČ	4.14	$D_{1,vne}^{S\check{C}}$	0,324	[m]
Průměr rotoru	4.15	D _{rot}	0,254	[m]
Výrobní tolerance		$x_1^{S\check{C}}$	0,0001	[m]
Radiální vůle	4.16	$k_1^{S\check{C}}$	0,324	[mm]

Poměrná ztráta radiální mezerou prvního stupně	4.17	$\xi_{k,1}$	0,080	[-]
Vnější průměr lopatkování posledního stupně SČ	4.18	$D_{n,vne}^{S\check{C}}$	0,443	[m]
Výrobní tolerance		$x_n^{S\check{C}}$	0,0002	[m]
Radiální vůle	4.19	$k_n^{S\check{C}}$	0,443	[mm]
Poměrná ztráta radiální mezerou posledního stupně	4.20	$\xi_{k,n}$	0,038	[-]
Zvýšení účinnosti díky bandážím lopatek SČ		η_b	0,02	[-]
Ztráta radiální mezerou SČ	4.21	ξĸ	0,039	[-]
Ztráta rozvějířením prvního stupně	4.22	$\xi_{v,1}$	0,015	[-]
Ztráta rozvějířením posledního stupně	4.23	ξ _{v,n}	0,063	[-]
Ztráta rozvějířením stupňové části	4.24	ξυ	0,039	[-]
Teplota na vstupu do SČ [°C]		$t_1^{S\check{C}}$	374	[°C]
Teplota na výstupu ze SČ při izoentropickém ději [°C]		t _{n,iz}	128	[°C]
Teplota na výstupu ze SČ při reálném ději [°C]		t _n	152	[°C]
Teplota na vstupu do SČ [K]		$T_1^{S\check{C}}$	647	[K]
Teplota na výstupu ze SČ při reálném ději [K]		T _n	425	[K]
Teplota na výstupu ze SČ při izoentropickém ději [K]		T_(n,iz)	401	[K]
Součinitel zpětného využití ztrát	4.25	f	0,032	[-]
Účinnost přetlakových stupňů		η_∞	0,95	[-]
Vnitřní účinnost přetlakového lopatkování bez ztráty výstupní rychlosti	4.26	$\eta_i^{S\check{C}}$	0,90	[-]
Zpřesněná měrná entalpie páry na výstupu ze stupňové části	4.27	i'n	2740,9	kJ/kg
Zpřesněná entropie páry na výstupu ze SČ		s _n	7,103	kJ/kg°C

Zpřesněný měrný objem páry na výstupu ze SČ		v_n	0,727	m ³ /kg
Výstupní axiální rychlost z posledního stupně SČ	4.28	C _{a,n}	120,9	m/s
Absolutní výstupní rychlost páry z OLŘ SČ	4.29	Cn	128,9	m/s
Ztráta výstupní rychlostí	4.30	$Z^{S\check{C}}_{c,n}$	8,3	kJ/kg
Skutečný entalpický spád stupňové části při zahrnutí výstupní rychlosti	4.31	$h_i^{(i)}$	437,8	kJ/kg
Vnitřní TDI účinnost stupňové části turbíny (včetně výstupní rychlosti)	4.32	$\eta_{tdi,c}^{S\check{C}}$	0,86	[-]
Vnitřní výkon stupňové části	4.33	$P_i^{S\check{C}}$	7186,4	kW

4.2 Celková axiální síla působící na turbínu:

Axiální síla působící na rotor se zjednodušeně spočítá jako rozdíl jednotlivých axiálních sil F_1, F_2, F_3 a F_4 působících na turbínu dle obrázku obr. 4.3. Z obrázku 4.3 je také zřejmé, že oblast za vyrovnávacím pístem je propojena vyrovnávacím pístem s oblastí za poslední stupněm stupňové části. Mají tedy shodný tlak p_n .

Zvolí se průměr hřídele rotoru na straně axiálního ložiska D_{hrAX} :

Volba: $D_{hrAX} = 0,22 m$

Zvolí se průměr hřídele rotoru na straně generátoru D_{hrG} :

Volba: $D_{hrG} = 0,24 m$

Průměr rotoru D_{rot} se uvažuje konstantní po celé délce lopatkování stupňové části:

$$D_{rot} = D_1^{S\check{C}} - l_1^{S\check{C}}$$
 [m] 4.34

Stupňová část je pro výpočet axiální síly zjednodušená na válcový tvar o průměru $D_{ST\tilde{R}}^{S\tilde{C}}$:

$$D_{ST\check{R}}^{S\check{C}} = \frac{D_1^{S\check{C}} + D_n^{S\check{C}}}{2}$$
 [*m*] 4.35

Střední délka lopatek stupňové části $l_{ST\tilde{R}}^{S\tilde{C}}$:

$$l_{ST\breve{R}}^{S\breve{C}} = \frac{l_1^{S\breve{C}} + l_n^{S\breve{C}}}{2} \qquad [m] \qquad 4.36$$

Plochy S_1 , S_2 , na kterých působí jednotlivé axiální síly na turbínu dle obr. 4.3:

$$S_1 = \pi \times D_{ST\check{R}}^{S\check{C}} \times l_{ST\check{R}}^{S\check{C}} \qquad [m] \qquad 4.37$$

$$S_2 = \pi \times \frac{D_{rot}^2 - D_{hrg}^2}{4}$$
 [m] 4.38

Velikosti jednotlivých složek axiální sily F_a :

$$F_1 = S_1 \times (p_2 - p_n) \times 100$$
 [kN] 4.39

$$F_2 = S_2 \times p_n \times 100 \qquad [kN] \qquad 4.40$$

FSI EÚ OEI VUT Brno

Vyrovnávací píst se navrhuje tak, aby vyrovnal přibližně polovinu výsledné axiální síly od složek F_1 a F_2 při maximálním průtoku páry turbínou. Druhou polovinu axiální síly zachytí axiální ložisko. Návrh axiálního ložiska není součástí zadání diplomové práce. Axiální síla působící na vyrovnávací píst F^{VP} :

$$F^{VP} = \frac{1}{2}(F_1 - F_2)$$
 [kN] 4.41

Pomocí síly F^{VP} se vypočítá průměr vyrovnávacího pístu D^{VP} :

$$D^{VP} = \sqrt{\frac{\frac{4 \times F^{VP} \times 10^5}{\pi} + D_{rot}^2 \times (p_2 - p_n) \times 10^5}{(p_2 - p_n) \times 10^5}} \qquad [m]$$

$$4.42$$

Plochy $S_3 a S_4$, na kterých působí jednotlivé axiální síly na turbínu dle obr. 4.3:

$$S_3 = \pi \times \frac{D^{VP^2} - D_{rot}^2}{4} \qquad [m^2] \qquad 4.43$$

$$S_4 = \pi \times \frac{D^{VP^2} - D_{hrAX^2}}{4} \qquad [m^2] \qquad 4.44$$

Velikosti jednotlivých složek axiální sily F_a :

$$F_3 = S_3 \times p_2 \times 100 \qquad [kN] \qquad 4.45$$

$$F_4 = S_4 \times p_2 \times 100 \qquad [kN] \qquad 4.46$$

Axiální síla působící na rotor F_a :

$$F_a = F_1 + F_4 - F_2 - F_3$$
 [kN] 4.47

Obr. 4.3 Působení axiálních sil na turbínu

4.2.1 Tabelované výsledky

tab. 4.2 Tabelované výsledky – axiální síla

Popis	Vztah	Označení	Hodnota	Jednotka
Průměr hřídele rotoru na straně axiálního ložiska		D _{hrAX}	0,220	m
Průměr hřídele rotoru na straně generátoru		D _{hrG}	0,240	m
Průměr rotoru	4.34	D _{rot}	0,254	m
Střední průměr lopatkování stupňové části	4.35	$D_{ST\check{R}}^{S\check{C}}$	0,322	m
Střední délka lopatek stupňové části	4.36	$l_{ST\check{R}}^{S\check{C}}$	0,062	m
Plocha 1	4.37	<i>S</i> ₁	0,062	m
Plocha 2	4.38	S ₂	0,005	m
Axiální složka síly 1	4.39	F ₁	124,6	kN
Axiální složka síly 2	4.40	F ₂	1,4	kN
Axiální síla působící na vyrovnávací píst	4.41	F ^{VP}	61,6	kN
Průměr vyrovnávacího pístu	4.42	D^{VP}	0,320	m
Plocha 3	4.43	S ₃	0,030	m ²
Plocha 4	4.44	<i>S</i> ₄	0,042	m ²
Axiální složka síly 3	4.45	F ₃	67,0	kN
Axiální složka síly 4	4.46	F ₄	10,9	kN
Celková axiální síla působící na rotor	4.47	Fa	67,1	kN

4.3 Návrh vyrovnávacího pístu

Průměr vyrovnávacího pístu byl určen v kapitole 4.2.

Jsou zvolené bezdotykové labyrintové ucpávky především z důvodu vysoké životnosti. Nevýhodou je trvalý únik páry, který snižuje hmotnostní průtok stupňovitou částí turbíny.

Břity jsou vyrobené z austenitické oceli, čemuž odpovídá hodnota konstanty B [3].

Výpočet radiální vůle mezi břity a statorem:

$$\delta^{VP} = B \times \frac{D^{VP}}{1000} + 0.25 \qquad [mm] \qquad 4.48$$

Uvažuje se, že oblast za vyrovnávacím pístem je propojená s koncem turbíny vyrovnávacím potrubím, díky čemuž je velikost tlaku za vyrovnávacím pístem a za posledním stupněm stupňové části stejný.

Tlakový poměr před a za vyrovnávacím pístem:

$$\pi^{VP} = \frac{p_n^{S\tilde{C}}}{p_1^{S\tilde{C}}}$$
[-] 4.49

Z následující rovnice pro podkritické proudění byl vypočítán počet břitů labyrintové ucpávky tak, aby bylo splněné podkritické proudění páry ucpávkou:

$$\begin{aligned} \pi^{VP} &> \frac{0.82}{\sqrt{z^{VP} + 1.25}} \\ z^{VP} &> \left(\frac{0.82}{\pi^{VP}}\right)^2 - 1.25 \end{aligned} \qquad [ks] \qquad 4.50 \end{aligned}$$

Poměr radiální mezery a tloušťky břitu byl zvolen $\frac{\Delta}{\delta^{VP}}$.

Dle obr. 4.4 se zvolí typ břitu g a z příslušného grafu byl odečten průtokový součinitel $\mu^{VP}[3]$.

Obr. 4.4 Průtokový součinitel ucpávek [3] Průtočný průřez ucpávkou:

$$S_{ucp}^{VP} = \pi \times D^{VP} \times \frac{\delta^{VP}}{1000}$$

Zvolí se průtokový součinitel $\mu^{VP}[3]$: Volba: $\mu^{VP} = 0,685$ [-] 4.51

Hmotnostní průtok ucpávkou vyrovnávacího pístu:

$$M^{VP} = \mu^{VP} \times S_{ucp}^{VP} \times \sqrt{\frac{(p_1^{S\check{C}})^2 - (p_n^{S\check{C}})^2}{p_1^{S\check{C}} \times v_1^{S\check{C}} \times z^{VP}}} \qquad [m^3/s]$$
 4.52

Nyní je nutné znovu dosadit do vztahu 5.02 upřesněnou hodnotu průtoku páry ucpávkou vyrovnávacího pístu a přepočítat výpočet stupňové části.

4.3.2 Tabelované výsledky

Tab. 4.4 Tabelované výsledky – návrh vyrovnávacího pístu

Popis	Vztah	Označení	Hodnota	Jednotka
Materiálová konstanta		В	1,350	[-]
Radiální vůle	4.48	δ^{VP}	0,657	[mm]
Tlakový poměr ucpávky	4.49	π^{VP}	0,116	[-]
Počet břitů ucpávky VP	4.50	z^{VP}	49	ks
Poměr radiální mezery a tloušťky břitu		$rac{\Delta}{\delta^{VP}}$	2	[-]
Průtokový součinitel		μ^{VP}	0,685	[-]
Průtočný průřez ucpávkou	4.51	S_{ucp}^{VP}	0,0006	m^2
Hmotnostní průtok ucpávkou VP	4.52	M^{VP}	0,25	m ³ /s

4.4 Tepelný výpočet skupiny přetlakových stupňů metodou c_a/u

4.4.1 Podmínky výpočtu metodouc_a/ u

Výpočet pomocí metody $\frac{c_a}{u}$ je možný pouze při dodržení následujících podmínek:

- hmotnostní průtok stupňovou částí je konstantní [3]
- proudění se sleduje na středním průměru po válcové ploše[3]
- axiální rychlost na vstupu a výstupu ze stupně je stejná [3]
- stupeň reakce $\rho = 0,5$ [3]
- nárust měrného objemu páry při expanzi je pozvolný [3]
- střední průměry prvního a posledního stupně se příliš neliší [3]

4.4.2 Předběžné parametry páry na vstupu do RLŘ – reálný děj

Princip značení jednotlivých stavů páry je zaznačen na obr. 4.5.

Obr. 4.5 Princip značení jednotlivých bodů stupňové části

Vypočítané hodnoty jednotlivých stavů (včetně stavu páry za posledním stupněm) jsou uvedené v tabulce 5.

Přeznačení z důvodu přehlednějšího značení v tabulkách:

$$\dot{i_n} = i_n^{S\check{C}}$$
$$\dot{s_n} = s_n^{S\check{C}}$$
$$\dot{v_n} = v_n^{S\check{C}}$$

Měrná entalpie: Měrná entalpie i_1^{SC} v bodě 1 je známá z dřívějšího výpočtu. Měrná entalpie dalších stupňů se vypočítá dle následujícího výpočtu. Uvažuje se, že entalpické spády připadající na jednotlivé stupně turbíny jsou stejné.

$$i_i^{S\check{C}} = i_{i-1}^{S\check{C}} - \frac{1}{z} \times (i_1^{S\check{C}} - i_n^{S\check{C}})$$
 [kJ/kg] 4.53

Entropie: Entropie s_1^{sc} v bodě 1 je známá z dřívějšího výpočtu. Entropie v dalších bodech byla vypočítána dle následujícího výpočtu, přičemž se uvažuje, že rozdíly entropie připadající na jednotlivé stupně jsou stejné.

$$s_i^{S\check{C}} = s_{i-1}^{S\check{C}} + \frac{1}{z} \times \left(s_n^{S\check{C}} - s_1^{S\check{C}}\right) \qquad [kJ/kg \ ^\circ C] \qquad 4.54$$

Tlak: tlak $p_i^{S\check{C}}$ se zvolí z parních tabulek (pomocí $i_i^{S\check{C}}$, $s_i^{S\check{C}}$)

Měrný objem: měrný objem $v_i^{S\tilde{C}}$ se zvolí z parních tabulek (pomocí $p_i^{S\tilde{C}}$, $i_i^{S\tilde{C}}$)

i-tý stupeň	i _i ^{SČ}	s _i ^{SČ}	$p_i^{S\check{C}}$	$v_i^{S\check{C}}$
	[kJ/kg]	kJ/kg°C	[bar]	[m3/kg]
1	3187,05	6,983	21,993	0,131
2	3146,49	6,994	19,053	0,147
3	3105,93	7,005	16,039	0,168
4	3065,38	7,016	13,434	0,194
5	3024,82	7,027	11,191	0,225
6	2984,26	7,038	9,267	0,262
7	2943,70	7,049	7,625	0,306
8	2903,15	7,060	6,230	0,359
9	2862,59	7,071	5,051	0,424
10	2822,03	7,082	4,061	0,504
11	2781,48	7,092	3,235	0,603
n	2740,92	7,103	2,551	0,727

Tab. 4.5 Stav páry na vstupu do RLŘ

4.4.3 Předběžné parametry páry na vstupu do RLŘ – izoentropická expanze

Vypočítané hodnoty jednotlivých stavů (včetně stavu páry za posledním stupněm) jsou uvedené v tabulce 4.6.

Měrná entalpie: Měrná entalpie $i_{i,iz}^{SC}$ se zvolí z parních tabulek (pomocí p_i^{SC} , s_{i-1}^{SC})

Entropie: Entropie $s_{i,iz}^{S\tilde{C}}$ je totožná jako $s_{i-1}^{S\tilde{C}}$

Tlak: hodnota tlaku $p_{i,iz}^{SC}$ je totožná jako p_i^{SC}

Měrný objem: hodnota měrného objemu $v_{i,iz}^{S\tilde{C}}$ se zvolí z parních tabulek (pomocí $p_{i,iz}^{S\tilde{C}}, s_{i,iz}^{S\tilde{C}}$)

Izoentropický spád: entalpický spád stupně při izoentropické expanzi stupně $\Delta h_{i,iz}^{S\check{C}}$. Součet těchto spádů $\sum \Delta h_{i,iz}^{S\check{C}}$ je větší než izoentropický spád $h_{iz}^{S\check{C}}$ celé stupňové části mezi bodem "1" a bodem "n,iz". Je to způsobeno tím, že část tepla, které vznikne ztrátami v každém stupni, je využito v následujícím stupni. Toto zpětné využití ztrát je charakterizováno Součinitelem zpětného využití ztrát f:

$$f = \left(\frac{\sum \Delta h_{i,iz}^{S\tilde{C}}}{h_{iz}^{S\tilde{C}}}\right) - 1 = 0,035 [-]$$
 4.55

Rozdíl hodnoty f z rovnice 4.25 a 4.55 je dán zpřesněným výpočtem měrné entalpie páry za stupňovitou částí.

Součet izoentropických spádů od začátku expanze ve stupňové části: hodnoty $\Delta h_{i,iz}^{GRAF}$ jsou v obr. 4.7 považovány za hodnoty osy x.

	i ^{sč}	SČ s _{i,iz}	$p_{i,iz}^{S\check{C}}$	$v_{i,iz}^{S\check{C}}$	$\Delta h_{i,iz}^{S\check{C}}$	osa x na grafu
	[K]\KB]	KJ/Kg C	נואטן	[III5/Kg]	[KJ/Kĝ]	[k] kg]
2iz	3139,65	6,983	19,05	0,146	47,40	47,40
3iz	3099,33	6,994	16,04	0,167	47,16	94,56
4iz	3059,00	7,005	13,43	0,193	46,93	141,49
5iz	3018,68	7,016	11,19	0,224	46,70	188,19
6iz	2978,36	7,027	9,27	0,260	46,46	234,65
7iz	2938,04	7,038	7,62	0,304	46,23	280,88
8iz	2897,71	7,049	6,23	0,357	45,99	326,87
9iz	2857,39	7,060	5 <i>,</i> 05	0,421	45,76	372,63
10iz	2817,06	7,071	4,06	0,501	45,53	418,16
11iz	2776,73	7,082	3,24	0,599	45,30	463,46
niz	2736,42	7,092	2,55	0,723	45,06	508,51
				suma	508,511	

Tab. 4.6 Stav páry na vstupu do RLŘ při izoentropické expanzi

4.4.4 Předběžné parametry páry na vstupu do OLŘ

Vypočítané hodnoty jednotlivých bodů jsou uvedené v tabulce 4.7. Kromě těchto parametrů jsou v této tabulce také uvedené příslušné střední průměry lopatkování, délky lopatek jednotlivých stupňů a rozdíl tlaků před a za i-tou oběžnou lopatkovou řadou.

Měrná entalpie: Měrná entalpie $i_{i,r}^{SC}$ se vypočítá jako střední hodnota hodnot entalpií i_i^{SC} a i_{i+1}^{SC} . Je to z důvodu, že stupeň reakce je $\rho = 0.5$.

Entropie: Entropie $s_{i,r}^{S\check{C}}$ se vypočítá jako střední hodnota hodnot entropií $s_i^{S\check{C}}$ a $s_{i+1}^{S\check{C}}$.

Tlak: Tlak $p_{i,r}^{S\tilde{C}}$ se zjistí z parních tabulek (pomocí $i_{i,r}^{S\tilde{C}}, s_{i,r}^{S\tilde{C}}$).

Měrný objem: Měrný objem $v_{i,r}^{S\check{C}}$ se vypočítá jako střední hodnota hodnot měrných objemů $v_i^{S\check{C}}$ a $v_{i+1}^{S\check{C}}$.

Střední průměr lopatkování: Střední průměry lopatkování prvního $D_1^{S\check{C}}$ a posledního $D_n^{S\check{C}}$ stupně jsou známé z dřívějších výpočtů. Střední průměry lopatkování dalších stupňů $D_i^{S\check{C}}$:

$$D_i^{S\check{C}} = D_{i-1}^{S\check{C}} + \frac{1}{z-1} \times \left(D_n^{S\check{C}} - D_1^{S\check{C}} \right) \qquad [m]$$
 6.14

Délka lopatek: Délky lopatek prvního $l_1^{S\check{C}}$ a posledního $l_n^{S\check{C}}$ stupně jsou známé z dřívějších výpočtů. Délky lopatek dalších stupňů $l_i^{S\check{C}}$ byly vypočítány dle následujícího vztahu:

$$l_{i}^{S\check{C}} = l_{i-1}^{S\check{C}} + \frac{1}{z-1} \times \left(l_{n}^{S\check{C}} - l_{1}^{S\check{C}} \right) \qquad [m] \qquad 6.15$$

Tlakový rozdíl: Rozdíl tlaků $\Delta p_{i,r}^{SC}$ před a za oběžnou lopatkovou řadou:

$$\Delta p_{i,r}^{S\check{C}} = p_{i,r}^{S\check{C}} - p_{i+1}^{S\check{C}}$$
 [bar] 6.16

	i ^{sč}	$s_{i,r}^{S\check{C}}$	$p_{i,r}^{S\check{ extsf{C}}}$	$v_{i,r}^{S\check{C}}$	$D_i^{S\check{C}}$	$l_i^{S\check{C}}$
	[kJ/kg]	kJ/kg°C	[bar]	[m3/kg]	[m]	[m]
1r	3166,8	6,989	20,73	0,138	0,289	0,035
2r	3126,2	6,999	17,49	0,157	0,295	0,040
3r	3085,7	7,010	14,69	0,180	0,302	0,046
4r	3045,1	7,021	12,27	0,208	0,308	0,051
5r	3004,5	7,032	10,19	0,242	0,315	0,056
6r	2964,0	7,043	8,41	0,282	0,322	0,062
7r	2923,4	7,054	6,90	0,330	0,328	0,067
8r	2882,9	7,065	5,62	0,389	0,335	0,073
9r	2842,3	7,076	4,53	0,461	0,341	0,078
10r	2801,8	7,087	3,63	0,550	0,348	0,083
11r	2761,2	7,098	2,88	0,661	0,354	0,089

Tab. 4.7 Stav páry na vstupu do RLŘ

4.4.5 Finální návrh parametrů páry

Výpočet se provede pomocí tzv. vztažných rovin. Princip jejich vytvoření je znázorněn na obr. 4.6 [3]. Označení na obrázku je pouze ilustrační.

Vypočtené parametry jsou uvedené v tabulce 4.10.

Obr. 4.7 vyjadřuje závislost $p_i^{S\check{C}}$ a $v_i^{S\check{C}}$ na $h_{i,iz}^{GRAF}$, která je využitá pro vytvoření vztažných rovin dle obr. 4.6.

Obr. 4.7 Závislost tlaku $p_i^{S\check{C}}$ a měrného objemu $v_i^{S\check{C}}$ na $\Delta h_{i,iz}^{GRAF}$

FSI EÚ OEI

VUT Brno

Pomocí programu Microsoft Excel se stanoví matematická závislost $p_i^{S\check{C}}$ na $h_{i,iz}^{GRAF}$:

$$p_{i}^{S\check{C}} = a_{p} \times (h_{i,iz}^{GRAF})^{5} + b_{p} \times (h_{i,iz}^{GRAF})^{4} + c_{p} \times (h_{i,iz}^{GRAF})^{3} + d_{p} \times (h_{i,iz}^{GRAF})^{2} + e_{p} \times (h_{i,iz}^{GRAF})^{1} + f_{p}$$

$$4.56$$

tab. 4.8 Koeficienty rovnice závislosti tlaku na entalpii

a_p	b_p	C _p	d_p	e_p	f_p
7,62238E-13	-1,0843E-09	5,19026E-07	-3,4825E-05	-0,0631418	22,0118

Pomocí programu Microsoft Excel se stanoví matematická závislost v_i^{SC} na $\Delta h_{i,iz}^{GRAF}$:

$$v_{i}^{S\check{C}} = a_{v} \times \left(h_{i,iz}^{GRAF}\right)^{5} + b_{v} \times \left(h_{i,iz}^{GRAF}\right)^{4} + c_{v} \times \left(h_{i,iz}^{GRAF}\right)^{3} + d_{v} \times \left(h_{i,iz}^{GRAF}\right)^{2} + e_{v} \times \left(h_{i,iz}^{GRAF}\right)^{1} + f_{v}$$

$$4.57$$

tab. 4.9 Koeficienty rovnice závislosti měrného objemu na entalpii

a_v	b_v	Cv	d_v	e_v	f_v
3,4764E-15	2,12041E-12	-9,81124E-10	1,24291E-06	0,000281703	0.13099

Nejprve se provede výpočet pro poslední (jedenáctou) vztažnou rovinu. Výpočet dle [3].

1. Výpočet axiální průtočné plochy poslední vztažné roviny $S_{a,i}^{SC}$

$$S_{a,i}^{S\check{C}} = \pi \times D_i^{S\check{C}} \times l_i^{S\check{C}} \qquad [m^2] \qquad 4.58$$

- 2. Výpočet obvodové rychlosti na středním průměru n-té vztažné roviny $u_i^{S\check{C}} = \pi \times D_{11}^{S\check{C}} \times n$ [*m/s*] 4.59
- 3. Byl odhadnut entalpický spád na poslední stupeň $h_{izi,odh}^{SC}$

- Dle rovnice 6.18 je vypočítán měrný objem páry stupně $v_{i,prum}^{SC}$ vztažné 4. roviny 11 pro hodnotu $h_{i,iz}^{GRAF} = h_{n,iz}^{GRAF} - \frac{h_{izi,odh}^{SC}}{2} [kJ/kg]$ 5. Vypočítá se axiální rychlost $c_{a,i}^{SC}$ ve vztažné rovině 11. 4.60
- Vypočítá se poměr $\frac{c_{a,i}^{SC}}{u_{i}^{SC}}$ 6.

7. Náběžný úhel lopatek α_i je totožný s úhlem v předběžném návrhu posledního stupně α_n

- 8. Dle [3] byl zvolen rychlostní součinitel $\varphi^{SC} = 0.945$.
- Byla dopočítána hodnota ztrátového součinitele: 9.

$$\lambda^{S\check{C}} = \frac{1}{\left(\varphi^{S\check{C}}\right)^2} - 1 \qquad [-] \qquad 4.61$$

10. Vypočítá se hodnota Parsonova čísla pro daný stupeň dle vztahu:

$$P_{a,i} = \frac{1}{\frac{\lambda^{S\check{C}}}{\sin^2 \alpha_i} \times \frac{c_{a,i}^{S\check{C}}}{u_i^{S\check{C}}} + \frac{2}{\lg \alpha_i} \times \frac{c_{a,i}^{S\check{C}}}{u_i^{S\check{C}}} - 1} \qquad [-] \qquad 4.62$$

11. Dle definice P_a se vypočítá opravdový entalpický spád stupně:

$$h_{izi,vyp}^{S\check{C}} = \frac{u_i^{S\check{C}}}{P_{a,i}} \qquad [kJ/kg] \qquad 4.63$$

12. Následně se dopočítá zpřesněná hodnota $h_{i,iz,zpřes}^{GRAF}$:

$$h_{i,iz,zp\check{r}es}^{GRAF} = h_{n,iz}^{GRAF} - \frac{h_{izi,vyp}^{S\check{C}}}{2} \qquad [kJ/kg] \qquad 4.64$$

$$h_{izi,\Delta}^{S\check{C}} = h_{izi,odh}^{S\check{C}} - h_{izi,vyp}^{S\check{C}} \qquad [kJ/kg] \qquad 4.65$$

V případě, že absolutní hodnota rozdíl hodnot $|h_{izi,\Delta}^{SC}|$ je menší než 5 kJ/kg, je možné pokračovat výpočtem dalšího stupně. Takto se bude postupovat až k výpočtu prvního stupně. V případě, že by daná hodnota byla větší než 5 kJ/kg, bylo by nutné odhadnout jiný entalpický spád $h_{izi odh}^{SC}$ a zbylý výpočet znovu propočítat.

U výpočtu dalších stupňů dojde k těmto změnám:

Měrný objem páry stupně $v_{i,prum}^{SC}$ vztažné roviny i je počítán dle rovnice 6.18 pro hodnotu $h_{i,iz}^{GRAF} = h_{i+1,iz,zp\check{r}es}^{GRAF} - \frac{h_{izi+1,vyp}^{S\check{C}}}{2} - \frac{h_{izi,odh}^{S\check{C}}}{2}.$ [kJ/kg]4.66

Náběžný úhel lopatek α_i se zvolí. U prvního stupně se použije náběžný úhel α_i z předběžného výpočtu stupňové části.

Dopočítání zpřesněné hodnoty
$$h_{i,iz,zpřes}^{GRAF} = h_{i+1,iz,zpřes}^{GRAF} - \frac{h_{izi+1,vyp}^{SC}}{2} - \frac{h_{izi,vyp}^{SC}}{2}$$
 4.67

Po dopočítání všech stupňů je nutné ověřit, že $\sum h_{izi,vyp}^{SC}$ je v intervalu $[(0,99 \times \sum \Delta h_{i,iz}^{S\tilde{C}}) \div (1,01 \times \sum \Delta h_{i,iz}^{S\tilde{C}})]$. V tomto případě byla daná podmínka splněna.

Tab. 4.10 T vztažná rovina i 1 2	Tabulka výp S sč a,i [m²] 0,032 0,037	očtových hoc <i>u^sč</i> [<i>m/s</i>] 158,75 162,37	Inot stupňov v ^{sć} [m ³ /kg] 0,144 0,164	é části - met csť [m/s] 74,29 71,97	oda $\frac{c_a}{u}$ $\frac{c_{a,i}}{u_i^{sc}}$ 0,468 0,443	a(19	<i>ل</i> عة (] 0,12	P _{a,i} [-] 0,509	h_{ux}^{sc} $[k]$ 4	,0 <i>i,odh</i> /kg] 8,0	, i.odh k <u>sč</u> i.odh k <u>l/kg</u> 8,0 49,55 7,0 47,37	ksć kcRAF i.odh ksć ki.izzpřes /kg] [k]/kg] [k]/kg] 8,0 49,55 38,49 7,0 47,37 86,17
	$[m^2]$	[m/s]	$[m^3/kg]$	[m/s]	[-]	[c]	T	Ľ,	[-] [-]	-] $[-]$ $[kJ/kg]$	$\cdot] \qquad [-] \qquad [k]/kg] \qquad [k]/kg]$	$\cdot] \qquad [-] \qquad [kJ/kg] \qquad [kJ/kg] \qquad [kJ/kg]$
-	0,032	158,75	0,144	74,29	0,468	19	0,1	12	2 0,509	2 0,509 48,0	2 0,509 48,0 49,55	2 0,509 48,0 49,55 38,49
3 2	0,037	162,37	0,164	71,97 71.72	0,443	19 19	0 0	12	12 0,557 12 0.581	12 0,557 47,0 12 0.581 48.0	12 0,557 47,0 47,37 12 0.581 48.0 47.41	12 0.557 47.0 47.37 86.17 12 0.581 48.0 47.41 133.38
4	0500	169,59	0,221	73,30	0,432	19	0	,12	,12 0,581	,12 0,581 51,0	,12 0,581 51,0 49,53	,12 0,581 51,0 49,53 182,14
S	950'0	173,20	0,256	75,24	0,434	22	0),12	,12 0,762),12 0,762 36,0),12 0,762 36,0 39,35),12 0,762 36,0 39,35 227,32
6	0,062	176,82	0,291	76,50	0,433	22	0),12	,12 0,768	0,12 0,768 37,5	12 0,768 37,5 40,70	12 0,768 37,5 40,70 265,67
7	690'0	180,43	0,335	79,28	0,439	22	0),12),12 0,746),12 0,746 40,0),12 0,746 40,0 43,63	0,12 0,746 40,0 43,63 306,24
8	0,076	184,04	0,392	84,33	0,458	22	0	,12	,12 0,691	,12 0,691 46,0	,12 0,691 46,0 49,04	,12 0,691 46,0 49,04 350,75
9	0,084	187,65	0,459	90,19	0,481	26	0	12	12 0.897	12 0,897 36,0	12 0,897 36,0 39,27	12 0,897 36,0 39,27 393,39
10	0,091	191,26	0,537	96,84	0,506	26	0	,12	,12 0,809	,12 0,809 42,5	,12 0,809 42,5 45,23	12 0,809 42,5 45,23 434,00
n	660°0	194,88	0,655	108,99	0,559	26	0	,12	,12 0,672	0,12 0,672 53,5	12 0,672 53,5 56,54	12 0,672 53,5 56,54 483,52
										suma	suma 507,61	suma 507,61

Parní turbina protitlaková

Bc. Libor Merta 2012

4.5 Rychlostní trojúhelníky stupňové části

Postup výpočtu jednotlivých složek absolutní a relativní rychlosti a náběžných úhlů je ukázán na posledním stupni stupňové části, který je pevnostně nejvíce namáhaný.

Obr. 4.8 Zjednodušený rychlostní trojúhelník při stupni reakce $\rho = 0,5$ [3] Zjednodušení určení axiálních složek rychlostí:

$$c_{n,a} = c_{n,1a} = c_{n,2a} = w_{n,1a} = w_{n,2a}$$

Absolutní rychlost na výstupu ze statoru:

$$c_{n,1} = \frac{c_{n,1a}}{\sin \alpha_{n,1}} \qquad [m/s] \qquad 4.68$$

Relativní rychlost na vstupu do statoru:

$$w_{n,1} = \sqrt{c_{n,1}^2 + u^2 - 2 \times c_{n,1} \times u \times \cos \alpha_{n,1}} \qquad [m/s] \qquad 4.69$$

Vstupní úhel proudu páry do rotoru:

$$\beta_{n,1} = \arcsin \frac{w_{n,1a}}{w_{n,1}} \qquad [^\circ] \qquad 4.70$$

Relativní izoentropická rychlost na výstupu z rotoru:

$$w_{n,2iz} = \sqrt{\rho \times 2 \times \Delta h_{n,iz}^{S\check{C}} + w_{n,1}^2}$$
 [m/s] 4.71

Dle obr. 3.7 se zvolí rychlostní součinitel profilu pro oběžné lopatky ψ :

Volba: $\psi = 0.98 [-]$

Skutečná relativní rychlost na výstupu z rotoru:

$$w_{n,2} = w_{n,2iz} \times \psi \qquad [m/s] \qquad 4.72$$

Výstupní úhel relativní rychlosti:

$$\beta_{n,2} = \arcsin \frac{w_{n,2a}}{w_{n,2}} \qquad [^{\circ}] \qquad 4.73$$

Absolutní rychlost na výstupu ze stupně:

$$c_{n,2} = \sqrt{w_{n,2}^2 + u^2 - 2 \times c_{n,1} \times u \times \cos \alpha_{n,1}} \qquad [m/s] \qquad 4.74$$

Výstupní úhel absolutní rychlosti:

$$\alpha_{n,2} = \arcsin \frac{c_{n,2a}}{c_{n,2}} \qquad [^{\circ}] \qquad 4.75$$

Složky rychlostí do obvodového směru:

 $c_{n,1u} = c_{n,1} \times \cos \alpha_{n,1}$ [*m/s*] 4.76

$$w_{n,1u} = w_{n,1} \times \cos \beta_{n,1}$$
 [*m*/*s*] 4.77

$c_{n,2u} = c_{n,2} \times \cos \alpha_{n,2}$	[m/s]	4.78
$w_{n,2u} = w_{n,2} \times \cos \beta_{n,2}$	[m/s]	4.79

Dle vypočítaných veličin byl sestrojen rychlostní trojúhelník. Stejným způsobem byly propočítány i dané hodnoty potřebné pro sestrojení rychlostního trojúhelníku prvního stupně stupňové části. Oba rychlostní trojúhelníky jsou znázorněné na obr. 4.9.

Porovnání trojúhelníků názorně ukazuje, jak se s průběhem expanze zvyšovala axiální složka rychlostí a velikost náběžných úhlů.

Obr. 4.9 Rychlostní trojúhelníky prvního a posledního stupně stupňové části

4.5.1 Tabelované výsledky

tab. 4.11 Tabelované výsledky – rychlostní trojúhelníky SČ

Popis	Vztah	Označení	Hodnota	Jednotka
Absolutní rychlost na výstupu ze statoru	4.68	<i>C</i> _{<i>n</i>,1}	246,6	m/s
Relativní rychlost na vstupu do statoru	4.69	W _{n,1}	111,4	m/s
Vstupní úhel proudu páry do rotoru	4.70	$\beta_{n,1}$	76	[°]
Relativní izoentropická rychlost z rotoru	4.71	W _{n,2iz}	261,0	m/s
Rychlostní součinitel profilu pro oběžné lopatky		ψ	1	[-]
Skutečná relativní rychlost na výstupu z rotoru	4.72	<i>W</i> _{<i>n</i>,2}	261,0	m/s
Výstupní úhel relativní rychlosti	4.73	$\beta_{n,2}$	24	[°]
Absolutní rychlost na výstupu ze stupně	4.74	<i>C</i> _{<i>n</i>,2}	116,2	m/s
Výstupní úhel absolutní rychlosti	4.75	$\alpha_{n,2}$	68	[°]
Obvodová složka absolutní rychlosti na výstupu ze statoru	4.76	<i>C_{n,1u}</i>	221,6	m/s
Obvodová složka relativní rychlosti na výstupu ze statoru	4.77	W _{n,1u}	26,8	m/s
Obvodová složka absolutní rychlosti	4.78	<i>C_{n,2u}</i>	42,6	m/s

na výstupu z rotoru				
Obvodová složka relativní rychlosti na výstupu z rotoru	4.79	W _{n,2u}	237,5	m/s

5 Převodovka

5.1 Výběr typu převodovky

Mezi turbínu a generátor je z důvodu snížení otáček nutné vložit převodovku. Převodový poměr záleží především na výběru typu generátoru. Má-li generátor vyrábět proud o frekvenci 50 Hz, musí mít hřídel generátoru otáčky 1500 ot/min v případě čtyřpólového generátoru a 3000 ot/min v případě dvoupólového generátoru. Z finančního hlediska volím dvoupólový generátor, který vyžaduje vyšší převodový poměr převodovky oproti variantě se čtyřpólovým generátorem.

Otáčky hřídele generátoru n^G :

 $n^{G} = 1500 \text{ ot/min}$

Volím jednostupňovou převodovku od firmy RENK.

Parametry pro výběr převodovky:

Výkonový faktor A (otáčky dosazeny v ot/min):

$$A' = \frac{P_i}{n}$$
 [-] 5.01

Převodový poměr *i* (otáčky dosazeny v ot/min):

$$i = \frac{n}{n_G} \qquad \qquad [-] \qquad \qquad 5.02$$

Zvolí se dle způsobu zatížení service faktor S_F :

Volba: $S_F = 1,3 [-]$

Výkonový faktor A zahrnující service faktor:

$$A = \frac{P_i}{n} \times S_F \qquad [-] \qquad 5.03$$

Dle vypočítaných parametrů převodovky a obr. 5.1 byla zvolena převodovka RENK TNB 710. Jedná se o převodovku se šípovým ozubením.

Obr. 5.1 Závislost A-i převodovek RENK [8]

Dle obr. 5.2 jsou pro převodovku TNB 710 s daným převodovým poměrem *i* maximální povolené otáčky 11600 ot/min. Z toho plyne, že je možné použít tuto převodovku pro navrženou turbínu s otáčkami 10500 ot/min.

		Baureihe T	NA oder TD	A / Series 1	NA or TDA	·	Baur	eihe TNB oc	ler TDB / Se	eries TNB o	TDB
Größe		Nenn	übersetzung	/ Rated red	uction			Nennüberse	tzung / Rate	d reductio	n
Size	1,25 bis/to 1,60	1,61 bis/to 2,00	2,01 bis/to 3,20	3,21 bis/to 3,70	3,71 bis/to 4,20	4,21 und größer and up	bis/to 4,20	4,21 bis/to 4,80	4,81 bis/to 5,80	5,81 bis/to 7,20	7,21 und größe and up
125	20.000	26.000	30.000	30.000	30.000	30.000	30.000	30.000	30.000	30.000	30.000
160	20.000	26.000	26.000	30.000	30.000	30.000	30.000	30.000	30.000	30.000	30.000
200	20.000	22.000	23.300	26.000	30.000	30.000	30.000	30.000	30.000	30.000	30.000
225	18.000	20.000	21.000	23.300	26.000	26.000	26.000	30.000	30.000	30.000	30.000
250	16.300	18.000	19.000	21.000	23.300	26.000	23.300	26.000	30.000	30.000	30.000
280	14.500	16.000	16.800	19.000	21.000	23.000	21.000	23.300	26.000	30.000	30.000
315	13.000	14.200	15.000	16.800	19.000	21.000	19.000	21.000	23.300	26.000	30.000
355	11.500	12.600	13.100	15.000	16.800	16.800	16.800	19.000	21.000	23.300	26.000
400	10.200	11.000	11.600	13.100	15.000	16.800	16.800	16.800	19.000	21.000	23.300
450	9.100	10.000	11.600	11.600	13.100	15.000	15.000	15.000	16.800	19.000	21.000
500	8.200	9.000	10.500	10.500	11.600	13.100	13.100	13,100	15.000	16.800	19.000
560	7.200	8.000	9.300	9.300	10.500	11.600	11.600	11.600	13.100	15.000	16.800
630	6.500	7.100	8.400	8.400	9.300	10.500	10.500	10.500	11.600	13.100	15.000
710	5.700	6.300	7.500	7.500	8.400	9.300	9.300	9.300	10.500	11.600	13.100
800	5.100	5.700	6.600	6.600	7.500	8.400	8.400	8.400	9.300	10.500	11.600

Obr. 5.2 Maximální přípustné otáčky v závislosti na typu převodovky [8]

5.2 Účinnost a výkon převodovky

Dle obrázku 5.3 se zvolí účinnost převodovky $\eta^{P\check{R}}$: Odečteno z obr. 5.3: $\eta^{P\check{R}} = 0,979$ [-]

Obr. 5.3 Závislost účinnosti na převodovém poměru [8]

Ztrátový výkon převodovky $P_{ztrat}^{P\check{R}}$: $P_{ztrat}^{P\check{R}} = (1 - \eta^{P\check{R}}) \times P_i$ [kW] 5.04

Základní rozměry převodovky RENK jsou zvýrazněny na obr. 5.4 a obr. 5.5.

Obr. 5.4 Základní rozměry převodovky [8]

Größe	Туре						0	Sehäuse	/ Housin	9					
Size		A	в	c	1	G	н	h,	ha	ĸ	1	A	c	P	R
560	AB	560	585 625	157 153	0 1	180 980	1370 1410	500	240	160) 14	00	70	760 580	140
630	A B	630	650 700	175	0 1	280 100	1500 1550	580	240	200) 15	70	75	800 620	160
710	AB	710	730	198	0 1	420 220	1600	560	300	200	17	60	80	950 750	160
800	A	800	825	225	10 1	600	1770	630	300	200) 20	00	90	1100	180
			885	216		350	1850			_				000	
Größe Size	Туре		885 We	216 silen / Sha	10 <u> 1</u> afts	350	1850		8	hrauber	n / Screw	/5		Anzahl	Gewict
Größe Size	Туре	D _{1 max}	1, 885	lien / Shi	10 1 afts I2	350 E	1850 F	N	Se a,	t shrauber ð _k	n / Screw a _s	rs b	8	Anzahl	Gewict Weigh Ng
Größe Size 560	Туре А В	D _{1 max} 220 170	1, 320 280	216 Jien / Sha D _{2 max} 240 220	afts 1 ₂ 350 320	E 580 470	F 1050 900	N 420 480	- a, 300 360	2hrauber 3 ₂ 470 440	a, Screw a, 470 440	rs b 80	8	Anzahl Number 8	Gewich Weigh kg 4860 4170
Größe Size 560 630	Type A B A B	D _{1.max} 220 170 240 190	We 1, 320 280 350 300	210 Jien / Sha 240 220 270 240	afts I ₂ 350 320 400 350	E 590 470 630 510	F 1050 900 1160 1000	N 420 480 470 540	a, 300 360 340 410	arrauber ar 470 440 525 490	a _s 470 440 525 490	/s b 80 90	8 39 45	Anzahi Number 8	Gewici Weigh kg 4860 4170 6660 5650
Größe Size 560 630 710	Type A B A B A B	D _{1.max} 220 170 240 190 270 220	We I, 320 280 350 300 400 320	216 binn / Sha 240 220 270 240 300 270	afts I ₂ 350 320 400 350 420 400	E 580 470 630 510 695 570	F 1050 900 1160 1290 1120	N 420 480 470 540 530 600	8/ at 300 360 340 410 380 450	az 470 440 525 490 560 555	a/ Screw as 470 440 525 490 560 555	/s b 80 90	8 39 45 45	Anzahi Number 8 8	Gervict Weigh 4860 4170 5650 9170 7740

Obr. 5.5 Hodnoty rozměrů převodovky [8]

5.3 Tabelované výsledky

Tab. 5.1 Tabelované výsledky - převodovka

Popis	Vztah	Označení	Hodnota	Jednotka
Otáčky hřídele generátoru		n^{G}	1500	ot/min
Výkonový faktor	5.01	A	0,85	[-]
Převodový poměr	5.02	i	7	[-]
Service faktor		S _F	1,3	[-]
Výkonový faktor zahrnující service faktor	5.03	Α	1,11	[-]
Účinnost převodovky		$\eta^{P\check{R}}$	0,979	[-]
Ztrátový výkon převodovky	5.04	$P_{ztrat}^{P\check{R}}$	152,2	kW

6 Změna protitlaku

6.1 Vliv změny protitlaku

Všechny dosavadní výpočty uvažovaly konstantní jmenovitý protitlak $p_p = 2,5 bar$. Součástí požadavku na návrh turbíny je také popsat stav, kdy dojde ke změně protitlaku v rozsahu $(2 \div 4) bar$.

Změna protitlaku především znamená změnu zpracovaného spádu turbínou. S rostoucím protitlakem se zpracovaný spád snižuje. Se sníženým zpracovaným spádem se snižuje výkon turbíny i termodynamická účinnost turbíny.

Seznam nejdůležitějších veličin, které jsou výrazně ovlivněny změnou protitlaku:

Entalpický spád turbíny – se zvýšeným protitlakem se snižuje

Účinnost turbíny – se zvýšeným protitlakem se snižuje

Výkon turbíny – se zvýšeným protitlakem se snižuje

Axiální síla – se zvýšeným protitlakem se zvyšuje

Průtok páry – při zvýšení protitlaku je pro udržení konstantního výkonu nutné zvýšit

průtok

6.2 Vliv protitlaku na změnu výkonu

Snížení protitlaku na $p_{p,2bar} = 2 \ bar$

Protitlak navýšený o tlakovou ztrátu výstupním hrdlem ξ_{vh} :

$$p_{n,2bar} = \frac{p_{p,2bar}}{1-\xi_{vh}} = 2,04 \ [bar] \tag{6.01}$$

Z parních tabulek (pomocí $p_{n,2bar}, s_n$) se zjistí měrná entalpie $i_{n,2bar}$ na výstupu ze stupňové části:

$$i_{n,2bar} = 2700,6 \, kJ/kg$$

Přibližný výpočet vnitřního výkonu turbíny:

$$P_{i,2bar}^{T} = (i_{0} - i_{n,2bar} - z_{c,n}^{SC}) \times M = 9275,3 \ [kW]$$
6.02

Zvýšení protitlaku $p_{p,4bar} = 4 \ bar$

Výpočet je totožný jako u protitlaku 2 bary:

$$p_{n,4bar} = \frac{p_{p,4bar}}{1-\xi_{vh}} = 4,08 \ [bar]$$
6.03

$$i_{n,4bar} = 2833,1 \, kJ/kg$$

$$P_{i,4bar}^{T} = \left(i_0 - i_{n,4bar} - z_{c,n}^{SC}\right) \times M = 7168,6 \, [kW]$$
6.04

Spotřební charakteristika turbíny je uvedená v kapitole 7.2.

7 Závěrečné zhodnocení

7.1 Účinnosti a výkony

Regulační stupeň

Termodynamická účinnost regulačního stupně:

$$\eta_{tdi}^{RS} = 0,81 [-]$$

Vnitřní výkon regulačního stupně:

$$P_i^{RS} = 1764,6 \ [kW]$$

Stupňová část

Termodynamická účinnost stupňové části:

$$\eta_{tdi}^{S\check{C}} = 0,88 [-]$$

Vnitřní výkon stupňové části:

$$P_i^{S\check{C}} = 7081,7 \ [kW]$$

Celá turbína

Vnitřní výkon turbíny P_i^T :

$$P_i^T = P_i^{RS} + P_i^{RS} = 8846,3 \ [kW]$$

Termodynamická účinnost turbíny včetně ztráty výstupní rychlostí:

$$\eta_{tdi}^{T} = \frac{H}{h_{iz}^{RS} + h_{iz}^{S\tilde{C}}} = 0,85 \ [-]$$

Mechanická účinnost turbíny::

$$\eta_{mech}^{T} = 0,99 [-]$$

Převodovka

Účinnost převodovky:

$$\eta^{P\check{R}} = 0,979[-]$$

Ztrátový výkon převodovky:

$$P_{ztrat}^{P\check{R}} = 148,6 \ kW$$

Svorková účinnost a výkon

Detailní návrh generátoru nebyl součástí zadání diplomové práce, proto se účinnost generátoru η^{G} zvolí:

Volba: $\eta^{G} = 0,975 [-]$

Svorková účinnost:

$$\eta^{SV} = \eta^{T}_{tdi} \times \eta^{T}_{mech} \times \eta^{P\check{\mathsf{R}}} \times \eta^{G} = 0,80 \ [-]$$

Svorkový výkon:

$$P^{SV} = P_i^T \times \eta_{mech}^T \times \eta^{P\check{R}} \times \eta^G = 8359,6 \ kW$$

7.2 Spotřební charakteristika turbíny

Spotřební charakteristika turbíny vyjadřuje závislost spotřeby páry na výkonu turbíny. Je to také vhodný nástroj pro znázornění změny výkonu při neměnném průtoku a změně protitlaku. Provedou se tři výpočty pro protitlaky 2; 2,5 a 4 bary. Výsledky jsou uvedené v tabulce 7.1. Pro přehlednost a porovnání závislosti spotřeby páry na výkonu při změněném protitlaku je vykreslen graf na obr. 7.2.

Z obr. 7.1 se odečte součinitel chodu naprázdno k_0 pro turbínu se skupinovou regulací:

Obr. 7.1 Součinitel chodu naprázdno turbín se skupinovou regulací [3] Zvolen maximální průtok $M_{max} = M \times 1,02 = 16.99 \ kg/s$ Spotřeba páry pro chod naprázdno M_0 :

$$M_0 = k_0 \times M \qquad [kg/s]$$

Spotřeba páry při různých výkonech P (vzhledem k tomu, že jmenovitý a maximální průtok se liší pouze o 2 %, byla užita stejná rovnice, která běžně platí pro nulový až jmenovitý průtok):

$$M_P = M \times \sqrt{k_0 + (1 - k_0) \times \frac{P}{P^{SV}}} \quad [kg/s]$$

Výkonu *P_{max}* se dosáhne při maximálnímu průtoku.

Tab. 7.1 Závislost spotřeby páry na výkonu a protitlaku

FSI EÚ OEI VUT Brno

p _n	<u>p</u> p	k _o	Mo			Р	[kW]				P _{max} [kV	V]
хр	p ₀		U	0	1000	2000	3000	5000	7000	7125	8616	9269
[bar]	[1/100]	[-]	[kg/s]					M []	kg/s]			
2,0	5,8	0,16	2,58	2,58	4,13	5,68	7,23	10,33	11,88			16,94
2,5	7,3	0,17	2,83	2,83	4,47	6,11	7,74	11,02	12,65		16,94	
4,0	11,66	0,20	3,33	3,33	5,24	7,15	9,06	12,87	14,78	16,93		

Obr. 7.2 dokazuje, že při zvýšení protitlaku a konstantním průtoku klesá výkon turbíny.

Obr. 7.2 Spotřební charakteristika turbíny pro různé protitlaky

7.3 Průběh expanze páry

Základní průběh expanze páry v turbíně vyjádřen jednotlivými stavovými veličinami v tabulce

Tab.	7.2 H	Hodnoty	stavovýc	ch veličin	párv	během	expanze
I uo.	/ •	iounory	staroryc		purj	ounem	enpunze

had	nonis místo	entalpie	entropie	tlak	teplota
bou	popis mista	[kJ/kg]	[kJ/kg°C]	[bar]	[°C]
А	přívod ostré páry	3292,2	6,943	35,00	430
0	vstup do regulačního stupně	3292,2	6,953	34,30	430
2	výstup z regulačního stupně	3180,2	6,983	21,99	371
n	výstup z posledního stupně SČ	2747,2	7,119	2,55	142
р	výstup z výstupního hrdla turbíny	2747,2	7,128	2,50	142

ZÁVĚR

Výstupem této diplomové práce je termodynamický a konstrukční návrh protitlaké turbíny dle zadaných parametrů, a to včetně grafického znázornění ve výkrese podélného řezu turbíny.

V rámci termodynamického a konstrukčního návrhu bylo často nutné volit různé konstanty či koncepční řešení, která měla menší či větší vliv na konečný návrh stroje. Vždy bylo snahou tyto volby činit v souladu s celkovou koncepcí stroje, která je charakterizována především vysokou roční dobou provozu. Znamená to, že byla zvolena hlavně řešení, která zvyšují termodynamickou účinnost i za cenu zvýšených investičních nákladů. Jako příklad poslouží volba regulačního stupně typu A-kola, regulace průtoku pomocí skupinové regulace či bandážování přetlakových lopatek stupňové části.

Návrh se postupně zaměřil na jednotlivé části turbíny, kterým předcházel předběžný návrh celé turbíny pro ověření navrhnutých jmenovitých otáček.

Z důvodu proměnného zatížení turbíny byla zvolena skupinová regulace, která pomocí proměnného zmenšení či zvětšení zdvihu regulačního ventilu umožní regulaci průtoku páry s nižšími ztrátami v porovnání s regulací škrcením. Uvnitř ventilové komory jsou umístěny tři regulační ventily. Každý z ventilů reguluje průtok do jedné ze tří dýzových skupin, které jsou tvořeny dvanácti, deseti a osmi dýzami. Při jmenovitém průtoku jsou první dva ventily plně otevřené a ve třetím ventilu dochází ke škrcení. Vzhledem k tomu, že maximální průtok je pouze o 2 % vyšší než jmenovitý průtok, nebyla pro potřebu pokrytí tohoto rozdílu navrhována další speciální dýzová skupina.

Regulační stupeň byl zvolen akční, jedná se tedy o provedení A-kolo. A to i přes to, že nedosahuje takové termodynamické účinnosti jako stupeň s přetlakovým lopatkováním. Díky této volbě bylo možné navrhnout parciální ostřik regulačního stupně, který by nebylo možné realizovat u přetlakového lopatkování. Následkem užití A-kola došlo ke zpracování výrazného entalpického spádu turbíny (přibližně 20 %), což snížilo počet stupňů stupňové části (snížení pořizovacích nákladů) a vzdálenost mezi radiálními ložisky (nižší namáhání rotoru). Díky výraznému snížení parametrů ostré páry po průchodu regulačního stupně vychází délky lopatek v dalších stupních delší oproti užití přetlakového lopatkování, což snižuje okrajové ztráty a ztráty radiální mezerou. Navíc dochází k šetrnějšímu namáhání skříně, což ji dovoluje konstruovat z levnějších materiálů.

Před návrhem stupňové části bylo nutné navrhnout vyrovnávací píst s ucpávkami, aby se zjistilo množství páry, které neproteče stupňovou částí a tím pádem nepředá svoji energii rotoru turbíny. Průměr vyrovnávacího pístu byl navržen tak, aby vyrovnávací píst zachytil přibližně polovinu axiální síly, kterou pára působí na rotor během své expanze. Zbytek axiální síly rotoru zachytí vhodně nadimenzované axiální ložisko (návrh nebyl součástí diplomové práce).

Návrh stupňové části byl tvořen dvěma částmi. V první předběžné části byl určen předběžný počet stupňů a přibližný tvar průtočného kanálu. Získané hodnoty byly použity v detailním návrhu stupňové části pomocí metody $\frac{c_a}{u}$. Po ověření, že jsou splněny podmínky pro užití této výpočtové metody (stupeň reakce $\rho = 0.5$, konstantní hmotnostní průtok celou stupňovou částí, sledování průběhu na středním průměru lopatkování, rovnost axiálních

rychlostí na vstupu a výstupu na stupni), došlo k samotnému návrhu stupňové části. Výsledkem bylo detailní navržení základních geometrických rozměrů jednotlivých stupňů a vyčíslení jimi zpracovaného entalpického spádu.

Po zjištění vnitřního výkonu byl proveden návrh vhodné převodovky mezi turbínu a dvoupólový generátor. Byla vybrána převodovka RENK TNB 710 s převodovým poměrem 7.

V předposlední části diplomové práce bylo pomocí charakteristiky turbíny pro různé protitlaky názorně ukázáno, jaký vliv má změna protitlaku na výkon turbíny: se vzrůstajícím protitlakem klesá zpracovaný entalpický spád a tedy i výkon turbíny. Z této charakteristiky je také zřejmé, jak se musí změnit průtok páry pro dosažení konstantního výkonu při změně protitlaku.

SEZNAM POUŽITÝCH ZDROJŮ

- KADRNOŽKA, Jaroslav. Tepelné turbíny a turbokompresory I: základy teorie a výpočtů. 1. vyd. Brno: Akademické nakladatelství CERM, s.r.o. Brno, 2004. 308 s. ISBN 80-7204-346-3
- [2] KRBEK, Jaroslav. Tepelné turbíny a turbokompresory, 1990.
 3. vydání. Brno: Vysoké učení technické v Brně, ISBN 80-214-0236-9
- [3] FIEDLER, Jan. PARNÍ TURBÍNY: Návrh a výpočet. Vysoké učení technické v Brně Fakulta strojního inženýrství, 2004. ISBN 8O-214-2777-9.
- [4] AMBROŽ, Jaroslav. Konstrukce parních turbín. 2.vyd. PRAHA: Vydavatelství ČVUT 1977. 195 s.
- [5] Firemní literatura Siemens
- [6] ŠČEGLJAJEV, Andrej Vladimirovič. Parní turbíny: Teorie tepelného děje a konstrukce turbín. 1. vyd. Praha: SNTL, 1983, 367 s.
- [7] KRBEK, Jaroslav a POLESNÝ, Bohumil. Závěrečný projekt: Výpočet tepelných turbín a jejich příslušenství. 1. vyd. Brno: Ediční středisko Vysokého učení technického, 1987, 336 s. 26
- [8] RENK TACKE. Turbo-Getriebe TNA/TNB TDA/TDB. Augsburg, 28 s. 64

SEZNAM ZKRATEK

~	
	běžná lonotková řodo
ULK	Dezne iodalkova rada
U LIC	o ellie ropanico a rada

- RLŘ rozváděcí lopatková řada
- RS regulační stupeň
- SČ stupňová část
- VP vyrovnávací píst

SEZNAM HLAVNÍCH VELIČIN

А	-	výkonový faktor
В	m	šířka lopatkové řady
c	m/s	absolutní rychlost
c	m	délka tětivy profilu
D	m	průměr
f	-	součinitel zpětného využití ztrát
F	kN	síla
_

h	kJ/kg	tepelný spád
Н	kJ/kg	tepelný spád
i	kJ/kg	měrná entalpie
k	-	součinitel
k	mm	radiální vůle
1	m	délka lopatky
М	kg/s	hmotnostní průtok
n	ot/sec	otáčky
р	bar	tlak
Р	kW	výkon
Pa	-	Parsonovo číslo
S	kJ/kg°C	měrná entropie
S	m	rozteč lopatek
S	m^2	průřez
s/c	-	optimální rozteč lopatek
t	°C	teplota
Т	Κ	teplota
u	m/s	obvodová rychlost
u/c _{iz}	-	rychlostní poměr
V	m ³ /kg	měrný objem
W	m/s	relativní rychlost
Z	kJ/kg	absolutní energetická ztráta
Z	ks	počet
α	0	úhel absolutní rychlosti
β	0	úhel relativní rychlosti
γ	0	optimální úhel nastavení
3	-	parciální ostřik
η	-	účinnost
μ	-	průtokový součinitel
ڋ	-	poměrná ztráta
π	-	tlakový poměr
ρ	-	stupeň reakce
φ	-	rychlostní součinitel pro rozváděcí lopatkovou řadu
ψ	-	rychlostní součinitel pro oběžnou lopatkovou řadu

SEZNAM DOLNÍCH INDEXŮ

0	stav pracovní látky před regulačním stupněm
Ot	totální ostřik
1	stav pracovní látky za rozváděcí lopatkovou řadou RS
1 až n	číslo stupně stupňové části (v kombinaci s horním indexem SČ)
2	stav pracovní látky za oběžnou lopatkovou řadou
2bar	při protitlaku 2 bar
4bar	při protitlaku 4 bar
a	axiální směr
А	vstupní pára
b	bandáž
c	celkový stav
c	výstupní rychlost
D	dýza
ekv	ekvivalentní
el	elektrický
G	generátor
graf	odečteno z grafu
h	špička lopatky
hrAX	hřídel na straně ax. ložiska
hrG	hřídel na straně generátoru
i	vnitřní
iz	stav pracovní látky po izoentropické expanzi pracovní látky
j	jmenovitý
k	radiální mezera
kontr	kontrola
krit	kritický
max	maximální
mech	mechanický
min	minimální
n	stav pracovní látky na výstupu ze stupňové části
nez	nezaokrouhlený
odh	odhadnutý
opt	optimální
р	protitlak

Р	úhel profilu
рр	přívodní potrubí
prum	průměrný
r	radiální
R	rotor
rot	pata rotoru
red	redukovaný
S	stator
SP	spojkový
STŘ	střední
tdi	termodynamický
tř	třecí
u	redukovaný (pro účinnost)
u	obvodová složka rychlosti
ucp	ucpávka
V	rozvějíření
vh	výstupní hrdlo
vne	vnější průměr
vyp	vypočítaný
zpřes	zpřesněný
ztrat	ztrátový
Δp	přestavitelnost protitlaku
	P pp prum r R rot red S SP STŘ tdi tř u u u u u v v v v v v v v v v v v v v

SEZNAM HORNÍCH INDEXŮ

DR	dýzová regulace
DS	dýzová skupina
GRAF	odečteno z grafu
PŘ	převodovka
R	rotor
RS	regulační stupeň
S	stator
SČ	stupňová část
SV	svorkový
Т	turbína

VP

,

vyrovnávací píst zpřesněná hodnota

SEZNAM OBRÁZKŮ

	Obr. 1.1 Schéma průtoku páry turbínou	9
	Obr. 1.2 Rozvinutý válcový řez lopatkování [1]	9
	Obr. 1.3 Značení rozváděcí a oběžné lopatkové řady	9
	Obr. 1.4 Expanze páry v čistě rovnotlakém a přetlakovém stupni	.10
	Obr. 1.5 Skupinová regulace včetně parciálního ostřiku [2]	.11
	Obr. 1.6 Schematický popis základních výpočtových částí turbíny	.12
	Obr. 2.1 i-s diagram pro předběžný výpočet turbíny	.13
	Obr. 2.2 Graf závislosti výkonu převodovky na otáčkách [5]	.14
	Obr. 3.1 i-s diagram předběžného návrhu expanze páry v regulačním stupni [3]	.16
	Obr. 3.2 Zohlednění dělení parciálního ostřiku na segmenty [3]	.18
	Obr. 3.3 Redukovaná účinnost regulačního stupně [3]	. 19
	Obr. 3.4 Ztráta třením a ventilací regulačního stupně [3]	. 19
	Obr. 3.5 Rychlostní trojúhelník s označením rychlostí a úhlů [6]	.22
	Obr. 3.6 i-s diagram průběhu expanze v redukčním stupni [3, vlastní úprava]	.22
	Obr. 3.7 Závislost rychlostních součinitelů φ a ψ na ohnutí proudu $\Delta \alpha$, $\Delta \beta$ [3]	.23
	Obr. 3.8 Rychlostní trojúhelník regulačního stupně dle vypočítaných hodnot	.24
	Obr. 3.9 Válcový průtočný kanál A-kola [3]	.25
	Obr. 3.10 Označení rozměrů charakterizujících profil lopatky[3]	.26
	Obr. 3.11 Bandáž konce lopatky [3]	. 29
	Obr. 3.12 i-s diagram navrhnutého regulačního stupně	. 30
	Obr. 3.13 Průtočný průřez dýz a změny tlaku za RS v závislosti na hmotnostním průte	oku
páry.		. 35
	Obr. 3.14 Jednotlivé dýzové skupiny parciálního ostřiku	.36
	Obr. 3.15 Závislost průtoku páry na zdvihu ventilů skupinové regulace [5]	. 36
	Obr. 4.1 Účinnost přetlakových stupňů [3]	. 37
	Obr. 4.2 Diagram pro výpočet skupiny přetlakových stupňů metodou ca/u [3]	. 38
	Obr. 4.3 Působení axiálních sil na turbínu	.47
	Obr. 4.4 Průtokový součinitel ucnévek [3]	10
	Obi. 4.4 Flutokový součilitel účpavěk [5]	.49
	Obr. 4.5 Princip značení jednotlivých bodů stupňové části	.49 .51
	Obr. 4.5 Princip značení jednotlivých bodů stupňové části Obr. 4.6 Princip volení vztažných rovin [3]	. 49 . 51 . 54
	Obr. 4.5 Princip značení jednotlivých bodů stupňové části Obr. 4.6 Princip volení vztažných rovin [3] Obr. 4.7 Závislost tlaku piS Č a měrného objemu viS Č na Δhi , $izGRAF$. 49 . 51 . 54 . 55
	Obr. 4.5 Princip značení jednotlivých bodů stupňové části Obr. 4.6 Princip volení vztažných rovin [3] Obr. 4.7 Závislost tlaku <i>piS</i> Č a měrného objemu <i>viS</i> Č na Δhi , <i>izGRAF</i> Obr. 4.8 Zjednodušený rychlostní trojúhelník při stupni reakce $\rho = 0,5$ [3]	. 49 . 51 . 54 . 55 . 58
	Obr. 4.5 Princip značení jednotlivých bodů stupňové části Obr. 4.6 Princip volení vztažných rovin [3] Obr. 4.7 Závislost tlaku <i>piS</i> Č a měrného objemu <i>viS</i> Č na Δhi , <i>izGRAF</i> Obr. 4.8 Zjednodušený rychlostní trojúhelník při stupni reakce $\rho = 0,5$ [3] Obr. 4.9 Rychlostní trojúhelníky prvního a posledního stupně stupňové části	.49 .51 .54 .55 .58 .59
	Obr. 4.5 Princip značení jednotlivých bodů stupňové části Obr. 4.6 Princip volení vztažných rovin [3] Obr. 4.7 Závislost tlaku <i>piS</i> Č a měrného objemu <i>viS</i> Č na Δhi , <i>izGRAF</i> Obr. 4.8 Zjednodušený rychlostní trojúhelník při stupni reakce $\rho = 0,5$ [3] Obr. 4.9 Rychlostní trojúhelníky prvního a posledního stupně stupňové části Obr. 5.1 Závislost A-i převodovek RENK [8]	.49 .51 .54 .55 .58 .59 .61
	Obr. 4.5 Princip značení jednotlivých bodů stupňové části Obr. 4.6 Princip volení vztažných rovin [3] Obr. 4.7 Závislost tlaku <i>piS</i> Č a měrného objemu <i>viS</i> Č na Δhi , <i>izGRAF</i> Obr. 4.8 Zjednodušený rychlostní trojúhelník při stupni reakce $\rho = 0,5$ [3] Obr. 4.9 Rychlostní trojúhelníky prvního a posledního stupně stupňové části Obr. 5.1 Závislost A-i převodovek RENK [8] Obr. 5.2 Maximální přípustné otáčky v závislosti na typu převodovky [8]	.49 .51 .54 .55 .58 .59 .61 .62
	Obr. 4.5 Princip značení jednotlivých bodů stupňové části Obr. 4.6 Princip volení vztažných rovin [3] Obr. 4.7 Závislost tlaku <i>piS</i> Č a měrného objemu <i>viS</i> Č na Δhi , <i>izGRAF</i> Obr. 4.8 Zjednodušený rychlostní trojúhelník při stupni reakce $\rho = 0,5$ [3] Obr. 4.9 Rychlostní trojúhelníky prvního a posledního stupně stupňové části Obr. 5.1 Závislost A-i převodovek RENK [8] Obr. 5.2 Maximální přípustné otáčky v závislosti na typu převodovky [8]	.49 .51 .54 .55 .58 .59 .61 .62 .63
	Obr. 4.5 Princip značení jednotlivých bodů stupňové části Obr. 4.6 Princip volení vztažných rovin [3] Obr. 4.7 Závislost tlaku <i>piS</i> Č a měrného objemu <i>viS</i> Č na Δhi , <i>izGRAF</i> Obr. 4.8 Zjednodušený rychlostní trojúhelník při stupni reakce $\rho = 0,5$ [3] Obr. 4.9 Rychlostní trojúhelníky prvního a posledního stupně stupňové části Obr. 5.1 Závislost A-i převodovek RENK [8] Obr. 5.2 Maximální přípustné otáčky v závislosti na typu převodovky [8] Obr. 5.3 Závislost účinnosti na převodovém poměru [8]	.49 .51 .54 .55 .58 .59 .61 .62 .63 .63
	Obr. 4.4 Průtokový součníner účpavěk [5] Obr. 4.5 Princip značení jednotlivých bodů stupňové části Obr. 4.6 Princip volení vztažných rovin [3] Obr. 4.7 Závislost tlaku <i>piS</i> Č a měrného objemu <i>viS</i> Č na Δhi , <i>izGRAF</i> Obr. 4.8 Zjednodušený rychlostní trojúhelník při stupni reakce $\rho = 0,5$ [3] Obr. 4.9 Rychlostní trojúhelníky prvního a posledního stupně stupňové části Obr. 5.1 Závislost A-i převodovek RENK [8] Obr. 5.2 Maximální přípustné otáčky v závislosti na typu převodovky [8] Obr. 5.3 Závislost účinnosti na převodovém poměru [8] Obr. 5.4 Základní rozměry převodovky [8]	.49 .51 .54 .55 .58 .59 .61 .62 .63 .63
	Obr. 4.5 Princip značení jednotlivých bodů stupňové části Obr. 4.6 Princip volení vztažných rovin [3] Obr. 4.7 Závislost tlaku <i>piS</i> Č a měrného objemu <i>viS</i> Č na Δhi , <i>izGRAF</i> Obr. 4.8 Zjednodušený rychlostní trojúhelník při stupni reakce $\rho = 0,5$ [3] Obr. 4.9 Rychlostní trojúhelníky prvního a posledního stupně stupňové části Obr. 5.1 Závislost A-i převodovek RENK [8] Obr. 5.2 Maximální přípustné otáčky v závislosti na typu převodovky [8] Obr. 5.3 Závislost účinnosti na převodovém poměru [8] Obr. 5.4 Základní rozměry převodovky [8] Obr. 5.5 Hodnoty rozměrů převodovky [8]	.49 .51 .54 .55 .58 .59 .61 .62 .63 .63 .64