
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

PRIVACYPRESERVINGSMART-CONTRACTPLATFORMS
AND E-VOTING
SMART-CONTRACT PLATFORMYNAOCHRANU SÚKROMIA A ELEKTRONICKÉ HLASOVANIE

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. MAREK ŽIŠKA
AUTOR PRÁCE

SUPERVISOR Ing. MARTIN PEREŠÍNI
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Intelligent Systems (DITS)

Student: Žiška Marek, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Cybersecurity

Category: Security

Academic year: 2023/24

Assignment:

1. Learn the principles of blockchains, smart contracts, electronic elections, and privacy-preserving
platforms (PPPs).

2. Explore the performance and real privacy guarantees of privacy-preserving smart contract platforms
for e-voting in the blockchain.

3. Study PPPs: Secret, Oasis, Integritee, Phala, and Hyperledger Fabric Private Chaincode, and
choose 3-4 of them in which you will implement a simple e-voting application.

4. Implement simple e-voting (without any privacy) on chosen PPPs.
5. Evaluate theoretically and practically the performance in terms of transactions per second and the

number of voters that can be processed.
6. Discuss the drawbacks, insights, and future improvements of e-voting within the given platforms.

Literature:
• Secret powering Web3 privacy; graypaper.
• Oasis smart privacy for dApps; docs.
• Integritee scalable and secure Web3.
• Phala network blockchain, pRuntime, and the bridge; paper.
• Hyperledger Fabric Private Chaincode, confidential chaincode execution using TEE (Intel SGX).
• Rust courses and tutorials, e.g., https://github.com/tweedegolf/101-rs in the case of some PPP that

use Rust to develop smart contracts.
• Stančíková, Ivana, and Ivan Homoliak. "SBvote: Scalable Self-Tallying Blockchain-Based Voting."

Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing. 2023.

Requirements for the semestral defence:
1-3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Perešíni Martin, Ing.

Head of Department: Hanáček Petr, doc. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 17.5.2024

Approval date: 6.11.2023

Master's Thesis Assignment
155970

Privacy Preserving Smart-Contract Platforms and E-VotingTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
This work examines privacy-preserving platforms Secret, Phala, and Oasis Network, which
provide frameworks for development of smart contracts with confidential storage and com-
putation capabilities. We compare these platforms based on their features such as per-
formance, usability, and additional factors within the context of an electronic voting use
case. Firstly, we establish the theoretical foundations by introducing Voting Systems, then
Blockchains, Smart Contracts, Trusted Computing, and Privacy-Preserving Platforms. We
analyze the development capabilities, storage options, and other features of the selected
platforms and propose the design of smart contracts for the e-voting application. Following
this, we implement given smart contracts, detailing our experience, the tools used, test-
ing procedures, contruct structure, and statistics collection methods. Proposed collected
statistics allow us to estimate the vote-casting throughput of our implementations. Using
this metric, along with other aspects, such as the development experience, storage options,
community activity, documentation quality, we evaluate and compare these platforms. At
the end we conclude the achieved results, key insights, reflections, and potentional areas
for future improvements.

Abstrakt
Táto práca analyzuje platformy na ochranu súkromia ako Secret, Phala a Oasis Network,
ktoré poskytujú nástroje pre vývoj smart kontraktov s možnosťou privátneho úložiska a
dôverných výpočtových schopností. Platformy porovnávame na základe ich vlastností, ako
je výkon, použiteľnosť a ďalšie faktory v kontexte prípadu použitia v elektronickom hlaso-
vaní. Najprv predstavíme teoretické základy v oblasti volebných systémov, blockchainové
technológie, smart kontrakty, technológie dôverného výpočtu a v neposlednom rade jed-
notlivé platformy na ochranu súkromia. Na základe zistení navrhneme volebný proces nášho
smart kontraktu elektronického hlasovania, ktorý budeme implementovať na všetkých plat-
formách. Následne analyzujeme možnosti a schopnosti vývoja každej z platforiem, najmä
pokiaľ ide o definíciu štruktúry úložiska. Okrem toho navrhneme aj scenár hodnotenia,
ktorý budeme vykonávať na každom z vyvinutých smart kontraktov. Po návrhu kľúčových
častí smart kontraktov prechádzame k implementácií, kde diskutujeme o našich skúsenos-
tiach, o použitých nástrojoch, o spôsobe zbere a vyhodnotenia štatistík a o metódach
testovania. V rámci tejto fázy sme taktiež vyvinuli aj skripty, ktoré zbierajú štatistiky
z navrhnutého scenára hodnotenia elektronického volebného systému, ktoré použijeme na
vyhodnotenie a porovnanie týchto platforiem. Na záver zhrnieme dosiahnuté výsledky,
kľúčové poznatky, úvahy a potenciálne oblasti pre budúce zlepšenia.

Keywords
blockchain, cryptography, smart-contracts, security, e-voting, Secret, Oasis, Phala, Web3,
Solidity, Rust, performance analysis, gas usage

Klíčová slova
blockchain, kryptografia, smart-contract, bezpečnosť, elektronické hlasovanie, Secret, Oasis,
Web3, Solidity, Rust, analýza výkonnosti, spotreba gasu

Reference
ŽIŠKA, Marek. Privacy Preserving Smart-Contract Platforms and E-Voting. Brno, 2024.
Master’s thesis. Brno University of Technology, Faculty of Information Technology. Super-
visor Ing. Martin Perešíni

Rozšířený abstrakt
V tejto práci sa zaoberáme štúdiou volebných systémov, elektronického hlasovania, blockchain-
ových technológií, schémam trusted computingu a blockchainovými platformami na ochranu
súkromia. Blockchain je charakteristický svojou transparentnosťou, decentralizovanosťou,
sledovateľnosťou a bezpečnosťou, čo sú esenciálne vlastnosti pre budovanie dôvery systé-
mov. Jednou z oblastí kde sa môžu tieto technológie obzvlášť uplatniť sú systémy elek-
tronického hlasovania. Dnes systémy elektronického hlasovania stále čelia problémom s
legislatívnymi predpismi, hlavne pokiaľ ide o dôvernosť účastníkov hlasovania, integritu
údajov, spoľahlivosť alebo tajnosť hlasovania. Hlasovacie systémy založené na blockchain-
ových technológiách môžu vzhľadom na ich vlastnosti vyriešiť veľkú časť týchto výziev až na
transparentnosť, a tajnosť hlasovania. Z tohoto dôvodu blockchainové realizácie elektron-
ického hlasovanie často inkorporujú zložité kryptografické schémy ako MPC, zk-SNARK,
dôkazy NIZK a iné s cielôm zaručiť privátnosť dát a vykonávaných operácií. Tieto schémy
sa zvyčajne nasadzujú do smart kontraktov štandardných platforiem, ktoré ale majú lim-
itované výpočetné schopnosti. Toto má za príčinu, že tieto metódy síce vyrieša problém
s ochranou súkromia a privátnosti, ale zároveň zväčšia problém so škálovaním a nízkou
rýchlosťou transakcií. Platformy na ochranu súkromia boli identifikované ako potenciálne
riešenie tohto problému, pretože sa spoliehajú na dôverné a súkromné enklávy alebo Trusted
Execution Environments namiesto komplikovaných a nákladných kryptografických schém.

Táto práca sa zameriava na ich výskume a na štúdiu konkrétnych platforiem ako Secret,
Oasis a Phala, pre ktoré sme sa najmä zaoberali možnosťami vývoja smart kontraktov, pre-
tože pre každú z nich sme implementovali jednoduchú aplikáciú elektronického hlasovania.
Ako typ hlasovacieho systému sme zvolili jednoduchý variant jednočlenných pluralitných
systémov, kde nešpecifikovaný počet voličov volí z viacero kandidátov, z ktorých na konci
zvíťazí len jeden. Pri návrhu smart kontraktov na daných platformách sme sa zaoberali
analýzou základných komponent používaných pri vývoju smart kontraktu, ako sú úložiskové
štruktúry, zaužívané návrhové vzory, alebo mechanizmy na kontrolu prístupových práv k
privátnym dátam. Tieto komponenty sa medzi platformami rapídne líšili, čo je spôsobené
nie len tým, že sa používali různe programovacie jazyky (v našom prípade to boli Solidity,
Rust, alebo ink!), ale hlavne na základe rôznych frameworkov, na ktorých sú tieto plat-
formy postavené. Z týchto analýz sme navrhli podobu smart kontraktov, ktoré sme aj
implementovali.

Implementované aplikácie boli použité vo fáze evaluácie, kde sme zbierali štatistiky z
experimentov skladajúcich sa z určitých operácií počas volebného procesu (napr. odovzdá-
vanie hlasov alebo výpočet výsledkov). Tieto štatistiky sa skladajú z údajov o spotrebe
gasu pozorovanej operácie, ktorú sme spolu s parametrami platforiem, ako maximálny limit
gasu v bloku a časový úsek potrebný na sfinalizovanie bloku, použili na výpočet transakčnej
priepustnosti operácií za jednu sekundu. V našom vyhodnotení sme následne pracovali s
voľbami, ktoré prijímajú hlasy počas dvojdňového časového okna. Na to aby sme zistili
limity implementácie v tomto časovom okne, tak sme vypočítanú transakčnú priepustnosť
vyextrapolovali do tohoto časového úseku. Tieto údaje o priepustnosti sme si vizualizovali
do grafov, z ktorých sme vyhodnotili ktorá platforma má najlepšiu výkonnosť a najväčšie
prevádzkové limity v aplikácií elektronického hlasovania.

Výsledkom tejto práce sú nové poznatky v platformách na ochranu súkromia, tri naim-
plementované aplikácie elektronického hlasovania, a výsledky spojené s ich výkonnosťou,
z ktorých sme zistili že Oasis dokáže obslúžiť najväčší počet voličov, v tesnom závese je
Secret a na poslednom mieste je Phala.

Privacy Preserving Smart-Contract Platforms and
E-Voting

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Mr. Martin Perešíni. Supplementary information and construc-
tive feedback was provided by Mr. Ivan Homoliak. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Marek Žiška

May 17, 2024

Acknowledgements
I would like to thank Ing. Martin Perešíni for leading me during this work, for all the helpful
advice he provided me during our consultations. Additionally, I express my gratitude Ing.
Ivan Homoliak Ph.D., for our consultations and for much-needed and constructive feedback.
I want to mention my lovely laptop, the MacBook Pro 13" 2016 version, it was a love at first
sight I still remember the day when my dad brought it home. I want to express my gratitude
towards this faithful companion, as it unfortunately ceased to function during the writing
of this thesis. It has been an exceptional partner, accompanying me not only through
the completion of this thesis but also on countless projects throughout my bachelor’s and
master’s journey. It (almost) never failed to deliver when the deadlines were the closest, may
it rest well. You will be remembered forever. I also want to express my sincere gratitude
to my brother Peter who supported me in the final hours of the thesis finalization, his help
has not left an empty space in my heart ;) Last but not least I cannot forget to thank my
family, friends and my lovely girlfriend for her unwavering support and companionship in
all of our extensive study and work sessions, that at the end made most of this theses a
reality.

Contents

1 Introduction 4

2 Theory 5
2.1 Voting Systems . 5

2.1.1 Paper Ballot Voting . 5
2.1.2 Voting by Mail . 6
2.1.3 Electronic Voting . 7
2.1.4 Electoral Process Classification . 8

2.2 Blockchain . 9
2.2.1 Public and Private Blockchain . 10
2.2.2 Architecture of Blockchain . 10
2.2.3 Consensus Mechanisms . 11
2.2.4 Proof of Work . 12
2.2.5 Smart Contracts . 13
2.2.6 Smart Contract Code Execution . 13
2.2.7 Fees System . 14
2.2.8 Homomorphic Encryption . 14
2.2.9 Zero Knowledge Proofs . 15

2.3 Trusted Computing . 16
2.3.1 Trusted Execution Environment . 16
2.3.2 Privacy-Preserving Platforms . 18
2.3.3 Secret Network . 18
2.3.4 Oasis Network . 21
2.3.5 Phala Network . 23

3 Design 26
3.1 E-voting System . 26
3.2 Secret . 29

3.2.1 Contract Storage . 29
3.2.2 Permissioned Access Control . 34

3.3 Oasis . 35
3.3.1 ParaTime Selection . 35
3.3.2 Confidentiality and Permission Access 36
3.3.3 Contract Storage . 37

3.4 Phala Network . 38
3.4.1 Contract Storage . 38

4 Implementation 42

1

4.1 Secret Network . 42
4.1.1 Development Environment . 43
4.1.2 Secret tools . 43
4.1.3 Folder Structure . 44
4.1.4 Smart contract structure . 45
4.1.5 Storage Structure . 46
4.1.6 Access Control Management . 47
4.1.7 Testing . 48
4.1.8 Statistics Collection . 49

4.2 Oasis Network . 50
4.2.1 Development Environment . 50
4.2.2 Folder structure . 51
4.2.3 Smart Contract Structure . 51
4.2.4 Storage Structure . 52
4.2.5 Access Control Management . 52
4.2.6 Testing . 52
4.2.7 Statistics Collection . 53

4.3 Phala Network . 54
4.3.1 Development Environment . 54
4.3.2 Folder Structure . 54
4.3.3 Smart Contract Structure . 55
4.3.4 Contract Storage . 56
4.3.5 Testing . 57
4.3.6 Statistics Collection . 57
4.3.7 Proof of Concept Frontend Application 58

5 Evaluation 59
5.1 Evaluation Scenario . 59
5.2 Methodology of Transactional Throughput Calculation 60
5.3 Secret Network . 61

5.3.1 Theoretical Performance . 61
5.4 Oasis Network . 62

5.4.1 Theoretical Performance . 62
5.5 Phala Network . 63

5.5.1 Theoretical Performance . 63
5.6 Implementation Performance . 64

5.6.1 Analysis of Collected Data . 64
5.7 Summary of Results . 66

5.7.1 Maximum number of candidates or voters 66
5.7.2 Vote Casting . 67

5.8 Discussion . 67

6 Conclusion 69

Bibliography 70

A Contents of the included storage media 74
A.1 Secret Smart Contract . 74
A.2 Oasis Smart Contract . 75

2

A.3 Phala Smart Contract . 76
A.4 Data Processing and Evaluation . 77
A.5 Frontend Proof Of Concept App . 78

B Views of proof of concept frontend application 79

3

Chapter 1

Introduction

Despite the fact that the popularity of blockchain and its associated technologies remains
an up-and-down story, its meteoric rise over the past decade is an undisputable proof that
millions of people recognized the vast potential this technology has. The main driving
force behind this success is the benefits that blockchain is known for, such as transparency,
increased efficiency, decentralization, traceability, and security, which are essential in build-
ing trust in the systems. These traits are desired in many fields that span a wide range
of applications, ranging from financial transaction processing, healthcare records storage,
identity management, or possibly even essential government systems such as electronic
voting (e-voting) systems.

There is continuous research on the topic of e-voting systems from the perspective of
improved security, increased voter turnout, and confidence. Although people have success-
fully incorporated Internet solutions into their lives, the Internet is still considered an unsafe
place for a complex process such as elections [2]. Online e-voting systems still face prob-
lems with legislative regulations that are very strict with respect to the confidentiality of
the voting participants and other challenges such as data integrity, reliability, transparency,
the secrecy of the ballot, security, consequences of fraud, and others. Blockchain-enabled
voting systems were proposed as a solution to most of these challenges, as their charac-
teristics and immutable nature, can turn the blockchain into a role of a distributed ballot
box [36]. In the real setting, blockchain-based voting systems have frequent problems with
privacy protection, integrity, scaling, and slow transaction speeds. Several studies [16] [34]
have been conducted on the topic of improving blockchain-based electronic voting solutions
with the main focus of improving scalability issues related to cryptographic schemes used
to guarantee privacy and verifiability. Privacy-preserving platforms have been identified as
one of the potential solutions to these issues, as they rely on confidential and private Trusted
Execution Environments instead of complicated and demanding cryptographic schemes on
standard smart contract platforms [3]. This work focuses on research of these platforms and
their application to the e-voting setting. We will go over Secret Network, Oasis Network,
and Phala Network and their smart contract development capabilities, and for each, we will
implement a simple e-voting application. These applications will be used in an experimenta-
tion and evaluation phase, where we will host elections under various settings and perform
certain operations during the electoral process(e.g. casting votes or calculating results).
We will track, collect, and evaluate the statistics of gas consumption and transactional
throughput of these operations carried out during the electoral process. This comparison
should determine which platform performs better in the e-voting setting and also what the
operational limits are of the state-of-the-art privacy-preserving smart contract solutions.

4

Chapter 2

Theory

2.1 Voting Systems
Voting or electoral systems are an essential part of public life in a democratic society. They
are traditionally tied to political elections, in which participants elect their government
representatives by voting, but their application in various decision-making processes also
takes place in business, nonprofit, or other organizations [30].

The selection of the best form of voting mechanism available requires a detailed eval-
uation of its security, accessibility, and transparency to avoid losing public trust in the
democratic process. An election system with structural problems can lead to an election
win of a fraudulent candidate and, potentially, to significant consequences to the democratic
society. Its not exaggerated to state that there are individuals, organizations, or even whole
nations that might have desires to manipulate the election results to their benefit. To pre-
vent such desires, these systems incorporate a set of rules that prevent fraud and govern
the entire execution of the electoral process. These rules must be carefully chosen so that
participating voters have confidence and trust that electoral integrity cannot become ques-
tionable. At the same time, the rules must reflect a balance between the restrictions that
voters must follow and the accessibility of the election. Researchers around the world are
highly optimistic that the use of technology for election systems is the inevitable future [13].
However, finding viable technology turned out to be a harder task than anticipated.

2.1.1 Paper Ballot Voting

Over the years, a variety of new voting methods have been proposed, but traditional voting
using paper ballots remains the most common form of voting. Of 227 countries and ter-
ritories for which Electoral Knowledge Network collects data, 209 still cast votes manually
by marking paper ballots [30]. It may seem surprising that, despite all the technological
advances, organizations still consider paper ballots to be the safest and easiest option used
in the electoral process.

The main advantage of these systems is the existence of physical evidence behind every
vote, so the electoral process has the ability to start a physical recount of the ballots. The
physical aspect also builds trust of the voters, as humans in general tend to have greater
trust in something perceptible by touch, and paper ballots are no exception. Paper ballots
are also considered to be very transparent, as every voter has the right to oversee the entire
electoral process with his own eyes, seeing each ballot being casted and counted. The same
applies to the representative of the election organizers, who can supervise and guard the

5

whole process. Only the voters’ choices remain to be hidden in order to guarantee their
safety and prevent votes from being sold. However, there are still downsides:

• Ballot box stuffing - Is a type of electoral fraud, where a greater number of ballots was
casted than the ammount of legitimate voters in given polling place. This term is usu-
ally used when the voter illegally submits more votes than is allowed, but sometimes
it refers to any illegal votes.

• Marketing the votes - Individuals participating in the election influence each other to
exchange votes for money or favors.

• Ballot box tampering - Unauthorized interference with the ballot box that breaks the
integrity of the cointainer storing ballots. This usually occurs during transport or
during counting.

• Hygienic issues - COVID pandemic showed us how gatherings like elections can result
in crowded polling places and thus become a critical point of virus transmission.
Handling physical paper ballots by election workers and voters is another possible
point of contact that could lead to germ spread.

• Human errors - Many operations performed in paper ballot system are performed
by humans, which result in a range of possible errors (e.g. misinterpreting ballots,
sorting errors, or data entries into electronic system errors).

2.1.2 Voting by Mail

Pilot Voting by Mail (VBM) programs began in 1981 in the state of Oregon in the United
States [2]. Since then, Oregon has remained a pioneer in the use of VBM and is an example
of the success that this method has achieved. Many studies carried out in the state of
Oregon showed that costs were considerably reduced and attendance increased compared
to the previous election process without VBM [1]. Furthermore, the number of early votes
submitted with VBM has shown that people prefer not to vote on election day and use
absentee ballots1. Despite these positives, most states in the US use this method only for
absentee voting, and the state of Oregon remains an exception with the use of VBM as a
primary voting method [30].

The VBM process starts with ballots being mailed to voters, who, in turn, fill them out
from the comfort of their home. Subsequently, voters have the option of mailing the ballot
back or dropping them off at a predetermined place. The great benefit of this method is that
people decide on their own when they want to hand in the ballots and that there is no need
to travel to vote on election day. But it is still not a perfect system, as the entire process of
delivering and returning the ballot can take several days, which is a significant time window.
Compared to e-voting systems over the Internet where its a matter of seconds. In addition,
there is a justified concern for potential frauds, as the electoral process is not as transparent
as in paper ballot systems. These concerns may also be related to the uncertainty as to
whether delivery services will not lose or deliver the ballot late. Some voters may also miss
assistance from election workers and make errors when filling out the ballot, resulting in
rejected ballots.

1Absentee ballots helps voters cast a vote even though they are unable to attend in person on the election
day.(this might include military personel overseas and voters with disabilities)

6

2.1.3 Electronic Voting

Due to the ever-increasing digitalization and interest in modernization, e-voting systems
have gained continuous attention and traction around the world. Its caused by many im-
provements e-voting systems can bring, including faster trial times, much easier accessibility,
and experiments have shown increased voter turnout [2]. It might come as a surprise, but
in certain countries voting machines have a long history behind them. For example, the
Netherlands has a long tradition dating back to the 1950s and 1960s, when the government
expressed their first interest in voting machines [17]. In 1965 authorities made it legally pos-
sible for Dutch municipalities to use the voting machines, and only a year later machines of
this type were produced. The popularity of these methods over the years continued to rise
to a point where, in 1999, the Netherlands started discussions about allowing voters from
abroad to vote over the Internet (known as remote elections). Previously, voters abroad
had limited options to vote by mail or require another person to vote on their behalf. In
the 2004 European Parliament elections, voters abroad were used as an experimental group
for remote elections. In addition to selecting their candidates, voters completed a poll
to determine which method they prefer. The results turned out to be a huge success, as
almost all voters preferred the elections over the Internet [17]. However, the success was
only short-lived, as in 2006 the Netherlands returned to conventional voting methods using
paper ballots due to suspicions of election fraud, and it remains the main voting method
to this day [38].

Figure 2.1: Voting machine in Argentina. Figure 2.2: Voting machine in Brazil.

The general public has a common misconception that these systems exclusively identify
Internet elections (referenced as i-voting), but most e-voting systems used in practice today
still operate in person, as in conventional voting systems. Elections that occur remotely
over the Internet through some form of secure platform are not common and are mostly
used for absentee ballots only. The reason why the in-person form of e-voting is used
more frequently is that it maintains the voters’ physical presence of the traditional voting
systems, which people got used to and tend to trust more. Its a reason why it is often
considered a transitional step to i-voting. These voting systems are classified according
to the manner in which the electronic machine is employed in the process, either being a
direct recording electronic (DRE) or an electronic voting machine (EVM)[2]. EVM is a
term that represents a broader range of electronics used to collect and calculate votes (e.g.
optical scans or finger-print scanners) from paper ballots and eventually transform them to
electronic format. Systems using DRE as their voting technique do not use physical ballots,
but instead the voters directly select their preferred candidates from the digital interface
like touch screen displays, and all the processing of the votes electronically.

7

As the example from the Netherlands described, the actual practice of deploying voting
systems over the Internet is a technological feat. The main reason why it is difficult to
implement such a system is that this kind of election requires a significant degree of security,
while maintaining accuracy and secrecy of the electoral process [2]. Furthermore, voting
regulations prohibit the release of any kind of information on how voters participated in
the election. The voter has no other option besides simply trusting the system to correctly
record and count his ballot as intended, without anyone being able to modify its contents.
Researchers have been working on methods that would present voters with an indisputable
proof of ballot integrity and elections as a whole.

One of the proposed solutions is that this problem could be solved by end-to-end crypto-
graphic voting systems. These systems benefit from the use of encrypted proofs that provide
assurance of the integrity of the ballot to voters [2]. Blockchain technologies with existing
privacy solutions like Zero knowledge proofs (ZKPs) are identified as a potential solution, ful-
filling many desired characteristics like transparency, secrecy, non-repudiation, and strong
end-to-end verification capabilities that are important for voting systems. However, due to
the scaling limitations of the blockchain, most of the research articles propose small-scale
boardroom e-voting protocols such as BBB-voting or Open Vote Network (OVN). Only a
handful of research papers proposed the design of a large-scale blockchain-based e-voting
system (e.g. SBvote [34]).

2.1.4 Electoral Process Classification

Although previous sections presented the classification of voting methods based on the
technological form used, the methodology of the electoral system itself is another form
of classification. There are a significant number of various electoral systems around the
world, while new breakthrough systems are constantly being proposed. Therefore, finding
the appropriate typology might seem rather difficult. The study by Elisabeth Carter and
David M. Farrell [7] has presented a viable classification approach based on the output of
the system. For example, the result of government elections is classifiable as a proportional
or non-proportional outcome. The difference is that in the proportional systems, the final
distribution of elected representatives is directly related to the votes submitted, in contrast
to the non-proportional system, where importance is given to the parties as a whole. The
intent was to ensure that the one party has a clear majority over its competitors by allocating
the seats based on the principle of winner-takes-all. Douglas Rae broke down the electoral
process into three main components [25]:

• District magnitude (𝑀) - Refers to the number of representatives to be elected in
given district. In a single member plurality system, voters elect a single legislator
(𝑀 = 1), while systems of proportional representation have each district elect multiple
legislators (𝑀 = 𝑛), where 𝑛 represents the number of legislators to be elected.

• Ballot structure - Determined on the type of ballot voters use to cast their votes.
Categorical ballots consist out of various candidates or a list of or parties, allowing
voters to make a simple choice of either / or. The Ordinal ballots are similar to
the categorical with the exception that the voter can choose all candidates, and the
determining factor is the ranking based on the order of preference.

• Electoral formula - Manages the deciding relation between votes and seats.
This was classification based on a components, but more frequent classification of electoral
processes is based on the electoral formula. This classification divides the electoral process

8

types into seven categories, but for the perspective of our study, we will only go over two
foundational types:

1. Plurality systems - This class gathers systems where voters give their vote to their
preferred candidate/s and the winner of the election becomes the candidate/s with
the most votes, regardless of the total tally not achieving an absolute majority (over
50% of votes). To this day, these systems remain to be favored by more than 20%
of world democracies worldwide [7]. Further distinctions of these systems are made
on top of the number of elected representatives in a given electoral process. In an
instance where the outcome results in a single winner, we talk about single member
plurality system (SMP). A close relative of SMP is block vote system (BVS), which
is related to district elections, where there are multiple seats to be filled by elected
representatives and voters vote for as many candidates as there are seats available.

2. Majority systems - Second major category used in significant democracies such as
France and Australia [7]. To win an election in the majority system, the candidate
must gather a majority of the total votes submitted. There are two forms of these
systems: runoff system and alternative vote systems. The runoff system consists of
two rounds of elections, where the first round determines the top two candidates that
proceed to the second round. The second round takes place just a couple of weeks after
the first one, and its goal is to ensure the majority result. The alternative vote system
(AVS), popular in Australia, provides a special ballot structure that allows voters to
numerically sort all candidates based on their preference. The process of determining
the winner starts by counting the number one selection. If there is no candidate who
achieves a majority of the vote (again more than 50%), then the candidate with the
least number of votes is eliminated from the election, and the votes of the eliminated
candidate are distributed proportionally to other candidates. This process repeats
itself until a winner with a majority of the votes appears.

2.2 Blockchain
The Bitcoin, and Ethereum cryptocurrencies are the first things people visualize whenever
a blockchain is mentioned,even though a blockchain can be constructed without a currency
or value tokens. This comes as no surprise since both Bitcoin and Ethereum have been
filling the headlines of all noteworthy newspapers around the globe ever since the prices of
these currencies skyrocketed in 2017 and 2021 respectively2.

The history of blockchain extends beyond 2017, and it roots back to January 2009,
when the famous Satoshi Nakamoto published the paper Bitcoin: A Peer-to-Peer Elec-
tronic Cash System [20], where he described his vision of electronic cash intended to be
used in online payments without the need to certify transactions by a centralized financial
institution. This article is considered a major milestone that has sparked intense research
and development of blockchain technologies. Despite the resonant success of the paper, the
world still does not know the real identity behind the author, which remains a mystery
until today. Another breakthrough in blockchain technologies arrived in 2013 when Vitalik
Buterin released Ethereum which brought a new paradigm that made possible the creation
of Turing-complete decentralized applications with smart contracts [4].

2The price statistics of both Bitcoin and Ethereum is available over at https://coinmarketcap.com.

9

https://coinmarketcap.com/currencies

Generally, the blockchain acts as a trusted and reliable third party to maintain shared
data, facilitate exchanges, and provide a secure computation [5]. The fundamental charac-
teristic of the blockchain design is that the network of nodes is distributed over a peer-to-
peer network without a central management unit [9]. Its a form of a distributed database
that holds an ever-growing list of records, controlled by multiple entities. The participating
entities must align with their counterparts by having a distributed trust process or consen-
sus mechanism in place. These mechanisms act as guarantors of the integrity of the data
stored on the blockchain, even in Byzantine environment such as peer-to-peer networks.

2.2.1 Public and Private Blockchain

Both Bitcoin and Ethereum fall into the category of public blockchains. These networks are
considered to be public, since anyone on the Internet is able to access the blockchain net-
work, inspect the state, and modify the state by committing transactions(e.g., exchanging
monetary value or smart contract execution) and anyone can become an authorized node
that participates in consensus. These networks typically use Proof of Stake (PoS) and Proof
of Work (PoW) as their consensus mechanisms, and their validator network consists of a
large number of nodes. Public blockchains are suitable for use cases where transparency,
accountability, and decentralization play an important role.

Private blockchains have a central authority that restricts access to a predefined set of
participants with limited permissions. Usually, participants are required to be fully identi-
fied and trusted to guarantee the privacy of the networks. This branch of blockchain also
finds use cases, especially in organizations that are not interested in sharing their confi-
dential data, but still want to use blockchain. Examples of such networks are Hyperledger
Fabric, R3 Corda, or Quorum [5]. The privacy features are not tied to private blockchains
only, the popular trend of incorporating privacy features to public blockchains gained trac-
tion as of late. These are the so-called privacy-preserving platforms, which make use of
Trusted Execution Environments or Zero Knowledge Proofs to power this strong feature
(see Subsection 2.3.2 and Subsection 2.3.1).

2.2.2 Architecture of Blockchain

As the term blockchain suggests, the core component of the blockchain’s architecture is the
block itself. The structure consists of a continuously growing set of these blocks, where each
block is being chained with its predecesor and succesor using cryptographic operations. The
block is a form of abstraction that bundles two separable components, a list of transactions,
and a range of metadata stored inside the block header (see Figure 2.3). These blocks are
linked using a cryptographic hash function and timestamps to form a nearly unalterable
data structure. Meta-data stored inside of the block header include:

• Previous hash - Computed from the previous block, used as bond between blocks to
assure their tamper resistance.

• Nonce - Short equivalent of number used once. It is a critical random number that
is used in the mining process (cryptographic puzzle) of blockchains based on PoW.

• Version - Specifies version present at the time of block creation

• Mining difficulty - Defines how hard was the mining process of the given block.

10

• Merkle tree root - Represented by a cryptographic hash that was computed from the
pool of transactions stored in one block.

Block i+1

Block header

Previous hash

Nonce

Mining difficulty
Version

Timestamp

Merkle tree's root

Hash01

Hash0 Hash1

TX0 TX1

Hash23

Hash2 Hash3

TX2 TX3

List of transactions (TXs)

Merkle tree

Block i
Block header

Previous hash

Nonce

Mining difficulty
Version

Timestamp

Merkle tree's root

Hash01

Hash0 Hash1

TX0 TX1

Hash23

Hash2 Hash3

TX2 TX3

List of transactions (TXs)

Merkle tree

Calculate hash

Figure 2.3: Block structure in PoW blockchain like Bitcoin [43].

The list of committed transactions describes the changes to the state of the blockchain in
the current time window. In this way, it is possible to facilitate the tracking and secure
transfer of digital assets or other arbitrary data. The hashes that bind to the previous
blocks theoretically form a nearly unbreakable link (see 51% percent attack in Item 2.2.4),
which ensures the integrity and security of the blockchain. The genesis block is an exception
that may not point to the hash of a previous block and is usually created by the founders
of the blockchain network.

2.2.3 Consensus Mechanisms

In theory of distributed computation, consensus mechanisms play a vital role as they enable
a large-scale fault-tolerant network of machines or servers to work as a coherent group that
agrees on the state of the system, even when some of the machines or servers fail or behave
as an adversary [5]. These mechanisms are also an essential part of blockchain technologies,
as they prevent double spending and guarantee the integrity of data and the trustworthiness
of the shared ledger. This is only possible by having a strict policy and predefined sets of
rules and techniques combined with cryptographic operations that all participants must
follow. Each node stores an image of the latest state of the blockchain that is continually
updated with newly appended blocks. But before the block is appended, the entire network
must agree on its integrity using the rules defined by the consensus mechanism.

There is a wide range of consensus variants out there. The most prevalent is PoW
mainly due to its association with Bitcoin. This mechanism was a breakthrough because it
solved two problems that previous designs such as Adam Back’s HashCash or Wei Dai’s b-
money failed to solve [4]. The first problem was to find a simple but effective algorithm that
would allow the nodes in the network to agree on the order of the transactions. The second

11

problem was making the network available easily and freely to anyone while preventing sybil
attacks3.

Other instances of consensus mechanisms are Proof of Stake (PoS), Proof of Identity
(PoI), Proof of Authority (PoA) and many others. These mechanisms do not rely on miners
to produce valid blocks, but rather on validators that are selected based on factors such as
staked tokens (its an economic incentive where validators risk losing staked collateral4 in
case of malicious activity or failure to validate transactions), authority (reputation of their
historical behavior), or their proven real-world identity.

2.2.4 Proof of Work

The nodes in networks utilizing Proof of Work (PoW) are continuously incentivized to
compete in the process of solving cryptographic puzzles by promising rewards for providing
the right solutions. The difficulty of these puzzles is set within the defined rules, so its
resolution requires significant computational power that only a majority of nodes control.
The process during which a block is created and stored on the blockchain follows these
steps [20]:

1. Transactions propagation - All users using the blockchain initiates transactions by
broadcasting them over the network.

2. Transactions collection - Broadcasted transactions are collected into pools, where
they wait until their turn to be bundled into a new block arrives.

3. Block creation and mining - Nodes participating in the mining process or miners select
transactions from the pool and create a block with all its accompanying metadata, but
the block is not yet ready to be appended to the blockchain yet. Miners have to work
and compete in the cryptographic puzzle based on the contents of the block (e.g.,
it involves finding a hash with certain characteristics calculated from the contents
of the block including the nonce, which is iteratively incremented until the desired
characteristic is met). In Bitcoin, the characteristic is to find a hash with a certain
number of zeros in its prefix [5].

4. Block validation - The first miner to solve the puzzle publishes the solution to all
others, who in turn carry out the validation steps. The first validation step is to check
whether the received solution to the cryptographic puzzle is valid and actually meets
the set requirements. The second step is to check if all the transactions contained in
the block are confirmed and not spent on some of the previous transactions (a crucial
step in eliminating double spending).

5. Block acceptance - If the validation in the previous block was successful, then all the
nodes accept that block as the last one appended to the blockchain by working on
the next block where previous hash .

6. Rewards - The miner who found the valid solution get rewarded by receiving tokens
or cryptocurrency of the given blockchain platform.

3Its a type of attack where single adversary controls multiple nodes in the network, with intent to gain
control over the consensus and manipulate the integrity of the blockchain [15]

4Collateral are valuable belongings or assets that are pledged as security that would be lost in favor of
the blockchain network in the event of a failure to conform to set rules.

12

The nodes follow this process in order to continuously attempt to create blocks, where in
the case of a PoW networks a block creation takes roughly ten minutes. The underlying
cryptography of the mechanism is known and is considered secure and vigilant to attacks.
Attackers have only one option to try to create a fork of the blockchain with a new block
that contains broken order of transactions. But this attack is also not feasible, as PoW’s
employ the rule where miners consider the longest blockchain to be the truth. The attacker
would have to control 51% of the network in order to be successful, and that is in most
cases an impossible task.

2.2.5 Smart Contracts

Another crucial and enabling concept in blockchain technologies are smart contracts. Smart
contracts can be defined as a digital version of a standard legal paper contract with a set
of conditions agreed by the participating parties that is encoded, stored, and executed on
a blockchain. This brought advantages over their paper counterparts, like automatic en-
forcement of the agreed terms, which deemed any central unit unnecessary. The smart
contracts were a huge leap in blockchain designs, they are even considered the next genera-
tion of blockchains or blockchain 2.0, extending the basic token transfers of first-generation
blockchains (for example, Bitcoin) to also have the ability to perform computations in a
turing complete manner [4].

The original idea behind Smart Contracts was presented by a scientist and cryptogra-
pher, Nick Szabo, in 1997, as a form of digital vending machine [35]. The contract is basically
a script written in a programming language that is stored and executed on a blockchain.
These programs are typically used as a form of electronic agreement that automatically
follows the workflow and triggers the next actions based on the conditions and terms estab-
lished in the contract. The missing piece was the establishment of a decentralized system
with a proven trust model, like blockchain, as the foundation for smart contracts. Correct
smart contract execution guarantees have rendered a central supervisory party unnecessary,
as both participants place their trust in the contract and blockchain instead. The anal-
ogy of a digital vending machine, originally envisioned by Nick Szabo, perfectly matches the
previous definitions, as these machines also have a pre-programmed logic that is guaranteed
to be followed, while there is no employee assistance needed (representation of the central-
ized party). Besides trust, the blockchain also introduces transparency and immutability,
meaning that all of the code of contracts is publicly available, and once its published no
one can change it.

There are many use cases for smart contracts, for example, banks could use them to
trade finances, logistic companies could use them to track and trace the movement of their
shipments, and energy companies could incorporate peer-to-peer energy trading between
consumers that own a renewable source, but the list goes as there are several other fields
where smart contracts could make impact.

2.2.6 Smart Contract Code Execution

The programming language used to write the logic of a smart contract depends on the
hosting platform. Due to the popularity of Ethereum, the most widely used language is
Solidity [4], but other languages such as Rust or GoLang (Chaincode) are also used in
some cases (these are used in Polkadot, Hyperledger Fabric, and Cosmos [5]). In the
following text, we will look at the Ethereum platform and its code execution capabilities.
The execution of code starts with the compilation of high-level code written in Solidity

13

into a stack-based bytecode, known as the Ethereum Virtual Machine code or EVM code,
where each byte in the resulting bytecode represents a single operation. The execution
of the code is performed in a loop, where the program counter determines which code is
currently executed. The counter is iteratively incremented by one until the end of the code,
the return instruction, or the error is reached [4]. In this fashion, the execution of EVM
code is replicated by each validator on their local copy of the blockchain. Replication must
be deterministic, so that the validators will not come up with different results for the same
code. Computation has three storage options at its disposal:

• Stack - Standard last-in-first-out structure, where data values can be appended and
popped.

• Memory - Expandable linear byte array that is used for temporary data storage. The
size of the expansion is always multiples of the 32 bytes, until a EVM maximum
memory size is reached. Each expansion increases the gas costs, so programmers
must be mindful of the memory usage in their contracts.

• Contracts long term storage - Its a key-value store that persists even after the trans-
action is completed.

2.2.7 Fees System

Validators who perform the computation receive proportional compensation for their work.
This serves a dual purpose, the first being that the validators are motivated to provide
their computational resources, and the second being that there is some cost for performed
computation in order to prevent unnecessary use. To represent and quantify the com-
putation performed, smart contract platforms standardized a unit of computational work
that is referred to by a term gas. Each instruction executed within the EVM code has a
predetermined cost, which is quantified in a number of these gas units. In addition, each
gas unit has its own price, represented and paid in the native currency of the underly-
ing platform (e.g., Ethereum coins). Users interact with the smart contract by sending
contract-invoking transactions, where they must specify the price of gas, and the maximum
amount of gas that the user is willing to pay for the execution of the transaction [37]. If
the execution exceeds the maximum gas limit, the execution is stopped, and all operations
already performed are reverted to obtain the original state before the transaction. The
sender of the transaction still gets charged the maximum gas limit, in order to prevent a
resource-exhausting attack [12].

The gas limit and gas price metrics are used to calculate the resulting fee charged. The
price of gas must be higher than the current base fee established by the protocol. The base
fee estimation is determined by the gas size of the previous block (the amount of gas used
for all the transactions) with a target size. The maximum increase in the base fee between
blocks is 12.5% per block [39]. Anything more than the base fee acts as a tip directly to
the validator of a given transaction, who prioritizes transactions with higher gas prices.

2.2.8 Homomorphic Encryption

Homomorphic encryption is a popular cryptographic technique in the context of blockchain
technology, due to its security and privacy features. In mathematics, homomorphism is used
to characterize two operations that have the ability to receive the same result, even after

14

the order in which they have been originally performed has been changed [26]. Homomor-
phic encryption is a specific cryptographic encryption technique that uses homomorphism
properties so that mathematical operations can be performed directly on top of encrypted
data without knowing their encryption key. An interesting takeaway is that when the re-
sult of the operation performed on homomorphically encrypted data is decrypted, we will
receive the same result as if we had performed the same operation on the raw data. This is
an important privacy aspect that makes it possible to maintain data confidentiality while
performing mathematical operations.

Definition 1 An encryption is homomorphic if: from 𝐸𝑛𝑐(𝑎) and 𝐸𝑛𝑐(𝑏) it is possible to
compute 𝐸𝑛𝑐(𝑓(𝑎, 𝑏)), where 𝑓 can be: +, ×, ⊕, and without using the private key [40].

As seen in Definition 1 homomorphic encryption operates with three basic functions: ad-
ditive (known as the Pailer cryptosystem [22]), multiplicative (referenced as the ElGamal
cryptosystem [11]) and XOR. The additive version of the encryption has an interesting ap-
plication in e-voting, as these systems have to keep votes private, but at the same time they
have to get counted to get the results. Homomorphic encryption is a perfect solution for
this specific problem, as it has the capability to preserve privacy of the votes that remain
encrypted while only the sum of the votes would be decrypted and shown to the public.
The three functions represent the three main categories of homomorphic encryption, but
the number of allowed operations and the amount of possible repeated calculations in the
cryptosystem could differ. Thus, another categorization exists [40]:

• Partially Homomorphic Encryption - Only one type of operation is supported, but it
is possible to repeat the calculation unspecific amount of times.

• Somewhat Homomorphic Encryption - Allows multiple types of operation, but a lim-
ited amount of calculation is allowed.

• Fully Homomorphic Encryption - There are no limitations in terms of operation type
with unlimited repeated calculations.

2.2.9 Zero Knowledge Proofs

Zero knowledge proofs (ZKPs) is another cryptographic technique that aims to improve
privacy for sensitive data shared in a public setting. ZKPs allow one party (provers) to
prove to others (verifiers) that a statement is true without revealing any information about
the statement in question, hence the name Zero Knowledge [40].

Today, many cryptographic protocols that require privacy use this technique, including
the popular cryptocurrency Zcash. In relation to our topic of voting systems, ZKPs make
it possible to unlink the voter and his vote from each other. Murtaza in his paper [18]
presents a setting in which each entity participating in e-voting would have their own ID
token used as an authentication for the election and a vote token that could be transferred
as if we had given a vote to someone. To make sure that the vote token and ID token are
unlinkable, one would create ZKPs from the process of burning their own ID token. This
ZKP would then be presented as evidence that the voter has not voted yet and that he is
eligible to vote. Upon successful verification, the voter receives the vote token used to vote
for his preferred candidate. In this way, the ID token used to create the vote token remains
private.

15

Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zkSNARKs) is a
lightweight form of a zero-knowledge proof, where proof verifications take only a couple
of milliseconds [26]. The popular showcase of its utilization is the crypto-currency Zcash,
where it is used to keep the transactions private. Each component of the zkSNARKs title
identifies unique properties:

• Succinct - Size of messages, used to convince the verifier are significantly shorter,
when compared to the input and its subsequent time complexity to compute. These
small proofs are the reason behind the time-effective verification.

• Non-interactive - Interaction between prover and verifier is reduced to only one mes-
sage, without counting the messages needed in the setup phase.

• Arguments - Provers are able to create arguments or proofs about wrong statements,
but it takes significant computational power. Otherwise, the verifiers do not have to
worry about such proofs. This is known as computational soundness [26].

• of Knowledge - Construction of the proof requires to have knowledge about the state-
ment we wish to convince the verifier.

2.3 Trusted Computing
As the technologies and computer systems continue to become more complex and their
adoption becomes more widespread, the security requirements are ever so high. Trusted
computing was introduced to improve computation security, privacy, and data protection.
At first, the segment relied on tamper-evident hardware modules, separated from the sys-
tem, that provided an interface for platform security mechanisms. This approach had the
problem that the functionality was limited by the pre-defined APIs. The most recent ap-
proach tried to tackle this problem by providing a confined environment used for code
execution. The main benefit was that the applications had a tamper-resistant run-time
that was protected by having custom security mechanisms in place. These confined envi-
ronments are referenced in the literature in various ways, but most common one is Trusted
execution environment [28].

2.3.1 Trusted Execution Environment

Trusted Execution Environment (TEE) is known as an isolated processing environment that
protects its runtime state and assets from other untrusted parts of the system [28]. A simple
explanation can be made in analogy to smart contracts, since smart contracts are a trusted
neutral description for the processing of transactions on blockchain networks, TEE is a
trusted neutral party for secure and private computations on hardware components [42].
The isolation of the execution process within the environment is handled by Separation
Kernel, which separates the system into strongly isolated parts, which may have various
levels of security mechanisms in place. Originally, Separation Kernel was developed to
simulate a distributed system on a single machine, but later its potential to even other
areas was discovered, including applications within TEEs. The origin of TEE is tied to the
Secure Execution Environment (SEE) that does not consider the trust aspect as is the case
in TEEs, but ultimately promises to guarantee properties such as:

1. authenticity: executed code should not be modifiable.

16

2. integrity: only executed code can change the stored state.

3. confidentiality: information about the state or the code executed should be kept secret
from unauthorized applications (including the operating system).

TEE incorporates these attributes while also building trust in the computations performed
within the environment. The concept of building trust depends on the existence of a trust-
worthy and reliable mechanism capable of presenting evidence of the computations being
performed. In TEE the mechanism for presenting evidence is managed by a trustworthy
entity called Root of Trust (RoT) [28].

Figure 2.4: Architecture of the Trusted Execution environment [28].

The RoT is a tamper-resistant hardware module that executes a trusted measurement
and computes a trust score. Tamper resistance is significant here, as the trustworthiness of
the trust score itself is directly affected by the reliability of the trusted measurement. In
the real world, we tend to measure the trust of a certain system by its reliability, which is
basically a measurement of how much the system behaves as expected. The trust measure-
ment in TEEs is determined by the integrity measurements that inspect if the loaded TEE
is conforming to the one certified by the given platform provider before deployment. The
outcome or the trust score is a Boolean value that indicates if the TEE is trusted (trust
score being True) or not (trust score being False). Notable representatives that provide
TEE technologies are Intel SGX (Software Guard Extensions), AMD TrustZone, or Trusty
TEE used in mobile devices. All of those companies enable TEE’s by incorporating sets
of security-related instruction codes into their CPUs into a special isolated section referred
to as enclave, so that its execution cannot be affected by other processes, nor even the
underlying operating system. However, it is still necessary to provide a procedure that
would be able to supervise and confirm the correct execution within the isolated enclave.
In Intel SGX the procedure is called Remote Attestation [8].

The hardware supporting Intel SGX can generate the so-called attestation quotes that
are based on the details of the hardware, firmware, the code executed inside the enclave, and
other user-defined data produced during the code execution. The quotes are signed with
private credentials embedded during the manufacturing process, to accomplish a unique
bond to an Intel CPU unit. The quotes are then sent to Intel Remote Attestation Service,
where the authenticity of the quote is verified. The positive outcome of the verification
process provides a proof that a certain code has been executed within the given enclave
and that the execution on its own was confidential and correct. Afterwards, the quote

17

Figure 2.5: Remote attestation process in Intel SGX [41].

will be signed and published by Intel so that anyone with viable hardware can verify the
execution process within the enclave.

2.3.2 Privacy-Preserving Platforms

Besides all the positives, blockchain and its decentralization and public nature face problems
with legal regulations (e.g. General Data Protection Regulation or GDPR) and privacy
issues. Privacy-preserving platforms are sets of technologies that focus their attention on
the privacy protection of user data while allowing processing on top of it. These platforms
may employ various cryptographic techniques, such as ZKPs, end-to-end encryption, or
secure multiparty computation (MPC) techniques to anonymize users and give users the
control which sensitive information will be disclosed publicly [3].

2.3.3 Secret Network

The Secret Network was the first protocol to provide confidential smart contracts on the
mainnet [33] and is a leader in the space of confidential blockchain networks. Secret Net-
work is a Layer 1 solution built with Tendermint’s Byzantine fault-tolerant consensus algo-
rithm [42], which is known for its high throughput and great scalability. The secret network
utilizes cryptographic mechanisms and TEE enclaves to achieve data confidentiality while
keeping the ledger public. Thus, users are able to perform transactions without revealing
the outcome or content, providing a confidentiality factor that is missing in traditional
public blockchains. The developers of the Secret contracts may use Secret’s programmable
privacy controls that allow us to specify which subsets of data will be encrypted and not.

Smart contracts are based on CosmWasm platform, which is a standalone module in the
Cosmos-SDK 5 framework. The deployment of smart contracts follows a chain of events that
are visualized in the Figure 2.6. The smart contract is first compiled into the WebAssembly
(Wasm) bytecode, which is a binary instruction format designed to improve the performance
of code execution directly in web browsers, for programming languages like C, C++ and Rust.
The compiled Wasm bytecode uses an intermediary Cosmos SDK module x/wasm to manage
the execution of the smart contract in a CosmWasm Virtual Machine module (CosmWasm

5Cosmos SDK which is an open source framework used to build public Proof-of-Stake (PoS) or permis-
sioned Proof-of-Authority (PoA) blockchain systems in the Cosmos ecosystem.

18

https://docs.cosmos.network/v0.46/

Compiles
 into

Contract

Messages

State

Runs
inside

x/wasm

Cosmos SDK

x/wasm

x/wasm

x/wasm

x/wasm

x/wasm

x/wasm

x/wasm
Add to
Secret
Network

CW Smart Contract
Framework

Wasm
Bytecode

CosmWasm VM
Module

Wasmd on the
Secret Chain

Figure 2.6: Overview of the CosmWasm involvement in the Secret Network [29].

VM). The role of the CosmWasm VM is to securely encapsulate the execution of the smart
contract and to ensure that the code follows the same execution semantics. This grants
that any CosmWasm contract will function the same on all Cosmos blockchain platforms
(including Secret Network).

The validators in the Secret Network cooperate in the computation to achieve verifi-
ability while securely preserving the privacy of the data in the TEE. Each node in the
Secret Network inherited Cosmos’s unique interoperability feature in the form of Inter-
Blockchain Communication Protocol (IBC), which defines how two blockchains can handle
authentication and data transfer between each other. Users of such networks make transac-
tions between different chains almost seamlessly. The nodes in the network employ Intel’s
SGX, so its guaranteed that each must have gone through a remote attestation process (see
Figure 2.3.1) to prove that the TEE is genuine.

The ledger in its nature remains public, so anyone can lookup information like the
transaction sender’s address, their public transaction history, or the size of the encrypted
inputs and outputs of executions. For governance and gas fees, the network uses the Secrets
native SCRT token. There is no fee market in the Secret Network, which means that the
size of the fee does not affect the prioritization of the performed transaction, but it might
speed up the finality. The size of the fee is determined by the smart contract engine, which
takes into account the computational resources required and the fee that validators ask for
these resources. 6

Privacy Preserving Smart Contracts

The binary code of the compiled smart contract in Secret Network remains to be public
similarly as in any other popular smart contract network, but it differs in the way the data
are managed. The state, input, and output of secret smart contracts are encrypted with a
forge-proof encryption key that is unique for each smart contract [42]. The primary input
component that gets encrypted are the user’s messages. To maintain transparency and
traceability within the network, addresses, block height, and sent funds remain unencrypted.
The contract state is consistently encrypted, and its content is only known by the contract

6Gas fees are listed on Secret Network’s github page https://github.com/SecretNetwork/gasFees.

19

https://github.com/scrtlabs/SecretNetwork/blob/master/x/compute/internal/types/gas.go#L18

itself. Additionally, users have the ability to view their own dedicated state in the contract.
This design brought privacy risks during the migration of contracts7, because anyone who
would migrate the existing contract can become an administrator and thus gain read access
to the data of the old contracts. This breaks the core features of Secret and is the reason why
this feature is disabled. The output is encrypted similarly to the state, with the addition
that the transaction senders can inspect the output of the transaction they invoked.

Storage

Storage is a form of abstraction that provides read and write access to persistent storage,
in this case the blockchain. Smart contract platforms use this abstraction to store various
data, such as configuration, metadata, or historical data, but mainly the overall state of
the blockchain [23].

The storage in Cosmos-SDK is based on a key-value store, where each value is stored
under a certain key [23]. It has a tree-like structure so that the Merkle root hash can be
computed for the secure verification of the integrity of the data. It is based on the self-
balancing binary search tree IAVL+ an immutable version of the tree AVL+ (named after
its inventors Adelson-Velsky and Landis), where all operations performed take at worst
𝒪(log 𝑛). AVL tree is defined as a balanced binary search tree where the height of the
two subtrees (children) of a node differs by at most one and the inner nodes can also hold
key-value pairs [10]. AVL+ is an AVL modification in which only the leaf nodes store all
values, while the branch nodes hold the keys [27]. The simplified example of the AVL
tree can be seen in Figure 2.7, where each node is identified with a letter (key) and the
green numbers denote the balance property (negative balance indicates the right imbalance,
positive balance indicates the left imbalance).

J

P

L

N

V

XS

P

GD

C

UQ

+1

+1

+1 -1

0

0 0

0 0

-1

-1 0

0

Figure 2.7: Simple example of how a key-value storage may look like [23].

The keys saved to storage have fixed-length prefixes containing metadata (e.g. informa-
tion about the contract that owns the storage) based on which we retrieve values. When
it comes to retrieving values, there are only limited options. Either we perform a single
value retrieval, which is a very inexpensive operation (search with a known key has a time
complexity of 𝒪(1)), or we iterate over a set of keys to access multiple values.

7Contract migration is a process during which existing contracts are moved into newly created contracts,
along with the stored data on the old contract.

20

The iteration process works on top of key prefixes, where we sequentially visit each node
in the tree and compare their prefix with the one we searched for. In the instance shown
in Figure 2.7 an iteration through range(’JPV’) would return keys JPV, JPVS, JPVX,
JPVSQ and JPVSU. This process uses the fact that the keys have a fixed length (assuming
8 letters), so when the range(JPV) request is made, the algorithm looks for keys starting
with JPV00000 to JPVFFFFF.

2.3.4 Oasis Network

The Oasis platform is another platform that represents the new generation of blockchains
focused on providing verifiable and confidential smart contract execution [32]. Similarly to
the Secret platform, Oasis is a Layer 1 solution that focuses on the scalability, flexibility,
and privacy of the network.

Figure 2.8: Architecture of the consensus layer [14].

The architecture of the platform consists of two major layers (see Figure 2.8). First, the
consensus layer orchestrates stateful computations, and the runtime layer is where these
computations are performed. Separation of the consensus layers from the smart contract
execution layer is intended to bring convenience to being able to switch to different consensus
mechanisms if necessary. Currently, this functionality is limited and Oasis only supports
the CometBFT 8 consensus back-end. This brings a form of future proofing of the platform
from possible breakthroughs in the space of consensus mechanisms in the future.
The consensus layer facilitates the runtime layer only with essential services that handle
the functionality required for secure operation of the runtime layer:

• Random beacon service - Provides unbiased randomness for each epoch. This ser-
vice has a scheme that guarantees that as long as there is a predefined number of
participants and at least one participant is honest, the beacon will generate a secure
entropy.

8Its a protocol based off of Byzantine fault tolerance, which is a property of distributed systems that
ensures their security even in the presence of malicious members in the network. [32]

21

• Staking service - Guards correct operation of the PoS consensus mechanism that
manages the staking ledger and handles operations such as stake transfer or stake
escrowing 9.

• Registry service - Manages the distribution of public keys and metadata for the entity,
node, and runtime.

• Committee scheduler - Periodically schedules a committee (i.e., validator or key man-
ager) based on the epoch of the timekeeping service and the entropy of the random
beacon. After that, the scheduler selects the validator committee and assigns a certain
voting power.

• Time-keeping service - Responsible for the time measurement.

• Governance service - Provides chain governance or root hash service that manages
runtime commitment processing, or minimal runtime state keeping.

The runtime layer consists of separate runtimes that have the ability to run simultane-
ously with other runtimes, each of which possible shares the same consensus layer. Runtime
is an executable that runs in a sandbox environment, optionally combined with Intel SGX
enclaves.

Figure 2.9: Architecture of the runtime layer [14].

The runtime state and logic are decoupled from the consensus layer, as the state and
state transitions are stored inside of every runtime independently of the consensus layer.
However, the consensus layer is leveraged for finality and the canonical state. It receives
submitted values and short proofs of performed computations made on the runtime layer,
and the consensus algorithm decides which values will be stored on the blockchain.

The integrity of the run-time is established with a replicated computation among mul-
tiple nodes with discrepancy detection. All nodes execute the same runtime and produce
a result that is compared to determine if there are some discrepancies. In case of discrep-
ancies, the execution is repeated with different compute committees. Each runtime can
choose which verifiable and confidential computing technique will be used without having
to make any changes to the interface that connects the layers. These techniques are used to
verify the results of the executed transactions and to determine how strict the data privacy
policy will be.

9Escrow refers to a neutral third party holding assets or funds before they are transferred from one party
in a transaction to another. [6]

22

Figure 2.10: Architecture of the runtime layer [14].

2.3.5 Phala Network

Phala Network is a novel cross-chain confidential and interoperable smart contracts net-
work introduced as Polkadot Parachain10 with the Event Sourcing and Command Query
Responsibility Segregation (CQRS) architecture in a hybrid TEE-blockchain system [41].
The combination of these characteristics makes the network scalable, resistant to conflicts,
and facilitates confidential smart contracts with cross-contract and cross-chain interoper-
ability [41]. The problem the Phala platform tries to solve is tied to building decentralized
applications. Most use cases today require off-chain components to serve robust feature
sets, such as storing large amounts of data or performing complex programs. Executing
such features exclusively on-chain is not so feasible and efficient, which is why the Phala
Network decoupled the smart contract computation between off-chain and on-chain. For
example, a smart contract could read some data stored on-chain, then perform complex
computation on the data on remote workers off-chain, then write the results back on-chain.
The whole process would be much more efficient than using smart contracts, but at the
same time remaining secure and confidential.

Enclave Architecture

The foundation for the confidential smart contracts is an infrastructure based on the In-
tel SGX’s TEE technology that not only prevents leakage of information during contract
execution, but also guarantees availability, authorization, and correctness of input data.
The infrastructure is facilitated by a group of non-Byzantine worker nodes with TEE-
compatible hardware. These nodes perform computations in the enclaves independently of
the blockchain with a special pRuntime program that runs inside the enclave. The pRun-
time as the name suggests is a run-time environment that exports a set of APIs that connect
the program to the blockchain so that the contracts have access to the shared state, and

10A Parachains are data structures, usually blockchains, that are globally coherent and can be validated
by the validators of the Relay Chain(the central chain of Polkadot). They take their name from the concept
of parallelized chains that run parallel to the Relay Chain [24].

23

Figure 2.11: Architecture of the enclaves and blockchain within the Phala network [41].

users may securely query the data. The worker nodes are stateless, meaning they have to
sequentially execute all of the input events stored on the blockchain (or cached contract
state within the node) to obtain the latest state.

To maintain the confidentiality of the enclaves, the blockchain state must be encrypted,
so pRuntime stores a set of secrets or keys used to decrypt the state, which are generated
during the pRuntime identity registration on the blockchain. Since the keys are stored
inside the enclave, and no one else has access, it is impossible to pretend to be an adversary
pRuntime. There are two types of keys generated, the first using symmetric cryptography
to secure the channel between pRuntime and the blockchain, and the second set is a pair of
public and private keys of asymmetric cryptography that represent the pRuntimes identity.
Thus, users can verify the authenticity of each pRuntime on the blockchain and use the
public keys available pRuntimes to establish a TLS-like channel that serves their requests.
All cryptographic secrets are managed by another type of nodes, called ”gatekeepers”, which
are responsible for the security and availability of the network.

Confidential Smart Contracts

The process of contract deployment is started by the contract’s bytecode being stored in
the blockchain. Once the Gatekeepers notice the new contract on blockchain, they supply
the contract bytecode to a worker node’s pRuntime. In addition to bytecode, pRuntime
receives a symmetric encryption key that will be used to decrypt and encrypt the state of
the given contract on the blockchain. On the blockchain side, all of the encryption keys get
stored in the chain state that in order to stay private has to be secured by another level of
encryption, due to blockchain public nature [41].

For the contracts execution, the Event Sourcing / CQRS architecture is adopted. Event
Sourcing is a design pattern in which the state is represented with subsequent transitions
in the append-only log of timestamped events. The timestamps ensure that the network
remains deterministic and that it is possible to reconstruct any state at any time. The
CQRS is a pattern that specifies that the network handles read/write operations separately,
where writes operations represent events (represent various write commands such as user

24

invocations, blockchain events, and ingressive messages) that determine the state, and read
operations a certain view of the state. The pRuntime observe all the events that target
the contract deployed within its enclave, and in case passes them to the contract, where
they get processed to form a Chainview. Users may query Chainview at any time, but
they are required to provide proof of their identity during the query call, which contract
uses to determine whether they will respond or not. The pRuntime additionally produces
various side effects, such as updating the blockchain with a new encrypted state or sending
messages to other blockchains or services.

25

Chapter 3

Design

The first section of this chapter starts with a specification of the electoral process imple-
mented within the e-voting system. Afterwards, we will layout the foundational structure
of the implemented smart contracts, and analyze entities that are taking part in the sys-
tem and their mutual relationships in order to determine the architecture of the storage
within the contracts. Then we will describe the structure of methods that facilitate the
e-voting functionality in each of the smart contracts. The last three sections explain the
significant design choices made in the given PPP. These include key programming, access
control, or storage concepts offered in the respective platform, and analyze their differences
in terms of performance, privacy, or relevancy. Since we evaluate the performance of the
respective platforms, we will not incorporate a privacy-risk-free design that would require
extra precautions like padding the messages to the same length and deliberate gas evapo-
ration within the called methods (due to potentional side-channel attacks through publicly
available information like gas and contract addresses).

3.1 E-voting System
E-voting systems and their underlying electoral process can attain several formats. These
formats are adjusted according to the various contexts in which the elections take place. as
each context may have different objectives from the electoral process. Some organizations
may focus on transparency, security, and trust, while others might emphasize electoral
tradition.

For our analysis evaluation and implementation, we have chosen an e-voting system
with an electoral process inherited from standard single-member plurality systems (see
Subsection 2.1.4). Its a type of an election system where eligible voters are casting votes for
only one preferred candidate, and at the end of the election only one winner will be chosen
from all the aspiring candidates. The system will support the organization of multiple
elections that can occur at the same time. The user must be enrolled in the system before
being able to be chosen to participate in the election. Administrators are responsible for the
organization of newly held elections, which includes the following duties (see Figure 3.1):

• Registering new users to the system.

• Assignment of voters eligible to vote and running candidates to the given election,
from the enrolled users.

26

• The creation of the elections and their conclusion of the election, after which no
further votes will be accepted, and the results will be counted.

The list of administrators has been initialized by the contract owner (account which has
deployed the contract) and can be afterward extended by all the administrators. Initially,
we thought of an automatic procedure for ending elections that would end at a particular
time in the future. The end date would be set during the election creation along with the
start date, ultimately creating a time window during which the system would accept votes
from voters. This design has proven to be an obstacle during testing and evaluation, so we
decided to simplify the process by having a specific transaction to end the election.

Verify Vote Create Election Create User

AdministatorRegistered voter

View results

Set CandidateSet Voter

End Election Resume Election

Cast vote Recast vote

View electionsView candidates

Figure 3.1: Access to methods based on the role in the e-voting system.

As the election occurs over a trusted and confidential blockchain platform, it is desirable
that the voters of this system can recast their votes. This acts as a preventive measure
against voter intimidation1, which is one of the benefits that electronic voting brings to the
standard process. Furthermore, the confidential blockchain platform facilitates a powerful
feature of ballot verification without losing the required secrecy. Only the voter who has
casted the given ballot will be able to inspect its contents. After the end of the election the
result is queriable to anyone able to query the contract. The format of the result consists
of the winner and a vote counts for all the running candidates.

To accommodate all of the functionality, we have proposed a template of methods that
will serve the execution and query processing logic of the implemented smart contracts. In
total, there are 16 methods (see Figure 3.2), without counting the internal or initialization
methods. Most of the methods represent methods used to create or retrieve values of
stored structures inside the contract (e.g., user creation and user retrieval). The methods
expected to be more complex and integral to the e-voting system are the methods shown
in bold, as they are expected to operate with the largest structures (list of votes, voters, or
candidates) or they might be called frequently compared to the others. We have evaluated
the performance of these methods in the last Chapter 5. These include methods that
facilitate functions such as vote casting, vote verification, or the calculation of results, but

1A situation when someone puts a voter or group of voters under pressure or force to vote in a particular
way [1].

27

we have also defined a resume_election that resumes the already ended election. We have
used this function extensively in our evaluation, to repeatedly calculate election results
without having to configure the election from the start again(e.g., we evaluated results
calculation for different amounts of votes).

Queries
GetAdmins()
GetUsers()

GetElections()
GetCandidates(electionName)

GetVoters(electionName)

GetResults(electionName)
VerifyVote(electionName)

Execution
AddAdmins(admins)

CreateUser(address, name,
profession)

CreateElection(electionName)
SetCandidate(address, electionName)

SetVoter(address)
CastVote(electionName)
RecastVote(electionName)
EndElection(electionName)

ResumeElection(electionName)

Figure 3.2: Signatures of methods facilitating the e-voting functionality.

Data storage within the contract is divided into five different entities, starting with a
root state that holds all data together (see Figure 3.3 and configuration (State table) and
remaining four structures will represent a particular entity within the system.

• User - Represents enrolled user, that is identified by its unique identifier or address.
Additionally, the structure holds meta-information about the user’s name and addi-
tional info like name or profession. All candidates and voters within the elections will
be represented by this structure.

• Election - The integral entity of the e-voting system that groups all the participating
voters, ballots, results, and candidates together.

• Vote - A separated structure that represents a ballot casted by one of the voters. It
consists of the address of a voter that casted the ballot and his selected candidate.

• Results - Holds the final vote counts for each of the running candidates and the overall
winner of the election.

During the initial stages, the representation of ballots/votes was designed in a different
way. The ballots or votes were stored in the form of a counter in a structure representing the
candidate. The counter was simply incremented for each vote the candidate had received.
The main rationale behind this was performance optimization, as the vote-counting process
has been distributed to all transactions that cast votes. In the end, we have opted for
a separate structure, mainly for vote verification purposes, because for such functionality,
a simple counter would not be sufficient, as the relationship between the voter and his
selected candidate would not be retained. Also, this design had a privacy motivation as we
separated the structure representing confidential information that is accessible only to the
owner (voter).

28

State

users: List<User>
elections: Vec<Election>

admins: Vec<User>

Election
ID/name: String

candidates: Vec<User>
voters: Vec<User>
votes: Vec<Vote>

results: Vec<Result>

winner: User
isClosed: Bool

User
ID: Address
name: String

Profession: String

Vote
voter: Address

candidate: Address

Results
candidates:

Vec<(Address, Integer)>
winner: Address

Figure 3.3: Structure of the storage that will be representing the state of the smart contract.

3.2 Secret
The main design choices that we have made on Secret Network were the storage options
and the permissioned viewing tools. Compared to other platforms, the storage possibilities
allowed iteration over map or set structures, which is very useful and not provided on the
other evaluated platforms. On the other hand, the underlying system has one disadvantage
related to permissioned viewing, which Secret Network compensated by providing tools that
we had to choose and analyse (we discuss this in Subsection 3.2.2).

3.2.1 Contract Storage

As we have learned in Section 2.3.3 the platform uses persistent key-value storage, where
each key is associated with a stored piece of data that can be easily and directly accessed
using a storage key lookup. The storage keys are formatted by default as byte arrays, and
the values can acquire arbitrary-type, but they have to be serializable to/from binary, as
that is the format they are being actually stored in. The elementary value storage types
include string, integer, boolean, and the classic array that we know from other programming
languages.

Basic storage wrappers

Due to the repetitiveness and inconvenience of unavoidable data serialization/deserializa-
tion, a range of wrappers have been defined that make the process of accessing data in
storage easier. These include the retrieval, insertion, and deletion methods, but also the
corresponding methods that work on top of JSON data2.

2Storage wrappers in Secret Network https://docs.scrt.network/storage-wrappers

29

https://docs.scrt.network/secret-network-documentation/development/development-concepts/example-contracts/secret-contract-fundamentals/secret-contract-cosmwasm-framework/contract-components/storage

pub fn save<T: Serialize, S: Storage>(storage: &mut S, key: &[u8], value: &
T) -> StdResult<()> {
storage.set(key, &Bincode2::serialize(value)?);
Ok(())

}
pub fn load<T: Deserialize, S: Storage>(storage: &S, key: &[u8]) ->

StdResult<T> {
Bincode2::deserialize(

&storage
.get(key)
.ok_or_else(|| StdError::not_found(type_name::<T>()))?,

)
}

// Save data to storage
save(&mut deps.storage, KEY, &"Some Data")?;
// Load the data from storage
let config: Config = load(&deps.storage, KEY)?;

Listing 3.1: Basic wrappers used to provide easier access to the persistent storage.

These wrappers operating on top of the low-level binary keys and values technically provide
efficient data storage and fulfill all of the developers needs. However, practice has shown
that usage of these basic wrappers in complex use cases results in cumbersome experience.
That is a reason why there is a range of additional storage structures built on top of the
basic wrappers. The cosmwasm_storage3 is an original library that defines a set of standard
structures that provide an additional layer of functionality on top of the wrappers. Although
we haven’t used these structures in our final implementation, their comprehension is vital for
understanding the underlying architecture. These four are the standard structures defined
in this library:

1. PrefixedStorage - Foundational storage space that is semantically separated into dif-
ferent sub-stores by their unique prefixes/keys, similarly as its done in MongoDB
collections or SQL tables. As discussed in the Section 2.3.3, the structure is based
on IAVL+ trees that keeps track of all the storage keys and their respective values of
various data types. It is possible to define composite keys, which are basically keys
composed out of two or more semantically different parts. For example we might
create a composite key by creating a PrefixedStorage with the first part of the key
designating a certain namespace(e.g. passwords), and the second part associates a
specific value within that namespace(e.g. users password in the passwords namespace,
see Listing 3.2).

pub const PREFIX: &[u8] = b"passwords_prefix";
let mut pwd_store = PrefixedStorage::new(PREFIX, &mut deps.storage);
let composite_key: &[u8] = b"sender_address";
save(&mut pwd_store, composite_key, &msg.password)?;

Listing 3.2: Demonstration of the PrefixedStorage.
3https://docs.rs/cosmwasm-std/storage

30

https://docs.rs/cosmwasm-storage/latest/cosmwasm_storage/

Since the prefixes must be unique we cannot construct different sub-store with the
already existing prefix, nor we cannot have more than one mutating reference to the
underlying store of certain prefix. The object PrefixedStorage supports basic types of
methods that are used to retrieve, delete, or insert values.

2. TypedStorage - Creates a subspace wrapped in a type-aware structure that explicitly
declares the datatype stored within the storage space and provides higher-level access
methods. The creation of such a structure was based on the fact that each subspace
works on a unique type that needs to be serialized/deserialized with each access. This
resulted in repetitive processing of the data that could be easily solved with a special
structure such as TypedStorage. The TypedStorage provides the same methods as
PrefixedStorage, with the exception of the additional update method that loads and
modifies the stored data at the same time (see Listing 3.3]).

pub const PREFIX: &[u8] = b"data_prefix";
let mut storage = PrefixedStorage::new(PREFIX, &mut store);
let mut bucket = typed::<_, Data>(&mut storage);
// save data
let data = Data { name: "Maria".to_string() };
let loaded = bucket.load(b"maria").unwrap();
assert_eq!(data, loaded);

Listing 3.3: Demonstration of the TypedStorage.

3. Bucket - Provides the same methods and works just as TypedStorage with the ex-
ception being that it is possible to return the instance of Bucket from a function.
The previous structures were limited by having references to storage that cannot live
longer than the local variable and thus didn’t have such ability.

fn people<’a, S: Storage>(storage: &’a mut S) -> Bucket<’a, S, Data> {
bucket(b"people", storage)

}
// save data
people(&mut store).save(b"john", &Data{

name: "John",
})?;

Listing 3.4: Demonstration of the Bucket structure.

4. Singleton - Another wrapper around the TypedStorage structure that uses only a single
storage key for key-value lookups, instead of providing a whole subspace of arbitrary
key-values. This is especially usable for cases where we want to store sets of data that
will not change over time (for example, the configuration of a contract).

let config = singleton(&mut store, b"config");
// save data
config.save(&Data{ name: "Admin" })?;

Listing 3.5: Demonstration of the Singleton structure.

31

The cosmwasm_storage library was showcased in various templates4 in the official Secret
Network development documentation. We took this recommendation and used this library
in our initial design and development cycles, and we have managed to implement a greater
portion of the e-voting functionality. Then we realized that the library is marked as depre-
cated since the newer versions of CosmWasm and that there exists a newer library called
coswamsm_storage_plus5that is supported in the Secret Network as well.

Standardized Storage Wrappers

The coswamsm_storage_plus library is considered to be a standard storage layer for con-
tract development, although the storage access patterns share many similarities with the
ones we have inspected previously. At that time, we used arrays to store various data, like
the users or elections. When we inspected the usage of these patterns, we saw that for
most use cases there exists a better solution than arrays, which we have used extensively
at that point. The problem was that when the size of the data stored in the array becomes
large, a problem with efficiency arises, because to save and load a single item within an
array, one needs to load the entire array, which logically can lead to an enormous amount of
inefficiency (see Figure). The coswamsm_storage_plus library defines various structures,
but we have identified the following tree as the best suited for our use case:

• Item - Similarly to the Singleton structure wraps around a single storage key and
provides a simple interface for the manipulation of stored data. The difference here
is that the structure no longer stores a Storage object during initialization (see List-
ing 3.6). This fact allowed Item to be defined as a static global constant that can be
processed early and once during the compile time, instead of the repetitive construc-
tion in the body of functions, thereby conserving gas expenditure. This property is
shared among all the structures defined in this library. In our design we have chosen
this structure to hold smart contract configuration, which has small size and needs to
be defined only once.

// global constant
pub const OWNER: Item<Data> = Item::new(b"owner");
fn foo(storage: &mut Storage) -> Result<> {

// save data
OWNER.save(storage, &{ name: "Jozef" })?;

}

Listing 3.6: Demonstration of the Item structure.

• KeyMap - Hashmap-like structure that stores objects under a typed key and allows
iteration over keys and/or values without keeping their order. The typical use case
for KeyMap is the storage of large amounts of data that could be iterated over in the
future, while also performing key lookups. The KeyMap might be configured with the
disabled iteration feature or with a custom paging size (size of fragments retrieved
during iteration).

4For example a simple smart contract that works as counter with a frontend part of the application
implemented in Vue.js. See repository github.com/secret-counter-vuejs-box

5https://github.com/cw-storage-plus

32

https://github.com/secretuniversity/secret-counter-vuejs-box/tree/main
https://github.com/CosmWasm/cw-storage-plus

• KeySet - Stores typed data into a hashset-like structure with the same settings options
as KeyMap, but the iterator over the structure is not in mutable form. The example
usages for KeySet are sets of data, where it is necessary to keep track of a membership
within the group (access control lists), while not relying on key-value lookups.

We followed up the characteristic comparison of the structures by doing an experiment in
which we compared the gas performance in the critical operations of iteration and insertion.
These operations will be heavily used in our contract design and may be the probable cause
of reaching the block gas limit, which is a reason why these statistics are important to be
determined. We have setup the experiment in the following way:

1. We created three structures - array(vector), map (KeyMap) and set (KeySet). Each
of the structures holds the same string datatype.

2. We have also created functions of an element insertion, and element search&replace
for the given structure.

3. We have iteratively inserted continuously increasing data in the underlying structure
and after each insert performed the search&replace function. For each operation
performed, we have collected the gas usage statistic and plotted a graph that can be
seen in Figure 3.4.

0 2000 4000 6000 8000 10000 12000
Number of items

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
as

1e6 Map Structure

Insert
Search&Replace

0 2000 4000 6000 8000 10000 12000
Number of items

Set Structure

Insert
Search&Replace

0 2000 4000 6000 8000 10000 12000
Number of items

Vector Structure

Insert
Search&Replace

Figure 3.4: Gas usage comparison of certain operations.

This experiment has shown that the array is not an effective storage option, as was expected,
but more importantly, we found that it is meaningful to take considerations when deciding
which data will be stored within the KeyMap or KeySet structure. Since the structures
provided in coswamsm_storage_plus are standardized and have better gas saving abilities,
we have opted to use this library exclusively. In the following list, we analyze each entity
stored in the contract and propose the best-suited storage structure variant.

• Users - A collection of users enrolled in the system are mostly used as an access control
to the contract, but also as a source of potential voters and candidates participating
in elections. We have chosen KeyMap because we use this storage mainly to verify

33

existing users, which is effectively done using this structure. Because we will be doing
a lot of lookups for existing users by their address and we want to store a potentially
large set of User objects, the use of KeySet would not be ideal.

• Elections - To represent the elections, we have used the structure KeyMap with the
same reasoning as above in the representation of users.

• Votes - They are expected to be of significant size during the electoral process. We
have chosen a KeyMap for their storage as we need to maintain the relationship
between the voter and the candidate effectively. Another reason being that we want
to perform lookups for the voters selected candidate, when users verify or retrieve
their votes.

• Candidates and Voters - These two entities are formally a subset of the users that
will be mainly used to control access to the authorized operations in a given election.
All that is needed is to check whether a given user belongs to the set of candidates or
voters, which is a perfect use case for KeySet, which we have used to represent these
two entities.

• Results - Similar design choice as the Vote structure as we need to represent a re-
lationship between the candidate and the number of votes he received. To do so,
we identified KeyMap as a perfect solution, as all that was needed was to map the
addresses of the candidates to their count of received votes.

As can be seen in the list above, we haven’t really mentioned how we represent the specific
substores within the proposed structures(e.g., candidates or voters in a given election). This
was due to the fact that all the structures may have another prefix appended that would
identify such substore.

3.2.2 Permissioned Access Control

Because the computation is performed securely within the TEE of the network nodes, the
blockchain state is encrypted, and the infrastructure of Cosmos SDK on its own does not
make it possible to cryptographically authenticate the identity of a querier without the
ability to control who is able to retrieve data from defined queries, our e-voting system
would not be able to distinguish admins from other users, and voters would not be able
to verify their votes. To compensate for this problem, Secret Network has provided access
control management tools in the form of ViewingKeys and Permits [29].

• ViewingKey - It is a signature generated inside a transaction from a random input and
the address of its owner, which is a very similar concept to password. The signature
gets stored in the state of the contract, together with the public address of the owner.
Afterwards a permissioned query requires the viewing key and the public address to
retrieve a piece of data owned by the given individual. The passed ViewingKey is
compared with the one stored in the contract to determine whether the querier is
authorized to ask for that piece of data or not. The disadvantage of this tool is that
the user must send a transaction before performing the authorized query.

• Permit - A successor method of the ViewingKeyintroduced in the SNIP24 specifi-
cation6 that increased efficiency and is considered as a viewing permission method

6SNIP24 - a new standard for permission viewing, available at
https://github.com/SecretFoundation/SNIP24.md

34

https://github.com/SecretFoundation/SNIPs/blob/master/SNIP-24.md

for all access control situations. Its basically a formatted message that provides sev-
eral arguments such as what exactly the permit applies to and what permissions the
permit should allow (e.g., should the permit allow the querier to view the ballot).
Permits are not saved in the smart contract state and do not require the initiation
of a blockchain transaction. Therefore, permits are a less permanent way to gain
viewing access with less network strain.

We have selected Permit as access control management in our smart contract, because they
do not have to be stored inside the contract and the user is not required to perform a
certain transaction to create ViewingKey. The queries that require access management are
identified in Figure 3.2. In case of message calls that modify the state of the contract, we
are able to check their sender address, so we do not have to incorporate the Permit logic
into those.

3.3 Oasis
The platform has the ability to run independent parallel runtimes (ParaTimes), which
enable multiple different computation models on the main Oasis blockchain. At the time
of writing, the platform had officially supported two EVM-compatible ParaTimes called
Emerald and Sapphire, but also a Wasm-compatible ParaTime named Cipher. The following
subsection looks at the process of choosing the best ParaTime suitable for our development
and evaluation. The great benefit that was not present in Secret Network was that this
platform provided a very easy means to control access management. We have presented
this capability and our utilization of it in Subsection 3.3.2. When it comes to other notable
design choices, we had to analyze the different concepts brought with Solidity language for
the storage structure of our contract. All other aspects of the implementation of smart
contracts were straightforward and did not require intense design analysis.

3.3.1 ParaTime Selection

Our first steps took the direction of the Wasm-based ParaTime called Cipher7, mainly
because their smart contracts are written in the Rust language similarly to the other eval-
uated platforms. Since we have already finished the implementation in Secret Network, the
use of the same language would allow us to reuse logic and patterns, which would make
the implementation much easier. Unfortunately, we have struggled to find code examples
that would show us how to implement and deploy a contract in this ParaTime. In addi-
tion, the available documentation is very limited, and finding resources on the Web or in
Oasis community channels like Discord has also not helped. We have not found an SDK
/ API for developing automated scripts for smart contract deployment, interaction, and
evaluation comparable to other platforms, so we ruled out Cipher and begin evaluating
other options. The only real option left was confidential EVM-based Sapphire ParaTime8

that offers much more extensive documentation and tooling support, not to mention the
activity and size of the community. The Sapphire ParaTime also provided Javascript API
for automated deployment that is missing in Cipher. The reason why Sapphire still remains
at the forefront of the attention of Oasis staff is that there is a great market value in be-
ing the only confidential network with interoperable on-chain privacy compatible with all

7https://github.com/oasis/cipher
8https://github.com/oasis/sapphire

35

https://github.com/oasisprotocol/cipher-paratime
https://github.com/oasisprotocol/sapphire-paratime

EVM networks [14]. These are the reasons why we have chosen Sapphire ParaTime for our
e-voting smart contract implementation.

3.3.2 Confidentiality and Permission Access

The ParaTime provides means of confidential state, end-to-end encryption, and confidential
randomness that are easy to integrate within EVM-dapps like DeFi, NFT or blockchain
gaming. The smart contracts within Sapphire are programmable using EVM-based lan-
guages such as Solidity or Vyper. In addition, the developer can take advantage of devel-
opment environments like Hardhat or Foundry that are also popular among developers of
Ethereum smart contracts.

When it comes to confidentiality, Sapphire hides the state of the deployed contracts from
everyone except the contract itself, and all transactions sent to ParaTime are encrypted
from end-to-end, making it available only to the sender and the contract itself. In Sapphire
it is possible to select which data will be retrievable and by whom determined by the
implemented permission control within the query functions. This is possible since both
transactions and queries have the ability to view the sender address attached to each call,
and the developers are then able to implement the permissions and provide data and secrets
to only authenticated callers. Thus, to have an access control management in our contract
we did not have to incorporate any special structures, unlike in Secret Network, all that
should be needed is to conditionally check the sender parameter. But since there are four
different ways [14] of transaction invocation, we had to take each one into account to be
sure about this assumption.

1. Inter-contract call - Whenever a contract creates a transaction or query to other
contract, the sender field is always set accordingly. In this case, it is sufficient to
have an access control method based on the sender field.

2. Unauthenticated view call - These are query calls performed using the eth_call9

RPC method, which by default sets the sender parameter to null address(adress(0)).
Since the null address is a valid address, we cannot allow its use during the registration
of a new user. In case we allowed it, all the data viewable to this user would be visible
to all unauthenticated queries.

3. Authenticated view call - These are queries that are signed by existing users, so the
parameter sender is correctly set and no special handling is needed.

4. Transactions - They are also signed by existing users, so the parameter sender is set
accordingly, so again no special handling is needed besides the above mentioned.

We also have to keep in mind that Solidity language creates queries or getter functions for
all public state variables [21]. It is important that all our state variables are set to private,
so that the access control implemented in the queries cannot be bypassed. Similar caution
has to be taken in the function visibility settings. All defined functions that are meant
to be used within the contract and come in contact with sensitive data have to be set as
internal or private, so that they are not accessible outside the contract.

9https://www.quicknode.com/docs/eth_call

36

https://www.quicknode.com/docs/ethereum/eth_call

3.3.3 Contract Storage

State variables in the EVM are compactly stored in a single storage slot, which are chunks
of data (a size of 32 bytes) that the EVM packs together to perform one large operation
(e.g. write to the contracts storage) instead of multiple small ones. This becomes a problem
when dealing with mappings and dynamically-sized arrays.

These two structures interact with the data in the memory using offsets calculated by an
underlying keccak256 operation. Each mapping and array access requires such computation
under the hood. Since our design will use many instances of the mapping or dynamic array
structures, it is important that our design reflects this fact. That is, in cases where we
access the same data multiple times in a single scope, it is a good practice to cache the
lookup result locally using the memory keyword. This is especially important when such
lookups are performed in loops. Such a small change can result in significant gas savings.

Similarly to the structure KeyMap from CosmWasm, Solidity has its corresponding
structure called Mapping that is also used for efficient key value search in larger data
collections. Mappings are virtually initialized so that every possible key is assigned a
default value of the stored data type, while not storing the keys directly (as mentioned
previously, the position of the corresponding data is determined by keccak256 calculation).
These are the reasons why by default it is not possible to determine the length or size of
mapping, nor is it possible to iterate over their keys or values. Since our e-voting smart
contract design contains queries and transactions that require iteration, and there is no
other effective option besides arrays or a custom version of iterative mapping, we had to
opt for the use of arrays. Similarly as in Secret Network design, we will bundle key entities
and the storage structure we used to store that entity:

• Users - A collection of users enrolled in the system are mostly used as to control the
access of only enrolled users to the contract, but also as a source of potential voters
and candidates participating in elections. We have chosen to use both mapping and
array for storage of users. The array was chosen because administrators need to
have the ability to retrieve enrolled users, which would not be possible with mapping
only. The mapping is used for efficient lookups, where the key is the address of the
existing user.

• Elections - Stores all the elections that are taking place within the contract. We will
be using both mapping and array to store them, the reasoning remains the same
administrator functionality. In this case, we use the name of the election as the
mapping key.

• Votes - Compared to Secret Network we do not have the option to identify specific
election substores by appending prefixes during runtime to underlying structures. We
had to solve this during the contract storage structure definition. We have defined
two mapping:

– First one is holding array of all the votes under the elections name key. The
array is needed for iteration over all the casted votes during results calculation.

– The second mapping is utilized for quick lookups of casted votes(used in vote
casting or recasting methods).

• Candidates and Voters - We have designed an equivalent storage structure for these
two entities as in the case of Votes, meaning that we represent them by four mapping
structures.

37

• Results - Similarly as in the previous entities, we define two mappings, one for retriev-
ing the list of candidate results and the second one for quick lookups. In addition, we
further enhance the results representation by a third mapping that holds the winners
of the election under an election name key.

3.4 Phala Network
Developers in Phala Network have two different ways of building and deploying Phat con-
tracts10:

1. Phat Contract 2.0 - allows developers to write Typescript script that behave as an Or-
acle11 while running on a decentralized infrastructure of Phala Network with possible
confidential data secured by the platform. Its goal is to allow the deployed script to
respond to requests from some on-chain smart contract side (e.g. contracts in EVM-
compatible blockchains like Ethereum, Polygon, or Arbitrum). The script is free to
call any APIs during its processing and respond to the contract side in any format
the developer has defined.

2. Phat Contract Rust SDK - offers customizable development instruments based on the
Rust programming language.

We have ruled out option Phat Contract 2.0, because Rust SDK is a more familiar devel-
opment form that has many advantages and we are already familiar with it from Secret
Network. Contracts are written in Rust-based smart contract language called ink! that is
standardly used in all of the Substrate12 based blockchains. Compared to other platforms,
we did not have to choose between specific tools to manage access within the contract, as
ink! automatically supplies the caller or sender address in all messages.

3.4.1 Contract Storage

The storage is organized as a key value database, where keys are arbitrarily long and
the values are encoded [41]. In addition to all common Rust data types, the standard
ink_prelude crate defines types like Balance, Hash, or AccountId. We will be using all
basic types in our implementation, including the AccountId that will identify all registered
users in our e-voting system.

The storage API operates with a standard unit called storage cell where data entries
are stored and loaded using a dedicated key. All data entries that are stored within a single
storage cell are considered to conform to the Packed storage layout [19]. By default, smart
contract storage conforms to the Packed layout, which means that ink! tries to store all the
variables defined in the contract storage structure as a single storage cell. As a consequence,
each message that interacts with the contract storage will always interact with the entirety
of the storage structure. This form of storage access is referenced as eagerly loading. The
problematic nature of this is drawn in Listing 3.7, where each get_admin call would require
the load of the entire users array. Not only does it cause a substantial increase in gas

10Atleast at the time of writing it was structured this way, because it seems like the Phala team is
rebranding to AI Agent Contracts, see archive https://web.archive.org/docs.phala.network/phat-contract.

11https://chain.link/education/blockchain-oracles
12https://docs.substrate.io/

38

https://web.archive.org/web/20231001111716/https://docs.phala.network/developers/phat-contract
https://chain.link/education/blockchain-oracles
https://docs.substrate.io/

costs, but it can also break the contract as a whole. As in our example Listing 3.7, an ever-
growing array will at some point reach the limitation of the Packed layout storage capacity
of 16KB (maximum size of the buffer used to decode and encode storage items [41]). This
is a problem that needs to be solved by converting the storage to non-Packed form.

#[ink(storage)]
pub struct PackedStorage {

admin: AccountId,
users: Vec<User>,

}
#[ink(message)]
pub fn get_admin(&self) -> AccountId {

self.admin
}

Listing 3.7: Ineffective storage structure.

This is the reason why ink! data storage incorporated a concept of lazy loading that
breaks the storage into smaller pieces, which can be loaded on demand. These concepts are
provided in ink_storage in the form of the following lazy loaded storage types:

• StorageVec - Its a lazy loaded version of the Rusts Vec, that allows access to each el-
ement individually with theoretical limitation of storing 232 elements. Unfortunately,
during experimentation, we have not been able to utilize this structure due to er-
rors tied to the import of the structure and we have not managed to find relevant
information about StorageVec integration within Phala Network.

• Mapping - As well as in other frameworks, ink! defines a structure similar to hash
tables that maps key value pairs directly to the storage. It offers high-level function-
ality for storing large sets of values, while still being efficient in terms of gas costs and
code size. The drawbacks of this structure are that it is not iterable and is not pos-
sible to create nested mappings. In addition, the mapping values must be of Packed
type, which was quite problematic to implement for the custom data structures that
we have designed in our smart contract. This must have been reflected in a differ-
ent design of the storage structure, so that it facilitates the needs we have carved in
Subsection 3.2.1.

• Lazy - Its a structure that wraps any storage field, which is in turn transformed into
a non-Packed layout, meaning that it will be stored in a separate storage cell. This
results in slightly more effective storage management, but this solution is still not
perfect for large sets of data (the Mapping structure is the right choice).

Application of the lazy loaded structure to our previously showcased example would either
substitute the users with Mapping or StorageVec, or wrap into the Lazy wrapper structure
(see Listing 3.8). Sending message get_admin would no longer require the load of a storage
cell containing the ever-growing users array.

39

#[ink(storage)]
pub struct NonPackedStorage {

admin: AccountId,
users: Lazy<Vec<User>>,

}
#[ink(message)]
pub fn get_admin(&self) -> AccountId {

self.admin
}

Listing 3.8: Storage structure optimized with Lazy primitive.

Similarly as in the previous platforms, we list the entities and propose a design of their
storage structure:

• Users - For the collection of users we have chosen to use classic Vec structure that we
wrap into a Lazy wrapper to store it in a non-Packed layout. The reasoning being
that our design requires queries that involve retrieval of the users, or their subsets
(candidates, voters). The mapping would have to support iteration, which would not
be possible with mapping only. We have designed a separate mapping user storage
that maps user addresses as a key to boolean that identifies whether the user was
previously registered or not. This mapping is used for efficient lookups in messages
not retrieving data (e.g. casting votes) as a form of user access control.

• Elections - We will be using both array to satisfy the administrators retrieval and
mapping as a form of admin access control.

• Voters and Candidates - We have chosen a mapping representation that will store a
subset of users that were enrolled by the administrators. Each entry within mapping
will be identified by an election and the user address of the candidate/voter.

• Results and Winners - For the chosen format of the results consisting of an undeter-
mined number of candidates and their received vote counts, we will not avoid the use
of the Vec array structure. Each results array a will be paired with the overall winner
address and mapped to name of the given election.

The design above is far from the ideal solution, since we still had to resort to storage of
arrays in mappings, which is a problem from two perspectives. The first is the limitation
related to decoding and encoding mapping values. In ink! there exists a special 16KB
buffer that is used to store the encoded data, which is quite limiting, especially when we
store a dynamically sized types like arrays. Reaching over this limit traps the contract.
The second is tied to the situation where we want to append or insert some data to the
existing mapping data. Each such insertion or append requires an insert of the whole value
part again, which is very cosly (demonstrated in Listing 3.9).

40

pub fn transfer(&mut self) {
let caller = self.env().caller();
// ‘balance‘ is a local value and not a reference to storage!
let balance = self.balances.get(caller).unwrap_or(0);
let endowment = self.env().transferred_value();
// The following line of code would have no effect to the balance of

the
// caller stored in contract storage:
//
// balance += endowment;
//
// Instead, we use the ‘insert‘ function to write it back like so:
self.balances.insert(caller, &(balance + endowment));

}

Listing 3.9: Showcase of how SecretCLI connects and deploys a contract to the LocalSecret
container.

41

Chapter 4

Implementation

This chapter presents details about the practical side behind the implementation, evalua-
tion, and testing of e-voting smart contracts. We also share our development experience
and provide details of how to setup the development environment with all the tools re-
quired for the process of uploading, deploying, and executing our smart contracts in the
given PPP. Because each PPP platform uses a different framework for smart contract de-
velopment, the development was always distinct, although the use case remained the same.
The differences were not only in terms of the language used, but also in other aspects such
as the level of documentation, the intuitiveness of the tools provided, or the activity of the
community. These factors resulted in various time and effort requirements needed to com-
plete the implementation, testing, deployment, and evaluation. We have used the version
control management system git throughout the implementation process, resulting in four
different repositories for three platforms that we have implemented the smart contract and
the repository where we have contained the data processing, visualizations, and evaluation
scripts. In the last section, we present the attempted development of a frontend application
that aimed to integrate with the implemented smart contracts to demonstrate the potential
of privacy-preserving platforms in an easy-to-use Web UI.

4.1 Secret Network
As mentioned previously in Subsection 2.3.3, the smart contracts in Secret Network and
use the CosmWasm framework built on top of the Rust language that is compiled into a
WebAssembly bytecode Rust is known for its strong memory safety, type safety, impressive
tooling support, and ever increasing popularity among programmers. The combination of
WebAssembly and Rust should guarantee optimized run-time performance, which in turn
lowers gas costs. The available documentation is on good level, even though we had to dig
deeper sometimes to find the information we were looking for, and there were also cases
where we had to seek help from the community. Getting help was luckily not a problem
as the community around the project is very active. The main remarks regarding the
documentation are its rapid changes over time and chaotic organization. In our experience
this resulted in that the templates referenced in the initial steps tutorial were not updated
and not maintained anymore and also had unclear setup instructions.

42

4.1.1 Development Environment

The first step in setting up the development environment was to install the stable ver-
sion of the Rust toolchain through its rustup toolchain manager1. Rust supports a large
number of platforms2, where some receive separate binary releases of the standard library,
while others receive the full compiler. The rustup toolchain manager gives easy access
to all of them. When we installed the Rust toolchain, rustup automatically installed
the standard library for our host platform (the architecture and operating system of our
system). Since we compiled the smart contracts into WebAssembly, it was necessary to
install another target platform, for Secret Network and CosmWasm the expected target is
wasm32-unknown-unknown. This identifier is known as target triple and consists of three
strings separated by hyphens that represent the architecture, the vendor, and the operat-
ing system. The “wasm3” part means that the compilation will result in a WebAssembly
binary that uses a 32-bit large address space. The remaining two ”unknown” parts of the
triplet mean that there is no limitation on the machine that is being compiled and run on.
Additionally, we installed a developer tool cargo-generate, which helped us to quickly
create a new folder structure of a new Rust project using a pre-existing git repository as a
template.

4.1.2 Secret tools

Secret Network provides a command-line interface tool SecretCLI(Secret Network Light
Client) and library secretjs that provide means of interaction with the Secret Network
blockchain. We have used these tools to send transactions and queries to deployed smart
contracts, to generate and manage user keys/wallets, or to create cryptographic signatures.
We used the SecretCLI tool mainly with our first experimentation with contract deploy-
ment and execution, but it proved to be a good companion even in later stages. The
secretjs on the other hand was helpful throughout the whole process, mainly due to its
scripting capabilities which I will present in the following sections.

user@linux-MS-7B89:~$ secretcli config node http://localhost:26657
user@linux-MS-7B89:~$ secretcli config chain-id secretdev-1
user@linux-MS-7B89:~$ secretcli config keyring-backend test
user@linux-MS-7B89:~$ secretcli config output json
user@linux-MS-7B89:~$ secretcli tx compute store contract.wasm.gz --gas

5000000 --from a --chain-id secretdev-1
user@linux-MS-7B89:~$ secretcli query compute list-code
[

{
"code_id": 1,
"creator": "secret16u7w28vp68qmldffuc89am4f02045zlfsjht90",
"code_hash": "2658699cea61120ac4411cdf1c05cdac3deceba8de0f6ce026d"

}
]

Listing 4.1: Showcase of how SecretCLI connects and deploys a contract to the LocalSecret
container.

1Step by step tutorial on the setup of the environment is published on official documentation of Secret
Networkhttps://docs.scrt.network/set-up-env.

2Platform Support in the official documentation is available at https://doc.rust.org/platform-support.

43

https://docs.scrt.network/secret-network-documentation/development/getting-started/setting-up-your-environment
https://doc.rust-lang.org/nightly/rustc/platform-support.html

During development, we extensively relied on a Docker container called LocalSecret, which
is basically a containerized Secret Network testnet and pre-configured ecosystem with four
accounts a, b, c and d and one validator. The requirements to run the container are
approximately 2.5 GB of RAM, and that is the only real limitation besides the installation
of Docker. This container provided us with the ability to deploy our contract on our local
machine without the need to rely on availability of the testnet or the costs tied to the
mainnet, and most importantly, we could test out the contracts in a sandbox environment.

4.1.3 Folder Structure

We have used the official template “Simple Counter Example” for Secret Network smart
contracts with pre-configured packages, a build process and a predefined conventional file
hierarchy. We have kept the hierarchy almost identical with couple of exceptions in the
contract source files:

/
node/

queries_localsecret.js
queries_testnet.js
deploy_instantiate.js
evaluation1.js
utils.js

schema
execute_msg.json
query_msg.json
instantiate_msg.json

src
error.rs
contract.rs
msg.rs
lib.rs
state.rs
utils.rs
tests.rs

Cargo.toml
Makefile

The schema directory contains JSON schema files generated by the cosmwasm_schema and
schemars packages. These files serve the purpose of validation and API documentation, as
each JSON file represents a supported message that the contract expects. The src folder is
the home of the contract code itself. The conventional structure of the contract’s file tree
in Secret Network consists of:

• contract.rs - Integral file that serves the incoming messages with core functional
logic of the smart contract and tests.

• state.rs - Holds the representation and structures of the smart contract’s long-term
storage, with their constructors and methods.

44

• msg.rs - This module holds various structures that denote different types of entry
point messages and the response formats of our query methods. We have organized
the messages into three foundational blocks:

– InstantiateMsg - Is a type of message that is required to be passed within the
contract instantiation. It has a single admins property, which holds the array of
administrators in the contract.

– QueryMsg - Formulates the set of expected message formats for data retrieval
methods that corresponds to Figure 3.2. Each entry also specifies the type of the
returned value, by setting the #[cw_serde] and #[returns(ResponseType)]
macros. There is a special case of the message format, defined as WithPermit
that is unique to Secret Network smart contracts. This type distinguishes au-
thenticated queries, as they require additional parameter of the Permit type that
is used for the management of the access control (explained in Subsection 3.2.2).

– ExecuteMsg - Similarly as QueryMsg defines set of message formats required in
the transactional methods.

• lib.rs - Exports all of the modules defined in the ”src” directory, to make the modules
visible and accessible between each other.

We have extended this structure with error.rs, utils.rs and tests.rs. The reasoning
was better readability and modularity of the custom errors, tests, and helper functions.
The last “node” directory is composed of Javascript scripts, for automated deployment of
the contract to either testnet or local docker instance and other scripts that interact with
the deployed contract via message calls.

4.1.4 Smart contract structure

CosmWasm follows the actor model design pattern, where actors are individual entities that
communicate by exchanging messages. CosmWasm denotes these messages as a special type
of message called entry-point, which serves the same purpose as the main() functions do
in most native programming languages. The exception being that smart contracts could
have more than one entry point function. Its up to the contract implementation how many
and which type of entry points will be defined to accommodate the contract interaction.
Developers can choose between three types of entry point messages:

1. contract::instantiate - Holds initialization logic that is executed once, after the
Secret contract gets deployed to the network. In our contract, it is used to set up the
initial state configuration and assigns the sender of the Instantiate message as the
initial user and administrator of the contract. The account that deploys the contract
has the option to pass a list of admin accounts, the contract should store in addition
to his address.

2. contract::execute - Bundles all transactional logic that modifies the contract state.
In our implementation, we have several methods of this type, all of them correspond
to the ”Execute” table identified in the Figure 3.2.

3. contract::query - Collection of read-only functions that provide predefined answers
of some collection in the stored state, without any state modification. Similarly, as in
the contract::execute entry point, all the implemented methods are corresponding
to the “Queries” table in Figure 3.2.

45

To make the entry points distinguishable for the Wasm run-time from other functions, they
are decorated with a special attribute #[entry_point]. The purpose of the decorator is
to make the function distinguishable for the Wasm runtime. The raw Wasm entry points
support only the basic data types natively supported in the Wasm specification. Since we
are working in Rust, we want to have the entry-points support advanced structures and
enums defined in Rust. The macro solved this problem by calling an internal function that
does all the magic of creating high-level structures. These entry-point functions have by
default four arguments:

• DepsMut/Deps - Contains functions responsible for querying and updating the current
contract state, querying other contracts, and provides an Api object with helper
functions for dealing with CosmWasm addresses (e.g. address validation, signature
verification). The Deps object represents a non-mutating version of DepsMut. This
Deps object is usually used in queries, as these can never alter the internal state of
the contract.

• Env - Represents the state of the blockchain at the time of the execution of the mes-
sage. It contains metadata like the height of the chain, chain’s id, current timestamp,
and address of the called contract.

• MessageInfo - contains metadata about the sent message that triggered the entry
point serving the transactional logic. The metadata consists of essential information
for authorization: the address that has sent the message and payment in the form
of chain native tokens sent with the message. This metadata has implication in the
access control, even though this object is not available inside of query methods, where
other techniques have to be used.

• msg - By standard configuration these messages hold an Empty type (equivalent to
empty JSON object), but it can be modified to any structure or enum that imple-
ments serialize trait. Based on this argument, the following order of operations is
followed. We have created three types of message types, each corresponding to differ-
ent types of entry point, that are defined in the msg.rs module (see message types
in Subsection 4.1.3).

4.1.5 Storage Structure

During the iterative development approach, storage was the most frequently altered part
of the implementation. During our initial development, we relied on the secret_storage3

package and its Singleton structures together with the arrays. For example, our state
representation (visible in Listing 4.2) used the Singleton structure for state storage, which
contained arrays for elections, users, and administrators. The state was accessible by a
common pattern, consisting of two functions config and config_read that retrieved a
mutable or immutable version of the state with the predefined key/prefix.

3https://crates.io/crates/cosmwasm-storage

46

https://crates.io/crates/cosmwasm-storage

pub struct State {
pub owner: Addr,
pub users: Vec<User>,
pub elections: Vec<Election>,
pub admins: Vec<Addr>,

}
pub const CONFIG_KEY: = Item::new(b"state");

pub fn config(storage: &mut dyn Storage) -> Singleton<State> {
singleton(storage, CONFIG_KEY)

}

pub fn config_read(storage: &dyn Storage) -> ReadonlySingleton<State> {
singleton_read(storage, CONFIG_KEY)

}

Listing 4.2: Initial state representation.

After our analysis described in Subsection 3.2.1, we have changed the structure to use the
structures defined in the cosmwasm_storage_plus library. This library is not directly com-
patible with Secret Network, but luckily there is a secret_toolkit package that provides
range of common tools used in development, including storage structures mentioned previ-
ously. After incorporating the structures defined in this library, our final implementation
has completely removed the use of arrays, and instead relied on the Keymap and Keyset
structures (see Listing 4.3). In similar manner we have implemented all of the structures
we have chosen to use in our design (see Figure 3.2.1) to represent the contracts state.

pub struct State {
pub owner: Addr,

}
pub const STATE: Item<State> = Item::new(b"state");
pub const ELECTIONS: Keymap<String, Election> = Keymap::new(b"elections");
pub const USERS: Keymap<Addr, User> = Keymap::new(b"users");
pub const ADMINS: Keyset<Addr> = Keyset::new(b"admins");

Listing 4.3: Restructed state representation in the final implementation.

4.1.6 Access Control Management

To control who has access, it is necessary to have means of authentication of the users who
send messages to the contract. The methods used to control who is interacting with our
contract depend on whether its a query or a transaction. In terms of transactions, the so-
lution is simple, as one of the arguments to these methods contain an MessageInfo object
that stores information about the identity of the sender. In our utils.rs module, we have
implemented a few helper functions that are being used in conjunction with this informa-
tion(user_exists, validated_address or admin_exists) to authenticate the sender with
information stored in the contract.

47

// check repetitive users
if user_exists(&deps, &info.sender){

return Err(ContractError::RepetitiveUser {
user: validated_addr,

});
}

Listing 4.4: Example how we utilize the sender identity to control access.

On the other hand, within the query methods we had to incorporate Permits structure to
have the ability to check the queries identity (see Subsection 3.2.2). We already mentioned
once that we use the WithPermit query message type to identify permissioned queries that
require sending a special object called Permit in its arguments. The Permit object within
these queries can be verified with a validate function, that verifies the signatures and the
public key contained inside of it to determine who is the sender of the query message call.
In this way, we can manage who have access within the queries to data stored in contract
state. We have implemented this functionality for get_admins and get_vote functions
only, as further incorporation made the evaluation process more difficult (we would have
to create signatures and permits for each query call).

4.1.7 Testing

We have implemented unit tests for each of our key e-voting functionalities using the library
cosmwasm_std::testing. This library provides methods for mockup objects creation re-
quired to pass in the arguments of the contract calls (objects described in Subsection 4.1.4).
By mocking these objects, we are able to define the admin of the contract and senders of
each transaction, thus enabling us to perform all the administrator functionality, with-
out running into the access restriction problems. We have structured the tests into seven
different test cases:

1. tests::proper_initialization - Tests the instantiation call used to initialize the
contract. It does so by sending the instantiate transaction and querying the ad-
ministrators with the GetAdmins message to see if the contract was successfully in-
stantiated and if the correct administrators were set up.

2. tests::user_creation - Tests the user creation, by sending a CreateUser trans-
action and verifying the correct execution by querying the users with the GetUsers
message and comparing the response to expected values. For the mockup user cre-
ation we have implemented a tests::create_mockup_user function, that is used
throughout the test cases.

3. tests::election_creation - Another simple test case that verifies the functionality
of election creation.

4. tests::candidate_assign - We perform the same as in the previous test case to
create the user that will become the candidate. But before we nominate a candidate,
we have to create an election by sending a CreateElection message. After checking
the success of the election creation, we are able to set the created user as a candidate
running in this election and also verify this action.

48

5. tests::assign_voter_to_election - Almost equivalent to the previous test case,
with the exception that the user is assigned to be the voter in the create election,
instead of candidate.

6. tests::casting_votes - Consists of four different users that are enrolled in the
contract, where half of them will become candidates and the other half voters in a
single election. Both voters will give their vote to a different candidate with the
CastVote message. Afterwards, one of the voters will change its mind and recast
their vote with RecastVote message. Lastly, the election is ended, and the results
of the election are retrieved and checked if the numbers add up and the winner is
determined correctly.

7. tests::permit_ballot_query - Sets up an election with one voter and one candidate,
where the voter casts vote to the only candidate, and then he tries to retrieve and
verify his vote. Verification of votes is one of the authenticated query calls that are
required to pass a Permit object besides the standard arguments. We have created
Permit with the help of secretcli and its tx sign-doc command. This command
signs the provided file, in our case a JSON representation of the Permit with the
provided address(we have given the address we are calling the contract with in the
tests).

Each of the test cases required the mockup objects, set an administrator with valid address
and instantiate the contract. We have implemented a function init_things that does all
this initialization, and every test case then calls this function to set everything up.

4.1.8 Statistics Collection

We have implemented scripts that deploy and interact with the contract on Testnet or
LocalSecret (locally running dockerized instance) and collect statistics that will be compared
to the other platforms. These scripts were written in the Javascript language while heavily
relying on the secretjs library for connection to Secret Network. We are going to explain
the role of each script in the following list:

• deploy_instantiate.js - Deploys and instantiates the contract using the wallet in-
stance generated by the mnemonic stored in the .env file via the SecretNetworkClient
(see Listing 4.5) and the contract.wasm.gz file containing the contract compilation
result. The client provides methods for deploying the contracts and sending queries
or transactions to the deployed contract. In this script, we deploy and instantiate the
contract using the storeCode and instantiateContract methods from the client.
These methods return codeId, codeHash and codeAddress of the deployed contract.
We store all of this information in the .env file using the dotenv package, so that the
other scripts can then load this information and use it to interact with the contract.

• utils.js - Defines two helper methods:

– howLong - This function wraps some of our contract API method with its ex-
pected arguments. The method is executed and the results are processed to
retrieve the information about the gas and time expenditure required to perform
that message call. These statistics are stored in the predefined location.

– updateEnvContent - Used to update or create new .env variables.

49

• queries_localsecret.js - Represents an API to our contract, consisting of all pos-
sible message calls(both queries and transactions) to our contract deployed to the
locally running LocalSecret instance.

• queries_testnet.js - Equivalent of queries_localsecret.js, but the configura-
tion is configured to connect to the pulsar-3 testnet network.

• evaluation.js - Each of the defined methods checks for possible errors and retrieves
information about the message call performed (such as gas and execution time) and
stores it in a file using the howLong wrapper.

// create wallet from mnemonic loaded from .env file
const wallet = new Wallet(process.env.A_ACCOUNT);
// connect to the Secret Network
const secretjs = new SecretNetworkClient({

chainId: "secretdev-1", // "pulsar-3",
url: "http://localhost:1317/", // "https://api.pulsar.scrttestnet.com",
wallet: wallet,
walletAddress: wallet.address,

});

Listing 4.5: Connection to the Secret Network using the secretjs methods.

4.2 Oasis Network
The smart contract in Oasis Network was implemented using Sapphire ParaTime and its
Solidity programming language. We have also taken advantage of the supported devel-
opment environment, in the form of Hardhat. The popularity of Ethereum has resulted
in exceptional documentation and coverage of both Hardhat and Solidity, but the level of
documentation of Sapphire ParaTime is also not lacking. This resulted in a comfortable
development experience that was on another level compared to the other platforms. Find-
ing the information we were looking for during development was never the problem. The
only limitations that we have observed are the lack of configuration options when it comes
to data storage structure and the lower flexibility of the contract size.

4.2.1 Development Environment

To setup the environment all is needed is to install tools like sapphire-hardhat npm pack-
age, the Hardhat environment, together with its dependencies (e.g. @nomicfoundation /
hardhat toolbox). These can be afterwards uses to create and initialize a new project
using a single command npx hardhat@ 2.19.2 init. We had to create our own wal-
let and charge it with tokens that were needed for the deployment of our contract(either
buying ROSA token or using the faucet for testnet tokens). Afterwards, the only thing
that separated us from deploying our first smart contract to Sapphire ParaTime was to
change the Hardhat configuration settings. These changes included an import of the in-
stalled sapphire-hardhat npm package and the definition of the network parameter in the
HardhatUserConfig, so it points to the Sapphire mainnet or testnet. In addition to this,
we have initialized an empty git repository and created a .env file that we will be using to
store our wallet credentials and the addresses of deployed contracts.

50

4.2.2 Folder structure

Based on the automatized project setup done by the Hardhat tool, we configured the file
hierarchy into the following form:

/
artifacts/

build-info
contracts/

contracts/
EvotingOasis.sol

test/
EvotingOasis.ts

scripts/
deploy.ts
evaluation.ts
utils.ts

evaluation-evoting/
oasisdata/

hardhat.config.ts
Makefile
package.json
.env
tsconfig.json

The artifacts directory is used to store the compiled contracts with all related build
information (such as the compiler version or performed optimizations). The contracts
and tests folders hold two files that contain the implemented contract code and its unit
tests. The evaluation and data collection scripts are structured as three different files inside
the :”scripts” directory, we will pay more attention to these in Subsection 4.2.7. These
scripts collect data that are stored in the evaluation-evoting directory, which is a git
submodule of our evaluation repository. In addition to this, the project contains automation,
configuration, and package management files like Makefile or hardhat.config.ts.

4.2.3 Smart Contract Structure

Contracts in Solidity follow the same pattern as classes in object-oriented languages. They
contain persistent data in state variables and functions that can modify or retrieve these
variables [21]. Each contract has a constructor method that is called when the contract
is created. After its execution, the contract will be added to the network. Analogously to
instantiate in Secret Network, this function is used to configure the contract state and
initialize the administrators list.
// Administrators list query call
function getAdmins() public view onlyAdmin returns (address[] memory) {

return admins;
}

Listing 4.6: Showcase of the keywords used on one of the query functions.

The query and write message calls are differentiated by the keyword used in the function
definition that sets the visibility. We define all functions that can be called via message

51

calls (methods identified in Figure 3.2) to be public. The query subset has an additional
view keyword that affirms that the function is not modifying the state simply reading from
it. We have also defined pure function areStringsEqual that compares two strings with
their hashes generated by a keccak256 operation on top of them. We use this function
extensively, mainly tied to functions involving elections, as the string comparison of the
elections name uniquely distinguishes it from other elections.

4.2.4 Storage Structure

During the implementation, we have not changed the storage design and it remains the same
as we have presented in Subsection 3.3.3. In our design, we reference nested mappings, but
to show how it looks in code, we provide a following Listing 4.7. Here we can see that the
Vote structure is contained in two mappings, as we have also described in the design.

struct Vote {
address voterAddr;
address selectedCandidate;

}
mapping(string => Vote[]) private votesArray;
// election name maps to the votes casted mapping that
// maps with voter address to selected candidate address
mapping(string => mapping(address => address)) private votesMap;

Listing 4.7: Showcase of the storage structure representing casted votes.

4.2.5 Access Control Management

The foundational prerequisite to having any access control within the contract was that we
needed to set all state variables to be private. If we did not do so, the compiler would
automatically create an externally accessible getter function for each public state variable.

Since we can verify the identity of the sender in all possible message calls (see Subsec-
tion 3.3.2) through a global variable msg.sender. Using this variable, we can decide who
has access to confidential data stored in the contract. The Solidity language provides a
concept of a function modifiers that is a declarative way of specifying a condition that must
be met prior to the execution of the function. We have defined the onlyAdmin modifier that
checks if the identity of the sender stored in the msg.sender variable matches with some
of the stored administrators. Its a form of access control that we have used throughout the
functions performing the administrator functionality (e.g. user or election management).

In addition to the onlyAdmin modifier, we also control access by checking the msg.sender
variable using the require functions. These functions take two arguments, the first one
being the condition where we compare the sender’s identity, and the second one a descrip-
tion of the reason why the require condition has not been satisfied, which will be used to
revert the function. We have used such require statements in the castVote, recastVote
and getVote functions.

4.2.6 Testing

The use of the hardhat development environment also simplified the implementation of
unit tests for our contract. It provides a helpful Ethers.js library that has many methods

52

that allow interaction with EVM-based blockchains, including the Hardhat Network that
simulates real-world blockchain networks for our test cases. We have also used a Mocha or
chai4 library to run and control our tests with series of expect function calls.

const { expect } = require("chai");
describe("Sample contract", function () {

it("Deployment should assign tokens to the owner", async function () {
const [owner] = await ethers.getSigners();
const contractInstance = await ethers.deployContract("Sample");
const retrievedOwner = await contractInstance.getOwner();
expect(retrievedOwner).to.equal(owner);

});
});

Listing 4.8: Showcase of contract deployment and interaction using the Ethers.js library.

On the example above we demonstrate a simple test case in the Sample Contract module
where we retrieve the default account owner and deploy the contract. Since the owner
is used by default to send message calls inside the simulated network, its address will
be configured during contract deployment and instantiation (we assume that during the
instantiation this state field is initialized). Then we retrieve the owners of that contract
and compare them using the Mocha function expect to determine whether everything went
well. This was a snippet of how we have implemented all of our test cases, that are almost
equivalent to the test cases presented in the Subsection 4.1.7 and we will not go over each
of them again.

4.2.7 Statistics Collection

Similarly as in the Subsection 4.2.6 above we take advantage of the hardhat development
environment and its Ethers.js library to collect statistics of gas usage within the contract.
The deployment of the contract within the script was managed by the Contract Factory
object that was retrieved with the getContractFactory method. In case we have already
deployed the contract, we retrieve the contract instance with the getContractAt method.
The instance of the contract can later be used to send transaction and query calls. The
collection of statistics was performed within the evaluation.ts Javascript script, which
not only manages the deployment of the contract, but also sends transactions that simulate
an ongoing election in the deployed contract. During execution, the scripts collect and
store statistics from performed transactions, using helper methods defined in the utils.ts
script file.

// Create Contract Factory object
const EvotingOasis = await ethers.getContractFactory("EvotingOasis");
let evotingOasis = await EvotingOasis.deploy();
evotingOasis.createElection("Volby Prezidenta 2024");

Listing 4.9: Showcase of contract deployment and interaction using the Ethers.js library.

The helper methods are responsible for statistical collection, reading, and writing to and
from .env file, and generating dummy data. The results are stored inside csv files that are

4Mocha is a feature-rich JavaScript test framework running on Node.js and in the browser, look at
https://mochajs.org/

53

https://mochajs.org/

structured into two columns: execution time and gas spent. Each csv file is named after
the message call of which the file is used to store statistics. The statistics are configured to
be stored within the evaluation-evoting directory, which is an imported git submodule
from our statistics evaluation repository.

4.3 Phala Network
The standard computation program within Phala Network is instead of smart contracts
referenced as Phat Contract [41]. These contracts are written in the Rust-based ink! smart
contract programming language, which is used by default in all Substrate5 based blockchains
and a default programming language in the Polkadot ecosystem. The ink! is an embed-
ded domain-specific language (eDSL) that empowers all the benefits provided in Rust and
extends it with various macros to customize and transform the Rust structures into smart
contract elements. The language is popular among developers for its ease of use, extensive
preliminary testing, and frequent updates. Its capabilities, correctness, and efficiency have
been proven in a large number of NFT marketplace projects, but there are some flaws
the developers have to endure, such as problematic error handling, high commitment to
macro-specific logic, or poor extensibility6.

4.3.1 Development Environment

Apparent prerequisite for the development of Phala smart contracts is the installation of
Rust and its cargo package manager and rustup toolchain manager. These can be installed
from available online sources and also via the provided install-rust Makefile rule that
does it automatically. To develop and manage ink! smart contracts, we needed an additional
installation of a cargo-contract CLI tool that provides a set of commands for compiling,
deploying or initializing new ink! smart contracts projects.

The Phala Network had the option of running a local testnet network, but it required
running a full stack of the core blockchain and its connection to the Web UI, and there is no
docker alternative. We have chosen to test out the deployment of our contracts on the Phala
PoC67 testnet network directly, as all we needed is an existing wallet and testnet tokens.
To create a wallet, we have used polkadot.js extension for Google Chrome browsers and
for the acquisition of testnet tokens the Phala Testnet faucet8.

4.3.2 Folder Structure

We have based our project on the phat-hello9 template that establishes a very basic
folder structure where the smart contract code is contained within a single lib.rs. We
have extended the smart contract code base with one more file, where we have separated
our custom data structures definitions like Election and User. The contracts compiled
together with other artifacts generated during the compilation process are stored inside the
target folder. Similarly as in previous two platforms we have imported the git submodule

5Substrate is an open source framework that provides tools to build future proof blockchains optimized
for various use cases. https://substrate.io/

6Good write up about these was put up by Oleksandr Mykhailenko in the article available at
https://4irelabs.com/top-5-challenges-with-ink/

7https://phat.phala.network/
8https://phala.network/faucet
9https://github.com/phala/phat-hello

54

https://substrate.io/
https://4irelabs.com/articles/top-5-challenges-of-building-smart-contracts-with-ink/
https://phat.phala.network/
https://phala.network/faucet
https://github.com/Phala-Network/phat-hello/tree/master

of our evaluation repository evaluation-evoting where we will store all the collected data.
The scripts performing the election simulation and data collection within a deployed smart
contract are located inside the node folder.

/
target/

ink
node

.env
package.json
deploy.js
logger.js
evaluation.js
utils.js

evaluation-evoting/
lib.rs
data.rs
Makefile
Cargo.toml

4.3.3 Smart Contract Structure

Similarly to CosmWasm any blockchain built on Substrate has the option to add smart
contract support to its blockchain by adding Contract pallet. There are two possible types
of selected smart contract type, either WebAssembly or EVM-compatible. In Phala Net-
work the type of smart contracts is WebAssembly (Wasm) similar to in Secret Network,
but compared to Cosmwasm the architecture has notable differences (we discuss these in
Subsection 4.3.3). The messages in the ink! contract do not require predefined JSON
schemas for the message structure. Instead, they heavily rely on the use of Rust macros.
The standard macros are as follows:

• #[ink::contract] - Annotates modules that implement ink! smart contracts to
perform analysis on the written smart contract code and generates optimalized code.

• #[ink(constructor)] - Equivalently to CosmWasm instantiate message is a macro
that denotes a function called when the contract is deployed, which sets the contract
state by initializing all the structures that represent the storage, including the list of
administrator addresses in our case.

• #[ink(storage)] - It is used to mark the structure representing the storage and the
internal state of contracts.

• #[ink(message)] - Annotates functions exposed in the contract interface that behave
equivalently to the query and execute messages in the CosmWasm framework. All
the designed methods that facilitate the e-voting system (see Figure 3.2) will be
marked with this macro.

• #[ink::test] - Annotates a separate test case functions within the tests module.

The ink! language exposes a several handy environment functions that for example return
the address of the contract, the sender of the message, or the current block number. De-
pending on the type of message, these functions are accessed by either the Self::env()

55

or self.env(). We have used the self.env().caller() function to retrieve the address
of a message sender, which is used to manage and control user access within the contract.
This can be acquired in all of the messages defined in the contract interface. As a result,
we were easily able to restrict who can perform certain operations or retrieve data.
#[ink(storage)]
pub struct SampleContract {

admins: Mapping<AccountId, bool>,
}
impl SampleContract {

#[ink(constructor)]
pub fn new() -> Self {

Self { admins: Mapping::new(Self::env().caller()) }
}
#[ink(message)]
pub fn admin_operation(&self, some_data: Data) -> Result<Bool> {

if(self.admins.contains(Self::env().caller())){
// authorized implementation

}
Ok(True)

}
}

Listing 4.10: Basic contract structure consisting of storage, its initialization and a query.

In the Listing 4.10 we demonstrate the use of most of the macros we have mentioned
previously in a very simple contract consisting of a single admins state field, its initialization,
and some function that is part of the contract message interface. In addition, we highlight
the use of Self::env().caller() helper function to restrict access within the contract
message only to authorized users.

4.3.4 Contract Storage

To reflect and satisfy our designed structure in Section 3.4.1 we had to make some adjust-
ments during implementation. Mostly, when it comes to the representation of a relationship
between certain elections and its entities. In previous platforms, there was the possibility
of creating nested mapping or appending suffixes that we have used to identify a substore
for specific elections (e.g., substore within candidate addresses mapping belonging to given
elections). Although the ink! programming language provides mapping structure, these are
unable to have another nested mapping within them.
let votes_mapping: Mapping<(String, AccountId), AccountId>;
// get the vote from the votes mapping -(voter, candidate) pair
let vote_key = (election_name.clone(), validated_voter_addr);
votes_mapping.get(vote_key)

Listing 4.11: Showcase of nested mapping.

We had overcome this problem by explicitly defining the keys of mapping as tuples, where
the first part of the tuple identifies the substore and the second a specific value within that
mapping (see Listing 4.11). In this way, we have implemented all the mappings identified
in Section 3.4.1 and the other structures remain unchanged.

56

4.3.5 Testing

The ink! makes it possible to create test case functions that can be performed before de-
ploying the contracts to one of the networks. Similarly as in smart contract structures,
even tests have their own specific macros in ink!. The module that contains the test case
functions is marked with a #[cfg(test)] macro and each test case with #[ink::test].
These macros let the special ink! compiler know that these test cases have to be exe-
cuted in a simulated blockchain environment [41]. There are several functions that provide
customization or retrieval of information from the simulated blockchain environment(e.g.,
topping up balance in certain account or creating new accounts).

In our unit tests, we have chosen a default initialization of the mock-up blockchain and
only work with default test accounts, as they were guaranteed to be valid in the simulated
blockchain. All unit tests were contained in a single function main_functionality and
they are mostly equivalent to the test cases described in Subsection 4.1.7.

let mut evoting_contract = EvotingContract::new();
// retrieve default test accounts
let accounts =
ink::env::test::default_accounts::<ink::env::DefaultEnvironment>();
// Alice is the default account in tests - so she is the owner who
// instantiated the contract, thus an admin as well
let admins = evoting_contract.get_admins().unwrap();
assert!(admins.contains(&accounts.alice));

Listing 4.12: Contract initialization in tests and interaction with its instance.

4.3.6 Statistics Collection

To write the scripts that collect statistics, we have used the @phala/sdk library that builds
on the @polkadot package. We have performed data collection on the testnet network.
The implementation process was quite complex and required several steps:

1. Configure WebSocket Provider - This object allows sending requests using WebSocket
to a TCP port of the Phala WebSocket RPC server wss://poc6.phala.network/ws.

2. Creation of the Phala Registry object - It is initialized with ApiPromise created from
the WebSocket Provider.

3. Keyring Pair generation - The keyring is generated from a mnemonic of an existing
account registered in the testnet network.

4. Upload and instantiate the contract - Previously created Phala Registry object is
together with the ABI, metadata of the compiled contract, and the Keyring of our
testnet account is passed into the PinkCodePromise object that will be used to deploy
and instantiate the contract. The instantiated result PinkContractPromise will be
our interface to the contract message calls.

5. Perform evaluation scenario - It consists of message calls via the PinkContractPromise
object just as we defined in the evaluation design in Section 5.1.

57

We were unable to collect the statistics from the response of our message calls through the
PinkContractPromise object. We have found a workaround in Phala SDK Cookbook10,
where a script tail.js uses a PinkLogger to collect all the metadata about the transac-
tions performed on the configured network. We have configured this script file to listen to
messages performed in our contract and the testnet.

There was one last problem related to the metadata collected from the logger, as this
object did not have direct information about the name of the message performed. The only
information available that we had was the nonce of the transaction performed. However,
we were able to collect the nonce from the evaluation script through PinkContractPromise
interface and thus we could connect the nonce and gas expenditure from the logger with a
specific message. Afterwards we parsed the metadata about the gas usage and nonce of the
performed transaction exclusively for the ones that modify the state(on-chain transactions
with MessageOutput type).

4.3.7 Proof of Concept Frontend Application

Integration of smart contracts into a fully fledged frontend application was the goal we
have been aiming for from the beginning. It would further demonstrate the capabilities of
privacy-preserving platforms in the electronic voting use case, even to nontech people.

We have worked on this along with the implementation of smart contracts, and the
development reached a point where we implemented several components, including the input
forms, dynamic routing, navigation, integration to Metamask, and dynamic visualization of
mockup API data. We have included screnshots of the implemented views in Appendix B.
The technological stack of the app consisted of the React framework, PatternFly, Webpack,
and react-router. These technologies facilitated the development of dynamically routed
reusable components that could be seamlessly integrated and bundled for enhanced browser
integration. Due to a lack of time, the front-end application has not been finished, there
are missing views and missing back-end connection to the smart contract platforms.

10Example scripts for interaction with the Phala Network, available athttps://github.com/phala-sdk-
cookbook

58

https://github.com/Leechael/phat-contract-sdk-cookbook
https://github.com/Leechael/phat-contract-sdk-cookbook

Chapter 5

Evaluation

Transactional throughput serves as a performance indicator that can be used to evaluate
the scalability and efficiency of blockchain platforms. By calculating and comparing these
metrics across the evaluated platforms, we are able to objectively evaluate the capabilities
and limitations of the smart contract implementations (in our case, the e-voting system) on
these platforms. Our evaluation is no different, and we based it on a methodology presented
in the first Section 5.2, in which we outline a systematic approach for the calculation of
transactional throughput.

In the next three sections, we theoretically evaluate the performance of all the platforms
using the formula in the methodology, and we discuss each of their compelling features,
but also limitations, the overall experience, not only when it comes to smart contract
development, but also related to the quality of community, quality of documentation, and
other aspects.

In the last two sections, we first visualize the collected data to help us understand
the behavior and trends in the gas usage of the operations performed within the e-voting
system and discuss whether the results have matched the theoretical calculations, which
platform has performed the best, which one the worst, and what could be the reason why the
platform has performed in such manner. And to conclude the evaluation, we summarize
all the results and findings obtained throughout our assessment and reflect what could
have been done better or differently, what are the key takeaways, and what other related
platforms could be at the core of future research.

5.1 Evaluation Scenario
In our performance analysis, we focus on determining the vote-casting throughput and the
number of voters the implemented e-voting contracts are capable of processing. We have
devised an evaluation scenario in which we simulate an ongoing election that will enable
the collection of statistics necessary for estimation of these metrics. The scenario consists
of several steps involving the execution of smart contract operations (e.g., creating users),
which are measured in terms of gas consumption and stored for later processing. The
scenario consists of the following steps:

1. Create an election with one new user that will be configured to be a valid voter in
election.

2. Perform the following sequence in loop for 𝑛 times.

59

(a) Create a user and set him to be a valid voter within the election created in the
previous step.

(b) Create a second user that will become a candidate within the same election.
(c) The newly created voter casts the vote to the newly created candidate.
(d) Every tenth iteration(including the first one), the election is ended and the results

calculated. Afterwards, the election is resumed to allow the voters to cast their
votes again.

(e) Return to the first step of the loop.

This way we can determine the effect of increasing number of voters and candidates to gas
costs of performing vote casting and the effect of increasing votes at the gas cost of results
calculation. The voter created initially is intended to vote and determine the winner of the
election. This scenario is customizable, and we can perform variations of this scenario with
other functionalities as well.

5.2 Methodology of Transactional Throughput Calculation
Throughput is a term frequently used in the discussion of distributed or embedded sys-
tems, and it defines the rate at which the system can perform a given number of tasks
during a specified time period [31]. There are several variants such as data throughput,
system throughput, network throughput, and throughput related to blockchains networks
as well. The throughput on blockchains typically means the number of transactions per
second (TPS) processed by a blockchain network. It is a critical metric for assessing the
performance and scalability of blockchain platforms, so as part of our performance analysis,
we had to develop a methodology for its calculation.

The principal component of the methodology is a formula underpined by two pivotal
equations, which utilize the configuration settings of the platforms, including Block Gas
Limit (BGL) and Block Execution Time (BET). These parameters will allow us to theoret-
ically calculate the number of Transactions Per Block (using Equation 5.1) and subsequently
the number of transactions per second (using the second Equation 5.2).

Transactions per Block =
Block Gas Limit

Transaction Gas Cost (5.1)

Maximum transactions in one block.

Transactions per second =
Transactions per Block
𝐵𝑙𝑜𝑐𝑘𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇 𝑖𝑚𝑒

(5.2)

Transactional throughput.

Based on the TPS and the average transaction gas cost on a given platform, we can de-
termine the theoretical limits of the number of operations performed within the blockchain
platform. We will assume a 48 hour time window, which represents the duration election
is opened. The estimation will be based on the TPS extrapolation to the duration of the
time window, exhibiting a method to estimate the potential number of operations executed
during this time window. The extrapolation enables a projections of behavior or perfor-
mance over a longer period, from a small sample of data (e.g., avoiding millions of vote-cast
transactions). For instance, this estimate could be the projected volume of vote casts or
other operations carried out within the election period.

60

5.3 Secret Network
The smart contracts in the Secret Network are built on top of the CosmWasm framework,
which is based on the Rust language that is compiled to Wasm. The framework delineates
an easy-to-follow and understand programming patterns for transaction processing, mes-
sage format specifications, and contracts state definitions, that integrate well within the
Rust language. The offered storage structure options are extensive, which provides great
contracts state design customization. The only downfall of the platform is the need to
incorporate special mechanisms for confidential queries, which is not required in the other
platforms.

The developer documentation provided is on a very solid level. It contains under-
standable guides and clearly explains the foundational concepts with relevant references to
example projects. Although there were also instances where the documentation failed to
cover certain topics (e.g., clear functioning example of confidential queries), we had to resort
to the community for help. The main remark regarding the documentation is the chaotic
organization. For example, the initial guides sometimes referenced templates that were not
maintained anymore, which resulted in wasted time. The community around the project is
very active, there are always ongoing discussions, and the responses to our inquiries were
prompt.

5.3.1 Theoretical Performance

The Secret whitepaper declares that the transaction throughput can theoretically reach
hundreds of transactions per second depending on the difficulty of the transactions per-
formed [42] . The rate may be significantly improved with the vanilla engine Wasmer1,
which is approximately 10 to 15 times more performant than the Wasm32 engine used in
Secret Network today. This newer engine is not yet supported, but the developers have
its integration listed on their roadmap. The parameters of the network configuration can
easily be found in the official documentation3:

• Block Gas Limit - 6 million.

• Block Time - Approximately 6 seconds.

• Average gas cost of transaction - 100,000 gas.

𝑇𝑃𝐵 =
6000000

100000
= 60 (5.3)

𝑇𝑃𝑆 =
60

6
= 10 (5.4)

𝑇𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤 = ((60× 60)× 24)× 2 = 172800 (5.5)
𝑉 𝑜𝑡𝑒𝑠𝐶𝑎𝑠𝑡𝑒𝑑 = 172800× 10 = 1728000 (5.6)

Theoretical calculation of the possible number of casted votes.

Based on the parameters of the platform and the Equations 5.2 and 5.1 we can state that
the Secret Network can process 60 transactions per block, which at block production rate of

1Wasmer enables containers to run on multiple platforms, available at https://github.com/wasmer.
2https://github.com/wasm3
3https://docs.scrt.network/documentation/tps-and-scalability

61

https://github.com/wasmerio/wasmer
https://github.com/wasm3/wasm3
https://docs.scrt.network/secret-network-documentation/development/development-concepts/example-contracts/secret-contract-fundamentals/tps-and-scalability

6 seconds results in transactional throughput of ten transactions per second. If the average
gas cost of 100,000 was the actual cost in the e-voting system to perform votes casting, then
we would theoretically be able to process 1,728,000 votes in a two-day election period.

5.4 Oasis Network
The smart contracts in Oasis and Sapphire ParaTime are using the popular Solidity lan-
guage and support powerful EVM tools Hardhat or Foundry. Due to the dominance of
Ethereum and EVM -based chains these technologies have been highly utilized in a large
number of real-world projects, which resulted in exceptional coverage and a tuned develop-
ment experience. Our perspective has only proven this fact, since the shear time we spent
on the development of the contract on this platform was a fragment of the time we spent
on the other platforms. When it comes down to limitations of the platform, we can only
mention the lack of configuration options in data storage structure and secondly the strict
limitations of the contract size.

5.4.1 Theoretical Performance

The oasis network does not present information about the performance and configuration
of their Sapphire ParaTime in their official documentation. In this case, we had to inspect
the Oasis Explorer4 that shows all the new blocks and transactions published together with
their metadata and the source code of runtime-sdk, used to build Sapphire ParaTime. The
amount of transactions performed by ParaTime can include in their blocks is capped to
10005, but the actual number will be different. From the Oasis Explorer metadata and the
source code we can determine the parameters of the network configuration we were looking
for:

• Block Gas Limit - 15 million.

• Block Time - Approximately 6 seconds.

• Average gas cost of transaction - 150,000 gas.
Based on the parameters above and the Equations 5.2 and 5.1 it is possible to derive that
the Oasis Network can process 60 transactions per block, which at block production rate
of 6 seconds results in transactional throughput of ten transactions per second.

𝑇𝑃𝐵 =
15000000

150000
= 100 (5.7)

𝑇𝑃𝑆 =
100

6
= 16.6 (5.8)

𝑇𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤 = ((60× 60)× 24)× 2 = 172800 (5.9)
𝑉 𝑜𝑡𝑒𝑠𝐶𝑎𝑠𝑡𝑒𝑑 = 172800× 16.6 = 2880000 (5.10)

Theoretical calculation of the possible number of casted votes.
If the average gas cost of 150,000 was the actual cost in the e-voting system to perform
votes casting, then we would be theoretically able to process 2,880,000 votes in a two day
election period.

4https://explorer.oasis.io/sapphire
5https://github.com/oasisprotocol/sdk/src/config.rs

62

https://explorer.oasis.io/mainnet/sapphire
https://github.com/oasisprotocol/oasis-sdk/blob/6b63afbc7abaa7ecd2c9ad461b8a48700e8a5046/runtime-sdk/src/config.rs#L25

5.5 Phala Network
The benefits of the ink! language used in the Phala contracts provide a variety of macros
that enhance the Rust language to provide powerful smart contract customizations with the
established features of Rust such as type control or increased security. But there are flaws
as well, these include a problematic error handling, high commitment to macro-specific
logic, poor modularization, and limitations of storage structure options. Our development
experience with the platform underlines these issues, especially the difficulty of handling
the macros across more modules and the storage options for designing the contracts state.

The community around Phala is active, during development we have reached out on
multiple occasions, and in most cases we received assistance. The available documentation
and guides should definitely be improved. It was clearly visible that the team behind Phala
was rapidly changing its marketing according to current trends, and the documentation
only reflected these shifts (e.g., rebrands of Phat Contracts into AI agents), resulting in
situations where the information on which we based our development suddenly perished
and we had to resort to the use of Wayback Machine.

5.5.1 Theoretical Performance

Compared to previous platforms, the parameters of the Phala Network configuration were
difficult to determine, due to the deficient documentation mentioned above. Only related
information in the documentation is on the calculation of transaction fees6, but there are
no references to the gas parameters. The Phala whitepaper [41] also does not mention
anything related to block gas limits or block execution times. We’ve chosen to delve into
the source codes used to build the network and the networks dashboard7 similarly as in
Oasis. We concluded that these sources provided conflicting information about Block Gas
Limit (BGL) and Block Execution Time, so we tried to reach out to the community in
Discord to resolve which information is correct, but even at the time of writing this thesis
we still did not receive an answer. Thus for our evaluation, we have decided to use the
information collected from the source codes8, where the parameters are set in the following
way:

• Block Gas/Weigt Limit - 1 500 000 000 000

• Block Time - Approximately 12 seconds.

• Average gas cost of transaction - 500,000 gas.

With the parameters specified above we calculated that the Oasis Network is configured to
be processing 250,000 transactions per second. This number is probably inflated and does
not reflect the real throughput of the network, as validators may not have enough time
to process all the computational load in such a massive case Block Gas Limit. The block
metadata from the Phala dashboard also suggest that this may be the case as the blocks
never reach 3% usage of Block Gas Limit. We will use these parameters in our evaluation
anyway to see how the Phala network performed in our implementation.

6https://docs.phala.network/references/support/transaction-costs
7https://polkadot.js.org/apps/explorer/phala
8These were determined with analysis of several files in https://github.com/Phala/blockchain repository

63

https://docs.phala.network/references/support/transaction-costs
https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Fapi.phala.network%2Fws#/explorer
https://github.com/Phala-Network/phala-blockchain

5.6 Implementation Performance
The data collected from our implemented smart contracts, consisting of the gas consumption
of vote casting and counting results within the e-voting system (just as we defined in
Section 5.1), form the basis of our evaluation. We have chosen to assess performance by
visualizing all the data collected and conducting an analysis of these visualizations to obtain
insights into the efficiency of implemented smart contract.

During data collection, we mainly resorted to the use of Testnets, instead of Mainnets,
as a medium for our deployed contracts, since computational effort (represented in gas) is
calculated deterministically on both occasions, but we evade the associated real-world value
costs in Mainnets. The collected data was loaded into pandas dataframes, where they were
processed in accordance with our methodology formula specified in Section 5.2, but now
with the actual gas costs of our implementations. To visualize the data, we have used the
matplotlib and seabon libraries for Python.

5.6.1 Analysis of Collected Data

The core of the evaluation scenario are vote casts (see Section 5.1), as its the integral
operation within any voting system. We wanted to visualize how the growing number of
votes, voters, and candidates in the system relates to the gas consumption of casting votes.

0 3000 6000 9000 12000 15000 18000 21000 24000
Ballot Casted

0.0

0.2

0.4

0.6

0.8

1.0

G
as

 (N
or

m
al

iz
ed

 b
y

B
lo

ck
 G

as
 L

im
it)

Gas Required to Cast a Vote

Oasis Network
Secret Network
Phala Network
Block Gas Limit

Figure 5.1: Gas usages trends of casting votes.

In the Figure 5.1 above is a visual representation of the gas requirements to cast vote on a
particular platform. We have normalized the collected gas information with the maximum
block gas limit on a given platform, so the data are in a comparable perspective between
platforms. The data collected consisted of a small sequence of gas costs for a vote-casting
operation, where the remainder was extrapolated. Compared to the proposed methodology,
in the above Figure 5.1, instead of extrapolating to a time window, we extrapolated to a

64

certain amount of votes casts, instead of a certain time frame. The interval we extrapolated
was selected by hand, based on the trend of the extrapolation.

It is visible that the increase in the number of votes does not affect the gas required to
perform vote-casting transactions in the implementation within Secret Network and Oasis
Network. Since our evaluation scenario (inspect Section 5.1) also creates a new candidate
and voter for each ballot cast, we can also state that an increase in the number of candidates
and voters stored in the contract state also does not affect the gas required to cast votes.

On the other hand Phala Network experienced a linear increase in gas consumption and
after storing around 26,000 votes reached Block Gas Limit. This will have significant effects
on the overall performance of the implementation and is a reason why we have focused on
improving the design of the contract (see Section 3.4.1). We have also tried a variation of the
evaluation scenario, that iteratively created only a new voter that casted votes for the same
candidate. The results have changed negligibly, which was a proof that the performance
problem is definitely tied to the storage of casted ballots.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
Hours Passed Since Start of Election

0

10000

20000

30000

40000

50000

60000

70000

A
m

ou
nt

 o
f V

ot
es

 C
as

te
d

Throughput of Casting Votes after Optimalization

Phala Before
Phala After

Figure 5.2: Vote casting throughput before and after optimizations.

Even after optimizing the implementation, we have managed only an insignificant in-
crease in vote-casting throughput (see Figure 5.2). The reason why the Phala implemen-
tation failed to achieve a similar performance as the other platforms is that we have not
managed to fully replace the use of array structures in our storage and that the map struc-
tures cannot insert individual items under the same key (we discussed these problems in
3.4.1).

Based on the outcomes observed in the Figure 5.1 we could perform the methodology
presented in Section 5.2 with the actual gas costs of casting votes. The extrapolation
mentioned in the methodology expects a single number to represent the cost of the given
operation, which was casting votes in our case. Choosing such a number on Secret or
Oasis was trivial since the gas consumption remained constant. In the case of Phala we
had to make a compromise, since gas consumption was increasing linearly and reached a
block gas limit around the 26,000 ballot casted mark (notice Figure 5.1). Thus we split the

65

extrapolation into two parts, where the first part (up to the gas limit and 24,000 ballots cast)
is approximated by an average gas cost to cast votes until that mark, and the remaining
part is approximated using the block gas limit itself. Meaning that after 26,000 ballot mark,
every new casted ballot will occupy the whole block (effectively the throughput is limited
to block execution time).

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
Hours Passed Since Start of Election

0

1

2

3

4

5

6

A
m

ou
nt

 o
f V

ot
es

 C
as

te
d

1e6 Throughput of Casting Votes

Oasis Network
Secret Network
Phala Network

Figure 5.3: Vote casting performance in the implementations.

The results of the vote-casting throughput extrapolation to the time window of 48 hours,
during which the election is open to receive votes, are visible in Figure B.9. We can
clearly see that Oasis outperformed other platforms, but Secret does not lack significantly,
ultimately these two platforms are capable of processing and storing four to six million
votes in a two-day voting period. When examining the statistics for Phala, it is evident
that the linear increase in the gas costs to cast votes had an effect on the total throughput,
since the total number of ballots stored reaches only a fraction of the other platforms.

5.7 Summary of Results
Having evaluated the visualizations of transactional vote-casting throughput and the gas
costs associated with the vote casting operation within our implemented smart contracts,
we will summarize the results we can derive from our analysis and these visualizations.

5.7.1 Maximum number of candidates or voters

Even though we have not presented a standalone visualization of the relationship between
the number of candidates or voters participating in the election and the gas costs related to
the operations performed in the same election (adding another candidate, or casting votes),
we are able to estimate it using the visualization in Figure 5.1. In the perspective of storage
structure, the behavior of the gas costs during the enrollment of new candidates or voters
in an election is similar to that of casting votes, which in the case of Secret and Oasis is a

66

constant trend in gas costs. So, the actual maximum of candidates and voters participating
in an election held in two days will not be significantly less than the calculated throughput
in Figure B.9. This is not the case in Phala, as it has not performed well in vote-casting.
In addition, the increasing number of candidates or voters stored in the state does not have
an effect on the gas costs of casting votes. This claim holds because of the way our data
collection methodology and implementation are set up. If such an effect existed, we would
already see some form of increase in Figure 5.1.

5.7.2 Vote Casting

Compared to our theoretical throughput estimates in the previous sections and the actual
statistics approximated from the data collected in our implementations, we can conclude
that both Oasis and Secret almost doubled the throughput of transactions with the average
gas cost. That means that the gas cost of casting votes in these two platforms is well below
this and perform above standard. In the case of Phala, the results of the vote casting
performance were significantly inferior, even after our optimizations.

5.8 Discussion
To conclude our research of privacy-preserving platforms, the overall outperformer in trans-
actional vote-casting throughput in our implementation is clearly Oasis, the close second
being Secret, and the last position is occupied by Phala. The other operations like vote
recasting, and vote verification are not expected to yield different results, as the concepts
of how they access the storage do not differ significantly.

The reason behind the deficient results for Phala is rooted in the provided storage struc-
tures that had several limitations, which we have tried to tackle with various optimizations
(inspect 3.4.1), but to no prevail. Other platforms did not have problems to that extent.
The reason why this is the case might be related to the actual target and characteristics of
Phala Network. It is marketed as an off-chain computational platform or coprocessor that
is empowered by the ability to perform traditional HTTP requests from smart contracts.
This exclusive feature allows developers to form a HTTP connection to other storage ser-
vices (compatible with AWS S39), where the storage of the smart contract state can be
offloaded, ultimately forming a stateless back-end10. The only information stored inside
the private storage of the contract could be the access credentials to the connected storage
service, and the only thing the contract focuses on is the computation. Clearly, the goal
of the platform is not the storage of data, but the computation, and since we implemented
the contracts equivalently across the platforms (not reflecting this powerful feature), the
results were not comparable with Oasis and Secret.

The implementation of electronic voting has shown that privacy-preserving platforms
have the ability to accommodate a large number of voters and candidates. Studies like [34]
has shown that utilizing standard blockchain smart contracts with incorporated crypto-
graphic schemes to provide secrecy within e-voting systems instead of trusted enclaves
limits the overall throughput of the system based on the number of candidates the voters
are selecting from. This has proven the potential and strength that the use of Trusted
Execution Environments brings to the use case of electronic voting.

9https://aws.amazon.com/s3/
10https://docs.phala.network/build-stateless-backend

67

https://aws.amazon.com/s3/
https://web.archive.org/web/20231001123957/https://docs.phala.network/developers/build-on-phat-contract/build-stateless-backend

The drawback of Trusted Execution Environments is that we have to trust third-party
companies (mainly Intel and its SGX TEE technology) to remain honest. These companies
facilitate the isolation and verification of computation performed in isolated enclaves, which
is the fundamental feature on which privacy-preserving platforms operate. If these compa-
nies developing or companies adopting these mechanisms failed to maintain the technology,
a potential security breach would have severe consequences, and private data would most
likely be leaked. The Secret Network is a live example of this fact, in 2022 they failed to
mitigate publicly known vulnerabilites of the Intel SGX enclave at that time11. Researchers
who discovered this vulnerability have managed to decrypt all the encrypted data on this
network, including the contracts states or transaction contents. This serves as a memento
that these technologies are far from foolproof.

11https://sgx.fail/

68

https://sgx.fail/

Chapter 6

Conclusion

The goal of this thesis was to study voting systems, blockchains, trusted computing, and the
concepts of privacy-preserving platforms. We have compared existing privacy-preserving
platforms such as Secret, Phala, and Oasis Network based on their features such as per-
formance, usability, and other aspects in an electronic voting use case. We have analyzed
the development capabilities, storage options, and other features of the chosen platforms
and proposed a smart contract design for the e-voting application on which we evaluated
these platforms. In the design, we have focused on the optimal structure of these contracts,
to make sure there are no implementation bottlenecks that would decimate our evaluation
objectivity. In addition, we have ensured that the privacy and confidentiality of the voting
process would be guaranteed within the designed smart contracts. Thereafter, we have dis-
cussed the implementation of the designed smart contracts, what was the experience like,
what problems have we encountered, how we tested our solution, and how we collected gas
usage statistics of the operations perfomed within the evaluation scenario.

The result of this thesis are three fully functional smart contracts with automated
testing, deployment, and statistics gathering infrastructures built around them. These
smart contracts formed a basis in our evaluation, where we compared their transactional
throughput and the number of candidates or voters that the contracts were able to process
and store. Statistics have shown that Oasis can serve the largest number of voters, a close
second being Secret and, the least performant was Phala. The analysis and comparison
of these statistics have highlighted the potential these technologies have in the sphere of
electronic voting, as they improve the limits of stored and processed candidates, voters, or
casted votes compared to e-voting systems on standard blockchain platforms.

Future work can focus on improvements and optimizations of smart contracts in Phala,
where a suitable integration of external storage services for the storage of non-private data
should result in improved performance. Or another direction the future research could take
is the analysis and evaluation of other existing platforms, like Integritee, Hyperledger Fabric,
Private Chaincode, which offer similar privacy features within their respective architectures.

69

Bibliography

[1] Alvarez, R. M. and Hall, T. E. Point, Click, and Vote: The Future of Internet
Voting. 1st ed. Brookings Institution Press, 2004. ISBN 978-0-8157-0369-3.

[2] Awad, M. and Leiss, E. L. The evolution of voting: analysis of conventional and
electronic voting systems. International Journal of Applied Engineering Research. 1st
ed. 2016, vol. 11, no. 12, p. 7888–7896.

[3] Bernal Bernabe, J., Canovas, J. L., Hernandez Ramos, J. L., Torres
Moreno, R. and Skarmeta, A. Privacy-Preserving Solutions for Blockchain:
Review and Challenges. IEEE Access. 1st ed. 2019, vol. 7, no. 1, p. 164908–164940.
DOI: 10.1109/ACCESS.2019.2950872.

[4] Buterin, V. Ethereum White Paper: A Next Generation Smart Contract &
Decentralized Application Platform. 1st ed. 2014. Available at:
https://github.com/ethereum/wiki/wiki/White-Paper.

[5] Cachin, C. and Vukolić, M. Blockchain Consensus Protocols in the Wild.
arXiv:1707.01873. ArXiv, july 2017. ArXiv:1707.01873 [cs] type: article. Available at:
http://arxiv.org/abs/1707.01873.

[6] Carolina Banton, A. C. How Escrow Protects Parties in Financial Transactions.
August 2023. Available at: https://www.investopedia.com/terms/e/escrow.asp.

[7] Carter, E. and Farrell, D. M. Electoral Systems and Election Management. In:
LeDuc, L., Niemi, D. and Norris, P., ed. Comparing Democracies 3. London:
Sage, 2009, chap. 2. ISBN 9781847875044.

[8] Costan, V. and Devadas, S. Intel SGX Explained. 2016. Publication info: Preprint.
Available at: https://eprint.iacr.org/2016/086.

[9] Di Pierro, M. What Is the Blockchain? Computing in Science & Engineering. 1st
ed. 2017, vol. 19, no. 5, p. 92–95. DOI: 10.1109/MCSE.2017.3421554.

[10] E. Black, P. AVL tree. November 2019. Available at:
https://www.nist.gov/dads/HTML/avltree.html.

[11] ElGamal, T. A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In: Blakley, G. R. and Chaum, D., ed. Advances in
Cryptology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985, p. 10–18. ISBN
978-3-540-39568-3.

70

https://github.com/ethereum/wiki/wiki/White-Paper
http://arxiv.org/abs/1707.01873
https://www.investopedia.com/terms/e/escrow.asp
https://eprint.iacr.org/2016/086
https://www.nist.gov/dads/HTML/avltree.html

[12] Grishchenko, I., Maffei, M. and Schneidewind, C. A Semantic Framework for
the Security Analysis of Ethereum Smart Contracts. In: Bauer, L. and Küsters,
R., ed. Principles of Security and Trust. Cham: Springer International Publishing,
2018, p. 243–269. ISBN 978-3-319-89722-6.

[13] Jafar, U., Aziz, M. J. A. and Shukur, Z. Blockchain for Electronic Voting
System—Review and Open Research Challenges. Sensors. 1st ed. 2021, vol. 21,
no. 17. DOI: 10.3390/s21175874. ISSN 1424-8220. Available at:
https://www.mdpi.com/1424-8220/21/17/5874.

[14] Jekovec, M., Jeran, L. and Janez, T. Oasis Core Developer Documentation |
Runtime Layer | Consensus Layer. May 2024. Available at:
https://docs.oasis.io/core.

[15] Kasi, N. R., S, R. and Karuppiah, M. Chapter 1 - Blockchain architecture,
taxonomy, challenges, and applications. In: Islam, S. H., Pal, A. K., Samanta, D.
and Bhattacharyya, S., ed. Blockchain Technology for Emerging Applications.
Academic Press, 2022, p. 1–31. Hybrid Computational Intelligence for Pattern
Analysis. DOI: https://doi.org/10.1016/B978-0-323-90193-2.00001-6. ISBN
978-0-323-90193-2. Available at:
https://www.sciencedirect.com/science/article/pii/B9780323901932000016.

[16] Kumar, R., Badwal, L., Avasthi, S. and Prakash, A. A Secure Decentralized
E-Voting with Blockchain & Smart Contracts. In: Balvinder, S., ed. 13th
International Conference on Cloud Computing, Data Science & Engineering
(Confluence). 2023, p. 419–424. DOI: 10.1109/Confluence56041.2023.10048871. ISBN
9781479942350.

[17] Loeber, L. E-Voting in the Netherlands; from General Acceptance to General
Doubt in Two Years. In: Gesellschaft für Informatik e. V. Electronic Voting 2008
(EVOTE08). 3rd International Conference on Electronic Voting 2008, Co-organized
by Council of Europe. Bonn: [b.n.], 2008, p. 21–30. ISBN 978-3-88579-225-3.

[18] Murtaza, M. H., Alizai, Z. A. and Iqbal, Z. Blockchain Based Anonymous Voting
System Using zkSNARKs. In: IEEE. 2019 International Conference on Applied and
Engineering Mathematics (ICAEM). 2019, p. 209–214. DOI:
10.1109/ICAEM.2019.8853836. ISBN 9781728123547.

[19] Müller, M., Ruberti, S., Castano, H. and Weeg, P. Overview of Storage and
Data Structures. 2024. Available at: https://use.ink/datastructures/overview.

[20] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. 2009. Available at:
http://www.bitcoin.org/bitcoin.pdf.

[21] Pace, K. and Wackerow, P. Solidity Language Documentation. May 2024.
Available at:
https://docs.soliditylang.org/en/v0.8.25/introduction-to-smart-contracts.html.

[22] Paillier, P. Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J., ed. Advances in Cryptology — EUROCRYPT ’99. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, p. 223–238. ISBN 978-3-540-48910-8.

71

https://www.mdpi.com/1424-8220/21/17/5874
https://docs.oasis.io/core
https://www.sciencedirect.com/science/article/pii/B9780323901932000016
https://use.ink/datastructures/overview
http://www.bitcoin.org/bitcoin.pdf
https://docs.soliditylang.org/en/v0.8.25/introduction-to-smart-contracts.html

[23] Petroaie, M., Thompson, A. and Elesbao, A. What is CosmWasm? 2024.
Available at:
https://docs.archway.io/developers/cosmwasm-documentation/introduction.

[24] Pettinari, P. and Cook, J. GAS AND FEES. Apr 2024. Available at:
https://wiki.polkadot.network/docs/learn-architecture.

[25] Rae, D., Hanby, V. and Loosemore, J. Thresholds of Representation and
Thresholds of Exclusion: An Analytic Note on Electoral Systems. Comparative
Political Studies. 1st ed. 1971, vol. 3, no. 4, p. 479–488. DOI:
10.1177/001041407100300406. Available at:
https://doi.org/10.1177/001041407100300406.

[26] Reitwiessner, C. ZkSNARKs in a nutshell. 2016. Available at:
https://blog.ethereum.org/2016/12/05/zksnarks-in-a-nutshell.

[27] Reyzin, L., Meshkov, D., Chepurnoy, A. and Ivanov, S. Improving
Authenticated Dynamic Dictionaries, with Applications to Cryptocurrencies. 2016.
Publication info: Published elsewhere. Minor revision. Financial Cryptography 2017.
Available at: https://eprint.iacr.org/2016/994.

[28] Sabt, M., Achemlal, M. and Bouabdallah, A. Trusted Execution Environment:
What It is, and What It is Not. In: IEEE. 2015 IEEE Trustcom/BigDataSE/ISPA.
Helsinki, Finland: [b.n.], August 2015. DOI: 10.1109/Trustcom.2015.357. ISBN
978-1-4673-7952-6. Available at: http://ieeexplore.ieee.org/document/7345265/.

[29] Schultzie, D., Morami, A. and seanrad.scrt. Secret Network Developer
Documentation | Introduction | Overview. August 2024. Available at:
https://docs.scrt.network/secret-network-documentation/.

[30] Schumacher, S. and Connaughton, A. How countries register votes and cast
votes during elections | World Economic Forum. 2020. Available at:
https://www.weforum.org/agenda/2020/11/voter-registration-mail-ballots-
countries-world-elections/.

[31] Shetty, N. Understanding Latency and Throughput in Embedded, Computer, and
Blockchain Networks. 2023. Available at: https://shardeum.org/blog/latency-
throughput-blockchain/#Latency_in_ComputerEmbedded_Systems.

[32] Song, D. The Oasis Blockchain Platform. Oasis Network, june 2020. Available at:
https://assets.website-files.com/5f59478e350b91447863f593/
628ba74a9aee37587419cf65_20200623%20The%20Oasis%20Blockchain%20Platform.pdf.

[33] Staff, C. How Secret Network’s Privacy as a Service Unlocks Web3 for the Next
Billion Users. June 2023. Section: Sponsored Content. Available at:
https://www.coindesk.com/sponsored-content/how-secret-networks-privacy-as-a-
service-unlocks-web3-for-the-next-billion-users/.

[34] Stančíková, I. and Homoliak, I. SBvote: Scalable Self-Tallying Blockchain-Based
Voting. 2022.

72

https://docs.archway.io/developers/cosmwasm-documentation/introduction
https://wiki.polkadot.network/docs/learn-architecture
https://doi.org/10.1177/001041407100300406
https://blog.ethereum.org/2016/12/05/zksnarks-in-a-nutshell
https://eprint.iacr.org/2016/994
http://ieeexplore.ieee.org/document/7345265/
https://docs.scrt.network/secret-network-documentation/
https://www.weforum.org/agenda/2020/11/voter-registration-mail-ballots-countries-world-elections/
https://www.weforum.org/agenda/2020/11/voter-registration-mail-ballots-countries-world-elections/
https://shardeum.org/blog/latency-throughput-blockchain/#Latency_in_ComputerEmbedded_Systems
https://shardeum.org/blog/latency-throughput-blockchain/#Latency_in_ComputerEmbedded_Systems
https://assets.website-files.com/5f59478e350b91447863f593/628ba74a9aee37587419cf65_20200623%20The%20Oasis%20Blockchain%20Platform.pdf
https://assets.website-files.com/5f59478e350b91447863f593/628ba74a9aee37587419cf65_20200623%20The%20Oasis%20Blockchain%20Platform.pdf
https://www.coindesk.com/sponsored-content/how-secret-networks-privacy-as-a-service-unlocks-web3-for-the-next-billion-users/
https://www.coindesk.com/sponsored-content/how-secret-networks-privacy-as-a-service-unlocks-web3-for-the-next-billion-users/

[35] Szabo, N. Formalizing and Securing Relationships on Public Networks. First
Monday. 1st ed. Sep. 1997, vol. 2, no. 9. DOI: 10.5210/fm.v2i9.548. Available at:
https://firstmonday.org/ojs/index.php/fm/article/view/548.

[36] Tas, R. and Tanrıover, O. O. A Systematic Review of Challenges and
Opportunities of Blockchain for E-Voting. Symmetry. 1st ed. 2020, vol. 12, no. 8.
DOI: 10.3390/sym12081328. ISSN 2073-8994. Available at:
https://www.mdpi.com/2073-8994/12/8/1328.

[37] Tonelli, R., Pierro, G. A., Ortu, M. and Destefanis, G. Smart contracts
software metrics: A first study. PLOS ONE. 1st ed. Public Library of Science. april
2023, vol. 18, no. 4, p. 1–31. DOI: 10.1371/journal.pone.0281043. Available at:
https://doi.org/10.1371/journal.pone.0281043.

[38] Wikipedia contributors. Elections in the Netherlands — Wikipedia, The Free
Encyclopedia. 2023. Available at: https://en.wikipedia.org/w/index.php?title=
Elections_in_the_Netherlands&oldid=1190501158.

[39] Wood, G., Habermeier, R. and Czaban, P. Polkadot Wiki. Apr 2024. Available
at: https://ethereum.org/en/developers/docs/gas/.

[40] Wu, Y. and Kasahara, S. Smart Contract-Based E-Voting System Using
Homomorphic Encryption and Zero-Knowledge Proof. In: Zhou, J. and team,
ed. Applied Cryptography and Network Security Workshops. Cham: Springer Nature
Switzerland, 2023, p. 67–83. ISBN 978-3-031-41181-6.

[41] Yin, H., Zhou, S. and Jiang, J. Phala Network: A Secure Decentralized Cloud
Computing Network Based on Polkadot. 2022. Available at:
https://api.semanticscholar.org/CorpusID:233305130.

[42] Zyskind, G. Secret Network: A Privacy-Preserving Secret Contract & dApp
Platform. 2024. Available at: https://scrt.network/graypaper.

[43] Žiška, M. Biometric System Security Using Blockchain Technology. Brno, 2022.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology.
Available at: https://www.vut.cz/studenti/zav-prace/detail/146344.

73

https://firstmonday.org/ojs/index.php/fm/article/view/548
https://www.mdpi.com/2073-8994/12/8/1328
https://doi.org/10.1371/journal.pone.0281043
https://en.wikipedia.org/w/index.php?title=Elections_in_the_Netherlands&oldid=1190501158
https://en.wikipedia.org/w/index.php?title=Elections_in_the_Netherlands&oldid=1190501158
https://ethereum.org/en/developers/docs/gas/
https://api.semanticscholar.org/CorpusID:233305130
https://scrt.network/graypaper
https://www.vut.cz/studenti/zav-prace/detail/146344

Appendix A

Contents of the included storage
media

A.1 Secret Smart Contract
/

Cargo.lock
Cargo.toml
LICENSE
Makefile
README.md
evaluation-evoting/
node/
schema/
src/

contract.rs
error.rs
lib.rs
msg.rs
state.rs
tests.rs
utils.rs

permits/

• Cargo.toml - contains dependencies of the smart contract.

• Makefile - automatized launch of local instances of secret network, build process
with optimization, sending transactions and collecting data statistics.

• evaluation_evoting - git submodule of the data processing repository

• node - directory containing all of the scripts for deploying and collecting data.

• schema - json files representating the supported messages of the contract.

• src - directory containing all the source codes of implemented e-voting smart contract.

• permits - directory containing all the generated Permit objects that are used in
authenticated queries.

74

A.2 Oasis Smart Contract
/

Makefile
README.md
contracts/

EvotingOasis.sol
evaluation-evoting/
hardhat.config.ts
package.json
evaluation-evoting/
scripts/

deploy.ts
evaluation.ts
utils.ts

test/
EvotingOasis.ts

tsconfig.json
yarn.lock

• Makefile - automatized launch of local instances of the network, build process, de-
ployment of the contracts.

• README.md - guide how to run, test, or deploy the contract.

• contracts - directory containing the source code of implemented e-voting smart con-
tract.

• evaluation-evoting - git submodule of the data processing repository.

• hardhat.config.ts - configuration of the hardhat development tool, local and testnet
networks setup.

• package.json - list of javascript packages.

• scripts - directory containing all the scripts for deploying, sending transactions and
collecting data statistics.

– deploy.ts - script that deploys the smart contracts binaries into the testnet or
localnet network.

– evaluation.ts - script that connects to the network where our smart contract
was deployed to perform the evaluation scenario.

– utils.ts - defines helper functions for environment files interaction, collection of
the statistics and file handling.

• test - directory containing the unit test file of our smart contract functionality.

75

A.3 Phala Smart Contract
/

Cargo.lock
Cargo.toml
Makefile
README.md
build.txt
data.rs
lib.rs
evaluation-evoting/
node

deploy.js
evaluation.js
logger.js
package-lock.json
package.json
utils.js

• Cargo.toml - contains dependencies of the Rust smart contract.

• Makefile - automatized launch of the networks, build process, deployment of the
contracts.

• README.md - guide how to run, test, or deploy the contract.

• lib.rs - main source file containing all of the smart contract logic, with the unit tests.

• data.rs - source file with a helper module containing definitions of custom structures.

• evaluation-evoting - git submodule of the data processing repository.

• node - directory containing all the scripts for deploying, sending transactions and
collecting data statistics.

– deploy.js - script that deploys the smart contracts binaries into the Phala testnet
network.

– evaluation.js - script that connects to the Phala testnet network and our de-
ployed smart contract to perform the evaluation scenario.

– logger.js - script that launches a logger instance that scans the Phala testnet
for the transactions performed in our smart contract and collects their statistics.

76

A.4 Data Processing and Evaluation
/

oasisdata
EndingElectionApproximation.txt
EvaluationFinal

phaladata
secretdata

ComparisonItemConfig
ComparisonSetVecMap
EvaluationFinal

plots
evaluation
secret

README.md
requirements.txt
visualize.py
visualize_secret.py

• oasisdata - folder containing collected statistics from Oasis smart contract.

– EndingElectionApproximation.txt - description of the format of the statis-
tics data files.

– EvaluationFinal - All the data used in the final evaluation.

• phaladata - folder containing collected statistics from Phala smart contract.

• secretdata - folder containing collected statistics from Secret smart contract.

– ComparisonItemConfig - data used to compare the storage structures of Item
and Config.

– ComparisonSetVecMap - data used to compare the storage structures of Key-
Set, KeyMap, and array.

– EvaluationFinal - data used in the final evaluation.

• evaluation-evoting - git submodule of the data processing repository.

• plots - directory containing all the visualized graphs.

• README.md - guide how to compile, install dependencies and run the visualization
and data processing scripts.

• requirements.txt - description of all the packages needed to execute the program,

• visualize.py - script that processes data from all the platforms, performs extrapola-
tion, and visualizes the graphs used in our final evaluation.

• visualize_secret.py - script that processes data from Secret Network, and visualizes
the graphs used in the comparisons of the storage structures.

77

A.5 Frontend Proof Of Concept App
/

LICENSE
README.md
src/

api
deploy_instantiate.js
instantiateKeplr.js
package.json
queries.js
utils.js

app
AppLayout
Dashboard
ElectionsPage
LoginPage
NotFound
Settings
Support
UsersPage
app.css
assets
index.tsx
utils

favicon.png
index.html
index.tsx
mockdata

elections.json
stylePaths.js
tsconfig.json
package.json
webpack.common.js
webpack.dev.js
webpack.prod.js

• src - folder containing the codebase.

– api - Folder containing scripts for connection to the networks of the privacy-
preserving platforms.

– app - List of directories, where each represents a certain component within the
frontend application.

– index.html - Root html file of the frontend application.
– index.tsx - Root typescript file of the frontend application.

• webpack*.js - Configurations of the Webpack module bundler, used to build the
project.

78

Appendix B

Views of proof of concept frontend
application

Figure B.1: View for users that do not have Metamask or Keplr extensions installed.

79

Figure B.2: View for users that have one of extensions installed but are connected to our
application.

Figure B.3: Connection modal for connecting to the Metamask browser extension.

80

Figure B.4: The default view page together with the navigation panel.

Figure B.5: List of all the elections in the system.

81

Figure B.6: Detail view of an election.

Figure B.7: Form for creating new elections.

82

Figure B.8: Form for creating new users.

Figure B.9: Detail view for the enrolled users.

83

	Introduction
	Theory
	Voting Systems
	Paper Ballot Voting
	Voting by Mail
	Electronic Voting
	Electoral Process Classification

	Blockchain
	Public and Private Blockchain
	Architecture of Blockchain
	Consensus Mechanisms
	Proof of Work
	Smart Contracts
	Smart Contract Code Execution
	Fees System
	Homomorphic Encryption
	Zero Knowledge Proofs

	Trusted Computing
	Trusted Execution Environment
	Privacy-Preserving Platforms
	Secret Network
	Oasis Network
	Phala Network

	Design
	E-voting System
	Secret
	Contract Storage
	Permissioned Access Control

	Oasis
	ParaTime Selection
	Confidentiality and Permission Access
	Contract Storage

	Phala Network
	Contract Storage

	Implementation
	Secret Network
	Development Environment
	Secret tools
	Folder Structure
	Smart contract structure
	Storage Structure
	Access Control Management
	Testing
	Statistics Collection

	Oasis Network
	Development Environment
	Folder structure
	Smart Contract Structure
	Storage Structure
	Access Control Management
	Testing
	Statistics Collection

	Phala Network
	Development Environment
	Folder Structure
	Smart Contract Structure
	Contract Storage
	Testing
	Statistics Collection
	Proof of Concept Frontend Application

	Evaluation
	Evaluation Scenario
	Methodology of Transactional Throughput Calculation
	Secret Network
	Theoretical Performance

	Oasis Network
	Theoretical Performance

	Phala Network
	Theoretical Performance

	Implementation Performance
	Analysis of Collected Data

	Summary of Results
	Maximum number of candidates or voters
	Vote Casting

	Discussion

	Conclusion
	Bibliography
	Contents of the included storage media
	Secret Smart Contract
	Oasis Smart Contract
	Phala Smart Contract
	Data Processing and Evaluation
	Frontend Proof Of Concept App

	Views of proof of concept frontend application

