
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT S Y S T E M S

F A K U L T A INFORMAČNÍCH TECHNOLOGI Í

ÚSTAV INTELIGENTNÍCH S Y S T É M Ů

ANALYSIS OF ENTROPY LEVELS IN THE ENTROPY
POOL OF RANDOM NUMBER GENERATOR
ANALÝZA MNOŽSTVÍ ENTROPIE K DISPOZICI V GENERÁTORU NÁHODNÝCH ČÍSEL

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

Be. PETER KREMPA

Ing. MAROŠ BARABAS

B R N O 2013

Abstract
The term entropy is in computer science usualy used to refer to a stream of random data.
This work sumarizes briefly techniques used to generate random data and describes the ran­
dom number generator used i n the L i n u x kernel. Later on this work focuses on determining
the bit generation speed of the L i n u x kernel R N G when running as v i r tua l machines under
different hypervisors. The work describes the reasons for poor performance of the R N G in
v i r tua l environment and proposes steps to overcome them. A s a next step, the proposed
approach is implemented, tested and the results are compared wi th the original system. The
entropy dis tr ibut ion system is able to improve the level of entropy i n the kernel by orders
of magnitude when using a fast R N G as a source.

Abstrakt
V informatice je pojem entropie obvykle z n á m jako n á h o d n ý proud dat. Tato p ráce k rá t ce
shrnuje metody generovaní n á h o d n ý c h dat a popisuje gene rá to r n á h o d n ý c h čísel, jež je
obsažen v j á d ř e ope račn ího s y s t é m u L inux . Dá le se p ráce zabývá u r č e n í m bi tové rychlosti
generování n á h o d n ý c h dat t í m t o g e n e r á t o r e m ve v i r tua l i zovaném prosředí , k t e r é posky tu j í
různé hypervizory. P r á c e popíše p r o b l é m y nízkého výkonu g e n e r á t o r y n á h o d n ý c h dat ve
v i r t u á l n í m p ros t ř ed í a navrhne postup pro jejich řešení . P o t é je n a s t í n ě n a implementace
nav ržených p o s t u p ů , k t e r é je podrobena t e s t ů m a její výs ledky jsou p o r o v n á n y s p ů v o d n í m
s y s t é m e m . S y s t é m pro distr ibuci entropie m ů ž e dá le vylepši t m n o ž s t v í entropie v s y t é m o v é m
j á d ř e o několik ř á d u , pokud je p ř i p o j e n k v y k o n é m u g e n e r á t o r u n á h o d n ý c h dat.

Keywords
entropy, generator, vir tual izat ion, hypervisor, l inux, R N G , V i r t u a l B o x , K V M , qemu, X e n

Klíčová slova
entropie, gene rá to r , virtualizace, hypervizor, l inux, R N G , V i r t u a l B o x , K V M , qemu, X e n

Citation
Peter Krempa : Analysis of entropy levels i n the entropy pool of random number generator,
d ip lomová práce , Brno, F I T V U T v Brně , 2013

Analysis of entropy levels in the entropy pool of ran­
dom number generator

Declaration
I declare that I created this term project independently under the supervision of Ing. Maros
Barabas. I referenced all publications used as sources.

Peter K r e m p a
M a y 21, 2013

© Peter Krempa , 2013.
This project was created as a school project at Brno University of Technology, Faculty of
Information Technology. The project is subject to copyright laws and its usage without a
permission is illegal with the exceptions defined by law.

Contents

1 Introduction 3

2 Entropy 4
2.1 Use of entropy in computer systems 4
2.2 Random number generators i n computer systems 5
2.3 Testing and certification of random number generators 9
2.4 Conclusion 9

3 Virtual izat ion tools and solutions 10
3.1 Ana tomy of a vir tual ized computer system 10
3.2 Q E M U - k v m and l ibvir t 10
3.3 V i r t u a l B o x 13
3.4 X e n 14

4 Entropy in virtualized systems 15
4.1 Available entropy in kernel entropy pools 15
4.2 Impacts of vi r tual izat ion on performance of random number generator . . . 15
4.3 Gathering of L i n u x kernel R N G performance statistics 16
4.4 Synthetic tests 16
4.5 Real world scenarios 17
4.6 Vi r tua l i za t ion acceleration drivers 17
4.7 Entropy used up on process start 17
4.8 Results 18
4.9 Influence of v i r tual iza t ion drivers 20
4.10 Entropy levels during boot of a L i n u x system 22
4.11 Conclusion 22

5 Approaches to improve levels of entropy in guests 24
5.1 Gather ing of addit ional entropy in the guest 24
5.2 Passthrough of host's entropy to the guest OS 24
5.3 Gather ing of addit ional entropy in the host 25
5.4 Externa l sources of entropy 25
5.5 Dis t r ibut ion system for mult iple guests 25
5.6 Design of the system to improve entropy i n guests 25

6 Implementation 28
6.1 V i r t I O R N G 28
6.2 Basic l i b v i r t support for R N G devices 30

1

6.3 L ibv i r t support for entropy pools 33
6.4 virtentropyd 34
6.5 Integration of virtentropyd into l ibvir t 36
6.6 Documentat ion 36

7 Impact analysis of the system 3 7

7.1 Testing approach 37
7.2 Results 3 7

8 Conclusion 40

8.1 Future work 40

A Contents of the attached C D 4 5

B Glossary 4 6

2

Chapter 1

Introduction

W i t h introduction of hardware vir tual izat ion support v i r tua l machines have grown from
a convenient way to test new features and software and aid kernel developers to a fully
fledged solution used in enterprise environments. Vi r tua l i za t ion is now commonly used
to consolidate hardware infrastructure and reduce costs of the infrastructure by avoiding
ownership of physical hardware i n favor of v i r tua l machines. Thanks to this more and more
services are being migrated to v i r tua l infrastructures.

Modern information systems are t ry ing to balance information security wi th global avail­
abi l i ty of the data. One of the key aspects needed to achieve this balance is encryption.
Encryp t ion algorithms often require random data to init ial ize key generating algorithms or
for generating of challenges in challenge response authentication. This brings the focus to
the random number generator that is available as a part of the operating system.

The path taken to increase the usabili ty of vi r tual izat ion included solving performance
issues of storage and networking subsystems as they are the most cr i t ical from a response
latency and performance point of view. The previously overlooked and less important sub­
systems are now becoming bottlenecks. This work w i l l focus on analyzing performance of
the random number generator in the kernel of the L i n u x operating system.

The performance issues of the L inux kernel random number generator are easily ignored
as usually only the urandom pool is used in applications and the interface of that pool
is supplying entropy from a pseudorandom number generator i n the case the main random
pool is depleted. W h e n strong entropy is needed the regular pool of entropy may be depleted
and the application requiring the access to such entropy w i l l block unt i l the kernel is able
to fulfill the demand.

This thesis consists of a brief introduction into entropy generation used nowadays wi th
focus on enterprise usage of random number generators followed by a brief introduction
into vir tual izat ion and available hypervisor solutions. The work w i l l then focus on testing
the performance of the L i n u x kernel random number generator under various circumstances
and running inside different hypervisors and compares and analyzes the results. The next
chapter is aimed to introduce options that can be used to improve the performance of
the L i n u x kernel random number generator when running inside a v i r tua l machine and
choses the approach to be implemented. A s the next step the implementation details of the
software system created for improving the performance of the random number generator
are summarized. The following chapter then analyzes the impact and performance of L inux
kernel random number generator when the implemented system is used to pass addit ional
entropy to the guest operating system. In the conclusion, goals of this work are summarized
and future work on the software system that was created as a part of this thesis is proposed.

3

Chapter 2

Entropy

Entropy is commonly described to be the measure of uncertainity and disorder in a
system. [10]

In information theory the term entropy was defined by Claude E . Shannon as the average
unpredictabil i ty in a random variable, which is equivalent to its information content. [12]

For purposes of this work the term entropy also refers to the contents of the entropy
pool - the random bits prepared to be read by applications or more general to a stream of
random bits.

2.1 U s e o f en t ropy i n c o m p u t e r sys tems

In modern computer systems entropy is used to accomplish various tasks. These may
range from simple games, animations, art, random images to generating of cryptographically
strong keys and electronic gambling.

Entropy generator in computer systems is normally referred as a random number gen­
erator or R N G .

Various tasks have different quali ty and quantity requirements for entropy. For computer
games, computer art, and others, large quantities of random data are needed to simulate
various seemingly random physical phenomenons. Those data don't u l t imately need to be
t ru ly random. A good appearance of randomness is enough for these tasks.

O n the other hand for use i n creation of cryptographic keys, unique identifiers, password
generation and even computer based gambling the requirements are different. These tasks
require t ru ly random and unpredictable data otherwise an attacker could take advantage
of the knowledge of the random algori thm used by the R N G to gain acces to the system
without permission.

Histor ical ly R N G s have been implemented in the applications themselves and later in
libraries. Current ly best random number generators are usually found i n cryptographic
libraries such as OpenSSL where they are used to generate cryptographic keys.

W i t h a stronger need for information security cryptography is increasingly used to pro­
tect user data. Introduction of disk encryption and V P N 1 comes wi th the need to have
good quali ty entropy generators i n the kernels of operating systems for generating of key
material . This allows also general purpose applications to have access to good quali ty and
properly seeded R N G s without much extra effort by accessing the common R N G .

1 Virtual Private Network - a secure tunnel between two separated parts of a network

4

Addi t iona l ly current hardware development makes it easy to include components to
create a entropy generator on the system boards of computer systems. These use principles
described i n section 2.2.2. The generators have fast bit speeds wi th true random behavior
and are easily accessible in cheap systems. One of possible disadvantages of this approach
is that a bug i n the hardware random number generator can't be patched in most cases and
may be widely exploitable.

2.2 R a n d o m n u m b e r genera tors i n c o m p u t e r sys tems

There are mult iple approaches to generate streams that have high entropy levels. Each of
the approaches has advantages and disadvantages and thus l imi ted usage for some kinds of
problems.

The most basic approach is to use a pure software solution. This is described as a
pseudo-random number generator. This solution is fast but l imi ted in the entropy level.
The entropy level of the sequence is reduced to the entropy of the in i t ia l value.

The second approach improves the first by having a pool of entropy that is continually
filled wi th entropy originating from hard-to-predict events, like network, user and disk ac­
t ivi ty. There are mult iple implementations using this approach including the L inux kernel
R N G .

The th i rd option to gather entropy is to measure and extract randomness of t ru ly random
effects. Th is depends heavily on physical characteristics of some components and requires
special hardware for the generator.

2.2.1 P s e u d o - r a n d o m n u m b e r generators

Pseudo-random number generators - P R N G s - use an algori thm to create long sequences of
numbers that are apparently random.

P R N G s are fast in terms of bitrate as they don't depend on any external input, just on
the previous value.

The generating algori thm depends on a starting value called seed which may be taken
from the current t ime or other hard-to-predict value or chosen arbitrari ly to allow generating
the same sequence. Wi thou t knowledge of the algori thm the next output value of a P R N G
has high entropy for the observer and thus can be considered as a random number. [I]

Advantage and disadvantage depending on field of usage of P R N G s is periodicity. After
a certain amount of generated numbers the sequence repeats as the previous value is equal
to the seed. The repetit ion period may be long enough to not appear during normal use.
This and the speed of P R N G s make them ideal for modell ing and simulation, computer
games that might benefit from repeatabi l i ty 2 or computer art and generation of artificial
terrain.

If the algori thm and seed is known to the receiving party the entropy of the stream
generated by a P R N G is equal to zero as each bit can be calculated.

The most simple P R N G is the linear congruential random number generator. It's defined
by the equation Xjy+i = aXjy + c mod m [17]. The values of a, c and m have to be chosen
so that the sequence does appear random enough.

There are better P R N G s i n terms of dis tr ibut ion and sequence repetition. One of the
popular algorithms is the Mersene twister. P R N G s are commonly used wi th a high entropy

2This allows for example to play a game with the same generator, starting point over again.

5

data source used to seed the P R N G for high security applications that require larger amounts
of data but the entropy of the seed is sufficient.

There are various standards describing algorithms used as P R N G s and fields of appli­
cations of these generators such as the N I S T standard for Determinist ic B i t Generators
[!]•

2.2.2 T r u e r a n d o m n u m b e r generators

True random number generators - T R N G s - are based on physical phenomena that are hard
or impossible to predict. The entropy is contained wi th in the effect itself and it is extracted
by measuring the occurrence, t ime difference or absolute value of those effects. The quality
and speed of entropy bits generated by these generators depends on the phenomenon and
also on the physical construction of the detection device.

Phenomenons ideal to be used for entropy generation are radioactive decay, avalanche
effects on reverse-biased electronic components and thermal, atmospheric and other sources
of noise, detection of photons travelling through semi-transparent mirrors and others. Some
of those aren't practical for real implementations. Commonly used approaches are avalanche
effects on electronics and thermal and atmospheric noises.

The T R N G s are slower if compared to P R N G s , but their main advantage is that even
wi th full knowledge of the working principle of the generator and all in i t ia l conditions, the
devices keep high entropy levels. T R N G s aren't commonly used but some designs may be
implemented on motherboards of computers wi th no or low extra cost.

R a n d o m number generators based on radioactive decay

Radioactive decay of atoms is considered to be t ruly random as it 's based on quantum events
that may or may not happen at a certain point in t ime. A radioactive decay based R N G
uses a small radioactive emitter that is safe to handle and detectors that register decaying
of the atoms. The entropy is contained i n t ime between the decays happening.

Noise based R N G s

This type of R N G uses a source of noise, that is amplified and sampled using an analog to
digital converter. The noise source is usually a thermistor, a output of a reverse biased semi­
conductor devices or a circuit based on avalanche breakdown semiconductor devices. These
approaches are easy enough to implement cheaply and using regular electronic circui t ry and
is commonly used in crypto-accelerators and hardware R N G tokens, [f 3]

Clock drift detection and ring oscillators

Oscillators used i n computer systems tend to drift i n their frequency due to tolerances in the
components they are buil t from. This phenomenon can be used to collect entropy data as
the variance of the drift is changing due to noise picked up by the components the oscillator
is created from.

The usual approach is to have two free running oscillators that contain components
to deliberately destabilize their oscillation. One of the oscillators is then used to trigger
sampling of the other one creating a bitstream that is considered to be random as it 's
impossible to simulate.

G

Figure 2.1: Entropykey: a hardware random number generator U S B device. [13]

A s the phenomenon that this R N G is based on isn't quantum based this R N G might
be tampered to create less random sequences by decreasing the amount of noise picked up
by the oscillators. This k ind of attack, although theoretically possible, isn't feasible in real
applications as systems usually stop operating at temperatures required to decrease the
noise enough.

Figure 2.2: Tampering of oscillator drift based R N G s wi th power supply signal injection.

Disadvantage of random number generators based on oscillator drift is the susceptibility
of power supply noise to alter and lock up the frequency of the free running oscillators and
decrease the quali ty of entropy produced. There's a known attack on R N G s based on this
principle used i n smartcards. []

2.2.3 R a n d o m n u m b e r generators based o n h a r d - t o - p r e d i c t events

Common computer systems require high quali ty entropy but usually don't have a T R N G to
generate i t . Apa r t from P R N G s there's another way to generate entropy only by software
means. R N G s based on these principles usually measure disk activity, mouse movements and
user act ivi ty i n the system and extract the entropy of these events. Mul t i p l e implementations
of this approach exist, where the best known one is the L i n u x kernel R a n d o m number
generator that w i l l be mentioned later. Predecessors of this approach were implemented as

[]

user space application that were periodically running statistical commands and extracted
entropy from such sources. A n example of software used to generate entropy by such an
approach is the entropy gathering daemon - egd.

2.2.4 T h e L i n u x kernel r a n d o m n u m b e r generator

The L i n u x kernel contains a random number generator - the L R N G - that supplies high
quality entropy based on entropy gathered from hard-to-predict events. The generator
collects information about key-presses, movement of the mouse, j i t ter of access times to
disk and various interrupt sources of the system. The collected data are then stored in the
entropy pool unt i l i t 's requested for usage.[5]

Firs t step of the generator data flow is acquisition of data. The kernel records information
about events from the input devices and interrupts along wi th the t imestamp when the event
happened. The events are then queued for addit ion to the pool that is scheduled regularly.
The entropy contribution of each of the events isn't known and is approximated at the time
the P r imary pool is stirred wi th the contents of the event data. The entropy contribution
of the event depends on the type of the event and also on repetit ion rate of same event [5]

The pools updates take the packets of data prepared by the acquisition code and update
the pr imary pool w i th them. The pools are constructed using feedback algorithms to stir
the contents of the pool while updat ing the other ones. The secondary and urandom pool
are updated in a similar matter from the pr imary one. A l o n g wi th this operation the pool
volume estimate is updated by the approximate estimate of the contribution. []

To access the entropy data from the L R N G userspace applications can use the character
device pseudo files /dev/random to access the blocking pool and /dev/urandom. Kerne l
tasks can only access the non-blocking pool using the function get_random_bytes. The
data are extracted from the corresponding pools, either the secondary pool for the blocking
output or from the urandom pool for non blocking. The data extraction algori thm includes
hashing the extracted values and st irr ing parts of the data back to the pool to refresh it 's
contents. []

O n shutdown of the computer it 's recommended to save the state of the L R N G by
extracting data from the urandom pool and storing them to disk storage. This data is used
in the next boot sequence to seed the L R N G so the state cannot be easily predicted. [5]

/dev/random
(blocking)

/dev/urandom

get_random_bytes

(non -b lock ing)

Figure 2.3: L i n u x kernel random number generator block diagram. [' |

8

A

2.3 T e s t i n g a n d ce r t i f i ca t ion o f r a n d o m n u m b e r generators

Computer systems that are used in enterprise environments are required to be trusted. This
is mostly true for security measures as encryption where random number generators are used
to generate encryption keys. This lead to creation of mult iple test suites designed to test the
quality of entropy generated by random number generators. These suites measure various
statistical values on samples of data from the generators to ensure that the output sequence
of the generator can be guessed without the knowledge of the in i t ia l state. [11]

The most notable examples of such tests are the Diehard and Dieharder test and the
recent N I S T 800-22 suite[] 1].

Bugs i n R N G s used for cryptographic purposes may have catastrophic outcomes. A n
infamous bug in the OpenSSL software package i n the Debian L i n u x dis tr ibut ion caused that
cryptographic keys generated by the package and used for system authentication and other
purposes had only 1 of 32768 possible values making an attack t r iv ia l . [] Commonly used
R N G implementations used in computer systems are subject to mult iple security audits and
are also empirically verified by real-world usage.

Computer systems that are used in enterprise and government applications need to fulfill
strict sets of rules to ensure security of the system. A s entropy is used i n mult iple places in
such systems i n ways that directly influence security of the system, R N G devices are subject
security certification too. The standards often list approved random number generation
methods. A n example is the Federal Information Processing Standard that specifies the
methods i n [4].

2.4 C o n c l u s i o n

This chapter shows, that there are mult iple sources of entropy available in a computer system
and wi th some effort they can be converted to be used as R N G s producing high quality
entropy. The summary of advantages and disadvantages should help the user to choose a
suitable source of entropy according to the needs, availabili ty and requested security level
and certification.

9

Chapter 3

Virtualization tools and solutions

Vir tua l i za t ion is a fairly modern phenomenon i n computer science at first used for ex­
periments, testing and to ease debugging. Now vir tual izat ion is increasingly used also in
enterprise environments to save costs of physical hardware.

3.1 A n a t o m y of a v i r t u a l i z e d c o m p u t e r s y s t e m

In v i r tua l system most of the hardware is abstract and emulated by software. The v i r tua l
hardware creates an abstraction layer on top of the physical hardware. This is beneficial as
it enables to run guests on various hardware platforms, change hosts of the guests - migrate
them.

Vi r tua l i za t ion allows to share physical hardware that wouldn't be fully ut i l ized by a
single task by grouping such cases on one physical machine. The services run in v i r tua l
environment aren't different from those running on physical hardware and so aren't the
requirements of them.

There aren't many downsides of vir tual izat ion solutions. One of them is performance.
V i r t u a l machines due to the abstraction layer are slower than physical machines. Th is issue
is being reduced using par a-virtual hardware drivers.

3.2 Q E M U - k v m a n d l i b v i r t

One of the many vir tual izat ion solutions available today is the Q E M U hypervisor used
together w i th l ibvir t as management. Th is open source vir tual izat ion tool is used both on
desktop systems and in enterprise environments.

3.2.1 Q E M U

Qemu is a open source hypervisor and emulator that was originally developed by Fabrice
Bel la rd . Qemu supports mult iple targets and allows to emulate platforms different from
the host platform. Qemu is a full v i r tual izat ion solution including B I O S or other firmware
interfaces and hardware emulation. This allows to run unmodified guest operating systems
in such an environment. The Q E M U project is available at h t t p : / / w w w . q e m u . o r g / . The
Q E M U project is active and heavily developed and releases are being done regularly.

Qemu supports a wide range of v i r tua l and paravir tual hardware that can be used in
the guests w i th multiple backends for storage and networking. This makes it a good choice
for general purpose vir tual izat ion.

10

http://www.qemu.org/

To configure options for a v i r tua l machine the Q E M U hypervisor uses command line
arguments for the instance being started. For run t ime modifications of the state such as
change of media i n v i r tua l drives, hot plug and unplug of devices or changing the state of
the machine an interactive communicat ion channel can be used. Th i s channel is know as
monitor.

Neither the command line interface nor the monitor are user friendly and Q E M U doesn't
store any persistent configured state when the v i r tua l machine is not active. Th is makes
Q E M U hardly usable by itself and thus a higher level management application is needed
which also allows to manage storage and networking for v i r tua l machines.

3.2.2 K V M

Qemu itself doesn't support any vir tual izat ion extensions of a C P U that would allow it to
run the guests i n a more optimized way. For this purpose the kernel based v i r tua l machine
extensions, known as K V M , were developed.

K V M is no hypervisor itself. K V M is a part of the l inux kernel that allows to control
the vir tual izat ion extensions of a C P U , set up address spaces for guests and channel I / O
operations that would or iginály be used for interaction wi th physical hardware. K V M is
meant to be used by the hypervisors like Q E M U that w i l l benefit from offloading memory
management and other crucial data paths into the kernel, while hypervisor itself is imple­
menting device emulation and control of the v i r tua l machine. The interface of K V M is
exposed as the /dev/kvm device node.

K V M was first introduced for the x86_64 architecture and now the interface is being
ported to other architectures such as A R M . K V M was first developed by A v i K i v i t y at
Qumranet.

3.2.3 V i r t I O

Fu l l hardware vir tual izat ion includes emulation of hardware peripherals on a level where
the guest operating system can't distinguish it from a real piece of hardware. The interface
of a hardware device was originally designed wi th respect to the hardware layout and thus
isn't usually well suited to be emulated by software. For use i n a v i r tua l machine it would
be better to design an interface that is meant to be processed by the software emulation
layer and thus avoid constructs and approaches including timers and sequencing of the I / O
layer. [6]

The V i r t I O paravir tual device drivers are t ry ing to solve this issue. The V i r t I O infras­
tructure consists of the emulated hardware that has I / O interface desinged to be used wi th
a software emulator and guest kernel device driver that allows to use such devices. V i r t I O
drivers are available for disk drives, network cards, serial ports and dedicated communica­
t ion channels and also for R N G devices. The goal is to achieve near native performance
when using the infrastructure to pass through resources from the host system. [|

V i r t I O was developed by Rusty Russel as a acceleration solution for his vir tual izat ion
solution called lguest and is now widely supported i n guest operating systems. [|

3.2.4 l ibv ir t

Libv i r t is a open source project that tries to provide a common A P I and configuration
interface for various different hypervisors and the infrastructure needed to support i t . L ibv i r t
was started by Daniel Vei l la rd and Daniel Berrange. The project is accessible at http:

11

//www. l i b v i r t . o r g / . The project is active and under heavy development wi th support of
large IT companies.

L ibv i r t provides means to configure and manage storage, networking, resources and
resource l imits , v i r tua l machines and snapshots of them. L ibv i r t uses X M L documents to
describe v i r tua l machines and the hardware and provides persistent configuration storage
and management of hypervisor processes.

L ibv i r t also supports remote connection using the l ibvir t R P C protocol. This allows to
manage a hypervisor host from a remote location.

A P I

Libv i r t ' s api is designed to be a universal interface abstraction for the underlying hyper­
visor and the operation it can support .The A P I of l ibvir t is guaranteed to be backwards
compatible and legacy functions are s t i l l being maintained although they are obsolete.

Q E M U hypervisor driver

The Q E M U hypervisor isn't a standalone vir tual izat ion solution. Qemu requires instrumen­
tat ion to start the process wi th correct command line arguments connect to the monitor
and control the v i r tua l machine. This is the purpose of the Q E M U driver in l ibvir t .

The driver manages the running processes and converts information from the l ibvir t
A P I s into commands for the Q E M U monitor. The Q E M U driver is a stateful driver and
thus the l ibvir t daemon is required when managing Q E M U vi r tua l machines.

virsh

The virsh - v i r tual izat ion shell is a basic management application that uses the l ibvir t A P I .
It was originally developed as a testing tool for the l ibvir t A P I but was further developed
to be a user friendly basic interface to l ibvir t to allow simple management tasks. V i r s h is
distributed along wi th the l ibvir t package.

$ v i r s h
Welcome to vi r s h , the v i r t u a l i z a t i o n interactive terminal.

Type: 'help' for help with commands
'quit' to quit

v i r s h # l i s t
Id Name State

4 test-vm running

Figure 3.1: virsh vir tual izat ion shell

virt-manager

The virsh shell is only a minimalis t interface suitable for min imal tasks. For more complex
tasks such as creating a v i r tua l machine virsh requires the knowledge of the l ibvir t X M L
format. To ease this type of operations a graphical user interface for the l ibvir t A P I was
created. [15]

12

Virt-manager is a separate project that uses the l ibvir t A P I to create and manage v i r tua l
machines on individual hosts in a user friendly way. Virt-manager is wri t ten i n python and
supports connecting to multiple hosts and provides configuration wizards for creating v i r tua l
machines and integrates the graphical console of the machines. [] 5]

Virtual Machine V iew Help

fc> OD 6
Run

Overv iew Hardware

Processor

Memory

Boot Opt ions

Disk hda

Disk hdc

NIC ;4a;bf;ae

Mouse

Display
3

=}= Add

Autos t a r t
Star t virtual machine on host boot up?

• Au tos ta r t V M

Boot Device
Dev ice virtual machine will boot from; •
© C D R O M

§ l N e t w ü r k (P X E)

Figure 3.2: virt-manager management interface. [15]

OpenStack, o V i r t and others

Libv i r t was originally designed to be used on a single node only as a abstraction of the used
hypervisor. To allow using it for more sophisticated topologies i n datacenters a higher level
system needs to be implemented that wi l l manage resources i n the datacenter using l ibvir t
on a larger scale.

There are a few open source projects using l ibvir t as a host based management layer
and are bui lding a larger scale application on top of i t . OpenStack compute and oVi r t
are examples of such projects and both are also sold as products w i th support by large
companies.

3.3 V i r t u a l B o x

V i r t u a l B o x is an al l i n one vir tual izat ion solution including the hypervisor, management
interface and guest support drivers. V i r t u a l B o x is developed by Oracle and usualy used as
a desktop vir tual izat ion solution mainly due to a user friendly intreface and easy instal lat ion
and good support for video acceleration which makes it suitable to virtualize systems wi th
heavy graphical user interaction.

V i r t u a l B o x is distr ibuted also as open source project lacking several features described
as enterprise such as network booting support and U S B passthrough support. Together w i th
the lack of mul t i host management software and closed source nature of the guest drivers
the target segment for use of V i r t u a l B o x is on desktop computers rather than servers.

13

File Machine Help

O 3 >
New Settings Start Discard

0 Details ID Snapshots

'©Powered Off
s(General a P „ V , ™ -
Operating System; Other/Unknown

S System
J^H test 23 (Snapshot 1]
J^Pj ©Powered Off

Base Memory: 192 MB
Boot Order; Floppy, CD/DVD-

ROM, Hard Disk
Acceleration: VT-x/AMD-V, Nested

^ Paging

Base Memory: 192 MB
Boot Order; Floppy, CD/DVD-

ROM, Hard Disk
Acceleration: VT-x/AMD-V, Nested

^ Paging

S Display

Video Memory: 16 MB
Remote Desktop Server: Disabled]
Q Storage

Controller: IDE Controller
Controller: SATA Controller
Controller: SCSI Controller

;

Figure 3.3: V i r t u a l B o x management interface.

3.4 X e n

One of the first hypervisors available was the X e n hypervisor. Or ig iná ly only paravirtual-
ized L i n u x guests were supported. Those required modified kernels that replaced hardware
drivers and system calls w i th hypercalls. The main reason for this was the need to modify
the kernel to run cpu security r ing 1 instead of the usual r ing 0.

W i t h the introduci t ion of hardware vir tual izat ion support into the hardware the X e n
hypervisor was upgraded to support it and was one of the firtst to support fully vir tual ized
guests w i th hardware support.

The X e n hypervisor is now being used less due to the need to do heavy modifications
to the host kernel. These modifications are not keeping up wi th upstream L i n u x kernel
releases. A s a replacement, other solutions are used that run on top of the host system and
access the vir tual izat ion support using a stable interface.

The X e n hypervisor was or ig inály developed at the Universi ty of Cambridge.

14

Chapter 4

Entropy in virtualized systems

The a im of a vir tual ized environment is to be indistinguishable from a physical computer
system in terms of performance. This is also true for the random number generator. In
this chapter I w i l l focus on analyzing of performance of the L i n u x kernel random number
generator under different conditions and various vir tual ized environments to determine the
performance of the generator and I w i l l t ry identify possible problems wi th the performance
and their causes.

4.1 A v a i l a b l e en t ropy i n ke rne l en t ropy pools

A s described in section 2.2.4 the kernel random number generator stores noise bits collected
from the available sources in the entropy pool . The kernel and tasks using the entropy
from the pool decrease the amounts of entropy contained i n the pool . The available amount
of entropy i n the kernel pools is an important measure so the following sections w i l l t ry
to research the filling rate and consumption rate of the random number generator in the
system under various situations and conditions.

Whi l e the entropy pool is filled w i th entropy all requests including those originating
from the non-blocking access methods receive high quality entropy from the pr imary pool .
In cases when there isn't enough entropy i n the pool requests for entropy from /dev/random
block and the non-blocking sources receive entropy from lower quality source. This fact
might might lead to starvation of applications t ry ing to generate cryptographic keys and
thus requiring access to the higher quail ty pool by applications accessing the pseudorandom
pool.

F i l l i n g of the entropy pool during start and boot phases of a computer system is another
source of possible problems. The entropy pool is empty when the kernel is ini t ia l ized and
although the system is under heavy load which increases the entropy generation rate, the
starting services may consume a lot of entropy for their ini t ia l izat ion purposes. Addi t iona l ly
the services may block the startup i f high quali ty entropy is needed for the startup of the
process.

4.2 I m p a c t s o f v i r t u a l i z a t i o n o n pe r fo rmance o f r a n d o m n u m ­
ber genera tor

The v i r tua l hardware due to the nature of emulation may have different properities when
compared to the real hardware the emulation is based on. The properities may differ in

15

terms of t iming, interrupt frequency and other variables that are determined by the state of
the hardware. A s these are the main source that contains entropy i n a computer system the
changes of the behavior may influence the performance of the generator that is extracting
random numbers from the entropy and quali ty of them.

A n example of this difference to real hardware is the disk of the v i r tua l machine being
backed by a file on the filesystem of the host. The operating system of the host may apply
caching of disk accesses and thus offset the access times for indiv idual blocks and also the
count of interrupts i n the guest i f it is able to provide data i n larger chunks. Also fragmented
blocks of a filesystem may be present i n the cache and avoid the j i t ter of accessing the disk
drive.

V i r t u a l machines also usually don't have input devices directly connected but use a
v i r tua l terminals. The input devices are one of the best sources as they are operated by
humans i n an unexpectable manner

Those are a few examples of differences between a physical computer and a v i r tua l
machine. How these affect creation of entropy in the R N G wi l l be discussed in the next
section.

4.3 G a t h e r i n g o f L i n u x ke rne l R N G pe r fo rmance s ta t i s t ics

The kernel procfs interface i n L i n u x provides means to collect statistical information about
the state of the kernel entropy pool . The /proc/sys/kernel/random/entropy_avail file
w i l l be used to collect information about the estimated volume of entropy contained in
the entropy pool . Before the start of each test the entropy pool w i l l be drained using the
/dev/random device to start the process of filling the pool . This w i l l show the filling rates
of the R N G . The guest operating system w i l l need to have min imal impact on negatively
affecting the statistics and thus a idle system wi th min imal amount of started services w i l l
be used.

Four sets of experiments w i l l be conducted on mult iple hypervisors to portray and quan­
tify the performance of the L i n u x R N G under various conditions and environments.

4.4 S y n t h e t i c tests

The purpose of the synthetic test wi l l be to test the filling rate of the L inux kernel R N G that
w i l l be running i n v i r tua l systems. To compare the influence of vir tual izat ion archigecture on
the performance of the L R N G I w i l l use X e n , Q E M U / K V M and V i r t u a l B o x as hypervisors.
These are the most commonly used open source hypervisor solutions available.

A s the guest operating system under test I w i l l use Red Hat Enterprise L i n u x version
6.4. This is a enterprise system that is commonly used and contains support for guest based
vir tual izat ion support. I w i l l use a min imal instal lat ion to reduce the number of running
services that might drain the entropy pool and interact w i th the generation of data. Use of
this system w i l l also help in comparing the performance of the L i n u x R N G when compared
to the host system.

A s the host system I chose R e d Hat Enterprise L i n u x Server version 5.8 for the X e n
hypervisor and Red Hat Enterprise L i n u x version 6.4 for Q E M U / K V M and V i r t u a l B o x .
The host systems run on a Intel Core 2 Duo processor and the host has one disk drive.

16

4.5 R e a l w o r l d scenarios

The methodology described above w i l l also be used to collect reference data for real world
behavior of the L i n u x kernel R N G . For this purposes I propose two common usage scenarios:

The first scenario is a vir tual ized server computer system. The host operating system
runs several instances of the Q E M U / K V M hypervisor. The guests are product ion systems
running several services and hosting user space for mult iple users. A l l externally accessible
services are secured through encrypted channels. The host is a Intel X e o n based machine
wi th a 6 disk raid array and two network connections. A s this system is a production
machine, performance on various hypervisors cannot be tested. Operat ing systems used on
this machine are Debian L i n u x installations wi th custom kernels.

As a second real world example I selected a desktop computer system used by single
user for common computer work without the use of vir tual izat ion. The system is a Intel
Core i7 based machine wi th Gentoo l inux installed. This system has external input devices
connected and actively used. M a n y of the applications used on the system include use of
secure channels and the disk storage of the system is encrypted using dm-crypt . This system
w i l l t ry to analyze the long term performance of the L R N G on a desktop system to allow
comparison wi th server systems.

4.6 V i r t u a l i z a t i o n acce le ra t ion d r ive rs

A th i rd test scenario w i l l focus on comparing the performance of the L R N G on a guest that
is using paravir tual accelerated hardware interface and on a guest that has this advanced
interface disabled.

The goal of this test w i l l be to analyze the effect of these drivers on the L R N G speed
and compare it w i th improvement of the performance i n the guest.

This test w i l l be based on the synthetic test described above. A l o n g wi th the L R N G
performance testing, the guest wi l l be performing disk reads and the total disk throughput
speed w i l l be graphed along wi th the L R N G performance. To avoid influence of physical
hardware a empty sparse file s imulat ing the disk image w i l l be used. This wi l l avoid biasing
the results by using a slow hard drive and instead the full potential of the vir tual izat ion
infrastructure w i l l be utilised.

This test w i l l also allow to compare the performance of the L R N G when used on a
system under load, where the disk I / O operations are the pr imary source of entropy.

4.7 E n t r o p y used up o n process s ta r t

E a r l y experiments w i th t ry ing to determine state of the entropy pool in the system shown a
strange pattern. After t ry ing to log level of the entropy pool by running a separate process
for every data point, the pool drained very fast leaving the m i n i m u m value of 128 bits of
entropy that is an implementation l imi t .

Graph 4.1 shows the gradual decrease in the volume of the entropy pool wi th reference
to number of t ight ly looped started processes. Each start of a process drains 128 bits of
entropy from the pool.

Using the strace tool to log all system calls by a process has shown that no entropy
data is read by the ini t ia l izat ion phase of the processes themselves.

17

Figure 4.1: Dra in ing of the entropy pool when starting processes.

Further investigation of the L i n u x kernel showed that 16 bytes of entropy is consumed
by the E L F file loader i n the kernel when an executable binary is being loaded. The data is
stored i n the AT_RAND0M attribute i n the E L F header of the running process. Th is random
ini t ia l izat ion vector is used by the glibc l ibrary to seed stack protectors and P R N G s . [|

The workaround used to gather unbiased data is to use a single process that accesses
the entropy pool state i n a loop by a single process. Together w i th in-memory caching of
the statistics data this minimizes the impact of the analysis software on the tested system.

Start ing of processes is a very common task, so this draining might have serious impact
on the contents of the entropy pool on busy systems and during boot phases where the init
scripts are starting a lot of processes.

4.8 R e s u l t s

The results were collected by the use of a custom program that was periodicaly reading
the state of the random pool and storing the results into memory. After collecting samples
for the requested t ime period, the program wrote the results to a file on the disk. This
approach avoided disk writes while the statistics were collected. Afterwards the data were
plotted using the gnuplot tool .

The program was also used for gathering statistics while the system was booting. The
program may be run as the init process w i th p id 1. In that case it forks to create a clone
that w i l l start gathering statistics, while the original instance executes the sytem startup as
usually.

The program is called entropy_boot and the source code is on the attached C D .

4.8.1 S y n t h e t i c t e s t s c e n a r i o

A s there were two different host systems used to collect statistics graph 4.2 shows the
performance of the R N G s depending on the kernel version. The graph shows that the
R N G s of both of the hosts have a similar performance, where linux-2.6.18-xen averages
roughly 6 bits of entropy data per second and linux-2.6.32 averages 5 bits per second. B o t h
the host systems outperform the guest systems by at least 5 times, where the best guest
averages 1 bit per second.

18

Figure 4.2: Synthetic test - Performance of the R N G in host systems - guest data included
for reference.

Graph 4.3 compares the performance of the R N G s i n a guest operating system across
various hypervisors. It's apparent that the guest achieves the best performance while run­
ning on the X e n hypervisor averaging 1 bit per second. Q e m u / K V M and V i r t u a l B o x wi th
the guest additions both perform worse than X e n averaging roughly 0.4 bits of entropy per
second.

Figure 4.3: Synthetic test - Performance of the R N G i n guest systems.

4.8.2 R e a l w o r l d scenario

In the production system the results of the experiment correspond to the synthetic tests.
According to graph 4.4 the host system is able to generate high enough amounts of entropy
and it 's usage isn't affecting the growth of the pool . Th i s contrasts w i th the si tuation in
the guest system where the kernel isn't able to keep up wi th consumption of the application
and the size of the kernel pool fluctuates around of the min imal read l imi t value.

The overal performance of the L R N G i n an idle and loaded server systems is insufficient
and even under load the output rate of the L R N G does not scale well enough to maintain

19

a steady amount of entropy i n the pool .

Figure 4.4: Real world scenario - vir tual ized server system.

Figure 4.5 shows entropy pool level fluctuations on a desktop computer system. Thanks
to actively used user input peripherals the R N G is able to generate high amounts of entropy
in short periods. O n the other hand, as the system is actively used, entropy consumption of
the running applications is very high (multiple processes executed, encrypted connections,
wireless network encryption keys). These two factors result i n sharp changes of the entropy
level.

O n a desktop system used by a single user the L R N G performes better when compared
to server systems due to the existence of actively used peripherals. For a single user use
case the L R N G performes well enough.

Figure 4.5: Long term usage of a real world system - desktop computer.

4.9 Influence o f v i r t u a l i z a t i o n d r ive r s

Vir tua l i za t ion acceleration drivers usualy avoid normal code paths to improve throughput
of the subsystems wi th cr i t ical performance. The following results analyze the impact of

20

using accelerated drivers for v i r tua l disk storage on the performance of the L R N G .

4.9.1 Q E M U + K V M

From the measurement it 's apparent that the V i r t I O device driver uses data paths that are
comparable to those of the fully vir tual ized driver. The L R N G was performing similarly
when using both the V i r t I O and the fully emulated driver. The L R N G on the system under
load was producing approximately 5 bits of entropy per second. This result is comparable
to the idle state of the host operating system.

The disk I / O performance was approximately twice as good when compared to a system
running non accelerated drivers. The accelerated system was able to achieve a sequential
read speed of 4 0 0 M 1 B / S 1 whereas the guest using the legacy emulated hardware was able to
reach 2 0 0 M i B / s on the tested system. This allows to encourage users to use the accelerated
drivers instead of the legacy ones without the need to take the R N G performance into
account.

This test also shows that heavy disk I / O improves the performance of the L R N G when
using Q E M U as a hypervisor when compared wi th the results from an idle system visible in
graph 4.3. O n a downside a busy system is more likely to consume more entropy for internal
purposes.

Figure 4.6: Q E M U - Influence of disk backend on R N G performance and disk I / O perfor­
mance.

4.9.2 X e n

W h e n using the X e n hypervisor, the choice of disk driver and backend has direct impact
on the performance of the L R N G . W i t h the paravirtualized disk driver the L R N G was
performing poorly and it 's apparent that the driver is avoiding data paths that are used by
the L R N G to gather entropy. The S C S I disk backend is using the standard data paths and
thus the kernel is able to extract entropy from these disk reads. The L R N G produced 5
times more entropy when using the S C S I driver compared to the paravirtual driver.

The results of disk bandwidth measurement are unexpected though. The S C S I non-
paravirtual disk backend of the X e n hypervisor is performing better than the paravir tual

l rThe graph shows speed in 100ms ticks, thus the throughput per second is 10 times greater

21

backend. W i t h an S C S I disk the guest was able to read 2 6 0 M i B / s whereas the paravir tual
interface is averaging only 1 6 0 M i B / s of sequential reading data.

Figure 4.7: xen - Influence of disk backend on R N G performance and disk I / O performance.

4.10 E n t r o p y levels d u r i n g boo t o f a L i n u x s y s t e m

A s expected due to issues described i n section 4.7 and the fact that the filling rate of the
kernel entropy pool at early boot phases isn't high enough even in cases of heavy disk
activity, the entropy pool was almost empty during the boot phase. The filling started after
the startup of system services was finished.

Graph 4.8 shows heavy fluctuations of the entropy level during the boot phase. The R N G
collects entropy from the heavy disk operations during boot but the init scripts continue
draining the pool . After the host boots up at around 25 seconds after the start the entropy
generator loses the input but also draining due to process starts ceases. This allows the
entropy pool to start slowly filling up.

The data for this test was gathered while running on physical hardware without a hy-
pervisor. A s the consumption of entropy is too high during the boot process a test on a
v i r tua l environment would yield very similar results.

4.11 C o n c l u s i o n

According to the test results it 's apparent that the performance of the L inux kernel R N G
in vir tual izat ion guests is poor. There are mult iple factors that that cause this.

The first issue is the lack of peripherals i n the guest. V i r t u a l machines interact mainly
using network services and wi th exception of maintenance. This drastically reduces the
performance of the R N G . Unfortunately this issue cannot be solved in a v i r tua l environment.

The second factor decreasing the performance of the R N G is offloading more and more of
the performance cr i t ical hardware emulation into paravir tual cooperation wi th the hypervi-
sor. This has great benefits in improving performance of the guest itself but the guest kernel
loses even more sources of noise that are suitable to extract entropy from. Addi t iona l ly w i th
further progress in speeding up vir tual izat ion solutions more and more of the noise sources
stop to be suitable. In systems containing mult iple guests the offloading procedure might

22

•6B

460

Figure 4.8: Entropy level variations during early booting phases.

start introducing same noise patterns in mult iple guests enabling attackers to guess random
streams produced by R N G s i n other v i r tua l machine running on the same host.

The consumption of entropy needed to init ial ize every single process i n the L i n u x oper­
ating system is the most cr i t ical factor that causes very low levels of entropy available i n the
kernel pools. The entropy is used as a security measure to protect application against stack
corruption and is used to seed internal P R N G s . Also address space layout randomization,
a technique to avoid buffer overflow and known function pointer attacks requires access to
a good entropy source [14].

23

Chapter 5

Approaches to improve levels of
entropy in guests

The research summarized in the previous chapter shows that the performance of the random
number generator is poor i n systems used today, but the need for entropy data is growing.

This chapter w i l l describe possible approaches we can take to improve the level of entropy
in the kernel of guest operating systems. Each of those approaches w i l l be categorized and
judged for sui tabil i ty for various use cases. Then one of the approaches w i l l be chosen to be
implemented and the design of the product w i l l be described.

5.1 G a t h e r i n g o f a d d i t i o n a l en t ropy i n the guest

The most basic approach to improve the slow speed of the L R N G would be to gather entropy
from events and user interaction i n the system i n addi t ion to the L R N G . A carefully designed
system would allow to specifically extract entropy from events that are common and random
enough. Unfortunately this would require fine tuning the entropy extraction system for a
particular purpose and the same system might not perform well i n other use cases.

It would be also possible to extract entropy from other hardware devices that are present
or passed through to the guest system in addit ion to those used by the L R N G . O n the other
hand this hardware can't be used in mult iple v i r tua l machines or i n the host simultaneously
for the same purpose as an attacker could take advantage of the knowledge of the state to
reverse engineer the bit stream from the entropy gathering method.

5.2 P a s s t h r o u g h o f host ' s en t ropy to the guest O S

If the performance of the host's R N G is sufficient the entropy could be passed through to
the guest to improve the contents of it 's kernel entropy pool . This approach doesn't require
adding new sources of entropy or any other complex infrastructure.

As a downside according to section 4.8 this approach doesn't scale well as the perfor­
mance of the R N G in the host is barely sufficient to cover consumption of the host itself.
Also w i th direct passthrough the guest is also able to easily starve the host operating system
of it 's entropy.

24

5.3 G a t h e r i n g o f a d d i t i o n a l en t ropy i n the host

A s an extension of the previous scenario it would be possible to gather addit ional entropy
in the host either from software and user interaction sources or from hardware sources as
the host has access to a l l the physical hardware. The kernel entropy pool can also be seeded
from a hardware R N G device present in the host and thus be suitable for passing the entropy
to the guest.

5.4 E x t e r n a l sources o f en t ropy

Device passthrough would allow passing through a physical hardware random number gen­
erator to the guest. This would allow the guest to use it as i f it was directly connected to
a physical machine. The guest w i l l then able to seed the kernel entropy pool from such a
source.

The infrastructure for such passthrough is already existing and hypervisors allow to
assign P C I , U S B and other devices directly to the guest. The disadvantage of such approach
is that the device can't be used from the host or any other v i r tua l machine and migrat ion
1 would be impossible.

5.5 D i s t r i b u t i o n s y s t e m for m u l t i p l e guests

The approaches described above are not fully suitable to be directly used on server systems
and infrastructures that run multiple guest v i r tua l machines.

The approach of gathering entropy in the guest may not provide sufficiently random
data i f the source of entropy is common to al l v i r tua l machines. Also the gathering software
might unnecessarily load the systems and thus decrease the capacity of the host system.

The other approaches provide a single source of entropy while there are mult iple con­
sumers. This creates a competitive environment where one guest could starve others by
consuming too much entropy. Th i s creates a need to introduce a dis tr ibut ion system for en­
tropy that w i l l allow to configure flow rates and shape entropy flows to excessive consumers.
The goal w i l l be to create a fair environment.

This approach would also allow to use a single hardware R N G device on a host or one
central one for a datacenter and distribute entropy to al l the guest v i r tua l machines on all
the hosts to save costs and resources.

5.6 D e s i g n o f the s y s t e m to i m p r o v e en t ropy i n guests

A s a solution to improve the performance of guest's random number generator that w i l l be
implemented for the purpose of this thesis the dis tr ibut ion system. The dis tr ibut ion system
approach can be used wi th mult iple approaches to generate random data and w i l l allow to
use the system i n large infrastructures. The following sections describe the desing of the
four main parts of such a system.

The platform of cohoice on which this sytem w i l l be implemented is the Q E M U hypervi-
sor wi th l ibvir t used as the management interface. I chose this platform as i t 's open source
and thus w i l l allow to modify the source code of the components for direct integration.

1 Migration allows to move a running virtual machine between different physical hosts with no loss of
service

25

Withou t source code access, this work would be l imi ted to gathering of entropy data in the
guests, which wouldn't be useful and couldn't be implemented into an existing project to
ensure wide availabili ty of this feature.

The system designed as a part of this thesis wi l l allow to source, control and distribute
entropy to guest operating systems running as v i r tua l machines as their native entropy
generators are performing poorly.

5.6.1 E n t r o p y source

The system w i l l be designed to support mult iple sources according to the needs and config­
uration of the user. This w i l l allow to use such a system also in enterprise environments as
the source can be configured according to the requested certification level as described in
section 2.3.

The system w i l l allow to use software entropy sources such as the entropy gathering
daemon, hardware R N G integrated into the host or external ones. The system also be
prepared to support sourcing of entropy using the R D R A N D instruction[] in modern C P U s
or network sources i f the user w i l l develop a use case for this functionality.

Possible entropy sources and their description can be found i n chapter 2.

5.6.2 P a s s t h r o u g h layer

One of the most cr i t ical parts of getting entropy into the guest is the passthrough point to
the guest. The hypervisor running on the host computer has to provide means to allow this.

The hypervisor can achieve this in mult iple ways. The legacy way to achieve this would
be to emulate a physical R N G device i n the hypervisor and intercept I / O requests to the
devices address space. This is both complex and slow i n the result.

Second option is to use paravir tual interface. This introduces the need for a specific
driver i n the kernel of the guest operating system, but the much simpler interface between
the host and guest allows for better performance.

For the purpose of this thesis, the V i r t I O R N G vir tua l hardware and L inux kernel
driver w i l l be used as the passthrough layer to the guest. The Q E M U hypervisor w i l l then
communicate using the character device backend wi th services in the host to source entropy.

V i r t I O R N G was chosen as the kernel driver for the v i r tua l device is already part of
the upstream l inux kernel for a longer period and thus it can be used i n existing systems
too. The need to run a modified kernel as a solution is undesirable as it would discourage
adoption of this system in product ion systems.

5.6.3 D i s t r i b u t i o n layer

The task of the dis tr ibut ion layer wi l l be to request entropy from a entropy source and deliver
it to one or more v i r tua l machines. W h e n doing this the layer w i l l have to ensure that the
guests are not starving other guests in case of mailicious behavior. This layer w i l l need to
interact w i th the passthrough layer and ensure that it w i l l work even i f the management
layer is not working for some reason. The dis tr ibut ion layer should be integrated in the
v i r tua l machine management software for easy deployment and availability.

There are no open source projects that would implement this functionality thus the
distr ibution layer needs to be implemented from scratch for the purpose of this thesis.

26

5.6.4 M a n a g e m e n t layer

The management layer selected for purpose of this thesis is l i b v i r t . L ibv i r t allows to run
and easily manage v i r tua l machines run by the Q E M U hypervisor.

As a part of this thesis l ibvir t w i l l be augmented to support management of entropy
pools, to allow configuration of v i r tua l R N G devices for v i r tua l machines and integrate the
distr ibution layer instrumentation.

The a im is to integrate al l the components into the upstream development tree of l ibvir t
so that the results of this work can be used in production wi th existing software packages
that are commonly used and readily available i n L i n u x distributions.

27

Chapter 6

Implementation

This chapter w i l l elaborate on the implementation details of the entropy dis tr ibut ion system
that was created for purpose of this thesis and described in section 5.6.

6.1 V i r t I O R N G

The V i r t I O R N G device is a paravir tual device designed to supply entropy to the guest. This
w i l l be the passthrough layer of the complete system. V i r t I O R N G creates a v i r tua l P C I
device in guest's I / O address space that is recognized by the kernel driver and presented as a
hardware R N G device. After the driver is loaded, the device is in the L i n u x operating system
available as /dev/hwrng. The read requests done on this device invoke the internal backend
in the hypervisor that sources the entropy from the configured source and subsequently
returns the data to the guest.

6.1.1 Q E M U backends

The entropy interface backends are used as internal representation and abstraction of the
two possible sources of entropy for a R N G device i n the Q E M U hypervisor.

random backend

This backend is designed to source entropy from character devices like /dev/random or
similar interfaces. It's the most simple backend. It does not use any specific protocol.
W h e n entropy is requested i n the guest Q E M U accesses the configured character device and
reads the entropy data.

Qemu supports reading from arbitrary files including /dev/urandom. This is considered
not a good idea as the guest doesn't expect to receive pseudo-random entropy from a
hardware R N G . []

The following command line options are needed to activate this backend along wi th a
R N G device:

qemu -object rng-random,filename=/dev/hwrng,id=rngO \
-device virtio-rng-pci,rng=rngO

28

E G D backend

The E G D backend is more advanced. The backend uses a simple protocol described in
section 6.1.2 to communicate w i th a suitable network service and uses the protocol to request
entropy data.

The communicat ion is accomplished using Q E M U ' s -chardev interface. The -chardev
interface is an abstraction that can be used to communicate over the network, U N I X domain
sockets, pipes or be channeled to a file on disk. This allows the backend to be used universally
and suitable for mult iple use cases.

Command line options used to enable the egd backend are more complex compared to
the random backend:

qemu -chardev socket,host=localhost,port=1024,id=chr0 \
-object rng-egd,chardev=chrO,id=egdO \
-device virtio-rng-pci,rng=egdO

6.1.2 E G D p r o t o c o l

The E G D protocol is a simple network protocol that was designed for entropy dis tr ibut ion
in user space. The protocol was created as a part of the entropy gathering daemon project.
The protocol is not standardized as an R F C standard, but it 's well known and commonly
used.

The protocol is simple, binary and stateless. The communicat ion is always ini t iated by
the client. The protocol has 5 commands. Each of the commands is described by the first
byte of a message wi th more optional data according to the message type. The returned
message type depends on the command itself.

C o m m a n d 0x00

The command has no arguments. The returned message is a 32bit integer i n big endian
byte ordering containing the number of available entropy bits present i n the pool.

C o m m a n d 0x01

The 0x01 command is a non-blocking entropy read request. The command has a one byte
argument O x N N for the amount of entropy i n bytes that is requested. The returned message
is i n format OxMM followed by O x M M bytes of entropy where O x M M is the number of bytes
granted by the daemon.

C o m m a n d 0x02

Command 0x02 is used for a blocking entropy read request. The argument is one single byte
number O x N N denoting the requested amount of entropy. The returned message contains
O x N N bytes of entropy data and the message is expected to block unt i l the requested amount
of entropy can be delivered.

C o m m a n d 0x03

The command has mult iple arguments O x M M OxLL O x N N followed by O x N N bytes of en­
tropy. This command denotes a write to the entropy pool of the daemon. The O x M M

29

OxLL argument is a 16 bit b ig endian number of the count of entropy bits contained i n the
following string. The command has no reply message.

Command 0x04

To determine the P I D of the daemon the 0x04 command can be used. The P I D is reported
as O x N N followed by a string of length O x N N bytes containing the P I D of the daemon.

Commands used by Q E M U

The implementation of the E G D protocol in the Q E M U R N G backend only uses a very
l imited subset of the protocol. On ly the 0x02 command to request blocking entropy is used
wi th an argument of 0x40 bytes of entropy requested.

6.1.3 R a t e l i m i t i n g

The Q E M U hypervisor supports basic rate l imi t ing support that allows to l imi t the flow rate
for a single guest. This approach unfortunately doesn't have global knowledge of the system
and other v i r tua l machines thus this can't control the flow fairly and similar ly doesn't avoid
starving the host by mult iple guests.

Rate l imi t ing is enabled by adding configuration options to the v i r tua l P C I device defi­
nit ion:

qemu -device virtio-rng-pci,max-bytes=1024,period=1000

6.1.4 Ava i lab i l i t y of V i r t I O R N G

The V i r t I O R N G device was introduced into the upstream repository by commit 16c915ba42b45
on November 16, 2012 and is available i n Q E M U - 1 . 0 . 3 release. The code was wri t ten by
A m i t Shah.

6.2 B a s i c l i b v i r t s uppo r t for R N G devices

Libv i r t stores the machine configuration options i n X M L documents and then uses them to
populate internal structures. Those are then used to generate native configuration options
for the hypervisor that are specific for hypervisor drivers.

6.2.1 C o n f i g u r a t i o n file format

Libv i r t ' s d o m a i n 1 configuration X M L document is described using Relax-ng schema defini­
t ion. The schema is used to validate configuration documents and serves as a guideline to
implement the parser and generator.

The domain X M L document contains mult iple sections that describe various aspects of
the v i r tua l machine. The <devices> section is reserved for definitions of v i r tua l hardware
devices presented to the system. This section w i l l be the place where the users w i l l be able
to add R N G devices to the guest.

1Libvirt describes guest machines as domains. This is a legacy name introduced by the X E N hypervisor.

30

The R N G device is represented wi th the <rng> tag. Configuration options for the R N G
device are represented as sub-elements.

To use basic rate l imi t ing that is supported by the Q E M U hypervisor, the user may add
the <rate> element w i th appropriate values. The entropy consumption l imi t is configured
by the bytes attribute. The period attribute represents t ime i n milliseconds after which
the l imi t is refreshed.

The <backend> element allows to configure the source of entropy for the R N G device in
the guest. There are three possible backend models implemented: random, egd and pool.

random backend

This backend has only one configurable parameter: the file name of the entropy source. The
val id file names for this backends are /dev/random and /dev/hwrng. Th is is a subset of
the interface provided by Q E M U . This l imi ta t ion was introduced after upstream discussion
in the mai l ing list thread [7] as a workaround to disallow insecure configurations that used
might do by mistake. In case the source file name is omit ted /dev/random is used as the
default.

<rng model='virtio'>
<backend model='random'>/dev/random</backend>

</rng>

Figure 6.1: Excerpt from guest configuration X M L . R N G device w i th the default random
backend and /dev/random as a source.

egd backend

This backend configures the hypervisor to use a configurable character device to commu­
nicate w i th a remote side using the E G D protocol. L ibv i r t already provides support for
configuring and using character devices in v i r tua l machine configuration. This interface
was adapted to be reusable and used to parse and generate the E G D backend code. The
configuration options include backend type, addresses and file names. The format of the
character device X M L description is explained i n l ibvir t ' s documentation.

This allows to use the E G D backend wi th unix, T C P and U D P connections, log files
and P O S I X pipes according to the need of the application.

<rng model='virtio'>
<rate period="2000" bytes="1234"/>
<backend model='egd' type='udp'>

<source mode='bind' service='1234'>
<source mode='connect' host='1.2.3.4' service='1234'>

</backend>
</rng>

Figure 6.2: Excerpt from guest configuration X M L . R N G device using the egd backend wi th
rate l imi t enabled and using U D P transport

31

pool backend

The pool backend configures the guest to source entropy from the entropy pool managed
by l ibvir t . The hypervisor w i l l be automatically configured appropriately to use the entropy
pool.

Arguments for this backend allow to configure the pool name used to source the entropy
and a dis tr ibut ion class to be used wi th the host i n question. W h e n starting a guest, the
hypervisor driver w i l l have to verify that the configured entropy pool is existing and started
and the desired class exists in the configuration.

<rng model='virtio'>
<backend model='pool' name='default' class='hostclassl'/>

</rng>

Figure 6.3: Excerpt from guest configuration X M L . R N G device using the pool backend
wi th the default pool belonging to the hostclassl class.

6.2.2 X M L parser a n d in terna l s tructures

The next step in adding a device support into l ibvir t is to augment the X M L parser and
formatter and internal data structures to accept the data. A s the l ibvir t l ibrary is wri t ten
in the C language, this step unfortunately isn't automated by parsing the schema definition
and generating the data structures according to the definition.

Internal data structure associated with a R N G device

For internal purposes, l ibvir t stores configuration definitions in internal data structures,
while X M L files are used for external representation and storing of the state. To describe a
R N G device I introduced struct _virDomainRNGDef.

This structure holds information about the model of the R N G device, backend type and
backend related data. The R N G device type and backend model are described by enum
virDomainRNGModel and virDomainRNGBackend. A l l of the above data types are defined in
src/conf/domain_conf.h.

X M L parser

To parse the definition of the R N G device mult iple X P a t h queries are used and evaluated
using the libxml2 parser used by l ibvir t . The queries extract needed information from the
document and addit ional code is used to validate the parsed data. The parser is implemented
by the virDomainRNGDef ParseXML function that is defined in src/conf/domain_conf . c.

X M L formatter

The X M L formatter used i n l ibvir t is created manually similar to the parser. The X M L
document is created by directly output t ing the code instead of generating a D O M tree 2 .
The definition of the R N G device is formatted function virDomainRNGDef Format defined in
src/conf/domain_conf.c.

2This complies to the coding guidelines of libvirt.

32

Cleanups of device handling

W h e n adding a new device type into l ibvir t there are mult iple places that need to be adapted
in order to add the support correctly and avoid leaking memory and other problems.

As pre-requisite work, these places were cleaned up and changed so that the compiler
produces warnings in cases where a new device type is added but the handler code is not
updated. This simplifies future work on l ibvir t and makes it less bug prone.

6.2.3 Q e m u dr iver s u p p o r t for R N G devices

After l ibvir t is able to recognize and parse a new device type, the support for this device
needs to be implemented into the hypervisor driver. The driver is responsible for creat­
ing hypervisor specific native configurations. In case of the Q E M U hypervisor the driver
translates the internal data structures into command line arguments. The Q E M U command
line arguments that are used to enable the vir t io R N G device are described i n section 6.1.1
and are generated by qemuBuildRNGDeviceArgs and qemuBuildRNGBackendArgs defined in
src/qemu/qemu_command.c.

6.3 L i b v i r t s u p p o r t for en t ropy pools

The next step is to introduce entropy pool support to l ibvir t . The purpose is to have the
abil i ty to configure, control and use the entropy pools as a part of the management interface.

L ibv i r t uses a modular loadable driver architecture to support mult iple approaches for
a common task or hypervisor specific approach. A d d i n g entropy pool support results in
adding a new driver type and infrastructure to support it and then implementing a driver
instance to support virtentropyd.

The driver provides A P I s used to manage and configure entropy pools. The purpose
of the underlying driver implementation is to create specific configuration and start the
appropriate services and manage their lifecycle.

6.3.1 A P I of the en tropy p o o l dr iver

The public A P I is the main interface between the user and l ibvir t . The entropy pool wi l l ex­
port the following function i n order to allow effectively managing pools from a management
application.

virConnectListAHEntropyPools

This function is used to list al l entropy pools managed by l ibvir t . The return value contains
a list of entropy pool objects that can be used i n the A P I functions manipulat ing the pools.
The legacy l ist ing functions that were implemented by other drivers and are returning a
list of names instead of an object list are not implemented by the driver as the design is
obsolete.

virEntropyPoolDefineXML

This A P I call is used to create a new persistent entropy pool according to the definition
stored in the passed X M L . According to common l ibvir t semantics this A P I is also used
to change the definition of an existing pool by defining an updated X M L definition. The
updated X M L definition has to share the same pool name and U U I D .

33

Defining of a new pool or updat ing of a existing one w i l l emit an asynchronous l ibvir t
event to notify clients.

virEntropyPoolUndefine

To remove a existing pool definition from the l ibvir t configuration the user has to invoke
the Undefine A P I . This cal l removes the internal state and all private configuration files
associated wi th the pool.

The entropy pool needs to be inactive at the time of undefining it as the support for
transient 3 pools wi l l not be implemented i n this thesis.

virEntropyPoolGetXMLDesc

This A P I call can be used to retrieve the definition of an entropy pool that was already
stored by l ibvir t . The definition is returned as a string containing the X M L document.

virEntropyPoolCreate

W h e n a entropy pool is defined it is not yet active. To activate a pool , the user has to cal l
this A P I . L ibv i r t w i l l then load the configuration and start the entropy pool.

virEntropyPoolDestroy

This function can be used to deactivate an active entropy pool . The destroy call is not
graceful by default and w i l l immediately terminate a l l operations happening on a pool .
This behavior can be controlled using the flags argument.

virEntropyPoolLookupBy*

To look up a entropy pool object according to one of the unique identifiers the user has
to invoke this A P I cal l . A n virEntropyPoolPtr is returned that can be then used to
manipulate the pool . The pools can be looked up using either the name or U U I D .

6.3.2 v i r s h c o m m a n d s

Each A P I expansion of l ibvir t requires implementing the new A P I functions into the virsh
vir tual izat ion shell. The interface of the entropy pool driver was exposed as commands start­
ing w i th entropy_pool prefix. The commands are implemented in tools/virsh-entropypool. c.

The commands implement basic management capabilities for entropy pools and allow to
test the implemented A P I without the need to implement a separate application. U n t i l other
management applications implement support for entropy pools this w i l l be the pr imary way
to configure entropy pools.

6.4 v i r t e n t r o p y d
The virtentropyd daemon represents the dis tr ibut ion layer i n this system. The daemon
is responsible for opening and managing a entropy source, opening channels to the v i r tua l
machines and supplying entropy to them and shaping the flow of entropy in the case a client
is consuming more entropy than configured.

3Temporary.

34

v i r s h # help entropy_pool
entropy pool (help keyword 'entropy_pool'):

entropy_pool-define define or update a entropy pool from an XML f i l e
entropy_pool-destroy destroy a active entropy pool
entropy_pool-dumpxml entropy pool information i n XML
entropy_pool-edit edit XML configuration for a entropy pool
entropy_pool-list l i s t entropy pools
entropy_pool-start start a (previously defined) inactive entropy pool
entropy_pool-undefine undefine a entropy pool

Figure 6.4: virsh help output for entropy pool management commands

6.4.1 C o n f i g u r a t i o n

Ini t ial configuration of the vir tentropyd daemon is really simple. The vir tentropyd daemon
is configured using command line arguments. Th is allows to start a instance that w i l l
be serving requests of a single entropy pool instance. The parameters used to configure
vir tentropyd are the l ibvir t connection U R I used for the connection and the pool name.

The main configuration of the entropy source, shaping classes and possible outputs
that is stored i n l ibvir t ' s internal structures and as a X M L file is then loaded using the
virEntropyPoolGetXML method directly from the l ibvir t daemon. This simplifies the inter­
face and avoids having a separate place to store the configuration.

The configuration loaded v ia the l ibvir t connection is then parsed into internal structures
and the daemon is ini t ia l ized. Failure to establish the in i t ia l l ibvir t connection is fatal, but
after the configuration is loaded the connection may break subsequently.

6.4.2 C o m m u n i c a t i o n w i t h l ibv ir t

The entropy dis tr ibut ion daemon is designed to work as a pure l ibvir t client. Apa r t from
loading the pool configuration X M L the l ibvir t connection is used to receive asynchronous
events about v i r tua l machine life-cycle and configuration status.

After an event regarding a guest is received vir tentropyd determines if a change of state
is needed according to the configuration of the guest. This asynchronous interface is ideal for
this type of communicat ion and the pure-client approach avoids the need to create specific
R P C protocols for virtentropyd.

6.4.3 S o u r c i n g of en tropy bits

A s a in i t ia l implementation vir tentropyd supports only character devices as backends. The
main purpose w i l l be to connect to /dev/random or /dev/hwrng and use this as the source. In
the future addit ional sources may be added according to common usecases of the dis tr ibut ion
system.

Each instance of the dis tr ibut ion daemon supports a single source of entropy. This w i l l
in i t ia l ly simplify the design and the extension to a multi-source mult iplexing architecture
may be added later if it w i l l be desired.

6.4.4 S h a p i n g of en tropy requests

To control flow rates of entropy to the host, virtentropyd uses hierarchical token bucket
algori thm. This allows to create hierarchical structures that are used to to specify the peak

35

and sustained read rates for separate guests or groups of guests.

6.4.5 D i s t r i b u t i o n to the guest

virtentropyd connects to the unix socket created by the Q E M U processes running a v i r tua l
machine and uses the E G D protocol to communicate wi th the R N G device backend.

W h e n a request for entropy is received from the guest the handler thread is woken up.
The thread looks up the origin of the request and determines the shaping classes i n the
path to the entropy source. If the l imits on the path to the source are enough to cover the
request of the guest the entropy is read from the source and wri t ten to the socket of the
guest. The cycle repeats then from the beginning.

In case the l imi t for entropy consumption was reached by a host a timer is started that
w i l l wake up the handler thread after the correct amount of time that w i l l be needed to
refill the quota for a guest.

6.5 In t eg ra t i on o f v i r t e n t r o p y d i n to l i b v i r t

The virtentropyd source code was integrated into the l ibvir t source tree and the daemon
is being buil t along the other binaries contained in the project. The source file is located in
src/entropy/entropy_daemon.c.

To bridge the interaction between virtentropyd and l ibvir t an instance of the en­
tropy pool driver was created. This instance is a stateful driver that starts and manages
virtentropyd processes when entropy pools are created or destroyed. The driver imple­
ments the A P I introduced by adding the pool support (6.3.1).

The implementation of the entropy pool driver follows the coding guidelines [8] of the
l ibvir t project and is located i n src/entropy/entropy_driver. c. The driver is buil t as a
loadable module and is automaticaly loaded into the l ibvir t daemon on startup. No other
configuration is needed to start using entropy pools.

6.6 D o c u m e n t a t i o n

The guidelines of submissions to the l ibvir t project require that documentation is added wi th
each change. The parts of this thesis that already were accepted contain documentation
in the upstream repositories. For the code that was not yet accepted for addit ion to the
upstream repository documentation was not created yet. Open source projects wi th active
comunity usualy propose design changes as a part of the submission process which would
require changing the documentation every time, thus the documentation is usually created
as the final step before merging the new feature into upstream.

36

Chapter 7

Impact analysis of the system

The entropy dis tr ibut ion system implemented for the purpose of this thesis w i l l now be
tested in regarding of improvement of entropy contents i n the L R N G kernel pool and the
usabili ty of the system.

7.1 T e s t i n g a p p r o a c h

The infrastructure and approach used to test the implementation w i l l be similar to the one
described i n section 4.4. The guest wi l l be started wi th the V i r t I O R N G device enabled
and the data w i l l be supplied from a hardware random number generator integrated into
the system-on-chip C P U of a Raspberry P i embedded system. Using a network connection
entropy w i l l be transported to the host running the vir tual izat ion.

The guest wi l l be running the rngd daemon that is used to seed the kernel entropy pool
from external sources. This daemon is included i n the rng-tools software package. The
rngd daemon w i l l be confiugured to sample the state of the entropy pool each second and
seed the pool i n case the min imum threshold is underrun.

In addit ion to the experiment w i th an idle guest, the entropy levels wi l l also be monitored
while periodically starting processes inside the guest to drain the entropy pool . A s the rngd
daemon has a internal pol l ing interval for the state of the entropy pool, it 's expected that
the entropy levels w i l l fluctuate periodically.

To test the influence of this system during the boot of a v i r tua l machine wi l l be configured
to start the rngd daemon as a service while booting and the experiment done i n section 4.10
w i l l be re-run to verify the results. The state of the entropy pool w i l l be monitored by the
entropy_boot. c program and graphed for visual representation.

7.2 R e s u l t s

The results were collected on a host system using the Q E M U - 1 . 0 . 4 hypervisor running
under management of the l ibvir t l ibrary wi th changes done for the purpose of this thesis.
The hardware used was a laptop wi th the Intel Core i7 processor.

7.2.1 L o n g t e r m per formance

The guest operating system is able to mainta in high levels of available entropy i n the pool
when the passthrough device is i n use. O n an idle system the entropy pool fills up to the
max imum level of 4096 bits wi th in two seconds and the level is maintained forever.

37

In case of active consumption of entropy i n the system for example by periodicaly starting
processes, entropy from the pool is consumed but the rngd daemon is able to steadily refill
the pool from the entropy source passed to the guest. The oscillations in graph 7.2.1 are
caused by starting 10 processes per second and the rngd daemon was checking the contents
of the entropy pool once per second.

The overal performance of the system was improved by orders of magnitude thanks to a
steady external entropy source that is designed as such and doesn't have to extract entropy
from deterministic systems.

Figure 7.1: Ent ropy pool levels wi th entropy dis tr ibut ion i n used

7.2.2 B o o t of the o p e r a t i n g sys tem

W h e n the machine is booting the service used to seed the entropy pool is started late in
the boot process. T h i s creates a dead period at the beginning when the R N G pool behaves
similarly to the non-improved approach.

After the rngd service was started but the guest was st i l l booting the entropy pool
contents were sharply changing roughly according to the 1 second pol l ing interval of the
pool filling procedure. Between individual filling steps the pool was again drained by the
amount of processes started by the ini t scripts. After the startup of the guest finished the
pool was able to quickly fill up to the maximum.

38

0 100 200 300 400 500 60S
Tine (s/10)

Figure 7.2: Boot of a guest system that uses entropy passthrough

39

Chapter 8

Conclusion

The analysis of the performance of the L R N G showed that even on physical hardware the
performance of the generator is insufficient compared to the demand of entropy i n usual
systems. Apa r t from applications needing entropy for cryptographic purposes the biggest
consumer of entropy in a L i n u x system is the kernel while seeding each newly started process
wi th in i t ia l entropy used for stack protection and other purposes.

In an v i r tua l environment the L R N G loses sources such as user interface peripherals and
accelerated v i r tua l hardware drivers sometimes avoid code paths ususally used to extract
entropy and thus degrade the performance of L R N G performance even more. V i r t u a l ma­
chines are nowadays deployed more extensively than physical hardware for cost and security
separation benefits. Appl icat ions running in such environment may suffer from inabi l i ty to
source entropy for cryptographic or simulation purposes.

As a part of this work a system was implemented purpose of which is to introduce more
entropy to a guest v i r tua l machine from the host's pool or an hardware random number
generator by passthrough and ensure fairness i n the distr ibut ion. The system consists of
a v i r tua l R N G device in the hypervisor and support in the management application to
configure it and ensure entropy distr ibut ion. The system proposed is now part ly included
into the l ibvir t v i r tual izat ion l ibrary upstream repositories.

W i t h use of the system created for purpose of this thesis, kernel entropy pool levels in
v i r tua l machines could be improved and it was proved that an integration of this system
into l ibvir t is possible. This w i l l allow to adopt the system in product ion environments as
Q E M U and l ibvir t are commonly used solutions for vi r tual izat ion and are used i n projects
as oVi r t , Open Stack and even for standalone l ibvir t users.

The choice of entropy source was summarized but the final decision has to be made by
the end user. The user has to determine needs for quali ty of the entropy source and it 's
performance and choose one that suits the needs and requirements of the application.

8.1 F u t u r e w o r k

The system developed as a part of this thesis w i l l be used as the part of the Red Hat
Enterprise Vi r tua l i za t ion (R H E V) product. The main focus w i l l be now to test the imple­
mentation and find possible problems and provide support for R H E V customers.

40

8.1.1 U p s t r e a m acceptance

Some parts of the code developed for purpose of this thesis were not yet accepted into up­
stream development repositories. The future plan is to work wi th the upstream community
to finalize the design of the components and reach acceptance into the l ibvir t project. One
of the next goals w i l l be to rise awareness that such functionality exists and is ready to use.

8.1.2 R D R A N D e m u l a t i o n s u p p o r t for Q E M U

After introduction of the RDRAND instruction[] into the x86_64 architecture by Intel, Q E M U
could implement support for emulating this instruction on processors where the instruction
is missing. The emulated RDRAND instruction would then use the same sources as Q E M U
already has for V i r t I O R N G wi th the existing infrastructure. This would then allow to use
the benefits of the dis tr ibut ion system that was implemented as a part of the thesis w i th
this functionality too.

This would allow to use this instruction in heterogeneous hardware clusters that may
contain nodes that don't support R D R A N D and would also allow migrat ion of v i r tua l ma­
chines between such hosts.

l i b v i r t would then add this functionality as a new R N G device model w i th min imal
changes to other code.

8.1.3 K e r n e l - s p a c e en tropy p o o l seeding

Current ly the L R N G uses only the approaches described i n section 2.2.4 to seed it 's contents
and provide the entropy. To seed the kernel entropy pool from a different source a separate
user-space daemon is required. For a better adaptation of properly seeded R N G s in the
operating system the kernel could use internal routines to seed the pool from available
external sources such as V i r t I O R N G or the R D R A N D instruction.

This would require adding code to the kernel that would act s imilarly to rngd in
user space.

41

Bibliography

[1] Elaine Barker and John Kelsey. Recommendation for random number generation
using deterministic random bit generators.
h t t p : / / c s r c . n i s t . g o v / p u b l i c a t i o n s / n i s t p u b s / 8 0 0 - 9 0 A / S P 8 0 0 - 9 0 A . p d f , 2012.

[2] Kees Cook. E L F : implement A T R A N D O M for glibc P R N G seeding.
h t t p s : / / g i t . k e r n e l . o r g / c g i t / l i n u x / k e r n e l / g i t / t o r v a l d s / l i n u x . g i t / c o m m i t /
?id=f06295b44c296c8fb08823a3118468ae343b60f2, 2009. l inux.git commit
f06295b44c296c8fb08823a3118468ae343b60f2.

[3] Intel corporation. Intel digi tal random number generator (drng).
h t t p : / / s o f t w a r e . i n t e l . c o m / s i t e s / d e f a u l t / f i l e s / m / d / 4 / l / d / 8 / 4 4 1 _ I n t e l _ R _
_DRNG_Sof tware_Implementa t ion_Guide_f ina l_Aug7.pdf .

[4] Randa l l J . Easter and Caro lyn French. Annex c: Approved random number
generators for hps pub 140-2, security requirements for cryptographic modules,
h t t p : / / c s r c . n i s t . g o v / p u b l i c a t i o n s / f i p s / f i p s l 4 0 - 2 / f i p s l 4 0 2 a n n e x c . p d f ,
2012.

[5] Z v i Gut terman, Benny Pinkas, and Tzachy Reinman. Analysis of the l inux random
number generator, h t t p : / / i e e e x p l o r e . i e e e . o r g / s t a m p / s t a m p . j sp?tp=&arnumber=
1624027&isnumber=34091, 2006. vol . , no., pp.15 pp.-385, 21-24.

[6] M . T i m Jones. V i r t i o : A n i / o vi r tual izat ion framework for l inux: Paravir tual ized i / o
wi th k v m and lguest.
h t t p : / / p u b l i c . d h e . i b m . c o m / s o f t w a r e / d w / l i n u x / l - v i r t i o / l - v i r t i o - p d f . p d f ,
2010.

[7] Anthony Liguor i . Re: [Qemu-devel] vir t io-rng and fd passing.
h t t p s : / / l i s t s . g n u . o r g / a r c h i v e / h t m l / q e m u - d e v e l / 2 0 1 3 - 0 3 / m s g 0 0 1 6 5 . h t m l ,
2013.

[8] L ibv i r t maintainers. Implementing a new api in l ibvir t .
h t t p : / / l i b v i r t . o r g / a p i _ e x t e n s i o n . h t m l .

[9] A . Theodore Markettos and Simon W . Moore . The frequency injection attack on
ring-oscillator-based true random number generators, h t t p :
/ / w w w . c l . c a m . a c . u k / ~ a t m 2 6 / p a p e r s / m a r k e t t o s - c h e s 2 0 0 9 - i n j e c t - t r n g . p d f .

[10] Merriam-Webster dictionary. Entropy.
h t t p : / / w w w . m e r r i a m - w e b s t e r . c o m / d i e t i o n a r y / e n t r o p y .

42

http://csrc.nist
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/
http://software.intel.com/sites/default/files/m/d/4/l/d/8/441_Intel_R_
http://csrc.nist.gov/publications/f
http://ieeexplore.ieee.org/stamp/stamp.j
http://public.dhe.ibm.com/software/dw/linux/l-virtio/l-virtio-pdf.pdf
https://lists.gnu.org/archive/html/qemu-devel/2013-03/msg00165.html
http://libvirt.org/api_extension.html
http://www.cl.cam.ac.uk/~atm26/papers/markettos-ches2009-inject-trng.pdf
http://www.merriam-webster.com/diet

[11] Andrew R u k h i n , Juan Soto, James Nechváta l , Miles Smid , Elaine Barker, Stefan
Leigh, M a r k Levenson, M a r k Vangel, D a v i d Banks, A l a n Heckert, James Dray, and
San V o . A statistical test suite for random and pseudorandom number generators for
cryptographic applications.
h t t p : / / c s r c . n i s t . g o v / g r o u p s / S T / t o o l k i t / r n g / d o c u m e n t s / S P 8 0 0 - 2 2 r e v l a . p d f ,
2010. Special Publ ica t ion 800-22.

[12] Claude E . Shannon. A mathematical theory of communication.
h t t p : / / w w w . a l c a t e l - l u c e n t . c o m / b s t j / v o l 2 7 - 1 9 4 8 / a r t i c l e s / b s t j 2 7 - 3 - 3 7 9 . p d f .

[13] Simtec Electronics. The entropykey: The technical stuff,
h t t p : / / w w w . e n t r o p y k e y . c o . u k / t e c h / .

[14] The P A X Team. Address space layout randomization,
h t t p : / / p a x . g r s e c u r i t y . n e t / d o c s / a s l r . t x t .

[15] The virt-manager community. V i r t u a l machine manager,
h t t p : / / v i r t - m a n a g e r . e t . r e d h a t . c o m / i n d e x . h t m l , 2012.

[16] F lor ian Weimer. [security] [dsa 1571-1] new openssl packages fix predictable random
number generator.
h t t p : / / l i s t s . d e b i a n . o r g / d e b i a n - s e c u r i t y - a n n o u n c e / 2 0 0 8 / m s g 0 0 1 5 2 . h t m l .

[17] E r i c W . Weisstein. Linear congruence method - from mathwor ld-a wolfram web
resource, h t t p : / / m a t h w o r l d . w o l f r a m . c o m / L i n e a r C o n g r u e n c e M e t h o d . h t m l .

43

http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22revla.pdf
http://www.alcatel-lucent.com/bstj/vol27-1948/articles/bstj27-3-379.pdf
http://www.entropykey.co.uk/tech/
http://pax.grsecurity.net/docs/aslr.txt
http://virt-manager.et.redhat.com/index.html
http://lists.debian.org/debian-security-announce/2008/msg00152.html
http://mathworld.wolfram.com/LinearCongruenceMethod.html

List of Figures

2.1 Entropykey: a hardware random number generator U S B device. [13] 7
2.2 Tampering of oscillator drift based R N G s wi th power supply signal injection.

[9] 7
2.3 L inux kernel random number generator block diagram. [9] 8

3.1 virsh vir tual izat ion shell 12
3.2 virt-manager management interface. [15] 13
3.3 V i r t u a l B o x management interface 14

4.1 Dra in ing of the entropy pool when starting processes 18
4.2 Synthetic test - Performance of the R N G i n host systems - guest data included

for reference 19
4.3 Synthetic test - Performance of the R N G i n guest systems 19
4.4 Real world scenario - vir tual ized server system 20
4.5 Long term usage of a real world system - desktop computer 20
4.6 Q E M U - Influence of disk backend on R N G performance and disk I / O per­

formance 21
4.7 xen - Influence of disk backend on R N G performance and disk I / O performance. 22
4.8 Entropy level variations during early booting phases 23

6.1 L ibv i r t ' random' R N G backend configuration 31
6.2 L ibv i r t E G D backend configuration 31
6.3 Excerpt from guest configuration X M L . R N G device using the pool backend

wi th the default pool belonging to the hostclassl class 32
6.4 virsh help output for entropy pool management commands 35

7.1 Entropy pool levels w i th entropy dis tr ibut ion i n used 38
7.2 Boot of a guest system that uses entropy passthrough 39

44

Appendix A

Contents of the attached C D

Directories:

• docs - this report including source files

• data - data sets used to create graphs in this thesis including scripts

• libvirt - l ibvir t source git repository including code done for this thesis

• tools - other source files

• literature - copies of publ ic ly available literature

45

Appendix B

Glossary

• A P I - aplication program interface

• egd - entropy gathering daemon

• E L F - executable and linkable format, a format of binary executable files

• guest - v i r tua l machine running on a vir tual izat ion host

• host - Host computer, physical device that runs vir tual izat ion

• hyper visor - software that creates

• K V M - kernel based v i r tua l machines

• libvirt - C l ibrary used as vir tual izat ion management abstraction

• L R N G - The L i n u x kernel Random Number Generator

• P R N G - Pseudorandom Number Generator

• R D R A N D - C P U instruction to request entropy

• rngd - software used to fill the L i n u x entropy pool from external source

• R N G - Random Number Generator

• T R N G - True Random Number Generator

• U U I D - universally unique identifier

• V P N - v i r tua l private network

• X P a t h - language used to access and modify X M L documents using the object model

46

