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A B S T R A C T 

The high-throughputs sequence technologies produce a massive amount of data, that can reveal new 
genes, identify splice variants, and quantify gene expression genome-wide. However, the volume and 
the complexity of data from R N A - s e q experiments necessitate a scalable, and mathematical analysis 
based on a robust statistical model. Therefore, it is challenging to design integrated workflow, that 
incorporates the various analysis procedures. Particularly, the comparative transcriptome analysis is 
complicated due to several sources of measurement variability and poses numerous statistical 
challenges. In this research, we performed an integrated transcriptional profiling pipeline, which 
generates novel reproducible codes to obtain biologically interpretable results. Starting with the 
annotation of RNA-seq data and quality assessment, we provided a set of codes to serve the quality 
assessment visualization needed for establishing the R N A - S e q data analysis experiment. Additionally, 
we performed comprehensive differential gene expression analysis, presenting descriptive methods to 
interpret the R N A - S e q data. For implementing alternative splicing and differential exons usage analysis, 
we improved the performance of the Bioconductor package D E X S e q by defining the open reading 
frame of the exonic regions, which are differentially used between biological conditions due to the 
alternative splicing of the transcripts. Furthermore, we present a new methodology to analyze the 
differentially expressed long non-coding R N A , by finding the functional correlation of the long non-
coding R N A with neighboring differential expressed protein coding genes. Thus, we obtain a clearer 
view of the regulation mechanism, and give a hypothesis about the role of long non-coding R N A in 
gene expression regulation. 

K E Y W O R D S : 

R N A - S e q , Differential Gene Expression (DGE) , Alternative splicing, Differential Exon Usage 
(DEU) , long non-coding R N A (IncRNA). 

A B S T R A K T 

Vysoce výkonné sekvenční technologie produkují obrovské množství dat, která mohou odhalit nové 
geny, identifikovat splice varianty a kvantifikovat genovou expresi v celém genomu. Objem a složitost 
dat z R N A - s e q experimentů vyžadují škálovatelné metody matemat ické analýzy založené na 
robustníchstatistických modelech. Je náročné navrhnout integrované pracovní postupy, které zahrnují 
různé postupy analýzy. Konkrétně jsou to srovnávací testy transkriptů, které jsou komplikovány 
několika zdroji variability měření a představují řadu statistických problémů. V tomto výzkumu byla 
sestavena integrovaná transkripční profilová pipeline k produkci nových reprodukovatelných kódů pro 
získání biologicky interpretovovatelných výsledků. Počínaje anotací údajů R N A - s e q a hodnocení 
kvality je navržen soubor kódů, který slouží pro vizualizaci hodnocení kvality, potřebné pro zajištění 
R N A - S e q experimentu s analýzou dat. Dále je provedena komplexní diferenciální analýza genových 
expresí, která poskytuje popisné metody pro testované R N A - S e q data. Pro implementaci analýzy 
alternativního sestřihu a diferenciálních exonů jsme zlepšili výkon D E X S e q definováním otevřeného 
čtecího rámce exonového regionu, který se používá alternativně. Dále je popsána nová metodologie pro 
analýzu diferenciálně exprimované dlouhé nekódující R N A nalezením funkční korelace této R N A se 
sousedícími diferenciálně expr imovanými geny kódujícími proteiny. Takto je získán jasnější pohled na 
regulační mechanismus a poskytnuta hypotéza o úloze dlouhé nekódující R N A v regulaci genové 
exprese. 

K L Í Č O V Á S L O V A 

R N A - S e q , diferenciální genová exprese (DGE) , alternativní splicing, diferenciální použití exonů 
(DEU) , dlouhá nekódující R N A (IncRNA). 
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1. INTRODUCTION TO RNA SEQUENCING 
R N A - s e q can be identify as an assembly of experimental and computational methods to determine 

the identity and abundance of R N A sequences in biological samples. The experimental methods involve 
isolation of R N A from cell , tissue, or whole-animal samples, preparation of libraries that represent R N A 
species in the samples, actual chemical sequencing of the library, and subsequent bioinformatic data 
analysis. A critical distinction of R N A - s e q from earlier methods, such as microarrays, is the incredibly 
high throughput of current R N A - s e q platforms, the sensitivity afforded by newer technologies, and the 
ability to discover novel transcripts, gene models, and small noncoding R N A species. 

R N A - s e q methods are derived from generational changes in sequencing technology. First-generation 
high-throughput sequencing typically refers to Sanger sequencing. Wi th capillary electrophoresis being 
utilized to deal with nucleic acid fragment lengths. Second-generation sequencing, also known as next-
generation sequencing (NGS) , refers to methods using similar sequencing by synthesis chemistry of 
individual nucleotides, but performed in a massively parallel format, so that the number of sequencing 
reactions in a single run can be in millions. A typical N G S run could consist of 6000M sequencing 
reactions of 100 nucleotides yielding 600 bil l ion bases of sequence information. Third-generation 
sequencing refers to methods that are also massively parallel and use sequence by synthesis chemistry 
but have as templates individual molecules of D N A or R N A . Third-generation sequencing platforms 
have fewer sequencing reactions per run, in the order of a few millions, but the length of sequence per 
reaction can be larger and can easily run into the 1500 nucleotide range [1]. 

Data obtained from an R N A - s e q experiment can be substantially informative, ranging from the 
identification de novo protein coding transcripts in embryonic stem cells to characterization of gene 
regulation and alternative splicing. Questions that can be answered using R N A - s e q data include: What 
are the differences in the levels of gene expression in normal and cancer cells? What happens to the 
gene expression levels in cell lines missing a tumor suppressor gene? Which genes are up-regulated 
during the development of brain? How is gene splicing changed during oxidative stress? What novel 
m i R N A s can we discover in a human embryonic stem-cell sample? 

New data derived from R N A - s e q platforms showed a vast diversity for gene structure, identified 
novel unknown genes, and shed light on noncoding transcripts of both small and long lengths [2]. 

2. THE THEORETICAL REVIEW 
2.1 I S O L A T I O N O F RNAS 

R N A s are typically isolated from freshly dissected or frozen cells or tissue samples using 
commercially available kits. High-throughput R N A isolation systems relies mainly on R N A attached 
to magnetic particles which facilitate their washing and isolation. To prevent degradation of R N A , 
samples can be immersed in R N A storage reagents, or processed partially and stored as a phenolic 
emulsion. A t this stage, R N A samples can also be enriched for size-specific classes such as small R N A s , 
using column systems (miRVana; Ambion). Alternatively, samples can be isolated initially as total 
R N A and then size selected by polyacrylamide gel electrophoresis. [3] 

In almost all cases of total R N A isolation, genomic D N A w i l l contaminate the sample. This is 
unavoidable, and even i f the contamination is minor, the sensitivity and throughput of R N A - s e q w i l l 
eventually capture these contaminants. Therefore, it is common practice that total RNA-isolated 
samples are treated with DNase, to digest contaminating D N A prior to library preparation. Most DNase 
kits provide reagents for inactivating DNase once the contaminating D N A has been removed. The 
amount of total R N A required for R N A - s e q library preparation varies. Standard library protocols 
require 0.1-10 ug o f total R N A , and high-sensitivity protocols can produce libraries from as little as 
lOpg of R N A . It is becoming common that R N A from single cells is isolated and specific kits for these 
applications are becoming available. [4] 

2.2 Q U A L I T Y C O N T R O L O F RNA 

It is required that R N A s are quality checked for degradation, purity, and quantity prior to library 
preparation. Nanodrop and similar devices measure the fluorescent absorbance of nucleic acid samples 
typically at 260 and 280nm. A s the device measures absorbance of the sample, it is not able to 
distinguish between R N A and D N A , and therefore cannot indicate whether the R N A sample is 
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contaminated with D N A . Moreover, degraded R N A w i l l give similar readings as intact R N A , and 
therefore we cannot know about the quality of the sample. The 260/280 absorbance ratio w i l l , however, 
provide some information about contamination by proteins. [5] 

Agilent Bioanalyzer is a microfluidics capillary electrophoresis-based system to measure nucleic 
acids. It offers advantages of sensitivity and accuracy for performing R N A separation, detection, and 
quantitation, coupled with a rapid, automated system. The electrophoresis being used for sizing nucleic 
acid samples. When size standards are run, the sizing and quantitation of R N A s in the sample provides 
critical information not only on the concentration, but also on the quality of nucleic acid. Degraded 
R N A s w i l l appear as a smear at low-molecular weights, whereas intact total R N A w i l l show sharp 28S 
and 18S peaks. The Bioanalyzer system contains a microchip that is loaded with size controls and space 
for up to 12 samples at a time. Samples are mixed with a polymer and a fluorescent dye, which are then 
loaded and measured through capillary electrophoretic movement. The integrated data analysis pipeline 
on the instrument w i l l also render the electrophoretic data into a gel-like picture for users more 
accustomed to traditional gel electrophoresis. The R N A profile of each sample is automatically 
displayed as individual electropherograms. [6] 

2.3 L I B R A R Y P R E P A R A T I O N 

Before to sequencing, the R N A s in a sample are converted into a c D N A library, representing all the 
R N A molecules in the sample. This step is performed because in practice, R N A molecules are not 
directly sequenced, instead D N A s are sequenced due to their better chemical stability, and are also more 
amenable to the sequencing chemistry and protocols of each sequencing platform. Therefore, the library 
preparation has two purposes, the first is to adequately represent the R N A s in the sample and secondly 
to convert R N A into D N A . The major steps in library preparation can be found in J . Pease and R. 
Sooknanan research [7]. 

2.4 R N A - S E Q P L A T F O R M S 

2.4.1 I L L U M I N A 

After libraries are made, ds c D N A is passed through a flow cell which w i l l hybridize the individual 
molecules based on complementarity with adaptor sequences. Hybridized sequences held at both ends 
of the adaptor by the flow cell w i l l be amplified as a bridge. These newly generated sequences w i l l 
hybridize to the flow cell close by and after many cycles a region of the flow cell w i l l contain many 
copies of the original ds c D N A . This entire process is known as cluster generation. After the clusters 
are generated, and one strand removed from the ds c D N A , reagents are passed through the flow cell to 
execute sequencing by synthesis. Sequencing by synthesis describes a reaction where in each synthesis 
round, the addition of a single nucleotide, which can be A , C , G , or T, as determined by a fluorescent 
signal, is imaged, so that the location and added nucleotide can be determined, stored, and analyzed. 
Reconstruction of the sequence of additions in a specific location on the flow cell, which corresponds 
to a generated ds c D N A cluster, gives the precise nucleotide sequence for a piece of ds c D N A [9]. 

2.4.2 SOLID 

S O L I D stands for sequencing by oligonucleotide ligation and detection and is a platform. The 
sequencing chemistry is via ligation rather than synthesis. In the S O L I D platform, a library of D N A 
fragments (originally derived from R N A molecules) is attached to magnetic beads at one molecule per 
bead. The D N A on each bead is then amplified in an emulsion so that amplified products remain with 
the bead. The resulting amplified products are then covalently bound to a glass slide. Using several 
primers that hybridize to a universal primer, di-base probes with fluorescent labels are competitively 
ligated to the primer. If the bases in the first and second positions of the di-base probe are 
complementary to the sequence, then the ligation reaction w i l l occur and the label w i l l provide a signal. 
Primers are reset five times by a single nucleotide, so at the end of the cycle, at least four nucleotides 
would have been interrogated twice due to the dinucleotide probes and the fifth nucleotide at least once. 
The ligation steps continue until the sequence is ready. The unique ligation chemistry allows for two 
checks of a nucleotide position and thus provides greater sequencing accuracy of up to 99.99%. While 
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this may not be necessary for applications such as differential expression, it is critical for detecting 
single-nucleotide polymorphisms (SNPs). [8] 

2.4.3 R O C H E 454 

This platform is also based on adaptor-ligated ds D N A library sequencing by synthesis chemistry, ds 
D N A is fixed onto beads and amplified in a water-oil emulsion. The beads are then placed into picotiter 
plates where sequencing reactions take place. The massive numbers of wells in picotiter plates provide 
the massively parallel layout needed for N G S . 

Free nucleotides and unreacted A T P are degraded by a PYRase after each addition. These steps are 
repeated until a predetermined number of reactions have been reached. Recording the light generation 
and wel l location after each nucleotide addition allows for reconstruction of the identity of the 
nucleotide and the sequence for each well . The advantage of this sequencing chemistry is that it permits 
for longer reads when compared to other platforms. Read lengths of up to 1000 bases can be achieved 
on this platform. Roche provides the current G S F L X + system as wel l as a smaller G S junior system. 
Wi th up to 1 mil l ion reads per run, and an average of 700nt per read, 700Mb of sequence data can be 
achieved in less than 1 day of run time. [9]. 

2.4.4 ION T O R R E N T 

This newer platform utilizes the adaptor-ligated library followed by sequencing-by-synthesis 
chemistry of other platforms. However, it has a unique feature, instead of detecting fluorescent signals 
or photons, it detects changes in the p H of the solution in a wel l when a nucleotide is added and protons 
are produced. These changes are miniscule; however, the Ion Torrent device utilizes technologies 
developed in the semiconductor industry to achieve detectors of sufficient sensitivity and scales that are 
useful for nucleic acid sequencing. One limitation that has been pointed out is that homo-polymers may 
be difficult to read as there is no way to stop the addition of only one nucleotide i f the same nucleotide 
is next in the sequence. Ion Torrent produces overall fewer reads than the others in a single run. For 
example, 6 0 - 8 0 M reads at 200 bases per read are possible on the proton instrument in a run producing 
10Gb of data. However, the run time is only 2-4h instead of 1-2 weeks on other platforms. The machine 
has a small footprint, can be powered down when not in use and easily brought back to use, and requires 
minimal maintenance. Wi th the convenience, size, and speed, it has found sizable applications in 
microbe sequencing, environmental genomics, and clinical applications where time is critical. This 
platform is also very popular for amplicon sequencing and use of primer panels for amplicon sequencing 
developed by specific user communities. Its low-cost and small footprint have also made it attractive to 
laboratories wishing to have their own personal sequencer [10]. 

2.4.5 PACIFIC BIOSCIENCES 

This is a platform representative of the third generation. The chemistry is still similar to second 
generation sequencing (SGS) as it is a sequencing-by-synthesis system; however, a major difference is 
that it requires only a single molecule, and reads the added nucleotides in real time. Single-molecule, 
real-time ( S M R T ) sequencing developed by Pacific Biosciences offers longer read lengths than the 
SGS technologies, making it well-suited for unsolved problems in genome, transcriptome, and 
epigenetics research, particularly assembly and determination of complex genomic regions, gene 
isoform detection, and methylation detection. [11] 

PacBio sequencing captures sequence information during the replication process of the target D N A 
molecule. The template, called a S M R T b e l l , is a closed, single-stranded circular D N A that is created 
by ligating hairpin adaptors to both ends of a target double-stranded D N A (dsDNA) molecule[12]. 
When a sample of S M R T b e l l is loaded to a chip called a S M R T cell, a S M R T b e l l diffuses into a 
sequencing unit called a zero-mode waveguide ( Z M W ) [13]. 

S M R T uses zero-mode waveguides ( Z M W s ) as the basis of their technology. Z M W s are space-
restricted chambers that allow guidance of light energy and reagents in the smallest available volume 
for light detection. In each Z M W , a single polymerase is immobilized at the bottom, which can bind to 
either hairpin adaptor of the S M R T b e l l , so a single D N A molecule is sequenced in real time, then start 
the replication. Four fluorescent labeled nucleotides, which generate distinct emission spectrums, are 
added to the S M R T cell and can be detected as a nucleotide chain is being synthesized [14]. 
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The replication processes in all Z M W s o f a S M R T cell are recorded by a "movie" o f light pulses, 
and the pulses corresponding to each Z M W can be interpreted to be a sequence of bases (called a 
continuous long read, C L R ) . Because the S M R T b e l l forms a closed circle, after the polymerase 
replicates one strand of the target d s D N A , it can continue incorporating bases of the adapter and then 
the other strand. If the lifetime of the polymerase is long enough, both strands can be sequenced multiple 
times (called "passes") in a single C L R . [15] 

2.4.6 N A N O P O R E T E C H N O L O G I E S 

Despite the impressive gains in throughput and low per base cost of current sequencing, efforts 
continue to improve sequencing technologies. While current nanopore technologies are in development, 
they so far have had minimal impact on R N A - s e q studies. However, their impact in the future may be 
greater. Nanopore sequencing is a third-generation single-molecule technique where a single enzyme is 
used to separate a D N A strand and guides it through a protein pore embedded in a membrane. Ions 
simultaneously pass through the pore to generate an electric current that is measured. The current is 
sensitive to specific nucleotides passing through the pore, thus A , C , G , or T disturb the current flow 
differently and produce a signal that is measured in the pore. The advantage of this system is its 
simplicity leading to small-platform device size (as U S B stick-sized device), but the system is 
technically challenging due to the need to measure very small changes in current at single-molecule 
scale. The efforts to commercialize this technology are led by Oxford Nanopore, however Illumina also 
has nanopore sequencing under development. Oxford Nanopore technologies are slated to measure 
directly R N A , D N A , or protein as it passes through a manufactured pore. Although this technology is 
not widely available at a commercial level, it shows a lot of promise. [16] 

2.5 R N A - S E Q APPLICATIONS 

The purposes behind RNA-seq are to identify the sequence, structure, and abundance of R N A 
molecules in a particular sample. Identifying the structure means the gene structure (i.e., location of 
promoter, intron-exon junctions, 5' and 3' untranslated regions (UTRs) , and po lyA site). Secondary 
structure provides the locations of complementary nucleotide that forming stem-loop, or hairpin R N A 
[17]. Tertiary structure provides the three-dimensional shape of the molecule. However, identifying 
abundance means, the numerical amounts of each particular sequence both as absolute and normalized 
values. Sequence can be used to identify known protein-coding genes, novel genes, or long noncoding 
R N A s . Once sequence has been determined, folding into secondary structures can reveal the class of 
molecules such as t R N A or m i R N A . Comparison of the abundance of reads for each R N A species can 
be made between samples derived from different developmental stages, body parts, or across closely 
related species. [2] 

In the following is presented the common applications of using R N A - s e q data. 

2.5.1 P R O T E I N C O D I N G G E N E S T R U C T U R E 

Earlier transcriptomic methods such as microarray expression analysis, cloning and Sanger 
sequencing of c D N A libraries, and serial analysis of gene expression ( S A G E ) , as wel l as computational 
prediction from genomic sequences, have already provides gene structures. These structure annotations 
have been archived in databases and provide an easily accessible source for comparing raw R N A - s e q 
data with known protein coding genes. The first important step is to map the R N A - s e q reads to known 
protein-coding genes. 

Furthermore, RNA-seq data analysis can be used for confirming exon-intron boundaries, as wel l as 
the existence of completely novel exons. Therefore, using R N A - s e q can define what is called a gene 
model, which is a collection of exons and introns that make up a gene. Since R N A - s e q is quantitative, 
it can also specify within a sample the alternative exons usage: for example, when a specific exon is 
used five times more often than another one. The 5' transcription start site (TSS) can be identified 
precisely using R N A - s e q data. Similarly, at the 3' end o f the molecule, the 3 ' U T R can be identified as 
well , such that the site of polyadenylation can be observed in the R N A - s e q reads. Alternative 
polyadenylation sites can also be observed in the same way as alternative TSS as wel l as their respective 
abundances. A s RNA-seq is massively parallel, sufficient reads w i l l permit these gene structures and 
their alternatives to be mapped for presumably every protein-coding gene in a genome. Thus, R N A - s e q 
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can provide the 5'TSS, 5 'UTR, exon-intron boundaries, 3 'UTR, polyadenylation site, and alternative 
usage of any of these i f applicable [18]. A simplified scheme of gene structure illustrated in Figure 2.1. 
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Figure 2.1 Schematic gene structure and simplified transcription, splicing and translation process [19] 

2.5.2 N O V E L P R O T E I N - C O D I N G G E N E S 

Previously, the annotations of protein-coding genes relied on computational predictions based on 
genomic sequences. This was fine as long as genome data were available, the gene model elements fit 
common expected size and distance parameters, and there were transcriptomic data in the form of 
expressed sequence tag (EST) data sets or orthology data available to verify the predictions. However, 
it was easy to see that these criteria fit wel l only a very limited number of organisms under scientific 
investigation. Therefore, RNA-seq , with its high throughput, could verify many of the previous 
predictions, but also in cases where no prediction existed, it could identify novel protein-coding genes. 
It was especially useful in cases where no genome sequence was available, so a transcriptome of an 
organism could be built entirely from R N A - s e q data. A recent example of this application has been in 
the sequencing of the giant panda genome [20]. 

2.5.3 Q U A N T I F Y I N G A N D C O M P A R I N G G E N E EXPRESSION 

Once the sequence and gene structure have been elucidated, it is logical that abundance values can be 
attributed to each gene as wel l as various features in their structures. A s many studies would like to 
compare the abundance of R N A transcripts from healthy versus sick, nontreated versus treated, or time 
point 0 versus 1, it is logical that comparative studies are made. The range and types of comparative 
studies are virtually unlimited. In one of the earliest R N A - s e q studies, transcripts from adult mouse 
brain, liver, and skeletal muscle were sequenced and compared [18]. 

More than 4 0 M single-end reads at 25nt were sequenced on an Illumina platform and the authors 
found novel TSSs, alternative exons, and alternative 3 'UTRs. The study demonstrated the shallowness 
of previous annotations of gene structure and thus highlighted how the breadth and depth of annotations 
provided by RNA-seq technology could change our view of gene structure. These results thus paved 
the way for subsequent R N A - s e q studies. Another R N A - s e q study two years later, followed the 
expression of R N A transcripts from mouse skeletal muscle cells during differentiation after 60 h, 5 
days, or 7 days [21]. The technology improved so that more than 4 3 0 M paired-end reads at 75nt were 
used to identify greater than 3700 previously unannotated transcripts. TSSs were also shown to change 
in more than 300 genes during differentiation. It is also possible to study R N A transcripts in whole 
animals. The total R N A from whole animals could be isolated and subjected to RNA-seq , in recent 
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study Over 3 0 M reads from water- or ethanol-treated animals were obtained [22]. Ethanol exposure 
could be seen to increase R N A transcripts of detoxification enzyme genes and decrease transcripts 
involved in endoplasmic reticulum stress. 

2.5.4 EXPRESSION Q U A N T I T A T I V E T R A I T L O C I ( E Q T L ) 

R N A - s e q studies have become so pervasive that they have been used to study quantitative traits, 
especially in the context of genome variation One of the most prominent directions One of the most 
prominent directions One of the most prominent directions has been the extensive set of studies on 
expression quantitative trait loci (eQTLs), namely, the discovery of genetic variants that explain 
variation in gene expression. Such studies have offered promise not just for the characterization of 
functional sequence variation but also for the understanding of basic processes of gene regulation and 
interpretation of genome-wide association studies. A n e Q T L is a locus that explains a fraction of the 
genetic variance of a gene expression phenotype [23]. 

2.5.5 S I N G L E - C E L L R N A - S E Q 

R N A - s e q is a variation of R N A - s e q where the source of total R N A for sequencing comes from a 
single cell. Typically, total R N A is not isolated, but rather cells are individually harvested from their 
source and reverse-transcribed. Methodology for library preparation is similar to R N A - s e q : R N A is 
reverse-transcribed to c D N A , adaptors are ligated, barcodes for each cell are added, and ds c D N A 
amplified. Due to the low complexity of R N A species, single isolated cells or individual libraries are 
sometimes pooled prior to sequencing. In one example of this approach, a single mouse blastomere was 
collected and RNA-sequenced from its contents. The authors found 5000 genes expressed and >1700 
novel alternative splice junctions, indicating both the robustness of the approach as wel l as the 
complexity of splicing in a single cell [24]. In another example of the approach, single cells from the 
nematode C. elegans at an early multicell developmental stage were isolated and libraries prepared from 
total R N A s . New transcription of genes could be monitored at each individual stage of development via 
profiling the transcripts of individual cells [25]. 

2.5.6 FUSION G E N E S 

A s read numbers and lengths increased, and paired-end sequencing became available, the ability to 
identify rare, but potentially important transcripts increased. Such is the case with fusion genes, which 
are transcripts generated from the fusion of two previously separate gene structures. Fusion partners 
can contribute 5 'UTRs, coding regions, and 3'polyadenylation signals. Conditions for this event to occur 
happen during genomic rearrangement found in cancer tissues and cells. Cytogenetic derangements 
such as genomic amplifications, translocations, and deletions can bring together two independent gene 
structures. For example, 24 novel and three known fusion genes were detected in three breast cancer 
cell lines using paired-end sequencing of libraries sized 100 or 200nt in length [26]. One of these fusion 
genes, VAPB-IKZF3, was found to be functional in cell growth assays[27]. Recent R N A - s e q studies 
have found fusion genes to be present in normal tissue, suggesting that fusion gene events might have 
normal biological function as wel l [28]. 

2.5.7 G E N E VARIATIONS 

A s the amount of RNA-seq data accumulates, it is possible to mine the data for gene variation. Most ly 
bioinformatic approaches by downloading publicly available data have been used to scan SNPs in 
transcriptomic data [29]. In this study, 89% of SNPs derived from R N A - s e q data at a coverage of lOx 
were found to be true variants. S N P detection can also be obtained directly from original R N A - s e q data. 
A group performed R N A - s e q on muscle from Longissimus thoraci (Limousine cattle) muscle m R N A s 
[30]. They were able to identify >8000 high-quality SNPs from >30M paired-end reads. A subset of 
these SNPs was used to genotype nine major cattle breeds used in France, demonstrating the utility of 
this approach. 

2.5.8 L O N G N O N C O D I N G RNAS 

Another application of R N A - s e q has been to find transcripts that are present, but do not code genes. 
Long noncoding R N A s (IncRNAs) were known before R N A - s e q technologies were available. 
However, the extent of their existence and pervasiveness was not fully appreciated until R N A - s e q 
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methods were able to uncover the many different species of IncRNAs in l iving cells. IncRNAs are 
generally described as transcripts that fall outside of known noncoding R N A s such as t R N A s , ribosomal 
R N A s , and small R N A s , do not overlap a protein-coding exon, and are >200nt in length [31]. IncRNAs 
can control transcription as enhancers (eRNA) epigenetically by binding and altering the function of 
histone proteins, as competitors to RNA-processing machinery [competitive endogenous R N A 
(ceRNA)], or as noise generated randomly. It can now be appreciated that IncRNAs may play a role in 
disease such as Alzheimer's disease [32]. 

2.5.9 S M A L L N O N C O D I N G RNAS (MIRNA-SEQ) 

R N A - s e q can be used to identify the sequence, structure, function, and abundance of small noncoding 
R N A s . The most well-known example of these being m i R N A s (miRNA-seq), but other small noncoding 
R N A s such as small nucleolar R N A s (snRNA), m i c r o R N A offset R N A s (moRNAs) , and endogenous 
silencing R N A s (endo-siRNAs) can also be studied using miRNA-seq approaches. The methods used 
for miRNA-seq are similar to RNA-seq . The starting materials can be total R N A or size-
selected/fractionated small R N A s . Most of the common sequencing platforms w i l l sequence small 
R N A s once converted into ds c D N A s , such that much of the difference in the experimental protocols 
occur before sequencing. [33]. There are many applications for characterizing these molecules not only 
in the studies of basic biochemistry, physiology, genetics, and evolutionary biology, but also in 
medicine as a diagnostic tool for cancer or in aging processes. A recent study of the 
nematode Panagrellus redivivus has presented the identification of >200 novel m i R N A s and their 
precursor hairpin sequences while also providing gene structure models, annotation of the protein-
coding genes, and the genomic sequences in a single publication [34]. 

2.5.10 A M P L I F I C A T I O N P R O D U C T S E Q U E N C I N G (AMPLI-SEQ) 

It is sometimes the case that whole transcriptomes do not need to be sequenced, but only a small 
number of genes. While one can always obtain a subset of genes of interest from a whole transcriptome 
sequence analysis, the effort, time, and resources required may be more than necessary. B y using a 
panel of P C R primers consisting of 10-200 pairs, one can perform reverse transcription-PCR (RT-PCR) 
and instead of cloning each individual product and isolating plasmid D N A for Sanger sequencing, one 
can sequence the pool of P C R products to obtain the sequence. This has practical applications where 
the number of samples to be interrogated is large, and the number of genes is small [35]. 

2.6 O S T E O B L A S T C E L L S D I F F E R E N T I A T I O N 

Skeletal component cells including osteoblasts, chondrocytes, adipocytes, myoblasts, tendon cells, 
and fibroblasts, are derived from mesenchymal stem cells [36]. while Osteoclast is a hematopoietic cell 
derived from C F U - G M (colony forming unit- granulocyte, monocyte) and branches from the monocyte-
macrophage lineage early during the differentiation process [37]. 

Bone is constructed through 3 processes: osteogenesis, modeling, and remodeling. It is constantly 
being remodeled in a dynamic process where osteoblasts are responsible for bone formation (or 
ossification), and osteoclasts for its resorption. Osteoblast and osteoclast work in tight cooperation, and 
together constituting a "bone multicellular unit" [38]. Fine tuning of this system is crucial for the 
development of bones, for repairing fractures, and for the correct maintenance of the skeleton 
throughout life. 

Osteoblast differentiation can be characterized in three stages [40]: 
a) C e l l proliferation 
b) Matr ix maturation 
c) Matr ix mineralization 

In Stage 1 the cells continue to proliferate and express fibronectin, collagen, T G F b receptor 1, and 
osteopontin.In Stage 2 they exit the cell cycle and start differentiating, while maturating the extracellular 
matrix with A l p and collagen.In Stage 3 matrix mineralization occurs when the organic scaffold is 
enriched with osteocalcin, which promotes deposition of mineral substance. Osteocalcin is in fact the 
second most abundant protein in bone after collagen [41]. A t this stage the osteoblast assumes its 
characteristic cuboidal shape [42]. 
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2.7 A L T E R N A T I V E SPILCING 

Genetic information of an organism is stored in the genes, this information is transcribed from D N A 
into a messenger R N A ( m R N A ) template by a process called transcription. However, in eukaryotes, 
before the m R N A can be translated into proteins, non-coding portions of the sequence, called introns, 
must be removed and protein-coding parts, called exons, joined by R N A splicing to produce a mature 
m R N A . Recent estimates indicate that the expression of nearly 95% of human multi-exon genes 
involves alternative splicing. [43] 

Alternative splicing of precursor m R N A is an essential mechanism for gene regulation and for 
generating proteomic diversity, it produces different protein products that function in diverse cellular 
processes, including cell growth, differentiation, and organism development. Furthermore, it has a 
largely hidden function in quantitative gene control, by targeting R N A s for nonsense-mediated decay. 
In the Figure 2.2 illustrate the general concept of alternative splicing. 

Regulation of alternative splicing is a complicated process in which numerous interacting components 
are involved. Additional molecular features, such as chromatin structure, R N A structure and alternative 
transcription initiation or alternative transcription termination, collaborate with these basic components 
to generate the protein diversity due to alternative splicing. 

Splicing is carried out by the spliceosome, a massive structure in which five small nuclear 
ribonucleoprotein particles (snRNPs) ( U l , U 2 , U4 , U5 and U6), that are associated with a large number 
of auxiliary proteins cooperate to accurately recognize the splice sites and catalyze the steps of the 
splicing reaction. The auxiliary elements known as Exon Splicing Enhancers (ESEs), and Intron 
Splicing Enhancers (ISEs), in addition to Exon Splicing Silencers (ESSs), and Intron Splicing Silencers 
(ISSs) [44]. These auxiliary elements are involved in defining both constitutive and alternative exons. 

Transcription J Genomic DNA 

Exon 1 Exon 2 Exon 3 Exon 4 Exon 5 

14 ^ — ^ 

RNA Splicing 

Deregulated in disease 

Exon 1 Exon 2 Exon 3 Exon 4 Exon 5 

Pre-messenger RNA 

Genome 

Unprocessed 
Transcriptome 

Exon 1 Exon 2 Exon 4 Exon 5 

) ) \ ~J Transcriptome 

Translation 
messenger RNA 

Proteome 

Function A Function B 

New protein structure and function 
-Affectssignaling pathways 
- Modifies drug efficacy 

Figure 2.2 Genetic scheme of general concept of R N A transcription, splicing and translation[45]. 

2.8 Q U A L I T Y C O N T R O L A N D P R E P R O C E S S I N G 

High throughput sequencers can generate tens of millions of sequences in each run. Before analyzing 
this RNA-seq data and using it for transcriptome study to draw biological conclusions, quality control 
must be performed to ensure that R N A - s e q data are of high quality and suitable for subsequent analyses 
without biases. Quality problems typically originate either in the sequencing itself or in the preceding 
library preparation. They include low-confidence bases, sequence-specific bias, 375' positional bias, 
polymerase chain reaction (PCR) artifacts, untrimmed adapters, and sequence contamination. These 
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problems can seriously affect mapping to reference, assembly, and expression estimates. Many of those 
defects can be corrected for by filtering, trimming, error correction, or bias correction. While some 
cannot be corrected for, but they must be taken into consideration when interpreting results. 

During my research I dedicated considerable time for quality control of F A S T Q files [46]. Either by 
using the available Quality Control (QC) tools as FastQC[47], RSeQC[48] and Trimmomatic[49]. Or 
by coding a number of tools using HTSeq library in Python [50], to check the eligibility of R N A s e q 
data, as described in the following. 

2.8.1 F A S T Q F O R M A T : 

F A S T Q has emerged as a common file format for sharing sequencing read data combining both the 
sequence and an associated per base quality score. It provides an additional extension to the F A S T A 
format, it is the ability to store a numeric quality score associated with each nucleotide in a sequence. 
However, it is lacking the clear formal definition. Furthermore, there are three incompatible variants of 
F A S T Q format; original Sanger standard, the Solexa, and Illumina variants. Over time, the F A S T A 
format has developed by consensus; however, in the absence of an obvious standard. For example, some 
parsers w i l l fail to handle the very long '>' title lines or very long sequences without line wrapping. 
There is also no standardization for record identifier [46]. 

Although Illumina initially continued to use the Solexa F A S T Q variant, from Genome Analyzer 
Pipeline version 1.3 onwards, P H R E D quality scores rather than Solexa scores were used [51]. The 
Illumina 1.3+ F A S T Q variant encodes P H R E D scores with an A S C I I offset of 64, and so can hold 
P H R E D scores from 0 to 62 (ASCII 64-126), although currently raw Illumina data quality scores are 
only expected in the range 0-40. (Table 2.1) 

F A S T Q variant A S C I I Characters Quality Score  
Range Offset Type Range 

Sanger standard 'fastq-
sanger' 

Solexa/early Illumina 
Tastq-solexa' 

3 3 -

5 9 -

126 

126 

33 

64 

P H R E D 

Solexa 

Oto 93 

-5 to 62 

Illumina 1.3+ 
'fastq-illumina' 

6 4 - 126 64 P H R E D 
0 to 

62 

Table 2.1 FASTQ variants between different sequencing platforms 

2.8.2 Q U A L I T Y ASSESSMENT B Y F A S T Q C 

FastQC [47] generates Q C report contains 12 analysis modules as follows: 

1. Basic Statistics module: it summarizes statistical information about the sequencing reads. 
2. Per Base Sequence Quality module: This module generates a plot, shows an overview of the range 

of quality values across all bases at each position in the FastQ file. 
3. Per Sequence Quality Scores module: it allows to see i f a subset of the sequences have universally 

low quality values. 
4. Per Base Sequence Content module: it plots out the proportion of each base position in the 

sequencing reads for each of the four D N A bases has been called. 

5. Per Sequence G C Content module: it measures the G C content distribution across the whole 
length of each sequence in a file and compares it to a modelled normal distribution of G C content. 
A n unusually shaped distribution could indicate a contaminated library or some other kinds of 
biased subset. A normal distribution which is shifted indicates some systematic bias which is 
independent of base position. 

6. Per Base N Content module: If a sequencer is unable to make a base call with sufficient 
confidence then it w i l l normally substitute an N rather than a conventional base call . This module 
plots out the percentage of base calls at each position for which an N was called. 

7. Sequence Length Distribution module: Some high throughput sequencers generate sequence 
fragments of uniform length as in our raw R N A - S e q data the length of the reads is 101. 
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8. Duplicate Sequences module: In a diverse library most sequences w i l l occur only once in the 
final set. A low level of duplication may indicate a very high level of coverage of the target 
sequence, but a high level of duplication is more likely to indicate some kind of enrichment bias 

9. Overrepresented Sequences module: A normal high-throughput library contains a diverse set of 
sequences. Finding that a single sequence is very overrepresented in the set, either means that it 
is highly biologically significant, or indicates that the library is contaminated, or not as diverse 
as it is expected. 

10. Adapter Content module: The Kmer Content module w i l l do a generic analysis of all the Kmers 
in the library to find those which do not have even coverage through the length of reads. 

11. Kmer Content module: The analysis of overrepresented sequences w i l l point an increase in any 
precisely duplicated sequences. However, this analysis suffers from few problems which might 
fail: 

• If we have very long sequences with poor quality, then random sequencing errors w i l l 
dramatically reduce the counts for exactly duplicated sequences. 

• If we have a partial sequence which is appearing at a variety of places within our sequence, 
then this won't be seen either by the per base content plot or the duplicate sequence 
analysis. 

12. Per Tile Sequence Quality module: This graph is available only i f we use an Hlumina library 
(which is the case of our data) that retains its original sequence identifiers. Encoded in these is 
the flow-cell tile from which each read came. The graph shows the quality scores from each tile 
across all the bases to see i f there was a loss in quality associated with only one part of the flow-
cell. 

2.8.3 T R I M M I N G L O W Q U A L I T Y R E A D S : 

The raw data of the next generation sequencing usually suffered, beside the attached adapters which 
must be removed, from low quality sequencing bases along the reads, that can easily result in suboptimal 
downstream analyses. Nevertheless, it is considerable to precisely identify such sequences, including 
partial adapter sequences, while leaving valid sequence data pristine [52]. Trimmomatic is the optimal 
choice designed to work on N G S data for identification of adapter sequences and quality filtering. It is 
able to process paired-end samples and optimized for Hlumina N G S data [53]. 

The trimming procedures that Trimmomatics performed classified in the following list: 
2.8.3.1 Removing technical sequences: 

Identifying adapter or other contaminant sequences within a dataset is inherently a tradeoff between 
sensitivity (ensuring all contaminant sequences are removed) and specificity (leaving all non-
contaminant sequence data intact). This issue is even more critical when only a small part of the 
contaminant sequence is included within the read. [53] 

2.8.3.2 Quality filtering: 

Trimmomatic offers two main quality filtering alternatives; sliding window and maximum 
information. The Sliding Window uses a relatively standard approach. This works by scanning from 
the 5' end of the read, and removes the 3' end of the read when the average quality o f a group o f bases 
drops below a specified threshold. This prevents a single weak base causing the removal of subsequent 
high-quality data, while still ensuring that a consecutive series of poor-quality bases w i l l trigger 
trimming. 

The following equation gives a length threshold score: 

ScoreLT{l) = 

Whereas: t is a target length, and / is the putative length after trimming. 

The second factor models 'coverage', it provides a linear score based on retained sequence length: 

Scorecov(l) = I 
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The third factor models the 'error rate', it uses the error probabilities from the read quality scores to 
determine the accumulated likelihood of errors over the read. To calculate this score, we simply take 
the product of the probabilities that each base is correct, giving: 

The correctness probabilities PCOrr of each base are calculated from the sequence quality scores. The 
error score typically begins as a high score at the start of the read, depending on the read quality, 
typically drops rapidly at some point during the read. 

The M a x i m u m Information algorithm determines the combined score of the three factors for each 
possible trimming position, and the best combined score determines how much of the read to trim. A 
strictness parameter s can be set between 0 and 1, controls the balance between the 'coverage' factor 
(for s = 0) and the 'error rate' factor (for s =1). This gives the following formula: 

2.9 S E Q U E N C E A L I G N M E N T 

The purpose of sequence alignment is to figure out where the sequences are similar and how high the 
similarity is. Al igning or "mapping" reads to a reference genome or transcriptome allows us to estimate 
where the read originated from. Mapping reads to genome provides genomic location information, 
which can be used for discovering new genes and transcripts, and for quantifying expression. If a 
reference genome is not available, or i f our target is to quantify only known transcripts, reads can be 
mapped to a transcriptome instead. 

Al igning reads to a reference genome is a challenging task for many reasons; reads are relatively short 
and there are millions of them, while genomes can be large and contain ambiguous sequence regions or 
indistinct such as repetitive regions and pseudogenes, this can impact the mapping to these areas. 
Furthermore, aligners have to cope with mismatches and indels (insertions-deletions) caused by 
genomic variation and sequencing errors. Eventually, many organisms have introns in their genes, so 
R N A - s e q reads align to genome non-contiguously. Placing spliced reads across introns and determining 
exon-intron boundaries correctly is difficult, because sequence signals at splice sites are limited and 
introns can be thousands of bases long. 

2.10 G E N E EXPRESSION ANALYSIS 

Once reads have been mapped to a reference genome, their mapping locations can be identified by 
genomic annotation. This enables us to quantitate gene expression by counting reads per genes, 
transcripts and exons. Quantitation of gene expression is an integral part of most R N A - S e q studies. In 
principle, calculating the count of mapped reads provides a direct way to estimate transcript abundance, 
it has been found that read count is approximately linearly related to the abundance of the target 
transcript[18], but in practice several complications need to be taken into account. Eukaryotic genes 
typically produce several transcript isoforms via alternative splicing and promoter usage. However, 
quantitation at transcript level is not easy with short reads, because transcript isoforms often have 
common or overlapping exons. Furthermore, the coverage along transcripts is not uniform because of 
mappability issues and biases introduced in library preparation. Because of these complications, 
expression is often estimated at the gene level or the exon level instead. However, gene level counts are 
not optimal for differential expression analysis for those genes which undergo isoform switching, 
because the number of counts depends on transcript length. This challenge can be overcome by applying 
the appropriate reads count normalization in addition to an effective statistical model for significant 
variability estimation, where A number of model-based methods have been developed that attempt to 
deconvolve the expression levels of individual transcripts for each gene from R N A - s e q data, essentially 
by leveraging information from reads unambiguously assigned to regions where isoforms differ as 
R S E M [54], and cuffdiff from cufflinks package [55]. 

Score Err — corr 
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Differential expression analysis of R N A - s e q data differs from microarray. In R N A - S e q the observed 
data are in the form of discrete counts generated from a sampling process, while microarray 
measurements are continuous measurements of a fluorescence signal. 

3. AIMS OF THE DOCTORAL THESIS 
In recent years several pipelines were founded for high throughputs sequence data analysis, many 

tools are available for quality control of R N A - S e q data, reads mapping, comparative analysis of gene 
expression and alternative exons usage, and for finding de novo long non-coding R N A . However, most 
of the analysis fail to deal the integrity, large datasets, and to produce descriptive results, that biologists 
can interpret without addition effort. 

The main aim of this doctoral work is to introduce an integrated R N A - S e q data analysis pipeline, that 
produces illustrated outputs, especially in the transcriptomic characterization experiment. This type of 
experiment is based on an expanded investigation of a comparative gene expression between different 
biological conditions, where we have a numerous amount of outputs needed to be examined to get the 
significant and informative results. Based on those outputs, we can build hypothesis describes the gene 
regulation stands behind that biological mechanism. The main aims we achieved in this doctoral thesis 
can be listed as follows: 

1- Introducing several codes for R N A - S e q data quality control, which provide tables of summarized 
reads statistics in samples, and give the mean of Phred quality scores across all the bases in a 
sample. In addition to plotting the mean quality of each base in all samples, we established a 
method to check the coverage uniformity. Especially when polyadenylated R N A library is used, 
there is usually concern that the coverage might vary across the gene's features. 

2- Establishing a comprehensive framework for differential gene expression analysis, that produces 
descriptive outputs and facilitates the biological interpretation of the experiment. 

3- Presenting an analyzing approach for multiple conditions experiment, we called it " O N / O F F 
genes", which can define the silent genes in a particular condition of the comparative analysis. 
This approach can highlight the functional roles, that genes can play in different conditions, and 
give a wider view of the genetical reasons behind the distinction between biological conditions. 

4- Improving the performance Improving the performance of Bioconductor package D E X S e q 
[56]for differential exons usage, by specifying i f the differentially used exonic part is within the 
O R F . This procedure w i l l help to figure out i f the differential used exons are involved in the 
alternative pathways, or distinctive functions of a gene's transcripts. 

5- Suggesting a new approach to analyze differential expressed long non-coding R N A , by finding 
the functional correlation of I n c R N A with neighboring differential expressed protein coding genes 
within the T A D (Topological associated Domain), to obtain an illustrated view concerning the 
regulation mechanism in a dataset. 

4. RNA-SEQ DATA ANALYSIS WORKFLOW 

4.1 O S T E O B L A S T D I F F E R E N T I A T I O N E X P E R I M E N T 

The R N A - S e q data which our research based on, are from differentiated osteoblast cells. Although 
osteoblast differentiation was wel l characterized, a detailed transcriptional analysis of osteoblast 
differentiation based on R N A sequencing (RNA-seq) analyses is still missing. Therefore, we used 
R N A - s e q to obtain a high-resolution transcriptome data set of murine osteoblast differentiation in vitro. 
The cells were harvested at four distinct time points: within proliferation, during maturation, terminal 
differentiation, and at the onset of mineralization. 

A s a consequence, we got 12 samples, 3 for each differentiation time point: 

1- Day 0: The confluency of cells in the culture plate, before promoting the differentiation. 
2- Day 3: Harvesting cells on the third day after the differentiation starts. 
3- Day 6: Harvesting on the sixth day after the differentiation promoted. 
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4- Day 12: On the twelfth day of differentiation. 

4.2 Q U A L I T Y C O N T R O L A N D R E P R O C E S S I N G M E T H O D S 

The first procedure needed to be implemented after we have the R N A - S e q data as F A S T Q files, is 
checking the quality of the raw read sequencing. Once reads have been aligned to a reference genome, 
additional quality metrics can be investigated based on the location. These include coverage uniformity 
along transcripts, saturation of sequencing depth, ribosomal R N A content, and read distribution 
between exons, introns, and intergenic regions. Finally, once aligned reads have been counted per genes, 
sample relations and batch effects can be visualized with heatmaps and P C A plots. 

4.2.1 F A S T Q C 

FastQC is available as a standalone interactive Java application with a graphical user interface (GUI), 
and it can be run as wel l in a command line as non-interactive mode, where it would be suitable for 
integrating into a larger analysis pipeline for the systematic processing of large numbers of files. 

Using the Bash Script, we coded a function to input the samples of original raw reads to FastQC to 
check the read qualities. This function can serve large experiment to pass samples to FastQC and get 
outputs by one command. User does not to care about how to input a set of samples, neither getting the 
outputs. A s described in (Main dissertation: Code-box 3.1). 

4.2.2 T R I M M O M A T I C : 

For the pair-end read, Trimmomatic requires as inputs both the reverse and forward reads and returns 
4 outputs, 2 for the 'paired' output where both reads survived the processing, and 2 for corresponding 
'unpaired' output where a read survived, but the partner read did not. In the end, we used the paired 
reads. Trimming process must be performed in an order of steps then the optional procedures can be 
added in the end of the command. It is recommended in most cases that adapter clipping is done as early 
as possible, since correctly identifying adapters using partial matches is more difficult. [49] 

To perform the trimming on a set of samples and keep the paired samples, we coded two functions in 
Bash script for this purpose. One to insert the samples to Trimmomatic (Main dissertation: Code-box 
3.2), and the second to keep merely the paired samples, which is used for mapping to the reference 
(Main dissertation: Code-box 3.3). Reading through the codes in the Cod-boxes explain the simple 
concept used to get a function with one line to input a set of samples. Despite the simplicity of our 
functions, they provide useful service for users with low or no knowledge with shell command-line, 
which is necessary to run this part of R N A - s e q pipeline. 

4.2.3 P Y T H O N _ H T S E Q 

HTSeq is a Python library. It offers parsers for many common data formats in High-Throughput 
Sequencing (HTS) projects, as wel l as classes to represent data, such as genomic coordinates, 
sequences, sequencing reads, alignments, gene model information and variant calls. It also provides 
data structures that allow for querying via genomic coordinates. [50] 

Python as a scriptural language is useful to abstract information from output reports as text files, we 
wrote two scripts for this purpose; the first one to get the basic statistic of Fastq files as the length of 
reads, sequenced reads number, and % G C . The second script to get the mean reads quality in each 
sample from FastQC report. Using HTSeq library we coded a script to plot the mean quality of the 
reads across the position. For checking coverage uniformity across the gene body in P o l y - A libraries, 
we proposed a method based on HTSeq to get the coverage distribution in different gene features. 
4.2.3.1 BasicStatistic Funnction: 

Each FactQC output has in additional to html report, a plain text file called 'fastqc_data.txt'. In 
Osteoblast data set we have four differentiation time points (conditions) with three biological replicates 
for each condition, and each sample has two fastq files for forward and reverse reads, this means 24 
FastQC reports in total. To extract the required information, we coded a useful function to read the data 
from such group of files. This function reads lines in a specific module (Basic Statistics module) in 
fastqc.data report, and then extract the required information about the reads, as sequence length, total 
sequenced numbers, encoding type, Sequences flagged as poor quality, and present of G C in the 
sequence. (Main dissertation: Code-box 3.4) 

16 



4.2.3.2 Mean Quality Function: 

The function calculates the mean sequencing quality across all the bases in a sample. In FastQC 
report, there is module called "Per sequence quality scores", which gives how many reads have a 
specific quality value (from 2 to 40). I coded two functions for this task, the main mean quality function 
"QualityScore", to calculate the mean quality of all bases in a fastq (Main dissertation: Code-box 3.5). 
A n d "MQ_Av_Datase t" function, to get the mean quality o f all bases in fastq files in a dataset, then 
calculate the average of mean quality of forward and reverse reads, eventually write the output as 
plaintext file (Main dissertation: Code-box 3.6). 

4.2.3.3 Plotting Phred Quality Along Reads Positions: 

Using the FastqReader function from Python_HTSeq package, generates objects of class FastqReader 
from the Fastq files. In this object each read in Fastq is a SequenceWithQualities object, and has three 
feature slots: 

• name feature returns the name of the read (read.name) 

• seq feature returns the sequence of the read (read.seq) 

• qual feature returns the quality of each base in the read as an array of values (read.qual) 

The function " readqua l" iterates over reads in FastqReader object and calculates the mean quality of 
all reads in each position coordinate, as described in the comments (after # symbol, or between "' '") in 
the (Main dissertation: Code box 3.7). To accomplish this task, I coded another function 
"pass data MQ" to apply read_qual through a dataset (Main dissertation: Code box 3.8). A l l the codes 
are reproducible and helpful to deal with quality control of fastq files. We generated 70 mil l ion reads 
with good high-quality scores as Figure 4.1 illustrates the mean quality of raw reads. However, after we 
implied quality control enhancement techniques, we got a very good quality score along the positions 
in the reads, as it is shown in the Figure 4.2, after trimming the mean quality of the bases at the end of 
the reads improved to be over 28 scores, and across the middle of the reads, looks more linear with 
Phred scores between 33-38. 

4.2.3.4 Coverage Uniformity: 

There is a concern that the coverage might vary across features of the R N A , since the used libraries 
are based on polyadenylated R N A . To provide an estimation of coverage across the genes feature, we 
separated the exons to 5' U T R exons, 3' U T R exon and the exons in the translated regions in between, 
as illustrated in the Python script "Separate Exons according to the translation regions" (Main 
dissertation: Code-box 3.9). Hence, we got 3 annotation G T F files of first (5' U T R ) , last (3' U T R ) and 
middle exons in the genes. Then we coded a function to calculate the coverage of the reads using HTSeq 
library. Accomplishing this task was in the following steps: 

1. Create G T F objects of the first exons, last exons and the middle exons from the gtf files generated 
in the previous step, by using GFF_Reader method from HTSeq library. (Main dissertation: Code-
box 3.11) 

2. Create alignment objects from B A M files, the outputs of TopHat Aligner, by using B A M _ R e a d e r 
method from HTSeq library. The B A M _ R e a d e r object yields for each alignment line in the B A M 
file an object of class B A M _ A l i g n m e n t . Every alignment object has a slot read, that contains a 
SequenceWithQualities object as described previously. (The read object has three features: 
read.name, reads.seq and read.qual). Furthermore, every alignment object aln has a slot iv (for 
"interval") that describes the positions on the genome where the read was aligned to (if it was 
aligned). This feature slot of the alignment object holds information of the start and end 
coordinates on the genome of that align object, the chromosome name, and the strand where that 
alignment located. (Main dissertation: Code-box 3.10) 

3. Creating a GenomicArray data structure to store and retrieve information associated with a 
genomic position or genomic interval. The key of the GenomicArray is an genomic interval, 
which we retrieve from "align.iv" of each alignment object and simply iterate through all the 
reads and add the value 1 at the interval when each read was aligned. 
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4. 

5. 

To calculate the mean coverage of each aligned read, we passed the GenomicArray "ga" of the 
interval of each exon in the aligned read "iv" to list method, so we got a coverage values vector, 
then we calculated the mean of this vector. 
Eventually we plotted the coverage density of 5' U T R , 3' U T R and exons within coding regions. 
A s it is shown in the Figure 4.3. 

Mean Read Quality of Raw Data 
— DayOJ Day3_1 — Day6_1 — Day12_1 

Day0_2 — Day3_2 — Day6_2 — Day12_2 

— Day0_3 — Day3_3 — Day6_3 Day12_3 

40 60 

Posit ion in read 

Figure 4.1 :Mean Phred Quality Scores of Raw RNA-Seq Reads. 
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Figure 4.2: Mean Phred Quality Scores of RNA-Seq Reads after QC. 

From the density distribution of the base mean which is the sequencing depth of each exon in 
Osteoblast dataset (Figure 4.3), we found that both 3' U T R exons and the intervening coding sequences 
have a similar distribution of base mean values compared to 5' U T R sequences. Although this slight 
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change in the distribution across features, the level of coverage was similar for each, suggesting that 
the libraries capture transcriptional complexity across different elements of genes. 

4.3 R E A D S M A P P I N G USING T O P H A T A L I G N E R 

TopHat is an optimal fast junction aligner for R N A - S e q reads to mammalian-sized genomes, in order 
to identify exon-exon splice junctions. It is built on the ultra-high-throughput short read mapping 
program Bowtie, which is an ultrafast, memory-efficient alignment program for aligning short D N A 
sequence reads to large genomes. Bowtie extends previous Burrows-Wheeler techniques with a novel 
quality-aware backtracking algorithm that permits mismatches [57]. 

TopHat2 improved the performance of TopHat by mapping reads against the known transcriptome, 
this improves the overall sensitivity and accuracy of the mapping. The mapping procedure of TopHat2 
consists of three major parts, optional transcriptome alignment, genome alignment, and spliced 
alignment. Paired-end reads are aligned individually first, and then combined to paired-end alignments 
by taking into account the fragment length and orientation. 

To perform alignment by TopHat 2, first we need to prepare the reference genome index. Bowtie2 
reference genome indexes are available for many organisms at the Bowtie2 website [58] and the 
Hlumina iGenomes website [59]. However, it is better to build the reference index to be sure that 
genome i n d e x / F A S T A files are from the same provider as G T F files and the same version. It is easy to 
build the index using bowtie2-build command. 

When calling bowtie2-build command, we need to take into account the following notes: call the 
option -f to indicate that the reference is F A S T A file with ".fa" extension (or .mfa , .fna), and the fasta 
file must be unzipped (Main dissertation : Code-box 3.12). TopHat2 accepts both F A S T Q and F A S T A 
files as input. Read files can be compressed (.gz). TopHat2 can also combine single-end reads in a 
paired-end alignment i f needed [60]. Our Osteoblast samples are paired-end reads, so we used TopHat 
syntax of paired-end reads as stated in (Main dissertation : Code-box 3.13). The script is coding a 
function for calling TopHat2 on a dataset without concerning about inserting the correct name of each 
single sample. 

4.4 D I F F E R E N T I A L G E N E EXPRESSION ANALYSIS 

4.4.1 M E T H O D 

The fundamental process in R N A - S e q data analysis and transcriptome characterization, is to define a 
set of genes that have significant expression variance between conditions in an experiment. The 
comparative analysis of transcriptomic data in our research based on DESeq2 method [61], that takes a 
count matrix as an initial input. The count matrix composed of n rows; one row for each gene /, and m 
columns; one column for each sample j . The matrix elements Ky indicate the number of sequencing 
reads that have been unambiguously mapped to a gene in a sample. The read count Ky for gene i in 
sample j is modeled with a generalized linear model ( G L M ) [62] of the negative binomial family with 
a logarithmic link. Read counts Ky follow a negative binomial distribution (a gamma-Poisson 
distribution) with mean fiy, the variance afj, and dispersion a,-. 

The mean parameter juy is the expectation value of the observed counts for gene i in sample j, it is the 
product of a quantity qy, proportional to the concentration of c D N A fragments from the gene in the 
sample, and a normalization factor sy: 

The G L M fit returns coefficients indicating the overall expression strength of the gene and the log2 
fold change between the conditions. DESeq2 uses G L M s with a logarithmic link: 

Hij — Sij. C[ij 

ir 
r 

Where design matrix elements, and /3ir coefficients. 
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Figure 4.3: Coverage density for RNA-seq reads features. The plot shows three 
coverage density distribution of the base mean in the first exons (5' UTR exons), 
middle exons (within translation regions) and the last exons (3' UTR exons). 

Using linear models provides the flexibility to analyze more complex experimental designs, to serve 
the genomic studies. 

4.4.2 R E S U L T S : 

4.4.2.1 DESeqDataSet Object Design 

To create DESeq object, it is necessary to provide with the count matrix, the experiment design. 
Which is the sample information table. For osteoblast, we designed the experiment with one conditions 
level (time points). The row names are the columns name of count matrix (the samples), the columns 
are the conditions, here we have one condition level with four variables. The sample information table 
looks like the following 

Samples Condition 
D a y _ 0 _ R l Day_Zero 
Day_0_R2 Day_Zero 
Day_0_R3 Day_Zero 
D a y _ 3 _ R l Day_Three 
Day_3_R2 Day_Three 
Day_3_R3 Day_Three 
D a y _ 6 _ R l Day_Six 
Day_6_R2 Day_Six 
Day_6_R3 Day_Six 

D a y _ 1 2 _ R l Day_Twelve 
Day_12_R2 Day_Twelve 
Day_12_R3 Day_Twelve 

Table 4.1: Table of osteoblast experimental samples 
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4.4.2.2 Performing Differential expression analysis: 

A s described in methods we need first to estimate the size factors normalization, then estimate the 
count dispersion, and the final step is performing the negative binomial G L M fitting and Wald test 
statistics. 

To figure out the number of comparisons between experiment conditions, we got to the conclusion 
that for n conditions, the number of comparisons is given by taking the Combination of number of 
conditions n and n — 2: 

n ( U \ n ' 
Qn-2 = [n _ 2) = 2! • ( n - 2 ) ! 

The function "results" from DESeq Bioconductor package gives the results of these comparisons 
including log2 fold changes of expression values, p-values and adjusted p-values which calculated 
based on the used statistical test. 

We use Bonferroni correction for the p-value of Wald test, where we use the estimated standard error 
of a log2 fold change to test i f it is equal to zero. For the F D R cutoff, we set the argument alpha in 
results function to initial value of 0.01. This independent filtering based on the mean of normalized 
counts for each gene, optimizing the number of genes which w i l l have an adjusted p value below a 
given F D R cutoff. 

The common used cutoff of the adjusted p_value is (0.01), and fold change of 4, so the log2 fold 
change ( L F C ) is 2. Applying these cutoffs, we got the following number of significant differentially 
expressed genes in 6 comparisons: 

Comparisons 
Significance 

p_value<0.01 

Differentially 
expressed F C >4, 

\LFC\ > log2(4) 

Upregulated 
L F C >2 

Downregulated 
L F C < -2 

Day_12 vs D a y O 10058 2299 1231 1068 

Day_6 vs D a y O 10026 2834 1702 1132 

Day_3 vs D a y O 9695 2378 1466 912 

Day_12 vs Day_3 5551 655 233 422 

Day_12 vs Day_6 5427 626 214 412 

Day_6 vs Day_3 1788 155 92 63 

Table 4.2: Number ofdifferential expressed genes with adj. p_value <0.01 and |LFC| > 2. 

Using default threshold of 0.01 for adjusted p-value by Bonferroni correction, we got 12932 genes 
significantly differentially expressed at least in one of the comparisons out of 29148 genes analyzed. 
We got (4012) genes as a union of genes that significantly expressed at least in one of the comparisons, 
with adjusted p-value less than 0.01 and absolute logarithm fold change greater than 2. From the 
BioMar t data mining tool in Ensembl, we could define the D E protein coding genes, and the noncoding 
ones, writing a code in R to define the bio type of each gene in D G E data set. In the following table 
(Table 4.3) is the statistics of protein coding genes, non-coding and l i n c - R N A : 

A l l genes Protein coding Non-coding L i n c - R N A 

A l l genes in DESeq 29148 17948 11200 2008 

Significant 
Adj.P <0.01 

12932 11773 1159 287 
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D E genes union 
4012 3308 704 184 

Adj.P <0.01 & L F 0 2 

Table 4.3: Union of D E genes; upregulated and downregulated, protein coding and noncoding. 

Although we used stricter p-value cutoff commonly used by researchers (alpha = 0.001), we still got 
huge number of significantly differentially expressed genes as it is illustrated in Table 4.4 and M A - p l o t 
Figure 4.4. 

Comparisons 
Significance 

p_value < 0.001 
Upregulated 

L F C >2 
Downregulated 

L F C < -2 

Day_12 vs D a y O 9609 1170 1130 

Day_6 vs D a y O 9555 1628 1077 

Day_3 vs D a y O 9201 1399 869 

Day_12 vs Day_3 5069 219 393 

Day_12 vs Day_6 4922 197 387 

Day_6 vs Day_3 1506 90 59 

Table 4.4: Number of D G E with adj. p_value <0.001 and |LFC| > 2 
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Figure 4.4 MA-plot of 6 comparisons between osteoblast differentiation time points. 
Red points indicate the genes if the adjusted p-value less than 0.001 

The M A - p l o t is originally used to visualize D N A microarray gene expression data, however, it is also 
used to visualize high-throughput sequencing analysis. It plots the distribution of differences between 
normalized counts taken in two samples. M refers to log ratio (log2 Fo ld change) and A refers to mean 
average scales (mean of normalized counts). 
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4.4.2.3 Setting Thresholds: 

Using the common used cutoffs of adjusted p-value and L F C , gives us huge number of genes not 
suitable for further Gene Ontology enrichment analysis or clusters visualization. Therefore, to choose 
the appropriate thresholds for our data, we use volcano plot. Usually we cut when the volcano arms 
start to open as the following illustrates. 

In the panel (A) the cutoff of the adjusted p-value is 0.01, we can see most of the volcano dots are 
blue, which are the significant D E genes that have adjusted p-value less than 0.01, the small black line 
in the base of the volcano is the non-significant. In (B) we added the cutoff for the fold change of 4: 
abs(log2FC)> log2(4). We chose the cutoff adjusted p-value 10~50 according to the volcano plot, as it is 
illustrated in (C). In (D) applying both cutoffs on the genes set of | L F C | > l o g 2 5 and 
— l o g 1 0 adjP < 50. 

• All DE G e n e s 

• p - va lue cutoff 

• p - va lue & LFC cutof fs 

5 - 5 

log2 Fold Change 

Figure 4.5 Example of volcano plots of D G E in day3 vs day 0, illustrates making the 
decision of choosing adjusted p-value cutoff = 10A _ 5°. 

The following graph in Figure 4.6 of volcano plots of the six comparisons, proves that choosing the 
cutoffs was adequate decision for all the samples. 

B y using cutoff of adjusted p-value less than 10A~ 5 0 and absolute value of logarithm fold change | L F C | 
greater than l o g 2 5, we got 1441 genes including 1386 protein coding, 55 non-coding and 19 l i n c R N A 
(Table 4.5). 

adjP< 1 0 M 0 

|LFC|> log 2(5) 
A l l genes Protein coding Non-coding l i n c R N A 

D E genes union 1441 1386 55 19 

Table 4.5 Significant differential expressed genes subsets with cutoff adjP< 10A" 
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4.4.2.4 Count data transformation: 

For samples similarity analysis and visualization as clustering, it is important to use homoscedastic 
data (all random variables in the sequence have the same finite variance). Heteroscedasticity in R N A -
Seq data causes a problem, when the original count scale is used in clustering or ordination algorithm, 
the result w i l l be dominated by highly expressed, highly variable genes; i f logarithm-transformed data 
are used, undue weight w i l l be given to weakly expressed genes, which show exaggerated L F C s . 

The purpose behind data transformation is to remove the dependence of the variance on the mean, 
particularly the high variance of the logarithm of count data when the mean is low. It produces 
transformed data on the log2 scale which has been normalized with respect to library size. In order to 
transform the data to remove the experiment-wide trend. The aim of this transformation is not that all 
the genes have exactly the same variance after transformation. However, after the transformations, the 
genes with the same mean do not have exactly the same standard deviations, but that the experiment-
wide trend has flattened. It is those genes with row variance above the trend which w i l l allow us to 
cluster samples into interesting groups. 

Figure 4.6: Volcano plots of the differential gene expression in osteoblast 
differentiation days. 

4.4.2.5 Principal Component Analysis: 

Principal component analysis ( P C A ) is a statistical procedure that can be used for exploratory data 
analysis. P C A uses linear combinations of the original data (gene expression values) to define a new 
set of unrelated variables (principal components). These new variables are orthogonal to each other, 
avoiding redundant information. [63]. Thus, P C A can be used to reduce the dimensions of a data set, 
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allowing the description of data sets and their variance with a reduced number of variables. It is often 
sufficient to look at the first two components, as these describe the largest variability. 

P C A plot is useful for visualizing the overall effect of experimental covariates and batch effects 
(technical sources of variation), it is used to get an impression on the similarity of RNA-sequencing 
samples. The variance in R N A - S e q data usually grows with the expression mean, using P C A on the 
transformed data matrix by regularized logarithm transformation w i l l often lead to principal 
components that are dominated by the variance of a few highly expressed genes, and avoid the high 
random noise of low count data 

The following graph in Figure 4.7 is the P C A plot of osteoblast data set that has 12 samples for 4 
biological conditions. The replicates in each condition show similarity in the variances which proves 
that the experimental samples did not suffer from an abnormality in variance between biological 
replicated. 

4.4.2.6 Sample to sample distance: 

We computed the Euclidean distance between the samples, using the regularized logarithm 
transformed data count. From the distance matrix, we created dendrogram of the samples as Figure 4.8 
illustrates, the count data in day_0 of osteoblast differentiation has greater variance to the other days, 
while day_3 and day_6 are closer, this means the genes in both time points have similar expression 
patterns. 

A heatmap of the distance matrix gives an overview over similarities and dissimilarities between 
samples, so we used the Euclidean distance of rlog transformed data likewise to create a distance 
heatmap as the Figure 4.9. 
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Figure 4.7 P C A of osteoblast dataset. The replicates in each condition show 
similarity in the variances 

4.4.2.7 On / off genes subset analysis 

The overall distribution of the fold change differences between the conditions was almost symmetric 
(Figure 4.10). However, we found groups of genes with on/off expression as in Table 4.6. We 
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research each gene of them and defined a group of genes which have significant biological role in 
osteoblast differentiation and ossification. 
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Comparison On gene expression Off gene expression 
X v s Y on in X & off in Y off in X & on in Y 

Day 12 vs Day 0 81 19 

Day 12 vs Day 3 12 11 

Day 12 vs Day 6 15 5 

Day 6 vs Day 0 97 33 

Day 6 vs Day 3 1 3 

Day 3 vs Day 0 90 27 

Table 4.6 O N / O F F genes in osteoblast dataset 
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Figure 4.10 The distribution of overall fold change differences across all the comparisons 

4.5 G E N E O N T O L O G Y ANALYSIS E N R I C H M E N T 

4.5.1 M E T H O D 

For clustering the differential expressed genes, we plot a heatmap that creates a similarity matrix of 
the values and groups the genes with similar pattern together, then highlights them in different colors. 
We got the normalized count of the D E genes we desire to cluster, from DESeqDataSet object(dds). 
Then we calculate the count mean of the replicates in each condition, we create new mean count matrix 
with all the genes names. The fundamental step to generate clusters heatmap, is to scale the normalized 
count with mean centering as the following: 
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X — pL 
xnew ~ ~ 

a 
Where x is the value of normalized counts, l i is the mean o f the rows, o is the standard deviation, 

however the mean of the new row values is 0 and the standard deviation is 1. The heatmap function in 
R calculate the Euclidean distances and calculate the variance to cluster the genes and reorder the values 
according to its dendrogram. We analyzed the differentially expressed genes clusters by Ontologizer 
[64], using the model-based gene set analysis method " M G S A " [ 6 5 ] we got the top annotation-enriched 
G O terms of the differential gene expression group. Then we applied parent-child intersection approach 
[66] on the clusters, to get the enriched G O terms of each cluster. For correcting the p-value we used 
Benjamini Hochberg correction. 

4.5.2 R E S U L T S 

There are 1386 protein coding genes, differentially expressed with more stringent cutoff values 
(absolute fold change of fivefold or greater and adjusted P-value < 10"50). These genes were plotted 
within a heatmap to identify clusters of genes according to their expression pattern. In total, nine clusters 
were identified by visual inspection, as illustrated in protein coding genes clusters heatmap (Figure 
4.11). 

4.6 D I F F E R E N T I A L E X O N S U S A G E 

Alternative transcription start-sites lead to differences in the beginning of m R N A , whereas alternative 
splicing causes some of the exons to be skipped and not translated at all . R N A - s e q offers exciting 
possibilities for studying the expression and regulation of isoforms on the whole genome level. 

Most of the current R N A - s e q methods produce short reads which do not cover full transcripts. Instead, 
transcripts need to be assembled from sequenced fragments. The assembly and the subsequent 
abundance estimation can be challenging, because isoforms typically have common or overlapping 
exons. Furthermore, the coverage along transcripts is not uniform because of biases introduced in 
sequencing and library preparation. In order to avoid uncertainties in the assembly, one approach for 
studying alternative isoform regulation of it is to look at differences in the usage of individual exons. 
R N A - s e q reads can also be mapped to exons so that the differences in exon-specific counts can be 
compared between certain conditions, groups, or treatments. 

4.6.1 M E T H O D S 

We used a statistical method to test for differential exon usage in R N A - s e q data, by applying 
Bioconductor package D E X S e q [67], which uses generalized linear models, taking into the account the 
biological variability and looks for differences across conditions of the relative usage of each exon. 
Using HTSeq library in python, we generated a reference annotation genes model (flattened G F F file) 
contains one entry for each exon or exonic part, which is cut from the exon i f the exon's boundary 
differs between transcripts. Then we got the count of reads that overlap with each of the exon counting 
bins defined in the flattened G F F file in each sample. The D E X S e q function normalizes these counts 
by the library size factor sj, which accounts for the depth that sample j was sequenced. The number of 
the reads Nyk overlapping counting bin (exonic part) k of gene i in sample j , follows the negative 
binomial (NB) distribution and modeled by G L M s , where the dispersion parameter is estimated by, 
firstly performing an I R L S (iteratively reweighted least square) fits for each gene, then, insert these 
fitted values in the log likelihood function with Smyth's Cox-Reid [68] [69] term and find its maximum 
using Brent's line search. So, the gene expression variability is absorbed by the model parameters, while 
the model increase the power of the test for differential exon usage. 
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Figure 4.11 Heatmap of genes cluster with their expression patterns and significant G O terms 

4.6.2 R E S U L T S 

We used D E X s e q method to test for differential exon usage in comparative R N A - S e q experiments. 
We mean by differential exon usage ( D E U ) , changes in the relative usage of exons caused by the 
experimental condition. The relative usage of an exon is defined as: 

number of transcripts from the gene that contain this exon 
number of al l transcripts from the gene 

We test the differential exon usage in each comparison, applying merely the D E X S e q method with 
thresholds; adjusted p-value less than 0.01 and F C greater than 4, we got the following number of 
entries, which are exons or exonic part differentially used between the conditions, many of those exons 
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belong to more than one transcript, and some of them overlapped with few genes. The results presented 
in Table 4.7 

Comparisons Adjusted p-value < 0.01 adjp < 0.01 & | logFC| > 2 

Day 12 vs DayO 17229 291 

Day 12 vs Day3 3216 71 

Day 12 vs Day6 2917 35 

Day3 vs DayO 17283 293 

Day6 vs DayO 18408 373 

Day6 vs Day3 480 8 

Table 4.7 Differential Exon Usage (DEU) in osteoblast comparisons; adjp <0.01, |logFC|>2 

The results from D E X S e q are not adequate for further alternative splicing analysis. Therefore, the 
genes name and gene type associated with the entries must be provided, using Biomart data mining tool 
from Ensemble, I built the function code in R (Main dissertation: Code-box 3.14). 

It has been found in previous studies that almost 73% of human genes are alternatively spliced [70]. 
To figure out the featured biological role that a gene can play when alternative transcripts expressed in 
different conditions, we need to determine i f the exonic part that differentially used between those 
conditions is protein-coding or within the open reading frame O R F . To achieve this task, first I coded 
a function to provide the bio-type of transcripts that include the differential used exon, as it is illustrated 
in Code-box 3.15. The output of this function provides us with a data matrix includes the D E U , logFC, 
adj./7-value, Gene name, Gene type, Transcript type, Genomic start and end of the exon part, Genomic 
width, and genomic strand. 

This data matrix is the basis of E x o n O R F function that define i f the exonic part is within O R F . I coded 
E x o n O R F Code-box 3.16 function in the following steps: 

1- Get the table exons features from BioMart in Ensemble, of all transcripts that differentially used 
in all comparisons. The exon feature table wouldh look like this: 

Exon.Chr.Start Exon.Chr.End En.Transcript.ID G.coding.start G.coding.end Strand 
15356 15422 ENSMUST00000082423 N A N A -1 
14145 15288 ENSMUST00000082421 14145 15288 +1 

The exons that are non-coding the Genomic.coding.start and Genomic.coding.end not available, while 
some exons are partially within O R F so they have either Genomic coding start or end. 

2- Check the exonic bin is within the range of a defined exon in Ensemble. SE , EE are the start and 
end of an exon, and SB, EB are the start and end of an exon part. 

3- Check i f this exon part is within the O R F . Sc , Ec are the start and end of coding frame. 

Table 4.8 shows the number of differential used exons in each comparison, that are within the coding 
frame. 

Comparisons Exons within O R F (adjp < 0.01 & | logFC| > 2) 

Day 12 vs DayO 32 

Day 12 vs Day3 13 

Day 12 vs Day6 7 

Day3 vs DayO 35 

Day6 vs DayO 50 

Day6 vs Day3 0 

Table 4.8 number of the differential used coding exon (within O R F ) in Osteoblast dataset 
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4.7 L O N G N O N - C O D I N G RNA IDENTIFICATION 

4.7.1 M E T H O D 

We innovated an algorithm to predict the potential functions of IncRNA genes which are differentially 
expressed, by their correlation with protein coding genes. The algorithm is based on two concepts 
(Figure 4.12); the first concept is the spatial interaction of the I n c R N A and the protein coding genes or 
what is called topological^ associating domain ( T A D ) [71]. A n d the second concept is the co-
expression correlation which was used in previous study for I n c R N A functions characterization [72]. 
Then define the enriched functional terms among the protein coding genes that are significantly 
correlated with IncRNAs using a gene ontology tool. 

Since the I n c R N A expressed in lower level, so we used more tolerant cutoffs to get the significant 
differential expression, whereas the adjusted /?_value less than 0.01 and the binary logarithm of fold 
change between the conditions is greater than 1.5 (adj.Pvalue < 0.01 , F C > 1.5). The algorithm 
workflow is concise in the following steps: 

Mapping the reads and the default differential gene expression pipeline using DESeq2. 

1. Creating a D G E data matrix for protein-coding genes and another data matrix for IncRNA. 

2. For computing the correlation, we generate two matrices for I n c R N A and protein-coding genes, 
contain normalized counts (expression values) among the different Osteoblast differentiation time 
point. 

3. Getting the T A D annotation for mouse genome mmlO. 

4. Selecting the protein coding gene and I n c R N A pairs based on two criteria; firstly, the protein-coding 
gene and the I n c R N A must be within the same topological associated domain. Secondly, the 
absolute correlation value must be greater than 0.9, and the p_value of the correlation test less than 
0.01. 

5. Most of the I n c R N A correlated to more than protein-coding genes. IncRNA have positive 
correlation with protein coding genes, when they have similar expression pattern, and negative 
correlation when their expression patterns are contradicted. 

4.7.2 R E S U L T S 

Applying this algorithm on osteoblast data, we got throughputs needed to be biologically verified, 
which was not possible due to flaws in wet-lab organization, however, according to the logical 
methodology we used, based on published literature [71] [72], the algorithm is applicable and need 
R N A - s e q data to confirm it. 

A s statistical overview of results I got from osteoblast data; there were 10760 protein coding genes 
differentially expressed with thresholds (adj.Pvalue < 0.01 , F C > 1.5) and within the Topological 
Associated Domains ( T A D ) , 299 of those protein coding genes are correlated with 126 IncRNA. 
However, we have 285 differentially expressed IncRNA with the same cutoffs, 158 of them were not 
correlated (Table 4.9 number of differential expressed and correlated Pro.Cod genes and IncRNA) 

D G E 
adjp < 0.01 & F C 
>1.5 

Within T A D s Correlated Not correlated 

Protein coding 10775 10760 299 10461 

I n c R N A 285 284 126 158 

Table 4.9 number of differential expressed and correlated Pro.Cod genes and IncRNA 

The distinct result in our analysis, that our algorithm can define when the IncRNA is positively 
correlated with the protein coding gene, this guide us to the hypothesis that the I n c R N A enhancing the 
expression of the protein coding gene, in other words, it plays positive regulation role to that Pro.Cod 
gene. While the I n c R N A negatively correlated with the protein coding gene, it plays suppressor role. 
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Figure 4.12 IncRNA correlation algorithm 

Some of the IncRNA correlated with more than one Pro.Cod gene, therefore we have chosen the 
maximum correlated Pro.Cod gene (positively and negatively). However, for the analysis, we needed 
to study the full set of Pro.Cod genes that are correlated with one IncRNA. Moreover, many of IncRNA 
correlated positively with some Pro.Cod genes and negatively with others. We found few biological 
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meaningful examples of such IncRNA behavior served our research on osteoblast differentiation (See 
our submitted paper). 

A l l pairs M a x i m u m 
correlated 

Positive correlation 217 91 

Negative correlation 131 66 

Table 4.10 positive and negative correlated Pro.Cod and I n c R N A pairs 

5. DISCUSSION: 
Despite the availability of the web-based platform for R N A - S e q data analysis as Galaxy [73], our 

pipeline analysis in this doctoral research still carries novel and auxiliary approaches, which provide 
integrity, and improve the performance of the existing tools. It provides a solution to input a set of 
samples into a tool, by means of a single function command. Furthermore, our pipeline provides 
informative results, allowing straightforward interpretation by the biologists. To discuss the novelty and 
the benefits of our research, I w i l l go through the pipeline's procedures one by one as follows: 

1- We coded three functions (fastqc_insert, trimo_insert, tophat_insert) to input a set of samples to 
FastQC, Trimmomatic and TopHat tools respectively. Despite the simplicity of the codes, they 
serve a good purpose by facilitating the input of samples, where the user simply needs to apply 
accessible paths, where the input data is stored, and where the outputs of the tools are needed to 
be stored. The user doesn't need to have any skills in bash script or shell command-line to run 
those tools. These inserting functions can be useful cores when we design an integrated web-
platform for R N A - S e q data analysis, since we as the operators don't need huge data-storage to 
analyze the data or worry about server maintenance, and on the other hand the users don't need 
to upload their big fastq files elsewhere and spend hours and interrupt their network connection. 

2- The quality control tool FastQC returns two sets of files for each sample (one for the forward 
reads and the other for reverse reads), this means for a small experiment, it w i l l produce a range 
of 20 output sets. Retrieving quality information from the FastQC files w i l l be a burden to go 
through the plain text files for each sample. Therefore, we coded two functions; "BasicStatistic" 
to retrieve the length of reads and the number of reads, before and after trimming. A n d 
"QualityScore" to calculate the mean quality o f all bases in a fastq file. Furthermore, we coded 
" readqua l" function to get average quality in each base along reads positions, and to plot the 
mean quality of bases across the reads positions. 

3- The coverage uniformity of the gene features is one of the concerns when using libraries based 
on polyadenylated R N A . Although there are tools to plot graphs and heatmap represent the 
coverage along the gene body asRSeQC[74], our method to check the coverage uniformity gives 
a detailed vision o f the coverage distribution along the gene's features, by plotting the density of 
mean o f base coverage after separating the first exons in 5 'UTR, the last exon in 3 'URT, and the 
middle exons. 

4- In the differential gene expression pipeline, we defined the significant differential expressed 
genes using the statistical model of DESeq [61]. However, we improved the default pipeline, the 
purpose being to obtain informative outputs from the differential gene expression matrix. We 
proposed a procedure to set the suitable cutoffs of the P-value and logarithm fold change as 
described in the "Setting Thresholds:" section. Apart from this, we defined the biotype o f each 
significant differentially expressed gene, so we could do the gene enrichment for the protein-
coding genes and separate the long non-coding R N A for our further analysis. Furthermore, based 
on the differential gene expression matrix, we proposed the analyzing procedure for the multiple 
conditions experiment, we called it " O N / O F F genes". This procedure suggests defining the genes 
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that are completely silent during a biological condition while it is expressed in the others. Using 
this analysis, we can get a set of genes that are uniquely regulated between biological conditions. 

5- For alternative splicing analysis, we improved the performance of the differential exon usage tool 
DEXSeq[67] , by defining whether the differential used exon (or part of the exon) is a coding exon 
within the O R F . Followed by the comparison of the domains of the transcripts that contain the 
differentially expressed exon, to determine the functions or the products that are affected by the 
alternative splicing of the gene. 

6- long non-coding R N A (IncRNA) species have been identified whose loci locate both within and 
between protein coding genes. While IncRNAs remain the most enigmatic n c R N A species in 
terms of function, there is now much effort centered on their functional characterization and their 
molecular mechanisms in different cell types [75]. However, our method is concentrated on 
finding the potential interaction between the IncRNA and the protein-coding genes, by finding 
the expression correlation between the IncRNA and protein coding genes that are within the same 
Topological Associated Domain ( T A D ) . Although we interduce our method as a novel approach, 
it is based on existing and approved researches. T A D is a known genome architecture, it is a self-
interacting genomic region, meaning that D N A sequences within a T A D physically interact with 
each other more frequently than with sequences outside the T A D [71]. A n d defining the gene 
ontology terms of I n c R N A by finding the expression correlation with protein-coding genes [72]. 
However, LncRNA2Func t ion tool defines the co-expression without taking in consideration the 
topological associated domains. Furthermore, this database is available for G O terms in human 
genome, where our method can be applicable to any R N A - s e q experiment. 
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