BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

BACHELOR'S THESIS

Brno, 2021 Alexander Mogrovics

BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION

FAKULTA ELEKTROTECHNIKY
A KOMUNIKACNICH TECHNOLOGII

DEPARTMENT OF TELECOMMUNICATIONS

USTAV TELEKOMUNIKACI

WEB APPLICATION ON PAIRING-BASED
CRYPTOGRAPHY

WEBOVA APLIKACE KRYPTOGRAFIE VYUZIVAJiCi PAROVANI

BACHELOR'S THESIS

BAKALARSKA PRACE

AUTHOR Alexander Mogrovics
AUTOR PRACE

SUPERVISOR M.Sc. Sara Ricci, Ph.D.

VEDOUCI PRACE

BRNO 2021

VYSOKE UCENI FAKULTA ELEKTROTECHNIKY

TECHNICKE A KOMUNIKACNICH
V BRNE TECHNOLOGII

Bakalarska prace

bakalafsky studijni program Informaéni bezpeénost

Ustav telekomunikaci

Student: Alexander Mogrovics ID: 204435
Roc¢nik: 3 Akademicky rok: 2020/21
NAZEV TEMATU:

Webova aplikace kryptografie vyuzivajici parovani

POKYNY PRO VYPRACOVANI:

Nastudujte teorii eliptickych kfivek (tj. definici kfivky, vlastnosti, operace nad eliptickou kfivkou, bilinearni parovani
a kryptografii vyuzivajici parovani). Vystupem prace bude implementace webové aplikace umoziujici spusténi
operaci bilinearniho parovani a zakladnich kryptografickych protokold vyuzivajicich parovani (napf. 3-way Diffie-
Hellmanav protokol). Jako vychozi bod Ize vyuzit programovaci jazyk Sage. Webova aplikace mlze byt
postavena na pfedchozi studentské praci (desktopova aplikace pro kryptografii eliptickych kfivek). Soucasti prace
bude také manual popisujici funkcionalitu webové aplikace.

DOPORUCENA LITERATURA:
[1] Washington LC., “Elliptic curves: number theory and cryptography.” CRC press; 2008 Apr 3.

[2] Menezes AJ, Katz J, Van Oorschot PC, Vanstone SA. Handbook of applied cryptography. CRC press; 1996
Oct 16.

Termin zadani: 1.2.2021 Termin odevzdani: 31.5.2021

Vedouci prace: M.Sc. Sara Ricci, Ph.D.

doc. Ing. Jan Hajny, Ph.D.
predseda rady studijniho programu

UPOZORNENI:

Autor bakalarské prace nesmi pfi vytvareni bakalarské prace porusit autorska prava tretich osob, zejména nesmi zasahovat nedovolenym
zpusobem do cizich autorskych prav osobnostnich a musi si byt piné védom nasledkd poruseni ustanoveni § 11 a nasledujicich autorského
zakona €. 121/2000 Sb., v€etné moznych trestnépravnich disledkd vyplyvajicich z ustanoveni ¢asti druhé, hlavy VI. dil 4 Trestniho zakoniku
€.40/2009 Sb.

Fakulta elektrotechniky a komunika¢nich technologii, Vysoké uceni technické v Brné / Technicka 3058/10 / 616 00 / Brno

ABSTRACT

The aim of this thesis is to shed some light on elliptic curve cryptography via web
application. It follows mathematical and algebraic principles of establishing elliptic curves
over finite fields, performing computations over them and establishing bilinear pairings.
It also describes the architecture and implementation of the web application, which uses
website template with embedded SageMathCell in order to minimize required space.
This application allows the user to preform computation of points on elliptic curve over
finite field and their plot, plot of an elliptic curve over real numbers, operations over
points of elliptic curves, to establish bilinear pairing, to establish 3-way Diffie—Hellman
key exchange and to conduct a MOV attack.

KEYWORDS

Elliptic Curves, Bilinear pairings, Cryptography, SageMath, Web Application

ABSTRAKT

Cilem této prace je osvétlit kryptografii eliptickych krivek za pomoci webové aplikace.
Sleduje matematické a algebraické principy vytvoreni eliptickych kfivek v mnoziné konec-
nych téles a nasledné pocitani s nimi, véetné bilinearniho parovani. Prace také popisuje
architekturu a impementaci webové aplikace, kterd je tvorena Sablonou s vlozenymi
SageMathCell prvky, aby byly minimalizovany naroky na Glozisté. Tato aplikace umoz-
nuje uzivateldim provadét vypocet bodl eliptické kfivky v mnoziné konecnych téles a
vykresleni jejich grafu, vykresleni grafu v mnoziné realnych cisel, provadéni operaci nad
body eliptickych krivek, vytvoreni bilinedrniho paru, ustanoveni vymény kli¢i mezi tremi
stranami pomoci Diffie-Hellman protokolu a realizaci MOV (toku.

KLICOVA SLOVA

Eliptické k¥ivky, Bilinedrni parovani, Kryptografie, SageMath, Webova aplikace

MOGROVICS, Alexander. Web application on pairing-based cryptography. Brno, 2021,
56 p. Bachelor's Thesis. Brno University of Technology, Faculty of Electrical Engineer-
ing and Communication, Department of Telecommunications. Advised by M.Sc. Sara
Ricci, Ph.D.

Typeset by the thesis package, version 4.00; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZSIRENY ABSTRAKT
Tato bakalarska prace se vénuje oblasti kryptografie eliptickych kiivek. Cilem bylo

navrhnout a nasledné vytvorit webovou aplikaci, kterd by tuto oblast predstavila za
pomoci zakladnich operaci nad body eliptické kiivky, jako je s¢itani bodu a skalarni
nasobeni, vykreslenim grafu v oboru realnych ¢isel i konecnych téles, ukazkou bi-
linedrniho parovani (Weilovo a Tateovo parovani), MOV ttoku na diskrétni logarit-
mus a dvou kryptografickych protokolu (distribuce klici pomoci ECDH s vyuzitim
parovani a digitalni podpis pomoci Boneh—-Lynn—Shacham (BLS) protokolu).

Teoreticka cast prace si klade za cil seznamit ¢tenare s problematikou eliptick-
ych krivek jako takovych. Obsahuje definici eliptickych kfivek a jejich reprezentaci
pomoci funkéniho predpisu. V oblasti kryptografie se eliptické krivky definuji nad
konecnymi télesy, kterd jsou taktéz predstavena. Daéle jsou predstaveny operace na
eliptickych krivkach, a to sc¢itani bodt a skalarni nasobeni. Scitani bodu je pop-
sano grafickou formou véetné grafi ukazujicich mozné pripady, které mohou nastat.
Skalarni nasobeni je pak de facto definovano jako specificky pripad s¢itani bodi,
napt. 3+ P = P+ P + P. Dilezitou casti prace je diskrétni logaritmus realizo-
vany eliptickymi kirivkami (Elliptic Curve Discrete Logarithm Problem, déle jen
ECDLP). V ramci teoretické ¢asti prace je tento problém popsan ve své klasické
formé, ktera je pouzita pro uvedeni verze vyuzivajici eliptické krivky, tedy Ellip-
tic Curve Diffie-Hellman (ECDH) protokolu. Nésledné je predstaveno bilinedrni
parovani. Bilinearni parovani musi spliovat jisté podminky, které jsou v ramci této
prace uvedeny. Typy bilinedrniho parovani (symetrické x asymetrické, Weilovo x
Tateovo) jsou rovnéz uvedeny a popsany. Sekce bilinedrniho parovani je s pred-
chozimi sekcemi spjata mimo jiné i definici takzvanych pairing-friendly ktivek, tedy
kiivek vhodnych k realizaci bilinearniho parovani. Je predstavena vyména klict
mezi tfemi stranami pomoci Diffie—Hellman protokolu, podpisovy protokol BLS a
utok na diskrétni logaritmus MOV.

Kapitola je v kontextu prace soucasti teoretické ¢asti. SageMath je
klicovym néastrojem implementace praktického teseni prace. Tato kapitola slouzi
predstaveni tohoto programu. SageMath je mozné uzivat pomoci lokalni instalace
nebo pomoci online verze zvané SageMathCell, ktera zaroven umoznuje vkladani for-
mulare tohoto programu do vlastnich webovych stranek. Vypocty jsou pak prove-
deny na vzdéleném serveru, ne na lokalnim stroji. SageMath obsahuje konstruk-
tory pro sestaveni eliptickych kfivek ¢i kone¢nych téles. Praci nejen se samotnou
eliptickou kfivkou, ale také jejimi body je v ramci konzole programu velmi intuitivni,
napiiklad pro soucet bodu P, (Q eliptické krivky stac¢i zadat R = P + Q. SageMath
rovnéz obsahuje metody pro vytvoreni bilinearniho parovani.

Prakticka cast prace je vénovana vyuziti predstavenych néstroji k samotné im-

plementaci. Jsou predstaveny navrhované postupy tvorby webové aplikace. Jednim

z moznych postupt je vyuziti lokalni instalace aplikace SageMath a jeji spojeni s
vlastni webovou aplikaci vytvorenou v Javé ¢i C# pomoci Python skriptu. Toto
reseni nebylo zvoleno z duvodu zvysenych narokt na velikost tlozisté kvuli lokdlni
istalaci SageMath. Implementované feseni vyuziva webovou stranku s vnorenymi
SageMathCell bloky, které jsou naformatovany pro uzivatelsky vstup a reprezentaci
vyslednych dat. Nevyhodou tohoto feSeni je relativné mala uroven upravy vzhledu
takto vlozeného bloku, nicméné aplikace je i pres tuto prekazku uzivatelsky priveé-
tiva. Hlavni stranka webové aplikace je slozena z barevnych dlazdic, pricemz kazda
dlazice se chova jako odkaz na samostatnou stranku obsahujici konkrétni funkcional-
itu. Implementované funkcionality jsou:

« Points on EC

e Plot of EC in R

o Point addition

e Scalar multiplication

 Bilinear pairing

o 3-way Diffie-Hellman Exchange

« MOV attack

o BLS scheme

Ke konkrétnim strankam lze pristupovat i skrz drop-down menu v pravém hornim
rohu webové aplikace. Sekce Points on EC umoznuje konstrukei eliptické kiivky
definované nad konecnym télesem a zobrazuje rovnici eliptické kiivky, zadané konecné
téleso, rad kiivky a seznam bodi krivky, a to véetné bodu v nekoneénu. Soucasti
této sekce je taktéz grafickd reprezentace bodi v oboru konecného télesa. Sekce
Plot of EC in R umoznuje konstrukei eliptické kiivky v oboru realnych ¢isel a
jeji reprezentaci v kartouzském souradnicovém systému. Sekce Point addition
umoznuje konstrukei eliptické kiivky definované nad konecénym télesem a obsahuje
dva drop-down selektory pro vybér bodu zadané kiivky. Po zadani téchto parametri
aplikace poskytuje soucet dvou zadanych bodiu. Sekce Scalar multiplication
umoznuje konstrukei eliptické kirivky definované nad konec¢nym télesem, drop-down
selektor pro vybér jednoho bodu této krivky a textové pole urcené k zadani celocisel-
ného nésobitele tohoto bodu. Néasledné aplikace poskytne vysledek skaldrniho na-
sobeni zadaného bodu a néasobitele. Sekce Bilinear pairing umoznuje vybér z
predpripravenych eliptickych krivek definovanych nad koneénymi télesy. Uzivatel
nasledné nasledné zvoli bod ktivky v [, a bod v [F,. Volitelné parametry a,b
jsou celd cisla, slouzici jako nasobitelé zadanych bodl. Zobrazenym vysledkem je
pak hodnota vypocteného parovani. Tato sekce obsahuje dva formulare, jeden pro
Weilovo parovani a druhy pro Tateovo parovani. Sekce 3-way Diffie-Hellman
Exchange umoznuje vybér z predpripravenych eliptickych kiivek definovanych nad

konecnymi télesy, vybér radu pouzitych bodi eliptické kiivky, vybér samotnych

bodtu a zadani tajnych klict a,b,c. Uzivateli jsou pak poskytnuty informace o
parametrech vsech tii icastniki, tedy Alice, Boba a Charlieho. Témito parametry
jsou tajny kli¢ a verejny klic. Nasledné je zobrazena hodnota k, tedy vysledek bi-
linearniho parovani sdilenych verejnych kli¢i. Sekce MOV attack umoznuje vybér z
predpripravenych eliptickych kiivek definovanych nad koneénymi télesy, vybér bodu
zadané krivky P a vybér jeho nasobku a- P. Cilem této funkcionality je zjistit tajny
kli¢c a. Dalsi bod potfebny pro parovani, () € E(F,), je vybran ndhodné. Nésledné
je spocitana hodnota e1 (P, Q) a es(a- P, Q) = ex(P, Q)* = e1* a je zobrazen vysledek
a. Tento vysledek je mozné ovérit ve formulafi pro skalarni nasobeni, je potieba za-
dat bod P a spoctené a. Vysledek by se mél shodovat s hodnotou a - P. Sekce
BLS scheme je realizovana pomoci kiivky BN254. Soucasti je vypis generovanych
parametri, podpis a jeho ovéreni. Vysledek ovérovaci faze lze ovlivnit pouzitim

nespravného podpisu pomoci tlacitka Fake signature a nebo zménou zpravy.

DECLARATION

| declare that | have written the Bachelor's Thesis titled “Web application on pairing-
based cryptography” independently, under the guidance of the advisor and using exclu-
sively the technical references and other sources of information cited in the thesis and
listed in the comprehensive bibliography at the end of the thesis.

As the author | furthermore declare that, with respect to the creation of this Bachelor's
Thesis, | have not infringed any copyright or violated anyone’s personal and/or ownership
rights. In this context, | am fully aware of the consequences of breaking Regulation §11
of the Copyright Act No.121/2000 Coll. of the Czech Republic, as amended, and of
any breach of rights related to intellectual property or introduced within amendments to
relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009
Coll., Section 2, Head VI, Part 4.

author’s signature

ACKNOWLEDGEMENT

My deepest gratitude goes to my advisor M.Sc. Sara Ricci, Ph.D. for her guidance,
patience, knowledge and motivation, especially during a global pandemic. Her input was
always greatly appreciated and helpful, given her deep understanding of the topic and
she made sure to thoroughly address whichever questions and doubts | might have had
regarding the thesis and my ability to complete it, even if | thought | would not be able
to go on anymore. | would like to thank my parents, my sisters Eva and Lucie, my
friends and my dear partner Silvie for supporting and reassuring me. Their input made

me work harder than | ever could without them.

Contents

(Introductionl

1 Background|
(1.1 Elliptic Curves|

(1.3 Elliptic Curve Discrete Logarithm Problem|.

(1.4 Bilinear Pairings|

(1.4.1 Weil and Tate pairings|

(1.4.2 Embedding Degree|

(1.4.3 Pairing-triendly Elliptic Curves|

(1.4.4 3-way Difhe-Hellman protocol|

(1.4.5 Boneh—-Lynn-Shacham Signature Scheme|

2 SageMathl
[2.1 Elliptic Curves in Sage| .

[2.2 Points and operations|. .

[2.3 Bilinear Pairings|
2.4 SageMathCell

[3 Implementation|
[3.1 Web Application|
[3.1.1 Design|

Conclusion|

12

14
14
15
15
16
18
18
19
20
21
22
22
23
23
24
25

26
26
27
29
29

32
32
34
35
35
37
37
38
39
40
41

43

[Bibliography|

[List of symbols, quantities and abbreviations|

[List of appendices|

44

46

47

List of Figures

(1.1 Point addition where P = Q)| 16
(1.2 Point doubling where P=¢)|. 17
(.3 Point addition where P = (x,,0)| 17
[L.4 Point addition where P = (x,,y,) and Q) = (z,, —y,)| 18
(1.5 Elliptic Curve Dithe-Hellman key exchange/. 20
(1.6 3-way Difhe-Hellman key exchange] 24
2.1 Textboxes with default valuesf 0. 30
[2.2 Textbox and drop down menu selector| 31
[3.1 Diagram of internal logic| 33
[3.2 Example of main menu tiles|o 34
[3.3 Exampleofaplotinlf. 36
[3.4 Plotting in Sage| 36
[3.5 Example of point addition| L. 37
[3.6 Example of scalar multiplication|. 37
[3.7 Weil pairing| 38
B.8 Parameter selectionl 39
3.9 MOV attackl 41
(.10 BLS schemel oo o 42
AT Pointson EC 48
[A.2 Point addition| 49
[A.3 Scalar multiplication| 00000 50
[Ad Plotan ECl 51
[A.5 Weil pairing] 52
[A.6 Tate pairing| 53
[A.7 3-way Difhe-Hellman Exchangel 54
A8 MOVattackl 55

Introduction

Ensuring security is a concept that has been present with humanity since the dawn
of time. As we progressed as a society, the need to conceal certain information
became crucial. With the rise of a modern society, our privacy came in danger.
Now, every electronic device which connects to the Internet uses cryptography to
a certain extent. This is the result of the very essence of the Internet as an open
platform anyone can use.

Securing ones access to the Internet or securing communication and data can be
performed in a number of ways. Our inspiration comes from history, when ciphers
using the same key for encryption and decryption were used. Such cryptosystems
are called symmetric ciphers. The task at hand is securing the key distribution as
well. This is done by using asymmetric ciphers, which use a key pair, i.e. public
and private key.

Asymmetric cryptosystem are implemented with certain key sizes. These key
sizes are an indicator of the security of such system. As technological progress moves
forward constantly, the keys need to be larger and larger. This is due to the fact,
that asymmetric cryptography relies on NP problems such as integer factorization
or discrete logarithm problem. While not impossible to compute, there is no known
algorithm to solve them and immense computational power is needed to break keys.
Elliptic curve cryptography provides a way of aiding this issue. For example, a 168-
bit elliptic curve key is equivalent to a 2048-bit RSA key. However, computations on
elliptic curves are not as straight-forward as is the case with standard asymmetric
systems.

The goal of this thesis is to create a web-based application showcasing the use
of elliptic curves in modern day cryptography. Web applications have become a
widely used tool during the course of the last two decades. This is due to their in-
stant accessibility on the Internet without the need to actually install the program
locally and having to perform calculations on users own machine. Remote com-
puting largely widens the scope of possible application features and computation
complexity depending on the hosting system. In the context of this thesis, a simple
HyperText Markup Language (HTML) website and SageMath program are used.
SageMath, an open-source mathematics software, is however installed locally and
would therefore require to build an infrastructure to connect it with the web applica-
tion in order to perform calculations. A more straight-forward tool to overcome this
is SageMathCell, which allows developers to embed Sage instructions directly into
a website. The calculations are then performed on a dedicated Sage server. There
is also the possibility of running your own server. SageMath includes a variety of

tools for elliptic curve calculations, such as basic operations on the curve, calcula-

12

tion and listing of points, plotting of a graph, pairings and more. These tools are
crucial, as the web application’s intended features include showcasing of basic oper-
ations (point addition and scalar multiplication), plotting, operations necessary for
bilinear pairings, 3-way Diffie-Hellman protocol and Boneh—Lynn—Shacham (BLS)
Short Signature scheme.

In the chapter, the mathematical background of elliptic curves
is introduced. Elliptic curves can be described by a number of forms. Important
part of elliptic curve cryptography (ECC) are finite fields, over which the curves are
defined. Basic operations on the curve are covered. They include point addition
and scalar multiplication. Point addition is shown geometrically. Because ECC is
based on computations with points on a curve, the order of the curve is covered as
well. Discrete logarithm problem is introduced, represented by Diffie-Hellman key
exchange scheme.

In the[SageMath| chapter, SageMath computational software is introduced. The
main focus of this chapter is to show examples of elliptic curve constructors, alge-
braic operations on elliptic curves over finite fields and bilinear pairings. Web-based
solution named SageMathCell is discussed, including the creation of individual in-

teractive cells and their embedding into a website.

In the Implementation| chapter, the proposed solution and used technology is

described. Included are examples of used code and screen-shots of the created appli-
cation. The proposed solution uses SageMathCell. Each feature of the application

is described, including Sage methods used to create them.

13

1 Background

This chapter is meant to introduce the mathematical background of elliptic curves.
At first, we shall look into defining elliptic curves as well as their definition over
a finite field. This includes forms which can be used to represent the curve; primarily
the generalized Weierstrass form and the short Weierstrass form. The main
focus, however, will be put on describing basic operations on the curve (point
addition and scalar point multiplication) with special attention to bilinear
pairings.

Another focus of this chapter is the introduction of SageMath tool; its specifics,
functions and possible uses.

The easiest and most user-friendly means of describing the curves and opera-
tions on them is doing so graphically. The next step would be algebraic definition.
These definitions will help us with presenting the main focus of this chapter, bi-
linear pairings. Then Elliptic Curve Discrete Logarithm Problem (ECDLP) shall
be introduced. From ECDLP we will move on to present cryptographic protocols,
which utilize this problem and bilinear pairing: Boneh—Lynn—Shacham Short

Signature scheme and 3-way Diffie-Hellman key exchange.

1.1 Elliptic Curves

Elliptic curves can be written in several forms. Depending of the form, their prop-
erties and speed change. An elliptic curve E(K) can be described by the following

equation, which is called the general Weierstrass form of the elliptic curve [1]:
Y2+ arzy + agy = 2% + axx® + aux + ag, (1.1)

where a1, a9, a3, a4, a6 € IF; are constant coefficients of the curve in a field K. Elliptic
curve is a set of points (x,y) €]Fg and a point at infinity noted as O that satisfies
Equation [I.1} Elliptic curves can be constructed over the following fields K:

R — real numbers,

C — complex numbers,

Q — rational numbers,

F, — a finite field
Even though the general Weierstrass form allows to identify an elliptic curve, it
is not commonly used in practice due to its speed [2]. Elliptic curves can also be

described by a so called short Weierstrass form:

y?* =2 +ax + b, (1.2)

14

where a, b are constants in a field K, where a,b # 2, 3. This form is commonly used
in cryptography.

So far, we have established the curve as a set of points that satisfy the equation,
along with a point at infinity. Using the short Weierstrass form, we can then define

elliptic curves with the following definition:
E(K) = {(0)} U{(z,y) e Kx K| y* = 2® +az + b}, (1.3)

Another form of elliptic curves, used especially with bilinear pairings (see Section
, is the Barreto—Naehrig form.

y* =2 +b, (1.4)

where b # 0 over F,, where p is a prime, with prime order and embedding degree
k =12 (for embedding degree, see Section [1.4.2)).

1.1.1 Finite Field

In this section, we introduce the finite field, because that is what EC are defined
over in cryptography. Finite field I is a set of elements and two binary operations.
These operations are point addition 4+ and scalar multiplication *. Size of the set

(in other words, number of elements) is called order of the finite field.

Definition 1.1.1. Let F be a set of elements on which two binary operations (+ and
) are defined. The set (I, +,*) is a field if the following conditions are satisfied:
o (F,+) is a commutative group (and 0 is the identity element).
o (F~ {0},x)is a commutative group (and 1 is the identity element).
o Multiplication is distributive over addition, i.e. for any three elements a, b
and c € F,
a*x(b+c)=axb+axc. (1.5)

In cryptography, finite field are usually represented by F, with ¢ = p*, where p
is prime and k € N.

1.2 Algebra of Elliptic Curves

Algebra of elliptic curves defines two operations. They are point addition and scalar
multiplication. These operations are what enables us to actually use ECC. All
computations on the curves are in modulus p, which is a characteristic of F,,, with

desired high points of order.

15

1.2.1 Point addition

Given P = (z,,y,) and @ = (x,,y,) points on an EC E(F,), the point addition [3] 4]
R = P + @ can be computed using the following procedure:
1. Draw a line through P and @). The intersection of the line and curve £ gives
us point R'.
2. Reflect R' across the x-axis. This produces the desired point R.
Figure [L.1] shows P + () in case that P # Q.

Case of point addition where P = @) would be doubling. Given P = (z,,1,),
doubling can be computed as R = P + P = 2P:

1. Draw a tangent line to E at P = (z,,y,). Intersection of this tangent and

curve F produces point R’

2. Reflect R’ across the x-axis. This produces the desired point R.

Figure shows P + (@) in case that P = (). This operation can be performed
multiple times and in such case is referred to as successive doubling. The addition
of points on an elliptic curve E satisfies the following properties:

o Commutativity: P + P, = P, + P, for all P, P, € E.

» Existence of identity: P+ oo = P for all P € F.

o Existence of inverses: Given P € F, there exists P’ € E, where P + P’ = .

P’ is normally denoted as —P.

The points on E are an additive group.

Fig. 1.1: Point addition where P # @)

16

Fig. 1.2: Point doubling where P = @)

In case of point addition where P = (z,,0) = @, the tangent to E' in P is parallel
to the y-axis. The resulting point is at infinity, as shown in Figure [I.3]

. 00

-
_

e

Fig. 1.3: Point addition where P = (x,,0)

Another case of point addition is for points P = (x,,y,) and Q = —P =
(2p, —Yp), as seen in Figure[L.4]

17

e OO

Fig. 1.4: Point addition where P = (x,,y,) and Q = (z,, —y,)

1.2.2 Scalar multiplication

Scalar multiplication [3 4] is a key feature of elliptic curves algebra and is what
ECC relies on. If F, is a finite field, we can conclude that there are finitely many
sets of points (x,y) and the group E(F,) is therefore finite. The scalar multiple s of
point P is defined as following;:

I'=s-P=P+P+---+P. (1.6)

s times

If P=0O,thenT = s-0 = O where O is a point at infinity. We can also use
successive doubling, as shown in Section for calculations using the scalar
multiple of higher orders, for example 2P = P + P, 3P = 2P + P and so on.
Example: Let s be 19 and P a point of EC. T'=5s- P = 19P.
e P4+ P+ ---4 P would require a total of 19 additions.
o P+ P=2P 2P+4+2P =4P, 4P 4+ 4P = 8P and 8P + 8P = 16P. Then we
can compute 19P = 16 P + 2P + P using only 6 additions.

1.2.3 Order of EC

If K is a finite field F,, where p is a modulus, there exists only a finite amount of
points (including point at infinity O = 0o) and the curve E is therefore finite, as
shown in Section [1.2.2)).

18

Definition 1.2.1. The order of E(F,) is the total amount of points on F, including
the point at infinity O.

Order of E is not the same as the modulus. Let curve E(F5) be y? = 2° —x + 1
where p = 5:

r |2 —x+1(mod5)|y?| vy points

0 1 1 +1](0-1), (0,1)
1 1 1| +1] (1,1), (1,4)
2 2 - -

3 0 01 +1| (30

4 1 1 +1 | (4-1), (4,1)
00 00 O

Tab. 1.1: E(]F5)

As shown in Table[1.1] the order of E(F5) is 8 while the modulus is 5.

1.3 Elliptic Curve Discrete Logarithm Problem

Modern asymmetric cryptography relies primarily on integer factorization, for
instance in Rivest, Shamir, Adleman cryptosystem (RSA) and discrete logarithm
problem (DLP), for instance in Diffie-Hellman protocol. The reason why these
problems work so well in cryptography is simply due to the extreme difficulty of
calculating them. These problems are hard to compute, but efficiently solvable with
the knowledge of the secret. Shor’s algorithm allows to solve integer factorization,
DLP an ECDLP using quantum computers [6]. The time complexity of ECDLP
is exponential, whereas the standard DLP has a sub-exponential cost. ECC also
allows for use of comparably smaller sizes than comparable algorithm not utilizing
EC [7, §].
DLP can be represented as following. Let the logarithm be

k =logy a.
Solution to this logarithm would then be
V=a,

which can be easily found if b and k are known. This changes with the use of a
modulus p:
b = a (mod p),

19

where p is a prime number. If k is large enough and we know the values of a, b and
p, then k£ cannot be efficiently found.

In the case of ECDLP, the problem lays in the computation of points on EC over
finite fields. Let us take point P € E(F,) as an example. It would be difficult to
find £ which would fulfil equation kP = O, where O is a point at infinity. That is
the computation over a single point. In case of two points P, @) € E(F,) it would
be difficult to find k£ such that kP = Q.

Definition 1.3.1. Let F be an elliptic curve over a finite field F,. Suppose there
exist two points P,) € E(F,) such that @ € (P). To find k such that Q) = kP is a
hard problem.

1.3.1 Diffie—-Hellman over E

Elliptic Curve Diffie-Hellman protocol (ECDH) is a variation of DH. ECDH does not
use modular exponentiation, but EC and public-private key pair. The key operation
of ECDH is scalar multiplication, as seen in Section [1.2.2]

Bob

secret key a secret key b
public key P, = aP public key P, = bP
P, P,

K =aP, = abP K =0bP, =baP

Fig. 1.5: Elliptic Curve Diffie-Hellman key exchange

Definition 1.3.2. Let E be an elliptic curve and P a generator of E of order n.
Given P and aP it is hard to find a.

Decisional ECDH Assumption:

Let E be an elliptic curve and P a point of F. Given three points Q, R, S € E,
it is hard to decide whether there are integers n,m s.t. Q = nP, R = mP and
S =nmP.

Computational ECDH Assumption:
Let E be an elliptic curve and P a point of E. Given two points) = nP, R =

mP € E, where n and m are unknown, it is hard to compute the value S = nmP €
E.

20

1.4 Bilinear Pairings

Bilinear pairings are an important part of ECC. It is used in elliptic curve based sig-
nature schemes, e.g. Boneh—Lynn—Shacham Short Signature scheme. Other
uses of pairings include attacks on DLP (MOV attack), key agreement with multiple
parties, key distribution or identity-based encryption.

Let n be a prime number. Let G; = (P) and Gy = (Q) be additive groups
of order n and G a multiplicative group of order n. A bilinear pairing is a non-

degenerative map
e: G1 X GQ — GT.
G4, Gy and Gr are usually cyclic groups. In the case of EC, G; and G5 can be
either EC or subsets of EC points. G is a finite field [9].

Definition 1.4.1. A bilinear pairing is a non-degenerative map e : Gy X Gy — Gr,
which satisfies:

« Bilinearity

e(Pr+ P, Q) =e(P1,Q) - e(P,Q) for P,P,e Gy, Qe Gy
e(P,Q1+ Q2) = e(P, Q1) -e(P,Q2) for P e Gy, Q,Q2 € Gy

o Non-degeneracy

for all P # O : 3Q € G5 such that e(P,Q) #1 € Gr
for all Q # O : 3P € G, such that e(P,Q) # 1 € Gr

o Computability — the ability to algorithmically compute e(P, Q) effectively for
any P,Q € G.

Mapping e therefore represents a relationship of two elements form one group to one
element from a second group. If G; = G5 = G then the pairing is symmetric and

map e is commutative for any P,Q € G:
e(P, Q) =e(Q, P)

If G; # G, the pairing is asymmetric. Compliance with Definition renders
the mapping admissible.

Given P,Q € E(F,), where a,b € F,, the main properties of bilinear pairings
are:

e ¢(P,0)=¢0,Q)=1
(—P,Q)=e(P,—Q) =e(P.Q)™"
(aP, Q) = e(P,Q)* = e(P,aQ)
(aP,
(

e €

g

aP,bQ) = e(P, Q)"
P,Q1+ Q) = e(P,Q1) - e(P, Q)

e C

e C

21

1.4.1 Weil and Tate pairings

Weil pairing is such a pairing, that satisfies the properties above. Let E be an

elliptic curve defined over a field K and n a positive integer. Then Weil pairing is
ew : Eln] x E[n] — pn,

where 1, = {x € K| 2" = 1} is a cyclic group of order n.

Weil pairing needs the full n-torsion on order to work: E[n] C E(F,), which
implies that 4 C F,. Let P € E(F,)[n|, Q € E(F,) and R € E(F,), satisfying
n-R = Q. ¢, is the ¢g-th power Frobenius endomorphism. Then Tate pairing [I]

is defined as

er(P,Q) = ew(P, R — 6,(R)),
er : E(F,)n] x E(F,)/nE(E,) = .

1.4.2 Embedding Degree

From the perspective of cryptography, embedding degree is what tells us whether
the curve provides strong security or not. In other words, it represents how difficult
it would be to turn ECDLP into DLP. However, due to limiting factors such as
technology and time efficiency, the embedding degree must be regulated. If it was
unreasonably high, the computation of discrete logarithm represented by E(F,)

would be infeasible, but at the same time it would be more secure [10].

Definition 1.4.2. Let k be the embedding degree of E(F,) and let n be a large
prime dividing the order of E(F,). Then

o k is the smallest integer s.t. n|(p* — 1),

e k is large enough to make computation of discrete logarithm in F, infeasible.

However, k is small enough to make the pairing easy to compute.

Different representation of n|(pF — 1) is p* = 1 mod n.
Example:
Let E(F5) : y* = 2® — 2 + 1 be an elliptic curve with order 8.

E(Fs):y*=a’—a+1

Points Order
O 1
(3,0) 2
(4,4), (4,1) 4
(0,1), (0,4), (1,1), (1,4) 8

22

We have defined that the embedding degree k is the smallest integer such that
n|(p* — 1). Fs gives the value of p = 5.
For n =4 and p = 5:

n|(p¥ —1) =4|(5* = 1) — 5 =1 mod 4,

therefore k = 1.
For n =8 and p = 5:

8|(5* —1) — 5" =1 mod 8,

therefore k = 2.

1.4.3 Pairing-friendly Elliptic Curves

Three common types of pairing-friendly curves are
 Supersingular curves (embedding degree k < 6),
o Miyaji-Nakabayashi (MNT) curves of prime order and small embedding de-
grees of 3, 4 and 6,
» Barreto-Naehrig (BN) curves (Equation embedding degree k = 12).

Definition 1.4.3. Let E(F,) be an elliptic curve, where ¢ = p" and p is a prime.
Let a = ¢+ 1 — ord [E(F,)]. Then E is supersingular if and only if a = 0 mod p,
which is of and only if ord [E(F,)] = 1 mod p.

Example of a supersingular curve
Let E(F,), where p > 5 and the order of E(F,) = p+ 1 be supersingular.

E(F,): y* =2 +1,

where p = 2 mod 3. Supersingular curves with p < 5 exist as well, e.g. F(Fs) and
E(F3).

E(Fy): y* +y=2a’+u,
EFs): y* =2 —2+2.

1.4.4 3-way Diffie—Hellman protocol

3-way Diffie-Hellman protocol [I1], 12] works similarly to standard ECDH, but in
this case with the use of bilinear pairings. Every participant of the key exchange
communication transmits only one broadcast message.

1. Participants agree on a pairing e : E[n] x E[n] — F,, and P,Q € E|[n|, where

n = p".

23

Alice chooses private key a € F,, and broadcasts her public key A =a - P.
Bob chooses private key b € [, and broadcasts his public key B =10- P.
Charlie chooses private key ¢ € F,, and broadcasts his public key C' = ¢- P.
Alice computes k = e(bP,cP)* = e(P, P)®¢, Bob computes k = e(aP,cP)* =
e(P, P)®¢ and Charlie computes k = e(aP,bP)¢ = e(P, P)**.

k is the shared secret key all three parties have computed.

Bob

Ok W

secret key a € T, secret key b € F,, secret key c € F,,
public key A = aP public key B = bP public key C' = aP
k = e(bP,cP)” k= e(aP,cP) k = e(aP,bP)*

= e(P, P)e = e(P, P)e = e(P, P)e

Fig. 1.6: 3-way Diffie-Hellman key exchange

1.4.5 Boneh—-Lynn—Shacham Signature Scheme

Boneh-Lynn—Shacham (BLS) short signature scheme [13] was designed by Dan Bo-
neh, Ben Lynn and Hovav Shacham as a means of providing a short enough signature
with to use over low-bandwidth channels. Generation of the signature is done by
relatively simple scalar multiplication of a point on an elliptic curve. Verification
is done by comparison of bilinear pairings. This scheme was designed with Weil
pairing in mind.

In order to sign the message, a hashing function is needed. Because the signed

message must be a point on EC, it is necessary to map the hash to the proper field.
h: {0, 1}* — Fpk

For each valid x coordinate, there are two possible points. One with positive y
coordinate and the other with negative y. In order to find a valid point, a value is
appended to the message: h(m||i), where h is the hashing fuction, m is the message
and ¢ is the incremental value. If no point is found, the value is incremented.
Probability of the hash being an affine point is approximately %
1. Key generation: Let P € E(F,:) be a point of order ¢ and random z € Z,.
The public key is PK = x - P and x is the private key.

24

2. Signature: Let m be a message. Hash m to the curve using H = h(m). The
signature is S = x - H.

3. Verification: Let e, e5 be bilinear pairings. To verify the signature, compare
e1(PK, H) and es(P,S). Verification is successful only if e; = eg, because of
the following properties:

ein(PK,H)=e(zP,H) = e (P,H)"
ea(P,S) = es(P,xH) = ea(P, H)®

1.4.6 MOV attack
Attack on the ECDLP is called MOV (Menezes, Okamoto and Vanstone) [14]. It’s

mechanism is to reduce the discrete logarithm problem to a easier discrete logarithm
problem. MOV attack only works with symmetric pairing.

This is achieved by Weil pairing. Weil pairing converts the ECDLP in E(F,) to
DLP in Fym.

Let e : G x G — Gr be a pairing. Given P € GG and aP € G it is possible to
solve e(P, P) € Gr as well as e(P,aP) = e(P, P)* € Gr.

e(P,P) = g and e(P, P)* = g%, where g € G and therefore this attack can be
used in Gr to find a.
Ezxample:
Let P € E(Fa3) be a point of order 10 and

e: E[lO] X E[lO} — 1

a bilinear pairing. If e(P, P) = 2 and e(P, Q)) = 5, then it is possible to find a:
« Compute the powers of generator e(P, P) = g = 2 in Fy; until ¢* = 5 is found.

2! =2 mod 11
2?2 =4 mod 11
23 =8 mod 11
2' =5 mod 11

e e(P,aP)=¢(P,P)* = g* = 2" and e¢(P, P) = g = 2. Therefore a = 4.

25

2 SageMath

SageMath is a free open-source mathematics software. SageMath’s computational
abilities include a vast number of mathematical fields, such as basic algebra, calculus,
number theory, cryptography, numerical computation, commutative algebra, group
theory, combinatorics, graph theory and so on. It is available for Windows, Linux
and MacOS. In essence, it functions as a free alternative to programs such as Maple
or Matlab.

Sage also offers an online solution titled SageMathCelll] SageMathCell is an
open-source web interface, that allows users to perform Sage computations without
having to install Sage. It can also be easily embedded into any webpage [16].

Sage is capable of performig computations over EC. Built-in functionalities in-
clude defining a curve (including the field), calculating the order of the curve, points

on the curve and their orders as well as point addition and scalar multiplication.

2.1 Elliptic Curves in Sage

There are multiple ways of defining an elliptic curve in Sage. The command for
defining EC is E1lipticCurve, which can have a plethora of parameters [15].

By default, Sage uses the generalized Weierstrass form described in Equation
[[.1l What defines the curve are the parameters ay, as, as, as and ag. In Sage they
are entered in the same order as in Equation

#command defining an EC
EllipticCurve([al, a3, a2, a4, a6])

The previous command would define the curve over R [I7]. To define a curve

E(F5): y* =23 — x + 1, one would need to input

E = EllipticCurve(GF(5),[0, 0, O, -1, 1])

,where GF (5) defines [F5.
Sage has an built-in tool, which returns the order of an elliptic curve. The

function is titled cardinality(). The following syntax is used:

#definition of EC
E = EllipticCurve(GF(5),[0, O, O, -1, 1])

#calling cardinality () over E
E.cardinality ()

"https://sagecell.sagemath.org/

26

https://sagecell.sagemath.org/

2.2 Points and operations

Points on an elliptic curve can also be returned by their own function, points().

#definition of EC
E = EllipticCurve(GF(5),[0, O, O, -1, 11)

#calling points () function
E.points ()

This function returns an array of points on a selected elliptic curve. Sage displays
points on an elliptic curve in two formats.

e (z:y:0)is a point at infinity O.

e (z:y:1)is an projective point.
These formats are not suitable as an output. In order to get the points in (x,¥)
form, a method .xy () can be called over a point. This method cannot be used over
a point at infinity

Ezxample:

Input:

E = EllipticCurve(GF(5),[0, 0, 0, -1, 11)
print (E)

print (’0Order of E: ’, E.cardinality())
print (’Points: ’, E.points())

print (’Formatted points:’)
#iterate through all points
for point in E.points():
#check for point at infinity (z : y : 0)
if point[2] != O:
print (point.xy ())

Qutput:

#elliptic curwve

Elliptic Curve defined by y 2 x"3 - x + 1 over Finite
Field of size 5
#cardinality
Order of E: 8
#array of points
Points: [(O: 1 :0), (O :1: 1), (O : 4 : 1),
1 :1 : 1, (1 :4 : 1), (3 :0: 1),
(4 : 1 : 1), (4 : 4 : 1)]

27

Points in affine coordinates:

(0, 1
(0, 4)
(1, 1)
(1, 4)
(3, 0
(4, 1)
(4, 4)

The defined curve has an order of 8 with 7 projective points and one point at infinity.
Point addition is also already implemented in Sage and is as simple as P + Q,
after defining points P and). Sage then returns the resulting point on the curve.

Example of point addition using the curve from the previous example:

Input:

P = E(0,4)

Q = E(1,4)

print (’Point P = ’, P.xy())
print (’Point Q = ’, Q.xy())
R =P + Q

print (’Sum of P,Q: R = ’, R.xy())
Output:

#point P

Point P = (0, 4)

#point @

Point Q = (1, 4)

#P+(

Sum of P,Q: R = (4 , 1)

Sage supports scalar multiplication as well. Requirements for scalar multiplication
are a curve F, point on the curve P and scalar multiple s.
Example of scalar multiplication using the curve and point P from the previous

example:

Input:

print (’Point P = 7, P.xy())

s = 4

print (’Scalar multiple s = ’, s)

T = sx*P

print (’Result of multiplication: T = ’, T)

28

Output:

#point P

Point P = (0, 4)

#scalar multiple s

Scalar multiple s = 4

#s*P

Result of multiplication: T = (3, 0)

2.3 Bilinear Pairings

There are three types of pairings implemented in Sage. They are Ate, Tate and
Weil pairings. For the purpose of this thesis, Tate and Weil are used. The following
parameters are necessary to successfully compute the pairings:

« Scalar multipled] a, b.

P, @) are points on curve E(F,

).
ris an integer s.t. n- P =n-Q = (00, 00).

n is the order of point P.

e k is the embedding degree.

#Weil pairing

e weil = (a*P).weil pairing(b*Q, r)

#Tate pairing
e_tate = (a*P).tate_pairing(b*Q, n, k)

2.4 SageMathCell

SageMathCell is an web-based version of SageMath. It does not require a local
installation, because it is hosted and running on a remote server. Embedding Sage-
MathCell is a fairly simple task. The following line needs to be added into the
<head> section of an HTML file of the website:

<script src="https://<server>/static/embedded_sagecell.js"></script>

where the default <server> is sagecell.sagemath.org. It is possible to create a
personal SageMathCell server and use it this way.

In order to create a cell, the following script should be run:

2These parameters are not mandatory.

29

sagecell .makeSagecell ({inputLocation: "[jQuery selector]"});

where [jQuery selector] can be a predefined input location, such as div. compute
which would create a Sage cell into which the user input could be entered. It can also
be user defined, such as #mycell. This would affect all cells created with id=mycell.

The language in which the computational commands are entered is Python.
SageMathCell also supports interactive input. That is achieved by the @interact

command. A number of different input types can be created, for example text boxes.

modulus | 5
al |0
a2 |0
a3 0
a4 -1
a6 1
Elliptic Curve defined by y*2 = x*3 + &*x + 1 over Finite Field of size 5
Number of points: 8
Points: [(0 1 :0), (0 :1:1), (0 :4 1), (L :1:1), (L :4 1), (3 :0:1), (¢£:1:1), (4:4:1)]
Fig. 2.1: Textboxes with default values
@interact #default value p=5

def _showPoints(p = input_box(’5’, label=’modulus’),
#default wvalue al=0
al input_box(’0’, label=’al’),
a2 = input_box(’0’, label=’a2’),
a3 input_box(’0’, label=’a3’),
ad input_box(’-1’, label=’ad’),
a6 = input_box(’1’, label=’a6’)):
E = EllipticCurve(GF(p),[al, a3, a2, a4, a6])
print (E)
print (’Number of points: ’, E.cardinality())

print (’Points: ’, E.points())

This code would produce six text boxes with default values, as seen in [2.1]
Input types and selectors can be combined. For example, it is possible to create

one text box selector and make the other one a drop down menu, as seen in [2.2]

30

PointP [(0:4:1) ~

n |1

Fig. 2.2: Textbox and drop down menu selector

The code used to achieve this:

#default point from points() array

def (P = selector(listOfPoints, default=1istOfPoints[2],
label=’Point P’),
n = input_box(’1’, label=’n’)):

31

3 Implementation

Implementation of this thesis is focused on creating a web application, which would
serve as a educational and showcasing tool about basic operations on elliptic curves,
such as point addition and scalar multiplication, as well as pairing operations. Op-
erations with pairings are best shown in the form of established protocols, e.g.
Boneh-Lynn—Shacham Signature Scheme or ECDH.

Recommended computational program for this implementation was Sage, which
only offers console input and output. That is not suitable for such application, let
alone a web application as it is not user-friendly and would make the overall comfort
of interacting with the application minimal. It is, however, suitable for background
computations.

The biggest challenge lies in successfully connecting Sage to an existing website.
Once that is achieved, the user would be able to use the website to:

o generate input in the form of variables

« have the input data calculated by Sage

» see the results of Sage calculations

However, certain limitations regarding connection appear with this solution as
Sage needs to work as a back-end for the front-end (the website). Connecting the
two would be possible with the use of a custom Python script, but there is also
the option to use SageMathCell, which does not require a local installation as it is
installed on a remote server.

The application consist of multiple tabs, which are described in next sections.
List of all pages:

« Points on EC

e Plot of EC in R

o Point addition

o Scalar multiplication

o Bilinear pairing

o 3-way Diffie-Hellman Exchange

« MOV attack

o BLS scheme

The solution is available at https://www.stud.feec.vutbr.cz/~xmogro00/.

3.1 Web Application

The goal of this thesis is to create a web application showing pairing based cryptog-

raphy. In order to do that, it is neccessary to connent the web page with Sage.

32

https://www.stud.feec.vutbr.cz/~xmogro00/

While Sage is primarily a desktop application, SageMathCell can be embedded
into web pages.

The initial solution was based on the one created in [I8]. The author had to
create a connection between JavaFX application and a desktop version of Sage. The
author overcame this problem by using sockets. In that scenario, SageMath serves
as a back-end and JavaFX application as a front-end. Because Sage is written in
Python and is capable of running Python scripts, the author created a script, which
set up a listener on SageMath Server and was taking requests from the JavaFX
client.

For the purpose of this thesis, the initial solution tried to replicate that using
Springﬂ framework in a Java application, which would send requests to a running
instance of SageMath and display formatted results. This solution soon proved
impractical, since the aim was to deploy the solution to a website where Sage is
not installed and would require to install and run Sage on the same server, that is
hosting the web application or to be constantly connected to a server running Sage.
Therefore, SageMathCell was used.

Web Interface Sage Senver
Input
— Sage cell > Sage function
Cutput ¥
.« Display output b Computed output

Fig. 3.1: Diagram of internal logic

Once SageMathCell is embedded into a website, user can generate input using
the created cell on the website. This input sent via the Internet to a selected
SageMathCell server, which performs the computations described in the created cell.
These computations are written in Python. After the computations are performed,

SageMathCell server sends the data back to the website, which displays the results.

Ihttps://spring.io/

33

https://spring.io/

3.1.1 Design

The website is based on a template available at https://html5up.net/phantom
under Creative Commons licence (CC BY 3.0). This template was chosen for its
simplicity, which makes it ease to navigate and generally user-friendly. The appli-
cation was developed using WebStorm 2020.2.3.

Main menu is composed of colourful square tiles. They act as buttons and provide
a link to specific pages. The location (functionality) is written in their center. When
a user hovers over the tiles, additional description can be seen. Figure [3.2 shows an
example of the design and styling of the tiles. All tabs are shown in the Appendix
(Al

POINTS ON EC

SCALAR MULTIPLICATION BILINEAR PAIRING

Fig. 3.2: Example of main menu tiles

Each separate page contains a drop down menu to help access to other pages.
The user can therefore either use the ,,Go Back“ button in their browser, click the
link in the header, which leads to main menu, or use the drop down menu.

Example of tile configuration in the CSS file:

34

https://html5up.net/phantom

.tiles article {
transition: transform 0.5s ease, opacity 0.5s ease;
position: relative;
width: calc(33.33333% - 2.5em);
margin: 2.5em 0 O 2.5em;

by

Example of menu implementation in HTML, which is present on all pages:

<!-- Menu -->
<nav id="menu">
<h2>Menu</h2>

Points on EC</1li>
Plot</1li>
Point Addition</1li>
Scalar
Multiplication</1i>
Bilinear
pairing</1i>
DH Exchange</1li>
MOV attack</1li>

</nav>

}

3.2 Points on EC tab

This tab allows for user input of the modulus of a finite field and parameters of a
curve. The output consists of EC equation, order of EC and an array of points on
the curve including their orders. Also included is a plot of the curve in [F,, see an
example for E(F5) : y*> = 2° — 2 + 1 in Figure

The implementation of this functionality utilizes only basic Sage commands and

an iterator used for displaying points, as seen in Section [2.2]

3.3 Plot an EC tab

In this tab, the user can define their own EC over a rational field R an plot its graph.

Ezxample:

35

a.0¢ ® e

3.5 1

3.0 1

2.5

2.0

1.54

1.0¢ < @

0.5 1

0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

Fig. 3.3: Example of a plot in F,

show(graphics_array([plot(E,thickness=3)]),xmin=-3, xmax=3, ymin=-3,

ymax=3, frame=True)

where FE is a predifined elliptic curve, thickess is the thickness of the plotted graph

and xmin, xmax, ymin and ymax are the graph borders. For the resulting plot, see

Figure [3.4]

Elliptic Curve defined by v*2 = x"3 - % + 1 over Rational Field

3

I
N

T T T T T T
-3 -2 -1 0 1 2 3

Fig. 3.4: Plotting in Sage

36

3.4 Point addition tab

3 — 241 over Fj,

Point addition tab presents the user with a predefined curve y? = x
but there are text boxes to define a different curve. User can choose points P and
@ on the curve and their sum is calculated. SageCell uses the @interact keyword
to determine if a method has interactive arguments (meaning it is waiting for user
input). The curve needs to be selected first, then a list of points is calculated and
only after that it can be passed as an argument to a method performing the addition.

Figure [3.5| shows point addition on the created website.

PointP= (4, 1) of order4 PointQ= (3,0) of order2

R = (4, 4) of order 4

UPDATE

Fig. 3.5: Example of point addition

In order to be able to select the points, this method also needs the @interact
handle, which creates a bordered window within the window of the previous handle.

As a result, the final Sage form is composed of nested windows.

3.5 Scalar multiplication tab

3 — 2 +1 over F5 as well. User chooses

This tab uses the predefined curve y? = x
point P and a scalar multiple s. The default value of sis 1. Then, the multiplication
is calculated and the result displayed. Window containing the output and point
selection as again nested in the curve selection window. Figure [3.6] shows scalar
multiplication on the created website. User selects two points from the drop-down

menus and pushes the update button to perform the computation.

PointP= (1 4)oforder8

UPDATE

Fig. 3.6: Example of scalar multiplication

37

3.6 Bilinear pairing tab

As the name suggest, this tab allows the user to perform computations of bilinear
pairing. Two pairing are used: Weil pairing and Tate pairing. User is able to
select one curve form a list of three curves in the case of Weil pairing and two curves
in the case a Tate pairing.

o E(Fn):y*+y=212+1x+1 (only Weil pairing)

o BE(Fy):9y?+2y=212°+3z+3

o E(Fy3):y*=2%+36x+5

The user is provided with information regarding the selected curve, including a
pre-selected torsion point, embedding degree and general formula of a pairing. Then
users can select two points, that they want to use with pairing, and scalar multiples
a,b. Figure shows the Weil pairing section of the website.

EC: E(Fu)y?+y=x+x+1

Torsion point E[9]

Embedding degree k = 2

e E[n]xE[n]-=Z
e(a'P,b"Q)
*
PointP= (2,10) of order9 PointQ= (4*t+3,7) of order9

e(aP, bQ) -> t + 3

a= |1
b= |1
UPDATE
Note: F(1172) = F(11)/(t"~2 + 1), which has elements 1, ..., 10, t

Fig. 3.7: Weil pairing

Important property of Tate pairing is, that the two selected points must be of
the same order. Therefore, users select a given curve, select desired order of points
and only then can they select the points.

e _setCurve(curveE). This method takes argument curveE, which is a selector

and has arguments selector(source, default value, label).
— curveDict, which is a dictionary containing elliptic curves.

— default=curveSelector[0], which sets the default value of the selector.

38

— label="EC: ’, which sets what is displayed in the form.
o _orderSelect(order). This method takes argument order, which is also a
selector. Only Tate pairing uses this method.
— orderDict, which is a dictionary containing all orders of points.
— default=orderSelector[1], which sets the default value of the selector.
— label=’0rder of points = ’, which sets what is displayed in the form.
e _pairing(pointP, pointQ, a, b). Arguments pointP and pointQ are
again selectors, this time they contain values from dictionaries filtered in

method _orderSelect. a and b are input boxes and contain integers.

3.7 3-way Diffie-Hellman Exchange tab

Implementation of 3-way DH protocol is conceptually similar to the implementation
of the Tate pairing. User selects a pre-defined curve from a list. Then, they need
to select a desired order of points on the curve. The secret keys a, b and ¢ can be
typed into accordingly labelled text boxes.

This function uses methods _setCurve(curveE) and _orderSelect(order), as
seen in Section . A new method _exchange(a, b, c, pointP, pointQ) has
arguments a, b, ¢, which are selectors of values of IF,, and selectors of points P and
Q.

As output, the user sees parameters of all three participants and computed k.
Figure |3.8 shows parameter selection. The scheme starts once the user presses the

update button.

EC: E(Fu)y?+2y=x>+3x+3

Remember that points P and Q must be of the same order!

Note: F(1173) = F(11)/(t~3 + 1), which has elements 1, ..., 10, t, t~2

Orderof

points =

c= 9
PointP= (t"2+8°t+10,7't"2+3"t+1)

PointQ= (9,9

UPDATE

Fig. 3.8: Parameter selection

39

Example of and exchange with EC E(Fy;) : > +2y = 23+ 32 +3, P = (> + 8t +
10,7t + 3t + 1) and Q = (9,9), where P, Q are of order 7 with parameter selection

shown in Figure 3.8}

Alice:
SECRET key a = 6,
PUBLIC key pair Ap = a * P = (y~2 + 8%y + 10, 4%y~2 + 8%y + 8)
Ag =a*xQ= (4, 4
Bob:

SECRET key b = 2,
PUBLIC key pair Bp= b * P
Bg =b * Q

(7T*xy~2 + 9%y + 8, 10*y~2 + 6%y + b)
(8, 9

Charlie:
SECRET key c = 9,
PUBLIC key pair Cp

I
O
*
I

(T*xy~2 + 9%y + 8, 10*y~2 + 6%y + b)

Q
Q
I
(¢}
*

o
|

(Ap, Aq), Bob broadcasts B = (Bp, Bq)
and Charlie broadcasts C = (Cp, Cq).

Alice broadcasts pair A

Alice: k = 10*xy™2 + 7xy + 8
Bob: k = 10*y™2 + 7xy + 8
Charlie: k = 10*xy~2 + 7*y + 8

3.8 MOV attack tab

This tab provides basic information about the preliminaries of the MOV attack,
such as two bilinear pairings and nature of necessary parameters. User is prompted
to select an EC from a list, select a point P of the selected EC and select point a - P.

Output consists of establishing pairings e;(P, Q) and ez(a - P, Q) = es(P,Q)* =
e}, equation of the elliptic curve and embedding degree k. Point @) is randomly
selected from Fx. T is represented as F,/(t* 4 1). Finally, the result a is displayed
and user can check whether it is correct in a Sage cell right bellow by selecting the
original point P and typing in the resulting a. Figure|3.9 shows parameter selection
and the resulting output.

This tab uses methods similar to methods in other pairing related tabs, such as

curve selection, point selection and computational method.

40

EC: E(Fas):y?=x%+x
PointP= (3 1) oforder 10

a*P= (13,21)

E(Fs): y2 = 2% + x

a*pP = (13, 21)
randomly selected Q = (11, 23*t + 15)
Note: F(2972) = F(29)/(t*2 + 1), which has elements 1, ..., 28, t

RESULT
a =4

Check result bellow:

PointP= (3,1)of order 10

a= |4

UPDATE

Px = a*P = (13, 21)

Fig. 3.9: MOV attack

3.9 BLS signature scheme tab

This tab shows the necessary steps in creating the BLS scheme. The scheme is
implemented with a BN254 elliptic curve. User can enter an arbitrary message,
which is then used in the computations.

Parameter generation shows randomly selected point P, private key sk and public
key PK = sk - P. A signature is generated by hashing of the message to the curve
and multiplying it by the private key: S = sk - H(m), where S is the signature,
m is the message and hashing function H(m). Then, the signature is verified using

bilinear pairings.

41

Users can alter the result in two ways. It is possible to tick a check-box labelled

,Fake signature“, which uses altered (and incorrect) signature. There is also an

input box, where the message m can be changed, as seen in [3.10]

Main method of this tab is _setCurve(message), where the computations are

performed and which includes methods

_sign(checkbox) and _verify(message).

These auxiliary methods are mostly used to generate text with the computed values,

but pairings are both computed and compared within the verification method.

embedding degree k=12

Fake

signature

Parameter generation:

point P = (10032984008539498937769505083617016527018120968820265697195378641076159859233*t~11 + 10476888246
private key sk = 14044399617404530802674921424231777778748057359418930185735642256858658060586
public key Pk = sk *# P = (3120111362620530355625083623601414256835444153137027171056856462467954114842%t~11

Signature:

hash H = h(m) = (99162510111704663523382834
*

w

signature S5 = sk (1586452040767280

Verification: VALID
el (Pk,H) = el (x*P,H) = el (P, H)"x
e2(P,S) = e2(P,x*H) = e2(P,H)"x

Verification is successful only 1if el = e2

m= |[Message text

Try verification with a modified message.

status: VALID

Fig. 3.10

35450146972218115360034083363275409963464

oL

893245299722700666484468989659570685517167

: BLS scheme

42

Conclusion

The application created as part of this thesis was initially developed using a local
installation of Sage on the same server, where the webpage is hosted. To minimize
the space required, as the size of installed Sage application is in the magnitude
of GBs, a remote service called SageMathCell was used. SageMathCell provides
the functionality of standard Sage installation, but serves as an interface. The
computations are done remotely. Website it self is based on a template, which is
free to use under a Creative Commons license. It uses HTML files, CSS files and
JQuery for design elements.

The application is split into multiple parts, which can be accessed either from
the tiles (clickable buttons) on the index.html page or from a drop down menu.
Each of these parts represents an example of an operation on elliptic curves. They
include displaying points on EC over a finite field and their plot in I, plot of the
curve in R, performing point addition of two points on a user—selected curve in the
generalized Weierstrass form and scalar multiplication. Bilinear pairings are also
represented, users can compute Weil and Tate pairings on preselected curves. Fur-
ther use of bilinear pairings comes into play with 3-way Diffie-Hellman key exchange
and subsequently, MOV attack.

43

Bibliography

1]

WASHINGTON, Lawrence C. FElliptic curves: Number theory and Cryptogra-
phy. 2nd ed. Boca Raton, FL: CRC Press, 2008. Discrete mathematics and its
applications. ISBN 978-1420071467.

HAJNY, J.: DZURENDA, P.; RICCI, S.; MALINA, L.; VRBA, K. Performance
Analysis of Pairing-Based Elliptic Curve Cryptography on Constrained Devices.
2018 10th International Congress on Ultra Modern Telecommunications and
Control Systems and Workshops (ICUMT), 2018, pp. 1-5, https://doi.org/
10.1109/ICUMT.2018.8631228.

LAURIDSEN, Martin M. A Short Note on Cryptography using Elliptic Curves,
Bilinear Pairings and Lattices [online]. Technical University of Denmark, s. 1-
36 [cit. 2021-5-28]. Dostupné z: https://martinlauridsen.info/pub/intro_
to_pairings_lattices.pdf

LANDWEBER, Peter S. Elliptic Curves and Modular Forms in Algebraic Topol-
oqy: Proceedings of a Conference held at the Institute for Advanced Study,
Princeton, Sept. 15-17, 1986. Springer-Verlag Berlin Heidelberg, 1988. Discrete
mathematics and its applications. ISBN 978-3-540-39300-9.

MULLEN, Gary L. and PANARIO, Daniel. Handbook of Finite Fields. Boca
Raton, FL: CRC Press, 2013, 1068 s. Discrete Mathematics and Its Applica-
tions. ISBN 978-1439873786.

BERNSTEIN, Daniel J. Introduction to post-quantum cryptography. In:
Bernstein D.J., Buchmann J., Dahmen E. (eds) Post-Quantum Cryp-
tography, 2009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/
978-3-540-88702-7 1

SILVERMAN, J.H. and SUZUKI, J. Elliptic Curve Discrete Logarithms and
the Index Calculus. In: Ohta K., Pei D. (eds) Advances in Cryptology — ASI-
ACRYPT’98. ASTACRYPT 1998. Lecture Notes in Computer Science, vol 1514.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49649-1 10

MENEZES, Alfred J., Paul C. van OORSCHOT and Scott A. VANSTONE.
Handbook of applied cryptography. Boca Raton: CRC, 1997. CRC Press series
on discrete mathematics and its applications. ISBN 08-493-8523-7.

GALBRAITH, Steven D.; PATERSON, Kenneth G.; SMART, Nigel P. Pair-
ings for cryptographers. In: Discrete Applied Mathematics, Volume 156, Issue

44

https://doi.org/10.1109/ICUMT.2018.8631228
https://doi.org/10.1109/ICUMT.2018.8631228
https://martinlauridsen.info/pub/intro_to_pairings_lattices.pdf
https://martinlauridsen.info/pub/intro_to_pairings_lattices.pdf
https://doi.org/10.1007/978-3-540-88702-7_1
https://doi.org/10.1007/978-3-540-88702-7_1
https://doi.org/10.1007/3-540-49649-1_10

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

16, 2008, p. 3113-3121, ISSN 0166-218X, https://doi.org/10.1016/j.dam.
2007.12.010.

MENEZES, A. An Introduction to Pairing-Based Cryptography. , UIMP-RSME
Santal6 Summer School. Recent Trends in Cryptography. Santander: American
Mathematical Soc., 2009, s. 47-65. ISBN 978-0821839843.

MOODY, D. The Diffie-Hellman problem and generalization of Verheul’s theo-
rem. Designs, Codes and Cryptography volume. 2009, 52(2), 381-390. Dostupné
z: doithttps://doi.org/10.1007/s10623-009-9287-x

CHENG, Z., VASIU, L., COMLEY, R. Pairing-Based One-Round Tripartite
Key Agreement Protocols. Cryptology ePrint Archive: Report 2004/079. http:
//www.eprint.iacr.org/2004/079 (2004)

BONEH D., LYNN B., SHACHAM H. Short Signatures from the Weil Pairing.
In: Boyd C. (eds) Advances in Cryptology — ASIACRYPT 2001. ASTACRYPT
2001. Lecture Notes in Computer Science, vol 2248. Springer, Berlin, Heidel-
berg. https://doi.org/10.1007/3-540-45682-1_30

FLORIAN, L.; MIRELES, David J.; SHPARLINSKI, Igor E. MOV attack in
various subgroups on elliptic curves. Illinois J. Math. 48 (3) 1041 - 1052, Fall
2004. https://doi.org/10.1215/1ijm/1258131069

Sage Tutorial. In: SageMath Documentation [online]. 2020 [cit. 2020-12-9]. Dos-
tupné z: https://doc.sagemath.org/pdf/en/tutorial/SageTutorial .pdf

Embedding Sage Cells. GitHub [online]. [cit. 2020-12-9]. Dostupné z: https:
//github.com/sagemath/sagecell/blob/master/doc/embedding.rst

FElliptic Curves. SageMath Documentation [online]. 2020 [cit. 2020-12-9]. Dos-
tupné z: https://doc.sagemath.org/html/en/constructions/elliptic_

curves.html

JANOUT, Vladimir. Application for Elliptic Curve Cryptography. Brno, 2020.
Bachelor’s thesis. Brno University of Technology, Faculty of Electrical Engi-

neering and Communication. Vedouci prace M.Sc. Sara Ricci, Ph.D.

45

https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1007/s10623-009-9287-x
http://www.eprint.iacr.org/2004/079
http://www.eprint.iacr.org/2004/079
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1215/ijm/1258131069
https://doc.sagemath.org/pdf/en/tutorial/SageTutorial.pdf
https://github.com/sagemath/sagecell/blob/master/doc/embedding.rst
https://github.com/sagemath/sagecell/blob/master/doc/embedding.rst
https://doc.sagemath.org/html/en/constructions/elliptic_curves.html
https://doc.sagemath.org/html/en/constructions/elliptic_curves.html

List of symbols, quantities and abbreviations

BLS Boneh-Lynn-Shacham signature scheme

DH Diffe-Hellman protocol

DLP Discrete Logarithm Problem

EC Elliptic Curve

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDLP Elliptic Curve Discrete Logarithm Problem
HTML HyperText Markup Language

RSA Rivest, Shamir, Adleman cryptosystem

46

List of appendices

[A_Website tabs | 48
(Al Pointson BEC|. o o 48
(A2 Point addition| Lo 49
[A.3 Scalar multiplication |00 50
(A4 Plotan ECI 51
[A.5 Bilinear pairings| 52
[A.6 3-way Difhe-Hellman Exchange|. 54
(A7 MOV attack| 55
[A.8 BLS signature scheme| 0oL 56

47

A Website tabs

A.1 Points on EC

POINTS ON EC

The generalised

Weierstrass form: y

“rapy+ay=x+ax +a

Y X+a,
/ 6

4

3.5

3.0

2.5

2.0

154

0.5

modulus (5
a6 |1

a0¢

al |0 a2

+

a3

¥

0.5 10

T T T & T T

15 2.0 2.5 3.0 35 4.0

Elliptic Curve defined by y"2 = x™3 + 4*x + 1 over Finite Field of size 5

Finite Field of size 5

(o,
(0,
(1,
(L,
(3,
(4,
(4,

Numbe r

Points:

=)
1)
4)
1)
4)
0)
1)
4)

of
of
of
of
of
of
of

order
order
order
order
order
order

order

UPDATE

of points:

B N @ @ o

8

Fig. A.1: Points on EC

48

A.2 Point addition

e ases Aq passmod | djzH

ZJ13pioo(os)

=0 julod

31vdaddn
31vddn

g Topao 3o (p ‘T) =

g18PI0JO (D) =d3Iulod

|HT.~

e+xe 4+ _xle 4 x=Afe 4 Ax'e + A o) sseijsials pasielauss su
e+ +N +X=Ae+ +N,. 10] sseljsiaisp) pasl) 1L

NOlllddVy LNIOd

Fig. A.2: Point addition

49

Wieps8es Ag paiemod | dizH

31vdaddn
31vadn

gJspiojo (¥ °0) =djuod

L 9e
L ze \i re L — smnpouw

A.3 Scalar multiplication

¥

9 e Z 3 [. o . E
e+X7e 4 Xe+ x= A4 Axte 4 Auiio) ssensiaiap pasjelausd ay |
[4 [4

NOILVDITdILTINKW ¥V1VIS

Fig. A.3: Scalar multiplication

20

A.4 Plot an EC

=3

PISTd TeuoTaey ISA0 T + X — €.,¥ = g, A Aq psutisp saind o1adrITTld

31LvdAddn

Texe uxmm + X =FfEey fixle A iwuoy ssenjsiziap pasijelsuss ay |
[& [~ <

2340 101d

Fig. A.4: Plot an EC

51

A.5 Bilinear pairings

WEIL PAIRING

T » 2_.3
he genera ierstrass form: y“=x"+ax +b

An elliptic curve is defined over a finite field Fq

EC: E(Fu)y?+2y=x*+3x+3

Torsion point E[14]
Embedding degree k = 3

>z,

PointP= (5,9) of order 14 PointQ= (9't+7,6%t"

e(aP, bQ) -> 10*t"2 + 7+t + 8

UPDATE

Note: F(117°3) = F(11)/(t~3 + 1), which has elements 1, ..., 10, t, t"2

2+3*t+3) of order 14

Fig. A.5: Weil pairing

52

TATE PAIRING

EC: F(Fu)y+2y=x +3x+3

Remember that points P and Q must be of the same order!
Torsion point E[14]
Embedding degree k = 3

e:E[n]xE[n] = ZP
ela'P, b'Q)

Order of

points =

PointP= (7,3) PointQ= (2*t/2+4*t+6,8t"2 + 10"t + 10)

e(P, Q) -> 10*t"2 + 7*t + 8

a= |4
b= |9
Note: F(1173) = F(11)/(t"3 + 1), which has elements 1, ..., 10, t, t"2

Fig. A.6: Tate pairing

23

A.6 3-way Diffie—-Hellman Exchange

3-WAY DIFFIE-HELLMAN EXCHANGE

EC: E(Fu)y?+2y=x>+3x+3

Remember that points P and Q must be of the same order!

Note: F(1173) = F(11)/(t”3 + 1), which has elements 1, , 10, t, t°2
Order of
points =
a= 4
b= 2
c= 5
PointP= (8,9
PointQ= (4"t"2+9%t+3, 7T"t"2+7"t+1)
UPDATE
Alice:
SECRET key a = 4,
PUBLIC key pair Ap = a * P = (4, 5),
Ag = a * Q = (6*t"2 + 6*t, 9*t"2 + 4*t + 6)
Bob:
SECRET key b = 2,
PUBLIC key pair Bp= b * P = (0, 1),
Bg =b * Q = (9*t"2 + 3*t + 7, 7*t"2 + 4*t + 1)
Charlie:
SECRET key c = 5,
PUBLIC key pair Cp = c * P = (0, 8),

P
Cqg=c * Q= (9*t"2 + 3*t + 7, 4*t"2 + 7*t + 8)

Charlie: k = 4*t*2 + 3

Alice broadcasts pair A = (Ap, Aqg), Bob broadcasts B = (Bp, Bg) and Charlie
Alice: k = 4*t”2 + 3
Bob: k = 4*t”2 + 3

broadcasts C =

Fig. A.7: 3-way Diffie-Hellman Exchange

o4

A.7 MOV attack

MOV ATTACK

In order to complete the MOV attack, we need two bilinear pairings. el: e(P,Q) and e2: e(a*P,Q) = e(P,Q)%. This means, that we can assert that e2: e(P,Q)? = e1?®

and itis possible to find a

Point P € E(F) and pointQ € EprLJ, where p is prime and k is the embedding degree of E[:p)

EC: E(Fa)y®=x"+x

PointP= (19, 18) of order 10

a*P= (16,9)

el(PQ)

e2(a"P,Q) =e2(P,Q)?=el?
E(F»s): y2 = x* + x

embedding degree k = 2

P = (12, 18)
a*P = (le, 9)

el = 22*t + 15

e2 = 7*t + 14

RESULT

a==6

Check result bellow:

PointP= (19, 18) of order 10

randomly selected Q = (21, 3*t + 7)

Note: F(29°2) = F(29)/(t"2 + 1), which has elements 1, ..., 28, t

a= |6
UPDATE
Px = a*P = (16, 9)

Fig. A.8

: MOV attack

95

A.8 BLS signature scheme

BONEH-LYNN-SHACHAM (BLS) SIGNATURE SCHEME

Message text

Curve: BI\254)2 =x%+2over F(p),

5 N i
S+ 24U +6u+1

@

where p =36u*+3

6.

u=-(252+2%+1)

embedding degree k=12

Fake

signature

Parameter generation:

m= |[Message text

Try verification with a modified message.

status: VALID

= (10032984008539498937769505083617016527018120968820265697195378641076159859233*t~11 + 10476888246
private key sk = 1404439961740453080267492142423177777874805735%4168930185735642256898658060586
public key Pk = sk * P = (31201113626205303556825083623601414296835444153137027171056856462467954114842*t~11
Signature:
hash H = h(m) = (9516251011170466352338283499633545014657231811536003408336327540996346410183, 116699411222
signature § = sk * H = (15864520407672803546366853245295722700666484489896595706855171676357780283699, 4228
Verification: VALID
el (Pk,H) = el(x*P,H) = el(P,H) "X
e2(P,8) = e2(P,x*H) =
verification is successful only if el = &2

>

Fig. A.9: BLS signature scheme

26

Help | Powered by SageMath

	Introduction
	Background
	Elliptic Curves
	Finite Field

	Algebra of Elliptic Curves
	Point addition
	Scalar multiplication
	Order of EC

	Elliptic Curve Discrete Logarithm Problem
	Diffie–Hellman over E

	Bilinear Pairings
	Weil and Tate pairings
	Embedding Degree
	Pairing-friendly Elliptic Curves
	3-way Diffie–Hellman protocol
	Boneh–Lynn–Shacham Signature Scheme
	MOV attack

	SageMath
	Elliptic Curves in Sage
	Points and operations
	Bilinear Pairings
	SageMathCell

	Implementation
	Web Application
	Design

	Points on EC tab
	Plot an EC tab
	Point addition tab
	Scalar multiplication tab
	Bilinear pairing tab
	3-way Diffie–Hellman Exchange tab
	MOV attack tab
	BLS signature scheme tab

	Conclusion
	Bibliography
	List of symbols, quantities and abbreviations
	List of appendices
	Website tabs
	Points on EC
	Point addition
	Scalar multiplication
	Plot an EC
	Bilinear pairings
	3-way Diffie–Hellman Exchange
	MOV attack
	BLS signature scheme

