

Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Technologies

Bachelor Thesis

Automated regression testing of web application

Kelgenbayev Bekzat

© 2024 CZU Prague

Declaration

I declare that I have worked on my bachelor thesis titled " Automated regression

testing of web application" by myself and I have used only the sources mentioned at the end

of the thesis. As the author of the bachelor thesis, I declare that the thesis does not break any

copyrights.

In Prague on 15 March 2024 ___________________________

Acknowledgement

I would like to thank my supervisor Ing. Jan Pavlík, Ph.D. for his support during

my work on the Bachelor Thesis.

6

Automated regression testing of web application

Abstract

This study investigates the integration of automated testing in software development,

comprising both theoretical insights and practical implementation. The theoretical part

provides a detailed literature review on software testing, encloses functional and non-

functional testing types and classifications, additionally, it describes the fundamentals of test

automation tools.

The practical aspect unfolds with an introduction to an internal web application,

followed by the establishment of testing requirements and the manual testing process. The

study then searches for insights into the impact of automated testing on software quality. The

research concludes by summarizing key findings, emphasizing the importance of the

automated testing approach in modern software development practices.

Keywords: Test automation, manual testing, regression, web application, test case, test

requirements, software, Gherkin.

7

Automatizované regresní testování webové aplikace

Abstrakt

Tato práce zkoumá integraci automatizovaného testování ve vývoji softwaru,

zahrnuje jak teoretické poznatky, tak praktickou implementaci. Teoretická část poskytuje

podrobný literární přehled o testování softwaru, zahrnuje funkční a nefunkční typy a

klasifikace testování, dále popisuje základy nástrojů pro automatizaci testování.

Praktická část je založena na automatizovaném testování interní webové aplikace. Po

stanovení požadavků na testování je proveden proces ručního a následně automatizovaného

testování. Studie poté hledá poznatky o dopadu automatizovaného testování na kvalitu

softwaru. V závěru jsou shrnuta klíčová zjištění a zdůrazněna důležitost přístupu

automatizovaného testování v moderních postupech vývoje softwaru.

Klíčová slova: Automatizace testování, ruční testování, regrese, webová aplikace, testovací

případ, požadavky na testování, software, Gherkin.

8

Table of content

1 Introduction .. 10

2 Objectives and Methodology ... 11

2.1 Objectives ... 11

2.2 Methodology .. 11

3 Literature Review .. 12

3.1 Software Testing Overview.. 12

3.2 Classification of Types of Testing ... 13

3.2.1 Functional Testing .. 13

3.2.2 Non-Functional Testing .. 14

3.2.3 User Interface Testing ... 15

3.2.4 Usability Testing ... 15

3.2.5 Security Testing .. 15

3.2.6 Installation Testing ... 16

3.2.7 Configuration Testing ... 16

3.2.8 Stress Testing .. 16

3.2.9 Localization Testing ... 17

3.2.10 Stability Testing .. 17

3.2.11 Volume Testing... 17

3.2.12 Scalability Testing .. 18

3.3 Regression Testing: Concepts and Importance .. 18

3.4 Test Automation ... 19

3.5 Test Automation Tools and Frameworks ... 21

3.5.1 Selenium ... 21

3.5.2 Jenkins .. 22

3.5.3 Tosca ... 23

3.5.4 JUnit .. 23

3.5.5 NUnit .. 23

3.6 Developers and Testers .. 24

3.7 Types of Errors ... 25

4 Practical Part .. 28

4.1 Introduction into Internal Web Application ... 29

4.2 Establish the Requirements for Testing ... 30

4.2.1 High-level Overview of Business and Technical Tasks 30

4.2.2 Test case Preparation .. 32

4.3 Manual Testing... 37

4.4 Automated Testing with Python, Selenium and Jenkins tools 39

9

4.4.1 Gherkin Language Scenarios, BDD test ... 40

4.4.2 Test Execution and Automation Outputs .. 43

5 Results and Discussion ... 46

5.1 Time and Efficiency ... 46

5.2 Usability Factors .. 47

5.3 Discussion .. 48

6 Conclusion ... 49

7 References ... 50

8 List of pictures, tables, graphs, and abbreviations ... 52

8.1 List of figures ... 52

8.2 List of tables ... 52

9 Appendix ... 53

10

1 Introduction

Programming has transitioned from being a niche industry to an integral part of our

daily lives. It permeates everything from the apps on our smartphones to the complex

systems driving businesses, finance, agriculture, logistics, and medicine, making software

development a pivotal force in shaping our world. Ensuring the accurate execution of

program operations depends on one key aspect: software testing. At the core of software

engineering, software testing upholds the quality of the final product.

Software testing is not a field that captures significant public attention. Initially, it

emerged as a foundational element of the development process. The integration of automated

testing has been present since the inception of testing practices. However, only recently has

the potential of automated testing truly accelerated. In spite of extensive academic

exploration into testing and automation, the impact of automation advancements on testing

professionals has largely remained unexplored.

This thesis aims to investigate and contrast two testing techniques, identifying their

advantages and limitations, and subsequently making a comparative analysis. The research

seeks to add to the existing reservoir of knowledge regarding automated software testing,

providing certain insights that could help in the decision-making processes.

The primary goal is to examine and assess diverse approaches testing to complex

systems while enhancing software testing quality, reducing defects, and improving the

efficiency of web application development.

11

2 Objectives and Methodology

2.1 Objectives

The primary objective of this thesis is to evaluate and compare the efficiency of

automated and manual testing, utilizing predefined criteria to establish which approach

offers superior performance in particular test scenarios.

Partial objectives:

- Conduct a literature review using available information sources focusing on the

topics of web application testing and test automation.

- Analyse the chosen web application, specify its functional requirements, and develop

a set of test cases.

- Execute the test cases using both manual and automated testing methods to ensure

proper functionality and identify any defects or errors.

- To compare the results of the manual and automated testing methods based on the

selected criteria and provide recommendations for future testing.

2.2 Methodology

The theoretical part of this thesis consists of an analysis of professional literature and

online sources in the area of test automation. This section will outline various test groups,

levels, and types of testing, along with the different tools used for automated testing. The

insights gained from the theoretical part will be applied in the practical part, which will

involve analysing a chosen web application, specifying requirements for testing, and

developing a set of test cases. Both manual and automated testing will be implemented,

evaluated, and compared. The results of the practical part will be used to formulate

recommendations and discuss the advantages of the proposed automation. The Thesis

conclusions will utilize knowledge obtained from both theoretical and practical parts.

12

3 Literature Review

3.1 Software Testing Overview

Software testing is like quality control for software. Just as you wouldn't want a faulty

product to reach customers, you don't want faulty software to be used by users. Testing is

the process of examining a software application to find defects and ensure that it works as

intended. It is used to verify that functional requirements were met. The major purpose of

verification and validation activities is to ensure that software design, code, and

documentation meet all the requirements imposed on them (Lewis, 2008, p. 10). It's an

essential element of creating reliable, user-friendly, and high-quality programs.

When a company contemplates a new development project, it prepares a business case

that clearly identifies the expected benefits, costs, and risks (Everett, McLeod, 2007, p. 9).

Upon input, the tester is provided with a program slated for testing, along with corresponding

requirements. While observing the program under certain conditions, the tester obtains

information about whether the program is compliant or non-compliant with the requirements

through the output. This gathered information serves as the basis for fixing any detected bugs

within an already established product or for adjusting the requirements of a product that

remains in the developmental phase.

Software testing involves the validation of congruity between the real-world

operational performance of a program and its expected behaviour. This process is conducted

across a limited collection of tests, meticulously chosen through a specific methodology.

Tests can vary in duration, ranging from short assessments to more extended

evaluations like performance tests that check a system's response under sustained loads.

Consequently, within the testing phase, the tester undertakes two primary

responsibilities:

• Supervising the execution of the program and generating simulated scenarios to test

its behaviour.

• Examining how the program behaves in different scenarios it generates and then

contrasting its observed behaviour with anticipated outcomes.

13

Testing identifies defects and failures and provides information on the software and

the risks associated with their release to the market (Homès, 2012, p. 5). But, if we consider

the tasks of modern testing, we can conclude that they consist not only of detecting errors in

programs but also of identifying the reasons why they occur. This approach to the testing

process allows developers to perform their work with maximum efficiency, eliminating the

detected errors quickly and promptly.

Figure 1: High-level Overview of Software Testing, Source: Homès, 2012

3.2 Classification of Types of Testing

Tests differ relevantly in the tasks they solve, and the technique used. The testing

methods are used to comprehensively evaluate various aspects of a software application,

covering from its features and user interface to its performance, security, and additional

areas. In this chapter we will discuss the different types of testing that serve distinct purposes,

addressing a wide spectrum of requirements and concerns.

3.2.1 Functional Testing

Functional testing is achieved by a series of tests that exercise increasingly more of the

software that directly enables users to accomplish this routine daily business (Everett,

McLeod, 2007, p. 99). This type of testing is performed to validate that the software is

working as expected and meets the user’s requirements. The primary focus is on the

software’s functionality and includes various levels of testing such as unit testing, integration

14

testing, system testing, and acceptance testing (Leloudas, 2023, p. 5). These levels are widely

known as the testing pyramid (shown in Figure 2), a concept introduced by Mike Cohn.

Figure 2: Testing Pyramid, Source: Leloudas, 2023

3.2.2 Non-Functional Testing

Non-functional testing customizes settings programmatically to align with custom

requirements. The objective is to ensure that the software meets its non-functional

requirements and provides a positive user experience (Leloudas, 2023, p. 2). Thus, non-

functional testing is the testing of all properties of the program, regardless of the

functionality of the system. Such estimates can be obtained in terms of parameter estimation

as:

1. Reliability (ability of the system to respond to unforeseen situations).

2. Performance (the ability of the system to work under heavy loads).

3. Convenience (study of user convenience with the application).

4. Scalability (the ability to scale the application both vertically and

horizontally).

5. Security (detection of potential application breaches and high availability

theft).

6. Portability (the ability to use on the set of platforms used)

15

3.2.3 User Interface Testing

This is testing the correctness of the representation of the elements of the user's view

on various solutions, the correctness of their achievement for the users to perform various

tasks, and a reasonable assessment, a universal setting of the task for themselves. This testing

makes it possible to evaluate how effectively the user can work with the application and how

the appearance is created using actual documents by designers. When checking the user

interface, the main task of the tester is to identify visual and structural flaws in GUI

applications, applicability, and ease of navigation in the application, and adjust the

application to process data using other input devices with keyboards, mice, and input

devices. User interface testing is necessary to make sure that the interface meets the

requirements and extension and enhances the user experience with the graphical interface of

applications.

3.2.4 Usability Testing

Usability testing is a type of testing performed to evaluate how user-friendly a product

is. The objective is to determine how easy it is for users to learn and use the product, and

how efficient they are at completing tasks (Leloudas, 2023, p. 20). Usability testing is a

method of evaluation, the speed of assessing the degree of usability of applications, training

users when working with open, as well as reasonable users of the product being developed,

which corresponds to its understandability and relevance in given conditions. Such testing

is necessary to get a great positive user experience when working with the application.

3.2.5 Security Testing

Security testing determines the security of the software product, identifying Major

Vulnerabilities Computer systems often encounter cyberattacks that reveal violations of

system detection or theft of confidential data (Homès, 2012). Security testing provides an

opportunity to evaluate the actual verification and effectiveness of the mechanisms used in

the system in penetration investigation. In the process of security testing, the tester performs

the same actions that a real cracker performs. Hacking the security system with a special

tool; logins and passwords are detected using external sources; generation of errors to

identify cases of detection in the system in the process of its recovery; use of disclosed

unpatched system vulnerabilities.

16

3.2.6 Installation Testing

Install ability testing involves evaluating the ease of installing and configuring

software, ensuring that it complies with installation requirements and specifications. This

term means testing the correctness of the installation (installation) of a certain software

product (Leloudas, 2023, p. 49). Such testing usually takes place in artificially created

environments in order to determine the likelihood of a threat to the operation. The main

reasons for conducting such tests involve checking the correct behaviour of the product

during deployment or upgrade. Frequency and stable installation require very important

control over product consumption, as users allow users to consume resources faster and more

efficiently while maintaining the correct behaviour of this product in all tested software

environments.

3.2.7 Configuration Testing

Configuration testing is designed to evaluate software performance under various

system configurations and involves testing the system under different configurations to

determine how performance is affected by different settings (Leloudas, 2023, p. 15).

Depending on the type of software product being tested, configuration testing can have

different goals. Usually, this is either determining the optimal hardware configuration that

provides sufficient performance parameters for the software to work or checking a specific

hardware configuration (or a platform that includes, in addition to hardware, third-party

software required for the program to work) for compatibility with the product being tested.

When it comes to client-server software, configuration testing is carried out separately for

the server and separately for the client. Usually, when testing the compatibility of a server

with a certain configuration, the task is to find the optimal configuration, since the stability

and performance of the server are important. When testing a client, on the contrary, they try

to identify software flaws in any configurations and, if possible, eliminate them.

3.2.8 Stress Testing

Stress Testing refers to determining the application’s stability under extreme loads and

allows you to identify the maximum number of tasks of the same type that the program can

perform in parallel. It pushes the application beyond its normal operating conditions to

evaluate how it responds to these conditions (Leloudas, 2023, p. 14). The most popular goal

of load testing in the context of client-server applications is to estimate the maximum number

17

of users who can simultaneously use the services of the application. Testing reliability and

recovery after failures (stress testing). This type of testing is often done for software that

works with valuable user data, the continuity of operation, and the speed of recovery from

failures which are critical for the user. Failure and recovery testing tests the program's ability

to recover from hardware failure quickly and successfully, network outages, or critical errors

in the software itself. This makes it possible to assess the possible consequences of a failure

and the time required for the subsequent restoration of the system. Based on the data obtained

during testing, the reliability of the system can be assessed, and, in case of unsatisfactory

performance, appropriate measures can be taken to improve recovery systems.

3.2.9 Localization Testing

Localization testing makes it possible to find out how well the product is adapted to

the population of certain countries and how it corresponds to its cultural characteristics.

Usually, cultural, and linguistic nuances are considered, namely the translation of the user

interface, related documentation, and files into a certain language, and the correctness of the

formats of currencies, numbers, times, and phone numbers is also tested.

3.2.10 Stability Testing

Stability testing checks the performance of the application during long-term use at

medium loads. Depending on the type of application, certain requirements are formed for

the duration of its uninterrupted operation. Stability testing seeks to identify application

issues such as memory leaks, severe load spikes, and other factors that can prevent the

application from working for an extended period.

3.2.11 Volume Testing

Volume testing is used to evaluate how well the application can handle large volumes

of data and it aims to gauge the application's performance across different data volumes

(Leloudas, 2023, p. 15). The task of volume testing is to identify the reaction of the

application and evaluate possible deterioration in the operation of the software with a

significant increase in the amount of data in the application database. This testing includes:

1. Measurement of the execution time of operations related to obtaining or

changing database data at a certain intensity of requests.

18

2. Identification of the dependence of the increase in the time of operations on

the amount of data in the database.

3. Determination of the maximum number of users who can simultaneously

work with the application without noticeable delays from the database.

3.2.12 Scalability Testing

Scalability testing is a type of software testing designed to test the ability of a product

to increase (sometimes decrease) the scope of certain non-functional features (Leloudas,

2023, p. 15). Some types of applications must be easily scalable and, of course, remain

operable and withstand a certain user load.

3.3 Regression Testing: Concepts and Importance

Regression testing is a pivotal process within software development that involves

observing a product for new bugs or flaws after implementing changes. This procedure holds

great significance in maintaining product integrity. Running regression tests is often the most

time-consuming testing activity. When software is changed or extended, checking that the

existing functionality still works correctly is at least as important as checking that the new

functionality works correctly (Bierig, Brown, Galván, Timoney, 2021, p. 297). The

following points elucidate the essence and significance of regression testing:

1. Degradation Prevention: When making changes to code, there is a risk that

the new code can be used on existing functionality. Regression testing allows you to detect

such negative impacts and prevent product degradation.

2. Ensuring Stability: The regression testing process helps ensure that

previously fixed bugs are not returned, and the product remains stable and reliable.

3. Maintaining Functionality: Regression testing assumes that changes made do

not break Existing Functionality. This is especially important in evaluating targeted product

support.

4. Save time and resources: Automating regression testing allows you to exploit

your application quickly and efficiently for defects. This saves time and resources for busy

and testers.

5. User Trust: Regression testing of glucose for a reliable and quality product.

This indicates user trust and satisfaction with the application.

19

In general, a regression measurement involves tracking the quality markers of a

product across its entire lifespan. Its purpose is to guarantee the dependability, consistency,

and assurance of applications following each modification. The testing range is divided into

our examination subjects and a methodology for sequencing tests according to a risk

management system. The priorities are set from 1 (highest) to 4 (lowest). Priorities 1 and 2

are the main candidates for test automation. These priorities are subject to change based on

feedback from support, customers, and others. As a basis for our test objects, we use the use

cases and requirements and link them to test objects and test scripts so that we can build up

a complete traceability chain (Graham, Fewster, 2012).

3.4 Test Automation

Automated testing is validating a software solution using a specialised software tool,

and this typically involves automating functions as part of the testing process (Jose, 2021, p.

8). Automating tests results in a significant reduction in the effort and energy required for

thorough system testing. It guarantees extensive and uniform test coverage during execution,

ensuring comprehensive validation of major data sets to suggest stakeholder confidence.

Employing test automation can progressively decrease the dependency on manual testing

and manual testers over time.

You can evaluate the program at different levels of testing: code (including unit tests

and integration testing), API, and GUI. Different types of tests are more suitable for different

scenarios. Let's delve into the various types of automated testing.

Automated testing can be categorized as follows:

• Unit test—A test that examines the behaviour of a distinct unit of work. A unit

of work is a task that is not directly dependent on the completion of any other

task (Tudose, 2020, p. 5). Unit Testing is a script that tests a specific code by

means of initializing it, calling the different methods and functions in the code,

and checking the values returned by the method or function (Kaul, 2022, p.

22). Developers typically write unit tests locally as part of standard Test-

Driven Development (TDD) practices. While most unit tests are integrated into

the software code itself to evaluate the application's code, automation engineers

or testers may also be involved in their creation.

20

• API Testing. Any software system that is based on API architecture can im-

plement API testing. This type of testing is meant to validate the business layer

of the software system by inspecting the response time of the APIs used in the

application for all the requests (Kaul, 2022, p. 22).

• UI Testing. This phase is the last phase of testing in the case of a large group

of software projects. The UI is what the customers/users interact with and

hence is an important part of the testing process (Kaul, 2022, p. 22).

A unit test usually supplies varied inputs to a function and validates its expected

output. For example, a phone number validation function would be tested with

predetermined numbers to confirm its accuracy. Similarly, a quadratic equation solver

function could be tested by pre-calculating equations and comparing the returned roots.

Unit tests excel at assessing logic-heavy code. In cases where code relies heavily on

calls to other classes and lacks substantial logic, unit tests might be challenging to develop.

APIs represent callable functions for data retrieval. Testing APIs involves sending prepared

requests and comparing the responses against expectations. This approach is applicable

whenever an application possesses an API.

GUI testing pertains to the graphical interface presented to users. This form of testing

is the most intricate. For instance, when assessing website functionality, emulation of

browser behaviour is required. This process involves analysing displayed information. GUI

testing, also known as End-to-End (E2E) or acceptance testing, is essential since it mimics

user interactions.

In summary, the following scenarios warrant automation:

1. Testing hard-to-reach system components (backend processes, logging,

database operations).

2. Frequently used functionality with high error risks. Automated testing of

critical functions ensures prompt error detection and resolution.

3. Automating routine tasks, such as data sorting and form field validation.

4. Validation message testing (filling fields with incorrect data to check for

appropriate validation messages).

5. Long End-to-End scenarios.

21

6. Precise mathematical calculation validations.

7. Verification of accurate data search functionality.

Why Test Automation?

• Advanced test coverage and enhanced testing quality – Utilizing test automation can

expand the scope of testing by conducting assessments on a significant volume of

data. This automation also ensures uniformity and precision in test execution by

eliminating the potential for human errors.

• Enhanced efficiency and efficacy – Test automation allows for the repetition of

identical tests or variations of tests with different inputs, requiring less expenditure

of resources and effort. This leads to increased overall testing efficiency.

• Improved dependability and precision – Test automation outperforms manual testing

in terms of reliability, as it minimizes the likelihood of human errors during test

execution.

• Economical and time-saving – As an example, automated regression testing

facilitates the swift execution of regression tests, enabling them to be conducted

frequently, across various environments, without human supervision, and with

extensive datasets. This ultimately reduces costs and conserves testing resources.

• Test automation enriches the testing process by enabling unattended execution, and

decreasing reliance on specific timing, location, and resources.

3.5 Test Automation Tools and Frameworks

Test automation tools and frameworks are essential components of the software testing

process. They help streamline and enhance testing activities by automating repetitive tasks,

increasing efficiency, and providing better coverage of test scenarios. Here’s an overview of

test automation tools and frameworks:

3.5.1 Selenium

Selenium, an open-source tool, serves as an interface for automating user interactions

on web browsers. Selenium's setup offers great flexibility, contributing to its widespread

popularity among test and software engineers. The tool is highly favoured due to the built-

in support for Selenium testing in most contemporary browsers, adding to its convenience.

Similar to many other open-source tools, Selenium relies on community contributions for

22

support, facilitated through third-party libraries. Over the past decade since its open-

sourcing, users have consistently made improvements, enhancing its capabilities

(Sambamurthy, 2023).

Selenium comprises three key components for test creation and orchestration:

• WebDriver, a vital element responsible for test execution by invoking browser-

specific drivers. WebDriver provides an API with language bindings for

Python, Ruby, Java, and C# and supports integrations like Cucumber and

TestNG.

• Grid, a server optimizing test runtime by distributing commands across

multiple remote browser instances. Grid's hub and node manage requests from

WebDriver, executing them on remote devices. It dynamically scales for

varying test runs.

• The third component is IDE, a record-and-playback tool available as a browser

plugin for Chrome and Firefox. While useful for quick checks, the generated

code is typically non-reusable, making it less suitable for larger projects.

3.5.2 Jenkins

Jenkins is an open-source automation server widely used for continuous integration. It

facilitates the automated building, testing, and deployment of software projects, providing a

framework for developers to integrate code changes more efficiently and consistently.

Main advantages of using Jenkins:

• Continuous Integration. Jenkins is primarily known for its CI capabilities. It

automates the process of building and testing code changes whenever

developers commit code to version control repositories.

• Extensibility and Plugin Support: Jenkins has an extensive plugin ecosystem,

allowing users to customize and extend its functionality to suit specific needs.

Plugins cover a wide range of areas, from source code management and build

tools to deployment and monitoring.

• Distributed Build Support: Jenkins can distribute builds across multiple

machines, enabling parallel execution of jobs.

23

3.5.3 Tosca

Without properly identifying web application elements, the test automation code will

not be able to run properly, since it can't find the elements on the web pages and perform

actions on them (Kinsbruner, 2022, p. 125). Tosca is a software testing tool developed by

Tricentis, but it is primarily known for its capabilities in end-to-end functional testing and

test automation. While it does offer features like dashboards, analysis, and integrations, the

claim that it demands only basic technical knowledge might be a bit optimistic. Tosca can

indeed be used for functional testing, including web applications, and it supports mobile

testing as well. It provides features for creating, managing, and executing automated tests

across different platforms and technologies.

3.5.4 JUnit

JUnit is an open-source framework for writing and executing unit tests in Java

(Hightower, Lesiecki, 2001). It plays a crucial role in supporting Test-Driven Development

(TDD) practices, where tests are written before the actual code implementation. JUnit

provides a simple and effective way for developers to ensure the correctness of their code

by automating the testing process. The design part of TDD is more important than the testing

part. When we do test last, we don’t reap the design benefit from the practice (Gulati, Sharma

2017, p. 2).

Widely embraced by the Java development community, JUnit has become a standard

for unit testing. Its popularity is attributed to its simplicity, and ease of integration with

various IDEs (Integrated Development Environments).

3.5.5 NUnit

NUnit, a robust unit testing framework bespoken for the .NET platform, stands out for

its versatile features and widespread adoption among developers.

One of its notable features is support for data-driven testing, allowing developers to

evaluate a test method with multiple sets of input data. This flexibility enables

comprehensive testing across diverse scenarios, ensuring the code's reliability under various

conditions.

24

Unit testing isn’t designed to achieve some corporate quality initiative; it’s not a tool

for the end-users, or managers, or team leads. Unit testing is done by programmers, for

programmers (Hunt, Thomas, Hargett, 2007, p. 2). The framework's strength is further

amplified by its extensive user community. This dynamic community actively contributes to

NUnit's growth, sharing insights, and best practices, and providing support to fellow

developers. The collective knowledge ensures that developers have access to valuable

resources, discussions, and solutions to common testing challenges, fostering a collaborative

and supportive environment.

Test automation tools like Selenium, Jenkins, Tosca, JUnit, and NUnit streamline

software testing by automating tasks, enhancing efficiency, and facilitating comprehensive

test coverage. These tools cater to various testing needs, from functional and web testing to

unit testing, and contribute to the overall quality assurance process in software development.

3.6 Developers and Testers

One factor that was present in the successful automation experiences was a good

relationship between the testers, test automators, and developers. A poor relationship can

make automation much more difficult than it needs to be even if it still gives some benefit

in the end (Graham, Fewster, 2012). If you are faced with a complex problem that you do

not know how to approach, try to ask the advice of developers (Alpaev, 2017, p. 24).

Essentially, developers are responsible for writing the code that forms the foundation of our

software applications. Their role is to translate the requirements and design specifications

into functional code. Here's why Developers are important:

• Code Quality: Developers write the code that forms the basis of our software.

High-quality code ensures that the application is efficient, maintainable, and

less prone to bugs and errors.

• Innovation: Developers come up with creative solutions to complex problems,

leading to innovative features and functionalities that enhance the user

experience and keep our products competitive.

• Speed of Development: Efficient coding practices and adherence to best

practices by Developers lead to faster development cycles, which in turn allows

us to deliver products to market quicker.

25

Testers, focus on identifying and rectifying defects, ensuring that the software meets

quality standards before it's released to users. Here's why Testers are important:

• Quality Assurance: Testers thoroughly examine the software to identify any

issues, bugs, or inconsistencies. This process ensures that the software meets

the required quality standards and performs as expected.

• User Experience: Testers evaluate the software from an end-user perspective,

ensuring that it's user-friendly, intuitive, and meets user expectations.

• Risk Mitigation: By conducting comprehensive testing, Testers help mitigate

the risks associated with software failures, data breaches, and other

vulnerabilities that could negatively impact our clients and the company's

reputation.

Testers collaborate closely with Developers to provide early feedback, which helps in

addressing issues during the development process itself. This collaborative approach saves

time, effort, and resources in the long run. The collaboration between Developers and Testers

is vital because:

• Early Detection of Issues: When Developers and Testers work together from

the beginning, it's easier to catch and address issues early in the development

cycle, reducing the cost and effort required for fixing them later.

• Effective Communication: Open and frequent communication between

Developers and Testers ensures that everyone understands the project

requirements, goals, and constraints. This minimizes misunderstandings and

facilitates smoother development and testing processes.

• Continuous Improvement: Collaboration fosters a culture of continuous

improvement. Developers learn from the feedback Testers provide, leading to

better coding practices, while Testers gain insights into the development

process, enabling them to create more effective testing strategies.

3.7 Types of Errors

Bugs and other software quality destroyers refer to issues or factors that can negatively

impact the quality, reliability, and performance of software (Forgács, Kovács, 2023, p. 1).

In the world of general-purpose, large-scale, business-critical soft¬ ware, it is not the goal

of a test team to find all of the defects. That is a practical impossibility (Loveland, Miller,

26

Prewitt, Shannon, 2013, p. 6). They can occur at any stage of the software development life

cycle, from design and coding to testing and deployment. Some common types of software

bugs are:

• Functional. For example, when data is not saved. The user clicks the numerous

times button, but nothing happens.

• UX defect. It refers to usability. Sometimes, to make a verification, the user

needs to refresh (leave and return) to application.

• Load bug. Imagine an artificially created situation where several thousand

users log into one section of a web application at the same time. If the

application does not load or freezes it refers to a load bug.

• Performance bug. When a web application takes up too much space in the

memory, it starts working slowly.

• Requirements bug, or logical bug. Before the development of an application

began, something was not considered in the requirements. For example,

costumers forgot to add a pop-up notification that the application may not work

correctly when the VPN is enabled. The programmer programmed it as it was

in the requirements (or as he understood them). As a result, the application

works as described in the requirements, but not in the way the business needs.

While this basic bug life cycle gives you an idea, remember that real situations are

more complicated. Various factors, like communication breakdowns and testing challenges,

can make it trickier. Check out Figure 3 for a more detailed and comprehensive view.

27

Figure 3: Basic Bug Fix Life Cycle, Source: own processing

A bug has a zero stage, when, it can be a bug, or maybe just a misunderstanding on

the part of the user. When a tester encounters an inexplicable behaviour in the system's

operation, they initiate a process known as localization. The primary objective of localization

is to confirm whether the detected anomaly is indeed a defect. To achieve this, the tester

delves into the design documentation conducts experiments, and investigates the

circumstances under which the defect manifests. The tester aims to determine if the defect

is reproducible and whether there are any potential workarounds.

28

4 Practical Part

The Practical part aims to perform manual and automated types of testing with the

same business requirements for internal firm application and find out superior performance

based on the following criteria:

1. Time and Efficiency

1.1. Testing Speed

1.2. Efficiency and Accuracy

2. Usability

2.1. Resource Impact

2.2. Flexibility and Adaptability

The Business requirements will be established by the clients of the firm and the testing

will be carried out on an internally used within the company web application. The firm is a

stock exchange organization that trades and processes financial securities and derivatives,

clearing, settlement, and custody.

In order to find out the better performance of testing methods in the Software

Development Life Cycle (SDLC) – the following research question was formulated and

needs to be answered during practical work:

Research Question 1: Considering the comparison between the two distinct testing

approaches, which one stands out as more effective for testing a complex system?

Research Question 2: Is it possible for the company to completely transition from manual

regression testing to automated testing for the selected web application?

Additionally, to achieve the largest findings in this study following work steps will be

performed:

• Describing the web application used for testing purposes

• Analysing the test requirements and providing a business overview

• Creation of test cases

• Manual testing

• Automated testing

• Evaluate results and compare them based on the selected criteria

• Conclusion

29

4.1 Introduction into Internal Web Application

Internal Web Application used by stock exchange organization called Reference Data

Factory (RDF). Under the ownership of the company, RDF functions as the central

repository for financial Instruments and Institutional reference data, acting as the singular

source of truth for the firm and its associated entities. Its role as a business-critical

application is evident in its ability to create, cancel, mature, re-activate, re-open, validate,

default, and publish financial securities. The comprehensive scope of RDF encompasses a

wide array of functionalities, including reporting, user management, audit data history, data

source prioritization, file uploads, documentation, and workflow task management.

Figure 4: Reference Data Factory (RDF) GUI, Source: own processing

Web Application is often used for an accurate and timely setup of Financial Instruments

and primary distribution of securities on Domestic and International markets; therefore, it is

frequent adjustments are necessary to ensure that issued instruments consistently adhere to

legal standards.

30

4.2 Establish the Requirements for Testing

The stock exchange firms are complex ecosystems where the interaction of various

active members creates a dynamic and efficient financial environment. The most important

component of this system is the market participants, and their role cannot be underestimated.

First and foremost, market participants serve as the engine of liquidity in the market.

Individual investors, institutional participants, traders, and companies create supply and

demand by entering their trades, which contributes to deep and efficient liquidity. The more

participants there are, the less likely large price fluctuations are, which creates stable

conditions for all.

Projects and requirements for IT teams come exactly from different market participants

such as banks, government, supranational organizations, investors, Allottees, and others. The

role of market participants in this process is extremely important since they are the ones who

have the final vision of what should be achieved and can clearly articulate their needs and

expectations from the product. Customer engagement allows IT teams to better understand

the context and goals of a project, which in turn leads to more effective and satisfying

solutions.

To demonstrate the preparation of test cases for both manual and automated testing

approaches, the following task requirements were selected.

Table 1: Client Requirements

1. Bank requests to Mature significant number of financial instruments.

2. Bank requests possibility to Re-Open the financial instruments were used.

3. Bank requests to Cancel significant number of financial instruments.

4. Bank requests possibility to Reactivate the financial instruments were used.

Source: own processing

4.2.1 High-level Overview of Business and Technical Tasks

In order to successfully create financial security in the RDF system – it must be followed

next rules:

31

1) Received and collected a final documentation

2) Acknowledged eligibility as legal aspects

3) Allocated International Securities Identification Number (ISIN)

4) Facilitated the distribution of new securities on the RDF system

After completing these steps, the company will be ready to create a financial

instrument, The created financial instrument will be assigned the status "ACTIVE", which

means it is ready for active use within the RDF system and confirmation of its financial

stability.

To accomplish the first and second test requirements, it will be necessary to change

the status of financial instruments in the RDF system from “ACTIVE” to “MATURED”.

From a business point of view, “Mature significant number of financial instruments” refers

to the final liquidation date, which covers the demand to close a previously issued ISIN.

In contrast, Re-opening the financial security may happen only after the cancellation

of an instrument in the RDF system. It will be only visible dynamically if the Instrument

status is “MATURED”.

Figure 5: High-level Overview of Mature action in RDF, Source: own processing

To properly test the third and last test requirements, it will be necessary to follow the

same approach. In order to “Cancel a significant number of financial instruments” it would

be needed to change the status of financial instruments in the RDF system from “ACTIVE”

32

to “CANCELLED”. Usually, cancellation of an ISIN involves the request to void an ISIN

code that was previously generated but was never introduced in the market and is no longer

included in the fund documentation.

In contrast, Re-activating the financial security may happen only after the

cancellation of an instrument in the RDF system. It will be only visible dynamically if the

Instrument status is “MATURED”.

Figure 6: High-level Overview of Cancel action in RDF, Source: own processing

4.2.2 Test case Preparation

Defining test cases is an important part of testing software, where individual test

situations are recognized and executed. A test case involves a set of conditions or variables

that a tester uses to check whether a software system is working correctly or not. This

thorough process is essential for confirming that the software aligns with the defined

requirements, and it also helps identify any potential weaknesses or areas that could be

enhanced in the system. Recording the test case is obligatory; document relevant details such

as the test case's purpose, input data, expected outcomes, and the procedural steps to be

followed during execution. This accurate documentation not only serves as a reference but

also plays a key role in enhancing the overall testing process. By having a well-documented

test case, it becomes easier for team members to understand and replicate the testing

scenarios, fostering efficient collaboration and ensuring the reliability of the software.

33

The test scenarios outlined above have been developed to address the bank’s

requirements. These scenarios require both manual and automated testing.

Table 2: Test Cases for 1st Requirement

Test Requirement 1 – Mature significant number of financial instruments

No. Functional Requirement Test Steps Expected

Result

Passed/Failed

1 Users have an ability to

open Reference Data

Factory (RDF)

application

Open RDF Application opened Passed

2 Users have an ability to

open folder

“Instruments” and open

search page

Go to Menu

Go to folder

“Instruments”

Click to View

Page “View”

successfully

opened and

functional

Passed

3 Users should have a

possibility to interact

with “View” page

Put following data in

RDF:

ISIN code == Code

that was provided by

Customer

Instrument Status ==

“ACTIVE”

CBF/CBL/LUXSD

Holding Flags == NO

All data correctly

setup in “View”

page

Passed

4 RDF must start search

data by user’s request

Click to “Search”

button

Successfully

searched and result

page appeared

Passed

5 RDF must reflect on

user’s request

Click to “Mature

Instrument” button

Instrument Details

page is

successfully

opened

Passed

6 RDF must check and

validate correctness

Once Instrument

Details opens -> press

Default & Validate

button

RDF should

populate

“Validation is

successful”

Passed

7 Once changes were

successfully succeeded

system will populate

message.

Click to “Save and

Close” button

RDF must reflect

following message

“Changes applied

for the ISIN…”

Passed

Source: own processing

34

Table 3: Test Cases for 2nd Requirement

Test Requirement 2 – Re-Open significant number of financial instruments

No. Functional Requirement Test Steps Expected

Result

Passed/Failed

1 Users have an ability to

open Reference Data

Factory (RDF)

application

Open RDF Application opened Passed

2 Users have an ability to

open folder

“Instruments” and open

search page

Go to Menu

Go to folder

“Instruments”

Click to View

Page “View”

successfully opened

and functional

Passed

3 Users should have a

possibility to interact

with “View” page

Put following data in

RDF:

ISIN code == Code that

was provided by

Customer

Instrument Status ==

“MATURED”

CBF/CBL/LUXSD

Holding Flags == NO

All data correctly

setup in “View”

page

Passed

4 RDF must start search

data by user’s request

Click to “Search”

button

Successfully

searched and result

page appeared

Passed

5 RDF must reflect on

user’s request

Click to “Re-open

Instrument” button

Instrument Details

page is successfully

opened

Passed

6 RDF must check and

validate correctness

Once Instrument

Details opens -> press

Default & Validate

button

RDF should

populate

“Validation is

successful”

Passed

7 Once changes were

successfully succeeded

system will populate

message.

Click to “Save and

Close” button

RDF must reflect

following message

“Changes applied

for the ISIN…”

Passed

Source: own processing

35

Table 4: Test Cases for 3rd Requirement

Test Requirement 3 – Cancel significant number of financial instruments

No. Functional Requirement Test Steps Expected

Result

Passed/Failed

1 Users have an ability to

open Reference Data

Factory (RDF)

application

Open RDF Application opened Passed

2 Users have an ability to

open folder

“Instruments” and open

search page

Go to Menu

Go to folder

“Instruments”

Click to View

Page “View”

successfully opened

and functional

Passed

3 Users should have a

possibility to interact

with “View” page

Put following data in

RDF:

ISIN code == Code that

was provided by

Customer

Instrument Status ==

“ACTIVE”

CBF/CBL/LUXSD

Holding Flags == NO

All data correctly

setup in “View”

page

Passed

4 RDF must start search

data by user’s request

Click to “Search”

button

Successfully

searched and result

page appeared

Passed

5 RDF must reflect on

user’s request

Click to “Cancel

Instrument” button

Instrument Details

page is successfully

opened

Passed

6 RDF must check and

validate correctness

Once Instrument

Details opens -> press

Default & Validate

button

RDF should

populate

“Validation is

successful”

Passed

7 Once changes were

successfully succeeded

system will populate

message.

Click to “Save and

Close” button

RDF must reflect

following message

“Changes applied

for the ISIN…”

Passed

Source: own processing

36

Table 5: Test Cases for 4th Requirement

Test Requirement 4 – Reactivate significant number of financial instruments

No. Functional Requirement Test Steps Expected

Result

Passed/Failed

1 Users have an ability to

open Reference Data

Factory (RDF)

application

Open RDF Application opened Passed

2 Users have an ability to

open folder

“Instruments” and open

search page

Go to Menu

Go to folder

“Instruments”

Click to View

Page “View”

successfully opened

and functional

Passed

3 Users should have a

possibility to interact

with “View” page

Put following data in

RDF:

ISIN code == Code that

was provided by

Customer

Instrument Status ==

“CANCELLED”

CBF/CBL/LUXSD

Holding Flags == NO

All data correctly

setup in “View”

page

Passed

4 RDF must start search

data by user’s request

Click to “Search”

button

Successfully

searched and result

page appeared

Passed

5 RDF must reflect on

user’s request

Click to “Re-activate

Instrument” button

Instrument Details

page is successfully

opened

Passed

6 RDF must check and

validate correctness

Once Instrument

Details opens -> press

Default & Validate

button

RDF should

populate

“Validation is

successful”

Passed

7 Once changes were

successfully succeeded

system will populate

message.

Click to “Save and

Close” button

RDF must reflect

following message

“Changes applied

for the ISIN…”

Passed

Source: own processing

37

4.3 Manual Testing

This chapter details the manual testing conducted on selected requirements of the

web application. The testing involved the participation of three testers, each adhering to pre-

established test cases. The testing transpired across three distinct phases with a meticulous

recording of the time required for the test cases to successfully pass. The time recording

procedure followed a sequential testing approach, wherein the tester consecutively assessed

the first, second, and third test cycles. Subsequently, the cumulative time for the entire cycle

was computed by summing up these individual values. Following the completion of the

recording process, a tabular represented the recorded result. To derive insights into the

temporal aspects of testing, an arithmetic mean was computed based on the recorded values.

Table 6: Manual Testing Results – 1st Tester

Test Cases
Tester #1 (Junior)
1 ISIN

Tester #1 (Junior)
5 ISIN

Tester #1 (Junior)
20 ISIN

Test Case 1 2m 21s 11m 55s 46m 27s

Test Case 2 2m 1s 11m 44s 47m 5s

Test Case 3 2m 15s 12m 2s 50m 0s

Test Case 4 2m 6s 11m 55s 45m 11s

1st Cycle Results 8m 43s 47m 36s 3h 8m 43s

Test Case 1 2m 0s 10m 51s 44m 22s

Test Case 2 2m 1s 10m 44s 43m 51s

Test Case 3 2m 10s 11m 28s 47m 10s

Test Case 4 2m 0s 11m 55s 47m 51s

2nd Cycle Results 8m 43s 44m 58s 3h 3m 14s

Test Case 1 2m 5s 10m 53s 46m 21s

Test Case 2 2m 8s 11m 4s 45m 25s

Test Case 3 2m 0s 10m 52s 43m 10s

Test Case 4 2m 6s 12m 0s 47m 15s

3rd Cycle Results 8m 43s 44m 49s 3h 2m 6s
Source: own processing

38

Table 7: Manual Testing Results – 2nd Tester

Test Cases
Tester #2 (Middle)
1 ISIN

Tester #2 (Middle)
5 ISIN

Tester #2 (Middle)
20 ISIN

Test Case 1 2m 0s 11m 0s 45m 0s

Test Case 2 2m 0s 11m 0s 47m 0s

Test Case 3 2m 15s 12m 0s 47m 0s

Test Case 4 2m 0s 11m 0s 45m 0s

1st Cycle Results 8m 43s 47m 36s 3h 8m 43s

Test Case 1 2m 0s 10m 50s 45m 0s

Test Case 2 2m 0s 10m 50s 44m 0s

Test Case 3 2m 10s 11m 30s 47m 0s

Test Case 4 2m 0s 11m 0s 47m 0s

2nd Cycle Results 8m 43s 44m 58s 3h 3m 14s

Test Case 1 2m 0s 11m 0s 45m 0s

Test Case 2 2m 0s 11m 0s 45m 30s

Test Case 3 2m 0s 11m 0s 43m 0s

Test Case 4 2m 0s 12m 0s 47m 0s

3rd Cycle Results 8m 43s 44m 49s 3h 2m 6s

Source: own processing

Table 8: Manual Testing Results – 3rd Tester

Test Cases
Tester #3 (Junior)
1 ISIN

Tester #3 (Junior)
5 ISIN

Tester #3 (Junior)
20 ISIN

Test Case 1 2m 51s 13m 34s 50m 27s

Test Case 2 2m 31s 13m 48s 53m 5s

Test Case 3 2m 59s 13m 29s 58m 0s

Test Case 4 2m 54s 13m 55s 55m 11s

1st Cycle Results 11m 15s 54m 46s 3h 36m 43s

Test Case 1 2m 40s 13m 51s 54m 22s

Test Case 2 3m 1s 14m 44s 50m 51s

Test Case 3 3m 10s 14m 28s 58m 10s

Test Case 4 2m 50s 13m 55s 57m 51s

2nd Cycle Results 11m 41s 56m 58s 3h 41m 14s

Test Case 1 2m 52s 12m 53s 49m 21s

Test Case 2 3m 38s 13m 4s 49m 25s

Test Case 3 2m 44s 14m 52s 51m 10s

Test Case 4 2m 56s 14m 0s 54m 15s

3rd Cycle Results 12m 0s 54m 49s 3h 24m 11s

Source: own processing

39

This meticulous recording and analysis process allows for a detailed understanding

of the temporal dynamics associated with the testing phases.

4.4 Automated Testing with Python, Selenium and Jenkins tools

Initially, it is essential to set up the following software and prerequisites on a

computer running a supported operating system to generate automated test cases:

1) Python

2) Selenium WebDriver

3) Gherkin plugins

4) Jenkins

5) Python Behave Framework

6) IDE

Python is a high-level programming language known for its simplicity and readability of

code. Widely used in various fields including web application development, scientific

research, data analysis and test automation.

Thesis Application: You may consider using Python to create automated tests using

Selenium WebDriver and Behave Framework, as well as to process data and analyze test

results.

Selenium WebDriver is a powerful tool for automating the testing of web applications.

Allows you to programmatically interact with browsers, perform user actions and check the

status of web pages.

Thesis Application: Consider using Selenium WebDriver to create automated tests of

web applications and analyze their performance and reliability.

Gherkin is a human-readable language for writing scripts for system behavior. Gherkin-

related plugins can provide additional functionality and integrations for using the language

in different development environments.

Thesis Application: Explore plugins that extend the functionality of Gherkin and

consider their impact on the efficiency of writing and running automated tests.

40

Jenkins is a continuous integration server designed to automate the build, test, and

deployment of software.

Thesis Application: Consider using Jenkins to create a continuous integration and

delivery process in the context of automated testing.

Behave is a framework for writing automated tests that use Gherkin to define scripts and

Python to implement them.

Thesis Application: Explore the use of Behave in combination with Python to create

structured and understandable auto-tests based on behavioral scenarios.

IDE (Integrated Development Environment) is an integrated development environment

that provides tools and functionality for working effectively with code.

Thesis Application: Consider the selection and use of IDEs when developing, debugging,

and maintaining automated test code and scripts.

4.4.1 Gherkin Language Scenarios, BDD test

The print screens below showcase the primary steps of execution of all test requirements.

Following the principles of behavior-based design (BDD) scenarios, structured sequentially,

provides a step-by-step navigation guide for testers. Through the application, interact with

the user interface, and check the expected results. The scenarios cover a range of instrument-

related functions, providing a thorough examination of the software's behavior.

@normal @UI @MatureInstrument

 Scenario Outline: Mature instrument

 Given I go to "RDF" site

 When I click on "Instruments" link

 And I click on "View" link

 And I type "<Isin Code>" in "Isin Code" field

 And I type "<Instrument status>" in "Instrument status" field

 And I click on "Advanced Search criteria 1" tab

 And I select "<CBL/LuxCSD Holding Indicator>" from the "CBL/LuxCSD

Holding Indicator" dropdown

 And I select "<CBF Holding Indicator>" from the "CBF Holding Indicator"

dropdown

 And I select "<CBL ICSD Holding Indicator>" from the "CBL ICSD Holding

Indicator" dropdown

 And I select "<LuxCSD ICSD Holding Indicator>" from the "LuxCSD ICSD

Holding Indicator" dropdown

41

 And I select "<CBF T2S Holding Indicator>" from the "CBF T2S Holding

Indicator" dropdown

 And I select "<LuxCSD T2S Holding Indicator>" from the "LuxCSD T2S

Holding Indicator" dropdown

 And I click on "Search" button

 And I wait for "10" seconds

 And I click on "<Mature Instrument>" button

 And I click on "Default And Validate" button

 And I validate "Message" contains "Validation Successful"

 And I click on "Save And Close" button

 #reason to be added for Microsoft Explorer

 Then I validate "Message" contains "Changes applied for instrument"

 @normal @UI @ReactivateInstrument

 Scenario Outline: Reactivate instrument

 Given I go to "RDF" site

 When I click on "Instruments" link

 And I click on "View" link

 And I type "<Isin Code>" in "Isin Code" field

 And I type "<Instrument status>" in "Instrument status" field

 And I click on "Search" button

 And I wait for "10" seconds

 And I click on "<Reactivate Instrument>" button

 And I click on "Default And Validate" button

 And I validate "Message" contains "Validation Successful"

 And I click on "Save And Close" button

 #reason to be added in ST env

 #potential pending duplicate

 Then I validate "Message" contains "Reactivation done for instrument"

@normal @UI @CancelInstrument

 Scenario Outline: Cancel instrument

 Given I go to "RDF" site

 When I click on "Instruments" link

 And I click on "View" link

 And I type "<Isin Code>" in "Isin Code" field

 And I type "<Instrument status>" in "Instrument status" field

 And I click on "Advanced Search criteria 1" tab

 And I select "<CBL/LuxCSD Holding Indicator>" from the "CBL/LuxCSD

Holding Indicator" dropdown

 And I select "<CBF Holding Indicator>" from the "CBF Holding Indicator"

dropdown

42

 And I select "<CBL ICSD Holding Indicator>" from the "CBL ICSD Holding

Indicator" dropdown

 And I select "<LuxCSD ICSD Holding Indicator>" from the "LuxCSD ICSD

Holding Indicator" dropdown

 And I select "<CBF T2S Holding Indicator>" from the "CBF T2S Holding

Indicator" dropdown

 And I select "<LuxCSD T2S Holding Indicator>" from the "LuxCSD T2S

Holding Indicator" dropdown

 And I click on "Search" button

 And I wait for "10" seconds

 And I click on "<Cancel Instrument>" button

 And I click on "Default And Validate" button

 And I validate "Message" contains "Validation Successful"

 And I click on "Save And Close" button

 #reason to be added for Microsoft Explorer

 Then I validate "Message" contains "Cancellation done for instrument"

@normal @UI @ReopenInstrument

 Scenario Outline: Re-Open instrument

 Given I go to "RDF" site

 When I click on "Instruments" link

 And I click on "View" link

 And I type "<Isin Code>" in "Isin Code" field

 And I type "<Instrument status>" in "Instrument status" field

 And I click on "Search" button

 And I wait for "10" seconds

 And I click on "<Reopen Instrument>" button

 And I type "<Initial maturity date>" in "Initial maturity date" field

 And I click on "Default And Validate" button

 And I validate "Message" contains "Validation Successful"

 And I click on "Save And Close" button

 #reason to be added in ST env

 #potential pending duplicate

 Then I validate "Message" contains "Reopen done for instrument"

Furthermore, the visual aid provided by the print screens enhances the clarity and

accessibility of the testing process. Testers can easily reference the step-by-step guide,

fostering efficiency and accuracy in their execution.

Incorporating BDD principles into the testing process not only improves communication

between stakeholders but also promotes a shared understanding of the software's

43

requirements and expected behavior. This collaborative approach minimizes the risk of

misunderstandings and enhances the overall quality of the software being tested.

4.4.2 Test Execution and Automation Outputs

Jenkins is a prior tool to execute newly added scenarios. Main advantage of Jenkins is

its seamless integration with Allure, a reporting tool that offers comprehensive insights into

test results. Upon successful execution of test cases, Jenkins can generate detailed Allure

Reports, providing valuable information for testers. The report displays a list of successfully

passed tests in the Behaviors tab, offering a clear overview of the testing outcomes.

Additionally, the report includes execution time data, a crucial metric that will later serve

for comparing results with those obtained through manual testing.

In essence, Jenkins, coupled with Allure, streamlines the testing process by not only

automating test execution but also furnishing detailed reports. These reports become

invaluable tools for testers, offering visibility into passed tests, execution times, and

facilitating comparisons with manual testing results. The seamless integration between

Jenkins and Allure enhances the efficiency and effectiveness of the overall testing workflow.

Snippets below show the execution of all test requirements for a single ISIN code in

Jenkins.

Figure 7: Execution Output for 1st requirement, Source: own processing

44

Figure 8: Execution Output for 2nd requirement, Source: own processing

Figure 9: Execution Output for 3rd requirement, Source: own processing

Figure 10:Execution Output for 4th requirement, Source: own processing

45

 The following results highlight the time efficiency achieved through the automation

of 1, 5, and 20 ISIN (International Securities Identification Number) scenarios.

Table 9: Automated Testing Result

Test Cases
Tester #3 (Junior)
1 ISIN

Tester #3 (Junior)
5 ISIN

Tester #3 (Junior)
20 ISIN

Test Case 1 2m 40s 10m 33s 41m 33s

Test Case 2 2m 36s 10m 58s 42m 36s

Test Case 3 2m 31s 11m 0s 41m 0s

Test Case 4 2m 51s 10m 25s 41m 16s

1st Cycle Results 10m 38s 42m 56s 2h 46m 25s

Test Case 1 2m 10s 11m 23s 41m 33s

Test Case 2 2m 5s 10m 41s 41m 13s

Test Case 3 2m 16s 10m 33s 40m 0s

Test Case 4 2m 37s 10m 8s 40m 10s

2nd Cycle Results 9m 8s 42m 45s 2h 42m 56s

Test Case 1 2m 33s 10m 6s 42m 33s

Test Case 2 2m 19s 10m 46s 41m 26s

Test Case 3 2m 24s 10m 26s 41m 0s

Test Case 4 2m 44s 11m 2s 41m 10s

3rd Cycle Results 9m 35s 42m 20s 2h 46m 9s
Source: own processing

46

5 Results and Discussion

Upon concluding the testing phase and obtaining results, it becomes feasible to assess

and contrast the difference between manual and automated testing methods applied to used

web application. The evaluation will be conducted based on criteria that are crucial for all

parties involved, including:

• Time and Efficiency

• Usability Factors

5.1 Time and Efficiency

 Having measured and acquired the execution speed of each test case in the preceding

chapters, the focus will now shift to a straightforward comparison. In the earlier sections of

this thesis, three average values were derived for manual testing, while a singular average

time value was obtained for automated testing. Additionally, it is crucial to establish an

average time for manual testing to facilitate a comprehensive comparison. The objective is

to calculate the ratio of test execution time between the two testing methods and establish

efficiency.

Table 10: Test Comparison - 1 ISIN

Test Comparison - Time & Efficiency - 1 ISIN

Tester #1 (Junior) 8m 12s

Automation

Tester #2 (Junior) 8m 8s

Tester #1 (Junior) 12m 4s

Average 9m 46s 9m 25s

Ratio 1: 1,0546
Source: own processing

Table 11: Test Comparison - 5 ISIN

Test Comparison - Time & Efficiency - 5 ISIN

Tester #1 (Junior) 46m 19s

Automation

Tester #2 (Junior) 45m 0s

Tester #1 (Junior) 55m 30s

Average 48m 56s 42m 40s

Ratio 1: 0,871

Source: own processing

47

Table 12: Test Comparison - 20 ISIN

Test Comparison - Time & Efficiency – 20 ISIN

Tester #1 (Junior) 3h 4m 40s

Automation

Tester #2 (Junior) 3h 2m 30s

Tester #1 (Junior) 3h 12m 23s

Average 3h 6m 31s 2h 44m 30s

Ratio 1: 0,881

Source: own processing

The findings highlight a consistent trend of time savings with test automation across

different test case volumes. The efficiency ratios emphasize that, on average, automated

testing outperforms manual testing by approximately 8.7% to 10.5%, showcasing its

superiority in terms of execution speed and overall efficiency.

5.2 Usability Factors

Usability, as reflected in the time savings and efficiency ratios, emerges as a strong

suit for automated testing. The ratios (ranging from 1:0.871 to 1:1.0546) signify a user-

friendly integration of automated testing into the testing process. This ease of use contributes

to quicker and more consistent test executions, making automated testing accessible to

testing teams with varying levels of experience.

As your app grows, the tests for it need to change too—whether they're done manually

or automatically. If a change is made in the app and it's covered by test scenarios, some tests

may fail because they're no longer a good match. Even a small tweak in the code order can

make one or more tests not work as expected. The adaptability of automated testing shines

through in its consistent outperformance in terms of efficiency across test case volumes. It

is important for changes in the software, addressing regression testing needs, and

maintaining reliability across different software releases.

The analysis paints a compelling picture of automated testing as a superior choice over

manual regression testing in terms of usability, lower resource impact, flexibility, and

adaptability. These advantages not only translate into tangible time savings but also

underscore the viability of automated testing in dynamic development environments where

software is subject to constant evolution.

48

5.3 Discussion

Research Question 1: Considering the comparison between the two distinct testing

approaches, which one stands out as more effective for testing a complex system?

The primary discovery in this research indicates that automation offers various

benefits rather than a manual approach for testing complex systems. Automated testing has

emerged as a powerhouse for handling repetitive tasks and ensuring the consistent execution

of many test cases. Certain types of tests, especially simpler standard operations, could

surely be automated. Nevertheless, it's critical to note that repeatedly running the same

automated test, without any code modifications, may lead to occasional test failures, making

it unreliable.

Research Question 2: Is it possible for the company to completely transition from manual

regression testing to automated testing for the selected web application?

Initially, the expectation in this research was that automated testing held the solution.

Automating processes seemed logical to enhance tester efficiency. However, the realization

after the research and discussion is that automated tests shouldn't be viewed to fully replace

human testing but to support and extend test reach.

In conclusion, this study suggests that a combination of manual testing and the power

of automation is the most suitable strategy for testing complex systems such as RDF. Despite

the benefits of test automation, the human factor and capabilities cannot be excluded from

the testing process. Therefore, complete automation of a complex system like RDF may not

be optimal.

49

6 Conclusion

This thesis opens with a thorough exploration of testing concepts and their primary

classifications through an extensive literature review. The theoretical part includes an

examination of the advantages and disadvantages of various Software Development Life

Cycle (SDLC) models, with detailed explanations of each stage. The diverse types of tests

prevalent in the modern world are also studied and outlined in this section.

The practical part involves the testing of a selected application using automated and

manual regression testing methods. The theoretical knowledge acquired is applied to the

practical part of the thesis. The purpose is to compare automated and manual testing for a

web application designed for a stock exchange firm. This section provides a detailed

description of the tested application and the chosen test automation tools. Test cases are

formulated based on the application's requirements, and three testers manually execute these

cases, recording the time taken in a table.

Upon obtaining the manual testing results, test steps are translated into the Gherkin

language, and main functions are scripted in Python for test automation. These scripts are

integrated into the Jenkins application, generating a report through Allure. The automated

test results are compiled into a table for analysis. The comparison focuses on the following

parameters: time, efficiency, and usability.

In the end, the findings of this study emphasize the significance of adopting a balanced

approach to testing complex systems, particularly in the context of web applications. The

research underscores the effectiveness of combining manual testing with the capabilities of

automation to create a strong testing strategy. While automation brings undeniable

advantages, this study highlights the crucial role of human involvement in the testing

process. The synthesis of human expertise and automation power emerges as a compelling

strategy for achieving comprehensive and reliable testing results in intricate systems.

50

7 References

FORGÁCS, István and KOVÁCS, Attila, 2023. Modern software testing techniques: A

Practical Guide for Developers and Testers. Apress. 266 p. ISBN-13: 9781484298923

LOVELAND, Scott, MILLER, Geoffrey, PREWITT, Richard, Jr and SHANNON,

Michael, 2013. Software Testing Techniques: Finding the Defects that Matter. 386 p.

ISBN-13: 9781627040235

KINSBRUNER, Eran, 2022. A frontend web Developer’s guide to testing: Explore

Leading Web Test Automation Frameworks and Their Future Driven by Low-code and AI.

304 p. ISBN-13: 9781803238319

HIGHTOWER, Richard and LESIECKI, Nicholas, 2001. Java tools for extreme

programming: Mastering Open Source Tools, Including Ant, JUnit, and Cactus. Wiley.

544 p. ISBN-13: 9780471207085

GULATI, Shekhar and SHARMA, Rahul, 2017. Java Unit Testing with JUnit 5: Test

Driven Development with JUnit 5. Apress. 151 p. ISBN-13: 9781484230145

FEWSTER, Mark and GRAHAM, Dorothy, 1999. Software test automation: Effective Use

of Test Execution Tools. Addison-Wesley Professional. 600 p. ISBN-13: 9780201331400 –

GRAHAM, Dorothy and FEWSTER, Mark, 2012. Experiences of test automation: Case

Studies of Software Test Automation. Addison-Wesley Professional. 672 p. ISBN-13:

9780321754066

SAMBAMURTHY, Manikandan, 2023. Test Automation Engineering Handbook: Learn

and Implement Techniques for Building Robust Test Automation Frameworks. Packt

Publishing. 276 p. ISBN-13: 9781804615492

LEWIS, William E., 2008. Software Testing and Continuous Quality Improvement, third

edition. Auerbach Publications. 684 p. ISBN-13: 9781420080735

EVERETT, Gerald D. and MCLEOD, Raymond, Jr, 2007. Software testing: Testing

Across the Entire Software Development Life Cycle. Wiley-IEEE Computer Society Press.

280 p. ISBN-13: 9780471793717

LELOUDAS, Panagiotis, 2023. Introduction to software testing: A Practical Guide to

Testing, Design, Automation, and Execution. Apress. 211 p. ISBN-13: 9781484295137

BIERIG, Ralf, BROWN, Stephen, GALVÁN, Edgar and TIMONEY, Joe, 2021. Essentials

of software testing. Cambridge University Press. 318 p. ISBN-13: 9781108833349

HOMÈS, Bernard, 2012. Fundamentals of software testing. Wiley-ISTE. 384 p. ISBN-13:

9781848213241

JOSE, 2021. Test automation: A Practitioner’s Guid. BCS, The Chartered Institute for IT.

274 p. ISBN-13: 9781780175454

51

HUNT, Andrew, THOMAS, Dave and HARGETT, Matt, 2007. Pragmatic Unit Testing in

C# with NUnit. 239 p. ISBN-13: 9780977616671

KAUL, Neha, 2022. Implementing automated software testing. Arcler Press. 277 p. ISBN-

13: 9781774694039

ALPAEV, Gennadiy, 2017. Software testing automation tips: 50 Things Automation

Engineers Should Know. Apress. 50 p. ISBN-13: 9781484231616

TUDOSE, Catalin, 2020. JUnit in Action, third edition. Manning Publications. 525 p.

ISBN-13: 9781617297045

52

8 List of pictures, tables, graphs, and abbreviations

8.1 List of figures

Figure 1: High-level Overview of Software Testing, Source: Homès, 2012 13

Figure 2: Testing Pyramid, Source: Leloudas, 2023 ... 14

Figure 3: Basic Bug Fix Life Cycle, Source: own processing ... 27

Figure 4: Reference Data Factory (RDF) GUI, Source: own processing 29

Figure 5: High-level Overview of Mature action in RDF, Source: own processing 31

Figure 6: High-level Overview of Cancel action in RDF, Source: own processing 32

Figure 7: Execution Output for 1st requirement, Source: own processing 43

Figure 8: Execution Output for 2nd requirement, Source: own processing 44

Figure 9: Execution Output for 3rd requirement, Source: own processing 44

Figure 10:Execution Output for 4th requirement, Source: own processing 44

8.2 List of tables

Table 1: Client Requirements .. 30

Table 2: Test Cases for 1st Requirement ... 33

Table 3: Test Cases for 2nd Requirement .. 34

Table 4: Test Cases for 3rd Requirement .. 35

Table 5: Test Cases for 4th Requirement ... 36

Table 6: Manual Testing Results – 1st Tester.. 37

Table 7: Manual Testing Results – 2nd Tester .. 38

Table 8: Manual Testing Results – 3rd Tester ... 38

Table 9: Automated Testing Result ... 45

Table 10: Test Comparison - 1 ISIN .. 46

Table 11: Test Comparison - 5 ISIN .. 46

Table 12: Test Comparison - 20 ISIN .. 47

53

9 Appendix

Python code

 from tabulate import tabulate

import ast

from deepdiff import DeepDiff

from selenium import webdriver

from selenium.webdriver import DesiredCapabilities

from selenium.webdriver.chrome.options import Options as ChromeOptions

from selenium.common.exceptions import StaleElementReferenceException

from selenium.webdriver.support.ui import WebDriverWait

from selenium.webdriver.support import expected_conditions as EC

from selenium.webdriver.common.by import By

from BDDCommon.CommonConfigs import urlconfig

import time

from time import sleep

import logging as logger

import allure

from allure_commons.types import AttachmentType

from datetime import datetime

from selenium.webdriver.support.ui import Select

from BDDCommon.CommonConfigs import locatorsconfig

import os

import pathlib

import json

import pandas as pd

from selenium.webdriver.common.keys import Keys

def go_to(context, location, **kwargs):

 with allure.step("Opening Browser"):

 logger.info("The detailed report of the scenario is present

here:\n{}\n\n".format(

 context.config.userdata.get('allureurl')))

 browser = context.config.userdata.get('browser')

 env = context.config.userdata.get('environment')

 grid = context.config.userdata.get('grid')

 video = context.config.userdata.get('video')

 certificate = context.config.userdata.get('certificate')

 username = context.config.userdata.get('username').replace("_", " ")

 root_dir = pathlib.Path(__file__).parents[2].absolute()

 if not browser:

 browser = 'firefox'

 if not grid:

 grid = 'y'

54

 try:

 url = urlconfig.URL[env.lower()][location.lower()]

 except Exception as e:

 raise Exception("The environment for '{}' is not

supported".format(env))

 if grid.lower() in ('y', 'yes'):

 cloud_options = {}

 if browser.lower() == 'chrome':

 options = ChromeOptions()

 cloud_options['browserName'] = 'chrome'

 cloud_options['javascriptEnabled'] = True

 options.set_capability('cloud:options', cloud_options)

 # caps = DesiredCapabilities.CHROME.copy()

 # caps['browserName'] = 'chrome'

 # caps['javascriptEnabled'] = True

 elif browser.lower() in ('ff', 'firefox'):

 # caps = DesiredCapabilities.FIREFOX.copy()

 # caps['browserName'] = 'firefox'

 # caps['javascriptEnabled'] = True

 # caps['acceptInsecureCerts'] = True

 cloud_options['browserName'] = 'firefox'

 cloud_options['javascriptEnabled'] = True

 cloud_options['acceptInsecureCerts'] = True

 profile_path = os.path.join(root_dir, 'profiles', 'firefox',

certificate)

 if not os.path.exists(profile_path):

 assert False, "Profile for user {} of {} does not

exist".format(certificate, username)

 options = webdriver.FirefoxOptions()

 profile =

webdriver.FirefoxProfile(profile_directory=profile_path)

 profile.set_preference("security.default_personal_cert",

"Select Automatically")

 profile.set_preference("security.osclientcerts.autoload",

True)

 profile.set_preference("layout.css.devPixelsPerPx", "0.9")

 #

profile.set_preference("security.disable_button.openCertManager", True)

 #

profile.set_preference("security.enterprise_roots.enabled", True)

 # profile.set_preference("accept_untrusted_certs", True)

 # profile.set_preference("assume_untrusted_cert_issuer",

True)

 options.profile = profile

 options.log.level = "trace"

 # options.headless = True

 if video.lower() == 'yes':

 options.set_capability("se:recordVideo", True)

55

 options.set_capability("se:timeZone",

"Europe/Luxembourg")

 options.set_capability("se:screenResolution",

"1920x1080")

 options.set_capability('cloud:options', cloud_options)

 else:

 raise Exception("The browser type '{}' is not

supported".format(browser))

 try:

 # context.driver =

webdriver.Remote(desired_capabilities=caps,

command_executor='http://rdhsselen01.deutsche-boerse.de/wd/hub', options =

options)

 context.driver =

webdriver.Remote(command_executor='http://rdhsselen01.deutsche-

boerse.de/wd/hub',

 options=options)

 context.driver.maximize_window()

 context.temp_dir_name = max(

 (os.path.join("/tmp", d) for d in os.listdir("/tmp") if

d.startswith("tmp")),

 key=os.path.getctime,

 default=None

)

 except Exception as e:

 print(e)

 else:

 if browser.lower() == 'chrome':

 options = webdriver.ChromeOptions()

 options.add_argument("--disable-infobars")

 options.add_argument("--disable-notifications")

 options.add_argument("--start-maximized")

 options.add_experimental_option('excludeSwitches', ['enable-

logging'])

 context.driver = webdriver.Chrome(options=options)

 elif browser.lower() == 'headlesschrome':

 options = webdriver.ChromeOptions()

 options.add_argument('--headless')

 context.driver = webdriver.Chrome(options=options)

 elif browser.lower() in ('ff', 'firefox'):

 profile_path = os.path.join(root_dir, 'profiles', 'firefox',

'mple6cvr.SeleniumNode')

 options = webdriver.FirefoxOptions()

 profile =

webdriver.FirefoxProfile(profile_directory=profile_path)

 profile.set_preference("security.default_personal_cert",

"Select Automatically")

56

 profile.set_preference("security.osclientcerts.autoload",

True)

 profile.set_preference("layout.css.devPixelsPerPx", "0.9")

 options.profile = profile

 options.log.level = "trace"

 context.driver = webdriver.Firefox(options=options)

 elif browser.lower() == 'edge':

 context.driver = webdriver.Edge()

 else:

 raise Exception("The browser type '{}' is not

supported".format(browser))

 context.driver.maximize_window()

 wait = int(kwargs['implicitly_wait']) if 'implicitly_wait' in

kwargs.keys() else 10

 context.driver.implicitly_wait(wait)

 url = url.strip()

 context.driver.get(url)

 context.driver.set_window_size(1920, 1080)

 TakeScreenShot(context)

def ReportFailure(context, message):

 with allure.step("Reporting Failure"):

 allure.attach(context.driver.get_screenshot_as_png(), "Screenshot-"

+ datetime.now().strftime('%Y%m%d%H%M%S'),

 AttachmentType.PNG)

 logger.error(message)

 allure.attach(message, "ErrorMessage-" +

datetime.now().strftime('%Y%m%d%H%M%S'), AttachmentType.TEXT)

 assert False, message

def ReportFailure(context, message):

 with allure.step("Reporting Failure"):

 allure.attach(context.driver.get_screenshot_as_png(), "Screenshot-"

+ datetime.now().strftime('%Y%m%d%H%M%S'),

 AttachmentType.PNG)

 logger.error(message)

 allure.attach(message, "ErrorMessage-" +

datetime.now().strftime('%Y%m%d%H%M%S'), AttachmentType.TEXT)

 assert False, message

57

def TakeScreenShot(context):

 allure.attach(context.driver.get_screenshot_as_png(), "Screenshot-" +

datetime.now().strftime('%Y%m%d%H%M%S'),

 AttachmentType.PNG) if

context.config.userdata.get('screenshot').lower() == "yes" else None

Log files

Started by user Bekzat Kelgenbayev

Obtained TestAutomationBDDFramework/jenkins/EndToEndTestRDF

[Pipeline] Start of Pipeline

[Pipeline] node

Running on TestAutomation-sim-onprem in /svc/selenium/jenkins-

agent/workspace/testing/RDF/End_To_End_Testing

+ source /svc/selenium/jenkins-

agent/workspace/testing/venv_rdh/bin/activate

++ deactivate nondestructive

++ '[' -n '' ']'

++ '[' -n '' ']'

++ '[' -n /usr/bin/sh -o -n '' ']'

++ hash -r

++ '[' -n '' ']'

++ unset VIRTUAL_ENV

++ '[' '!' nondestructive = nondestructive ']'

++ VIRTUAL_ENV=/svc/selenium/jenkins-agent/workspace/testing/venv_rdh

++ export VIRTUAL_ENV

++ _OLD_VIRTUAL_PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin

++ PATH=/svc/selenium/jenkins-

agent/workspace/testing/venv_rdh/bin:/usr/local/sbin:/usr/local/bin:/usr/

sbin:/usr/bin

++ export PATH

++ '[' -n '' ']'

++ '[' -z '' ']'

++ _OLD_VIRTUAL_PS1=

++ '[' 'x(venv_rdh) ' '!=' x ']'

++ PS1='(venv_rdh) '

++ export PS1

++ '[' -n /usr/bin/sh -o -n '' ']'

++ hash -r

+ cd TestAutomationBDDFramework

+ python3 -m runner --job_dir testing/RDF/End_To_End_Testing --run_allure

true '--behave_options=-t Regression -t MatureInstrument -D

environment=June2022-BAT -D browser=Firefox -D allstepexecution=No -D

video=Yes -D screenshot=Yes'

/svc/selenium/jenkins-

agent/workspace/testing/venv_rdh/lib64/python3.6/site-

packages/azure/storage/blob/_shared/encryption.py:15:

CryptographyDeprecationWarning: Python 3.6 is no longer supported by the

Python core team. Therefore, support for it is deprecated in cryptography

and will be removed in a future release.

 from cryptography.hazmat.backends import default_backend

1 feature passed, 0 failed, 23 skipped

1 scenario passed, 0 failed, 19 skipped

19 steps passed, 0 failed, 431 skipped, 0 undefined

Took 2m31.278s

Allure report was successfully generated.

58

Creating artifact for the build.

Artifact was added to the build.

Finished: SUCCESS

Started by user Bekzat Kelgenbayev

Obtained TestAutomationBDDFramework/jenkins/EndToEndTestRDF

[Pipeline] Start of Pipeline

[Pipeline] node

Running on TestAutomation-sim-onprem in /svc/selenium/jenkins-

agent/workspace/testing/RDF/End_To_End_Testing

+ source /svc/selenium/jenkins-

agent/workspace/testing/venv_rdh/bin/activate

++ deactivate nondestructive

++ '[' -n '' ']'

++ '[' -n '' ']'

++ '[' -n /usr/bin/sh -o -n '' ']'

++ hash -r

++ '[' -n '' ']'

++ unset VIRTUAL_ENV

++ '[' '!' nondestructive = nondestructive ']'

++ VIRTUAL_ENV=/svc/selenium/jenkins-agent/workspace/testing/venv_rdh

++ export VIRTUAL_ENV

++ _OLD_VIRTUAL_PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin

++ PATH=/svc/selenium/jenkins-

agent/workspace/testing/venv_rdh/bin:/usr/local/sbin:/usr/local/bin:/usr/

sbin:/usr/bin

++ export PATH

++ '[' -n '' ']'

++ '[' -z '' ']'

++ _OLD_VIRTUAL_PS1=

++ '[' 'x(venv_rdh) ' '!=' x ']'

++ PS1='(venv_rdh) '

++ export PS1

++ '[' -n /usr/bin/sh -o -n '' ']'

++ hash -r

+ cd TestAutomationBDDFramework

+ python3 -m runner --job_dir testing/RDF/End_To_End_Testing --run_allure

true '--behave_options=-t Regression -t ReopenInstrument -D

environment=June2022-BAT -D browser=Firefox -D allstepexecution=No -D

video=Yes -D screenshot=Yes'

/svc/selenium/jenkins-

agent/workspace/testing/venv_rdh/lib64/python3.6/site-

packages/azure/storage/blob/_shared/encryption.py:15:

CryptographyDeprecationWarning: Python 3.6 is no longer supported by the

Python core team. Therefore, support for it is deprecated in cryptography

and will be removed in a future release.

 from cryptography.hazmat.backends import default_backend

1 feature passed, 0 failed, 23 skipped

1 scenario passed, 0 failed, 19 skipped

13 steps passed, 0 failed, 437 skipped, 0 undefined

Took 2m31.060s

Allure report was successfully generated.

Creating artifact for the build.

Artifact was added to the build.

Finished: SUCCESS

59

Started by user Bekzat Kelgenbayev

Obtained TestAutomationBDDFramework/jenkins/EndToEndTestRDF

[Pipeline] Start of Pipeline

[Pipeline] node

Running on TestAutomation-sim-onprem in /svc/selenium/jenkins-

agent/workspace/testing/RDF/End_To_End_Testing

+ source /svc/selenium/jenkins-

agent/workspace/testing/venv_rdh/bin/activate

++ deactivate nondestructive

++ '[' -n '' ']'

++ '[' -n '' ']'

++ '[' -n /usr/bin/sh -o -n '' ']'

++ hash -r

++ '[' -n '' ']'

++ unset VIRTUAL_ENV

++ '[' '!' nondestructive = nondestructive ']'

++ VIRTUAL_ENV=/svc/selenium/jenkins-agent/workspace/testing/venv_rdh

++ export VIRTUAL_ENV

++ _OLD_VIRTUAL_PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin

++ PATH=/svc/selenium/jenkins-

agent/workspace/testing/venv_rdh/bin:/usr/local/sbin:/usr/local/bin:/usr/

sbin:/usr/bin

++ export PATH

++ '[' -n '' ']'

++ '[' -z '' ']'

++ _OLD_VIRTUAL_PS1=

++ '[' 'x(venv_rdh) ' '!=' x ']'

++ PS1='(venv_rdh) '

++ export PS1

++ '[' -n /usr/bin/sh -o -n '' ']'

++ hash -r

+ cd TestAutomationBDDFramework

+ python3 -m runner --job_dir testing/RDF/End_To_End_Testing --run_allure

true '--behave_options=-t Regression -t CancelInstrument -D

environment=June2022-BAT -D browser=Firefox -D allstepexecution=No -D

video=Yes -D screenshot=Yes'

/svc/selenium/jenkins-

agent/workspace/testing/venv_rdh/lib64/python3.6/site-

packages/azure/storage/blob/_shared/encryption.py:15:

CryptographyDeprecationWarning: Python 3.6 is no longer supported by the

Python core team. Therefore, support for it is deprecated in cryptography

and will be removed in a future release.

 from cryptography.hazmat.backends import default_backend

1 feature passed, 0 failed, 23 skipped

1 scenario passed, 0 failed, 19 skipped

19 steps passed, 0 failed, 431 skipped, 0 undefined

Took 2m26.079s

Allure report was successfully generated.

Creating artifact for the build.

Artifact was added to the build.

Finished: SUCCESS

Started by user Bekzat Kelgenbayev

Obtained TestAutomationBDDFramework/jenkins/EndToEndTestRDF

[Pipeline] Start of Pipeline

[Pipeline] node

Running on TestAutomation-sim-onprem in /svc/selenium/jenkins-

agent/workspace/testing/RDF/End_To_End_Testing

60

+ source /svc/selenium/jenkins-

agent/workspace/testing/venv_rdh/bin/activate

++ deactivate nondestructive

++ '[' -n '' ']'

++ '[' -n '' ']'

++ '[' -n /usr/bin/sh -o -n '' ']'

++ hash -r

++ '[' -n '' ']'

++ unset VIRTUAL_ENV

++ '[' '!' nondestructive = nondestructive ']'

++ VIRTUAL_ENV=/svc/selenium/jenkins-agent/workspace/testing/venv_rdh

++ export VIRTUAL_ENV

++ _OLD_VIRTUAL_PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin

++ PATH=/svc/selenium/jenkins-

agent/workspace/testing/venv_rdh/bin:/usr/local/sbin:/usr/local/bin:/usr/

sbin:/usr/bin

++ export PATH

++ '[' -n '' ']'

++ '[' -z '' ']'

++ _OLD_VIRTUAL_PS1=

++ '[' 'x(venv_rdh) ' '!=' x ']'

++ PS1='(venv_rdh) '

++ export PS1

++ '[' -n /usr/bin/sh -o -n '' ']'

++ hash -r

+ cd TestAutomationBDDFramework

+ python3 -m runner --job_dir testing/RDF/End_To_End_Testing --run_allure

true '--behave_options=-t Regression -t ReactivateInstrument -D

environment=June2022-BAT -D browser=Firefox -D allstepexecution=No -D

video=Yes -D screenshot=Yes'

/svc/selenium/jenkins-

agent/workspace/testing/venv_rdh/lib64/python3.6/site-

packages/azure/storage/blob/_shared/encryption.py:15:

CryptographyDeprecationWarning: Python 3.6 is no longer supported by the

Python core team. Therefore, support for it is deprecated in cryptography

and will be removed in a future release.

 from cryptography.hazmat.backends import default_backend

1 feature passed, 0 failed, 23 skipped

1 scenario passed, 0 failed, 19 skipped

19 steps passed, 0 failed, 431 skipped, 0 undefined

Took 2m45.356s

Allure report was successfully generated.

Creating artifact for the build.

Artifact was added to the build.

Finished: SUCCESS

	1 Introduction
	2 Objectives and Methodology
	2.1 Objectives
	2.2 Methodology

	3 Literature Review
	3.1 Software Testing Overview
	3.2 Classification of Types of Testing
	3.2.1 Functional Testing
	3.2.2 Non-Functional Testing
	3.2.3 User Interface Testing
	3.2.4 Usability Testing
	3.2.5 Security Testing
	3.2.6 Installation Testing
	3.2.7 Configuration Testing
	3.2.8 Stress Testing
	3.2.9 Localization Testing
	3.2.10 Stability Testing
	3.2.11 Volume Testing
	3.2.12 Scalability Testing

	3.3 Regression Testing: Concepts and Importance
	3.4 Test Automation
	3.5 Test Automation Tools and Frameworks
	3.5.1 Selenium
	3.5.2 Jenkins
	3.5.3 Tosca
	3.5.4 JUnit
	3.5.5 NUnit

	3.6 Developers and Testers
	3.7 Types of Errors

	4 Practical Part
	4.1 Introduction into Internal Web Application
	4.2 Establish the Requirements for Testing
	4.2.1 High-level Overview of Business and Technical Tasks
	4.2.2 Test case Preparation

	4.3 Manual Testing
	4.4 Automated Testing with Python, Selenium and Jenkins tools
	4.4.1 Gherkin Language Scenarios, BDD test
	4.4.2 Test Execution and Automation Outputs

	5 Results and Discussion
	5.1 Time and Efficiency
	5.2 Usability Factors
	5.3 Discussion

	6 Conclusion
	7 References
	8 List of pictures, tables, graphs, and abbreviations
	8.1 List of figures
	8.2 List of tables

	9 Appendix

