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Annotation 

The dissertation thesis is focused on pelagic fish distribution in the large freshwater 

bodies and the main factors affecting it. Paper 1 describes fish behaviour in a mouth of a 

midwater trawl during different day time periods as fish activity may importantly affect 

abundance estimates of the sampled fish stock. Acoustically recorded avoidance behaviour in a 

vertical direction is described. The second part of the thesis refers to the diel distribution and 

behaviour of the pelagic fry communities with a particular focus on the vertically migrating 

bathypelagic percid fry that occupy open water during early ontogeny. Paper 2 shows that the 

vertically migrating community can create a dominant part of fry assemblages in the reservoir, 

which is in contrast to many previous observations of an usually prevailing non-migrating 

epipelagic community. At their day refuge, bathypelagic percid fry (BPF) created dense shoals 

whose physical parameters are described. Paper 3 for the first time demonstrates that vertical 

shifts of BPF were under direct light control, hence were not a genetically fixed behaviour. A 

unique large-scale field experiment with the simultaneously operating up-looking and down 

looking transducers was carried out under artificially controlled light regime. Moreover effect of 

predation as the main ultimate cause of vertical shifts is discussed. 

The introductory part of the thesis opens with the current possibilities of assessing 

distribution and behaviour of fish in the open water. Benefits of shoaling/schooling behaviour 

during defence against predators, foraging and learning abilities of fish are mentioned and some 

implications of fish behaviour on the fish capture process are pointed out. The second chapter 

deals with the diel shifts between habitats that belong among the most common activities of fish. 

However, distribution of fish varies also over the long temporal scale and currently has been 

strongly affected by changing climate. Therefore, the main affects of climate change on the 

world´s fish populations are introduced using examples from both freshwater and marine 

environment.   
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Introduction  

Studying fish in their natural environment requires a lot of effort since they can be rarely 

followed without being disturbed and also because they shift on long distances and occupy 

various inshore and off-shore habitats over the diel, seasonal and interannual periods (Axenrot et 

al., 2004; Brönmark et al., 2008, 2013; Ahrenstorff et al., 2011). Behaviour of fish plays an 

important role during the fish stock surveys but reaching fish, especially in a deep and poorly 

accessible pelagic habitat, can be arduous and active sampling devices are needed (Misund, 

1994; Lucas & Baras, 2000). Trawls have been deployed for more than 70 years (Kristjonsson, 

1971) by marine fisheries but they have become common also during investigations of the large 

land-locked water bodies (Říha et al., 2012; Williams et al., 2013). Trawling requires lot of space 

and cannot be carried out in the deepest parts of the water bodies where sloppy bottom with 

obstacles can cause trawls´ damage (Dahm, 1980; Graham et al., 2004). Where use of trawls is 

limited, however, hydroacoustic devices proved to be effective tools that can (except to many 

other things) control depth of a trawl and monitor fish behaviour relative to it (Rakowitz et al., 

2012). The main positive about the hydroacoustic devices is that they are not limited by light 

(unlike the optical systems), which is important during underwater surveys because fish 

behaviour varies under high and low light intensities and may affect trawl catchability (Glass & 

Wardle, 1989; Misund, 1997). Another positive about the echosounders is that they operate in 

non-invasive manner and provide accurate information about depth and acoustic size of the 

single fish targets (particularly split-beam echosounders) (Čech & Kubečka, 2002; Taylor & 

Maxwell, 2007; Busch & Mehner, 2009) and also about abundance and biomass of fish 

aggregations (Fässler & Gorska, 2008; Draštík et al., 2009; Slotte et al., 2015). 

Evaluating species composition of the sampled fish stock is usually based on the net 

catches but current effort is to develop acoustic methods that would enable distinguishing among 

different fish species. This might be problematic if fish occur in dense shoals, fortunately, back-

scattering properties of some species, e.g. Atlantic mackerel (Scomber scombrus L.) or herring 
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(Clupea harengus L.) are frequency-dependent so that echosounders simultaneously operating at 

the high and low frequencies can distinguish between the species (Misund, 1997). Another 

possibility is to look for species-specific target strength (TS, in dB) - length regressions of fishes 

which can be useful during size estimation in looser fish aggregations in shallow waters (e.g., 

Godlewska, 2004; Frouzová et al. 2005). However, the measurements are often affected by 

changing fish orientation relative to transducer (Čech & Kubečka, 2002; McQuinn & Winger, 

2003; Ona, 2003) and, in the deep waters, also by changing volume of a fishes´ swim bladder, so 

that a relatively wide range of TS within species can be observed (Ona, 2003; Fässler & Gorska, 

2008). Thus, probably the most reliable approach is to utilize echosounders operating at high 

frequencies, i.e. acoustic cameras - DIDSON (Tušer et al., 2013) and side scan sonars operating 

frequency >500 kHz that can provide high-resolution data where single fish targets can be 

identified into species (Handegard & Williams, 2008; Rudstam et al. 2012).  

The conventional fishing vessels are equipped with the vertically and horizontally 

beaming echosounders operating at frequencies from 20 to 200 kHz where the low frequencies, 

at which the data resolution is usually poor, are used to detect distant targets whereas higher 

frequencies (>120 kHz) can provide detailed information about fish targets (Misund, 1997; 

Simmonds & MacLennan, 2005). Trawls that are towed hundreds of meters behind the fishing 

vessels are provided with their own trawl eyes controlling depth and the horizontal opening of 

the trawl. Sometimes, bottom trawls or dredges are monitored by side scan sonar recording 

details about the terrain of the sea bottom in their path (Lucchetti & Sala, 2012). Besides the 

fishing operations, fish can be studied using echosounders carried by the towed underwater 

vehicles (Fernandes et al., 2003) or echosounders mounted to the moored or drifting buoys 

(Handegard et al., 2003). Moreover, the stationary up-looking transducers for evaluating fish 

occurrence in surface pelagic layers can be deployed (Graham et al., 2004; Scalabrin et al., 2009; 

Jarolím et al., 2010). Finally, acoustics can provide valuable information on the individual, 

population and the species level and belong among the most promising non-invasive tools 
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suitable for studying spatial and temporal distribution of fish as well as their migratory, foraging, 

defensive and shoaling behaviour. 

 

Benefits of shoaling behaviour 

Forming shoals or organized schools is the most obvious behaviour in fishes. Permanent 

shoals are common in species spending their life time in shoals whereas facultative shoals are 

created only during certain life period (Pitcher, 1993; Helfman et al., 2009). With a few 

exceptions, shoaling is affected by light that attenuates with depth and limits visual detection 

abilities of fish (Pitcher et al., 1976; Glass et al., 1986). Under low light intensities fish cannot 

properly maintain visual contact with their conspecifics in shoal/school, thus create denser 

aggregations at day time than at night (Robinson et al., 1995; Guillard et al., 2004;). Light also 

importantly affects visual detection abilities of fish during prey capture. High light intensities 

enhance optical contrast of prey towards the bright surface or the dark bottom which allows fish 

to more effectively recognize transparent prey items (e.g. zooplankton) in open water (Čech & 

Kubečka, 2002). By swimming in groups, fish can find optimal forage densities in considerably 

shorter time period than in the smaller groups (Pitcher et al., 1982).  

Shoaling/schooling has several functions (Pitcher, 1993). It is beneficial during 

cooperative feeding, as was observed in the fast swimming pelagic piscivorous fishes, carangids 

(Carangidae), tunas (Scombridae), cod or saithe (Gadidae) that can create specialized hunting 

formations to enhance prey capture. Cooperative feeding occurred at day time when single 

predatory fish would be scarcely successful in attacks on their visually orienting prey fish 

(Partridge, 1982; Schmitt & Strand, 1982). Moreover, shoaling plays important role during 

defensive behaviour as fish in shoals have a lower probability of being captured by predators 

than single swimming individuals (Helfman et al., 2009). Defensive schooling is well developed 

in pelagic planktivorous species. For instance, Pitcher et al. (1996) observed 15 different 

schooling events in herring schools that were changing density, shape (e.g. ball, vacuole, 
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hourglass, bend, split and fountain) and depth within short time periods. Antipredator behaviour 

is highly plastic, adapted to a type of attack (Nøttestad et al., 1996, 2002). Seithe (Pollachius 

virens L.), for instance, use hunting tactic of fast raids, which are more devastating for herring as 

more of them are killed than during attacks by Atlantic cod (Gadus morhua L.), focusing on 

single herring. Comparably, more harmful are attacks by cooperatively hunting marine mammals 

that attack fish from below, split them into small units and force them towards the surface where 

fish are stunned and eaten (Nøttestad & Axelsen, 1999). In contrast, seabirds, Atlantic puffins 

(Frathercula arctica L.), hunt non-cooperatively and during their attacks in surface layers, 

herring have better chance to escape (Axelsen et al., 2001; Nøttestad, 1998).  

Avoidance behaviour of fish is important for trawl and acoustic surveys as it may bias 

abundance estimates of the investigated fish stocks (Ona et al., 2007). Avoidance to vessels 

depends on type of vessel and originates from vibrations of a vessel´s hull moving through water 

and also noise from engines (Mitson, 1993). A wide spectrum of behaviours from none to strong 

responses was described. Draštík & Kubečka (2005) found that in clear water of the lake 

Wallersee (Austria) fish escaped approaching boat while no obvious responses were observed in 

fish from the eutrophic Czech reservoirs. However, in marine environment where water 

transparency is usually high, Gerlotto & Fréon (1992) and Gerlotto et al. (2004) observed poor 

vertical avoidance in Round sardinella (Sardinalla aurita (Valenciennes, 1847)) and anchovy 

(Engraulis ringens (Jenyns, 1842)) that responded to approaching vessel by shallow dives within 

upper 10–20 m of water column. Skaret et al. (2005) suggested that the priority of fish at the 

spawning/feeding grounds can overrule their defensive behaviour which agrees with a generally 

poor response of herring at the spawning grounds and their strong avoidance at the wintering 

grounds (Misund, 1994). 

Various behaviours can be observed relative to trawls that are constructed so that they 

provide optical stimuli from otter boards, bridles, warps or netting and attract fish to the trawl 

mouth (Kim & Wardle, 1998; Glass & Wardle, 1989). For instance, Rakowitz et al. (2012) 
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revealed eleven different swimming modes of fish in the trawl mouth. During the active 

avoidance, fish swum under the footrope or escaped from the trawl by fast swimming in ahead 

and away from the trawl. The most fish, however, behaved passively, and those occuring in the 

trawl path, were captured. Different behaviour was observed in fast swimming pelagic fishes at 

day time when fish could keep long reaction distances, most of them avoiding trawl or 

swimming fast in the direction of tow for several minutes (He, 1993; He & Wardle, 1988). At 

night, however, reaction distances sharply decreased and trawl catches were significantly higher 

(Godø et al., 2004; Misund, 1999; Jůza et al., 2012, 2013). Specific behaviour to trawls can be 

observed in demersal non-schooling species, e.g. flatfish - sole (Soleidae), plaice 

(Pleuronectidae) or flounder (Bothidae) that, even under sufficient light intensities, keep short 

reaction distances which arises from characteristic antipredator strategy of these fishes. They 

wait until predator (trawl) gets into their close proximity and then perform fast “fleeing” 

manoeuvres (Albert et al., 2003; Ryer, 2008; Winger et al., 2010). Hence, species-specific 

behaviour and time of a day should be taken on account during fishing operations.  

Last but not least, shoaling behaviour is beneficial during social learning in fish which 

should be considered in heavily fished areas where repeated encounters with the fishing gear 

may lead fish to increased avoidance behaviour (Walsh et al., 2004). For instance, Pyanov 

(1993) studied learning abilities of common bream (Abramis brama L.) that avoided trawls more 

than 20 days after a single encounter and the highest probability of avoidance was found in large 

adult individuals, which is obviously correlated to greater experience of these individuals. 

Furthermore, the greater the number of demonstrators (experienced individuals) in group, the 

higher probability that observers (naïve fish) learn to avoid fishing gear next time (Brown & 

Laland, 2003). Similarly, in migratory schooling species where presence of experienced 

individuals was greater than 4 %, learning abilities of young (naïve) individuals increased 

rapidly (Fréon et al., 1993; Huse et al., 2010). However, because social learning is more effective 
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in permanent groups than in randomly mixed shoals created during fish capture, it seems not 

very likely that catch ability of trawls would be severely impacted. 

 

Diel, seasonal and interannual distribution of fish  

Dealing with different environmental and biological conditions often leads fish to 

switching between habitats. Diel shifts are common activity of fish described in a wide range of 

species and life stages (Axelsen et al., 2001; Kahilainen et al., 2004; Jůza et al., 2009) and their 

often mentioned ultimate cause is searching optimal forage densities (Olsson et al., 2006), 

maximizing energetic gains (Neverman & Wurtsbaugh, 1994; Mehner et al., 2010) and avoiding 

predators (Kahilainen et al., 2009). For instance, Bohl (1979) and Brodersen et al. (2008) 

registered foraging inshore off-shore migrations in juvenile cyprinids. Muška et al. (2013) 

observed partial diel horizontal migrations in adult fish communities performed in order to 

optimize between feeding and avoiding predators. Comparably, Robinson et al. (1995) detected 

diel horizontal migrations off the west coast of Baja California (Mexico) when anchovy 

(Engraulis mordax (Girard, 1854)) stayed inshore at night and at dawn they moved into deeper 

water layers offshore, following their prey, euphausiids (Euphausiidae). In water bodies where 

the littoral zone is scarce or surface pelagic layers are occupied by predators, fish may utilize 

deep water as a temporary refuge and perform vertical shifts (Gliwicz & Jachner, 1992; 

Hardiman et al., 2004). For instance, Scheuerell & Schindler (2003) evidenced that sockeye 

salmon (Oncorhynchus nerka (Walbaum, 1792)) are capable of utilizing even minimal light 

intensities to forage in deep layers where they could escape their predators for which the same 

light intensities were too low to orient. Probst & Eckmann (2009) found that deep water serves 

as important refuge for juvenile burbot (Lota lota L.) and, correspondingly, Benoit et al. (2010) 

evidenced deep day distribution of polar cod (Boreogadus saida ((Lepechin 1774)) in the 

Barents Sea that avoided their predators, ringed seals (Phoca hispida ((Schreber 1775)). 

Predation seems to be the main cause of diel vertical shifts also in pelagic perch (Perca fluviatilis 
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L.) fry that can create numerous assemblages in open water and can create two spatially and 

temporarily distinct communities (Čech et al., 2005, 2017; Kratochvíl et al., 2008; Kuchta et al., 

2009; Petrtýl et al., 2015). The epipelagic (non-migrating) perch/percid community can find 

optimal temperature conditions and optimal forage densities entire diel period but they must face 

high predation risk at the bright surface pelagic layers as was supported by Eklöv & Persson 

(1995) who found that if the suitable refuges are lacking, juvenile fish are easy target of 

predators. Similarly, Vejřík et al. (2016b) observed that adult perch and also cyprinids belong 

among predators of juvenile percids in surface pelagic layers. Different, energetically less 

convenient strategy was chosen by the bathypelagic (migrating) percid fry community that 

undergoes vertical shifts into deep layers (Čech et al., 2005; 2017). Compared to adult fish 

preferring warm epipelagic layers, juvenile fish can temporarily bear considerably lower 

temperature range (Hardiman et al., 2004; Vašek et al., 2004; Prchalová et al., 2008, 2009) and 

lower concentration of dissolved oxygen (<2.5 mg l
-1

). Thus, occupying deep layers might be 

useful in spatial segregation from predators in surface layers (Wang & Eckmann, 1994; Jackson 

et al. 2001; Vejřík et al., 2016a).  

Up to now, the diel activity of fish was mentioned but distribution and behaviour of fish 

may vary also within long temporal scale, being affected by seasonally and interannually 

changing environmental conditions. For instance, Baldwin et al. (2002) observed that cutthroat 

trout (Oncorhynchus clarki (Richardson, 1836)) were more pelagic in autumn, utilizing wider 

range of a water column than in summer when their vertical shifts were limited by temperature 

stratification. Similarly, Ahrenstorff et al. (2011) found variability in vertical distribution of Lake 

trout (Salvelinus namaycush (Walbaum, 1792)) from the Lake Superior (Canada, USA), and 

Busch & Mehner (2009) observed seasonal vertical migrations in perch from the Lake Stechlin 

(Germany), whose shifts into deeper layers in winter were affected by low temperature 

preference. Marked interannual changes of occurrence and distribution were found also in the 

bathypelagic communities that, in some years, occupy only the restricted parts of the reservoir 

https://en.wikipedia.org/wiki/Johann_Julius_Walbaum
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whereas in other years they are found in most of the longitudinal profile (Čech et al., 2005; 

2007a,b; 2017; Jůza et al., 2010, 2012). Such variability could be explained by changing 

hydrological conditions in the reservoirs (early summer flood events, income of humic water 

from the watershed) but there is also strong variability in occurrence between different water 

bodies which remains poorly understood (Čech et al., 2007a, b; 2017; Sajdlová et al., 2017).  

There is ample evidence that long temporal distribution of fishes from equator to poles 

has been strongly affected by changes in atmospheric and oceanic circulation (Parsons & Leer, 

2001; Alheit et al., 2005, 2014). Climate changes are associated with rising global temperature 

and multi-decadal oscillations of the warm and cold periods and in aquatic ecosystems they 

manifest by prolonged thermal stratification (Williamson et al., 2009), enhanced eutrophication, 

intensive seasonal fluctuations of water level (Ficke et al., 2007; Jeppesen et al., 2009). 

Organisms with limited movement abilities deal with unfavourable conditions either by 

adaptation or extinction whereas mobile species respond more dynamically, by spatial shifts 

when entire population or species move their distribution range (Perry et al., 2005; Stenevik & 

Sundby, 2007; Jeppesen et al., 2010).  

In the lakes and reservoirs, latitudinal shifts are less obvious than in the marine 

environment due to geographical barriers but some general trends in long temporal distribution 

can be observed (Lehtonen, 1996; Jeppesen et al., 2010). For instance, Malmquist et al. (2004) 

suggested that cold-water stenothermal species (salmonids) shift polewards or where shifting is 

not possible, they become locally extinct while eurythermal species, percids (Percidae), 

cyprinids (Cyprinidae) or centrarchids (Centrarchidae) tend to adapt to new thermal regimes 

(Jeppesen et al., 2010). Similar trends were registered in marine environment where Perry et al. 

(2005) observed that several species from the North Sea (e.g. Atlantic cod, blue whiting 

(Micromesistius poutassou (Risso, 1827)), anglerfish (Lophius piscatorius L.)) have shifted their 

geographical range >2 km year
-1

 farther north, being replaced by warm-water species. Climate-

related shifts may be positive for new-coming species when free niches arise but the negative 
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aspect resides in intraspecific competition for space and food sources as was evidenced in the 

Mediterranean Sea where rising sea temperature caused that many non-native species, coming 

from the warm Red Sea, moved farther north which negatively affected biodiversity of 

residential species (Bianchi & Morri, 2000; Bariche et al., 2004; Lejeusne et al., 2010).  

The most obvious climate-related shifts were registered in highly mobile pelagic 

planktivorous fishes that have been important targets of fisheries (Holst et al., 2002; Schröder, 

2013) and create large populations with a rapid turnover of generations. For instance, when cold 

productive southerly currents flowing along the western coast of Africa (Benguela) and South-

America (Humboldt) are weak, sardine (Sardinops sagax (Jenyns, 1842)) preferring warm water 

are abundant whereas cold-water anchovy (Engraulius encrasicolus L.) with poor swimming 

abilities shift below thermocline or they look for temporary cold water pockets close to shore 

(Chavez et al., 2003; Checkley et al., 2017). In these refuges, however, anchovy cannot find 

optimal life conditions and their abundance declines since below the thermocline are low forage 

densities and inshore, anchovy have to face strong predation (Alheit & Niquen, 2004; Lehodey et 

al. 2006; Lindegren et al., 2013). On contrary, the largest fish stock from the North Atlantic 

Ocean, Norwegian spring spawning herring (NSS) obviously favour years when along the 

Norwegian coast flows strong, warm westerly current from the Atlantic Ocean (Toresen & 

Østvedt, 2000; Engelhard & Heino, 2006). The warm current positively affects physical 

conditions of adult herring during winter period (Fig. 1, 2) when they do not feed and in warm 

water (>6.5°C) can safe more energy for spring spawning migration (Røttingen, 1992; Skagseth 

et al., 2015). Moreover, during warm periods, onset of spawning is earlier which positively affect 

survival of herring larvae. Petitgas (2010) found that earlier hatched larvae can more effectively 

avoid spatial overleap with their predators and, as evidenced by Skagseth et al. (2015), larvae are 

faster carried into the nursery grounds where fry can find optimal forage densities (Olsen et al. 

2009). In result, during warm periods, more young-of-the-year herring can survive which 

supports stronger future recruitment. 
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Fig. 1a) Before spawning, NSS herring seek suitable refuges where the adult population (3.5 

millions of tons; the last estimate provided by Slotte et al., 2015) over-winters. Location of 

wintering grounds has been changing markedly and in the last 58 years they can be found in 

Norwegian fjords: 1) Møre and Lofoten Isls: 1970–1986, 2) Ofotfjord-Tysfjord: 1987–1994, 3) 

Vestfjord: 1995–2001, 4) North of Vesterlölen Isls.: 2002–2005, 5) Andøya Isl.-Troms-

Finnmarken: from 2006. Besides, the location of the recent spawning grounds (SG – black 

rectangle) and feeding grounds (FG – black lines) are shown (Røttingen, 1992; Foote et al., 

1997; Huse et al., 2010); b) A detail of the investigated locality in northern Troms that created a 

sub-area (~80 km
2
) of the wintering ground. The white lines indicate individual transects (N=21) 

of navigation along which herring were acoustically detected by the SIMRAD EK 60 scientific 

echosounder (f=70 kHz) (K. Ø. Gjelland & Z. Sajdlová, unpub. data). 
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Fig. 2 Overwintering herring create large, acoustically well-detectable schools that extend over 

the large areas of fjords and are common target for predatory fishes, sea birds and marine 

mammals (text Table 1, Fig. 3). The example of the two of 117 herring schools (HS) that were 

recorded during the two consecutive seasons from November to January (2014–2016). The 

schools reached average height of 68 m (SD ± 40 m) and length of 1002 m (SD ± 932 m) in a 

course of navigation.  

 

  

Fig. 3 Predator attack on a herring school (HS) in Kaldfjord recorded on 17 December 2014 

(11:40 hr). The black arrows indicate predators, probably the large saithe (Pollachius virens, L.). 

Note the white arrow indicating a typical gap in school during attack. Note also another fish 

school on the left side of the echogram picture swimming above HS. These fish could be 

identified as single swimming herring based on a target strength that is close to that of herring 

(TS=-37 dB; Ona, 2003). But leaving school in a presence of predators does not fit to the 

antipredatory behaviour of herring so that these targets probably belong to some other schooling 

species, possibly young (age 2
+
) gadoids, cod or pollock (Pollachius virens L.). Young gadoids 

create pelagic schools and because their diet includes mostly crustaceans and smaller fish 

(capelin, Mallotus villosus (O. F. Müller, 1776)), they seem to pose a little threat to herring 

(Dalpadado & Bogstad, 2004). 

 

https://en.wikipedia.org/wiki/Otto_Friedrich_M%C3%BCller
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Table 1 
Do prey abundance and migration distances affect behaviour of the large marine predators? 

Killer whales (Orcinus orca L.) have been regularly sighted at the wintering grounds of herring 

for decades (Similä et al., 1996; Nøttestad, 1998). But recently, also large baleen whales, especially 

humpback whales (Megaptera novaengliae (Borowski, 1781)) were observed in the fjords of northern 

Norway during winter. This is, to our best knowledge, the first evidence of such behaviour since 

humpback whales from the North Atlantic Ocean (NAO) usually spend winter at the breeding grounds in 

the Caribbean* and Cape Verde Islands from where whales migrate to the summer feeding grounds 

located at the western (e.g. Gulf of Maine, Newfoundland, West Greenland) and eastern NAO (Iceland, 

Jan Mayen Island, Norwegian and the Barents Sea). There is a strong fidelity to these areas since whales 

return to the feeding grounds were they were firstly taken by their mothers (Clapham, 2009).  

The breeding grounds at the Caribbean are shared but only a small portion of whales from the 

eastern NAO arrives there and only a minority breeds at the Cape Verde Islands. This leads to assumption 

that the other unknown breeding ground(s) exist. Stevick et al. (2003) found that timing of migration is 

influenced by the origin of a feeding ground and that there is a strong correlation between the latitude and 

time of arrival to the breeding grounds. Whales from the eastern NAO have to reach significantly greater 

distances and arrive later to the breeding grounds than the whales from western NAO. It might lead to 

assumption that not all the whales regularly migrate which was supported by historical records of 

Ingebrigsten (1929) who reported humpback whales at the feeding grounds in the Barents Sea for most of 

the year. 

The second possible explanation of why whales may postpone or skip reproduction, are feeding 

opportunities. Humpback whales have a diverse diet varying slightly across the feeding grounds and 

besides herring, humpback whales from the eastern NAO feed mostly on capelin (Fleming & Jackson, 

2011). Christensen et al. (1992) evidenced that if abundant and nutrient-rich food source is available for 

most of the year, whales may prefer to prolong feeding period which agrees with the recent observation 

from 2015–2016 when several hundreds of cooperatively feeding whales (3–8 individuals per group) 

occurred in the fjords of the Kvaløya Island (Fig. 1) obviously thriving from huge prey abundance 

(Sajdlová, 2016).  

* Currently including islands off the northern coast of the Greater Antilles (Turks and Caicos Isls.) and Bahamas. 
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Aims of the study 

The dissertation thesis is focused on pelagic distribution and behaviour of fish in the large 

temperate water bodies studied by the trawls and hydroacoustics. The first part of the thesis 

describes diel pattern of vertical distribution of fish and their behaviour relative to midwater 

trawl (Paper 1). The second and the third paper deal with diel distribution and behaviour in 

pelagic percid fry communities (Paper 2, 3). The specific objectives of the three papers are 

summarized below. 

 

Paper 1 The main objective was to describe diel patterns of vertical distribution of fish in the 

two canyon-shaped reservoirs at day and night. Moreover, acoustically recorded behaviour of 

fish near the footrope of a midwater trawl was described. The paper documents the number of 

fish that performed avoidance behaviour and evaluates catchability of trawls. 

 

Paper 2 The main objective was to show that bathypelagic percid fry can dominate the whole fry 

community of the reservoir. Bathypelagic percid fry community in the Vír Reservoir, its species 

composition, abundance and size distribution in the context of the vertical and horizontal spatial 

patterns of the whole fry community were investigated. 

 

Paper 3 The main objective was to demonstrate that diel vertical migrations of perch (Perca 

fluviatilis L.) fry were directly controlled by the light intensity. A unique large-scale field 

experiment with an artificially manipulated light intensity was undertaken in a thermally 

stratified, canyon-shaped reservoir. The behaviour of perch fry during the whole experiment was 

acoustically monitored using the semi-mobile down-looking transducer and stationary up-

looking transducer.  
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Results 

This dissertation thesis includes three original papers published in international impacted 

scientific journals - Fisheries Research, Hydrobiologia and Freshwater Biology. 

 

Paper 1  

This study addresses fish behaviour at the mouth of a midwater trawl in two temperate 

reservoirs. Fish distribution and behaviour were monitored using a SIMRAD EK60 (38 kHz) 

split-beam echosounder with the transducer deployed at the water surface, attached to the surface 

trawl headrope. We were able to describe day and night patterns of vertical distribution of fish in 

the reservoirs, describe fish behaviour near the footrope (i.e. vertical swimming velocity, fish 

tortuosity, vertical direction of swimming), and find the proportion of fish performing avoidance 

reactions. Significant differences were found between day and night distributions and 

behaviours. In total, only 35 of the 1514 acoustically recorded fish performed apparent 

avoidance behaviour. Twenty-seven avoidance reactions were observed in the day (6.3 % of total 

fish) while eight were observed at night (0.7 % of total fish). Fish were more active in the 

daytime, while tending to stay still in the water column with no observable reactions at night. We 

found significant dependence between the size of fish directly avoiding the trawl and their 

swimming velocities. The greatest echogram slope values belonged to those fish with a strong 

avoidance reaction. When the footrope was perceived, the fish reacted from approximately 1 m 

vertical distances and escaped up to 5 m below the footrope (usually 1–2.5 m). Light, water 

transparency and temperature stratification were the dominant factors influencing vertical 

distribution and fish avoidance behaviour. 

 

Paper 2  

The distribution, species composition, abundance and shoaling behaviour of young-of-year fish 

were studied in the canyon-shaped Vír Reservoir (Czech Republic) in mid-June 2010. Using the 
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SIMRAD EK60 echosounder (frequency 120 kHz), fry were acoustically sampled along the 

longitudinal profile of the reservoir. A framed trawl was used simultaneously to collect fry in the 

open water. Apparent differences were found in the density of fry between the epipelagic, littoral 

and bathypelagic zones. Bathypelagic fry strongly predominated in the total fry community 

creating 95.3% while epipelagic and littoral fry contributed only 4.7 %. The bathypelagic fry 

were represented by perch Perca fluviatilis (84.8 %), zander Sander lucioperca (14.9 %) and 

ruffe Gymnocephalus cernua (0.15 %) and were observed all along the longitudinal profile of the 

reservoir creating a distinct layer on the echogram. The layer, composed of shoaling and non-

shoaling fry individuals, reached its greatest depth in the Bay part of the reservoir (7.5–14.5 m) 

and it was rising in the water column towards the tributary. The situation that the bathypelagic 

percid fry predominate in the reservoir is absolutely unique and it is completely different from 

published observations from other canyon-shaped reservoirs where epipelagic percid fry 

prevailed. 

 

Paper 3  

Diel vertical migrations (DVMs) belong among the most pronounced movements in the aquatic 

environment. A general pattern of DVMs has been well-described, particularly in European 

perch (Perca fluviatilis), but whether the migrations are directly controlled by light and what is 

the ultimate cause of the diel vertical shifts, remains poorly understood. Undertaking a large-

scale field experiment in a thermally stratified, canyon-shaped reservoir, we demonstrated for the 

first time that DVMs of a bathypelagic early juveniles community, dominated by European perch 

larvae and juveniles prior the metamorphosis, were under direct control of the light intensity, i.e. 

they did not operate as a genetically fixed behaviour. Prior to the experiment, the depth 

distribution of the bathypelagic perch early juveniles was strongly correlated with the light 

intensity on the water surface (p<0.001). The community underwent regular DVMs between the 

epilimnion (depth <2.0 m) and hypolimnion (depth >3.0 m) reaching a maximum amplitude of 
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13 m. Hydroacoustic recordings by the echosounder SIMRAD EK 60 (120 and 400 kHz) showed 

that during the experiment, when the surface was covered with a large black non-transparent foil 

(2500 m
2
; simulated conditions of complete and constant darkness), the regular vertical 

movement of the bathypelagic perch early juveniles was interrupted and the community 

occupied the epilimnion constantly for 24 hr. Immediately after the foil was removed at midday, 

the bathypelagic perch early juveniles were exposed to a steep increase of light intensity (from 

<1 LUX to >100 × 10
3
 LUX) and they escaped into the hypolimnion where they were safe from 

visual predation which took place in the bright surface layers (epilimnion particularly). Our 

findings imply that occupying a deep, dark refuge in the daytime is essential for survival of perch 

in their early life stage. 

 

General discussion, conclusions and perspectives  

Fish from the Želivka and the Římov Reservoirs responded to approaching trawl actively 

at day time, escaping several meters below the footrope whereas at night they behaved passively 

and most of them did not show any obvious response (Sajdlová et al., 2015). Robinson et al. 

(1995) also observed significantly greater avoidance rate at day time when most of anchovy 

schools escaped from trawl. Similarly, Glass & Wardle (1989) and Olla et al. (2000) found light 

to be the main factor affecting trawl catchability. In total, however, only 2 % of fish from the 

Želivka and the Římov Reservoirs performed active avoidance behaviour so that trawl 

catchability seemed not to be severely impacted (Sajdlová et al., 2015). However, behaviour to 

trawl was recorded solely in the vertical direction and only within a restricted space of the trawl 

mouth so that the total number of fish escaped from the trawl might have been underestimated 

when we consider that fish can avoid trawls also in the horizontal direction or pass through the 

netting of the side panels (Williams et al., 2013; Rakowitz et al., 2012). Nonetheless, day time 

surveys should not be avoided as many fishes perform diel migrations between inshore and off-

shore habitats and can be lacking in open water at night (Draštík et al., 2009; Muška et al., 2013). 
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Besides time of a day period, trawl catchability can be significantly influenced by swimming 

speed of fish avoiding trawl gear, as larger individuals are capable of reaching higher velocities 

(Čech & Kubečka, 2002) and have greater swimming endurance than the small fish as found by 

He (1993) and by Scruton et al. (1998) who observed that the large lake sturgeon (Acipenser 

fulvesens (Rafinesque, 1817)) were capable of swimming 50 min at speed 0.9 m.s
-1

 whereas 

intermediate individuals could maintain this speed only a few seconds. Also during our study 

largest individuals reached the highest velocities. However the velocities were much lower than 

the speed limits reached during horizontal swimming when fish approach the trawl (He & 

Wardle, 1988).   

The trawl catch from the Želivka and the Římov Reservoirs were dominated by 

planktivorous species - common bream, roach (Rutilus rutilus L.) and bleak (Alburnus alburnus 

L.) (Sajdlová et al., 2015) that belong among the most abundant species of the Czech eutrophic 

water bodies (Blabolil et al., 2017). Planktivorous species can increase eutrophy by reduction of 

filter-feeding zooplankton which may negatively affect water quality in water bodies. Hence, 

regulating size of the populations of planktivorous fishes is required (Mehner et al., 2004). If 

natural regulation i.e. by predators cannot be done, fish stocks must be controlled artificially as 

in the case of the Římov Reservoir where intensive surface-water trawling was conducted to 

reduce over-abundant cyprinid population in 2010 and where similar investigations are planned 

for near future (ERDF/ESF Biomanipulation project for years 2018–2022).  

A pattern of pelagic distribution of fish showed that they occupied greater depth at day 

time than at night when most of them were dwelling in the warm epipelagic layers which seems 

to be a common distribution observed also by Prchalová et al. (2008) or Draštík et al. (2009). 

Even more distinct difference in vertical occurrence was observed in the migrating communities 

of bathypelagic percid fry that occupied deep (up to 13 m) layers at day and returned into surface 

layers at the dusk. In the Vír Reservoir, bathypelagic percid fry predominated in the fry 

community of the reservoir (Sajdlová et al., 2017) which contrasts with previous observations 

https://en.wikipedia.org/wiki/Constantine_Samuel_Rafinesque-Schmaltz
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where non-migrating epipelagic fry communities were more abundant (Post & McQueen, 1988; 

Čech et al., 2005). However, when fish can find optimal life conditions, i.e. when temperature is 

within their optima and food density is sufficient, fish may prefer utilizing deep water. In the Vír 

Reservoir, during summer temperature was high enough (>11.9 °C) in most of the water column 

to allow fry occurrence in deep layers where they could feed on abundant zooplankton 

(Daphnia). In concordance to Čech et al. (2007a), bathypelagic percid fry were following trophic 

gradient when larger fry individuals were observed more upstream than the smaller fry and were 

distributed among the most of the longitudinal profile of the reservoir (Sajdlová et al., 2017). 

According to Gliwicz & Jachner (1992) diel shifts are genetically fixed behaviour caused 

as a result of ghost of predation in the past. On contrary, studies by Gjelland et al. (2009); 

Kahilainen et al. (2009) or Benoit et al. (2010) evidenced that the vertical shifts were externally 

controlled by light. Under constant light intensity, i.e. under polar night or day regime, vertical 

shifts were stopped which is in concordance to observations conducted under artificially 

modified light intensities (Sajdlová et al., 2018). When the constant dark period was set and the 

water surface was covered by the non-transparent black foil, bathypelagic community stopped 

the vertical shift and occupied epipelagic layers 24 h. However, when the foil was removed 

under high day light intensities and the surface become fully illuminated percid fry escaped 

immediately into the hypolimnetic layers (Sajdlová et al., 2018). At this time, intensive shoaling 

behaviour could be observed as sufficient day light intensities enabled individuals in shoals to 

keep visual contact with their conspecifics. Setup of shoaling, however, begins at the certain age 

so that the bathypelagic layers are usually created by both, shoaling (older) and non shoaling 

(younger) fry individuals (Čech & Kubečka, 2006).  

The most probable ultimate cause of vertical shifts of bathypelagic percid fry is predator 

avoidance as was suggested by Čech et al. (2005), Čech & Kubečka (2006) and later evidenced 

by Čech (2007, pers. obs.) or Vejřík et al. (2016b) who found adult perch, bream and roach as 

the main predators of pelagic percid fry in surface pelagic layers. However, more detailed 
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information about the interactions between the fry and their predators in the different 

environments are mostly lacking. As shown on the examples of marine pelagic schooling species 

attacked by different kinds of predators, prey responses can be highly plastic, dependent on type 

of attack (Nøttestad et al., 1996; Nøttestad & Axelsen, 1999). Thus, different responses can be 

expected in the percid fry attacked by adult cyprinids and percids since both, perch and bream 

utilize different hunting tactics. Cyprinids focus on single prey items - zooplankton 

(Wanzenböck & Schiemer, 1989) that they gain during the up and down (sinusoidal) swimming 

when high light contrast enables detection of transparent prey towards the bright surface layers 

whereas percids do not perform sinusoidal swimming and are used to capture fast moving prey 

(Čech & Kubečka, 2002, Jarolím et al., 2010). Moreover, as observed by Partridge et al. (1982) 

or Čech et al. (2017), avoidance behaviour is highly affected by time of a day period and also by 

type of the environment. Thus, in the deep stratified water bodies, vertically migrating 

community escapes into hypolimnion whereas in shallow non-stratified water bodies, percid fry 

hide near the bottom (cf. also Kratochvíl et al., 2010).  

The diel pattern of distribution and shoaling behaviour in the bathypelagic percid fry 

from the reservoirs of the Vltava Cascade, the Římov and the Vír Reservoirs was well described 

but the interannual variability of pelagic percid fry occurrence between different water bodies 

and between different years has been poorly understood. Since the trawl and hydroacoustic data 

from many consecutive years are available it would be interesting to examine the long temporal 

variability in percid fry distribution with respect to environmental and biological factors, i.e. 

hydrological conditions in the reservoir, income of humic water from the watershed, temperature 

conditions, availability of suitable spawning grounds and predator abundance a activity.  
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a b  s  t  r  a c t

This  study  addresses  fish  behaviour  at  the  mouth  of  a  midwater  trawl  in  two temperate  reservoirs.  Fish

distribution and behaviour  were monitored  using a SIMRAD  EK60 (38  kHz) split-beam  echosounder  with

the transducer  deployed  at the water  surface,  attached  to the surface  trawl  headrope.  We  were  able to

describe day and night patterns  of  vertical distribution  of  fish  in  the reservoirs,  describe  fish  behaviour

near the  footrope  (i.e.  vertical  swimming  velocity,  fish  tortuosity,  vertical  direction  of  swimming),  and find

the proportion  of  fish  performing  avoidance  reactions.  Significant differences  were found  between  day

and night  distributions  and  behaviours.  In  total,  only  35 of the  1514  acoustically  recorded  fish  performed

apparent avoidance  behaviour.  Twenty-seven  avoidance  reactions  were  observed  in  the day (6.3-% of

total fish)  while  eight were observed  at  night (0.7-% of  total fish).  Fish  were  more  active  in  the daytime,

while tending  to stay  still  in  the  water  column  with  no  observable reactions  at  night.  We  found  signif-

icant dependence  between  the size  of  fish  directly  avoiding  the trawl  and  their  swimming  velocities.

The greatest echogram  slope  values  belonged  to  those  fish  with a  strong avoidance  reaction. When  the

footrope was  perceived,  the  fish reacted  from  approximately  1 m vertical  distances  and  escaped  up  to

5 m below the  footrope  (usually  1–2.5 m). Light,  water  transparency  and  temperature  stratification  were

the dominant  factors  influencing  vertical  distribution  and  fish  avoidance  behaviour.

©  2015 Elsevier  B.V.  All rights reserved.

1. Introduction

Many authors have studied how fish behave in response to

active fishing gear, particularly for commercially important marine

species (Engås and Godø, 1989; Godø and Walsh, 1992; Misund

et al., 1999; Kim and Wardle, 2003; Ona and Godø, 1990; Wardle,

1986). However, observations are quite rare in freshwater ecosys-

tems (Rakowitz et al., 2012; Schmidt, 2009) where fish reactions are

poorly understood. Detailed knowledge of fish reactions to trawls

and  understanding fish behaviour in general is  important for max-

imizing efficiency of sampling gear and obtaining more precise

estimates of fish abundance (Kubečka et al., 2009). There are many

advantages of using trawls as survey gears, including large sam-

∗ Corresponding author.

E-mail address: kubecka@hbu.cas.cz (J. Kubečka).

pling capacity (Hayes et al., 1996; Kubečka et al., 2009; Winger

et al., 2010),  as they can cover large areas of open water that are

usually difficult to reach using other sampling methods.

It  is known that fish behaviour near trawls is species-specific

(Piasente et al., 2004) and influenced by biotic and abiotic factors

such as water temperature or  transparency (Kim and Wardle, 1998;

Winger et al., 2010).  Fish behaviour in the trawl mouth is highly

dependent on light intensity where high light intensities enable

fish to maintain visual contact with both the net and other fish, and

stay in more coherent groups (Gerlotto, 1996). However, in low

light  intensity conditions, shoaling behaviour is  reduced as fish are

more dispersed in the water column and they cannot keep visual

contact with their conspecifics. As a result, fish behaviour changes

trawl efficiency, which can vary between day and night periods

(Rakowitz et al., 2012).

Fish escape from the trawl mouth in different directions. While

some studies of European freshwater bodies evaluated lateral

http://dx.doi.org/10.1016/j.fishres.2015.06.025

0165-7836/© 2015 Elsevier B.V. All rights reserved.
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avoidance reactions (Rakowitz et  al., 2012),  reactions in the vertical

plane  (below the trawl) have not  been evaluated. Such knowledge

is  very important for trawl catchability.

Quantification of fish behavior near trawls is a complex task

in  conditions of low light transparency. In such conditions optical

systems are inadequate for fish monitoring, while echosounders

have proven to be effective devices. A vertical echosounder is

commonly employed in combination with trawls in marine sur-

veys (Graham et al., 2004; Misund, 1997),  however observations

from freshwater are relatively rare (Emmrich et al., 2010; Schmidt

et  al., 2005). The split-beam type, used in this study, is equipped

with a four-quadrant transducer face that enables us to deter-

mine three-dimensional position of targets in the acoustical beam

by comparing echo signals in each quadrant (Simmonds and

MacLennan, 2005).

The objectives of this study were a) to describe day and  night

pattern of vertical distribution of fish in the reservoirs so as to allow

studying fish reactions to the trawl b)  to describe fish behaviour

near the footrope of a midwater trawl, andc) to document the

proportion of fish with avoidance reactions. The main goal was

to  evaluate catchability of freshwater trawl for efficient fish stock

sampling in the open water.

2. Materials and methods

2.1. Study areas

The survey was conducted in the Želivka Reservoir (2009) and

the Římov Reservoir (2009 and 2011) in the Czech Republic dur-

ing  the month of August. The Želivka Reservoir is  located in the

Central Bohemia (49◦43′32′ ı́N; 15◦05′20′ ı́E) and  has a surface area

of  1430 ha, a mean depth of 17 m and a volume of 250 mil. m3.

The Římov Reservoir is  located in the South Bohemia (48◦51′00′ ı́N;

14◦29′30′ ı́E), and has a  surface area of 210 ha, a mean depth of  16 m

and a volume of 33 mil. m3. Both reservoirs are used for drinking

water storage and are canyon-shaped, with thermal and oxygen

stratification during summer. The  summer thermocline usually

extends 2–3 m in depth in the Římov Reservoir and 5 m in depth in

the Želivka Reservoir. The most common species in both reservoirs

are Cyprininds and Percids, specifically common bream (Abramis

brama),  roach (Rutillus rutillus), bleak (Alburnus alburnus), perch

(Perca fluviatilis), pikeperch (Sander lucioperca) and ruffe (Gymno-

cephalus cernuus) (Prchalová et al., 2009; Říha et al., 2012).  These

species do not have high commercial value in the Czech reservoirs

but their abundance may  have great effect on water quality.

2.2. Sampling and analyses

A midwater pair trawl (Říha et al., 2012) with a full body length

(mouth-codend) of 48 m,  a  vertical mouth opening of about 8 m,

and an effective horizontal mouth opening of up to 13.5 m,  with

mesh sizes (knot to knot) of 80, 40, and 20 mm in the main body

and 10 mm at the codend, was used for the study. The  trawl was

pulled by the two survey vessels with engine power of 60HP and

210HP. The trawl headrope was always on the surface (Fig. 1).  In

the Želivka Reservoir the footrope depth was 7–7.3 m during tows.

In  the Římov Reservoir the footrope depth was up to 8.5 m (2009)

and 6 m (2011). Two small supporting boats were used to control

the depth of the footrope and to monitor the GPS position of the

trawl  mouth. The main charateristics of survey hauls is  shown in

Table 1.

Fish behaviour at the trawl mouth was monitored with a SIM-

RAD EK 60 split-beam echosounder, operating at a  frequency of

38 kHz. The transducer SIMRAD ES 38 – 12, with a 12 degree nom-

inal beam angle was fixed to the windsurf floater attached to the

Fig. 1. Scheme of a midwater trawl  used during the  experiments; 1–bridles,

2–headrope, 3–footrope, 4–floater carrying transducer, 5–acoustical beam, 6–fish

in the trawl mouth (black arrow is showing an example of avoidance reac-

tion below the  footrope), 7–supporting boat, 8–iron warp regulating depth of

the footrope, 9–headrope buoy, 10–weights (chains or concrete-iron blocks),

11–codend, 12–codend buoy.

headrope and used to observe fish within the trawl mouth (Fig. 1).

The  ping rate of the echosounder was  between 4.5 and 8  pings per

second and the near field was  approximately 2 m (Simmonds and

MacLennan, 2005).  Fish tracks of this range were not included in

the analysis.

Both the echosounder and computer were placed aboard the

supporting boat. The system calibration was done according to

Foote et al. (1987). The lowest size threshold for targets in the

acoustic data was set at  -54 dB. Smaller targets were unreliable for

the acoustical analysis. There was no upper size threshold as no

other large objects were expected in the open water. Fish acoustic

sizes are shown in target strength - TS (dB) scale. For acoustic sizing

only the straight parts of fish tracks without slope were used (nor-

mal  position of fish with respect to vertical acoustic beam). Sloped

tracks that changed time scale and represented diving or rising fish

were not suitable for acoustic sizing.

Sonar 5  software (Balk, 2007) was used to analyze acoustical

data. A method of target manual tracking, which combines sin-

gle target detections (SED) of fish into tracks, was used. It is based

on  the identification of hits obtained from a  single object. At least

three consecutive echoes were set to make one track. The tracks

consist of several single detections shown as points per ping on

a  two-dimensional echogram. The Y-axis of the echogram shows

the depth and the X-axis shows time or ping number. Information

such as depth, target strength, three-dimensional position (x, y, z

coordinates), echo length, etc. were stored with each fish track in a

Fishbaskets database in Sonar 5 and exported for further process-

ing. Ambient water temperature was measured by an YSI 556 MPS

probe at several localities in both reservoirs and  water transparency

was measured by a  Secchi disk (Fig. 2).

A  vertical track slope, calculated for all fish tracks, was  used in

two ways in this study: a) as a measure of vertical direction of swim-

ming and b)  to compute swimming velocities of fish in the vertical

plane. The vertical track slope is defined as the average change in

range per ping during a  trace (�R/�n)  (Draštík and Kubečka, 2005).

The  track slope demonstrated whether fish descended (positive

slope), ascended (negative slope) or stayed at the same depth (close

to zero slope). Slope in the range of ±1  cm/ping was  considered as

no slope, meaning that the fish did not ascend or descend. This is

common fish behaviour at night and in deeper water during the day

in reservoirs (Jarolím et al., 2010). To compute the vertical swim-
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Table 1
General characteristics of hauls performed in reservoirs.

Total number of

DAY hauls

Total number of

NIGHT hauls

Total time (h)

of trawling

Mean towing

velocity (km.h-1)

Mean tow

duration (min)

Total sampled

area (ha)

Želivka 2009 9 7  10.02 4  37.4  70.3

Římov 2009 6 9  4.35 4.5 18 26.5

Římov 2011 23 19 5.13 4  10 38.5

� 38 35 19.5  –  – 135.3

Fig. 2. Histogram of depth distribution for both years shown separately a) the Želivka Reservoir (2009); b)  the Římov Reservoir (2009) and c) the Římov Reservoir (2011).

The black dotted line shows the position of the footrope. Secchi discs show medium transparency depths (m)  during the seasons. Temperature stratification for the reservoirs

is shown below.

ming velocity of fish, vertical range (�R)  was divided by the time

during which fish were recorded in the acoustical beam. Swim-

ming velocity means vertical swimming velocity (depth change)

throughout the paper.

Recorded tracks were grouped according to whether they

crossed the footrope or  not. Sloped fish crossing the footrope were

descending, and escaping towards deeper water (positive slope).

These were classified as “E” - escaping fish. The beginning of the

escape response was identified on the SED echogram when part

of  a fish track occurred above the footrope or at  the position of the

footrope while the other part of the same track was  observed below

the footrope. The first echo in the track is considered the start of the

response while the last echo is considered the end of the response.

To standardize the rate of avoidance reactions in both reservoirs, a

relative unit, expressed as the number of avoidance reactions per

one hour of trawling (NAPTH) was introduced.

The fish that did not cross the footrope were recorded as either

above the footrope (A) or  under the footrope (U) with respect to

their initial position. The trawl footrope was used as a  marker to

classify the vertical position of fish on the echogram. Fish above the

footrope (A) included fish in the trawl path, which occurred from

a  2  m depth (the boundary of the near field of the transducer) to

6–8.5 m deep (the ranges of  footrope depths in the Římov Reservoir)

and  up to 7.3 m (in the Želivka Reservoir). These fish apparently

did  not escape the trawl and were likely captured at  the codend. U

category fish stayed deeper than the position of the footrope and

were not captured.

Measuring tortuosity is  a way  to evaluate the complexity of  a

fish’s  movement. Tortuosity is  a  ratio of the length of the straight

line  between the first and last echo to the length of the total track of

the  fish (Rakowitz et al., 2012).  Relationships between tortuosity (a

dependent variable) and the footrope position (factor against which

the dependent variable was tested) were evaluated. In this case,

all  three dimensions (x–along ship, y–athwartship, z–depth) were

considered for calculation. Fish that were swimming in a straight

line had  tortuosity values close to “1” and fish with more com-

plex trajectories had tortuosity values close to “0”. We  assumed

that fish with more complex motion would have stronger reac-

tions to approaching trawl gear (i.e. perform avoidance behaviour)

compared to those which did not respond.
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Table 2
Number of avoidance reactions with respect to time of trawling (acoustics sampling).

Želivka 2009 Římov 2009 and 2011

Period

of day

Number of all

acoustically

recorded fish

Total  number

of avoidance

reactions

NAPHT* Number of all

acoustically

recorded fish

Total number

of avoidance

reactions

NAPHT*

Day 316 21 (6.6%) 3.91 108 6  (5.6%) 1.12

Night 807 4  (0.5%) 0.86 283 4  (1.4%) 0.96

*Number of avoidance reactions per one hour of trawling.
**Numbers in brackets show percentage of avoiding fish at  day and night.

2.3. Statistical analysis

The statistical tests were based on all acoustically recorded fish.

We  tested the following 5  relationships as part of the study:

1) Fish vertical distribution was tested with respect to time of a

day  period to find whether the vertical distribution of fish is  affected

by the diel period.

2) Vertical track slope was evaluated against the position of fish

with  respect to the footrope at  the start of a  track, fish size and

velocity. We also compared slope values of A  and U  fish.

3)  Fish response (escaping) activity (categories A, U  and E) was

tested against the fish size (TS) and time of a day period. It is hypoth-

esized that more avoidance activities would occur during the day

and in larger individuals.

4) Tortuosity was tested against fish size and position relative

to  the footrope. It is hypothesized that tortuosity would be affected

by the fish size and position relative to the footrope. Tortuosity

between the fish above the footrope (A) and escaping individuals

(E) was evaluated to see if fish performed any complex behaviour

in a trawl path, prior to avoiding the footrope.

5) Vertical swimming velocity was tested in relation to vertical

track slope, fish size and position with respect to the footrope. It was

hypothesized that fish crossing the footrope would be fastest indi-

viduals. In addition, dependence between the size of the escaping

fish  and their velocities were evaluated.

Generalized linear models (GLM) were applied to tests 1,  2 and

5,  using data with continuous dependent predictors (i.e., vertical

distribution of fish and vertical track slope). The Logit model was

applied to tests 3 and 4, using data with categorical dependent pre-

dictors (i.e. fish response activity and fish tortuosity). Tortuosity

values 0–0.4 were treated as ”tortuous movement” (category avoid-

ing fish) while tortuosity values 0.5–1 were treated as ”straight

movement” (category non-avoiding fish). The Kruskall-Wallis test

was used to compare vertical slopes for A  and U categories of fish.

Statistics and models are summarized in Table 3. Statistical soft-

ware  (StatSoft and Inc. (2011)) was  used for the statistical analysis.

3.  Results

3.1. Distribution of fish

Distinct day and night vertical distribution and size composition

patterns were observed in the Želivka and  the Římov Reservoirs

(Fig. 2,  Table 3, line 1). At night fish tended to migrate towards the

surface and were more likely to be in the trawl path.

The most dominant species caught in trawls in both reser-

voirs were cyprinids: bream, roach and bleak. Asp (Aspius aspius),

pikeperch (Sander lucioperca) and catfish (Silurus glanis)  were also

caught. In the Želivka Reservoir we observed a  distinct pattern in

day/night size composition revealed by both direct trawl catches

and acoustical observations (Fig. 5).  During the day large bream

occupied open water while at night, bleak, small roach, and bream

predominated. Direct trawl catches also revealed a  certain propor-

tion of large bream in open water at  night (Fig. 4). In  the Římov

Reservoir, a similar shift in size composition between day and

night was observed. There was a greater range of  sizes of fish in

the Římov Reservoir than in the Želivka Reservoir. Comparison

between acoustic sizes (sonar measurements) and directly mea-

sured fish sizes (trawl catches) showed similar trends (Fig. 5).

Table 3
Summary of statistical results.

Želivka

No. of tested relationship (2.3.) Dependent variable Method Explanatory variables

Diel period Acoustic size Vertical swimming velocity Track slope fish A,U, E

1) depth GLM p = 0.000

2)  track slope GLM p = 0.005 p  = 0.000 p = 0.000

3) fish activity Logit Model p = 0.000 p = 0.000

4)  fish tortuosity Logit Model p = 0.041 p = 0.000

fish tortuosity Logit Model p = 0.000*

5) velocity GLM p = 0.040 p = 0.656 p  = 0.000

velocity GLM p = 0.04**

Římov

No. of tested relationship (2.3.) Dependent variable Method Explanatory variable

Diel period Acoustic size Vertical swimming velocity Track slope Fish A,U, E

1) depth GLM p  = 0.000

2) track slope GLM p = 0.03 p  = 0.000 p = 0.000

3)  fish activity Logit Model p  = 0.94 p = 0.001

4) fish tortuosity Logit Model p = 0.78 p = 0.022

fish tortuosity Logit Model p = 0.79*

5) velocity GLM p  = 0.018 p = 0.14 p  = 0.000

velocity GLM p = 0.50**

* Tested only for A and E fish categories.
** Tested only for fish E category.
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Fig. 3. Histogram for fish slope – example from the Želivka Reservoir. It  is apparent that the most positive slope values belong to  the directly avoiding individuals (E fish).

bream
bream

roach
roach

bleak
bleak

)b)a

0

20

40

60

40 80 12 0 160 20 0 240 28 0 320 36 0

fre
qu

en
cy

(%
)

SL (mm)

0

20

40

60

40 80 120 160 200 240 280 320 360

fre
qu

en
cy

(%
)

SL (mm)

0

20

40

60

40 80 120 160 215 255 295 335 380

fre
qu

en
cy

(%
)

SL (mm)

0

20

40

60

40 80 120 160 215 255 295 335 380

fre
qu

en
cy

(%
)

SL (mm)

0

20

40

60

40 80 120 160 215 255 295 335 380

fre
qu

en
cy

(%
)

SL (mm)

0

20

40

60

40 80 12 0 160 20 0 240 28 0 320 360

fre
qu

en
cy

(%
)

SL (mm)

DAY;  N=  978
NIGHT; N=  453

DAY; N= 31
NIGHT; N=  1167

NIGHT; N=  1446

DAY;  N=  1485 
NIGHT; N=  1944

DAY;  N=  467 
NIGHT; N=  435

DAY;  N=  174
NIGHT; N=  139

bream

Fig. 4. (a) Size distribution of single species caught in the  trawl: bream, bleak and roach in the Želivka Reservoir. b) Size distribution of single species caught in the trawl:

bream, bleak and roach in  the Římov Reservoir (data from 2009 and 2011 pooled together).

3.2. Track slope and fish avoidance behavior

Slope in relation to the footrope position, fish size and vertical

velocity was evaluated. All factors influenced slope in the multifac-

torial test design in both reservoirs. Most observations were close

to  zero slope (Fig. 3),  indicating weak or  no reaction. The largest

values of positive slope belonged to the fish directly escaping the

footrope (Fig. 3).  Fish with negative slope were also present.

Fish size, vertical swimming velocity and the position with

respect to the footrope affected slope significantly in both reser-

voirs (Table 3, line 2). The slope between fish above and below

the footrope was  significantly different in the Želivka Reservoir

(p <  0.001) and  the Římov Reservoir (p = 0.02) (Kruskall-Wallis test).

There were higher values of positive slope in U  category.

Twenty seven avoidance reactions were recorded on the

echogram during day trawling in both reservoirs (Table 2) where

fish perceived the gear well and dove up to 5  m below it to escape

(usual escape range was 1–2.5 m,  Fig. 6).  The frequency of day

observations was  higher in the Želivka Reservoir than in the Římov

Reservoir but only small differences were obtained from night

observations in both reservoirs (Table 2).  The vertical distance from

which fish started to clearly avoid the approaching footrope was
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Fig. 5. (a) Histogram for size distribution of fish – the Želivka Reservoir showing only  fish above the footrope; UPPER picture: acoustics results, LOWER picture: direct trawl

catches. b) Histogram for size distribution of fish – the Římov Reservoir (data from 2009 and 2011 pooled together) showing only fish above the footrope; UPPER picture:

acoustics results, LOWER picture: direct trawl catches.

Fig. 6. Vertical reaction distances of fish (day situation in the Želivka Reservoir). The gray columns stand for the  distance from the  footrope in which fish obviously started to

react. The black columns stand for the distance which fish reached after their escape. The mean depth of the footrope observed during avoidance reactions was about 7.6 m

and it was set at zero for better comparability of all records. The footrope is  shown as a dashed black line. The right side picture shows an echogram of typical escaping fish

crossing the footrope of the trawl (thick horizontal line). This particular fish started to react when it was 1 m above the footrope and it reached more than 1 m  below the

footrope at the end of record.

about 1 m (in both directions of reaction range). The depth position

of fish at the start and the end of avoidance reaction are shown in 6  .

The effect on escaping activity was evaluated for time of day and

fish size (Table 3, line 3). Different results were obtained for the diel

period factor in both reservoirs. In the Želivka Reservoir time of day

affected escaping activity while not so in the Římov Reservoir. Fish

size had a positive effect on the escaping activity in both reservoirs.

In  general 5.6–6.6% of fish were escaping during the day  while only

0.5–1.4-% were escaping during the night.

Avoidance behaviour in both reservoirs was influenced by the

abiotic conditions. In the Želivka Reservoir, water column was less

thermally stratified and higher water transparency was measured
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Fig. 7. Relationship between the  fish size and fish vertical velocity of 25 fish directly

avoiding the footrope in the Želivka Reservoir (day time). Depen dences between

the fish size and velocity were found in both reservoirs, but only Želivka was found

significant (regression equation: fish velocity =  0.77 + 0.0181*x; dashed line depicts

0.95 conf.int).

than in the Římov Reservoir (Fig. 2) which contributed to higher

rate of avoidance reactions in the Želivka Reservoir. Observed fish

behaviour was also affected by the effective diameter of the acousti-

cal beam that was approximately 1.7 m at  the depth of the footrope

and therefore only 13% of the footrope length was  sampled.

3.3.  Fish tortuosity

The location of fish with respect to the footrope proved to affect

tortuosity in both reservoirs (Table 3, line 4). Further we examined

the difference in the tortuosity of fish in a  trawl path (A) and fish

directly avoiding the trawl (E). The difference in tortuosity between

A  and E groups in the Želivka Reservoir was significant (p >  0.001).

No difference in tortuosity was found between A  and E groups

in  the Římov Reservoir (p  =  0.79). Fish tortuosity was affected by

the fish size only in the Želivka Reservoir where larger individuals

possessed more complex trajectories.

3.4. Vertical swimming velocity

Fish velocities in a  vertical plane ranged between 0 and

0.33  m.s−1. The highest values belonged to the fish directly avoid-

ing the footrope (E). Diel period and the track slope affected fish

velocity in both reservoirs (Table 3,  line 5). Dependence between

the size of fish that directly avoided footrope and their velocities

was found only in the Želivka Reservoir indicating that larger indi-

viduals swam faster (Fig. 7).

4. Discussion

In this study we investigated fish behaviour in the mouth of the

midwater trawl regarding fish’s vertical swimming velocity, verti-

cal  track slope, fish size and position relative to the footrope. The

rate  of avoidance reactions in the vertical plane and diel pattern

of  vertical distribution of fish in the reservoirs was  also evaluated.

The work complements observations of Rakowitz et al. (2012) who

described avoidance behaviour in the lateral direction.

Fish  day and night vertical distribution was influenced by abi-

otic factors as found by the different depth distributions in both

reservoirs. During the night, fish moved upwards and were found

in  shallower layers in both reservoirs which resulted in higher sus-

ceptibility to the trawl. During the day, fish were found in larger

numbers below the footrope in the Želivka Reservoir while in the

Římov Reservoir, difference in day/night pattern of fish distribution

was  less striking. In both reservoirs the absolute density of large fish

in  the open water declined slightly due to partial inshore migration

(Muška et al., 2013; Říha et al., 2015). The difference in day distribu-

tion of fish between reservoirs was  likely caused by differing water

transparency and temperature conditions. Prchalová et al. (2008,

2009) found these abiotic factors as the main drivers of vertical dis-

tributions of fish in these reservoirs. We also obtained differences

in day and night size distributions from acoustical and trawl catch

data. Both methods showed that predominantly large fish inhabited

open  water during the day while small fish dominated at night in

this zone. The trawl catches identified adult bream as the dominant

species of day catches while bleak and small roach were the domi-

nant  night species. Such results are in agreement with other studies

from these reservoirs dealing with diel changes of fish habitat uti-

lization (Muška et al., 2013; Říha et al., 2015).  Larger proportions of

small fish could contribute to a  lower share of avoidance reactions

at night as small fish are very passive at night (Říha et  al., 2012).

The study confirmed that vertical avoidance behaviour can be

studied using the vertical track slope, as was found by Draštík and

Kubečka (2005) in horizontal sonar observations. In both reser-

voirs, there were many daytime observations of the highest positive

slope values due to higher proportions of escaping fish. The escape-

ment  was always directed below the footrope and thus avoiding

individuals were not caught in the trawl. Escaping fish dove up  to

5  m below the trawl. Downward movement during avoidance reac-

tions  has been previously observed and appears to be a  common

response (Suuronen et al., 1997; Williams et al., 2013). The verti-

cal  distance from which fish started to avoid the trawl was about

1  m which agrees with reaction distance found for freshwater fish

(Pyanov, 1993).

In total, 35 of the 1514 acoustically recorded fish performed

apparent avoidance behaviour and time of day  effects avoidance

behaviour importantly. Twenty-seven avoidance reactions were

observed during the day in both reservoirs (6.3 % of total fish) while

eight were observed at night (0.7% of total fish). A similar pattern

of avoidance behaviour with respect to day period was found by

Suuronen et  al. (1997) in Baltic herring (Clupea harengus).  Far fewer

avoidance observations were obtained at night when visibility was

low  and motionless fish seemed to “burst” dive when disturbed by

contact with the footrope. Low ambient visibility makes it difficult

for fish to orient themselves with respect to the fishing gear (Olla

et  al., 2000; Kim and Wardle, 1998; Williams et al., 2013).  Night

trawling results are likely to be much less influenced by fish avoid-

ance  under the footrope in pelagic trawls. However, both marine

and freshwater trawling considerably underestimates abundance

of  small fish at night because they obviously escape through the

netting of the side panels (Říha et  al., 2012; Williams et al., 2013).

Therefore, experiments with side pocket-nets that catch fish escap-

ing through the side panels would be a useful tool (Ingólfsson and

Jørgensen, 2006; Suuronen et al.,  1997; Williams et al., 2011).

Important factor influencing avoidance behaviour was the fish

size.  Larger fish swam faster during avoidance reactions in the

Želivka Reservoir and we assume that the strongest avoidance

was  performed by large bream that created 79 % of the species

composition in both reservoirs and that are known to perform

stronger avoidance to fishing gear than other species (Pyanov,

1993; Říha  et al., 2008). In addition, large silver carp were occasion-

ally observed to avoid the trawl in the Želivka Reservoir (pers.obs.).

Many authors have studied the relationship between fish size

and velocity (Čech and Kubečka, 2002; Breen et al., 2004; Main

and Sangster, 1983; Videler and He, 2010).  Rakowitz et al. (2012)

reported that fish avoided the trawl gear in horizontal directions at

velocities up to 2 m.s−1 while we  registered much lower velocities



112 Z. Sajdlová et al.  / Fisheries Research 172 (2015) 105–113

(up to 0.33 m.s−1) during our study. However, it  must be considered

that our intention was to detect vertical avoidance velocities which

can be slower than lateral ones. A  potential reason for the difference

of  velocities might be the difference in optical stimuli given by the

side panels of the trawl. Side netting panels might have been more

visible for fish in comparison to the footrope which was perma-

nently towed in low visibility layers in the Želivka and the Římov

Reservoirs.

The study has also revealed dependence between tortuosity

and the position of fish relative to the footrope. In general, more

complex behaviour was observed in fish directly avoiding the

footrope and the erratic trajectories of such fish could be consid-

ered  anti-predation tactics (Winger et al.,  2010). However, straight

and tortuous tracks were sometimes observed in both categories

of fish, with and without an obvious reaction to the trawl gear, and

tortuous trajectories are not  necessarily connected with avoidance

behaviour. Fish size was correlated positively with tortuosity only

in  some cases.

This study had several limitations. The first limitation was the

acoustical underestimation of fish close to the water surface. During

the survey, especially at night, many fish targets were not avail-

able  for vertical recording due to the transducer’s near field and

possible disturbance caused by the gear (i.e. trawl headrope, trans-

ducer). However, the fish in transducer’s near field are quite far

from the footrope and thus unlikely to react to it. Therefore this

bias  is unlikely to be significant. Another limitation is the restricted

acoustically sampled area of the footrope. The effective diameter of

the acoustic beam is  only 1.7 m at the depth of the footrope, thus

we were able to sample only about 13% of the footrope length. Split

beam echosounders have generally narrow beam (Simmonds and

Mac  Lennan, 2005) so studies of  this nature will be always under

sampling all reactions. An effort was made to sample representa-

tive sections of the footrope and to extent the observation time to

record an adequate number of  fish (1514 individuals).

In summary, the vertical track slope was found to be an impor-

tant characteristic that can predict potential avoidance reactions

and  thus effect trawl catchability. Tortuosity was not an impor-

tant factor influencing trawl catchability but is a useful tool for

describing the complexity of  fish motion and  fish activity. Escaping

behaviour in the vertical direction could be potentially important

but  due to a relatively low proportion of fish avoiding footrope, we

assume that such individuals do not greatly affect trawl efficiency

in  reservoirs. Abiotic factors, especially water transparency, influ-

ence vertical distribution of fish and their ability to detect trawls.

Water transparency and fish vertical distribution should be taken

into account during trawling operations.

The main goal of the study was to evaluate fish behaviour

with respect to trawl catchability, which is important for effec-

tive sampling of freshwater reservoirs. In  this work we  studied fish

behaviour in the trawl mouth. However, how fish behave inside

the trawl remains a  question. Furthermore, information about pre-

trawl avoidance should be also evaluated. Fish avoidance triggered

by the vessel or gear noise was observed in the marine environ-

ment (Handegard et  al., 2003; Ona et al., 2007) but no studies have

been carried out in freshwater reservoirs.
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migrate, or not  to migrate: partial diel horizontal migration of fish in a
temperate freshwater reservoir. Hydrobiologia 707 (1), 17–28.

Olla, B.L., Davis, M.W.,  Rose, C., 2000. Differences in orientation and swimming of
walleye pollock Theragra chalcogramma in a trawl net  under light and dark
conditions: concordance between field and laboratory observations. Fish. Res.
44  (3), 261–266.

Ona, E.,  Godø, O.R., Handegard, N.O., Hjellvik, V., Patel, R., Pedersen, G., 2007. Silent
research vessels are not quiet. J.  Acoust. Soc. Am. 121 (4), 145–150.

Ona E., Godø O. R., 1990. Fish reaction to  trawling noise: the  significance for trawl
sampling. p. 159-166.

Piasente, M.,  Knuckey, I.A., Eayrs, S.,  McShane, P.E., 2004. In situ examination of the
behaviour of fish in response to demersal trawl nets in an Australian trawl
fishery. Mar. Freshw. Res. 55 (8), 825–835.
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Abstract The distribution, species composition,

abundance and shoaling behaviour of young-of-year

fish were studied in the canyon-shaped Vı́r Reservoir

(Czech Republic) in mid-June 2010. Using the

SIMRAD EK60 echosounder (frequency 120 kHz),

fry were acoustically sampled along the longitudinal

profile of the reservoir. A framed trawl was used

simultaneously to collect fry in the open water.

Apparent differences were found in the density of

fry between the epipelagic, littoral and bathypelagic

zones. Bathypelagic fry strongly predominated in the

total fry community creating 95.3% while epipelagic

and littoral fry contributed only 4.7%. The bathy-

pelagic fry were represented by perch Perca fluviatilis

(84.8%), zander Sander lucioperca (14.9%) and ruffe

Gymnocephalus cernua (0.15%) and were observed all

along the longitudinal profile of the reservoir creating

a distinct layer on the echogram. The layer, composed

of shoaling and non-shoaling fry individuals, reached

its greatest depth in the Bay part of the reservoir

(7.5–14.5 m) and it was rising in the water column

towards the tributary. The situation that the bathy-

pelagic percid fry predominate in the reservoir is

absolutely unique and it is completely different from

published observations from other canyon-shaped

reservoirs where epipelagic percid fry prevailed.

Keywords Echosounder � Fry trawling �
Gymnocephalus cernua � Perca fluviatilis �
Sander lucioperca � Shoals

Introduction

Compared to shallow restricted area of a littoral zone,

open water creates the main part of many European

reservoirs (Čech et al., 2005; Vejřı́k et al., 2016a). In

the littoral, fry have to face a strong competition for

space and food and in case of a lack of a structural

complexity they are highly vulnerable to predation

(Gliwicz & Jachner, 1992; Eklöv, 1997; Lewin et al.,

2004). These environmental pressures could be

reduced or even minimized by shifting the fry

community into the poorly occupied deep pelagic

zones (Čech & Kubečka, 2006; Čech et al., 2016;

Vejřı́k et al., 2016b).

In early life history, open water offers a crucial

temporary habitat for young-of-the-year percids, such
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as European perch Perca fluviatilis L., ruffe Gymno-

cephalus cernua (L.) and zander Sander lucioperca

(L.) (Treasurer, 1988; Urho, 1996b; Čech et al., 2005).

At the end of the larval phase, a portion of a

community moves shoreward, where it is later known

as littoral fry. A considerable portion may, however,

stay in the open water (Wang&Eckmann, 1994; Uhro,

1996b; Čech & Kubečka 2006; Guillard et al., 2006)

and create two spatially and temporarily distinct forms

described as shallow-water fry (epipelagic, EPF) and

deep-water fry (bathypelagic, BPF) (Čech et al.,

2005). Epipelagic percid fry, including the closely

related species, yellow perch Perca flavescens (Mitc-

hill), have been studied worldwide (e.g. Whiteside

et al., 1985; Post & McQueen, 1988; Wang &

Eckmann, 1994 etc.) while bathypelagic percid fry

are less frequently mentioned (Čech et al., 2005; Čech

& Kubečka, 2006; Kratochvı́l et al., 2010).

Bathypelagic percid fry, that are known for their

diel vertical migration, have been well described in

the European temperate reservoirs of the North Sea

drainage area (Čech et al., 2005; Čech & Kubečka,

2006; Čech et al., 2007a, b; Kratochvı́l et al., 2010;

Jůza et al., 2012; Petrtýl et al., 2015). Recently, they

were also discovered in the Vı́r Reservoir (the Black

Sea drainage area). Bathypelagic fry usually repre-

sent a minority of the total pelagic community

(Čech et al., 2005) but in the present study we give

evidence that the situation can be completely

reversed.

Percids represent the dominant fish species in many

reservoirs (Mehner et al., 1998; Čech et al. 2007b;

Vašek et al., 2013; Vejřı́k et al., 2016a) and knowledge

about the species ecology in all details might be

important for provisioning of clear water and other

ecosystem services provided by the reservoir ecosys-

tem. For example, it has been shown recently by

Vejřı́k et al. (2016a, b) that superdominant percid fry

community could strongly affect other components of

the trophic pyramid in the reservoir, change their

behaviour and distribution.

The aim of this study was to show that, conversely

to what generally reported in literature, bathypelagic

fry can dominate the fry community of reservoirs. In

particular, we investigated the predominating bathy-

pelagic percid fry community in the Vı́r Reservoir, its

species composition, abundance and size distribution

in the context of the vertical and horizontal spatial

patterns of the whole fry community; this is, to our

best knowledge, the only description of such a

phenomenon so far.

Study area

The study was conducted in the canyon-shaped,

eutrophic Vı́r Reservoir, in the Czech Republic

(49�34019.900N 16�17020.700E) (Fig. 1a). The reservoir
was built by damming of the Svratka River in 1957 and

serves as a water supply for Brno and its surroundings.

The maximum area of the reservoir is 223.6 ha and its

length 9.3 km, maximal volume 56 million m3,

maximal depth 64 m, mean depth 25 m and the

altitude of the water surface 462 m.a.s.l. The fish

community of this eutrophic water body is dominated

by cyprinid and percid species.

Net sampling

A framed trawl (mouth opening 2 9 2 m; rectangular

mesh size 1 9 1.35 mm), a standard device for

sampling of pelagic fry (Jůza et al., 2010, 2012), was

used to collect fry in the open water along the

longitudinal profile of the reservoir during the daylight

period on 15 and 16 June 2010 (Fig. 1b). The

uppermost tributary part (from 113.5 km upstream)

was not sampled due to overall riverine character,

insufficient depth, high turbidity and absence of

thermal stratification. This part composed \1% of

the reservoir volume (Vejřı́k et al., 2016a). Forty-five

tows were done from the surface up to a depth of 12 m

in the pelagic zone of the water body. Twenty-four

tows were epipelagic (depth \4 m, i.e. in the

epilimnion or epilimnion/metalimnion; 25,040 m3 of

water filtered) and 21 were bathypelagic (depth[4 m,

i.e. in the hypolimnion; 21,700 m3 of water filtered).

The trawl was towed approximately 50 m behind the

64 hp research vessel at an average speed of

1.04 ms-1 (2.03 kn). The average duration of the haul

was 4:21 min. The distance of each tow was measured

by Garmin GPSmap 60CSx receiver (Garmin Inter-

national, Inc., Olathe, KS, USA). The total trawl catch

was 23,605 fry individuals (trawl mean 50.5

ind.100 m-3).

To estimate fry abundance in the littoral area, four

localities along the longitudinal profile of the reservoir

were sampled with a beach seine of 10 9 2 m, with a

rectangular mesh size of 1 9 1.35 mm, that was set

three times in the different transects of each locality
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(50 m3 filtered per one beach seine haul). The total

catch was seven fry individuals (beach seine mean 1.2

ind.100 m-3). In addition, a hand-held push net was

used to collect fry individuals in adjacent near-shore

areas of the reservoir that were not accessible by a

beach seine due to boulders and tree stumps on the

bottom (10–20 sampling attempts per locality).

Despite a considerable sampling effort no fish were

caught in these areas.

All captured fry individuals were immediately

preserved in 4% formaldehyde, in the field. In the

laboratory, total length (LT) of each fish was measured

to the nearest mm and all individuals were identified to

species level (Uhro, 1996a). The bathypelagic,

epipelagic and littoral fry trawl catches were

expressed as the number of individuals caught per

volume effort unit (ind. 100 m-3).

Acoustic sampling

Acoustic sampling was carried out simultaneously

with the trawling. A split-beam echosounder SIMRAD

EK 60 (120 kHz) with ES120–7C circular transducer

was deployed from the aluminium construction of the

bow of the vessel. A sonar system calibration was done

according to Foote et al. (1987). The acoustic beam,

with a 7.1� nominal angle, aimed vertically and

monitored the path of the approaching trawl that was

towed along a gently curved trajectory to avoid fry

avoidance in the sampled area. The average ping rate

of the echosounder was 3.5 ping s-1 and its pulse

length was 0.128 ms-1. Acoustic recordings were

subsequently processed in the Sonar5 Pro software

(Data Acquisition AS, Oslo, Norway) and fry abun-

dance was counted using the echo-integration method

in Sonar 5 described in detail by Čech et al. (2005).

Single fry targets with minimal track length of two

consecutive echoes, zero ping-gap and the gating

range 0.05 m were automatically tracked for each

5-min echogram using tracking facilities in Sonar 5.

Prior to tracking, the echograms were divided into the

two groups because shoals and single fish were

processed separately. In the first group, only the single

fish were preserved. Unwanted echoes from shoals,

larger fish or gas bubbles, were manually erased.

Simultaneously, a copy of each echogram of the first

group was made. In the copies (second group), only

the shoals and consecutive shoaling layers were

preserved. Shoals were defined as distinct objects,

with high scattering properties, clearly separated from
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each other by a space of water. If more of the shoals

were connected together so that they were not

recognized as separate objects, they were called

shoaling layers.

The tracking was done separately for each one-

metre-thick layer of the water column for which

abundance was later calculated. The depth range of

tracked layers was 2.5–14.5 m below the surface,

which is also the depth range of where fry layers

occurred. The uppermost 2 m of a water column were

not used for the acoustic analysis due to a near-field of

the transducer, potential avoidance and disturbance

close to the water surface.

In total, 21,032 fry tracks were stored in the echo

database (Fishbasket) and later served for a size

frequency distribution in the abundance estimation.

The lowest threshold for fry target strength (TS)

during tracking was -70 dB (5 mm LT fry), the upper

threshold was -54 dB (33 mm LT fry) which is based

both on the size range of the trawl catches and TS-

length regression given by Frouzová & Kubečka

(2004).

In both non-shoaling and shoaling fry layers,

abundance estimation was based on the size compo-

sition of trawl catches. For this purpose, LT of 4,348

bathypelagic fry individuals was converted to the dB

units (TS) using the above-mentioned TS-length

regression. Abundance was counted for single fish

baskets made for single trawled transects using

Biomass control dialogue in Sonar 5. In addition, the

height and length were measured for 204 fry shoals on

the SED echogram. The height was measured by

tracking the uppermost and lowermost echo of the

shoal on the echogram. The alongside dimension of

shoals (m) (i.e. length of the shoals in the direction of

navigation) was counted from the ping rate (ping s-1)

of the echosounder, time (s) during which the shoal

was recorded by the echosounder and the vesseĺs

velocity (1.04 ms-1).

Zooplankton sampling

Zooplankton sampling in mid-June was investigated

concurrently with fry sampling using conical plankton

netwith adiameter of 0.2 mandmesh size200 lm.There

were nine vertical hauls conducted in five different

localities (Bay, 109th, 111th, 112.5th, 113.5th km,

Fig. 1a). Except in the 113.th km, where a single haul

was done over 0–6 m, two separate hauls (one in the

epipelagial and one in the bathypelagial) were done in

each locality. In the samewayaswith the fry, zooplankton

was preserved in formaldehyde, identified to species and

their abundance was counted. Five zooplankton families

of 21 genera were determined using a microscope.

Furthermore, Daphnia, as the main prey of percid

fry (Kratochvı́l et al., 2008, 2010; Vejřı́k et al.,

2016a, b) irrespective of their species composition,

were collected for size structure analysis in the 109th

km. A closing net was used to sample Daphnia in

separate depths of the water column on 9th June and

27th July 2010. Size of the carapace was photographed

and measured using a microscope.

Limnological characteristics

Principal limnological characteristics were measured

in five localities (dam, Bay, 111th, 112.5th,

113.5th km, Fig. 2) along the longitudinal profile of

the reservoir. Water transparency was measured using

a Secchi disk; temperature and dissolved oxygen were

measured with an YSI 556 MPS probe.

Statistical analysis

Analysis of variance for unequal N (ANOVA) was

used to compare the sizes of the bathypelagic fry from

the locality ‘‘Bay’’ and sizes of fry from the rest of the

localities investigated (109th, 110th, 111th, 112.5th,

113.5th km). Fry size was the dependent variable. In

the same way, sizes of Daphnia (109th km) between

early June and late July were compared in order to

evaluate the potential predation effect of bathypelagic

percid fry. Daphnia size was the dependent variable.

Linear regression was used to test the dependence of

the average size of perch and zander with respect to the

sampled localities along the longitudinal profile of the

reservoir. Statistical software (Statsoft Inc., 2011) was

used to carry out this statistical analysis.

Results

Juvenile fish

Net catches showed that the bathypelagic fish represented

95.3% of the total fry community in the Vı́r Reservoir.

Perch was the major species of the bathypelagic commu-

nity contributing 84.1% (trawl mean 77.8, SD ± 112.5
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inds.100 m-3). It was followed by zander at 15.6% (trawl

mean 14.4, SD ± 20.5 inds.100 m-3) and ruffe at 0.2%

(trawl mean 0.2, SD ± 0.3 inds.100 m-3). In the bathy-

pelagic zone, a small number of cyprinid fry were also

found (0.05%, trawl mean 0.05, SD ± 0.2 ind.100 m-3).

In contrast, epipelagic and littoral fry were rather

sparse in this water body. The epipelagic fry were

composed of perch (95.4%, trawl mean 4.4,

SD ± 18.1 inds.100 m-3), zander (3.17%, trawl mean

0.15, SD ± 0.23 inds.100 m-3) and ruffe (0.6%, trawl

mean 0.03, SD ± 0.08 inds.100 m-3). A small num-

ber of cyprinids were also present (0.74%, trawl mean

0.03, SD ± 0.05 inds.100 m-3). In contrast, littoral

fry comprised only 0.2% of the total fish fry commu-

nity in the reservoir which represents a density of 1.2

inds.100 m-3). The littoral fry were composed of

perch (28.5%, seine mean 0.33, SD ± 0.34

inds.100 m-3), cyprinids (28.5%, seine mean 0.33,

SD ± 0.28 inds.100 m-3) and pike (42.85%, seine

mean 0.5, SD ± 0.62 inds.100 m-3). Fry densities

from the bathypelagic, epipelagic and littoral hauls are

summarized in Fig. 3.

When we focus on the size distribution of the

bathypelagic fry in the trawl catches, perch were the

largest, reaching an average size of 20 mm LT
(SD ± 4.3). Zander were smaller, reaching an average

size of 17 mm LT (SD ± 3.7) and in some hauls small

ruffe of average size of 6 mm LT (SD ± 1.06) were

also present. An apparent trend was observed in the

size composition of bathypelagic fry along the

longitudinal profile of the reservoir. Average LT in

both perch and zander increased towards the tributary

(perch: F = 146.42, P\ 0.001; zander: F =

84.8929, P\ 0.001) (Fig. 4) and the largest fry were

observed in the Bay locality compared to the rest of the

reservoir (ANOVA, F = 1.16, P = 0.03).

Acoustic data showed that the bathypelagic fry created

a dense scattering layer (Fig. 1b). This layer was

composed of both shoaling and non-shoaling individuals

and reached an average acoustic density of 500

ind.100 m-3 (SD ± 1072). Non-shoaling fry reached

an average acoustic density of 33 ind.100 m-3

(SD ± 29.9), while most of the fry layer consisted of

shoals of average acoustic density 1250 ind.100 m-3

(SD ± 1443). The shoals were predominately situated in

the upper part of the fry layer. As for themain parameters

of the acoustically detected shoals (N = 141), their

average height was 0.6 m (SD ± 0.59) (Fig. 5a) and

their average length was 0.8 m (SD ± 1.33) (Fig. 5b).

Regarding the distribution of bathypelagic fry

along the longitudinal profile of the reservoir, the

bathypelagic fry layer was spread along the whole

longitudinal profile and it reached the highest acoustic

density (900 ind.100 m-3, SD ± 323.5) in the

112.5th km. Except for 112.5th km, the highest

abundance was found in the Bay locality, near the

left inlet to the reservoir, close to the dam. The lowest

acoustic density of the fry layer, where no shoals were

observed, was recorded at the 111th km (17

ind.100 m-3, SD ± 8.89) (Table 1).

Fig. 2 Temperature and oxygen stratification in the 5 localities of the Vı́r Reservoir. Secchi thermocline and depth of common fry layer

occurrence are also displayed
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As for the vertical pattern of their distribution, the

bathypelagic fry layer was rising in the water column

from the dam towards the tributary as the fry were

following sharply decreasingwater transparency (from

3.4 m in the Bay and dam to 1.4 m at 113.5th km). In

the upper part of the reservoir (113.5th km), abundant

shoals of percid fry were present both in the

hypolimnion and also around the thermocline

(Table 1). In contrast, the fry layer reached the deepest

depth in the Bay (14.5 m) where the largest water

transparencywasmeasured. In this locality, the longest

and highest shoals, that sometimes created consecutive

layers, were also observed (Table 1).

Zooplankton

Apart from Synchaeta (Rotifera), the family Daph-

nidae were the most abundant zooplankton taxon in

the Vı́r Reservoir in mid-June, contributing 41% to the
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total zooplankton abundance. Daphnidae were fol-

lowed by the families Cyclopidae (29% of zooplank-

ton abundance) and Diaptomidae (16% of abundance).

The highest abundance of epipelagic zooplankton was

observed in the 109th km area, while highest abun-

dance of bathypelagic zooplankton occurred in the

111th km area (Fig. 6).

When we focus solely on Daphnia, the most

striking difference was found when sizes of Daphnia

from the mid-water column between early June (9.6.)

and late July (27.7.) were compared. Daphnia occu-

pying 2.5–11 m depths in early June (Fig. 7a) reached

a mean size of 1.04 mm (Fig. 7c). In late July,

Daphnia occupied depths 6–15 m (Fig. 7b) and were

markedly smaller (mean size 0.5 mm) (ANOVA,

F = 263.6, P\ 0.001) (Fig. 7d). The less striking

but significant difference was found when the sizes of

Daphnia from the upper water column were compared

between both months. The Daphnia that occupied

depths between 0 and 2 m (Fig. 7a) reached a mean

size of 0.75 mm in early June (Fig. 7c). In late July,

they extended to 5 m (Fig. 7b) and reached a mean

size of 0.54 mm (ANOVA, F = 7.16, P = 0.007)

(Fig. 7d). In late July, some Daphnia were also found

in the deep bathypelagial (18–55 m) (Fig. 7b) but

since these individuals occurred deeper than the

bathypelagic fry layer, they were outside the main

fish interest.
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Discussion

The day survey conducted in the Vı́r Reservoir in

2010 gave evidence that bathypelagic fry dominated

the fry community in the reservoir comprising 95.3%.

Epipelagic fry, in contrast, represented only 4.5%.

Such finding is rare because bathypelagic fry have

represented a minority of the fry community so far

(5–28%) (Čech et al., 2005) and sometimes were

completely lacking in the water body (Uhro, 1996b;

Probst & Eckmann, 2009; Jůza et al., 2010). In

agreement with Čech et al. (2005) and Jůza et al.

(2012), perch was the major species of the bathy-

pelagic community constituting 84.1% (Fig. 3).

Reasons for such behaviour can be diverse. It is

often mentioned that fry occupy deeper, poorly lighted

environments in daytime, being less vulnerable to

attacks by visually orientated predators (Gliwitz &

Jachner, 1992; Staby et al., 2013; Čech et al., 2016).

This hypothesis is further supported by shoaling

behaviour which is also considered an antipredator

strategy (Pitcher & Parrish, 1993). The shoals in the

Vı́r Reservoir were predominately situated in the

upper part of the fry layer which agrees with Čech

et al. (2005, 2007b) who observed a similar pattern in

the reservoirs of the Vltava river cascade. There were

many relatively small shoals in mid-June in the Vı́r

Reservoir, reaching an average height of 0.5 m and

length of 0.81 m, being smaller than shoals observed

by Probst & Eckmann (2009) in Lake Constance.

Nevertheless, in the Bay locality and in the upper part

of the Vı́r Reservoir (114.5 km) shoals created mas-

sive consecutive layers that were up to 4 m in height

and their length exceeded 8 m. Moreover, the hypoth-

esis of this being antipredator strategy is supported by

observations of Vejřı́k et al. (2016b) who found that in

Table 1 Bathypelagic fry layer along the longitudinal profile of the Vı́r Reservoir

DAM INFLOW

BAY 109 110 111 112.5 113.5
t°C(a) 12.9 13.9 _ 13.9 19.3 20.3

SecD(b) 3.4 3.4 _ 3.1 2.3 1.4
Dm.f. a.

(c) 9.5 7.5 7.5 8.5 3.5 2.5
Shoals N(d) 25 7 1 0 67 31

Avg. 
abundance(e) 744 237 63 17 373 37

Ds.n.f.*    
2.5 21 21
3.5 900 900 14 14
4.5 700 700 28 5 17
5.5 28 600 314 29 3 16
6.5 12 59 300 180 52 3 28
7.5 400 400 1000 1000 10 300 155 22 110 700 405 116 7 62
8.5 38 2700 1369 5 600 303 32 200 116 30 87 87 111 111
9.5 17 4800 2409 18 600 309 38 38 22 27 27 30 30

10.5 51 2500 1276 25 25 29 29 12
11.5 72 800 436 15 15 12 12 6
12.5 45 45 7 7 29 29
13.5 13 13 1 1
14.5 6 6

Grey columns mean acoustic abundance of the non-shoaling fry layer, black columns mean acoustic abundance of the shoaling fry

layer. Transparent columns show average acoustic abundances of fry layer. The abundances are expressed as ind.100 m-3

a Temperature in the depth of maximal abundance of fry layer (measured in five localities)
b SecD is water transparency (m) measured by a Secchi disk in five localities.
c Dm.f.a. is the depth (m) of maximal abundance of fry layer. *Ds.n.f. is the depth (m) of shoaling and non-shoaling fry layer (numbers

in the left most column)
d Number of acoustically detected shoals in each locality
e Avg. abundance means average abundance of the bathypelagic percid fry in each locality
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the Vı́r Reservoir, percid fry represented a consider-

able portion of the diet of adult common bream

Abramis brama (L.) and common carp Cyprinus

carpio L. that were present in upper open water and

therefore could contribute to the fry avoidance into

greater depths.

In the canyon-shaped reservoirs and deep lakes,

vertical and horizontal spatial distribution of fish is

driven through gradients of abiotic factors, such as light

intensity (Appenzeller & Leggett, 1995; Čech et al.,

2005), temperature and dissolved oxygen (Baldwin

et al., 2002; Vašek et al., 2004). Vertical gradients are

usually steeper than horizontal gradients. In the Vı́r

Reservoir, the water column was relatively well strat-

ified thermally inmid-June and the temperature gradient
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between the surface and 15 m depth represented±8�C.
In the canyon-shaped reservoirs, cold hypolimnetic and

poorly oxygenated water often prevents fry from

occupying greater depths which was not the case in

the Vı́r Reservoir where temperature and oxygen

concentration in the bathypelagic zonewas high enough

(it did not decline below 11.9�C and 8 mg.l-1) to still be

within the optimal life range of percid fry (Brown et al.,

2009). Temperature conditions do not seem to have a

marked effect on bathypelagic percid fry distribution in

the Vı́r Reservoir.

The high abundance of fry in the deep open water in

the Vı́r Reservoir can be explained by the availability

of zooplankton. The family Daphnidae created the

most abundant and frequently consumed zooplankton

taxon (Vejřı́k et al., 2016a). They were followed by

Cyclopidae and Diaptomidae that also belong among

potential prey of the bathypelagic percid fry (Kra-

tochvı́l et al., 2008, 2010). Based on the vertical

distribution of the bathypelagic fry layer in the dam

area (the highest abundance was observed at 7.5 m), it

seems that fry had an opportunity to feed on

zooplankton in daytime below or close to the thermo-

cline. Only daytime data were available for the

acoustic analysis but a vertical shift of the fry layer

towards the water surface (indicating diel vertical

migrations described by Čech et al., 2005) was clearly

apparent in the late afternoon hours (Z. Sajdlová, pers.

observation) so that night occurrence in shallow water

layers could be expected. Bathypelagic fry also ascend

to the surface each time when clouds covered the sun

(M. Čech, pers. observation) and they were present

shallower in the water column in parts with low

transparency (113.5th km; this study).

To support our assumption about the intensive

predation pressure caused by the bathypelagic percid

fry, we focused on differences in sizes of Daphnia

from early June and late July. It is known that

zooplankton deal with fish predation by decreasing

their body size (Macháček, 1991). Smaller zooplank-

ton are less detectable by visually orienting fish and

thus less susceptible to predation (Lazzaro, 1987;

Jarolı́m et al., 2010). In our study, Daphnia body size

was observed to decrease towards late July in conse-

quence of predation imposed by extremely abundant

bathypelagic fry (cf. also Vejřı́k et al., 2016a). In

Daphnia that occupied depths of 2.5–11 m in early

June, the mean size of a carapace declined from 1.04 to

0.5 mm in late July.

The acoustic survey has revealed that bathypelagic

fry created a densely scattered layer consisting of both

shoaling and non-shoaling individuals. The fry layer

in the Vı́r Reservoir reached the highest density

observed in the Czech canyon-shaped reservoirs. A

mean density of 1250 ind.100 m-3 seems to be nearly

five times higher than that found in the Orlı́k and

Slapy Reservoirs, in the Vltava Cascade (Čech et al.,

2007a). Such an extreme fry density could lead to a

significant decrease in Daphnia size and abundance

during the season, moreover, it could lead to a marked

changes in the distribution pattern of the main

zooplankton species (Vejřı́k et al., 2016a) and finally

to an anomalous predator–prey role exchange

between key fish species in the reservoir (Vejřı́k

et al., 2016b).

It should be noted that the acoustic density of the fry

layer in our results (Table 1) does not fully match with

the trawl results (Fig. 3). These differences might

have been caused by (a) the lower trawl catchability of

shoals since they are usually composed of older (i.e.

larger) fry that have better ability to avoid the trawl

(Jůza et al., 2010), (b) by a decrease of the filtering

capacity of the trawl caused by both the large

zooplankton Leptodora kindtii (Focke) and phyto-

plankton (colonial Cyanobacteria) and (c) also due to a

possible distortion (under or overestimation) originat-

ing from high target densities that contributed to the

total echo energy (Simmonds & McLennan, 2008).

In summary, percid fry, dominated by European

perch, preferentially occupied deep open water of the

Vı́r Reservoir in late spring which is considerably

different from all the other studies (Čech et al.,

2005, 2006, 2007a, b; Vašek et al., 2006; Jůza et al.,

2010, 2012). The acoustic survey revealed that fry

created a dense scattering layer which was composed

mostly of dense shoals. These shoals were predomi-

nately situated in the upper part of the layer. The

vertical distribution of the fry layer was influenced by

availability of zooplankton in both the epi/metal-

imnion and hypolimnion, by a relatively warm, deep

water column that was safe from predators. Percid fry

apparently found the bathypelagic zone to be a

favourable day refuge. As it has been recently shown

by Vejřı́k et al. (2016a, b), these hidden percid fry

could impose considerable predation pressure on

zooplankton, which could finally lead to a dramatic

decrease of water quality and to the overall destruction

of an usual trophic pyramid in the reservoir.
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Abstract

1. Diel vertical migrations (DVMs) belong among the most pronounced movements in the

aquatic environment. A general pattern of DVMs has been well described, particularly in

European perch (Perca fluviatilis), but whether the migrations are directly controlled by light

and what is the ultimate cause of the diel vertical shifts, remains poorly understood.

2. Undertaking a large-scale field experiment in a thermally stratified, canyon-shaped reservoir,

we demonstrated for the first time that DVMs of a bathypelagic early juveniles community,

dominated by European perch larvae and juveniles prior the metamorphosis, were under direct

control of the light intensity; that is, they did not operate as a genetically fixed behaviour.

3. Prior to the experiment, the depth distribution of the bathypelagic perch early juveniles

was strongly correlated with the light intensity on the water surface (p < .001). The com-

munity underwent regular DVMs between the epilimnion (depth <2.0 m) and hypolimnion

(depth >3.0 m) reaching a maximum amplitude of 13 m.

4. Hydroacoustic recordings by the echosounder SIMRAD EK 60 (120 and 400 kHz) showed

that during the experiment, when the surface was covered with a large black non-transpar-

ent foil (2500 m2; simulated conditions of complete and constant darkness), the regular

vertical movement of the bathypelagic perch early juveniles was interrupted and the com-

munity occupied the epilimnion constantly for 24 hr.

5. Immediately after the foil was removed at midday, the bathypelagic perch early juveniles

were exposed to a steep increase in light intensity (from <1 LUX to >100 9 103 LUX) and

they escaped into the hypolimnion where they were safe from visual predation which took

place in the bright surface layers (epilimnion particularly). Our findings imply that occupying a

deep, dark refuge in the daytime is essential for the survival of perch in their early life stage.

K E YWORD S

acoustics, antipredatory behaviour, black foil, trawling, water surface illumination

1 | INTRODUCTION

Diel activity of fish is controlled externally, by environmental condi-

tions (e.g. light, temperature), and internally, by biological clocks

synchronised to daily rhythms of environmental conditions (�Cech

et al., 2012; Jackson, Peres-Neto, & Olden, 2001; Reebs, 2002;

Zhdanova & Reebs, 2006). Light-induced synchronisation adjusts the

period of their clocks to 24 hr and its phase to a value that
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determines the pattern of diel activity (Doyle & Menaker, 2007).

Among the most pronounced diel activity in fishes is shifts between

habitats, performed to seek safe temporary refuges (Eggers, 1978;

Gliwicz & Jachner, 1992; Hardiman, Johnson, & Martinez, 2004;

Rechencq, Sosnovsky, Macchi, Alvear, & Vigliano, 2011) and/or opti-

mal foraging densities (Bohl, 1979; Kratochv�ıl et al., 2008). In tem-

perate waterbodies with a spatially diverse, well-structured littoral

zone fish may perform diel horizontal shifts between open water

and the littoral zone (Bohl, 1979; Ekl€ov, 1997). But in waterbodies

where spatial complexity of the inshore habitat is scarce, where fish

have to face both inshore and offshore predation and competition

for food sources, a possibility is to utilise deeper layers (Hardiman

et al., 2004; Mehner, 2012; Va�sek, Kube�cka, Mat�ena, & Sed’a, 2006).

General patterns, the amplitude, duration and the main proximate

trigger of diel migrations have been well described (Ahrenstorff, Hra-

bik, Stockwell, Yule, & Sass, 2011; Bohl, 1979; Busch & Mehner,

2009; Rechencq et al., 2011; Ringelberg, 1995). But whether diel

migrations are endogenous, genetically fixed behaviour, undergone as

a response to a ghost of a predation past or they are a flexible

response to abruptly changing environmental conditions (e.g. light

intensity), remains unclear. Studies favouring the former assumption

suppose that fish continue with migration irrespective of constant

light intensity. For instance, Jurvelius and Marjom€aki (2008) observed

that fish from the Finnish Lake Vuokalanj€arvi did not change the pat-

tern of their vertical shifts in winter, during permanent darkness

when the surface was snow-covered. Gliwicz and Jachner (1992)

showed that diel migrations in a community of juvenile fishes from

the Polish Lake R�os did not diminish, in spite of no currently present

predation, apparently as a result of predation risk in the past. Compa-

rably, Gaudreau and Boisclair (1998, 2000) who studied fish commu-

nities from the Canadian Lakes found that long-term coexistence of

predators, such as brook trout (Salvelinus fontinalis: Salmonidae (Mitc-

hill, 1814)), and their prey fish, may cause genetically induced diel

migrations in prey with a short generation time.

In contrast, other studies have suggested that diel migrations are

also a plastic behaviour that ceases under constant light intensity.

For instance, Gjelland et al. (2009) observed that during the 24-hr

bright period of a midnight sun in the high northern latitude, diel

vertical migrations (DVMs) in the whitefish (Coregonus spp.) were

very restricted but with the prolonging of the night period in late

summer, the amplitude of migration was steadily increasing. Similarly,

vertical shifts of whitefish (Coregonus lavaretus: Salmonidae (L.)) and

its predator, brown trout (Salmo trutta: Salmonidae (L.)), ceased in

the dark period of a polar night and were reinstated with the pro-

longing of the day period towards the end of winter (Kahilainen,

Malinen, & Lehtonen, 2009).

In late spring and early summer, the open water of many deep,

thermally stratified European lakes and reservoirs is occupied by

young-of-the-year European perch (Perca fluviatilis: Percidae, L.), a

widely distributed species that accounts for a considerable proportion

of pelagic early juveniles communities (�Cech, Kube�cka, Frouzov�a,

Dra�st�ık, Kratochv�ıl, & Jaro�s�ık, 2007; J�uza et al., 2009; Probst, Tho-

mas, & Eckmann, 2009; Va�sek et al., 2006; Vej�r�ık, Mat�ej�ı�ckov�a, J�uza,

et al., 2016; Wang & Appenzeller, 1998). Perch early juveniles (larvae

and juveniles till the metamorphosis when fish started to be fully pig-

mented with individual fins fully developed) were observed to split

into vertically separated communities (epipelagic, bathypelagic) in

which spatially and temporarily distinct bathypelagic early juveniles

migrated vertically as part of their antipredatory behaviour. In day-

time, they can be found as a distinct, acoustically scattering layer in

the hypolimnion (�Cech, Kratochv�ıl, Kube�cka, Dra�st�ık, & Mat�ena,

2005; �Cech, Kube�cka, Frouzov�a, Dra�st�ık, Kratochv�ıl, Mat�ena, et al.,

2007; J�uza et al., 2012). At dusk, however, an upward shift into a less

hostile environment of warm epilimnion is essential to prevent severe

exhaustion of migrating individuals (�Cech et al., 2017). The idea that

DVMs in bathypelagic perch early juveniles are affected by light

intensity has previously been proposed (�Cech et al., 2005), but direct

evidence has been lacking.

In this study, we hypothesised that if DVMs were under direct

light control, then their regular daytime pattern would be interrupted

by constant light intensity and reinstated under changing light inten-

sity. To test our hypothesis, we, for the first time, performed a

large-scale field experiment to obtain DVMs in bathypelagic perch

early juveniles under direct light control. Moreover, undertaking such

an experiment in natural conditions might help to solve the persist-

ing problem regarding spatial segregation in pelagic perch early juve-

niles communities, as the ultimate cause has still remained poorly

understood. The epipelagic and bathypelagic perch early juveniles

communities were found to be genetically identical (Kalous et al.,

2017) and did not differ, for example, in the degree of endoparasite

infection (Kuchta et al., 2009). In this way, the large-scaled field

experiment, in which the entire pelagic early juveniles community is

involved, might be a possible solution as such an experiment would

scarcely be feasible in artificial (laboratory) conditions. In this study,

the daytime depth distribution and density of pelagic early juveniles

were examined under conditions with open and covered surfaces. In

addition, predation in the epilimnion versus the hypolimnion, water

transparency and temperature were used to explain the main ulti-

mate cause of DVMs in perch early juveniles.

1.1 | Study area

The canyon-shaped �R�ımov Reservoir, in the Czech Republic, is an

artificial meso- to eutrophic waterbody located on the Mal�se River,

170 km south of Prague (Figure 1a). Its length is 9 km, mean depth

16 m, maximum surface area 210 ha, and the volume is

33 9 106 m3. The reservoir has served as a freshwater store for
�Cesk�e Bud�ejovice and adjacent localities (�R�ıha et al., 2012). The local

early juveniles communities are dominated by cyprinids but percids,

particularly perch and pikeperch (Sander lucioperca: Percidae, L.), are

also important components (J�uza et al., 2009; J�uza et al., 2010, J�uza

et al., 2012). During the daylight hours, the most common piscivo-

rous fish species in the open water of the �R�ımov Reservoir are adult

perch and asp (Aspius aspius: Cyprinidae (L.)) (Va�sek et al., 2004). The

experiment was carried out at the mouth of the Strahovsk�a Bay (Fig-

ure 1a,b), the largest bay on the left side of the �R�ımov Reservoir,
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where the maximum depth is 27 m, maximum width 96 m, length

850 m and its area c. 6 ha (48°50039.7″N, 14°28048.5″E). The bay

has steep rocky banks and is protected from wind by the surround-

ing forest in most directions (Figure 1b).

2 | METHODS

2.1 | Time schedule of the experiment

The experimental sampling was conducted from 6 to 13 June 2006

and was divided into five sampling periods (Appendix S1). On 6–7

June, pelagic early juveniles consisting of distinct spatially and tem-

porarily segregated epipelagic (non-migrating) and bathypelagic (ver-

tically migrating) communities were acoustically scanned along the

longitudinal profile of the �R�ımov Reservoir, including the Strahovsk�a

Bay, to confirm the presence of bathypelagic early juveniles (the Ini-

tiation period). Pelagic early juveniles trawling was carried out to

provide samples for subsequent genetic and parasitological analysis

(for details, see Kuchta et al., 2009; Kalous et al., 2017).

On 7–8 June, a square frame of ropes was installed from the

boat across the mouth of the Strahovsk�a Bay. To keep the construc-

tion properly fixed and spread out, the frame was fastened to the

firm vegetation ashore (full-grown trees; Figure 1b, Appendix S2). At

the same time, stationary and semi-mobile acoustic equipment (for

details, see Acoustic sampling) was installed in the experimental area

and acoustic recording with the open water surface was conducted

for more than 24 hr (the pre-foil period). At midnight on 8–9 June,

when the pelagic early juveniles community occupied surface layers,

a floating, black polyethylene, non-transparent foil, with an area of

2500 m2 (square 50 9 50 m), was installed from the boat across the

surface at the mouth of the experimental bay (Figure 1b,

Appendix S2). To keep the foil properly fixed and spread, it was

attached to the above-mentioned frame of ropes (Figure 1b). At the

time of high light levels during midday, a SCUBA diver checked that

the foil was not damaged during the installation. Then, 32 hr of sta-

tionary and semi-mobile acoustic recording was conducted with the

water surface covered (the Foil period).

At midday on 11 June, under the high-intensity daylight, the foil

was removed from the surface and stationary and semi-mobile acous-

tic recording that lasted until midday on 12 June was conducted with

the water surface open (the post-foil period). In addition to the acous-

tic sampling, epipelagic gillnets were exposed in the experimental area

during the post-foil period (in late afternoon on 11 June and the morn-

ing of 12 June). Bathypelagic gillnets were exposed daily throughout

all the sampling periods (Appendix S1). Their purpose was to obtain

adult fish and potential predators of the pelagic early juveniles, for

stomach content analysis. Finally, on 13 June, pelagic early juveniles

were sampled with the frame trawl at the three localities along the

longitudinal profile of the �R�ımov Reservoir (Figure 1a) to evaluate the

species composition of pelagic early juveniles (the Termination period)

and to ensure that the distribution of the early juveniles was

unchanged in the pre-foil and post-foil periods.

F IGURE 1 (a) A map of the �R�ımov Reservoir and its location in the Czech Republic. The double circle shows the experimental area in the
Strahovsk�a Bay. Single circles indicate localities of pelagic early juveniles trawling in the downstream (Dam) and upstream (Pla�n�ak) parts of the
reservoir sampled simultaneously with the experimental area on 13 June 2006. (b) General scheme of the experimental area. RV Oo, anchored
research vessel Ota Oliva; BY, buoy; RB, rope connecting the foil with the bank; PR, pendant rope of the up-looking transducer ES 120-7G
(120 kHz); PLUT, platform carrying the up-looking transducer; CW, counterweight; UT, acoustic beam of the up-looking transducer; DT,
acoustic beam of the down-looking transducer ES 400–7C (400 kHz); PDT, platform carrying the down-looking transducer; AR, anchor rope;
CT, cable of the transducer; EG, epipelagic gillnets; BG, bathypelagic gillnets
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2.2 | Abiotic environmental characteristics

Light intensity on the water surface at the Strahovsk�a Bay was

recorded every five minutes using a digital lux meter MDLX. Light

penetration below the water surface (light attenuation; in the experi-

mental area and directly below the foil) was measured by a LI-COR

LI-1400 underwater light meter working with a spherical quantum

underwater sensor LI 193 SA (sensitivity 7 lA per 1000 lmol m�2

s�1 in water, precision 0.005 lmol m�2 s�1; LI-COR, Lincoln, USA).

Water transparency was measured using a Secchi disc. The tempera-

ture profile in the experimental area was recorded by a calibrated

ISY 556 and multi-parameter WTW probes (Figure 2). Stable, calm

weather conditions, with a partly cloudy sky and light breeze, pre-

vailed throughout the course of the whole experiment.

2.3 | Net sampling

To check the species composition, the pelagic early juveniles were

sampled during midday (10:00–14:00 hr, when the communities of

epipelagic and bathypelagic perch early juveniles are spatially well

segregated; �Cech et al., 2005, 2017) using a framed trawl net

(2 9 2 m; rectangular mesh size 1 9 1.35 mm) at the three localities

in the reservoir (Figure 1a). The trawl was pulled at a distance of

approximately 50 m behind the research vessel Ota Oliva (64 HP) at

an average speed of 3 km/h. There were three epipelagic hauls at a

depth of 0–2 m with the total volume of water sampled being

3501 m3 and three bathypelagic hauls at a depth of 10–12 m with

the total water volume sampled 2433 m3. The average tow duration

was five minutes, and the distance of each tow was measured by a

Garmin GPS map 60CSx receiver (Garmin International, Inc., Olathe,

KS, USA). All captured early juveniles were killed by overdosing with

MS 222 (1 g/l; left in the solution for 10 min) and immediately pre-

served in 6%–10% formaldehyde, in the field. They were identified

to species level in the laboratory.

Adult fish were sampled using the epipelagic and bathypelagic

gillnets (Figure 1b). Epipelagic gillnets (depth range 0–3 m) with

rectangular mesh sizes of 29, 35, 43, 55 mm (knot-to-knot; four pan-

els, each 3 m high and 25 m long) were used at the experimental

area to capture adult fish in the epilimnion. Similarly, bathypelagic

gillnets (depth range 11–14 m; four panels, each 3 9 25 m) of the

same mesh sizes were exposed to capture adult fish in the hypolim-

nion. The adult fish were again killed by overdosing in MS 222 and

immediately dissected in the field for their stomach and gut con-

tents. This vertebrate work was approved by the Ethics Committee

of the Czech Academy of Sciences. All sampling procedures and

experimental manipulations were approved by the Czech Academy

of Sciences, Vltava River Authority and the Environmental Depart-

ment of the Municipal Authority of the Town of �Cesk�e Bud�ejovice.

The field study did not involve endangered or protected species.

2.4 | Acoustic sampling

The distribution and behaviour of the pelagic early juveniles associ-

ated with both the foil cover and open water surface conditions

were recorded by the split-beam scientific echosounders SIMRAD

EK 60 (120 kHz and 400 kHz) equipped with two simultaneously

operating circular transducers. The acoustic beams of both transduc-

ers (nominal angle of 7° each) were pointing up or down vertically.

The average ping rate was 10 pings/s, and the pulse length was

0.128 /ms. One of the transducers was stationary ES 120-7G

(120 kHz) and was deployed as up-looking (�Cech & Kube�cka, 2002)

at a depth of about 25 m with the beam aiming directly towards the

centre of the foil (Figure 1b). The second transducer was a semi-

mobile transducer ES 400-7C (400 kHz) deployed as down-looking.

It was carried by the block and tackle installed between the centre

and the periphery (one halfway to the edge) of the foil so that the

transducer could be shifted back and forth at a distance of 15 m

(the transducer changed its position in 5-m steps each 20 min; Fig-

ure 1b). The down-looking transducer monitored the water column

below the foil, including the peripheral space where the foil was bor-

dering on the open surface. The main purpose was to avoid potential

variability in the vertical distribution of early juveniles, particularly

when the sun was low above the horizon and penetrated the water

surface at a low angle.

Calibration of the sonar systems was done according to Foote,

Knudsen, Vestnes, MacLennan, and Simmonds (1987). In total,

>80 hr of acoustic recordings from the pre-foil, foil and the post-foil

sampling periods was stored on the hard disk of a portable computer

and processed in the laboratory using Sonar 5 Pro software (Data

Acquisition AS, Oslo, Norway). Single fish targets with a minimal

track length of three consecutive echoes, zero ping-gap and the ver-

tical gating range of 0.05 m were automatically tracked for each

five-minute echogram using tracking facilities in Sonar 5. Unwanted

echoes from larger fish and gas bubbles were manually erased. Early

juveniles were tracked for single 5 m depth layers from depths of 1

to 16 m. Depths greater than 16 m, where no early juveniles were

acoustically detected, were not included in the analysis. In total,

3335 single early juvenile tracks were stored in the echo database in

Sonar 5. The lowest threshold for target strength (TS) of early
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juveniles during tracking was �70 dB (5 mm LT), and the highest

threshold was �50 dB (43 mm LT). The size range of the early juve-

nile tracks and TS–length regression given by Frouzov�a and Kube�cka

(2004) served for the analysis of abundances using the echo-integra-

tion method in Sonar 5 that was described in detail by �Cech et al.

(2005). To obtain a detailed picture of DVMs of early juveniles and

to determine the control role of the light intensity on this behaviour,

the water column was further divided into 1 m thick layers down to

a depth of 16 m below the water surface. For each of the fifteen

1 m thick layers (1–2, 2–3, . . ., 15–16 m), the abundance of early

juveniles was then calculated separately for each five minutes of the

acoustic record following the earlier work of �Cech, Kube�cka,

Frouzov�a, Dra�st�ık, Kratochv�ıl, and Jaro�s�ık (2007), �Cech, Kube�cka,

Frouzov�a, Dra�st�ık, Kratochv�ıl, Mat�ena et al. (2007), �Cech et al.

(2005). The depth of the main layer was defined as the 1 m thick

layer of the water column with the highest abundance of migrating

early juveniles (�Cech et al., 2005).

The vertical speed of migrating bathypelagic early juveniles was

measured immediately before and after the foil packing in Sonar 5.

This measurement was based on the depth of the main layer; the

vertical speed of migrating early juveniles was a result of depth (m)

reached between the initial time and terminal time (h).

For the purpose of this study, the acoustic recordings of early

juveniles density and their depth distribution were divided into four

time periods: dawn (3:00 a.m.–5:00 a.m.), day (7:00 a.m.–17:00 p.m.),

dusk (19:00 p.m.–21:00 p.m.) and night (23:00 p.m.–01:00 a.m.).

2.5 | Statistical analysis

Statistical comparison of the acoustic daytime densities of the bathy-

pelagic early juveniles in the hypolimnion, between the pre-foil and

the foil sampling periods (142 density values from both periods

entered the analysis), was done using analysis of variance (one-way

ANOVA). In the same manner, daytime densities of bathypelagic

early juveniles in the hypolimnion before (8:00–9:30 hr) and immedi-

ately after the foil removal (12:30–14:00 hr) were compared (end of

the foil period versus beginning of the post-foil period; 14 density

values from both periods entered the analysis). Depth of the bathy-

pelagic early juveniles layer (the main layer) with respect to the light

intensity was tested using linear regression. R software version

3.2.2. was used for the statistical computing (R Core Team, 2013).

3 | RESULTS

The trawl net survey revealed a homogenous species composition of

the pelagic early juveniles community at the Dam (downstream),

Strahovsk�a Bay (experimental area) and Pla�n�ak (upstream) localities

of the �R�ımov Reservoir where, in total, 3171 individual early juve-

niles were captured and identified to species (Figure 3). Bathypelagic

early juveniles formed 45% of the pelagic early juveniles community

and were dominated by perch (97.02%, trawl mean 55.72,

SD � 20.97 inds. 100 /m3). The other, less abundant species, were

pikeperch (2.41%, trawl mean 1.38, SD � 1.22 inds. 100 /m3) and

ruffe (Gymnocephalus cernua: Percidae, L.) (0.56%, trawl mean 0.32,

SD � 0.34 inds. 100 /m3). Epipelagic early juveniles formed 55% of

the pelagic early juveniles community and were dominated by cypri-

nids (63.63%, trawl mean 31.93, SD � 9.02 inds. 100 /m3). In addi-

tion to the cyprinids, perch (29.14%, trawl mean 14.62, SD � 4.19

inds. 100 /m3), ruffe (6.49%, trawl mean 3.26, SD � 1.49 inds. 100 /

m3) and pikeperch (0.74%, trawl mean 0.37, SD � 0.35 inds. 100 /

m3) were also present in the epipelagic hauls.

The acoustic results showed that in the daytime, during the pre-

foil sampling period, early juveniles reached their highest acoustic den-

sity in the hypolimnion at an average depth of 11.5 m, but the deepest

occurrence of early juveniles was at 13 m (Figure 4a). The depth dis-

tribution of migrating bathypelagic perch early juveniles was strongly

correlated with the light intensity on the water surface (F1,20 = 495.5,

p < .001, Figure 5; water transparency 4.5 m). The light intensity fluc-

tuated markedly during the course of the day because of the prevail-

ing semi-cloudy weather to which early juveniles responded by a clear

change in their depth distribution (Figure 6). At dusk, when the light
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intensity declined from the average daylight level of 75 9 103 LUX

(SD � 39 9 103, max. 130 9 103 LUX) to 7 9 103 LUX

(SD � 3 9 103 LUX), the bathypelagic perch early juveniles started

their regular ascent to above the thermocline where they co-occurred

with the non-migrating, epipelagic community.

In contrast to the open water surface conditions, a completely dif-

ferent behaviour of the migrating community was observed during the

foil sampling period when the foil covered the surface and light inten-

sity <1 LUX was recorded throughout the 24 hr (Figure 7,

Appendix S3). At this time, daytime acoustic densities of bathypelagic

early juveniles in the hypolimnion were significantly lower compared

to the pre-foil sampling period (ANOVA, F1,142 = 15.37, p < .001; Fig-

ure 4a,b and cf. Figure 7). The highest acoustic density of early juve-

niles found during the 24 hr was in the epilimnion (Figure 4b).

However, immediately after the removal of the foil at midday, in the

post-foil sampling period, the early juveniles exposed to sharply and

rapidly increasing light intensity (from <1 to >100 9 103 LUX) formed

in the bathypelagic layer and, reaching a vertical velocity of 10.5 m/hr,

they escaped into the hypolimnion (Figure 4c, Appendix S4). There, a

significantly higher acoustic density of bathypelagic early juveniles

was found compared to that in the morning hours, before the foil was

removed (ANOVA, F1,14 = 15.27, p < .001; Figure 4c).

In the hypolimnion, bathypelagic perch early juveniles were safe

from visual predation by adult fish that attacked early juveniles in a

bright epilimnion, as was evidenced by both the hydroacoustic records

(Appendix S4), gillnet catches and subsequent stomach analyses. In

stomachs of 14 dissected adult perch (average 210 mm LT, SD � 4.6),

caught into the epipelagic gillnets in the area of the experiment, 231

individuals of pelagic early juveniles were found (max. 50 individuals

per predator; Appendix S5). At this time, adult perch represented the

only catch of epipelagic gillnets. In contrast, empty bathypelagic gill-

nets (five individual days of exposure) indicated complete absence of

any potential adult fish predators in the hypolimnion. This finding was

well in accordance with all the hydroacoustic results (no fish of TS ≥

�45 dB, i.e. fish ≥ 100 mm LT observed under the depth of 8 m by

both mobile and stationary recordings).
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4 | DISCUSSION

Fish often have to balance between a risk of predation and competi-

tion for food sources, which leads them to shifting between habitats

(Gaudreau & Boisclair, 1998, 2000; Hardiman et al., 2004; Olsson,

Greenberg, Bergman, & Wysujack, 2006; Werner, Gilliam, Hall, &

Mittelbach, 1983). In agreement with preceding studies regarding

light as the main environmental factor affecting diel activity and dis-

tribution of fish (Appenzeller & Leggett, 1995; Busch & Mehner,

2009; Probst & Eckmann, 2009; Rechencq et al., 2011), our findings

suggest that the diel activity of a bathypelagic community of perch

early juveniles was strongly affected by light illumination on the

water surface (Figure 5). In the daytime, when average light intensity

reached 75 9 103 LUX, perch early juveniles predominated in the

hypolimnion and created an acoustically distinct scattering layer, as

previously observed in various waterbodies by �Cech and Kube�cka

(2006), �Cech, Kube�cka, Frouzov�a, Dra�st�ık, Kratochv�ıl, Mat�ena, et al.,

2007; �Cech, Kube�cka, Frouzov�a, Dra�st�ık, Kratochv�ıl, Mat�ena et al.

(2007), �Cech et al. (2005) or Sajdlov�a, J�uza, Frouzov�a, Sed’a, and
�Cech (2017).

In contrast, after dusk, when the light intensity dropped to less

than 1 LUX, the bathypelagic perch early juveniles migrated into the

epilimnion where they occurred simultaneously with the non-migrat-

ing, and usually more abundant, epipelagic community which occu-

pied the epilimnion 24 hr a day (�Cech et al., 2005; this study). Such

a pattern of diel migrations can be observed at various life stages of

fishes but is often more evident during the first year of life when

early juveniles, vulnerable to predation in a bright epilimnion, seek

safe, temporary refuge in the deep, dark water layers (Hardiman

et al., 2004; Scheuerell & Schindler, 2003).

In the present study, it was hypothesised that if DVMs were

under direct light control and not genetically fixed, then their daily

pattern would be interrupted under constant light intensity and rein-

stated under changing light intensity. In the high latitudes of polar

regions, conditions of constant light intensity occur naturally during

summer (polar day/midnight sun) and winter (Gjelland et al., 2009;

Jurvelius & Marjom€aki, 2008), but in temperate regions, where day

and night periods alter daily, constant light intensity had to be

achieved experimentally, by prolonging the night period. From the

acoustic recordings obtained during the foil period, the bathypelagic

perch early juveniles started with their natural downward shift at

dawn but, because of no obvious change in light intensity, they con-

tinued occupying the epilimnion (Figure 7b). In this respect, our

observations match those of other studies that have revealed no

DVMs under constant light intensity (polar day/night; Gjelland et al.,
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2009; Kahilainen et al., 2009). During their 24-hr stay in the epil-

imnion, the bathypelagic perch early juveniles showed no obvious

sign of disturbance by the foil cover. The only phenomenon

observed was a slightly deeper distribution of early juveniles at the

edges of the foil (down-looking observation) which was probably

due to sunlight penetrating the water surface at a low angle, particu-

larly in the morning hours when the eastward-oriented bay was

exposed to the rising sun (M. �Cech, unpubl. data).

In addition to the light intensity, the depth distribution of fish

often depends on water transparency and temperature (Mous, Van

Densen, & Machiels, 2004; Va�sek et al., 2006). Relatively high water

transparency (4.5 m) was measured in the �R�ımov Reservoir, and the

maximum amplitude of early juveniles vertical migrations reached

13 m. A similar pattern of vertical distribution was observed by �Cech

et al. (2005) in the Slapy Reservoir, Czech Republic, where move-

ment of bathypelagic perch early juveniles between the epilimnion

and hypolimnion reached an amplitude of 12.5 m. There definitely

seems to be no doubt that low light intensity in the hypolimnion

may provide spatial refuge for early juveniles from visual predators

(low light refuge). In temperate waterbodies, a similar effect may

cause a steep vertical gradient of temperature (low temperature

refuge; J�uza et al., 2012) or oxygen depletion in the metalimnion

and upper hypolimnion (hypoxic refuge; Vej�r�ık, Mat�ej�ı�ckov�a, J�uza,

et al., 2016). Also in the present study, pronounced thermal stratifi-

cation was recorded with >7°C difference between the epilimnion

and hypolimnion. Perch early juveniles could therefore profit from

hypolimnion as a day refuge that is usually avoided by fish (both

large/adult and predatory) preferring a warm epilimnion (�Cech &

Kube�cka, 2002; Jarol�ım et al., 2010; Vej�r�ık, Mat�ej�ı�ckov�a, Sed’a, et al.,

2016). Young-of-the-year perch have their optimum temperature

between 16 and 25°C (Wang & Eckmann, 1994) and can temporarily

tolerate even 11°C in their daytime refuge, in the hypolimnion. It

has been shown, however, that preventing these fish from regular

crepuscular ascent into a warm epilimnion resulted in the death of

all individuals (�Cech et al., 2017).

Up to now, proximate triggers of DVMs have been discussed. The

often-mentioned, ultimate cause is predation risk (Kahilainen et al.,

2009; Mehner, 2012). Sometimes negative experience from ghost of

predation in the past may be stronger than present external signals/

proximate triggers received from the external environment and cause

diel migrations to become a genetically fixed behaviour (Gaudreau &

Boisclair, 1998; Gliwicz & Jachner, 1992). Also in the present study, pre-

dation seemed to be the main ultimate cause of DVMs. The direct evi-

dence of predation on pelagic early juveniles was provided by 14

dissected specimens of adult perch, captured by epipelagic gillnets in

the experimental area, that had their stomachs full of pelagic early juve-

niles. Young-of-the-year perch are a common prey of adult perch

(Thorpe, 1977) but occasionally also of cyprinids. This was well

described by Vej�r�ık, Mat�ej�ı�ckov�a, Sed’a et al. (2016) who found that

young-of-the-year perch, even in mid-summer conditions, comprised

the majority of the gut contents of large common bream (Abramis

brama: Cyprinidae, L.) and common carp (Cyprinus carpio: Cyprinidae, L.).

Unlike genetically fixed behaviour, diel shifting between refuges

in the present study had an exogenous origin. The evidence was

obtained when the foil cover was removed at midday, at the end of

the foil sampling period, and the surface started to be fully illumi-

nated. The sudden increase in the light intensity (from <1 LUX to

more than 100 9 103 LUX) caused the area below the foil to

become accessible to visual fish predators, whose attacks on pelagic

early juveniles were acoustically recorded (Appendix S4). In contrast

to non-migrating, epipelagic early juveniles, the bathypelagic commu-

nity responded to visual predation by escaping immediately into the

hypolimnion (Appendix S4), that is within the post-foil period of the

experiment, bathypelagic early juveniles re-established their regular

pattern of DVMs.

It has been demonstrated that environmental factors, particularly

light intensity and temperature, can importantly affect the diel distri-

bution, density and even survival of fish early juveniles. The evi-

dence that diel migrations were under direct light control was

obtained, which supported the exogenous origin of this behaviour.
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Moreover, the current study significantly contributed to an explana-

tion of the spatial segregation in pelagic perch early juveniles com-

munities that undergo completely different ecological trade-offs

(�Cech et al., 2017). Bathypelagic early juveniles, compared to the

non-migrating epipelagic community, have chosen a potentially less

favourable strategy of temporarily occupying a hostile environment

in the hypolimnion. Nevertheless, particularly in waterbodies where

predatory fish are abundant and where both emergent and sub-

merged littoral vegetation is absent, the advantage of moving into a

deep, dark pelagic refuge remains indisputable.

Large-scaled field experiments involving entire wild fish commu-

nities are extremely rare and demanding. These current findings

therefore not only broaden knowledge about the biology of perch,

but they also provide novel, general insight into the real causes of

DVMs, one of the most pronounced and remarkable phenomena in

waterbodies.
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  Appendix Freshwater Biology  

 

Appendix S2. The experimental area in the Strahovská Bay (Římov Reservoir, Czech Republic) 

with a) the open water surface (only the rope construction for the foil attachment can be seen), 

and b) the water surface covered with the black foil. Photo: Jan Kubečka. 

 



  Appendix Freshwater Biology  

Appendix S3. Examples of the depth distribution of bahtypelagic early juveniles (grey bars) 

under different underwater light conditions: a) with the foil cover (equivalent to <1 LUX in 0 m 

depth), b) with cloud shadowing (equivalent to 10 × 10
3
 LUX in 0 m depth), c) with the water 

surface fully illuminated (equivalent to 100 × 10
3
 LUX in 0 m depth).  

 

 

 

 

 

 

 

 

 



  Appendix Freshwater Biology  

Appendix S4. Avoidance behaviour of bathypelagic early juveniles (indicated by black arrows) 

immediately after the foil packing and starting of the foraging activity of predatory fish (most 

probably adult perch; in red circles; target strength from -39 to -37 dB, i.e. from 191 to 238 mm 

LT according to the calculation provided by Frouzová & Kubečka, 2004). a) Situation closely 

before the foil packing when the whole pelagic community of early juveniles was found above 

the thermocline (9:30 hr). b) Fish affected by a strong increase of light intensity; bathypelagic 

early juveniles quickly shifted into the hypolimnion creating a scattering layer (10:45 hr). c) 

Bathypelagic early juveniles at their daytime refuge and gas bubbles ascending towards the 

surface (dashed arrows; 14:15 hr). d) Observation of epipelagic early juveniles attacked by adult 

fish in the epilimnion and bathypelagic early juveniles ascending from their day time refuge 

(20:30 hr). Note classical disruption of otherwise homogeneous shoal when predator is present. 

The upper border of the thermocline is shown as a dashed line. a-c) The up-looking observation 

(SIMRAD EK 60; 120 kHz; transducer ES 120-7G). d) The down-looking observation 

(SIMRAD EK 60; 400 kHz; transducer ES 400-7C). 

 

 

 

 

 

 



  Appendix Freshwater Biology  

 

Appendix S5. A typical catch of epipelagic gillnets in the area of the experiment – adult perch 

(Perca fluviatilis). An example of the stomach content (partly digested cyprinid and percid early 

juveniles) of one fish is provided in the rectangle. Photo: Martin Čech. 
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