
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ U Č E N Í TECHNICKÉ V BRNĚ

F A C U L T Y O F I N F O R M A T I O N T E C H N O L O G Y

F A K U L T A I N F O R M A Č N Í C H T E C H N O L O G I Í

D E P A R T M E N T O F I N T E L L I G E N T S Y S T E M S

ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

PERFORMANCE TESTING AND ANALYSIS OF QPID
DISPATCH ROUTER
TESTOVÁNÍ A ANALÝZA VÝKONNOSTI QPID DISPATCH ROUTERU

M A S T E R ' S T H E S I S

DIPLOMOVÁ PRÁCE

A U T H O R B e . J A K U B S T E J S K A L

A U T O R PRÁCE

S U P E R V I S O R I n g . T O M Á Š F I E D O R

VEDOUCÍ PRÁCE

B R N O 2018

Master's Thesis Specification/21191/2017/xstejs24

B r n o U n i v e r s i t y o f T e c h n o l o g y - F a c u l t y o f I n f o r m a t i o n T e c h n o l o g y

D e p a r t m e n t o f In te l l i gen t S y s t e m s A c a d e m i c y e a r 2 0 1 7 / 2 0 1 8

M a s t e r ' s T h e s i s S p e c i f i c a t i o n

For: S t e j s k a l J a k u b , B e .

B r a n c h o f s t u dy : I n f o r m a t i o n S y s t e m s

T i t le : P e r f o r m a n c e T e s t i n g a n d A n a l y s i s o f Q p i d D i s p a t c h R o u t e r

C a t e g o r y : S o f t w a r e ana l y s i s and t e s t i ng

I n s t r u c t i on s f o r p ro j e c t wo r k :
1. S t u d y t he p r i n c i p l e s o f p e r f o r m a n c e t e s t i ng a n d , in pa r t i cu l a r , spec i f i c m e t h o d s f o cu s i ng on

m e s s a g e s end i n g s y s t e m s a n d the i r r ou t i n g . S t u d y r e l a t ed w o r k u sed f o r t e s t i n g p e r f o r m a n c e
(i .e . m s g - p e r f - t o o l , S p e c J M S , o r o t h e r o p e n s ou r c e t oo l s) a n d po in t o u t t h e i r p r ope r t i e s .

2. De s i gn t e s t i ng p r o c e s s , c r i t e r i a and me t r i c s s u i t ab l e f o r p e r f o r m a n c e a n a l y s i s . De s c r i b e e a ch
c r i t e r i on a n d its i m p o r t a n c e .

3. De s i gn e x t e n s i o n of msg -pe r f - t o o l and a too l f o r t o p o l o g y g e n e r a t i o n , wh i c h wi l l e n ab l e
p e r f o r m a n c e t e s t i ng of Qp i d D i s pa t c h Rou t e r b a s ed on p r o p o s e d t e s t i n g p r o ce s s and c r i t e r i a .

4 . I m p l e m e n t t he p r o p o s e d e x t e n s i o n .
5. D e m o n s t r a t e t h e f un c t i o na l i t y o f t h e r e su l t i ng i m p l e m e n t a t i o n by p e r f o r m a n c e t e s t i ng of Qp id

D i s pa t c h R o u t e r b a s e d on se t of c r e a t ed p e r f o r m a n c e t e s t s . D i s c u s s and a n a l y z e the resu l t s .

6. E v a l u a t e t he ove ra l l r e su l t s and p r o p o s e poss ib i l i t i e s of f u t u r e e x t e n s i o n s of t h e p ro jec t .

Bas i c r e f e r en ce s :
• Qp i d D i s pa t ch Rou t e r p ro jec t : h t t p s : / / q p i d . a p a c h e . o r g / c o m p o n e n t s / d i s p a t c h - r o u t e r / i n d e x . h t m l

• msg -pe r f - t o o l r e po s i t o r y : h t t p s : / / g i t h u b . c o m / o r p i s k e / m s g - p e r f - t o o l

• L e ven t e E ros : P e r f o r m a n c e T e s t i n g a n d P e r f o r m a n c e I m p r o v e m e n t Me t hod s fo r C o m m u n i c a t i n g

S y s t e m s , 2 0 1 2 h t t p s : / / d b . b m e . h u / ~ e r o s / d i s s . p d f

R e q u i r e m e n t s f o r t he s e m e s t r a l d e f e n s e :

I t e m s 1 to 3.

De ta i l ed f o r m a l spec i f i c a t i on s c a n be f o und at h t t p : / /www . f i t . v u t b r . c z / i n f o / s z z /

The Master's Thesis must define its purpose, describe a current state of the art, introduce the theoretical and technical
background relevant to the problems solved, and specify what parts have been used from earlier projects or have been taken
over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of the
complete program documentation, program source files, and a functional hardware prototype sample if desired. The
information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R, etc.) in formats common at
the FIT. In order to allow regular handling, the medium will be securely attached to the printed report.

S u p e r v i s o r : F i e d o r T o m a s , I n g . , D ITS FIT B U T

Beg i nn i ng o f w o r k : N o v e m b e r 1, 2 0 1 7

Da te of de l i v e r y : May 2 3 , 2 0 1 8

VYSOKÉ UČENÍ TECHNICKÉ V
Fakulta infokflSčníchJ

Ústav
" Božetěchova 2

Pe t r Hanáček

Associate Professor and Head of Department

https://qpid.apache.org/components/dispatch-router/index.html
https://github.com/orpiske/msg-perf-tool
https://db.bme.hu/~eros/diss.pdf
http://www.fit.vutbr.cz/info/szz/

Abstract
Appl i ca t ion performance testing has recently become more important during the applicat ion
development of a l l kinds. Th is paper maps the fundamentals of performance testing that
are commonly used and it analyzes performance testing of components used in Messaging
systems, especially Apache A c t i v e M Q Ar temis and Qpid-Dispa tch . However, currently used
methods for performance testing of these components are pr imar i ly focused only on Apache
A c t i v e M Q Ar temis by system Messaging Performance Too l called Maestro. This paper
proposes improvements of Messaging Performance Tool to allow proper performance testing
of Qpid-Dispa tch and its capabilities in automatic testing. The solution is demonstrated
on series of experiments wi th different topologies. The final report evaluates the proposed
application, the performance of Qpid-Dispa tch component and develops ideas for future
works.

Abstrakt
Výkonnos t í t e s tován í ap l ikac í n a b í r á v pos ledn í d o b ě na dů lež i tos t i b ě h e m vývoje všeho
druhu. Tato p r á c e mapuje zák l ady t e s tován í výkonu , k t e r é jsou ap l ikova te lné na l ibovolné
aplikace a ná s l edně analyzuje t e s tován í výkonu komponent použ ívaných v Messaging sys
t é m e c h a to k o n k r é t n ě Apache A c t i v e M Q Ar temis a Qpid-Dispa tch . Využívané metody
t e s tován í v ý k o n u je z a m ě ř e n o ze jména na Apache A c t i v e M Q Ar temis p o m o c í s y s t é m u
Messaging Performance Too l s n á z v e m Maestro. P r á c e navrhuje vylepšení t é t o aplikace
o rozš í ření t e s tován í s y s t é m u Qpid-Dispa tch a její m o ž n o s t i př i a u t o m a t i z o v a n é m tes tován í .
Řešen í je d e m o n s t r o v á n o na sérii e x p e r i m e n t ů s r ů z n ý m i topologiemi. Výs l edná zpráva
závě rem vyhodnocuje n a v r ž e n é rozš í ření s y s t é m u Maestro, zhodnocuje výkon komponenty
Qpid-Dispatch a rozvíjí myš lenky pro dalš í rozšíření .

Keywords
testing, performance analysis, performance testing, network technologies, router, Qp id -
Dispatch, A M Q P , throughput, latency, J M S , Maestro, M P T , MessageQueuing

Klíčová slova
t e s tován í , a n a l ý z a výkonu , t e s tován í výkonu , síťové technologie, router, Qpid-Dispatch ,
A M Q P , propustnost, latency, J M S , Maestro, M P T , MessageQueuing

Reference
S T E J S K A L , Jakub. Performance Testing and Analysis of Qpid Dispatch Router. Brno ,
2018. Master 's thesis. B rno Universi ty of Technology, Facul ty of Information Technology.
Supervisor Ing. Tomas Fiedor

Rozšířený abstrakt
J e d n í m z h lavn ích cílů b ě h e m vývoje softwaru je p ř i j a te lný výkon v y t v o ř e n é aplikace. M i
m o ř á d n ý d ů r a z na v ý k o n n o s t softwaru je pak h l avně kladen n a p ř í k l a d na aplikace použí
vané ve vesmí rných programech, zd ravo tn i c tv í , a r m á d n í c h sy s t émech a nebo v sy s t émech
pro dis tr ibuci energie. V t ěch to odvě tv ích je nutno garantovat s p r á v n é chování aplikace po
neomezenou dobu b ě h u pod vysokou zá těž í , a to bez v id i t e lných v ý k o n n o s t n í c h p r o b l é m ů
jako je vysoká doba odezvy, č a s t á zpožděn í nebo vypr šen í časových l imi tů pro spojení .
P r o t o ž e s ebemenš í chyba pak m ů ž e mí t fa tá ln í nás ledky.

Současně je ale v dnešn ích dnech v y ž a d o v á n i h l a d k ý b ě h síťových ap l ikac í a s y s t é m ů
a to h l avně kvůl i s t á le f rekventovanějš í komunikaci p řes internet. P r o internetovou komu
nikaci zpravidla v y u ž í v á m e r ů z n é komponenty jako jsou h a r d w a r o v é směrovače či p ř ep ínače ,
ale t a k é softwarové verze t ěch to komponent spo jené do tzv. Messaging systémů. P ř ík la
dem součás t i t ě ch to s y s t é m ů je komponenta Apache ActiveMQ Artemis — distr ibutor z p r á v
v sí t i — nebo Qpid-Dispatch — směrovač na ap l ikačn í v r s tvě . O b ě komponenty jsou vyví jeny
společnos t í R e d Hat Inc. a k jejich v ý k o n n o s t n í m u t e s tován í se použ ívá n á s t r o j Maestro.

H l a v n í m p ř í n o s e m t é t o p r á c e je rozš í ření z m í n ě n é h o n á s t r o j e pro v ý k o n n o s t í t e s tován í
Maestro, k t e r ý se zaměřu je na v ý k o n n o s t n í t e s tován í Messaging s y s t é m ů (Message-oriented
middleware), s d ů r a z n ý m z a m ě ř e n í m na komponentu A M Q Broker, ale d íky A M Q P pro
tokolu je m o ž n é využ i t í na l ibovolnou A M Q P komponentu. P r á c e popisuje ze jména ar
chitekturu celého s y s t é m u a komunikaci mezi j e d n o t l i v ý m i komponentami p o m o c í M Q T T
protokolu. A b y bylo m o ž n é využ íva t n á s t r o j Maestro pro t e s tován í Qpid-Dispa tch efekt ivně
a s m o ž n o s t í simulovat reá lný provoz, bylo dá le n u t n é navrhnout a realizovat nové kom
ponenty pro n á s t r o j Maestro, k t e r é tento druh t e s tován í umožni ly . T ě m i t o komponentami
je Maestro Agent, k t e r ý umožňu je za b ě h u testu vyvolat ex t e rn í udá los t i v sí t i , a AMQP
Inspector, k t e r ý umožňu je kon t inuá ln í m o n i t o r o v á n í p rávě Qpid-Dispatch , n a p ř í k l a d pro
s ledování p o č t u p ř ipo jen í , velikosti a lokované p a m ě t i nebo p o č t u p řenesených zp ráv . Im
plementace t ě c h t o komponent ale vyžadova la z á s a h y do k o m u n i k a č n í h o s y s t é m u nás t ro j e
Maestro.

Součás t í implementace je t a k é nav ržen í a realizace e x t e r n í h o n á s t r o j e pro generování
a ná s l edné n a h r á n í topologi í skládaj íc ích se z Qpid-Dispa tch uzlů . Tento n á s t r o j umožňu je
na zák l adě metadat vy tvo ř i t konf igurační soubory pro všechny Qpid-Dispa tch uzly v sít i
a p o m o c í n á s t r o j e Ans ib le jsme schopni tyto soubory j e d n o d u š e a a u t o m a t i z o v a n ě n a h r á t
na cílové stroje, č ímž lze r e l a t i vně snadno topologii m ě n i t n a p ř í k l a d mezi r ů z n ý m i testy.

Rea l izovaná implementace byla e x p e r i m e n t á l n ě ověřena na s adě p ř í k l a d ů s r ů z n ý m i
topologiemi. D í k y i n t e g r a č n í m u nás t ro j i Jenkins bylo rovněž m o ž n é p rovádě t p lně autom
at izované t es tován í , vče tně z m ě n topologie. Tes tován í p rob íha lo na s t ro j ích v l a b o r a t o ř i
s o p e r a č n í m s y s t é m e m R e d Hat Enterprise L i n u x a n a i n s t a l o v a n ý m i komponentami Qp id -
Dispatch, p ř í p a d n ě Messaging Broker. Exper imenty byly p rováděny s verzí Maestro 1.3.0,
kde byly z a k o m p o n o v á n y rozší ření Maestro Agent a A M Q P Inspector. N a m ě ř e n é výs ledky
ukazuj í ř a d u za j ímavých faktů , jako je n a p ř í k l a d př í l i šná degradace propustnosti l inky př i
topologii sér iového zapo jen í někol ika Qpid-Dispa tch r o u t e r ů . Zdrojové k ó d y jsou zveře jněny
jako open-source a jsou d o s t u p n é na serveru G i t H u b . N a v r ž e n é a i m p l e m e n t o v a n é rozší ření
je j iž r eá lně n a s a z e n é a použ ívá se k v ý k o n n o s t n í m u t e s tován í nových verzí komponent
Messaging Broker a Qpid-Dispatch .

P e r f o r m a n c e T e s t i n g a n d A n a l y s i s o f Q p i d D i s

p a t c h R o u t e r

Declaration
Hereby I declare that this Master 's thesis was prepared as an original author's work under
the supervision of Ing. Tomas Fiedor. The supplementary information were provided by
Ing. Zdenek K r a u s and Bsc. Otavio Rodolfo Piske from R e d Hat Czech s.r.o. A l l the relevant
information sources, which were used during preparation of this thesis, are properly cited
and included i n the list of references.

Jakub Stejskal
M a y 22, 2018

Acknowledgements
I would like to thank to my supervisors, Ing. Tomas Fiedor from B U T F I T and Ing. Zdenek
Kraus from R e d Hat Czech s.r.o. for guidance and providing important insight about per
formance problems. A l so I would like to thank my colleagues Bsc . Otavio Rodolfo Piske for
his t ime during the introduct ion and explanation of Maestro and help w i t h the development
and C I integration, and D o m i n i k Lenoch for introduct ion to Qpid-Dispa tch service.

Contents

1 Introduction 3

2 Fundamentals of Software Performance Testing 5
2.1 Performance Testing Process 5
2.2 Performance Issues 7
2.3 Types of Performance Testing 9
2.4 Performance Metr ics 14

2.4.1 Throughput 15
2.4.2 Response T i m e and Latency 15
2.4.3 Resource Usage 18
2.4.4 Er ro r Rate 18

3 Messaging Performance Tool 19
3.1 Test Case Scenario 21
3.2 Communica t ion Between Components 21
3.3 Measuring Process 22

3.3.1 Testing Metr ics 22
3.4 Collected D a t a Format 23
3.5 Related Works 25

4 Analysis and Design 26
4.1 Used Technologies 26

4.1.1 Ans ib le 26
4.1.2 Docker 27

4.2 Qpid-Dispatch Router 28
4.2.1 Theory of Operat ion 29
4.2.2 Addresses and Connections 29
4.2.3 Message Rou t ing 30

4.3 Automat ic Topology Generator 30
4.3.1 Topology Components 31
4.3.2 Input and Output Format 31
4.3.3 G r a p h Metada ta 32
4.3.4 Topology Deployment 33

4.4 Agent Performance Modu le 34
4.4.1 Extension Points 34
4.4.2 Communica t ion w i t h Agent 35
4.4.3 A M Q P Inspector 35

1

5 Implementation 38
5.1 Topology Generat ion 38

5.1.1 Configurat ion F i l e Generat ion 38
5.1.2 Template Generator 39
5.1.3 Topology Generator 40
5.1.4 Deployment 42

5.2 Qpid-Dispa tch Performance Modu le 43
5.2.1 M P T Preparations 43
5.2.2 Agent Modu le 44
5.2.3 A M Q P Management Inspector 46

6 Experimental Evaluat ion 49
6.1 Basic Performance Measurements 49

6.1.1 Throughput 51
6.1.2 Latency 56

6.2 Behavior Measurements 61
6.2.1 Agent Demonstrat ion 62
6.2.2 Measurement W i t h Redundant Router 63

7 Future works and ideas 67
7.1 Regression Testing 67
7.2 D a t a Repor t ing 67
7.3 Collected D a t a Compression 68
7.4 Mul t i -po in t Senders and Receiver 68
7.5 Maestro-Agent Executor Improvements 69

7.6 Mul t ip l e Agents and Inspectors 69

8 Conclusion 70

Bibl iography 71

List of Figures 75

List of Tables 76

List of Abbreviat ions 78

List of Appendices 79

A C D Content 80

B T h e Maestro Protocol 81

C Topology Generator 85

D A M Q P Inspector D a t a Sets 88

E Experimental Evaluat ion Addi t ional D a t a 90

2

1 Introduction

G o o d applicat ion performance is one of the main goals during the software development.
B u t what makes software performance so important? Software rel iabi l i ty has to be guar
anteed by the owner, but w i t h undesirable performance there could s t i l l be a lot of issues,
which can badly influence the software behavior. A n d this can cause a significant outflow
of the consumers, and even brand destruction, financial damage, or loss of trust. These few
reasons should be enough to do a proper performance testing before every software release,
especially for large projects where industries have to guarantee certain level of software
behavior and they would not be able to assure it w i th insufficient performance testing.
Great emphasis on software performance is, i n particular, i n space programs, medical facil
ities, army systems, or energy dis t r ibut ion systems. In these fields it is necessary to ensure
proper appl icat ion behavior for a long t ime under a high load and without any unexpected
behavior such as high response time, frequent delays, or timeouts, because every failure is
paid dearly.

Nowadays every developer should t ry to use well established frameworks which can
make theirs work easier. Frameworks already handle complex underlying issues such as
security, performance, or code clarity. This way developers can invest more t ime i n the
actual functionality and meet the applicat ion requirements, since frameworks are usually
optimized for one part icular job. In the past every developer had to spent significant por t ion
of development t ime tuning the performance which natural ly led to spending more t ime and
money for software development. B u t not everyone has enough knowledge of performance
testing and this makes performance analysis and opt imizat ion even more difficult. This
leads to a need for specialized performance tools which can provide more sophisticated
information, however, useful tools are usually proprietary or are too expensive.

A very important part of the performance analysis is the right choice of so called key
performance indicators (KPIs) [19] and effective interpretation of the results. The right
choice of K P I s allows faster detection of performance problems and help developers w i th
fixes and meeting the performance standards [] set up by applicat ion owner or customer
in t ime before the release.

In general an applicat ion performance is important . However, smooth network appli
cation or hardware performance became much more demanded nowadays, since most of
the communicat ion is performed v i a the Internet. Obviously when you make a payment in
your internet banking you definitely want to have a stable connection to your bank's website
without any delay. Network stabil i ty is significantly influenced by network components like
routers and switches and hence their performance should be under the utmost case. We
refer to network performance testing as measurement of network service quali ty which is
directly influenced by bandwidth, throughput, latency, etc.

For performance testing of part icular network messaging systems developed by Red Hat Inc.
there is an existing solut ion—Messaging Performance Too l (M P T) called Maestro [21].

3

M P T is specialized for the performance testing of AMQ Broker (message broker) []
network applicat ion level software cooperating wi th Qpid-Dispatch service [' 5] i n the net
work as the message distr ibutor. Unfortunately, the current version of Maestro does not
support performance testing of enough components like the message router component,
Qpid-Dispatch . In this work we w i l l focus on this part icular short coming and develop a
worthy solution allowing proper performance testing of the Qpid-Dispa tch service.

This thesis is structured as follows. F i rs t , we define fundamentals of performance testing
in Chapter 2. The rest of the thesis focuses on performance testing and analysis of Qp id -
Dispatch, an applicat ion level router designed by R e d Hat Inc. Qpid-Dispa tch performance
testing is based on Maestro described i n Chapter 3. Descr ipt ion includes measurement
process and measured data description and evaluation.The main goal of the thesis is to an
alyze Maestro and design module for the Qpid-Dispa tch performance testing as described
i n Chapter 4 together w i t h used protocols and Automatic Topology Generator for semi-
automated network generation and deployment. Used technologies, tools and implemen
tat ion processes of each component are described i n Chapter 5. The most important part
of the thesis is Chapter 6, containing the data gathering from routers located in different
types of topology, data evaluation and representation which leads to conclusion about per
formance of Qpid-Dispa tch . F ina l ly , Chapter 8 summarizes the thesis and proposes ideas
for future use of developed tool .

4

2 Fundamentals of Software
Performance Testing

The usual goal of the performance testing is to ensure that the applicat ion runs reasonably
fast enough to keep the attention of users, even wi th unexpected amount of clients using the
application at the same time. B u t why is it so important to have the applicat ion optimized
for the best speed? Simply, when your applicat ion has slow response, long load t ime or bad
scalability, the first website which user w i l l visit afterwards w i l l be the web of your com
petitor. Tha t is the reason why speed is currently one of the most significant performance
factor of common performance problems. This chapter summarizes the fundamentals of the
performance testing which includes definitions of common performance processes, issues,
and metrics, based on knowledge available i n [19, 18, 12, 2].

2.1 Performance Testing Process

The main goal of the performance testing is to ensure the following applicat ion attributes
[14]:

R e l i a b i l i t y a n d S t a b i l i t y — the abi l i ty of software to perform its functions i n system
environment under some system load for acceptable 1 period of t ime,

S c a l a b i l i t y — the abi l i ty of software to behave properly under various types of system
load and handle increasing amounts of workload (such as network traffic, server load,
data transfer, etc.) which would need new hardware for cluster expansion,

P r o c e s s i n g t i m e a n d S p e e d — the abi l i ty of software to react quickly without low
response t ime during any acceptable system load,

A v a i l a b i l i t y — the abi l i ty of software to make a l l of its functions available during any
acceptable system load. The abi l i ty of software, deployed in cluster, to provide a l l
functions during node crash is called H i g h Availabi l i ty .

S imi lar ly to software development process, performance testing process consist of usual
engineering steps ranging from requirements definition to data evaluation. These steps also
includes design, implementation, and execution of performance tests w i th data collection.
The graphical representation of the performance testing process is depicted in the Figure 2.1.

x D u r i n g software d e v e l o p m e n t t h e r e is a d o c u m e n t w i t h Software R e q u i r e m e n t s S p e c i f i c a t i o n w h i c h

specifies software m e t r i c s , i n c l u d i n g p e r f o r m a n c e .

5

Performance Testing Process

P e r f o r m a n c e t e s t i n g s teps:

Requirements Gathering
- Application Analysis
- Performance Requirements
- Metrics Calculation

Desing and Test Planning
- Performance Test Strategy
- Effort Estimation
- Performance Test Design
- Workload Calculation

Implementation and Execution
- Test Cases Implementation
- Execute Performance Tests

Result Evaluation
- Performance Test Evaluation
- Results Report

Figure 2.1: The performance testing process wi th the four most important parts and theirs
ind iv idua l steps based on [24].

In the Figure 2.1 you can see the scheme of performance testing process where each
level represent required t ime for each step. Lower levels refers to more t ime spend on that
step.

The first step of performance testing process is the selection of performance requirements
for the applicat ion. In this step, testing engineer has to analyze software under test — SUT,
chose suitable performance metrics, that w i l l model the applicat ion performance, and state
performance requirements, usually wi th customer and project manager. The result should
include answers to questions such as:

• How many end users w i l l the applicat ion need to handle at release, after six months
or i n one year?

• Where w i l l these users be physically located, and how w i l l they connect to the appli
cation?

• How many end users w i l l be concurrently connected in average at release, after
six months and one year?

Based on answer to these studies, the engineer should be able to select important key
performance indicators for performance test cases. Some of these indicators may be response
time, stability, scalability, or speed. However, there is huge amount of possible indicators so
it is necessary to properly analyze the whole appl icat ion and also take into consideration

(i

another needs such as error rate, system resources, etc. Result of this phase should be
a b inding document w i th a l l performance requirements to be tested, and i n case of detected
performance degradation, such defect must be fixed w.r.t this document.

The next step is to define the performance testing strategy, corresponding to the planning
and design. It is extremely important to allocate enough time for S U T testing effectively,
because, as it was mentioned in Chapter 1, performance testing is not an easy task and
detecting a l l of the possible issues of tested components is very t ime consuming process.
Every plan should take into account the following considerations:

Prepare the test environment — this step includes choosing the right hardware for the
testing, then instal l ing the necessary software for running load injectors, tested com
ponents, etc., and preparing other equipment depending on the applicat ion purpose
such as routers, switches, mobile devices, etc.

Provide sufficient workload injectors — preparing the workload injectors may take
few days; we usually require few workstations or servers to simulate the real traffic.

Identify and implement use cases — this includes identification of important parts
of the system which may have an impact on performance; t ime needed for each use
case may be different because some use cases can be simple such as navigating to
a web applicat ion home page, but some may be complex such as filtering specific
communication.

Instrument the test environment — instal l and configure the moni tor ing software on
the test environment.

Deal with detected problems — tests can detect significant performance issues, but
their investigation and the actual fixes may take a long time. After the fix the retest
of issue is needed.

W h i l e this process seems t r iv ia l , the opposite is true, especially in cases of network
applications. Mos t of the performance issues manifest w i t h big workloads or high number of
users, e.g. when mi l l ion users are sending requests to the network device at the same time it
can lead to an unacceptable device crash. Work load injectors are designated to simulate real
user activity, and allows automatic analysis of performance behavior for tested applicat ion
or device. Depending on the used technology, there can be a l imi t on the number of v i r tua l
users that can be generated by a single injector. These automated workload injectors are
necessary for effective performance testing.

After describing the plan we implement and execute proposed test cases. Environment
and workload injectors are ready for the execution, so the last step before the testing itself
is the implementat ion of tests. Thanks to the careful planing, engineers should have enough
time to implement test cases wi th reference to proposed design.

The final step of the performance testing process is evaluation of the results. Output
of this step is usually technical report w i th a l l selected performance key indicators, used
workload and Collected D a t a Format for each test case. T h e n follows the data evaluation
wi th thorough analysis of degradation localizat ion. Addi t ional ly , the report usually contains
syntactical graphs which display performance metrics along the durat ion of test execution.

2.2 Performance Issues

A performance issue is a common label for an unexpected applicat ion or device behavior
which affects its performance. Usually, those issues are hard to detect because they manifest

7

only under certain circumstances such as high load or long applicat ion run t ime. In the
network applications there are several part icular issues that are more frequently occurring
than others. In the following, we w i l l describe selected issues in more details.

Performance Degradation

A n unclean code usually leads to inefficient algorithms, applicat ion deadlocks, or memory
leaks, which a l l can eventually cause a performance degradation. The problem is that these
issues are usually detected only dur ing the long run t ime of appl icat ion or inabi l i ty of an
application to handle high load. For this k ind of issues there is a performance testing method
called the endurance testing [9, 16] which is described in Section 2.3. The endurance test is
intended to identify problems that may appear only after the long period of the applicat ion
run- t ime 2 , hence its necessary to run this type of tests during the applicat ion development.
The network applications usually need to be available for 24 hours per day. The durat ion
of a endurance test should have some correlation to the operational mode of the system
under test. Fol lowing scenarios may represent performance issues detectable by endurance
tests:

• a constant degradation in response t ime, when the system is run over the time,

• any degradation i n system resources that are not apparent dur ing short runs, but w i l l
surface during the long run t ime such as free disk space, or memory consumption,

• a periodical process that may affect the performance of the system, but can be de
tected only dur ing the long run t ime such as a backup process, export ing of data to
a 3rd party system, etc.,

• a development of new features for already existing components.

Response Time

Response t ime represents how long it takes for system to accept, evaluate, and respond to
the user for his request e.g. H T T P request for the part icular website. Different actions
and requests can have significantly different response t ime and wi th that provide different
load on the system. For example retrieving document from a web-server by its I D is
considerably faster than searching for the same document by keywords. Response time
is mostly measured during the load test [16] of the applicat ion. W e l l designed test should
consider different types of load on the system, various k ind of requests, and different number
of connected end-users at the same t ime. For user based systems we usually consider three
thresholds for the response t ime values:

0.1 second — this represent an ideal response t ime for the application, because user feels
that system is reacting instantly and does not notice any interruptions.

1 second — this is the highest acceptable response t ime when user s t i l l does not feel any
interruptions, but can feel a l i t t le delay; this s t i l l represent no bad impact on the user
experience.

1 0 seconds — this is the l imi t after which response t ime become unacceptable and user
w i l l probably stop using the applicat ion.

2 S o a k Test — refer t o H W t e s t i n g m e t h o d d u r i n g where engineers soak device i n t o w a t e r a n d check for

b u b b l e leaks.

8

However response t ime thresholds for non-human interactive system are more strict.
They can range in milliseconds or less.

Traffic Spikes

A s a traffic spike [18, 6] we can understand the sudden surge i n demand from users. T y p
ically manifesting by doubling or mul t ip ly ing of traffic level in a short period of t ime. In
a real network, spikes are result of high workload, e.g. caused by higher amount of users
t ry ing to concurrently use the service over the network. For example we can experience a
sudden traffic spike i n response t ime after publishing new popular v i ra l content on video
servers, start of sales events, reservation of l imi ted amount tickets or subject registration
at university. Scheduled automatic backup or system upgrade for whole company during
early morning hours can also cause traffic spikes.

Traffic spikes can lead to the inappropriate system behavior such as long response time,
bad throughput, and limited concurrency. To prevent the impact of traffic spikes on system
performance, it is necessary to do a sophisticated infrastructure monitor ing and network
load analysis, i n order to distinguish between normal traffic and an attack on the system.
Suitable methods for testing of spikes is one of variant of stress testing [16] and it is described
in Section 2.3 i n more details. Network system should offer load balancing, thus it should
be able to redirect traffic to another node w i t h same service in case of high load which can
cause performance issues due inappropriate resource usage.

Traffic Spike

3500

3000

t» 2500

a 2000
3
O

« 1500

CT
S, íooo

500

0

Reauest Count C
Spike Spike

i • i • i • i • i • i i

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

Relative Time [HH:MM]

Figure 2.2: The graph shows amount of concurrent sessions depending on t ime. Dur ing to
network traffic moni tor ing we can see the traffic spike occurring after five hours from test
start.

2.3 Types of Performance Testing

For performance testing there are many types of suitable test methods. W h i c h test you
should use is determined by the nature of the system, testing requirements or how much
time we have left for the performance testing. The following terms are generally well known
and used i n practice and each of them characterizes a category or suite of the tests:

9

• Testing methods — load testing, stress testing, endurance testing,

• Testing approaches — smoke testing, regression testing, benchmark testing.

Thei r description is based on the knowledge available in [5, 9, 19, 2].

Load Testing

F i n d i n g the max ima l load is a testing method which studies how the system behaves during
different types of workload wi th in acceptable t ime range. Basical ly, it simulates the real-
world load. Dur ing the load test we mainly focus on response t ime metric of the system
for requests. Requests are generated by users or another systems communicat ing w i t h the
S U T . The main goal is to determine i f the system can handle required workload according
to performance requirements. L o a d test is designed to measure the response t ime of system
transactions under normal or peak workload. W h e n the response t ime of the system dra
matical ly increases or becomes unstable, we conclude that system has reached its max imum
operating capacity. After the successful testing, we should mark the workload requirements
as fulfilling or analyze the Collected D a t a Format and report issues to the developers. In
the Figure 2.3 you can see the graph of load test showing workload of raising requests to the
web server at the same time where the system response t ime does not exceed 3.5 seconds.

L o a d Testing

4000

3000

2000

1000

00:00 02:00 04:00 06:00 08:00 10:00

Relative Time [HH:MM]

12:00 14:00

Figure 2.3: The response t ime of the system during the load testing depended on requests
per second.

The following list shows common scenarios for load testing:

• The system interacting wi th mult iple users at same time.

• The system tracking communicat ion and analyzing it.

10

• Web services and information systems.

T y p i c a l system issues covered by the load testing:

• Concurrent users connections can eventually result into the slow response t ime or
system crash.

• Network systems without redundancy connections can shutdown the whole network
under normal defined workload.

• D a t a availabil i ty dur ing mult iple sessions to data server.

• Connect ion rejection (timeout).

Stress Testing

Stress testing is the specific type of load testing, where we do not measure the normal
workload, but focus on unexpected workloads or traffic spikes. The main purpose is to study
how the system behaves i n extreme conditions such as an enormous number of concurrent
requests, using a server w i th much less memory or a weaker C P U , and analyze the system
performance threshold. Its very useful to know performance threshold i n order to know the
difference between performance under normal workload and performance threshold. The
following enumeration lists common stress test scenarios:

• Moni to r ing the system behavior w i t h over m a x i m u m of users logged i n at the same
time.

• A l l user performing cr i t ica l operations at the same time.

• A l l users accessing the same file at the same time.

• Hardware issues such as having a server i n a cluster down.

T y p i c a l issues, which are covered by stress testing £11*6 ctS follows:

• A sudden performance degradation.

• System w i l l not recover after the stress test (system is not operational after test).

• System w i l l crash dur ing stress test.

• A l l subsystems such as database, load balancer, etc. are not operational after the
stress test.

W h e n engineers finish stress testing and finds the l imits of the system, they also can
test the system recovery after a crash during finding of the system l imits .

In the Figure 2.4 we show recorded stress testing wi th a raising load and response time.
Every th ing is fine unt i l the amount of requests exceed 3,000 requests per second. W i t h
higher load there comes performance issues which leads to unexpected rise of the response
time.

11

Stress Testing

K

3 £

5000

4000

3000

2000 -

1000

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

Relative Time [HH:MM]

Figure 2.4: Stress testing diagram capturing dependency of response t ime on amount of
requests.

- 2

Endurance Testing

The endurance, or s tabi l i ty/soak testing refers to the method, that tries to identify prob
lems, that may appear only after the extended period of t ime e.g. The system could seem
to be stable for one week, but after some longer period, problems such as memory leaks or
not enough disk space can appear. Soak tests mainly focuses on measuring the memory as
a performance metric. T y p i c a l scenarios for usage of soak testing:

• Developed system uses mult iple database connections.

• There is a chance for inappropriately allocated memory, or memory free.

• Disk space l imi ta t ion for store logs or other data.

The following are common issues found by soak test:

• A serious memory leaks that can eventually result into the system crash.

• Improperly closed database connections that could starve the system.

• Improperly closed connections between system layers that could stal l any of the system
modules.

• Step-wise degradation that could lead to a high response t ime and the system becomes
inefficient.

This sort of test needs to use appropriate monitor ing system to achieve the high effi
c iency Problems detected by soak tests are typical ly manifested by gradual system slow
down i n response t ime or as a sudden lost of system availability.

12

Endurance Testing

2500

2000

Request Count 80 % of maximum
Request Count 10 % of maximum

Memory Allocated

B. 1500

1000 -

500 -

12000

10500

9000

7500

6000

4500

3000

1500

Nov 28 Nov 30 Dec 02 Dec 04 Dec 06 Dec 08 Dec 10 Dec 12

Time [date]

Figure 2.5: Soak testing wi th memory usage dependent on t ime.

In the Figure 2.5 you can see rising memory usage after period of t ime. The S U T can
handle requests but as t ime goes by memory usage is too high and so the S U T w i l l crash.
This may have been caused by a memory leak or an inappropriate a lgori thm use.

Smoke Testing

The smoke testing approach is inspired by the similar hardware technique, when engineers
checks for the presence of the smoke from the device after turning the power on. Basically,
its s imilar for software, since the ma in goal of smoke test is to test the basic functionality
of the system and guarantee that the system is ready for the bu i ld . However, smoke tests
are testing the functionality on a surface level, so they may not be enough for the deep
testing of basic system functions. W h e n smoke tests fail , the system is tagged as unstable,
because it cannot ensure its basic functionality and it is not tested anymore unt i l the smoke
test pass. Smoke test are designed to uncover obvious errors which saves time, money and
effort of the engineers. These tests should be used w i t h every new bui ld , since new features
could ha rm previous system functionality. The following lists show common scenarios for
smoke testing:

• New system's bu i ld or version is ready for further testing or product i l izat ion.

T y p i c a l system issues covered by smoke testing testing:

• System without main functionality is useless, because test coverage of functionality
is low.

• M a i n functionality resulting into a system crash.

13

Smoke testing is not a typica l performance testing approach, but it can be used for
in i t i a l load test to check i f the system can be started.

Regression Testing

Whenever engineers develop a new feature and want to update the previous bu i ld it has
to pass the regression tests3 []. Re gression tests are designed to test functionality of the
latest bu i ld updated wi th new feature. The main objective is to determine, i f new feature
affects already functional parts of the system. T h i s type of tests is very important , because
engineers do not always realize, which parts of the system w i l l be indirect ly affected. Dur ing
the regression testing, new test cases are not created, but previous test cases are automatic
re-executed and analyzed. T y p i c a l scenarios for regression testing:

• New feature of system is ready for use.

C o m m o n issues covered by regression testing:

• New feature could adversely affect already working components of the system.

Benchmark Testing

The benchmark testing3 is an approach, which collects performance data during the system
run on different hardware machines [17]. Collected D a t a Format has significant value when
we want smooth run of the system on an older hardware, hence we can discover performance
issues under normal load. However, when the system does not run smoothly on prepared
hardware, the only option is to run benchmark tests on different machines wi th different
hardware and under different load.

• C a n identify min ima l requirements for H W , metrics, etc.

• C a n validate supported H W configuration.

2.4 Performance Metrics

Dur ing the performance testing we can monitor a lot of metrics, which can have different
importance based on the system's purpose. The following lists the most common metrics
that are monitored during the performance testing of a l l applications not depending on
developing language.

In the tested systems, performance metrics are collected during the long process of
collection, analysis and reporting of information regarding the performance of whole the
system or an ind iv idua l component. Th is process can be different for each metric, since
each metric needs different type of the system analysis.

The Ways to Measure

The performance measurement process can be divided into several steps. Metr ics are usually
measured after a warm-up period of t ime after the commencement of traffic, because it takes
a while for workload to stabilize. Stabil ized workload is necessary for measurements because

3 A p p r o a c h for test su i ts , where are u s e d o t h e r m e t h o d s l i k e L o a d t e s t i n g , Stress t e s t i n g , etc.

14

unstable workload can negatively affect the measurement results. In the Figure 2.6 one can
see a workload phases wi th marked part for the actual performance testing.

Work load during testing does not have to be on the same during the whole testing. In
particular, load testing finds the highest load during which the system can work properly.
This l imi t is found by raising the load and monitor ing the system as it is shown i n the
Figure 2.3.

2.4.1 Throughput

Throughput is a metric, which refers to the number of requests per second that the system
can handle. Network throughput is the rate of successful message deliveries over a commu
nication channel. Throughput is measured by load testing; suitable strategy for measuring
throughput is to continuously raise the load unt i l response takes longer that acceptable
threshold.

2.4.2 Response Time and Latency

Slow response t ime as an issue was already mentioned i n the Subsection 2.2; response time
as metric consists of two parts — latency and service time.

Service T i m e

Service t ime is the t ime it takes the system to evaluate and send the response to the user
request. In particular, when user sends a request for a web page to a server, it takes the
server t ime to evaluate the request and send the proper response back to the user; this
is the service t ime. Measurement can be performed easily using a stopwatch which starts
when request is received and stops after the response is sent. Service t ime can be affected
by any i tem which leads to a performance degradation as described in the Subsection 2.2.

15

Latency

The second part of the response t ime is the latency [8, 7], which represents a delay between
the sending the request on the client side and receiving it for evaluation on the server side.
Hence, latency is the common problem in the network systems such as data centers, web
servers, etc., because request/response needs to travel over the physical medium between
the client and the server. Client and server can be located on different continents, thus the
message has to travel long distance and the latency increases.

R o u n d T r i p T i m e

Round- t r ip t ime (R T T) is a t ime that it takes for a signal to be sent together w i th a t ime it
takes for an acknowledgement of that signal to be received. In network, the R T T is one of
the several factors that affects the signal latency. Basically, R T T depends on the distance
between the sender and receiver, because that is the distance the signals must travel by.

Service T ime vs. Latency

J ,
v 6
S

'£

4

2

0

Response Time I I
Latency 1 1

service l i m e

/ \ / — \ / : \ A - - A /

/

/ |
7

i

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00

Relative Time [HH:MM]

Figure 2.7: Diagram capturing the difference between the latency and response time.

In the Figure 2.7 you can see the response t ime and both of i t 's parts: latency and
service time. Service t ime is usually smaller than latency since latency depends on the
distance. W h e n you add service t ime value and latency value you w i l l get response t ime at
certain time.

Average and Percentile Response T i m e

There are two common ways of measuring the response t ime []: one of them being the
average (mean) response t ime calculated as the sum of a l l measured times divided by the
count of users requests. W h i l e this seems t r iv ia l , i n many times, the average response time
does not actually reflect the real response t ime of the system. How is that possible? In
reality, most applications have few heavy outliers such as several very slow transactions.
In the Figure 2.8 you can see few slow transactions which drag the average of the response
t ime to the right. Th is natural ly leads to an inaccurate specification of response time.

16

Latency Measurement Histogram

Median
Average

n n
6 7 8

Response Time [s]

10 11 12

Figure 2.8: Transactions response t ime w i t h calculated average and median of response
time. The average represent inaccurate response time, which is higher than real one.

Let 's look at another case, where a better solution how to determine the actual response
t ime is the Percentile. The percentile is statistic method, which cuts measured ordered
values into hundredths and then characterize the value below which a given percentage of
measurements in a group of part icular measurements falls. In the Figure 2.8 you can see
the median value, which reflects more realistic value of the system response time. Med ian
value is same such as the 50th percentile. In this case, there is no problem, because user
w i l l expect slower response t ime than it has.

Latency Measurement Histogram

Median
Average

90th percentile

n n

2 3 4 5 6 7 8

Response Time [s]

10 11 12

Figure
time.

2.9: Transactions response t ime wi th calculated average and median of response

17

The Figure 2.9 shows a different si tuation. The average represent inaccurate response
time, which says, that S U T is faster than it is i n a reality. Average response t ime seems
better than median, which reflects the expectation of faster system response t ime than it
has. In real systems, we usually use values of the 90th percentile and the 99th percentile.
90th percentile mean, that there is only 10 % transactions slower then marked response
time. In the Figure 2.9, a considerable percentage of transactions are very fast (first 50
percent), while the bulk of transactions are several times slower. Thus, the calculated
percentile gets more realistic value than average response time.

2.4.3 Resource Usage

Appl icat ions running at servers w i t h long run-time competes over a l imi ted amount of
resources available for use. Thus makes resource usage another important metric, which
needs to be monitored since not enough resources could shut down the whole system. M a i n
resources for monitor ing and ut i l iza t ion are:

C P U usage — inappropriate usage of C P U could lead to performance degradation, be
cause low prior i ty processes may occupy C P U ahead of the higher pr ior i ty processes.
C P U usage is s tructuring into system usage and user usage. H i g h system usage can
cause problems or bottlenecks.

M e m o r y usage — full consumption of memory could cause performance degradation.

Disk space — for example when using storage disk as a database, there should be pre
ventive measures to backup the data and free up disk space.

Operat ing System limits — system's memory and C P U capabilities.

2.4.4 Error Rate

Error Rate is a metric, which commonly occurs i n the network systems, especially under
high load. Dur ing the communicat ion between client and server there could be error caused
by another network device (router, switch, etc.) or signal disrupt ion of the data during
the transfer. The E r r o r Rate is the mathematical calculation that produces a percentage
of problem requests compared to a l l requests. In the ideal system, there should be a
zero network errors present, however, i n reality this is infeasible. Th is usually leads to a
performance degradation and low throughput, because damaged data need to be resent.
Er ro r rate is a significant metric because it tells engineers how many requests failed at a
part icular point i n t ime of performance testing. This metric is more evident when you can
see the percentage of problem strongly increasing, hence you can detect the problem easily.

18

3 Messaging Performance Tool

The performance of Message-Oriented Middleware (M O M) [11] is one of the most cr i t ical
elements of quali ty assurance for enterprise integration systems. There are mult iple messag
ing components developed i n the R e d Hat Inc. company such as messaging clients, message
broker, message router (Qpid-Dispatch service) or stream-like message distributions tools—
Kafka . A l l of these software needs performance testing to ensure quali ty standards of M O M .
Note that we w i l l shorten the term the messaging client to just client i n this thesis.

The message broker is an example of M O M . Its main purpose is to receive, store and
distribute messages, which are sent and received by clients. Users choose M O M for message
dis tr ibut ion to reduce the development t ime and cost of their own solution. Another benefit
of using specialized M O M is robustness and guaranteed performance. The performance
capabilities of a M O M are cr i t ica l attributes to its users, because being able to handle a large
amount of transactions i n a t imely manner is a key characteristic of M O M . G o o d example
are automated systems, where components communicates w i th each other by command
exchange. The amount of exchanged commands is heavily dependent on the system size
and since we want to get the results as soon as possible we need to ensure smooth and quick
message exchange.

Maestro (or Messaging Performance Tool) [] is a testing system designed for testing the
performance of M O M . The Maestro is deployed as a cluster system on several machines.
A typica l deployment consist of one node for Maestro Broker, one or more for Maestro
Senders, and one or more for Maestro Receivers and the S U T . The architecture of Maestro
system, depicted i n the Figure 3.1, consists of the following components:

Maestro Broker — can be any Message Queuing Telemetry Transport1 (MQTT) capable
broker w i th several topics. The topic is a queue wi th a name where other messaging
services can listen on the traffic. Th is component takes care of dis t r ibut ion of con
t ro l messages between other cluster components such as Maestro Clients and M P T
Backend.

Meastro Clients — this component contains the client A P I as well as the test scripts for
each test case. Moreover it contains a sub-component called Reporter which interprets
the test data to user in form of web data visualizations.

M P T Back-end — consists of sender, receiver and inspector parts. Sender and receiver
handle message sending to the S U T and receiving from S U T . Inspector monitors
workload over the S U T and reports collected performance metrics to the data server.
Maestro currently has two backends:

1 M Q T T — h t t p : / / m q t t . o r g /

19

http://mqtt.org/

• Java — used for J M S - b a s e d 2 testing, including Advanced Message Queuing Pro
tocol (AMQP) [20], OpenWire and Core protocols.

• C — used for A M Q P and Streaming Text Oriented Messaging Protocol (STOMP)
protocol testing.

M P T A r c h i t e c t u r e

Maestro Clients
User PC

MPT Client (C)

Maestro Java
(Java + Groovy)

1 Maestro Reporter
(Data Reporting) j

Infrastructure

Maestro
Broker

Active-MQ

Topics

/mpt/macstro
/mpt/dacmon/scndcr
/mpťdacmon/rcccivcr
/mpťdacmon/inspcctor
/mpt/dacmon/notifications

Test node [i]

MPT Backend

Seniler

Receiver

Inspector

MPT Data Server
(HTTP)

SUT
Broker

Figure 3.1: The architecture of the Maestro. The Maestro contains Maestro Clients as a
front-end; Maestro Broker as a message distributor; and sender, receiver and inspectors as
a backend. The arrows represent communications between the Maestro components and
wi th the S U T . The line value represents the number of connections where default is 1.

2 J M S — J a v a M e s s a g e S e r v i c e
3 S T O M P — h t t p s : / / s t o m p . g i t h u b . i o /

20

3.1 Test Case Scenario

The test is basically a generation of huge amount of messages followed by sending them to
S U T and then receiving them. The configuration of each test case is specified by several
options defined i n the G r o o v y 4 script which influences the test behavior w i t h the following
elements:

• message size — size of the generated test message in bytes,

• number of connected clients — the count of senders and receivers connected to
the S U T ,

• test duration (time or load) —the end condit ion of each test; can be specified by
time, l imi t or message count,

• message rate — the desired rate that the system should t ry to mainta in through the
test (0 for unbounded rate).

The test script is also responsible for starting and stopping the test. Moreover the test
case can be extended by the so called test profile. The script w i l l then also be responsible
for increasing or decreasing the workload on the S U T during the test scenario. This load
can be modified by increasing either the target rate or the number of parallel connections.
W i t h mult iple combinations of these options we can create a lot of test cases wi th different
loads for the S U T and thus achieve a broad coverage of testing. Every test produces its
own logs which are processed by the reporting sub-component on the client side and used
for monitor ing the metrics. Maestro Reporter produces data visualizations, such as the test
overview and charts (rate based on t ime and latency over the test) from these logs.

3.2 Communication Between Components

The actual communicat ion between components during the test cases is realized using the
Maestro Pro toco l — a binary protocol implemented on top of the MessagePack 5 . For the
message exchange between nodes it currently uses M Q T T protocol (version 3.1.1) and for
sending the testing data to the data server it uses H T T P protocol (version 1.1). The
messages exchanged between the peers of testing cluster are called notes.

Each note has a specific format consisting of three parts. F i r s t is the Type which is
short integer that identifies the purpose of the note, and is one of the following values:

• Request (0) — a note sent by a controller node to the test peers,

• Response (1) — a note sent by a testing peer as a response for a request,

• Notification (2) — a note sent by a testing peer as a reaction to an event.

The second part is the Command which identifies the action to be executed or, i n some
cases, that was executed. Currently, there are 18 commands represented by a long integer.
A n d the last part is the Payload which refers to the data carried by the note as part of its
command. Detai led description of commands and its payload is available i n Append ix B .

4 G r o o v y — o b j e c t - o r i e n t e d p r o g r a m m i n g language for J a v a p l a t f o r m h t t p : / / g r o o v y - l a n g . o r g /
5 M e s s a g e p a c k — h t t p s : / / m s g p a c k . o r g /

21

http://groovy-lang.org/

3.3 Measuring Process

After the dynamic test generation, w i th options from the test file, the measuring process
starts. Senders w i l l start sending messages to the S U T , while Inspector starts monitor ing
the behavior of the S U T and sends measured data to the data server. For monitor ing
purpose, Inspector uses the Broker management interface — a R E S T interface that exposes
(via H T T P protocol) an internal J V M 6 and Broker detailed information. The actual data
collection by Inspector is straightforward:

1. Inspector sends a H T T P request w i t h the JavaScript Object Notation (JSON) con
tent to the Broker R E S T interface.

2. Broker evaluates the request and sends response to the Inspector.

3. Inspector collects the response.

Note that errors occurred dur ing the collection may cause the test case to fail.
However, there are two problem factors; the first is that the Inspector should not in

fluence the performance of the S U T . Current solution for the information collection works
like the management interface method cal l w i t h request for information and response re
trieval. D u r i n g this cal l , the method usually involves locks to guarantee the thread safety
and exclusive access. However, cal l ing this method too often can cause a significant Broker
performance degradation. In order to reduce this risk, the inspector enforces a collection
interval of 10 seconds and restricts usage only to selected operations. Th is strategy reduces
the hits on management interface to 2 or 3 hits every 10 seconds and presents a suitable
performance.

The other problem factor is the large size of the stored logs. Th is is mit igated by the
usage of the compression methods. However, compressed logs can s t i l l f i l l the whole hard
drive during the long test-run and so o ld logs has to be erased at some point of t ime.
Collected logs can be safely erased when the test is completed. Curren t ly the Maestro
generates about 1 G b of uncompressed data per hour of testing.

3.3.1 Testing Metrics

The type of metrics collected during tests depends on the cluster component. In the Table
3.1 we can see the summary of the metrics, which are collected for each component.

6 J V M — J a v a V i r t u a l M a c h i n e
7 J S O N — h t t p s : //www. j s o n . o r g /

22

http://son.org/

Component Metr ics Description

Sender Throughput Throughput of the sender

Receiver Throughput Throughput of the receiver

Latency T ime between send and receive messages

Broker J V M heap memory M a x i m u m , min imum, and current Eden ,
Survivor, and Tenured space 8

J V M non-heap P e r m G e n or Metaspace

Broker internals Queue size and expirat ion count

O S basic memory Phys ica l and swap memory usage

O S resources Count of file descriptors

Table 3.1: The summary of Maestro metrics summary collected during test cases.

Throughput of the sender or receiver refers to the message count sent/received during
the performance test run. This metric is collected by each sender and receiver. O n the
other hand latency is collected only by receiver. Th is refers to the t ime between sending
and receiving of the message and can be influenced by the Qual i ty of Service or other
parameters. Since Messaging Broker is wri t ten i n Java, J V M memory metric is relevant.
H igh J V M memory usage can point to the memory leak or bad algori thm implementation.
Broker queue has size threshold and message expirat ion time. W h e n no one picks-up the
message from the queue after some period of t ime there is no need to keep old messages
and its unnecessary to fi l l too much of the memory.

Last metric is the O S resource spending during the performance testing. It is not
relevant for broker performance, but it is helpful to know e.g. the C P U usage, memory
usage, etc., i n case of Broker crash debugging.

3.4 Collected Data Format

D a t a are collected by Inspector. Inspector continuously monitors the broker and collects
information about the workload. Output of this measurement should be one file for each
active inspector. The broker inspector file is composed of the following columns:

• T imestamp — the date and t ime of the data sample in the format Y Y Y Y - M M - D D
hh:mm:ss using the W 3 C defined standard for datetime.

• Load — size of the system load.

• O p e n file descriptors — number of opened filed descriptors.

• Free file descriptors — number of free file descriptors.

• Free memory — free physical memory.

• Free swap memory — swap free memory.

• Swap committed — swap commit ted memory.

• E d e n initial — Eden in i t i a l memory.

8 E d e n , S u r v i v o r a n d T e n u r e d space are i n t e r n a l J a v a m e m o r y spaces.

23

• E d e n committed — Eden commit ted memory.

• E d e n max — Eden m a x i m u m (limit) memory.

• E d e n used — Eden used memory.

• Survivor initial — Survivor in i t i a l memory.

• Survivor committed — Survivor commit ted memory

• Survivor max — Survivor m a x i m u m (limit) memory.

• Survivor used — Survivor used memory.

• Tenured initial — Tenured in i t i a l memory.

• Tenured committed — Tenured commit ted memory.

• Tenured max — Tenured max memory.

• Tenured used — Tenured used memory.

• P M initial — Permgen or Metaspace in i t i a l memory (either Permgen or Metaspace
depending the J V M version).

• P M committed — Permgen or Metaspace commit ted memory (either Permgen or
Metaspace depending the J V M version).

• P M max — Permgen or Metaspace m a x i m u m memory (either Permgen or Metaspace
depending the J V M version).

• P M used — Permgen or Metaspace used memory (either Permgen or Metaspace
depending the J V M version).

• Queue size — number of messages wait ing for processing in the queue.

• Consumers — number of consumers connected to the queue.

• Acknowledged — number of acknowledged messages i n the queue.

• Exp ired — number of expired messages i n the queue.

Maestro sender and receiver generate another relative performance testing data. Re
ceiver generates latency log wi th the following data:

• Start Time-stamp — start t ime of the receiving.

• E n d Time-stamp — end time of the receiving.

• Interval M a x i m u m — collected m a x i m u m latency.

• Interval Compressed Histogram — compressed histogram of measurement's la
tency i n H D R 9 format.

Bo th , sender and receiver generate rate (throughput) data files. These contain data
about sent or received data by each peer. D a t a are stored i n a compressed comma-separated
values (C S V) file w i t h the following columns:

• eta — represents the estimated t ime of departure/arr ival of the message, relative to
the start of the test.

• ata — represents the actual t ime of departure/arr ival of the message, relative to the
start of the test.

9 H D R — h t t p : / / h d r h i s t o g r a m . g i t h u b . i o / H d r H i s t o g r a m / J a v a D o c / o r g / H d r H i s t o g r a m / p a c k a g e -

summary .html

24

3.5 Related Works

W h i l e Maestro is relatively new system, there are only few existing performance testing
tools for M O M . Noteworthy are two tools, which were used for performance testing before
the maestro development. These tools are SpecJMS [10] and JMeter10, the advantages and
disadvantages are described i n the following.

S p e c J M S

S p e c J M S is the industry-standard benchmark for evaluating the performance of enterprise
message-oriented middlevare servers based on J M S . Basically, S p e c J M S runs real-world
scenarios, which simulate real load over the messaging topology. S p e c J M S collects data
during the test and then evaluates it as a score. This score is a standardized value, which
represent a performance of the tested system. E a c h system tested by S p e c J M S can be
compared w i t h another system based on the computed score. Note, that a fair comparison
between a tested systems involves run the tests on the same hardware.

The great advantage of S p e c J M S is the comparison between the different tested systems
only based on the performance score. However, it has a poor test case capabilities, since the
test cases are pre-defined by the S p e c J M S developers and designed only for J M S . Nowadays,
this benchmark tool is retired and is no longer supported.

J M e t e r

The Apache JMete r is an open source software designed to load test the functional behavior
and measure performance. JMete r system is basically an I D E wri t ten i n Java, which offers a
performance testing of web applications, servers and M O M (via J M S only) by a s imulat ion
of a heavy load. JMete r testing script capabilities are better then S p e c J M S has. A l s o the
J M S restrict ion for M O M is not very comfortable, since Qpid-Dispa tch can handle more
than only J M S connections such as Qpid-proton, R u b y or any connection type which is able
to use the A M Q P protocol. The different connection type during the test can be tested by
Maestro as well . Maestro also implements interior data collection about the router itself,
which is very useful dur ing the performance bug hunt.

J M e t e r — h t t p s : / / j met e r . a p a c h e , o r g /

25

4 Analysis and Design

Maestro is specially designed for the performance testing of the message broker. However,
w i th the significant Qpid-Dispa tch growth, the need for performance testing emerges. In
the following we w i l l analyze the message router service w i th focus on its capabilities and
methodology. Moreover we w i l l describe the design of the Topology Generator and message
router Performance Module for Maestro, which are the main requirements to achieve the
actual performance testing of message router.

4.1 Used Technologies

The most of Maestro, such as the command parsing, reporting, clients abstractions and
so on, is wri t ten i n Java language. B u t the whole Maestro is not a pure Java code. For
test specificatio we use Groovy instead. Groovy is basically a lightweight version of Java
wi th several advantages. In particular, Groovy scripts are more readable for those who
are not much familiar w i th Java code. Groovy scrips are also used as handlers for specific
commands for extension points, which is described i n more depth in the Subsection 5.2.1.

O n the other hand, Topology Generator is a new simple project. For easy integration to
another projects, quick development, and easy code preview it was developed in the Python
language. Whole generator is created as one package, which is available for instal lat ion on
any machine w i t h installed P y t h o n version 2.7 and higher. The rest of the following w i l l
describe the rest of the used technologies.

4.1.1 Ansible

Ansible [3] is a simple automation framework which allow users to automate dai ly tasks on
mult iple nodes or containers. Basic types of tasks which can be automated by Ansib le are:

• Provisioning — setups the various servers i n the network infrastructure.

• Configuration management — changes configuration of an application, operation
system or device. Basical ly this allows starting, stopping and restarting services,
instal l ing or updat ing applications or performing a wide variety of other configuration
tasks.

• Appl icat ion deployment — automatical ly deploys the internally developed appli
cation to specified systems w i t h a l l dependencies.

Ansible scripts, called playbooks, are wr i t ten i n Y A M L language. Th is makes Ansible
scripts easy to read for humans and simple to manage. Another advantage is that the user
does not even need to know commands used to accomplish a part icular tasks. A l l that is

26

needed is to specify what state does user wants the system to be in . Ans ib le is available
on mult iple systems wi th really short list of dependencies; L i n u x based systems requires
P y t h o n installed, while Windows requires PowerShell; bo th systems requires S S H support.
Moreover, Ans ib le playbooks can be grouped together and create more complex scripts
called roles. These are open-source and available i n the public repository.

Ansible

Management

Node

Inventory

10.0.0.1
10.0.0.2
10.0.0.3
10.0.0.4
10.0.0.5

Playbook node
10.0.0.4

Deploy
Qpid-dispatch

node
10.0.0.5

Figure 4.1: Example of Ansible architecture wi th several nodes. Inventory and Playbook
are passed to Ansib le Management node, which executes the playbook on a l l node specified
in the inventory.

We use Ansib le for several tasks; mainly to deploy systems on specific nodes. A s we want
to run performance tests of Qpid-Dispa tch over mult iple topology scenarios it is necessary
to do system deployment quickly and automatically, which is easy wi th Ansib le . System
deployment contains instal lat ion of Maestro, Qpid-Dispa tch and other services based on the
testing scenario. The next usage is to create and deploy configuration files for each router.
Th is task runs the Topology generator and creates configuration files for each machine
based on the generator output.

4.1.2 Docker

Docker [1] is an open platform that provides developing, shipping, and running applicat ion
separately from the infrastructure. Basical ly Docker is a specific type of vi r tual iza t ion
technology. It allows to package and run an applicat ion i n a loosely isolated environment
called the container. These containers are lightweight v i r tua l machines running directly
wi th in the host machine's kernel. Th is means that one can run more containers than v i r tua l
machines on specific hardware, and it is possible to run containers on v i r tua l machines.

Docker containers are bui ld up from a dockerfile where container attributes are specified
such as its OS , environment variables, or steps for instal l ing applications. Output of bu i ld
command is then a docker image. This image is ready for running as a container w i th
another specific attributes such as exposed ports. Containers can be attached to same
network which allow communicat ion between a l l containers.

27

DOCKER COMPONENTS

Cl ient

Figure 4.2: Docker architecture wi th a l l its components and commands. Docker can pu l l
or bu i ld specific image and then run it in docker container.

Since docker is able to run services such as Qpid-Dispa tch very easily and also allows
communicat ion between containers, it is possible to deploy Maestro wi th proper S U T in
containers and analyze behavior i n the container network or just run Maestro on single
machine. However, for proper performance results we need real machines, so docker con
tainers we used only for Maestro development and t ry ing some basic stuffs w i th Maestro.
The docker architecture is depicted i n the Figure 4.2 [13].

4.2 Qpid-Dispatch Router

Qpid-Dispatch is a lightweight A M Q P message router suitable for bui ld ing scalable and
highly performant messaging networks. This router is an applicat ion layer program, w.r.t.
I S O / O S I 1 model, running either as a normal user program or as a daemon. In particular,
it has the following key features:

• Connects clients and brokers into an internet-scale messaging network wi th uniform
addressing.

• Supports high-performance direct messaging.

• Uses redundant network paths to route around failures.

• Streamlines the management of large deployments.

The following summary of Qpid-Dispa tch router was composed based on knowledge avail
able i n [23].

1 I S O / O S I — h t t p : / / w w w . s t u d y t o n i g h t . c o m / c o m p u t e r - n e t w o r k s / c o m p l e t e - o s i - m o d e l

28

http://www.studytonight.com/

4.2.1 Theory of Operation

The router accepts A M Q P connections from senders and receivers and further creates
A M Q P connections to message brokers or similar A M Q P - b a s e d services. Through these
connections sender is able to reach receiver, which can be another client i n the network
or a message broker. Note, that the client can exchange messages directly wi th another
client without involving a broker at a l l . The router classifies a l l of the incoming messages
and routes them between senders and receivers. The router is designed to be deployed
in topologies of mult iple routers, preferably wi th redundant paths, to continually provide
connectivity i n the case any router i n the network fails. For routing Qpid-Dispa tch uses
link-state routing protocols 2 and algorithms similar to O S P F or IS-IS to calculate the best
path (e.g. the path wi th the lowest cost) from sender to receiver through the whole network
and to recover from failures.

4.2.2 Addresses and Connections

Qpid-Dispatch is able to connect client servers, A M Q P services, and other router imple
mentations through network connections. The router provides mult iple components and
settings for specifying the service on the other side of connection l ink as follows:

Addresses 3 — are used to control the flow of messages across a network of routers. A d
dresses can specify messages and they are also used dur ing the creation of links since
links are bounded to the specific address field of a source and a target. The address
can refer to topics or queues that match mult iple consumers to mult iple producers.
There are two types of addresses:

• mobile — the address is a rendezvous between senders and receivers. The router
is then a message distr ibutor.

• link route —the address is a private messaging path between sender and re
ceiver. The router than only passes messages between end points.

Listener — is used to accept client connections. Listeners have several types that are
defined by their role:

• normal — the connection is used for A M Q P clients using normal message deliv
ery.

• inter-router — the connection is created to only l ink another router. Inter-
router connection can only be established over inter-route listeners.

• route-container — the connection is established to a broker or other resource
that holds a known address.

Connector — is used as an interface for creating a connection wi th brokers or other
A M Q P entities using connectors. The same as listeners, connector has several types
that are defined by their role:

• normal — the connection is used for A M Q P clients using normal message de
livery. The router w i l l init iate the connection but links are created by the peer
that accepts the connection.

2 L i n k - s t a t e p r o t o c o l s — h t t p s : / / w w w . c e r t i f i c a t i o n k i t s . c o m / c i s c o - c e r t i f i c a t i o n / c c n a - a r t i c l e s /
c i s c o - c c n a - i n t r o - t o - r o u t i n g - b a s i c s / C i s c o - c c n a - l i n k - s t a t e - r o u t i n g - p r o t o c o l s /

29

http://www.certificationkits.com/

• inter-router and route-container — they are the same as listener's modes.

To ensure the security the router uses the SSL/TLS (Sockets Layer and Transport Layer
Security^ protocol and its related certificates and SASL (Simple Authentication and Se
curity Layer)5 protocol mechanisms to encrypt and authenticate remote peers. Router
listeners act as network servers and connectors act as network clients. B o t h of these com
ponents may be configured securely wi th S S L / T L S and S A S L .

4.2.3 Message Routing

Addresses have semantics associated wi th them. These semantics control how routers be
have when they see the address being used. There are two ways how the router can route
messages based on addresses:

Rout ing pattern — defines paths that message wi th a mobile address can take. These
routing patterns can be used i n both cases of message delivery; w i th broker or directly
through the router.

• Balanced — anycast 6 method in which mult iple receivers are allowed to use the
same address.

• Closest — anycast method i n which every message is sent along the shortest
path to reach the destination.

• Mult icast — method i n which every receiver w i t h the same address receives the
copy of the original message.

Rout ing mechanism — defines the path to endpoint from sender to receiver.

• Message routed — message delivery is done based on the address i n message's
to field. The router checks the destination address of the message and finds the
same address in its rout ing table. The message is then sent to a l l l inks w i th that
address.

• L i n k routed — this method uses the same routing table as Message routing
wi th the difference that the rout ing occurs during the l ink-at tach operation and
link attaches are propagated along the appropriate path to the destination. Th i s
results into a chain of links from source to destination.

A message can be delivered wi th various degrees of rel iabi l i ty such as at most once, at least
once or exactly once.

4.3 Automatic Topology Generator

For proper testing of the various messaging systems we need mult iple topologies w i th dif
ferent components and different settings. However creating and deploying the scenarios
manually for each test scenario is rather slow and annoying, even wi th just a few scenarios.

3 A d d r e s s e s i n t h i s d i s c u s s i o n refer t o A M Q P p r o t o c o l addresses, not t o T C P / I P addresses.
4 S S L — h t t p s : / / t o o l s . i e t f . o r g / h t m l / r f c 6 1 0 1 ; T L S — h t t p s : / / t o o l s . i e t f . o r g / h t m l / r f c 5 2 4 6
5 S A S L — h t t p s : / / t o o l s . i e t f . o r g / h t m l / r f c 4 4 2 2
6 A n y c a s t vs . M u l t i c a s t — a n y c a s t m e t h o d sends d a t a t o e v e r y n o d e i n n e t w o r k , w h i l e m u l t i c a s t m e t h o d

sends d a t a o n l y to speci f ied g r o u p of nodes.

30

http://ietf.org/html/rfc6101
http://ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc4422

The solution to this problem is d ivided into two parts: a simple topology generator, which
transform metadata, defined by user, into configuration files for each component contained
in metadata, and automatic Ansible scripts, which deploy the whole topology to actual
physical machines. User only has to define is a metadata file, a single file for the whole
topology instead of single file for each component, and then start the Ans ib le script which
ensures configuration files generation and the deployment.

4.3.1 Topology Components

Messaging system consists of mult iple components w i th specific roles. In our case, testing
topologies w i l l contain clients, brokers, and routers. Clients refer to message senders and
receivers, but there is no need for specific configuration for each client at a l l . Message
settings is another case, but Maestro deals w i th it as was mentioned at Chapter 3.

Broker

Broker configuration file offers various settings and protocols such as specialized queuing
behaviors, message persistence, or manageability. The following list shows selected capa
bilities of the broker:

• User access — allows guest or authentication access to users.

• Mul t ip le Protocol S u p p o r t — broker supports A M Q P , M Q T T , S T O M P , Open-
W i r e and Core protocols.

• Connections — can establish connection to another A M Q P - b a s e d service such as
another broker or router.

• Queues — user can specify new queues i n configuration file or allow auto-create op
t ion.

• Messaging types — refers to approach how to deliver messages, e.g. are point-to-
point or publish-subscribe approach.

• Logging level — broker offers the setup for different logging levels.

Note, that broker configuration is not implemented yet, but the design of the automatic
configuration generation w i l l be shared w i t h router configuration generation.

Router

Similar ly to the broker configuration, the router offers various types of configurations. The
basics were explained in Subsections 4.2.2 and 4.2.3, but for better understanding of a l l
capabilities we recommend to refer to Qpid-Dispa tch documentation [23].

4.3.2 Input and Output Format

The input format should be user-friendly and easy to update even for large topologies.
Hence, as the input we choose one single file (c o n f i g . y m l) in YAML7 language, which
is s imilar to J S O N format but is better readable for humans. Topology Generator needs
information about a l l hosts in the topology and which type of topology it should generate.
For that purpose there are two attributes in the configuration file; the first is the inventory
path which refers to the locat ion of Inventory — file, containing a l l hosts i n topology i n the

31

specific format (for its specification refer to Append ix C) . It is a simple configuration file
w i th enumeration of host names and their I P addresses. The other attr ibute is the type
of the topology it should generate. The user can either specify one of the simple types of
graph, such as line, circle, or complete, which does not need any other information except
Inventory or one can specify path to graph metadata, which are described i n Subsection
4.3.3 in more details.

O n the other hand, the output format should be easy for automatic parsing. The best
format for machine parsing i n Ans ib le is J S O N or Y A M L format, since both of them can be
loaded wi th same functions. Output of the generator w i l l be then passed to an Ans ib le script
immediately after the creation without any user intervention. However, user should have
option to see the generator output in Y A M L format, because i n case of larger topologies
J S O N is badly readable. Hence output w i l l be one J S O N file w i th variables for template.
Each node from Inventory w i l l have its own variables separated from variables of other
nodes. Scheme of the input and output for Topology Generator is shown i n the Figure 4.3.

Graph Metadata

Figure 4.3: Topology generator takes input Y A M L configuration containing specification of
graph metadata and outputs sets of variables i n J S O N format.

4.3.3 Graph Metadata

The technology used for the actual implementat ion of Topology Generator is NetworkX, a
P y t h o n package for creation and manipulat ion of complex networks. Th is package offers
features for creating graphs, multigraphs, random graph generators, plot created graph,
and many more. N e t w o r k X also offers graph import and export i n Y A M L structured file,
which is useful as a graph metadata; simple example of file is shown i n Append ix C .

In these metadata user can specify any setting for each node. For example, user can
specify the listener for router 1, or connector for router 2 as you can see in the example
below.

directed: false
graph: {>
nodes:
- type: router

i d : router1
l i s t ener :

- host: 0.0.0.0
port: 1080
ro le : in ter-router

- type: router

7 Y A M L — http://docs.ansible.com/ansible/latest/YAMLSyntax.html

32

http://docs.ansible.com/ansible/latest/YAMLSyntax.html

i d : router2
connector:

- name: router l
host: router l
port: 5675
ro le : in ter-router

multigraph: fa lse

From these metadata N e t w o r k X creates two nodes wi th type, id , and listener or connector
attributes. These attributes w i l l be used to generate configuration files for each node. A l l
possible attributes that user can specify for each node are available i n A p p e n d i x C .

However, specifying a l l attributes of each node is not very user-friendly approach, es
pecially i n the case of large topologies. So user can only specify nodes and links between
them and generator w i l l add a l l necessary default attributes i n order to establish connection
between nodes. The example of this metadata file can be seen i n A p p e n d i x C .

4.3.4 Topology Deployment

Every node specified in the Inventory has to receive proper configuration files for services
running on i t . This job is handled by the Ansible , since it can connect to a l l nodes from
Inventory and copy configuration files to proper destination folders. Ansible script loads
data from Topology Generator and creates configuration files based on loaded variables and
the common template for Qpid-Dispa tch . The created file w i l l then be sent to the proper
node based on node name from Inventory, which has to be same as router name specified
in generated variables. The scheme of configuration deployment is depicted in the Figure
4.4.

Figure 4.4: The scheme of configuration files deployment to the nodes The Ansib le script
takes input file w i th variables generated by Topology Generator, fills the configurations
template and deploy them to corresponding nodes.

33

4.4 Agent Performance Module

The architecture of Maestro (as depicted i n the Figure 3.1) originally could not use a l l
performance testing and network recovery possibilities of the Qpid-Dispatch . Hence, for
better performance analysis and measurements it was necessary to design and implement
addi t ional functionality for Maestro.

In the Figure 4.5 we show updated version of Maestro architecture. Proper performance
testing of router and network analysis w i th few routers needs special agent, which can
manipulate each node. In particular, Maestro should be able to shut down one of the router
node and collect data about network behavior during this si tuation. A l l these actions w i l l
be handled by the new back-end component called Agent.

In the Figure 4.6a we show the simple scheme of topology wi th one agent monitor ing
the router 2. In this case communicat ion passes through the router 2 and messages are
delivered to receiver without problems. The Figure 4.6b demonstrates the shutdown of
router 2 by the agent. In that case, the network w i l l choose the redundant l ink through
router 3 in order to pass messages. Th is scenario can then answer the question How does
router shutdown influence the latency between sender and receiver?

r
Sender

•

Agent

] Receiver Sender

J
shut-down
command

(Routo4^ ^Router^

Router 3

^-^uter4^)

(a) N e t w o r k w i t h r o u t e r agent. (b) R o u t e r s h u t - d o w n d e m o n s t r a t i o n .

Figure 4.6: A simple network wi th demonstration of router shut-down.

Communica t ion between cluster back-end and user client is realized through Maestro
Broker and so for proper message dis t r ibut ion a new topic has to be added. A s was men
tioned i n Section 3.4, Maestro Clients communicate w i t h back-end v i a specialized com
mands. Router Agent w i l l accept a new set of specialized commands for router control.
Th is set has to be added to existing Maestro Clients . A l l addi t ional components or com
ponents that required update are highlighted by red color in the Figure 4.5. The example
of simple testing topology consisting of two routers and two brokers is also included i n the
Figure 4.5.

4.4.1 Extension Points

After al though research and discussion w i t h engineers we decided to develop the agent as a
service w i t h dynamic command execution, which w i l l be able to run any specific code. A t
the begging of the test, the agent w i l l receive the command to download a repository wi th

34

specific scripts serving as an action handlers. The pa th to repository w i l l be the pay load
of one of the new commands. After that, the agent w i l l l isten on the Maestro Broker
and wait for user's command to execute. Th is command w i l l transport the name of the
handler script as a payload of the Maestro's note. The agent w i l l then execute script from
pay load as an action on the node. In particular, the router restart handler can be part of
the downloaded repository and then can be performed after receiving user commands wi th
payload requests/router_restart.groovy ". Th is functionality makes the agent dynamic, and
offers the user an abi l i ty execute any specific action he wants.

4.4.2 Communication with Agent

For the communicat ion inside Maestro testing cluster we use the Maestro Protocol , which
was described i n the Subsection 3.2. Maestro Clients have to know how to communicate
wi th this new component i n the cluster and so it is necessary to add new communicat ion
commands. The following lists new commands which should be added:

• M A E S T R O _ N O T E _ S T A R T _ A G E N T (18)—start the agent service.

• M A E S T R O _ N O T E _ S T O P _ A G E N T (19)—stop the agent service.

• M A E S T R O _ N O T E _ A G E N T S O U R C E (21)—set path to user commands
handlers.

M A E S T R O _ N O T E _ U S E R _ C O M M A N D (30) — execute user's specific com
mand.

4.4.3 A M Q P Inspector

The important part of the performance testing are measurements of internal metrics of
S U T . Maestro offers Maestro Inspector for this k ind of measurements. However, the current
version can monitor only Broker, because Inspector is implemented for the specific interface
provided by the Broker. Since Broker is wr i t ten i n Java and provides access to J M X 8 v ia
J o l o k i a 9 , we cannot use current implementat ion of the Inspector for the Qpid-Dispa tch
as well . The router offers AMQP management for interaction w i t h the router on the fly,
which is different than Jolokia access. The Jolokia access is based on H T T P / J S O N format
message exchange between requester and S U T , while A M Q P Management is based on
A M Q P messages wi th specific format.

The router offers the following information after proper A M Q P request to an opened
up listener w i t h specific properties:

• name — this property is always set to string property self, which refers to itself
object.

• operation — A M Q P management offers classic C R U D operations. For inspect mes
sage we w i l l always use the option called Q U E R Y .

• type — this property represents the interior package which w i l l parse the request. We
w i l l use org.amqp.management.

• entity T y p e — this property is configurable. We use there several options wi th prefix
org.apache.qpid.dispatch, based on the request purpose. The options for request
are:

8 J M X — http: //www. oracle, com/technetwork/articles/j ava/ j avamanagement- 140525.html
9 J o l o k i a — https: / / j o l o k i a . org/

35

— router — general informations about the router.

— router.stats — detailed informations about the router.

— router.link — informations about route links.

— router.node — general informations about neighbour nodes.

— router, address — informations about addresses on the router.

— connector — informations about connections.

— allocator — informations about memory metrics.

— config.autolink — informations about created auto links.

— config.linkRoute — informations about created l ink routes.

• body — message payload, which is usually an empty list. Exceptions are auto l inks
and l ink routes requests, which needs addi t ional information in the body.

Collected D a t a

D a t a collected by the A M Q P Inspector are different than those collected by current version
of Inspector. After the discussion, we decided to collect data about general statistics,
router links and memory. Note, that each data set has mult iple data columns, which are
al l available in Append ix D . The following describes the most important data collected by
the A M Q P Inspector:

• T imestamp — the date and t ime for the data sample in the format Y Y Y Y - M M - D D
hh:mm:ss using the W 3 C defined standard for datetime.

• General Statistics — basic informations about the router such as its active connec
tions, addresses, auto links, accepted messages and etc.

— Address Count — number of active addresses at current t ime.

— Connections Count — number of active connections at current time.

• Router Links — informations about a l l router l inks which were opened to the router.

— Accepted Message Count — number of accepted messages at current t ime.
— Delivered Message Count — number of delivered messages at current time.
— Released Message Count — number of released messages at current time.

— Undelivered Message Count — number of undelivered messages at current
time.

• M e m o r y Statistics — informations about allocated memory by the router.

— Total Al located M e m o r y — tota l allocated memory.

— M e m o r y Al located by Threads — tota l memory allocated by threads.

Each data set is then converted to a line chart, which represents collected values for
each request. D a t a collected by senders and receivers remains the same as in the current
version of Maestro.

36

M a e s t r o A r c h i t e c t u r e

Maestro Clients

User PC

Maestro Java
(Java + Groovy)

Maestro Reporter

(Data Reporting)

Infrastructure

Maestro

B r o k e r

A c t i v e - M Q

~ r
Topics

/mpťmacstro

/mpťdacmon/scndcr

/mpt/daemon/receiver

/mpt/dacmon/inspcctor

/m pťdacm on/notifications

/mpťdacmon/agcnt

MPT Data Server
(HTTP)

Test node [i]

M P T Backend

Sender

Receiver •
Inspector

Agent

Figure 4.5: The architecture of updated Maestro for testing of the Qpid-Dispa tch router.
The arrows represent communications between the Maestro components and wi th the S U T .
The line value represents the number of connections where default is 1. The C front-end is
no longer need for this version.

37

5 Implementation

This chapter describes the actual implementat ion details of a l l components, described in
the Chapter 4. The ma in part focuses on the Agent module and A M Q P Inspector for
Maestro, which we implemented in Java and Groovy languages. The other part describes
the Topology Generator — P y t h o n package for automatic generation of dispatched topology
based on user's metadata. D a t a collecting and reporting done by Maestro parts has already
been mentioned i n the Chapter 4.

5.1 Topology Generation

Qpid-Dispatch has a lot of configurable attributes, which can influence the router behavior.
These attributes can be set up wi th an A M Q P management tool called qdmanage1 or
one can specify them directly i n the configuration file. However, qdmanage needs human
interaction. It is more comfortable to create a configuration file for each specific test case.
Hence, this ini t ia ted implementing of automatic Topology Generator.

In case of network wi th mult iple routers, it is uncomfortable to update configuration files
for each router on a specific node. Topology Generator introduces an option to update only
a single file w i th router specifications and leave generation and deployment to an automated
script. The actual generation takes few simple steps to achieve correct configuration files.
These steps are used i n Ans ib le script and are described i n the following.

5.1.1 Configuration File Generation

It is important to note that each configuration file is not generated by Topology Generator
itself, but by Ansib le playbook. W h y do we need such approach? Since Qpid-Dispa tch
is getting new versions every few months, they can change names of any configuration
attributes or even deprecate them. This causes the problem, that when Qpid-Dispa tch is
updated, then the code of Topology Generator has to be reviewed and updated as well,
otherwise one risks syntax errors in the configuration files. So such approach is not very
stable, and hence the simple solution is to let Ans ib le do the final generation.

The tr ick is, that Ans ib le is able to fill-up any k ind of passed Jinja22 template only
wi th data which are available. Basically, the Ans ib le playbook w i l l get the configuration
template and variables for router configuration files and create a proper configuration file.
The script s imply iterates through template and fills-up a l l available attributes. Th is process
is repeated for every router machine i n the Inventory file. Input configuration variables are
in J S O N format, and Ansib le can recognize which variables are for part icular machine.

Q d m a n a g e — h t t p s : / / q p i d . a p a c h e . o r g / r e l e a s e s / q p i d - d i s p a t c h - l . O . l / m a n / q d m a n a g e . h t m l
2Jinja2 — m o d e r n a n d d e s i g n e r - f r i e n d l y t e m p l a t i n g language for P y t h o n h t t p : / / j i n j a . p o c o o . o r g / d o c s /

2.10/

38

http://jinja.pocoo.org/docs/

5.1.2 Template Generator

Output configuration files are s t r ic t ly based on input configuration template. Th i s means
that Ans ib le needs the input template w i th specific attributes for each version. However,
Qpid-Dispatch offers a solution how to construct this template. At t r ibutes are available
inside a J S O N file i n the instal lat ion folder of Qpid-Dispatch . To process this J S O N file
and create resulting configuration template we use a tool called qdrouter-jinja2s.

Qpid-Dispatch configuration file is d ivided into the mult iple section where each sections
has its own attributes. For example there is a router section wi th router name, or mode,
and ssl section w i t h security attributes. E a c h section can be specified mult iple times, but
usually only the last one found is used. The exceptions are connectors, listeners, addresses
and link routes that can specify mult iple connection points and rout ing types on single
router. In the A l g o r i t h m 1 you can see pseudo-code of template generation process.

Input: attributes_file— input file i n J S O N format
Output: output file i n Jinja2 format
var output = " "
for line in attributes_file :

if line.is_attribute() :
output + = line.attributeToJinja2()

else if line.is_section() :
output + = line.sectionToJinja2()

else
output + = line

output.strip()
return output

Algor i thm 1: Template generation by qdrouter-jinja2.

F rom the pseudo-code you can see that there are two k ind of wrappers for processing
the J S O N . Thei r function is to make configuration sections and attributes opt ional and
repeatable which is achieved by wrapping the sections and attributes w i th Jinja2 code.
The at tr ibute wrappers processes each attr ibute line into the following template snippet:

{% i f sec t ion .at tr ibute i s defined %}
at tr ibute: {{ sec t ion .at tr ibute }}

{*/. endif */.}

This code in template specifies, that i f Ans ib le knows the variable section.attribute,
it w i l l add a line w i th that attr ibute name and variable value into the configuration file.
K e y words section and attr ibute are just placeholders for real names such as connector for
section and host for attr ibute. Output can then look like the following line:

host: 10.0.0.1

The section wrapper is more complex, because it has to wrap the start and the end of
the section. This is handled by class methods _enter_() and _exit_() which allows you
to implement objects that execute _enter_() at start and _exit_() at the end of some

3qdrouter-jinja2 — https: //github.com/rh-messaging-qe/qdrouter- j i n j a 2

39

1
2
3

4
5
6
7

8

9
10

statement. Basical ly this class is dynamical ly created for each section and these methods
are then invoked before first and after last attr ibute. The _enter_() method wraps start
of each section wi th following code:

{% i f item.section_name i s defined %}
{% for section_name i n item.section_name %}
section_name {

The exit () method closes the section wi th the following piece of code in the Jinja2
template:

}

{*/. endfor '/,}
{*/. endif 7.}

Since qdrouter-jinja2 parses J S O N data from the installed version of Qpid-Dispa tch on
remote node it guarantees that the template w i l l always correspond wi th the specific router
version. The template is saved i n /tmp folder on the remote machine where Ans ib le scripts
can fetch it into the local folder and fill it up wi th data.

5.1.3 Topology Generator

Topology Generator is the main actor i n configuration generation and deployment. It
process configuration variables for Ans ib le deployment scripts from the user specification.
Topology Generator requires two parameters: the path to the Inventory and the path to
the graph file or topology type.

P a t h to the Inventory — Inventory is simple configuration file w i th list of nodes, con
nected to the network. Generator retrieves node names and types (i.e. router or bro
ker) and use them dur ing the generation of variables. The generator creates specific
sections and attributes based on node and graph types. Since broker configurations
are not generated by this tool , generator uses information only about specification of
l ink routes to neighbours. Broker configuration is based on X M L files, where user can
specify Broker attributes. However, the future goal is to generate configuration for
Broker as well.

P a t h to G r a p h file — G r a p h file is a simple Y A M L file which specifies node dis t r ibut ion
in the network. It contains at least node name and links to another nodes. Beside
the name, user can easily specify for each node informations such as constructors,
listeners, S S L profiles, etc. The whole file is loaded during the ini t ia l izat ion and is
processed w i t h the Topology Generator.

Topology T y p e — Topology generator can create topologies without graph file, but then
it requires the network type that w i l l be generated. For example the topology type
can be a line which puts a l l nodes into one line and generates connections between
them.

Inner representation of network is realized by P y t h o n l ibrary NetworkX'1. It creates a
graph as an object and offers manipulat ion wi th its attributes which are objects of nodes

4NetworkX — https: //networkx.github.io/documentation/latest/

40

and links. Topology Generator is able to store information about network configurations
as attributes of these objects. D u r i n g the graph ini t ia l izat ion, the generator stores basic
information about nodes such as the name and the type from inventory or some addi t ional
information from the graph file. Basic a lgori thm of topology generation is depicted i n the
A l g o r i t h m 2.

However, the generation of each configuration section is more complex and is slightly
different for each section for connections to another nodes. The actual generation is split
into two parts based on the user's arguments: the first is the generation of the default
connections and the other is the generation of user specific sections from the metadata file.

Default Connections — default connections correspond to configuration for establishing
connection between two devices i n the network. To achieve this one has to configure
listeners, connections, addresses and l ink routers (depending on the second machine)
on each router. These sections can be easily automatical ly generated only w i t h the
min ima l knowledge about the network. The default connections are generated au
tomatical ly when user specifies only hosts and topology type. The generator takes
neighbours of each machine. Generator 's output i n that case is a file w i th variables for
fully functional connections between machines. Dur ing the generation from the graph
file each node has attr ibute which specifies i f user wants the default connections. The
A l g o r i t h m 2 captures the default generation process.

User Specific Sections — these sections are not needed for the proper communicat ion
inside the network. A n example can be S S L or auto-links settings. The generator
loads data about these sections from graph file. Qpid-Dispa tch has a lot of settings,
hence the generator does only the basic connectivity configuration without any specific
settings i f the user does not specify otherwise. Y o u can see the user specific sections
generation in the A l g o r i t h m 2 as the part of the first for statement. This generation
part is done alongside wi th default connections generation.

Used algorithms are pretty straightforward. Since the generator is able to load IP
addresses from the inventory there has to be a mechanism for automatic generation of
proper port numbers for listeners and connectors. The problem is, that connectors of node
X and listeners of direct ly connected node Y has to have same port numbers. It means,
that node X connects to a specific port on node Y and node Y listens on that port . The
in i t i a l port number is 5672, the default A M Q P port, and it is incremented wi th each newly
created listener. Hence, the listeners must be generated first on a l l nodes and then the
connectors can be generated. This allows the access to port numbers of neighbor listeners
v i a a simple method and explains the double loop over nodes in the A l g o r i t h m 2.

41

Input: Inventory, G r a p h F i l e /Topo logy Type
Output: output file i n J S O N format

1 var inventory = parse_inventory(Inventory)
2 var graph = create_graph(inventory, G r a p h F i l e /Topo logy type)
3 var output = {}
4 for node, neighbors in graph.adjacency() :

output.update(generate_listeners(node, neighbors))
output.update(generate_addresses(node, neighbors))
output.update(generate_specific(node, neighbors))

8 for node, neighbors in graph, adjacency()
9

10

11

connectors, l ink_routes = generate_connectors(node, neighbors)
output .update(connectors)
output .update(link_routes)

12 return output

A l g o r i t h m 2: Pseudocode of default connectivity generation.

Function: generate_connectors()
Input: node—node from graph, neighbors
Output: lists of connectors and l ink_routes

1 var connectors = []
2 var l ink_routes = []
3 for neighbor in neighbors :
4 if neighbor. is_router() :
5 | connectors.append(connector_setting)
6 else if neighbor.is_broker() :
7 connectors.append(connector_setting)
8 l ink_routes .append(l ink_route_set t ing)
9 return connectors, link_routes

A l g o r i t h m 3: Connectors and l ink routes generation. The algori thm describes function
generate_connectors().

The A l g o r i t h m 3 shows the generation process of connectors and l ink routers. The
connectors are generated for other network service (router/broker), but l ink routes are
generated only i n the case of the connection to the broker. The l ink route section then
contains name or address of the connected broker, name of queue to which router w i l l send
the messages and specification of l ink route direction (input or output) . For full-duplex
connection to the broker one needs connector and two l ink routes from the router to the
broker.

5.1.4 Deployment

A t this point, everything is ready to create the Ans ib le playbook, to run a l l necessary
tools and to deploy generated configuration files. Note, that each task can be executed on
different machine based on the inventory.

42

The playbook combines a l l previously mentioned tools and also uses features from A n -
sible role ansible-qpid-dispatch such as start and stop handlers. These steps can be added
i n any playbook or role, and can be used for automatic topology generation and deploy
ment. The necessary inputs are Inventory and topology metadata for each test-case. In the
following description you can see the list of a l l deployment steps, that are executed on the
control node (node where we use the playbook):

1. Install the Topology Generator — Topology Generator is the main actor i n the
topology deployment so it is necessary to have it installed. Ansible takes care of it in
the playbook.

2. R u n the Topology Generator — Topology Generator needs configuration files for
proper execution. In the play one just needs to specify the path to configuration files
and Ansib le w i l l do a l l other necessary steps.

3. Include variables into Ansible — this step loads the generated variables into the
memory. After this step, the script is ready to fill-up the template on remote machines.

Since Ansible offers smart system wi th variables inside the playbooks, one can assign
al l paths to configurations files to variable i n the script or pass them wi th option during
the playbook execution start. After these steps we are ready to execute the last steps on
the remote nodes:

4. Install qdrouter-jinja2 and generate templates — qdrouter-jinja2 is used to gen
erate the template. We need to instal l it on a l l of router nodes, because each router
can have different version and it can affect the configuration file w i th deprecated
attributes. After the successful instal lat ion the templates are created.

5. F i l l templates on remotes — the script fills-up the template on each node. Since
it has information about a l l nodes from configuration variables, it s imply compares
hostname wi th key from variables to assign proper data to each host.

6. Restart Qpid-Dispatch — after the change of configuration, we need to restart each
machine and reload the configuration.

5.2 Qpid-Dispatch Performance Module

This section focuses on Maestro Agent implementat ion and necessary updates of a l l other
Messaging Performance Too l parts such as commands updates, extension of the Inspector
or report changes. The Agent was implemented in Java and Groovy languages.

5.2.1 M P T Preparations

The first step during the development was to update the Maestro project structure by
adding the new module called maestro-agent. The agent is designed as the new independent
service, which can be run after the bui ld ing of the package by Maven . A t first, we need t i
implement the main function for the agent, which is buil t w i th each new package. After
the creation of ma in we had to create assembly.xml which tells Maven which files has to be

5 A n s i b l e - q p i d - d i s p a t c h — A n s i b l e role for i n s t a l l a n d setup Q p i d - D i s p a t c h . T h e role is a v a i l a b l e a t h t t p s :

/ / g i t h u b . c o m / r h - m e s s a g i n g - q e / a n s i b l e - q p i d - d i s p a t c h

43

used for creation of new package during the bu i ld . The last step is to update a l l pom.xml
files, where are specified a l l dependencies and then we are ready to bu i ld and start the
implementation.

5.2.2 Agent Module

A s it was mentioned i n Subsection 4.4.1, the agent is an independent service running on
the testing node. Since Maestro already has a similar services, we can reuse the already
working parts. The Maestro has a class MaestroWorkerManager which represents a simple
Maestro peer. Th is class has a several important methods which are inherited and used by
Agent as well:

• connect () —th i s method connects each peer to the Maestro Broker . Based on the
peer function, it also subscribes the peer to a l l needed topics. For example, the sender
peer does not need subscription to agent commands topic. W h e n this method throws
an exception, the peer was not able to connect to Maestro Broker and the test fails.

• noteArrivedO — t h i s method catches incoming notes from Maestro Broker and in
vokes action based on the note.

• handle ()—this method handles each received note. We overload this method to
invoke specific handler method based on the received note type. Usually, the handle ()
methods i n MaestroWorkerManager class only logs actions. For another functionality
we have overridden the specific implementations of each peer.

Every action handler script is wri t ten in Groovy, and so Maestro needed a Groovy script
executioner. For this purpose, we created the class GroovyHandler. Th is class basically
checks the handler file whether it is executable and then tries to execute i t . The handler
file locat ion is specified by the note payload and there one can specify more than one file:
GroovyHandler checks and execute a l l of the files.

The main part of the Agent is the method called callbacksWrapper(). Since the
Agent overrides handle () method to execute scripts from external point, every handle ()
method i n the agent calls the callbacksWrapper(). The basic functionality is shown in
the A l g o r i t h m 4. The reason why sendReplyOkO is sent everytime is that we need to know
if thread was started. For example we can start the thread wi th the command execution 5
minutes after the start. So we need the information i f thread started successfully and then
the information how the thread execution finished. However, the information about thread
finish is sent by the handler itself. Th is is also reason why for every external point handler
creates its own thread and naturally, the agent must serve other handlers during this t ime,
and not wait 5 minutes for one of them to finish and then handle the others.

44

Function: cal lbacksWrapperQ
Input: externalPointPath, codeDir, note
Output: sendReplyOk() or sendReplyFail()

1 var thread = ThreadQ
2 try
3 var groovyHandler = GroovyHandle r ()
4 groovy Handler .set lni t ia lPath(externalPointPath)
5 groovyHandler .setWorkerOptions(getWorkerOptionsQ)
6 groovy Handler.setMaestroNote(note)
7 thread, st art (gro ovy Handler . run Callbacks ())
8 catch
9 | sendReplyFail()

10 sendReplyOk()

A l g o r i t h m 4: Basic functionality of callbacksWrapper () method. This method create
new thread for each extension point and tries to execute it.

In new threads we execute runCallbacks () method, which load a l l files from extension
point directory and tries to execute them. This method is in a specific class, which con
tains parameters for each execution. The parameters are originally contained i n the note's
payload. The A l g o r i t h m 5 captures runCallbacks () method.

Function: runCallbacks()
Input: groovyHandler as this class
Output: sendReplyOk() or sendReplyFai lQ

1 for file in extensionPointDirectory :
2 t ry
3 var grovyObject = loadFi leAsGroovyObject(f i le)
4 groovyObject . invokeMethod("setMaestroNote", this.maestroNote)
5 groovyObject . invokeMethod("setWorkerOptions", this.workerOptions)
6 groovyObject . invokeMethod("setMaestroClient" , this.client)
7 groovyObject . invokeMethod("handle", this.context)
8 catch
9 | sendReplyFail()

10 sendReplyOk()

A l g o r i t h m 5: The method runCallbacks() loops over each file in the extension point
directory, tries to load each file and executes i t .

The other important method of Agent is the override handle () for AgentSourceRequest
note. After this note is received, the handle () method fetches a git repository U R L from
the note and tries to clone i t . The current version offers to clone any public git repository
and even the specific branch of the repository.

Agent Capabilities

The current implemented version of the Agent offers much more features than was originally
designed. The Agent does not focus only on Qpid-Dispa tch actions handling, but it can
invoke action on node itself by executing extension points scripts. Th is makes agent usable

45

also for Broker nodes, where it can simulate a real network behavior dur ing the testing.
The agent can also run th i rd party software on the node during the test, which can simulate
any k ind of the unexpected behavior.

The agent is a specific k ind of Maestro Worker. This means, that agent connected to
the Maestro Broker can publ ish messages during the test about its execution status or any
addi t ional information. Y o u can see a simple communicat ion wi th agent notes handling
in the Figure 5.1. The notes are send from the front-end through the Maestro Broker.
Agent then invokes a specific handle method based on the received note. Inspector keeps
inspecting the Qpid-Dispa tch by requests about his state every 15 seconds.

Maestro

Broker

A c t i v e - M Q

Front-end

handle(AgentSourceRequest)

GitHub
repository transfer

handle(userCommandl)

Agent J
AMQP Inspector

inspectRequestO

MPT Data Server
(HTTP)

Testing Node

Figure 5.1: Communica t ion scheme inside the Maestro w i t h the agent. Scheme shows the
agent git repository download and then handling the proper note defined by the user. The
Figure also shown the S U T communicat ion wi th the A M Q P Inspector.

5.2.3 A M Q P Management Inspector

The collection of information about the router itself is not gathered by the agent. For this
purpose, we developed a new type of Maestro Inspector specific for A M Q P Management.
A M Q P Management is layered on top of the A M Q P protocol and it access the inner data
about the router by a simple requests and responses. Qdmanage tool already has imple
mented operations for A M Q P Management, however, qdmanage is a P y t h o n tool and we
want to integrate only Java code wi th A M Q P Management requests into the Maestro. Whi l e
A M Q P Management offers C R U D operations for router configuration and inter informa
tions, for A M Q P Inspector we are fine w i th only Read operation to get specific information
about running the instance of Qpid-Dispatch .

Basic Evaluation

The Maestro Inspector is designed to run a specific Inspector class based on user definition
in the testing script. Currently, Maestro offers A c t i v e M Q Inspector for the Broker and

46

A M Q P Inspector for the Router . The Inspector w i l l receive the note w i t h inspector start
command, which carries string payload. Th is payload is the name of the specific inspector
implementat ion that w i l l be started. The mechanism of start ing the A M Q P Inspector is
depicted in the Figure 5.2 and i n the Algor i thms 6.

startInspector("AMQP Inspector")

Maestro
Broker

Active-MQ

Front-end

Maestro Inspector

Maestro Inspector
Interface

Start
. A M Q P Inspector

Inspector send request
every 5 seconds
(default time)

Figure 5.2: The inner mechanism of Maestro Inspector during the receive start inspector
note. One can see the note exchange and choose of specific inspector class based on the
note's payload.

Function: handle()
Input: Maestro note — startlnspector
Output: sendReplyOk() or sendReplyFail()

1 var inspectorClass = note.getPayload()
2 try
3 var inspector = Inspector(inspectorClass)
4 var thread = Thread(inspector)
5 thread.start() sendReplyOk()
6 catch
7 | sendReplyFai lQ

A l g o r i t h m 6: Handler method for startlnspector note which creates instance of specific
inspector implementation.

47

Function: start()
Output: sendReplyOkQ or sendReplyFail()

1 var routerLinklnforWri ter = RouteLinklnfoWri te r ()
2 var memorylnfoWri ter = Memory lnfoWri te rQ
3 var generallnfoWriter = GeneralInfoWriter()
4 try
5 var currentTime = System.currentTimeMiHisQ
6 connectToRouter()
7 var dataReader = DataReader()
8 while canContinue() :
9 routerLinklnfor Wri ter .wri te(currentTime, dataReader. collectRouterlnfoQ)

10 memorylnfo Wri ter .wri te(currentTime, dataReader. col lectMemorylnfoQ)
n generallnfo Wri ter . wri te(currentTime, dataReader. collectGenerallnfoQ)
12 Thread.sleep(5000)
13 sendReplyOk()
14 catch
15 | sendReplyFail()

A l g o r i t h m 7: M e t h o d for start ing new instance of the Inspector. Th is method continu
ously sends requests to the S U T , collects, parse and write the response into csv file.

Create
Message

Message is created
by filling specific
JMS structure with

described data

Sleep for
specific time

Send request

Message is sent to
the consumer
(router) by

producer (AMQP
Inspector)

Collect
response

AMQP Inspector
starts message
collection for

specific period of
time (timeout)

Parse the
response

Received message
has to be parsed

into better
collection with
data selection

Figure 5.3: The whole Inspector process including message creation, message sending,
collecting and parse.

The A M Q P Inspector uses the request-response message mechanism wi th the S U T . The
inspector creates message using Java l ibrary Qpid JMS6 as specified i n the Subsection 4.4.3.
Since we want to collect as much relevant data as possible, we are sending three 7 request-
response messages wi th different entityType opt ion every 5 seconds during the whole test.
For the response collecting it is necessary to create a temporary queue, that is used by
the router as response destination. The destination is contained i n the field response-to.
The actual request message is represented as an object w i th type of JMS Message. The
main Inspector's process mechanism is described in the A l g o r i t h m 7, while the message
request-response mechanism is depicted i n the Figure 5.3.

6 Q p i d J M S — h t t p s : / / q p i d . a p a c h e . o r g / c o m p o n e n t s / j m s / i n d e x . h t m l
7 T h r e e speci f ic requests t o A M Q P M a n a g e m e n t are e n o u g h t o co l lect a l l d a t a w h i c h are needed.

18

6 Experimental Evaluation

This chapter summarizes results of the performance testing and experimental evaluation of
Maestro. We split the experiments into two parts. The first performs a basic measurement
of Maestro 1.3.0 which includes Maestro Agent and A M Q P Inspector. D u r i n g this experi
ments we focused on reclaiming the highest possible throughput of singlepoint topology of
Qpid-Dispatch (message router) and Apache ActiveMQ Artemis (message broker) and mul
t ipoint topologies w i th three nodes of Qpid-Dispa tch and wi th Apache A c t i v e M Q Ar temis
in the middle. These experimental topologies are depicted in the Figure 6.1. The later
series of experiments are focused on behavior testing of topologies, which involves Message
Router rel iabi l i ty and recovery testing. For experimental evaluation we used Qpid-Dispa tch
stable version 1.0.0 and Apache A c t i m e M Q Ar temis stable version 2.3.0. Note, that Qp id -
Dispatch w i l l be referred as message router and Apache A c t i v e M Q Ar temis as message
broker in this chapter.

Since the testing was executed over mult iple topology types, we used Topology Gener
ator for quick automatic changes of topology. E a c h test was executed against established
topology where a l l components were newly installed and restarted between each test sce
nario. Th is was done during the cleaning stage. For experimental evaluation we used
machines specified i n the Table 6.1. The reason why clients use more powerful machines is
that we needed more machines for S U T , but only two I B M X e o n machines were available
during the experimental evaluation and we needed at least three machines for the S U T
nodes. For proper comparison we need a l l S U T s on the same machine type.

Component Machine C P U R A M [GB]

S U T Opteron 8 8

Clients I B M X e o n 16 16

Table 6.1: Machines and their properties, which were used for the experimental evaluation.

6.1 Basic Performance Measurements

Maestro works as the orchestration system, and requires proper infrastructure before one
can run any test for experimental evaluation. The architecture of Maestro, described in
the Chapter 3, specifies that i n ideal scenario one needs at least four machines for running
a simple test: maestro broker, sender, receiver, and S U T . The amount of needed machines
obviously rises w i t h more complex scenarios and larger networks. Examples of used gen
erated experimental topologies are depicted i n the Figures 6.1. For these configurations
we compared the throughput and latency of these combinations. Dur ing a l l measurements
we used Maestro Inspector to inspect one of the S U T depending on the topology type.

49

Note, that for Message Router we used A M Q P Inspector and for message broker we used
A c t i v e M Q Inspector. The topologies were picked based on current performance testing
and known topologies, where some performance degradation was already found dur ing the
previous testing.

Maestro Maestro Maestro Maestro Maestro Maestro
Sender Inspector Receiver Sender Inspector Receiver

(a) T o p o l o g y w i t h a s ingle r o u t e r n o d e . (b) T o p o l o g y w i t h a s ingle B r o k e r n o d e .

(c) T o p o l o g y c o n s i s t i n g of r o u t e r s nodes only . (d) T o p o l o g y w i t h B r o k e r i n the m i d d l e .

Figure 6.1: Examples of experimental topologies created for basic performance testing and
experiments w i th Maestro. The arrows indicates the communicat ion path between topology
components.

Each test case has specific parameters which can be defined by the user. The summary
of available parameter is in the following list:

M E S S A G E _ S I Z E —message size i n bytes.

P A R A L L E L _ C O U N T — number of connected clients to the S U T during the test.

T E S T _ D U R A T I O N — test durat ion specified as t ime value (e.g. 120s, 10m) or
number of messages (10,000,000) to transfer.

R A T E — rate of each connected client; 0 represents unbounded test.

I N S P E C T O R N A M E — name of inspector implementat ion (Activemqlnspector

or Interconnectlnspector).

M A N A G E M E N T _ I N T E R F A C E — U R L where inspector w i l l inspect the S U T .

M A E S T R O _ B R O K E R — U R L to Maestro Broker.
S E N D R E C E I V E U R L (singlepoint only) — U R L where sender and receiver con
nects.

S E N D U R L — U R L where sender connects.

R E C E I V E U R L — U R L where receiver connects.

E X T _ P O I N T _ S O U R C E — U R L to public git repository wi th code handlers.

E X T P O I N T B R A N C H — branch which should be used for ext point repository.

50

• E X T _ P O I N T _ C O M M A N D — c o m m a n d executed by the Agent .

6.1.1 T h r o u g h p u t

We measured throughput only by load generators — Maestro Sender and Maestro Receiver.
L o a d generation depends on the test properties as one can see the test properties for each
test case i n the Table 6.2. Maestro is able to create an unbounded rate test, dur ing which
it generates as much load as it can. This type of test was used to reach the max imum
handled rate of message router and Message Broker. The unbound rate during the test is
achieved by setting the environment variable RATE to value 0. The throughput test cases
are focused on m a x i m u m throughput of simple or complex topologies.

Singlepoint Mult ipo int

Test Property Router Broker Ful l Router W i t h Broker

M E S S A G E _ S I Z E [B] 256

P A R A L L E L _ C O U N T 5

T E S T _ D U R A T I O N [min.] 15

R A T E [msg • s'1] 0

Table 6.2: Test case settings for throughput measurements.

Single Node

The first tests were ran against the single node topologies, which are depicted i n the Figures
6.1a and 6.1b. These topologies contains only one S U T node, which is forwarding messages
from sender to receiver. D u r i n g the test the S U T node is inspected by the proper Maestro
Inspector.

The measured throughput is depicted in the Figure 6.2 where one can see the comparison
of tests w i th 15 minutes durat ion, which tries to achieve the highest possible throughput.
One can see that the m a x i m u m throughput of message router, as a standalone network
component, can reach around 90,000 messages per second. O n the other hand, the lone
Messaging Broker reaches only about 30,000 messages per second. This throughput dif
ference is caused by the fact, that Broker stores a l l of the messages i n the memory unt i l
clients want them. This is the main feature of the broker, because it operates as an mes
sage distr ibutor i n the network. O n contrary the router only routes the messages to the
destination so it does not need to store message i n the memory.

51

Throughput

120000

108000

96000 H

84000

72000

60000

48000

36000

24000 h"

12000

Router
Broker

_ : : :

— i — 1

i , i , i . i •

1
0
00:00 02:00 04:00 06:00 08:00 10:00

Relative Time [mini

12:00 14:00

Figure 6.2: Char t of the m a x i m u m throughput of router and broker during the singlepoint
test case. One can see the significant difference between those two components.

In the Figure 6.3 we can see the memory usage of message router dur ing the test. We
can see here, that the total ly allocated memory is around 45 k B from which it is used only
around 13-28 k B . If we compare this w i th the memory al location for the Broker, we can see
the huge difference between these values. The memory allocated for the Broker is depicted
in the Figure 6.4 and we can see that the allocated memory is around 2 G B of memory
and used memory is around 300-900 M B . This is caused by messages being stored i n the
memory.

Router Memory

5.5

4.9

4.4

3.9

3.3

2.8

2.2

1.7

1.1

5.5

0.0

10"

10"

10"

10"

10"

10"

10"

10'5

Total Allocated — ^
Held B y Threads '

i ; ; ; !

i . i . i . i . i • 10'
00:00 02:00 04:00 06:00 08:00

Relative Time [mini

10:00 12:00 14:00

Figure 6.3: The total allocated memory and memory-in-use by message router dur ing the
test. The data was collected by the inspector every 5 seconds.

52

Broker Memory

3.0

2.7

2.4

2.1

1.8

1.5

1.2

9.0

6.0

3.0

0.0'10°

10"

10"
Total Allocated

Used

00:00 02:00 04:00 06:00 08:00

Relative Time [mini

10:00 12:00 14:00

Figure 6.4: The to ta l memory al location for the message broker service. One can see that
the broker allocates more memory compared to message router in the Figure 6.3.

Mult ipo int Topology

For the mult ipoint experiments we used topologies depicted i n the Figures 6.1c and 6. Id .
The network throughput can natural ly be influenced by other devices connected to the
topology. So the singlepoint topology was extended by another components by adding two
other routers around the original S U T . The versions of the addi t ional S U T s are the same
as the original ones.

Throughput

80000

72000

64000

56000 K

48000 H

40000

32000 H

24000 H

16000

8000

0

Router
Broker

1 , 1 . 1 , 1 . 1 , 1 , 1

00:00 02:00 04:00 06:00 08:00 10:00

Relative Time [mini

12:00 14:00

Figure 6.5: Measured throughput of message router and message broker during the mul t i
point case study. One can see the performance degradation of message router and improve
ments of message broker on that Figure.

53

In the Figure 6.5 one can see, that adding routers to the broker node raises achiev
able throughput to the 48,000 messages per second. O n the other hand, the topology
consisting only of the routers shows significant performance degradation. The through
put falls from the 90,000 messages per second to the approximately 23,000 messages per
second. This degradation is caused by the interior flow-control mechanism, which should
prevent the overload of the network. However, i n this case study we can see that the per
formance degradation is too high and the mechanism used i n the Qpid-Dispa tch should be
re-implemented.

Router Memory

6.5'io4

5.9'104

5.2'104

— 4.6'104

23
3.9' 104

3.3'104

2.6'104

2.0'104

1.3'104

Total Allocated
"Held B y Threads I

6.5' 10''

0.0'10' ,0 I _ j _ _ i _ _ i _ _ j _

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00
Relative Time [min]

Figure 6.6: Message router's memory usage during the mult ipoint case study. Used memory
is higher than in the single-point.

Based on that mechanism, the memory usage of the middle router depicted i n the Figure
6.6 is higher than dur ing the previous case study. Memory used by a l l threads is around
two times higher and the mean value is around 43 k B . O n the other hand, the memory
allocated for the broker component remains the same as in the previous case study. The
memory monitor ing for this case study is depicted in the Figure 6.7.

54

Broker Memory

3.0 ' io 9

2.7-10

2.4- 10

2.1- 10'

1.8-10'

1.5- 10'

1.2- 10'

0.0-10°
00:

Total Allocated
Used

00 02:00 04:00 06:00 08:00

Relative Time [mini

10:00 12:00 14:00

Figure 6.7: Memory usage for Broker remains almost the same as i n the single-point case,
but w i t h less spikes.

Conclusion

The collected data during the throughput measurements revealed unexpected and consid
erable performance degradation i n the serial connection of the message router. The com
parison between the single and mult i-point case study is i n the Figure 6.8, which groups
together a l l throughput measurements data into one chart. Here one can see the perfor
mance improvement between single instance Broker test and the test of topology w i t h the
broker (yellow and green color), and performance degradation between router topologies
(red and blue color). The summary of results is also available i n the Table 6.3.

Throughput [msg • s M e m o r y

Test T y p e Expected Measured Total Used max

Single Router - 90,000 45 k B 28 k B

Single Broker - 30,000 2 G B 0.9 G B

Line of Routers 90,000 23,000 49 k B 43 k B

Line with Broker 30,000 48,000 2 G B 0.9 G B

Table 6.3: Table wi th collected data w i th highlighted performance improvements and degra
dations.

55

Throughput

150000

135000

_ 120000

105000

J_ 90000

1 75000

60000

J 45000
2

30000

15000

Router single
Broker in line
Broker single

Ful l router line

_ i _ 0
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00

Relative Time [min]

Figure 6.8: The comparison of a l l measured throughputs for different components and
topologies.

6.1.2 Latency

Latency is measured only by Maestro Receiver from certain load samples. Since the broker
is a dis t r ibut ion service, which needs to store messages for some time, or create and keep
queues for clients, it has higher requirements for system resources. O n the other hand
message router has only one purpose — to route the messages. This makes it more faster
than the Broker. So high load can be unprofitable if one wants better latency during
the communicat ion, especially in the case of topology wi th the broker. The broker can
handle less messages than router, but using router can raise broker's throughput since it
can control the load. Thus it gives more t ime to broker to process messages even wi th
higher load. The test cases for latency measurements has slightly different settings than
throughput measurement. The settings for this measurements are shown i n the Table 6.4.
Note, that RATE and TESTD URA TION are sets for each of five connected clients, which
means that test is finished after sending 10,000,000 messages.

Singlepoint Mult ipo int

Test Property Router Broker Ful l Router W i t h Broker

M E S S A G E _ S I Z E [B] 256

P A R A L L E L _ C O U N T 5

T E S T _ D U R A T I O N [msg] 2,000,000

R A T E [msg • s'1] 15,000 4,600 3,600 7,600

Table 6.4: Test case settings for latency measurements.

56

Single Node

The latency measurements are done wi th 80% of m a x i m u m rate, which were discussed in
the Subsection 6.1.1. In the Figure 6.9 you can see the latency difference that we measured
between message router and message broker. In single node measurements, the router's
latency is slightly higher in the most of the cases. After discussion we d id not find a reason
why is router slower than Broker i n that case.

Latency

Latency Router I I

J I l I L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Percentile

Figure 6.9: Latency chart showing the difference between the router and the broker latency
at 80 % of max imum rate.

Latency

Latency Router C

Percentile

Figure 6.10: Latency chart showing the difference between the router and the broker latency
at same load. Router 's latency is significantly better then in previous case.

57

Then we tr ied to rerun the latency measurements w i th same load for both test cases.
The load was set to 4,500 messages per second for each connected client. The output is
depicted i n the Figure 6.10, where the router is significantly faster, but s t i l l slower than
Broker. Th is is probably caused by some Maestro internal processes.

The memory used by message router is sl ightly lower and much stable than i n the case
of m a x i m u m throughput as one can see i n the Figure 6.11. This proves, that used memory
is dependent on the load. If the load on the router is higher then it needs more memory
for proper routing.

5.5'10 4

4.9'10 4

4.4'10 4

— 3.9'10 4

3.3'10 4

2.8'10 4

2.2'10 4

1.7'104

l . l ' lO 4

5.5'10''

0.0'10'

Router Memory

Total Allocated -

Held B y Threads C

A A
i

00:00 00:20 00:40 01:00 01:20

Relative Time [mini

01:40 02:00

Figure 6.11: Memory usage of message router is much stable when the router is not under
the m a x i m u m load. The spikes are caused by some unexpected events in the topology.

Broker Memory

3.0 ' io 9

2.7-109

2.4'10 9

2.1'10 9

1.8'109

1.5'109

1.2'109

9.0'10 8

6.0'10 8

3.0'10 8

0.0'10°

Total Allocated -
Used ^

- i

i . . 1 . . 1 . . 1 . . 1 . . 1 . . 1

00:00 01:00 02:00 03:00 04:00

Relative Time [mini

05:00 06:00 07:00

Figure 6.12: The Broker 's memory usage has less spikes when the load is only about of
80 % of max imum.

58

In the Figure 6.12 one can see the Inspector output for Broker 's used memory. The
used memory here is much stable than i n the previous cases, which is caused, as i n the
router case, by lower load on the Broker. M a x i m u m used memory stags the same as i n the
previous cases.

Mult ipo int Topology

One can see the measured latency on mult inode topology of three routers, and two routers
wi th middle-broker in the Figure 6.13. The latency curve proves, that routers are able to
deliver messages into its destination faster than the topology wi th the Broker, again because
the Broker needs to store them in the memory. The latency of the topology w i t h broker
reaches around 16 ms i n 9 0 % of samples; on the other hand, topology consisting of routers
has significantly better latency that is around l m s i n 9 0 % of samples. The conclusion is
that the collected data proves the router should be much faster than the broker during the
certain circumstances..

Latency

4

. Latency Router I 1
Latency Broker ' '

) I /
i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Percentile

Figure 6.13: Latency comparison between topologies w i th only routers and wi th the middle-
broker. The router network is here significantly faster.

59

Router Memory

6.5

5.9

5.2

4.6

3.9

3.3

2.6

2.0

1.3

6.5

10 4

10 4
Total Allocated

"Held B y Threads I

0.0'10° _i_ _i_

00:00 01:00 02:00 03:00 04:00 05:00

Relative Time [mini

06:00 07:00 08:00 09:00

Figure 6.14: Memory usage shows, that memory usage of the router is affected by the
throughput.

Collected data about the memory usage proves the previous statements. In the Figure
6.14 we show used memory by message router. The curve is very stable and the values
moves around the 9 M B of used memory. The used memory by the Broker is shown i n the
Figure 6.15 and is very similar as i n the previous measurements.

3.0'10

2.7'10 s

2.4'10 9

2.1-109

Broker Memory

Total Allocated
Used

1.8'10M

1.5'109

1.2-109

9.0-108

6.0'10 8

3.0'10 8

0.0'10° _ i_ _ i_ _i_ _i_ _i_ _i_ _ i_ _ i_

00:00 00:30 01:00 01:30 02:00 02:30

Relative Time [mini

03:00 03:30 04:00

Figure 6.15: Char t of memory al location on the Broker node.

Conclusion

Dur ing the latency measurements we collected and compared data for the message router
and message broker topologies. The summary of latency measurements is available i n the
Table 6.5. Is it was already mentioned, message router is faster i n the model environment
the message broker.

60

Latency [ms] M e m o r y

Test T y p e 90 % 99 % Total Used max Durat ion [s]

Single Router 2.263 12.495 38 k B 28 k B 136

Single Broker 0.386 181.759 2 G B 0.9 G B 425

Line of Routers 1.292 50.815 46 k B 8 k B 540

Line with Broker 15.487 1031.167 2 G B 0.9 G B 250

Table 6.5: The summary table w i th collected latency data w i th highlighted performance
improvements and degradations.

6.2 Behavior Measurements

Moreover, we present some results collected during the behavioral testing using the Maestro
Agent extension. The topologies used in the following scenarios are depicted i n the Figure
6.16. The topology depicted i n the Figure 6.16a is used to demonstrate Agent functions and
message loss during the crash. The other topology depicted i n the Figure 6.16b represent
a basic line l ink wi th redundant router 3 which is configured as a slave and root router 2
which is configured as a master. Here we demonstrate the recovery t ime of Qpid-Dispatch .

(a) L i n e t o p o l o g y w i t h c o n n e c t e d I n s p e c t o r a n d

A g e n t .
(b) T o p o l o g y w i t h r e d u n d a n t r o u t e r .

Figure 6.16: Examples of experimental topologies created for behavioral performance test
ing and experiments w i th Maestro. The arrows indicate the communicat ion path between
topology components and the numbers represent the cost of the path.

O n each topology four tests were executed wi th different actions performed by the Agent .
The test properties remains the same as dur ing the latency testing for router line topology
wi th the difference i n test duration, which was set to 1,500,000 messages per connected
client. The following actions, w i th addi t ional parameter such as duration, were performed
during the test:

• Restart — simple router restart.

61

Shutdown — simple shutdown and restart for different t ime duration.

6.2.1 Agent Demonstration

The agent performed specific act ion in the th i rd minute of the test scenario (there can be
a smal l delay caused by the repository download on the Agent) . The shutdown actions
have specific durat ion, which was set to 10, 60 and 120 seconds. Since the topology used
for this type of tests does not have any redundant path to destination or Broker work
message store, the messages got lost dur ing the actions. Note, that the test was triggered
without message acknowledgment settings for the router and the clients. In the Figure
6.17 one can see the throughput affected by the restart and shutdown actions in every case
study. The magnitude of the action impact is based on the action duration, hence, the
longer shutdown w i l l lose more message than short restart. However, the chart proves, that
routers can establish lost connection wi th the clients without problems when the router
is started again. The different test durat ion points to the fact, that Maestro detected
connections issues and wait for the connection to be established.

Throughput

40000

35000

~ 30000
in

| 25000

| 20000

I 15000
7.

I 10000

5000

0

Router restart
- Router 10 sec shutdown -

Router 60 sec shutdown -

Router restart
- Router 10 sec shutdown -

Router 60 sec shutdown -

i • • • • • • • • • • • • 1 1 1 1— . . i . . , . i . . 1 , ,

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30 07:00 07:30

Relative Time [min]

Figure 6.17: Maestro Agent demonstration against a simple topology w i t h restart and
shutdown in the th i rd minute of test.

The latency is affected as well, one can see that significant message amount raises the
latency from l m s to 64ms. However note, that some messages were lost which leads to
smaller number of samples for latency computat ion. The message loss ratio is captured in
the Table 6.6. One can see that message router lost 39,518 messages which corresponds to
throughput for 2,195 ms . Regarding this, we can say that router restart interrupts the l ink
for 2,195,mss.

62

Latency

. Router 120 sec shutdown ' '
Router 60 sec shutdown I I
Router 10 sec shul

Router r
down
estart 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Percentile

Figure 6.18: Latency diagram affected by the actions simulat ing the connection issues.

Act ion Durat ion [s] Expected [msg] Lost [msg] Percent

Restart 0 39,518 0.53 %

10
7,500,000

220,445 2.94 %

Shutdown 60
7,500,000

871,661 11,62 %

120 918,266 12,25 %

Table 6.6: Table wi th summary of lost messages during the specific actions on the middle
router node.

6.2.2 Measurement W i t h Redundant Router

Dur ing this experiment the Agent perform the same actions as i n the previous test cases.
The difference is, that given topology now has a slave router connected into the network
which is ready to route the messages when master router crashes. In the Figure 6.19 the
throughput is depicted for a l l tests on this topology. The Agent performs actions i n th i rd
minute which causes spike under the stable load curve, but the throughput has risen back
quickly. Th is spike is caused by a smal l delay when the redundant router starts his job. It
needs some t ime for warm-up, which involves the memory al location depicted in the Figure
6.20. A s one can see, there is no addi t ional spikes after then master is turned on, hence the
first spike is causes only by first rout ing redundant router.

63

Throughput

40000

35000

~ 30000
in

I 25000

I 20000

I 15000
7.

I 10000

5000

0

Router restart
- Router 10 sec shutdown -

Router 60 sec shutdown —

Router restart
- Router 10 sec shutdown -

Router 60 sec shutdown —

k

. . i . . • • • • • • • •

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30 07:00

Relative Time [min]

Figure 6.19: Throughput comparison between the test cases wi th different Agent executions.
The spike is caused by warm-up period of redundant router.

Memory

s
J:

65000

58500

52000

45500

39000

32500

26000

19500

13000

6500

0
00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30

Relative Time [min]

Figure 6.20: Al loca ted memory for redundant router during the restart. One can see that
router allocated new memory when the master router crashed and the slave had to handle
the load. Th is memory is allocated un t i l the tear down.

Total Allocated -
Held I >y Thres ids l

• • • • • • . . i , , • • • • , . i . .

64

Latency

. Router 120 sec shutdown ' '
Router 60 sec shutdown I I
Router 10 sec shul

Router r
down
estart 1 i 1

0.1 0.2 0.:i 0.4 0.5

Percentile

0.6 0.7 0.8 0.(1

Figure 6.21: Latency diagram of redundant router topology where the Agent perform dif
ferent actions. The latency remains the same for a l l the test cases which points to a good
routing between the routers.

Since we want to know how long it takes router to re-establish connections after the
crash we can find the answer in the Figure 6.22. One can see the detai l of test case wi th
restart router action which is executed three minutes after the test starts. The monitored
router is the redundant one, so we can see that it handled the load for two seconds which is
t ime needed for restart. After this t ime the master router was able to route load again and
the slave router just awaits for another communicat ion. This statement is also supported
by results collected and discuss i n the Section 6.2.1.

Unsett led Messages

Unsettled Messages

i i i i i i

02:58 02:59 03:00 03:01 03:02 03:03 03:04

Relative Time [minutes]

03:05 03:06 03:07 03:08

Figure 6.22: Char t captures unsettled messages on the redundant router node. The slave
router handled load for two seconds.

65

The conclusion is, that Qpid-Dispa tch is able to recover after a crash in less than three
seconds, when there is no block for service start. W h e n the router is down, the topology
is updated and the previous hop does not have path to the crashed router, so the clients
cannot affect the router start after the crash. However, even wi th redundant path there is
a chance that some messages are lost as it is captured i n the Table 6.7. To avoid this case
it is necessary to turn on acknowledge mechanism for A M Q P messages, which should avoid
message loss but it w i l l affect the performance.

Act ion Durat ion [s] Expected [msg] Lost [msg] Percent

Restart 0 21,804 0.29 %

10
7,500,000

13,359 0.18 %

Shutdown 60
7,500,000

16,205 0.22 %

120 22,042 0.29 %

Table 6.7: Table wi th summary of lost messages during the specific action was performed
on the middle router node without redundant path.

66

7 Future works and ideas

The Maestro is currently used for performance testing of Apache A c t i v e M Q Ar temis and
Qpid-Dispatch in R e d Hat Messaging Q E team. This makes the Maestro one of the key
utilities for the Messaging and the pr imary performance tool . B u t since the Maestro is
basically immature system, there is s t i l l a lot of places for improvements. We present several
ideas i n the following. Note, that Maestro-Agent and A M Q P Inspector are new Maestro
modules, which makes performance testing of Qpid-Dispa tch w i t h collecting interior data
about S U T itself available. These extensions were already merged i n the upstream and are
available since Maestro stable version 1.3.0.

7.1 Regression Testing

Since both message broker and message router have new builds every few weeks, there can
occur a performance degradation. This issue can be caused by just one simple commit ,
which can fix some issues but break performance. However, Maestro can catch such perfor
mance degradation early in the process, i f there is already previously measured data w i th
specific informations (so called baselines). Maestro can then re-run the same test w i th new
version of S U T and compare the collected results w i th previous the data set.

This mechanism is simple to achieve. The first step is to configure the pipeline job on
the orchestration and integration system such as Jenkins or Travis C I . Th is job has to have
access to S U T repository and baseline data tagged as a performance standard for the S U T .
The trigger of this pipeline can be every push or every commit w i th specific tag. The other
step is the extension of the Maestro-Reporter, where it can compare older data w i th newly
collected ones and report, how much they differ and where. This pipeline job then can alert
engineers, that some specific commit caused performance degradation and also show the
difference between actual collected data and estimate collected data.

This type of testing can also be applicable to a l l test cases wi th different S U T configu
ration. The Maestro would be able to compare expected data w i th collected data and tel l
us that this specific configuration has a performance degradation.

7.2 Data Reporting

The current reports, created by Maestro itself, contain charts, i n the png format generated
by the Java l ibrary for creating b i tmap figures. Th is makes them less informative that
they could be wi th better data visual izat ion. Since Inspectors collect addi t ional data about
S U T , e.g. memory usage, it w i l l be helpful for engineers of S U T to see interactive charts
w i th collected data. W i t h this options, engineers can better analyze what is going on wi th
S U T during the test scenario.

67

A good example of interactive and vector charts l ibrary is Graf ana . Grafana can
produce awesome outputs from collected data e.g. from the database. Another example is
Project Jupyter2, which can plot interactive charts from database source data on the fly.
One only needs installed P y t h o n on the node. Jupyter starts a P y t h o n server on the node
and makes plotted data available v i a the H T T P browser. Maestro can implement such
strategy, as a new peer s imilar to the data server code, which is running on a l l Maestro
peer nodes. The difference is, that this report server w i l l be started by Maestro-Reporter
on the execution node.

7.3 Collected Data Compression

Each Maestro peer collects different data during the test. Size of these data is based on peer
type, collected data format and test durat ion. For example the Maestro-Receiver collects
huge amount of t ime for throughput and latency chart. These data are represented as a
double-column csv file w i t h columns eto(estimated t ime of arrival) and ato(actual t ime of
arrival). E a c h csv file looks like the following:

eta;ata
"2017-10-19 13:19:32.661300","2017-10-19 13:19:32.706649"
"2017-10-19 13:19:32.661500","2017-10-19 13:19:32.706823"

Imagine, that this record is wri t ten for each send/received message on sender or receiver.
For example we can have 50,000 records wi th prefix „2017-10-19 13:19:32" which rep
resents a huge redundancy. The idea of compression is to save only first t imestamp and
then compute difference between saved t imestamp and current t imestamp and write this
difference into csv file. Th is way would be able to save at least 15 B per t imestamp, which
saves more than one half of current size. The only necessary th ing is to write a new times
tamp after some time, when difference is too big. The new csv file would then look like the
following:

eta;ata
1525285541559,+18787
+30,+40
+35,+42

7.4 Mult i-point Senders and Receiver

Behavioral testing introduces an idea of mult ipoint senders and receivers. Lets say, that we
want to collect behavioral data about Qpid-Dispa tch w i t h two queues, where the first queue
accepts messages from two senders and the second queue accepts messages from five senders.
Th is s i tuat ion better simulates the real network traffic than the current mechanism. To
achieve this, the Maestro needs to extend Maestro-Worker w i th option for mult iple endpoint
connections dynamically. The current version offers only one specific connection specified
by the user.

1 G r a f a n a — o p e n source software for t i m e series a n a l y t i c s https://grafana.com/
2 J u p y t e r — h t t p://jupyter.org/

68

https://grafana.com/
http://jupyter.org/

7.5 Maestro-Agent Executor Improvements

The Maestro-Agent is able to download external git repositories and tries to process them
during the test. However, the external code handler is currently designed only for code
wri t ten i n Groovy. This l imi ta t ion can be easily removed by creating more general executor,
which would be able to execute any type of scripts. One idea how to achieve this is to create
more complex executor in Kotlin languange 3 . The new executor should be able to run each
type of downloaded script and keep the access to the return code and standard output. This
extension would remove the l imi ta t ion to use, which has to specify each external action
handler i n the Groovy language. Note, that new executor should not affect performance
testing during the execution, so the operations should remain atomic.

7.6 Mul t ip le Agents and Inspectors

Version of Maestro 1.3.0 has already integrated Maestro Agent and A M Q P Inspector. How
ever, the front-end A P I does not allows setting for mult iple Agents or Inspectors during
one test scenario. Hence, only one Agent and one Inspector can be specified by Groovy
test script. The solution for this problem must involve dynamic scan of specific environ
ment variables which w i l l contains setting for the Maestro components. The settings can
be loaded into the array of Agent/Inspector setting and then can be assigned to a specific
component by the node U R L .

3 K o t l i n — https: //kotlinlang.org/

69

8 Conclusion

In this work we described the fundamentals of the performance testing, common perfor
mance metrics and bugs, and selected related tools. Further, we introduced the architecture
and functionality of Messaging Performance Tool (M P T) called Maestro. The main part of
this work focused on the proposal and implementat ion of extensions for Maestro, i n partic
ular new components: Maestro Agent and A M Q P Inspector. The implementat ion of these
components was necessary to enable proper performance testing of Qpid-Dispa tch router.
Moreover, we designed and implemented the Topology Generator tool , which is going to be
used for semi-automatic topology configuration generation, which w i l l significantly simplify
the testing phase.

The design was changed mult iple times during this work to match w i t h the needs of
the performance testing of Qpid-Dispa tch but also of the Maestro itself. For example the
Maestro Agent was in i t ia l ly designed as a component which would control the router, but
after some discussions and ongoing implementat ion we instead decided to create Maestro
Agent as an independent code handler on the S U T node. This allows not only router control,
but also control of any other software on the node easily by external Groovy scripts available
i n any public git repository.

Furthermore A M Q P Inspector was added to the design after the Agent has been de
veloped when we realized that it is more efficient to create a new component for router
inspection. It is possible to use Maestro Agent and parse the string output of external tool
which can inspect the router, but it is not comfortable to send the long output through the
Maestro Broker and then parse i t . The result was the A M Q P Inspector as a new compo
nent, which only needs path to the router and then is able to collect and parse data about
the S U T .

A l l implemented extensions were experimentally evaluated on series of basic and be
havioral test cases. We performed the collection of performance data of several topologies
generated by Topology Generator. W h i l e we decided to pick smal l topologies they s t i l l can
offer interesting results about the performance of Qpid-Dispa tch and we compared these re
sults w i th Apache A c t i v e M Q Ar temis component. The experimental evaluation has shown
some interesting data and has discovered several performance degradations.

The code of the work is published as an open-source repository and is available on
G i t H u b . A l l developed extensions were already merged into the upstream version of Maestro
and w i l l be available since the version 1.3.0, which is already used for performance testing
of M O M by R e d Hat company. The prel iminary results of this work were published and
presented in the paper for ExcelCDFIT 1 conference.

1 E x c e l @ F I T — I T conference for s t u d e n t s a n d t h e i r s w o r k http://excel.fit.vutbr.cz/

70

http://excel.fit.vutbr.cz/

Bibliography

[1] Docker. Online, [visited 2018-03-11].
Retrieved from: https://docs.docker.com/engine/docker-overview/

[2] ISTQB Foundation Level and Agile Tester Certification guide. Online, [visited
2017-11-29].
Retrieved from: http://istqbexamcertification.com/

[3] Network Automation with Ansible. Online, [visited 2018-03-11].
Retrieved from: https://www.ansible.com/overview/networking

[4] Regression Testing. Online, [visited 2017-11-15].
Retrieved from:
http: //sof twaretestingfundamentals.com/regression-testing/

[5] Software Testing Dictionary. Online, [visited 2017-11-15].
Retrieved from: https: //www.tutorialspoint.com/software_testing_dictionary

[6] Anukool Lakhina, C. D., Mark Crovella: Diagnosing Network-Wide Traffic
Anomalies. Online, [visited 2017-11-13].
Retrieved from: http: //www.cs.bu.edu/fac/crovella/paper-archive/sigc04-
network-wide-anomalies.pdf

[7] Bhatt, N.: Performance Testing - Response vs. Latency vs. Throughput vs. Load vs.
Scalability vs. Stress vs. Robustness. Online, [visited 2017-11-05].
Retrieved from: https: //nirajrules.wordpress.com/2009/09/ 17/measuring-
performance-response-vs-latency-vs-throughput-vs-load-vs-scalability-
vs-stress-vs-robustness/

[8] Broadwell, P. M.: Response Time as a Performability Metric for Online Services.
Online, [visited 2017-11-19].
Retrieved from: http: //roc.cs.berkeley.edu/papers/csd-04- 1324.pdf

[9] Buch, D.: 4 types of load testing and when each should be used. Online, [visited
2017-11-05].
Retrieved from: https: //www.radview.com/blog/4-types-of-load-testing-and-
when-each-should-be-used

[10] Corporation, S. P. E.: SpecJMS. Online, [visited 2018-01-03].
Retrieved from: https://www.spec.org/jms2007/

[11] Curry, E.: Message-Oriented Middleware. Online, [visited 2017-12-21].
Retrieved from: http: //citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.418.173&rep=repl&type=pdf

71

https://docs.docker.com/engine/docker-overview/
http://istqbexamcertification.com/
https://www.ansible.com/overview/networking
http://twaretestingfundamentals.com/regression-testing/
http://www.tutorialspoint.com/software_testing_dictionary
http://www.cs.bu.edu/fac/
http://wordpress.com/2009/
http://cs.berkeley.edu/papers/
http://www.radview.com/blog/4-types-of-load-testing-and-
https://www.spec.org/jms2007/
http://citeseerx.ist.psu.edu/

[12] D i n , G . : A Performance Test Design Method and its Implementation Patterns for
Multi-Services Systems. P h D . Thesis. Technical Universi ty of Ber l in . Ber l in ,
Germany. 2008.

[13] Fulay, A . : Containers Deep Dive - L X C vs Docker. Online, [visited 2018-05-16].
Retrieved from: https:
//robinsyst ems.com/blog/containers-deep-dive-lxc-vs-docker-comparison

[14] Gao , J.; R a v i , C . S.; Raquel , E . : Measuring Component-Based Systems Using a
Systematic Approach and Environment . Online, [visited 2017-10-26].
Retrieved from: https:
/ / subs.emis.de/LNI/Proceedings/Proceedings58/GI.Proceedings.58-6.pdf

[15] K o p p , M . : W h y Averages Suck and Percentiles are Great . Onl ine, [visited 2017-11-20].
Retrieved from: https:
//www.dynatrace.com/blog/why-averages-suck-and-percentiles-are-great/

[16] Manzor , S.: App l i ca t i on Performance Testing Basics. Onl ine, [visited 2017-10-26].
Retrieved from: http: //www.agileload.com/docs/default-document-library/
a p p l i c a t i o n - p e r f o r m a n c e-testing-basics-agileload.pdf

[17] M a r k o A h o , C . V.: Computer System Performance Analys is and Benchmarking.
Onl ine, [visited 2017-11-15].
Retrieved from:
http: //www.cs.inf .ethz.cn/37-235/studentprojects/vinckier_aho.pdf

[18] M a r t i n a , K . : Unified Reporting for Performance Testing. Master 's Thesis. Brno
Univers i ty of Technology, Facul ty of Information Technology. Brno . 2017.

[19] Molyneaux, I.: The Art of Application Performance Testing: Help for Programmers
and Quality Assurance. O ' R e i l l y Med ia , Inc.. first edition. 2009. I S B N 0596520662,
9780596520663.

[20] O A S I S : Advanced Message Queuing Protocol (AMQP) Version 1.0. 2012.

[21] Piske, O . R . : Messaging Performance Tool . [Online; visi ted 2017-10-15].
Retrieved from: http : / / o r p i s k e . g i t h u b . i o/msg - p e r f-tool

[22] R e d Hat , Inc.. Raleigh, N o r t h Carol ina , U .S . : Red Hat JBoss AMQ 7.0 Using AMQ
Broker. 2017. available at
https: / / access.redhat.com/documentation/en-us/red_hat_ jboss_amq/7.0/pdf /
using_amq_broker/Red_Hat _JBoss_AMQ-7.0-Using_AMQ_Broker-en-US.pdf.

[23] R e d Hat , Inc.. Raleigh, N o r t h Carol ina , U .S . : Red Hat JBoss AMQ 7.0 Using AMQ
Interconnect. 2017. available at https://access.redhat.com/documentation/en-
us/red_hat_jboss_amq/7.0/pdf/using_amq_inter connect/Red_Hat_ JBoss_AMQ-
7.0-Using_AMQ_Interconnect-en-US.pdf.

[24] Sharma, D . : W h y and How: Performance Test. Online, [visited 2017-10-26].
Retrieved from: http:
//www.qaiconf erences.org/tempQAAC/Why°/o20&yo20How-Perf ormance°/020Test.pdf

72

http://ems.com/blog/
http://subs.emis.de/LNI/Proceedings/Proceedings58/GI.Proceedings.58-6.pdf
http://www.dynatrace.com/blog/why-averages-suck-and-percentiles-are-great/
http://www.agileload.com/
http://www.cs.inf
http://ethz.cn/37-235/
http://orpiske.github.io/msg-perf-tool
http://access.redhat.com/
https://access.redhat.com/documentation/en-
http://www.qaiconf

List of Figures

2.1 The performance testing process wi th the four most important parts and
theirs ind iv idua l steps based on [24] 6

2.2 The graph shows amount of concurrent sessions depending on time. Dur ing
to network traffic moni tor ing we can see the traffic spike occurring after five
hours from test start 9

2.3 The response t ime of the system during the load testing depended on requests
per second 10

2.4 Stress testing diagram capturing dependency of response t ime on amount of
requests 12

2.5 Soak testing wi th memory usage dependent on t ime 13
2.6 L o a d phases of performance measurement process 15
2.7 Diagram capturing the difference between the latency and response t ime. . 16
2.8 Transactions response t ime wi th calculated average and median of response

time. The average represent inaccurate response time, which is higher than
real one 17

2.9 Transactions response t ime wi th calculated average and median of response
t ime 17

3.1 The architecture of the Maestro. The Maestro contains Maestro Clients as
a front-end; Maestro Broker as a message distributor; and sender, receiver
and inspectors as a backend. The arrows represent communications between
the Maestro components and wi th the S U T . The line value represents the
number of connections where default is 1 20

4.1 Example of Ans ib le architecture wi th several nodes. Inventory and P laybook
are passed to Ansible Management node, which executes the playbook on al l
node specified in the inventory 27

4.2 Docker architecture wi th a l l its components and commands. Docker can pu l l
or bu i ld specific image and then run it i n docker container 28

4.3 Topology generator takes input Y A M L configuration containing specification
of graph metadata and outputs sets of variables i n J S O N format 32

4.4 The scheme of configuration files deployment to the nodes The Ansib le script
takes input file w i t h variables generated by Topology Generator, fills the
configurations template and deploy them to corresponding nodes 33

4.6 A simple network wi th active router agent 34
4.5 The architecture of updated Maestro for testing of the Qpid-Dispa tch router.

The arrows represent communications between the Maestro components and
w i t h the S U T . The line value represents the number of connections where
default is 1. The C front-end is no longer need for this version 37

73

5.1 Communica t ion scheme inside the Maestro wi th the agent. Scheme shows
the agent git repository download and then handling the proper note defined
by the user. The Figure also shown the S U T communicat ion wi th the A M Q P
Inspector 46

5.2 The inner mechanism of Maestro Inspector during the receive start inspector
note. One can see the note exchange and choose of specific inspector class
based on the note's payload 47

5.3 The whole Inspector process including message creation, message sending,
collecting and parse 48

6.1 Examples of experimental topologies created for basic performance testing
and experiments w i th Maestro 50

6.2 Char t of the m a x i m u m throughput of router and broker during the single-
point test case. One can see the significant difference between those two
components 52

6.3 The to ta l allocated memory and memory-in-use by message router during
the test. The data was collected by the inspector every 5 seconds 52

6.4 The to ta l memory al locat ion for the message broker service. One can see
that the broker allocates more memory compared to message router i n the
Figure 6.3 53

6.5 Measured throughput of message router and message broker during the mul
t ipoint case study. One can see the performance degradation of message
router and improvements of message broker on that Figure 53

6.6 Message router's memory usage during the mult ipoint case study. Used
memory is higher than i n the single-point 54

6.7 Memory usage for Broker remains almost the same as in the single-point
case, but w i th less spikes 55

6.8 The comparison of a l l measured throughputs for different components and
topologies 56

6.9 Latency chart showing the difference between the router and the broker la
tency at 80 % of m a x i m u m rate 57

6.10 Latency chart showing the difference between the router and the broker la
tency at same load. Router 's latency is significantly better then in previous
case 57

6.11 Memory usage of message router is much stable when the router is not under
the m a x i m u m load. The spikes are caused by some unexpected events i n the
topology 58

6.12 The Broker 's memory usage has less spikes when the load is only about of
80 % of m a x i m u m 58

6.13 Latency comparison between topologies w i th only routers and wi th the middle-
broker. The router network is here significantly faster 59

6.14 Memory usage shows, that memory usage of the router is affected by the
throughput 60

6.15 Char t of memory al location on the Broker node 60
6.16 Examples of experimental topologies created for behavioral performance test

ing and experiments w i th Maestro 61
6.17 Maestro Agent demonstration against a simple topology wi th restart and

shutdown i n the th i rd minute of test 62

74

6.18 Latency diagram affected by the actions s imulat ing the connection issues. . 63
6.19 Throughput comparison between the test cases wi th different Agent execu

tions. The spike is caused by warm-up period of redundant router 64
6.20 Al loca ted memory for redundant router dur ing the restart. One can see that

router allocated new memory when the master router crashed and the slave
had to handle the load. Th is memory is allocated un t i l the tear down. . . . 64

6.21 Latency diagram of redundant router topology where the Agent perform
different actions. The latency remains the same for a l l the test cases which
points to a good routing between the routers 65

6.22 Char t captures unsettled messages on the redundant router node. The slave
router handled load for two seconds 65

E . l Examples of experimental topologies created for basic performance testing
and experiments w i th Maestro 90

E.2 Examples of experimental topologies created for basic performance testing
and experiments w i th Maestro 91

E .3 Collected data about the memory al location for the redundant router node
during the Agent actions execution 91

E.4 Collected data about the unsettled messages for the redundant router node
during the Agent actions execution 92

E.5 Collected data about the delivered messages for the redundant router node
during the Agent actions execution 92

75

List of Tables

3.1 The summary of Maestro metrics summary collected during test cases. . . . 23

6.1 Machines and their properties, which were used for the experimental evaluation. 49
6.2 Test case settings for throughput measurements 51
6.3 Table wi th collected data w i th highlighted performance improvements and

degradations 55
6.4 Test case settings for latency measurements 56
6.5 The summary table w i th collected latency data w i th highlighted performance

improvements and degradations 61
6.6 Table wi th summary of lost messages during the specific actions on the mid

dle router node 63
6.7 Table wi th summary of lost messages during the specific action was per

formed on the middle router node without redundant path 66

76

List of Abbreviations

A M Q P Advanced Message Queuing Pro toco l

A P I Appl ica t ion Program Interface

A T A A c t u a l T ime of A r r i v a l

C I Centra l Intelligence

C P U Centra l Processing U n i t

C R U D Create Read Update Delete

C S V Comma-separated Values

E T A Est imated T i m e of A r r i v a l

H D R High-Dynamic-Range

H T T P Hyper Text Transfer Pro toco l

H W Hardware

I B M International Business Machines

I D E Integrated Development Environment

IP Internet Pro toco l

IS-IS Intermediate System to Intermediate System

ISO International Organizat ion for Standardizat ion

OSI Open Systems Interconnection model

IS Information System

J M S Java Message Service

J M X Java Management Extensions

J S O N JavaScript Object Nota t ion

J V M Java V i r t u a l Machine

K P I K e y Performance Indicators

M O M Message-Oriented Middleware

M P T Messaging Performance Tool

77

M Q T T Message Queuing Telemetry Transport

M Q Message Queue

O S P F Open Shortest P a t h Fi rs t

P C Professional Computer

P N G Portable Network Graphics

Q E Qual i ty Engineering

R A M R a n d o m Access Memory

R E S T Representational State Transfer

R T T R o u n d Tr ip T ime

S A S L Simple Authent ica t ion and Security Layer

S S H Secure Shell

S S L / T L S Secure Sockets Layer /Transpor t Layer Security

S T O M P Streaming Text Oriented Messaging Pro toco l

S U T System Under Test

U R L Uniform Resource Locator

W 3 C W o r l d W i d e Web Consor t ium

X M L Extensible M a r k u p Language

Y A M L Yet Another M a r k u p Language

78

List of Appendices

A C D Content 80

B T h e Maestro Protocol 81

C Topology Generator 85

D A M Q P Inspector D a t a Sets 88

E Experimental Evaluat ion Addi t ional D a t a 90

79

C D Content

/maestro-Java/* — source code of Maestro from date M a y 22, 2018

/ iqa-topology-generator/* — source code of Topology Generator from date M a y
22, 2018

/ d o c / * — Maestro documentation

/readme.txt — readme wi th useful informations about Maestro bu i ld and start

/ t ex t /* — source code of this thesis from date M a y 22, 2018

/xstejs24-performance.pdf — final version of this thesis from date M a y 22, 2018

80

B The Maestro Protocol

The following commands were updated according the Maestro 1.3.0 version :

Requests Notes

M A E S T R O _ N O T E _ S T A R T _ R E C E I V E R — note to the receiver, that it should
start receiving data.

• Value: 0

• Pay load: None

• Response: the peers respond to this note by sending a M A E S T R O _ N O T E _ O K
or M A E S T R O _ N O T E I N T E R N A L E R R O R

M A E S T R O _ N O T E _ S T O P _ R E C E I V E R — note to the receiver, that it should stop
receiving data.

• Value: 1

• Pay load: None

• Response: the peers respond to this note by sending a M A E S T R O _ N O T E _ O K
or M A E S T R O _ N O T E I N T E R N A L E R R O R

M A E S T R O _ N O T E _ S T A R T _ S E N D E R — note to the sender, that it should start
sending data.

• Value: 2

• Pay load: None

• Response: the peers respond to this note by sending a M A E S T R O _ N O T E _ O K
or M A E S T R O _ N O T E I N T E R N A L E R R O R

M A E S T R O _ N O T E _ S T O P _ S E N D E R — note to the sender, that it should stop
sending data.

• Value: 3

• Pay load: None

• Response: the peers respond to this note by sending a M A E S T R O _ N O T E _ O K
or M A E S T R O _ N O T E I N T E R N A L E R R O R

M A E S T R O _ N O T E _ S T A R T _ I N S P E C T O R — note to the inspector, that it should
start inspecting the S U T .

1Original commands description for M P T is available at https://github.com/orpiske/msg-perf-tool/
tree/master/doc/maestro/protocol

81

https://github.com/orpiske/msg-perf-tool/

• Value: 4
• Pay load: None

• Response: the peers respond to this note by sending a M A E S T R O _ N O T E _ O K
or M A E S T R O _ N O T E I N T E R N A L E R R O R

M A E S T R O _ N O T E _ S T O P _ I N S P E C T O R —note to the inspector, that it should
stop inspecting the S U T .

• Value: 5

• Pay load: None

• Response: the peers respond to this note by sending a M A E S T R O _ N O T E _ O K
or M A E S T R O _ N O T E I N T E R N A L E R R O R

M A E S T R O _ N O T E _ F L U S H — note to the any node to request it to flush test data
to disk.

• Value: 6

• Pay load: None

• Response: the peers respond to this note by sending a M A E S T R O _ N O T E _ O K
or M A E S T R O _ N O T E I N T E R N A L E R R O R

M A E S T R O _ N O T E _ S E T — note to the any node to set the testing properties.

• Value: 7

• Payload: the test parameters such as T E S T D U R A T I O N , P A R A L L E L C O U N T ,
M E S S A G E _ S I Z E , R A T E , etc.

• Response: the peers respond to this note by sending a M A E S T R O _ N O T E _ O K
or M A E S T R O _ N O T E I N T E R N A L E R R O R

M A E S T R O _ N O T E _ S T A T S — note to the any node to request the current perfor
mance statistics.

• Value: 8

• Payload: None

• Response: the peers respond to this note by sending a M A E S T R O _ N O T E _ O K
or M A E S T R O _ N O T E I N T E R N A L E R R O R

M A E S T R O _ N O T E _ H A L T — note to the any node to request them to stop and exit
cleanly.

• Value: 9

• Payload: None

• Response: the peers respond to this note by sending a M A E S T R O _ N O T E _ O K
or M A E S T R O _ N O T E I N T E R N A L E R R O R

M A E S T R O N O T E P I N G — note to the any node to verify which peers are alive in
the cluster.

• Value: 10

• Payload: seconds or microseconds.

82

• Response: the peers respond to this note by sending a M A E S T R O _ N O T E _ O K
or M A E S T R O _ N O T E I N T E R N A L E R R O R

M A E S T R O _ N O T E _ G E T — note to the peers to get informations about the test.

• Value: 17

• Pay load: None

• Response:

M A E S T R O _ N O T E _ S T A R T _ A G E N T — note to the agent, that it should start ex
ecuting external handlers.

• Value: 18

• Pay load: None

• Response: the peers respond to this note by sending a M A E S T R O _ N O T E _ O K
or M A E S T R O _ N O T E I N T E R N A L E R R O R

M A E S T R O _ N O T E _ S T O P _ A G E N T — note to the agent, that it should stop exe
cuting external handlers.

• Value: 19

• Pay load: None

• Response: the peers respond to this note by sending a M A E S T R O _ N O T E _ O K
or M A E S T R O _ N O T E I N T E R N A L E R R O R

M A E S T R O _ N O T E _ A G E N T _ S O U R C E — note to the agent, that it should down
load external source defined i n the pay load.

• Value: 21

• Payload: U R L for external git repository which the Agent w i l l download.

• Response: the peers respond to this note by sending a M A E S T R O _ N O T E _ O K

or M A E S T R O _ N O T E I N T E R N A L E R R O R

M A E S T R O _ N O T E _ U S E R _ C O M M A N D _ 1 — note to the agent, that it should
execute command specified in the payload. The command should be present i n ex
ternal git repository downloaded by M A E S T R O _ N O T E A G E N T S O U R C E .

• Value: 30

• Payload: C o m m a n d which w i l l be executed i n string format.

• Response: the peers respond to this note by sending a M A E S T R O _ N O T E _ O K
or M A E S T R O _ N O T E I N T E R N A L E R R O R

Response Notes

M A E S T R O _ N O T E _ S T A T S — is sent by a node as a response to a M A E S T R O _ N O T E _ S T A T S
request.

• Value: 8

• Payload: yes

83

M A E S T R O _ N O T E _ P I N G — is sent by the peers as a response to a M A E S T R O _ N O T E _ P I N G
request.

• Value: 10

• Pay load: yes

M A E S T R O N O T E O K — is a generic response when the node complies w i th a re
quest.

• Value: 11

• Pay load: None

M A E S T R O _ N O T E _ P R O T O C O L _ E R R O R — is issued by any node whenever the
protocol is malformed.

• Value: 12

• Pay load: None

M A E S T R O _ N O T E _ I N T E R N A L _ E R R O R — is issued by any node when it is un
able to comply wi th a request.

• Value: 13

• Pay load: None

M A E S T R O _ N O T E _ A B N O R M A L _ D I S C O N N E C T — is issued by any node as a
last-wil l message.

• Value: 14

• Pay load: None

Notify Notes

M A E S T R O _ N O T E _ N O T I F Y

• Value: 15

• Pay load: yes

M A E S T R O _ N O T E _ N O T I F Y
completed successfully.

• Value: 16

• Pay load: yes

F A I L — is issued by any node when the test failed.

S U C C E S S — is issued by any node when the test

81

C Topology Generator

Inventory

The following is an example of Inventory file used as an input for Topology Generator and
Ansible deployment scripts. The inventory lists a l l the nodes and their role i n the topology.

[clients]
sender ansible_host=10.0.0.1
receiver ansible_host=10.0.0.2

[routers]
router1 ansible_host=10.0.0.3
router2 ansible_host=10.0.0.4

[brokers]
broker1 ansible_host=10.0.0.5

[nodes:children]
brokers
clients
routers

Graph Metadata

The example of graph metadata file for Topology Generator is as follows. For this case Gen
erator w i l l generate graph wi th two routers and three brokers, where routers are connected
together and each broker is connected to one router.

directed: false
graph: {>
nodes:
- type: router %node type

id : router1 %node name
- type: router

id : router2
- type: broker

id : broker1
- type: broker

85

i d : broker2
links:
- source: router2 '/.source node for link

target: routerl %target node for link
- source: router2

target: broker2
- source: routerl

target: brokerl
multigraph: false

Topology Generator Output

The example of Topology Generator output i n Y A M L format. This output is for two
directly connected routers.

confs:
- machine: routerl

router:
- i d : routerl
mode: standalone

list e n e r :
- host: 0.0.0.0

role: inter-router
port: 6000

- host: 0.0.0.0
authenticatePeer: 'no'
role: normal
port: 5000
saslMechanisms: ANONYMOUS

connector:
- host: router2

role: inter-router
port: 6001

address:
- prefix: closest

d i s t r i b u t i o n : closest
- prefix: multicast

di s t r i b u t i o n : multicast
- prefix: unicast

di s t r i b u t i o n : closest
- machine: router2

router:
- i d : router2
mode: standalone

list e n e r :
- host: 0.0.0.0

role: inter-router

86

port: 6001
- host: 0.0.0.0

authenticatePeer: 'no'
role: normal
port: 5001
saslMechanisms: ANONYMOUS

connector:
- host: routerl

role: inter-router
port: 6000

address:
- prefix: closest

d i s t r i b u t i o n : closest
- prefix: multicast

di s t r i b u t i o n : multicast
- prefix: unicast

di s t r i b u t i o n : closest

Qpid-Dispatch Configuration File Template

The template for configuration files for current version of Qpid-Dispatch is generated
by qdrouter-jinja2 tool which is open-source and available at https: / /g i thub.com/rh-
messaging-qe/qdrouter-j inja2.

Since the template is file with approximately 600 lines, the model template for Qpid-
Dispatch version 1.0.0 is available at https:/ /github.com/rh-messaging-qe/ansible-
qpid-dispatch/blob/master/test / f i les / templates/qdrouterd-roland.conf . j2.

Topology Generator Source Code

The complete source code of Topology Generator is available at:

• https: / /github.com/rh-messaging-qe/iqa- topology-generator

• https: / /pypi.org/project/msg-topgen/#description

87

https://github.com/rh-
https://github.com/rh-messaging-qe/ansible-

D A M Q P Inspector Data Sets

The following represents headers for data files w i t h A M Q P Inspector collected data. The
data file structure depends on the A M Q P Inspector request.

General Info

• T imestamp — timestamp when the data was collected.

• Name — name of the router.

• Version — version of the router.

• L inkRoutes — number of active l ink routes.

• A u t o L i n k s — number of active auto links.

• Links — number of active links.

• Nodes — number of active neighbour nodes.

• Addresses — number of active addresses.

• Connections — number of active connections.

Memory Info

• T imestamp — timestamp when the data was collected.

• Name — name of the memory space.

• Size — type size.

• Batch — transfer batch size.

• Thread-max — m a x i m u m allocated for thread.

• Total — total ly allocated memory.

• In-threads — memory held by threads.

• Rebal- in — batches rebalanced to threads.

• Rebal-out — batches rebalanced to global.

• totalFreeToHeap — tota l free to heap.

• g lobalFreeListMax — global free list max.

88

RouteLink Info

• T imestamp — timestamp when the data was collected.

• Name — name of the route l ink.

• L i n k D i r — intput l ink or output l ink.

• OperStatus — current status.

• Identity — identification.

• Delivery Count — number of delivered messages.

• Undel iveredCount — number of undelivered messages.

• Presett ledCount — number of presettled messages.

• Unsett ledCount — number of unsettled messages.

• ReleasedCount — number of released messages.

• Modif iedCount — number of modified messages.

• AcceptedCount — number of accepted messages.

• RejectedCount — number of rejected messages.

• Capaci ty — route l ink capacity.

89

E Experimental Evaluation
Additional Data

Throughput

The Qpid-Dispa tch need some time to evaluate the messages and send them to the receiver.
In the Figure E . l a we can see the histogram of unsettled messages during the singlepoint
throughput test. Th is charts shows the number off received messages, which are not yet
evaluated. Note, that throughput is around 90,000 messages per second.

The flow-control mechanism mentioned i n the Subsection 6.1.1 also affected the unset
t led message count, which is mult iple times higher than i n the previous test case depicted
i n the Figure E . l a . The unsettled message count is depicted i n the Figure E . l b .

Unsettled Messages Unsettled Messages

(a) Single router node. (b) Line topology node.

Figure E . l : Examples of experimental topologies created for basic performance testing and
experiments w i th Maestro.

Latency

Unsett led messages for the router available in the Figure E.2a . F r o m the Inspector outputs
one can see, that the Broker handled 10,000,000 messages in more than 7 minutes, but the
router handled the same amount of messages much faster approximately i n 2 minutes and
20 seconds.

Since the router applies the flow control dur ing this measurement and the rate is setup
to 80 % of max imum, the unsettled message count is here much lower than i n the other
cases as it is depicted in the Figure E.2b.

90

Unsettled Messages Unsettled Messages

l-isctt cd vicssagcs I

111"1

I.N.I I.M.I

I
DU 40 01 00 (11 20

Relative Time [min]

(a) Single router node.

llSCll/C 3 Messages

01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00

(b) Line topology node.

Figure E .2 : Examples of experimental topologies created for basic performance testing and
experiments w i th Maestro.

Measurement W i t h Redundant Router

i,:,(lll(l

58500

52000

— 45500

c mmu
t dolili

I 2000(1
= 19500

13000

(,.•,1.11.1

Li
(1(1:11(1 (KKSd (11:11(1 (ll::i(l (12:11(1 Il2.:íll ll:í.llll ll:í.:íll II 1:11(1 (ll::S(l (IÖ:(I(I (HKMJ 0(i:0(l OKil

Relative Time [min]

(a) Restart

(, . , (1 (1 (1

58500

52000

— 45500

c mmu
t :!2ö(i(i

I 2000(1
= 19500

13000

(, . - , (111

li

Total Allocated
Held By 1 breads 1 1

/
f .

-, L w - * * X * * * » i • - i

00:00 00:30 (l]:(l(l 01:30 02:00 (12:30 03:00 03:30 0 1:00 0 1:30 01:00 01:30 00:00 00:30
Relative Time |ml„l

(c) 60 seconds shutdown

(, . , (1 (1 (1
lUa. A stated

Med i!> n r c idi 1—

.
t

i i i
J

1 ., . .
I

. - ,, h . - ,,

00:00 00:30 01:00 01:30 02:00 02: SO (0:1)1) (K.KSD 04:00 04::.!0 (15:00 05:30 06:00
Relative Time [mm]

(b) 10 seconds shutdown
M e m o r y

(, . - , Total Allocated
Held By Hire

32500

19500
I

i . J . J ^ J
6500

00:00 00:30 01:00 01:30 02:00 02.30 03.00 03.30 0 1:00 0 1:30 01:00 01:30 00:00 00:30

(d) 120 seconds shutdown

Figure E .3 : Collected data about the memory al locat ion for the redundant router node
during the Agent actions execution.

91

Unsettled Messages Unsettled Messages

02:58 02:59 03:00 03:01 03:02 03:03 03:04

Relative Time (rainutes|

(a) R e s t a r t

03:30

Relative Time [min]

(c) 60 seconds s h u t d o w n

03:05 03:06 03:07 03:0!

Unsettled Messages

Unseti ed Messages

1 . J L . .JL.
04:30 02:30

Relative Time [mm]

(b) 10 seconds s h u t d o w n

Unsettled Messages

03:00 03:30 04:00 04:30 05:00 05:30 06:00

Relative Time |rain|

(d) 120 seconds s h u t d o w n

Figure E.4: Collected data about the unsettled messages for the redundant router node
during the Agent actions execution.

Delivered Messages Delivered Message?

4:00 04:30 05:00

Relative Time \mm]

(a) R e s t a r t

Delivered Messages

(b) 10 seconds s h u t d o w n

Delivered Messages

'2:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30

Relative Time |rain|

(c) 60 seconds s h u t d o w n

30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30

Relative Time |mm]

(d) 120 seconds s h u t d o w n

Figure E .5 : Collected data about the delivered messages for the redundant router node
during the Agent actions execution.

92

