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Abstract
Proteins are building blocks of every living organism, as they are responsible for multiple
crucial functions. They consist of amino acids chains and these chains can be changed.
The change is called mutation. Mutation can happen naturally, or created in laboratory.
The aim of this thesis is to present novel methology for determining protein’s stability upon
mutations. It consists of two models. The first model is multi-agent system which handles
classification into two classes, i.e, stabilizing and destabilizing. The best model gained
0.7 ACC and 0.41 MCC. The second part dealt with predicting exact values of ΔΔG where
an Extreme Gradient Boosting model was created which managed to gain 1.67 RMSE with
0.53 PCC. New datasets for training and validation, which are truly independent, were also
introduced in this thesis.

Abstrakt
Proteiny jsou základním stavebním blokem všech žijících organismů, kde jsou zodpovědné
za mnoho důležitých procesů. Jsou složeny z řetězců aminokyselin. Tyto řetězce mohou
být jakkoliv změněné. Tomuto procesu se říká mutace a může být samovolná nebo in-
dukovaná v laboratoři. Cílem této práce bylo vytvoření nových modelů pro určení stability
proteinů. Skládá se ze dvou modelů. První model je multi-agentní systém pro klasifikaci
stability proteinů. Nejlepší multi-agentní systém získal přesnost 0.7 a 0.41 MCC. Druhá
část se zabývala predikcí konkrétních hodnot ΔΔG, kde byl vytvořený Extreme Gradient
Boosting model, který získal 1.67 RMSE a 0.53 PCC. Součástí této práce byly představené
2 datasety, které jsou na sobě plně nezávislé, použitelné pro trénování a validaci modelů.
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Rozšířený abstrakt
Proteiny jsou základní stavební a funkční jednotkou všech buněk živých organismů. V or-
ganismech plní mnoho různých funkcí například replikaci DNA, transport molekul, regu-
laci hormonů a katalýzu reakcí. Skládají se z řetězců aminokyselin spojených peptidovou
vazbou.

V průběhu buněčného dělení a genové exprese, která zahrnuje procesy replikace DNA,
transkripci a translaci, může docházet k chybám, a tedy k vzniku mutací. K těmto procesům
dochází spontánně nebo mohou být indukované uměle. Mutace společně s rekombinací a
genetickým driftem mají velký dopad na evoluci.

Mutace mohou narušit nebo zvýšit stabilitu proteinu. Stabilní proteiny jsou odolnější
vůči extrémním podmínkám a jsou lépe využitelné v biotechnologiích a průmyslu. Stabilita
lze počítat dvěma způsoby. První je změření rozdílu teploty tání mezi zmutovaným a
původním proteinem. Větší teplota tání znamená větší stabilitu. Druhý způsob je pomocí
Gibbsovy volné energie (ΔΔG).

Navrhovaná metoda se dá rozdělit do dvou částí. V první části byl vytvořen multi-
agentní systém, který řeší, jestli je mutace stabilizovací či destabilizovací. Tento model se
skládá z Náhodných stromů a metod podpůrných vektorů. Každý tento model je natréno-
vaný na konkrétní části datasetu. V druhé části byl vytvořen model, který má předpovědět
konkrétní hodnotu ΔΔG.

Pro trénování a validaci těchto modelů byly vytvořené trénovací a validační datasety.
Trénovací dataset vznikl extrakcí dat z ProThermDB a jeho rozšíření z Loschmidt labora-
toří. Nejdříve se muselo ověřit, že data získaná exportem jsou správná. Jako první došlo
k ověření ID z Uniprotu a PDB databází, které tento dataset obsahují. To bylo provedeno
pomocí vytvoření řetězce aminokyselin z obou zdrojů a jejich porovnáním. Následně došlo
k ujištění, že mutace sedí na řetězec získaný z PDB databáze. Následně došlo k rozšíření
dat o index hydrofobicity a objemu. Tato data byla získaná z AAIndex. Pro zjištění, zda je
mutace stabilizující nebo ne, jsme se zaměřili na sloupečky pro ΔΔG a ΔTm, kde pozitivní
ΔTm znamená stabilizující mutaci. V trénovacím datasetu, byly záporné hodnoty ΔΔG
stabilizující, u validačního to bylo obráceně.

Validační dataset vznikl z jiného zdroje a bylo u něho potřeba zajistit, že je určitě
nezávislý na trénovacím datasetu. To bylo dosaženo odstraněním všech mutací, které jsou
obsažené v trénovacím datasetu. Tj. všechny mutace co obsahují pro stejný protein záměnu
na konkrétní pozici jedné aminokyseliny za druhou. Tímto bylo dosaženo, že jsou datasety
nezávislé a mohou být využity pro validaci.

Pro ohodnocení datasetů byly pro klasifikaci primárně měřeny tři hodnoty. První je
přesnost, druhá je Matthewsův korelační koeficient (MCC) a poslední je Oblast pod tréno-
vací křivkou křivkou. Nejdůležitější je MCC, jelikož je lépe použitelný na nevyvážené
datasety. Pro hodnocení regrese se používá Pearsonův korelační koeficient a základ střední
kvadratické chyby (RMSE).

Pro klasifikaci byl nejdříve použit jednoduchý model, pro ověření funkčnosti datasetů a
schopnosti modelu se na daném datasetu natrénoval. První trénováníí Náhodného stromu
ukázalo -0.10 MCC s přesností 0.48. Takové MCC znamená, že neexistuje žádná korelace
mezi trénovacími daty. Aktuálně dataset obsahuje jak ΔΔG tak ΔTm mutace. Následně
došlo k rozdělení datasetu na dataset obsahující pouze ΔΔG a ΔTm. Dataset obsahující
jenom ΔTm znovu natrénoval model s -0.08 MCC a přesností 0.56. Toto značí, že problémy
v datech jsou v této části. Když byly použité pouze ΔΔG, došlo k výpočtu 0.35 MCC a
přesnost kolem 0.70. Toto jsou dobrá data a můžeme začít trénovat multiagentní systém.



K získání nejlepší kombinace multiagentního systému došlo experimentálně, kde jsme
postupně upravovali, jaký model bude použitý na jaký dataset, váhy jednotlivých tříd a váhy
výsledných modelů. Nejlepší model, který byl schopný predikovat 2 třídy dosáhl přesnosti
0.7 a 0.4 MCC. Následně došlo k trénování tří tříd, kde byla vytvořena neutrální třída, která
vznikla z intervalu -1 až 1 kcal/mol a poté -0.5 až 0.5kcal/mol, jelikož 0.5 kcal/mol bývá
chyba metod, které se používají pro měření. S touto změnou měl model nejlepší přesnost a
to 0.69 a 0.41 MCC.

Pro trénovaní regrese došlo ke spojení jak trénovací tak validačního datasetu obsahu-
jícího pouze ΔΔG hodnoty. Toto spojení bylo kvůli zajištění větší obecnosti modelu, jelikož
po filtraci tyto datasety obsahují rozdílné rodiny proteinů, kde se konkrétní hodnoty mohou
chovat odlišně. Následně byl tento dataset náhodně rozdělený na trénovací a validační část.
Různé modely byly použity pro natrénování. Nejlepších výsledků dosáhl Extreme Gradient
Boosting model s 1.67 RMSE a 0.53 PCC.

Tyto hodnoty jsou na úrovni aktuálně nejmodernějších technik. Největší problém u
porovnávání rozdílných metod je nedostatek a nevyváženost dat. V ideálním případě, by
se měly všechny metody porovnávat na jediném datasetu, který je úplně nezávislý od všech
dat, které byly použité pro trénování všech modelů. Jelikož toto není zatím možné, tak
může docházet k přetrénovanosti a přeceňování přesnosti jednotlivých modelů.

Tato práce by se následně mohla rozšířit o vytvoření jednoduché webové aplikace, ve
které by mohly běžet oba nejlépe natrénované modely pro širší použití veřejnosti a pro další
ověření funkčnosti.
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Chapter 1

Introduction

Proteins are the main building blocks of every living organism, and they perform many
different functions such as DNA replication, transporting molecules between parts of liv-
ing structures, cell signalling and others. They consist of one or more chains of amino
acids connected by peptide bonds. Sequence of amino acids and protein spacial structure
determines protein function.

The main aim of this thesis is protein stability and the development of the computational
system that would be able to predict, whether mutation is stabilizing or not. Stable proteins
are able to survive in extreme temperatures, different pH, etc. As proteins are crucial for
every living creature, many different methods were introduced to handle protein stability.
As mutations can be done in laboratory, in ideal case, all possible mutations would be
tested. However, such an approach would be laborious and time demanding. Because of
that, there is higher demand for precise computational methods.

In this thesis, a new machine learning method for protein stability is introduced. This
method can be divided into two parts. The first part is classification, where the main
idea is to use multi-agent system, combining Random Forest and support vector machines
classifiers. Each model is trained on a different subset of the training dataset, which was
also constructed in this thesis. For regression, different models were tested to find the best
performing model on our dataset.

To validate the performance of the classification model, a truly independent validation
dataset is presented. As these datasets contain different protein families, for regression
purposes, they will be combined into one and then randomly split for training and validation.
This was done to create a more robust model, that can better perform on different protein
families, as the exact behaviour can differ for each protein family.

1.1 Organization of the Thesis
The Thesis is organized as follows. In Chapter 2, general introduction to proteins is de-
scribed with some additional details about proteins mutation. In Chapter 3, protein sta-
bility is described in more detail with protein folding and the explanation, how protein
stability is calculated. Chapter 4 deals with stability prediction and how methods can
be divided into different groups. Chapter 5 provides a general introduction to machine
learning, with more detailed focus on classification and regression methods. The process of
the construction of the training and validation dataset is described in the Chapter 6. The
design of the experiments with some implementation details and initial experiments using

5



simple Random Forest are described in Chapter 7. The results of presented experiments
and comparison with the state-of-the-art methods can be found in Chapter 8.

6



Chapter 2

Proteins

Proteins are one of the most versatile molecules in living organisms. They preform various
functions such as creation of mechanical structure, transport substances in the blood or
lymph throughout the body, DNA replication, catalysis of regulatory or metabolic reactions,
immune response, proteins storage and many others. Proteins are polypeptides that contain
from thirty to several thousand amino acids. The sequence of amino acids and protein
spacial structure determines protein’s function. For this reason, amino acids alternation is
the driving force for evolution at molecular level.

2.1 Amino acids
The amino acids are the fundamental building block of proteins. Amino acids contain a
central carbon atom, which is attached to hydrogen, carboxyl group (COOH) and amino
group (𝑁𝐻2). This is shown in Figure 2.1. Generally, there are more than 500 amino acids,
however, only 20 amino acids are biogenic for organism (21𝑡ℎ is selenocystein). They differ
in side chains (R) which determine chemical properties of amino acids and proteins. One
molecule of protein consists of chained amino acids connected using peptide bonds between
carboxyl group of one amino acid with the amino group of the other. The chain is ended
on one side with carboxyl group and amino group on the other. Based on their properties
and structures, amino acids are divided into six groups [53].

1. Aliphatic side-chains Glycine (Gly), Alanine (Ala), Valine (Val), Leucine (Leu),
Isoleucine(Ile)

2. Acidic groups with a carboxyl or amine group on the side chain Asparagine
(Asn), Aspartate (Asp), Glutamine (Gln), Glutamate (Glu)

3. Basic groups with amine group on the side chain Arginine (Arg), Lysine (Lys)

4. With aromatic nucleus or hydroxyl group on the side chain Histidine (His),
Phenylalanine (Phe), Serine (Ser), Threonine (Thr), Tyrosine (Tyr), Tryptophan
(Trp)

5. With sulfur on the side chain Methionine (Met), Cysteine (Cys)

6. With secondary amine Prolin (Pro)
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Figure 2.1: Graphical structure of amino acid.

2.2 Transcription and Translation
Central dogma of molecular biology explains the flow between nucleic acids and proteins.
This is shown on Figure 2.2. From DNA (deoxyribonucleic acid) to RNA (ribonucleic acid)
to protein. DNA is divided up into functional units - genes, which contain information
needed to make a functional protein in a process called gene expression.There are differences
between DNA and RNA. RNA molecules do not include the base thymine (T), but includes
uracil (U).

Gene expression includes two main process, transcription and translation. Regulation
of this process have effect on cell structure and function.

DNA replication is a fundamental step in central dogma, because it is essential for cell
division during growth. It is producing two identical replicas of DNA from one original
DNA molecule.

In transcription, one strand of the gene’s DNA is copied into an RNA molecule. It in-
volves rewriting.Transcription of the template strand produces mRNA that nearly matches
the other strand of DNA.

Translation takes place inside of ribosomes, which is a molecular machine for building
polypeptides. The nucleotide sequence of the mRNA (messenger RNA) is translated into a
sequence of amino acids. Nucleotides of the mRNA are read in a group of three (triplets)
called codons. One codon is a ”start“ codon to signal the start of a polypeptide. There are
three variations of ”stop“ codon signal that is located on the end of the polypeptide.This
set of relationships is known as the genetic code.

Special transfers are reverse transcription and RNA replication. Reverse transcription
is a transfer from RNA to DNA. In this process, the enzymes called Reverse Transcriptase
are included. RNA replication is the process of copying one RNA to another RNA, which
is typical for viruses.

2.3 Structure of proteins
Proteins can be described by four levels of structure, as can be seen in Figure 2.3.

Primary structure is determined by the sequence of amino acids in the peptide bond
defining protein.

8



Figure 2.2: The central dogma of molecular biology
.

Secondary structure shows reoccurring molecules, which are maintained by hydrogen
bonds between carbonyl oxygens and amino hydrogens of the peptide bonds. Primarily, it is
α-helix, β-sheets and random coil, which is not organized. The chain in α-helix is organized
into helix and stabilized using hydrogen bonds as shown in Figure 2.4. Approximately
3.6 amino acids are required for one complete turn. The β-structure can be divided into
β-strands and β-sheets, where β-sheet consist of several β-strands. β-strands are part of the
chain, which is almost fully extended. β-sheets contain 2 sections of the chain in parallel,
and they are stabilized using hydrogen bonds.

Tertiary structure is three-dimensional structure in the polypeptide. Order of amino
acids and their chemical properties has the biggest impact on the final conformation. The
process of protein folding connects secondary structures (α-helix, β-sheet) with turns and
random coils to create a specific shape of globular molecule, which is stabilized by ionic
interaction, hydrogen bonds, disulphide bonds and others.

Quaternary structure refers to the spatial relationship of the polypeptide chains
forming the tertiary structure of a protein. Those are linked to form oligomer molecules.

2.4 Mutation
Mutation is a random or targeted change in the DNA sequence. Mutations have significant
impact on process of evolution as if no mutations would happen, evolution would be limited
to recombination or reshuffle of already existing genes. New genes that would disadvantage
specie would be deleted by evolution. Mutation describes all changes of the genetic infor-
mation which are not caused by segregation or recombination of already existing genome
types. We can distinguish 3 kinds of mutations based on their place of creation [37], i.e.,
gen mutations, chromosome mutations and genome mutations.

Gen mutations modify information which is stored in genes. They change the nu-
cleotide order. For prediction needs, this is the most important type.

Chromosome mutations change the number of chromosomes or their structure.
The most of the time, genome mutations add or reduce a complete set of chromosomes

to the genome.
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Figure 2.3: Primary, secondary, tertiary and quaternary structure of proteins. Figure taken
from [72].

Figure 2.4: Structure of a typical α-helix. Figure taken from [101].
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The occurrence of a mutation does not necessary means that it will affect the function
of the protein or the viability of the organism. Only a small part of genetic code consists of
proteins that encode genes. In humans, only about 1.5% [104] of the genetic code represents
the protein encoding genes. Rest of the mutations happens in non encoding areas. However,
these mutations can influence the creation of other proteins or stop it completely.

2.4.1 Gen Mutation types

Gen Mutations can be split into 3 basic groups by their mechanism of creation [37].
Substitution changes one or more nucleotides for different ones. However, the length of

protein remains the same. This change won’t affect transcription or translation. Generally
speaking, substitution is less damaging than insertion or deleti on.

Insertion adds one or more nucleotides, which increases the length of the original
sequence. The number of inserted nucleotides is very important, as 3 of them would add 1
new amino acid, while one or two would move a whole reading frame. The frame is used
when dividing the sequence of nucleotides into non-overlapping triples. These triples equate
to individual amino acids.

Deletion is similar to insertion. Deletion is removing one or more nucleotides and
therefore, the length of the sequence is changed. As in the previous case, the deletion of
the multiple of three nucleotides would cause the smallest change in the resulting sequence
of amino acids.

If the mutation occurs in the coding area of the gene, we can differentiate mutations [37]
by their final effect on the translated protein as Synonymous, Nonsynonymous, Nonsense
and Frameshift mutations.

Synonymous mutation, as the genetic code is degenerated, changes some nucleotides
in a codon. However, this will lead to translation to the identical amino acid and spatial
arrangement of the protein will stay the same. It would look like no mutation happened.
Nonsynonymous mutation is the opposite of the above. Changes to nucleotides in the
codon will result in the change of amino acids in the protein sequence. Nonsense mutations
are those which create a STOP codon that terminates translation earlier than expected.
Frameshift mutations change the reading frame and as a result, it will change amino acids
and would lead to earlier identification of STOP codon and the premature termination of
translation.

2.4.2 Creation of mutation

Based on their origin, we can split mutations to spontaneous or inducted. Spontaneous
are created by error in replication and reparation mechanisms of the DNA. Replication of
DNA is extremely precise, and it is assumed that only about 1 mutation will happen in 107

nucleotides. There are also self-repairing mechanisms in replication that lower this error
rate to 1 : 109 [1].

Inducted mutations are artificially created mutations, where genes are put in contact
with mutagens in the environment. These mutagenes can be split into three different groups,
i.e., physical, chemical and biological.

Physical mutagenes include electromagnetic radiation, such as ionizing radiation (alfa,
beta and also gamma), X-ray and UV light. The degree of damage is directly proportional
to the absorbed radiation dose.

Chemical mutagenes are substances that can damage DNA, for example demethylation.
Most chemical mutagenes are alkylating agents and azides.
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Biological mutagenes are caused by action of transposons, viruses (oncogenic or retro-
viruses) or bacteria.
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Chapter 3

Protein stability

Protein stability is one of the key properties used to determine the applicability of protein
under harsh conditions.The stable protein is able to withstand extreme temperatures or
the presence of denaturing agents [10]. Furthermore, stable proteins are usually positively
correlated with expression yields [35]. Because of that, the interest in the improvement of
protein stability is increasing as it can enhance the utility of proteins in various biotechno-
logical, industrial and medical applications.

Stability can be calculated as the difference of intramolecular interactions and confor-
mational entropy [42]. This will determine if the protein will stay in its native folded
conformation. Mutations can be used to strengthen or disrupt stability of the protein.

The main aim of this chapter is to describe various physical and biochemical forces
that participate in protein folding. The last part of this chapter is describing metrics for
calculation of protein stability.

3.1 Stability of folded protein
In 1969, Cyrus Levinthal declared that folding of the protein from primary to tertiary
structure cannot be random, due to the high number of degrees of freedom in an unfolded
polypeptide chain. According to his estimation, if there would be only a small protein
consisting of 101 amino acids with only single bond between each residue and each bond
would have only three possible configurations, this would result into (5 * 1047) different
conformations. If the protein can sample (1013) different bond configurations, it would take
(1027) years to sample all possible configurations [123]. This would mean that folding of
each protein would take extremely long time, however, this process is almost instant for
small proteins, and it takes only a couple of minutes for the most complex proteins. This
is called Levinthal’s paradox.

While this paradox is in contradiction with the possibility of random protein folding, it
is supported by Afinsen’s thermodynamic hypothesis. This proves that native structure of
globular protein in standard environment is only determined by the amino acid sequence
[5]. This means that the process cannot be random. In fact, it has to be deterministic.

Both Levinthal’s and Afisnesn’s claims acknowledged the existence of powers governing
protein folding. These powers can be differentiated on covalent and non-covalent interac-
tions, together with the factor of conformational entropy. Covalent bonds are very strong
and stable under standard conditions. Covalent interactions are created by sharing elec-
trons between atoms in the polypeptide chain. Because of that, these interactions are most
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Figure 3.1: Major forces in protein stability. Protein stability can be calculated as the
difference of sum of all interactions and the conformational entropy.

important in governing the creation of primary structure of protein. Non-covalent interac-
tions are notably weaker and are the main driving force in the construction of secondary,
tertiary and quaternary structures of the protein. They can be also divided into polar,
non-polar and electrostatic interactions [42].

Polar interactions can be split into aromatic intersections and hydrogen bonds. Aro-
matic interactions are created between aromatic rings of aromatic residues (Tyrosine, Tryp-
tophan, Phenylalanine and Histidine) controlled by their πelectrons. The distance must be
between 4.5 and 7 Ångström (Å) [6]. Polar residues (Histidine, Cysteine, Threonine, Tryp-
tophan, Aspartic acid, Serine and Tyrosine) are able to share hydrogen attached to an
electronegative atom. This can occur at distance around 3 Å. Hydrogen bonds are also
very important during the creation of the secondary structures.

Non-polar interactions are crucial for creating tertiary structures. They are weaker,
short forces between all atoms in protein. They are not notable beyond 5 Å. Hydropho-
bic effect also influence tertiary structure, because of the unfavourable entropy of water
molecules around hydrophobic residues (Proline, Phenylalanine, Valine, Methionine, Ala-
nine, Leucine and Isoleucine). These residues tend to aggregate, creating the hydrophobic
core of the protein. This leads to the increase in the hydrogen boding between water
molecules and minimizing the area between non-polar residues and water.

Electrostatic interactions are between cations and anions in charged residues (Lysine,
Arginine, Asparagine, Glutamine and Histidine). According to Coulomb’s law, their strength
decreases with (𝑟2). They also depend on the environment as they are influenced by salt
concentration, pH and permittivity.

Conformational entropy is connected with a number of conformations of the protein’s
structure. It is a significant contributor to energetic stabilization of the denatured state.
It is a countering force to the sum of electrostatic interactions, as can be seen in Figure
3.1. Conformational entropy gain given by secondary structures are way lower than entropy
gain by random coils. Due to this reason, proteins with high concentration of the random
coils are mostly less stable than proteins with higher number of secondary elements.
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Figure 3.2: The visualization of various protein folding mechanisms. Adapted from [82].

3.2 Protein folding
There are several different ways how to describe the process in which non-covalent interac-
tions transform the polypeptide chain into tertiary structure [82]. The nucleation-growth
model was first used to describe folding. It presumed the continuous growth of the tertiary
structure. This model was dismissed as folding intermediates were not accounted. After
that, some more models were created, as showed in Figure 3.2.

Hydrophobic collapse model means that the protein collapses rapidly around its hy-
drophobic side-chains. Stable secondary structures start to grow only in the collapsed
state.

Nucleation-condensation model suggest the existence of a metastable nucleus. Sec-
ondary and tertiary structures are formed in parallel. Folding is triggered when sufficient
number of tertiary structure interactions occur. Following this, rapid condensation of native
structure occurs.

In the framework model, secondary structure is folded at the beginning of the proteins
folding. After that, the coalescence of the secondary structural units into the structure of
the native protein occurs.

3.3 Quantification of protein stability
There are several ways how to calculate protein stability. The two most common are Gibbs
free energy and melting temperature [42].

3.3.1 Gibbs free energy

Gibbs free energy (or Gibbs energy) is a thermodynamic potential that can be used to
calculate the maximum reversible work that may be performed by a thermodynamic system

15



Figure 3.3: Thermodynamic cycle used for computation of ΔΔG. The change of the Gibbs
free energy upon mutation is calculated as a difference of energy upon folding of the wild-
type and mutant protein. In the figure, the respective mutation sites have been coloured
in black for wild-type and red for the mutant protein [80].

at a constant temperature and pressure. It is defined as

𝐺 = 𝐻 − 𝑇𝑆, (3.1)

where H is the enthalpy, T is the temperature, and S stands for the entropy. It is measured
in joules in SI. In biology, calories are often used. Stability of protein is measured as the
difference between free energies of the folded and unfolded state (ΔG).

∆𝐺 = 𝐻𝑓𝑜𝑙𝑑𝑒𝑑 −𝐻𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑, (3.2)

If we would like to measure the effect of mutation on protein stability, so-called change of
Gibbs free energy is measured (ΔΔG). This is the difference between ΔG of the mutated
and wild-type protein.

∆∆𝐺 = ∆𝐺𝑚𝑢𝑡𝑎𝑛𝑡 − ∆𝐺𝑤𝑖𝑙𝑑, (3.3)

Usually, the negative value of ΔΔG (kcal/mol) signifies that the mutation improved pro-
tein’s stability. However, this is not standardized and in some studies the stabilizing values
would be positive. This is crucial to check when gathering data for a dataset, as all sources
should be using the same calculation. ΔΔG computation is based on thermodynamic cycle
showed in Figure 3.3.
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3.3.2 Melting temperature

Different way of quantification of protein stability is by measuring the melting Temperature
(𝑇𝑚). The definition is as follows:

∆𝐺𝑓𝑜𝑙𝑑𝑖𝑛𝑔(𝑇𝑚) = 0, (3.4)

To put it in other words, it is the temperature at which free energy of the unfolded
and folded states is equal, while half of the population is folded and the other is unfolded.
Similar to Gibbs free energy Δ(𝑇𝑚) means the change of temperature upon mutation.
There is strong correlation between melting temperature and Gibbs free energy (Pearson
correlation is approximately 0.71 [92]). However, the transformation from one to other is
not linear, so there is no simple equation, how to estimate one value from the other.
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Chapter 4

Stability Prediction

Ideally, saturation mutagenesis of each residue in the protein sequence would be experimen-
tally validated. Unfortunately, this is an almost impossible task, as these experiments are
laborious and costly. A standard protein containing 300 amino acids would have over 5,000
single-point mutations. However, a single-point mutation has negligible effect on stability
(< 2𝑘𝑐𝑎𝑙/𝑚𝑜𝑙)[119, 44] and therefore, a combination of mutations is required to have a
significant impact on protein stability [17]. However, as mutations can have synergistic or
antagonistic effects when combining multiple mutations, the stabilization is not guaranteed
to sum up in the additive manner. The mutations are considered to be synergistic if their
combined effect on stability is greater than the sum of individual effects. Antagonistic effect
is the opposite of synergistic. Usually, synergistic effect means that new physico-chemical in-
teraction was created. Some examples of these interactions are a disulphide bridge between
two cysteine residues or a salt bridge between anionic carboxylate and cationic ammonium.
Antagonistic effect usually creates clashes between the side chains of the mutated or original
residues. This could even completely prevent protein from a successful folding. Usually,
antagonistic effects are hard to detect and require further validation.

When 100 potentially stabilizing mutations are applied, almost 5,000 experiments are
required to fully evaluate all double-point mutants. The number of experiments is exponen-
tially increasing with every new mutation. Because of that, fast and accurate computational
methods are needed for rapid evaluation of protein stability after each mutation. Those
tools can be utilized for the prioritization of specific mutations used in laboratory experi-
ments. Generally, the computational methods can be divided into four categories [80]. The
first category are Force-field methods, which calculate ΔΔG using models of molecular me-
chanics.The second is Phylogenetic analysis. This method utilizes evolutionary information
obtained from the set of homolog sequences. Methods in the third category are based on
Machine learning, where a model is created using stability data gathered from previous
experimental validation. The last category consist of Hybrid methods and meta-predictors,
where combination of single or more approaches together aim to provide more reliable and
robust results.

4.1 Force-field methods

4.1.1 Principles

Calculations do not rely on the availability of experimental data, as they are connected
with our current understating of the physico-chemical properties of amino acids and their
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description. Generally, force-field is a description of all bonded and non-bonded interactions
in the protein [76, 83]. These interactions are used in the energy-field equation to estimate
potential energy of the system [65]. The most accurate methods are relying on molecular
dynamics (MD) or Metropolis Monte Carlo simulations. However, both methods need
an enormous amount of computation power and can be used only for a small number of
mutations [100]. Many heuristic approaches were created to overcome this bottleneck,
however, complex analysis can be done with the usage of simulation-independent stability
predictors. These predictors can be divided into three categories [43, 74].

Statistical effective energy functions (SEEFs) are used for rapid analysis, as sta-
bility changes can be predicted over the entire sequence of average enzyme in a matter of
minutes [31, 32]. The individual terms in the energy-field equations are derived from avail-
able datasets. For the overall energy function, each descriptor can be extrapolated using
and effective potential [31, 70].

In the physical effective energy functions (PEEFs), the terms of the equations
are calculated using the simplification of physical laws. However, the calculations are quite
complex and so the computation of the equation for single mutant can take up to several
days. However, they are precise and versatile and capable of predicting behaviour under
non-standard conditions [2].

Empirical effective energy functions (EEEFs) represent the bridge between SEEFs
and PEEFs as they include both statistical and physical terms in energy-field equations,
where weights and parameters are used to match experimental data [43, 74]. Derived data
are originated from experiments undertaken under normal conditions. Using this, EEEFs
are a usable compromise between accuracy and computational time [99], however, they are
restricted to the environmental condition of the original experiments [60, 26].

Even though the accuracy of force-field-based method is unsatisfactory, it is still con-
sidered to be the most powerful tool for prediction of protein stability. Mostly it is due to
imbalances in the force fields, insufficient conformational sampling and the problems with
current data sets [60, 30, 28, 110, 29, 59]. Their accuracy is strongly dependent on availabil-
ity of quality tertiary structure. For proteins without resolved tertiary structure, it relies
on the accuracy of the modelling tools. Furthermore, most of the proteins in PDB database
(> 90%[107]) are obtained using X-ray crystallography, which might not reflect global min-
imum of the native state [34] and could be misleading for a comprehensive prediction of
stability [26, 62].

4.1.2 Software tools

The Rosetta suite [59] is considered to be the state-of-the-art for predicting protein stability.
The suite is very versatile and can be used for many different tasks. It consists of many
modules (molecular simulations, stability predictions, ab-initio modelling etc). The Rosetta
Design is a general tool used for protein design and contains a protocol for identification
of stabilizing mutations in protein. The result is provided in Rosetta energy units, which
are automatically converted to ΔΔG values. There is a standalone module developed on
Rosetta Design called ddg_monomer, which directly produces ΔΔG [59].

An example of software in PEEFs category is Eris [122] which is implemented using
custom Medusa modelling suite. It was tested on large dataset (> 500 samples). Compared
to other methods, Eris is not specially trained on stability data, so it can be correctly used
for wider range of proteins. Eris models backbone flexibility, which seems to be crucial for
predicting stability of small-to-large mutations.
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PopMuSic method is one of the most popular, where the force-field equation is calculated
using thirteen statistical potentials which are derived from the known database [32]. Dataset
used for training and validation consist of 2,648 single point mutations. There is a very
similar method called HotMuSic [92], however, it was parametrized for predicting Δ(𝑇𝑚)
instead of ΔΔG. Five more temperature-dependent potentials were added to the force-field
equation. They were extracted from the thermostable and mezostable proteins.

The last category is trying to find the fine line between prediction accuracy and time
demands. This is usually done by using both statistically derived terms with calculated
force-filed equations. One of the examples is CUPSAT [85] which uses PISCES [114] to
obtain tertiary structures. Atom and torsion angles potentials are derived from these struc-
tures. Boltzmann’s energy is calculated from the radial pair distribution of amino acid
atoms. To calculate favourable energy values for the neighbouring orientations of the ob-
served torsion angles combinations, a Gaussian apodization function is applied.

Generally, PEEFs are still more accurate. However, SEEFs are performing well in
comparison with most of the machine learning methods and are way faster than PEEFs.
Thanks to that, SEEFs and EEFs are mostly used due to acceptable trade-off between
computational power and accuracy.

4.2 Phylogenetic Analysis

4.2.1 Principles of Methods Based on Phylogenetic Analysis

These methods take advantage of the information hidden in the set of homolog sequences.
The biggest advantage of this approach is that they do not require tertiary sequence. Be-
cause of that, they can be employed on the majority of known sequences (about 200 million
in Uniprot [7] instead of 100 thousand in PDB [107]). However, they cannot be applied
on the families with low representation of sequences in the databases. In the recent years,
thanks to the next-generation sequencing methods, these families are shrinking as the num-
ber of sequences in databases almost doubles every three years. Most used methods are
consensus Design and ancestral sequence reconstructing.

Consensus desing (CD)

In the beginning, a compact multiple-sequence alignment (MSA) is built using a small
number of homolog sequences. It allows for computing frequency distribution of every
amino acid in the sequence [103]. Only positions where one or just a few amino acids
are more prevalent are conserved, as they were not changed very often during the course
of evolution. The core assumption of CD is that these conserved position are crucial for
protein’s function. The most frequent amino acid on these positions have the highest
probability to be stabilizing [103, 106, 66, 71, 88, 56]. When designed sequence differs in
the conserved regions with the most dominant amino acids, CD can be utilized.

Ancestral sequence reconstruction (ASR)

This method explores evolutionary history of sequence to recreate protein’s evolutionary
trajectory [47, 116]. The first intention of this method was to study molecular evolution.
ASR is widely used in evolutionary biology, as it is able to reconstruct the long-extinct
genes and organisms of their ancestors from the current days sequences. The start of ASR
is similar to CD as the MSA is constructed from the set of homolog sequences. The difference
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is that ASR considers evolutionary information from the phylogenetic tree instead of simple
analysis in CD. Bayesian interference [51] and maximum-likelihood [121, 102] were designed
to interfere the ancestral sequences from MSA.

4.2.2 Software tools

Many tools were build to create both mentioned algorithms more accessible, however, most
of them have huge disadvantages. Most of the currently existing methods rely on users
to upload their own phylogenetic tree and MSA. Other thing users need to provide when
using most of the tools are homolog sequences to identify subset of biologically relevant
sequences. The last problem is that the topology must be manually inspected. Because of
all of these limitations, for proper usage of the tools in this category, deep knowledge of
bioinformatics tools and the biological system of interest is required.

However, a novel approach for fully automatized calculation was presented by Musil et
al. [79]. Novel techniques were used to overcome the aforementioned issues. Filters were
used to improve the homolog search to check the similarity. New ancestral deviation algo-
rithm [111] was used for the rooting of the phylogenetic tree, and they also presented a new
algorithm to replace Fitch’s algorithm [36] for ancestral gaps reconstruction. The method
was tested by both laboratory experiments and the results published in other studies. The
similarity between results was higher than 90%. Thanks to these improvements, the only
input that is required from user is protein sequence in FASTA format, so this makes ASR
more available for users without depth knowledge of bioinformatics tools.

4.3 Machine Learning

4.3.1 Principles of Methods Based on Machine Learning

Usage of Machine Learning is growing rapidly in past years in every aspect of informational
technology and the bioinformatics is no exception. In this section, the utilization of machine
learning in protein stability prediction is described. More in-depth description of this topic
is described in Chapter 5. For Machine learning algorithms, a correctly sized and balanced
dataset is crucial to create and train any useful models. The datasets must not be too
small as there could be problem with establishing descriptors during learning. The other
problem is with diversity of the data as there is high risk of over training. This would be
problematic when the model would be used on new, unknown data. The last problem is
regarding size of categories we try to predict. When taking mutations in consideration,
if there is 75% of the mutations labelled as deleterious, the model would often tend to
classify most of the new data as deleterious as they often appear in the training dataset.
There are methods (support vector machines and random forest) that are more resistant
to overfitting. [68, 19, 18]. However, neural networks and decision trees are very sensitive
to this. Cost-senstive matrices [69] can be used to help with this problem. Furthermore,
SMOTE [22] and ADASYN [46] can help with oversampling of the data. For protein
stability, a new database was presented in [105], where data are combined from multiple
sources and manually checked to verify as many data as needed for creating high efficient
and accurate machine learning models.

The other problem occurs when models are validated. Ideally, validation data should
also be balanced and truly independent on training data. This is a hard task in protein
stability and bioinformatics in general, and k-fold cross-validation has been used as stan-
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Figure 4.1: Example of the result and user interface of Maestro web server.

dard method for validating. In this method, k subsets are randomly created and k-1 of
them is used for training and last for validating. However, combination of this method
with unbalanced dataset increases the risk of overestimation of the system’s accuracy [94].
Because of this, cross-validation is no longer accepted in many scientific journals.

4.3.2 Software tools

Tools based on machine learning algorithms are very common, as they do not require
deep knowledge of the forces in protein tertiary structure. Predictions are based only on
the available experimental data. The most popular methods are based on support vector
machines or random forest, thanks to their robustness to the unbalanced data.

In recent years, deep learning was applied to solve this issue. However, this approach is
very limited as the datasets are not diverse and big enough to fully utilize the advantages of
deep learning. Generalization of the model can be improved with pruning, however, there
is no method to help with the dataset size. Until there will be more experimental data,
deep learning will hardly be used due to its problem with limited unbalanced datasets.

Better improvements for robustness and reliability is gained by combination of different
models into a single multi-agent system. MAESTRO [63] uses a combination of neural
networks with linear regression, support vector machines and limited statistical potentials.
The outputs from models are averaged into a single prediction. Machine learning can be
used to train the arbiter to help with creating optimal weights of the models for best
accuracy. An example of the output from MAESTRO web server can be found in Figure
4.1.
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Comparison of the presented methods is not easy, as authors usually used different
datasets to evaluate the models. This results into bias towards specific proteins and mu-
tation types. This leads to overestimation of the accuracy. The independent comparative
studies done by Kellog et al. [59], Potapov et al. [89], and Khan and Vihinem [61] revealed
that PEEF based methods outperform tools using only machine learning techniques on the
independent dataset. The other problem was revealed in machine learning methods, as
their accuracy is highly overestimated [112, 91].

4.4 Meta-predictors and principles of the methods based on
hybrid approach

These methods cannot be considered as singular tool but rather combination of different
methods, computational strategies and tools. These methods usually incorporate both
evolution and energy based approaches. This means that hybrid methods are more robust
and reliable. Most of the hybrid methods start with analysis of the highly conserved
regions with high correlation within other residues in the MSA [40, 81, 118]. It is based on
assumption that these residues are crucial for correct protein’s function. Mutations on these
position would have higher chance of changing protein’s characteristics. In hybrid methods,
these positions are excluded from the calculation. This results in smaller computational
demand and safer space for designed mutations. Evolution-based and force-field methods
has been proven complementary in many proteins as there is only a small overlap of the
designed stabilizing methods [12]. Using the combination of both methods, more potentially
stabilizing mutations are identified, even though only evolution or energy based approaches
would not be able to detect them. Hybrid methods are more robust and complex. Therefore,
they are often used to predict more stable multiple-point mutants. These mutants are
unattainable by singular approach due to the risk of antagonistic effect.

4.4.1 Software tools

Thanks to all benefits of the hybrid approaches, many research groups are interested in
them. However, only tree tools are currently available.

The first method available was The Framework for Rapid Enzyme Stabilization by
Computational Libraries (FRESCO) [118]. It is a set of tools and scripts, so an advance
knowledge is required for its usage. There are at least two approaches dealing with this
issue. A pool of potentially stabilizing mutations are selected based on the predictions
from Rosetta and FoldX and then the residues too close to the active sites are filtered out.
MD simulations are then utilized to design disulphide bridges and to predict changes in
backbone flexibility to remove potentially destabilizing mutations. The result of fresco is a
pool of mutations, so it is not fully automated and more effort from the users is required.

The second method is Protein Repair One-Stop Shop (PROSS) which require only 3D
structure and sequences of naturally occurring homologs [40]. It starts similarly to FRESCO
with Rosetta design calculations to exclude residues too close to active sites. A position-
specific substitution matrix is created to remove amino acids that are rarely observed in
the homolog sequence [4]. The combinatorial sequence design tool from Rosetta [117] is
used to create the optimal combination of mutations with energy function applied to favour
most frequent amino acids in the MSA. Using this approach, some neutral or possibly
destabilizing mutations can appear in the result [39].

23



Figure 4.2: Example of the result and user interface of FireProt.

The last mentioned is FireProt [81] platform which combines evolutionary and energy
based approach using both sequence and structural information. Evolutionary information
prohibits the mutations of the important residues and reduce computational time. Both
FoldX and Rosetta are used to increase reliability. The risk of antagonistic effect into
the mutant is reduced using simple graph based algorithm. As the whole process is fully
automated, the only required input from the user is ID from the PDB database. An example
of the result and user interface can be seen on Figure 4.2.

4.5 Summary of stability prediction methods
In the previous chapters, only a few methods were described under each section. However,
each category have various other methods. These methods were organized into Table 4.1,
where each method has its model, input, output, and it can be only single or multiple
mutations analyzed. The methods are grouped by same category in order as in this Chapter.
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Method Model Input Output Mutations
PoPMuSiC [32] SEEF Structure ΔΔG Single
FoldX [99] EEEF Structure ΔΔG Single
CUPSAT [85] Atom potentials

Torsion angles
Structure ΔΔG Single

Rosetta [59] PEEF Structure ΔΔG Single
Multiple

ERIS [122] PEEF Structure ΔΔG Single
CC/PBSA [15] PEEF Structure ΔΔG Single
DMutant [48] Amino acid potent-

ials
Torsion angles

Structure ΔΔG Single

SDM [84] SEEF Structure ΔΔG Single
HotMuSiC [92] SEEF Structure Δ(𝑇𝑚) Single
STRUM [93] SEEF Structure ΔΔG Single
AUTO-MUTE [73] SEEF/ML Structure ΔΔG/Binary Single
HotSpotWizard [14] CA Seq/struct hotspots Single

multiple
FastML [9] ML MSA+tree Sequences Single
RAxML [102] ML MSA Phylogeny Single
MLGO [49] ML MSA+tree Seq+phylogeny Single
Ancestors [33] ML MSA+tree Seq+PP Single
HandAlign [115] BA MSA+tree Seq+PP+phyl. Single
TreeTime [97] BA MSA+tree Seq+PP+phyl. Single
PAML [121] ML MSA+tree Seq+PP+phyl. Single
PhyloBot [45] ML MSA+tree Seq+PP+phyl. Single
MaxAlike [75] ML MSA+tree Seq+PP+seq. Single
EASE-MM [38] SVM Sequence ΔΔG Single
MuStab [108] SVM Sequence Binary Single
ProMaya [113] RF Sequence ΔΔG Single
mCSM [87] Graph based Sequence ΔΔG Single
ELASPIC [120] SVM+HMM Structure ΔΔG Single

multiple
MuPro [25] SVM Seq./Struct. ΔΔG Single
I-Mutant2.0 [21] SVM Seq./Struct. ΔΔG Single
TopologyNet [20] Deep learning Structure ΔΔG Single
PROTS-RF [67] RF Structure ΔΔG Single
MAESTRO [63] M-a system Structure ΔΔG Single

multiple
IPTREE-STAB [50] Decision tree Sequence Binary Single
INPS-MD [98] Sup. Vec. reg. Sequence ΔΔG Single
iStable [23] SVM Structure ΔΔG Single
Prethermut [109] SVM+RF Structure ΔΔG Single

multiple
FireProt [81] Evolution+energy Structure Mutations+ΔΔG Multiple
PROSS [40] Evolution+energy Structure Mutations Multiple
FRESCO [118] Evolution+energy Structure Mutations Multiple

Table 4.1: Summary of multiple software tools available to predict stability of mutations in
protein. Methods in the first section use force-filed based approach, in the second section
use evolutionary information, in the third section use machine learning and in the last
section use hybrid approach.
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Chapter 5

Machine learning

The main aim of this chapter is to give overall information regarding machine learning and
to describe classification and regression and the methods that can be used.

Machine learning is one of the most important and popular topics over the last few years.
One of the main reasons is that machine learning does not require explicit programming
and can be used on many different tasks. This field exists for longer time, but has growth
just recently, thanks to the increasing computing power and the availability of the large
data sets. Machine learning is based on a model and some input data. The data can differ
from images and sounds to any kind of text and more. The usage of machine learning can
be separated into supervised learning, unsupervised learning and reinforced learning [96].

Supervised learning builds the model from a set of data that contains both the input
and their corresponding output. The input data are called training data and contain the set
of training examples. Each example has one or more outputs. The main goal of supervised
learning is to learn a function that will be able to predict the output from new, unknown
input.

Unsupervised learning tries to find structure from the input data, like grouping or
clustering. The input data are not labelled, classified or categorized. The mail goal is to
identify common values and react on presence of the new data.

Reinforced learning is the most general category. The model interacts with a dynamic
environment and tries to achieve some goal. As it is not supervised, there are no rewards
that would be given to model if it is getting closer to its goal. The only information for the
model comes from interaction with the environment.

Based on the output of the model, required tasks can be split into regression, clustering
and classification [3]:

Clustering is an example of unsupervised learning. The aim of clustering is to create the
required number of clusters. The values inside one cluster should be as similar as possible,
while as different as possible, to items in other clusters.

In the case of classification, the input data are split into finite number of different
classes, so the output is always discrete. When training, all input data has to have known
output category. This means it is supervised learning. The process can be split into three
phases. In the first phase, training data are used to train the model. As it is supervised, all
input data must have corresponding output. In this phase, classification rules are created
inside the model. In the second phase, the model is tested on the new data. These data
have to be different from the testing data. This is important as the precision of the model
is calculated from the previously unobserved data. In the last phase, the model is used on
the new, completely unknown data in production.
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Regression is very similar to classification, so it is supervised learning. The difference
between classification and regression is that the output of regression is continuous. The
continuous value is a real-value, such as an integer or floating point. In our case, it will be
the ΔΔG.

5.1 Calculating accuracy of classification
As the first part of the practical section deals with determining if mutation will be stabilizing
or destabilizing, it is a binary classification. Accuracy of classification methods are generally
calculated using these metrics [64]:

TPR (True Positive Rate) or sensibility, is the ratio of correctly identified stabilizing
mutations to the number of all really stabilizing mutations

TNR (True Negative Rate) or specificity, is the ratio of correctly identified destabilizing
mutations to the number of all really destabilizing mutations

FNR (False Negative Rate) and FPR (False Positive Rate) are error rates, and they are
sometimes used instead of TPR and TNR. They are calculated as follows:

𝐹𝑃𝑅 = 1 − 𝑇𝑁𝑅 (5.1)

𝐹𝑁𝑅 = 1 − 𝑇𝑃𝑅 (5.2)

Normalized Accuracy uses mean value of TNR and TPR to objectively assess success.

𝐴𝑐𝑐 =
𝑇𝑁𝑅 + 𝑇𝑃𝑅

2
(5.3)

MCC (Matthews’ correlation coefficient) also determines accuracy of classifier and often
can be better than normalized accuracy as it also reflects on different cardinality of sets. It
can be calculated as follows: [90]

𝑀𝐶𝐶 =
𝑇𝑃𝑅 * 𝑇𝑁𝑅− 𝐹𝑃𝑅 * 𝐹𝑁𝑅√︀

(𝑇𝑃𝑅 + 𝐹𝑃𝑅) * (𝑇𝑃𝑅 + 𝐹𝑁𝑅) * (𝐹𝑃𝑅 + 𝑇𝑁𝑅) * (𝐹𝑁𝑅 + 𝑇𝑁𝑅)
(5.4)

Receiver Operation Characteristics

In the ideal scenario, specificity and sensibility should be equal to 1, however, it is rarely
the case. That is why ROC curve is used. ROC shows the dependency of sensibility to
false negative rate (1- TNR). In other words, it shows success of the classifier to distinguish
positive and negative parts of a data set. An example of ROC characteristic for binary
problem is showed in Figure 5.1. The goal for the curve is to be as close as possible to
the point [0,1]. ROC is often supplemented with Area Under Curve (AUC), which helps to
quantify and compare distinction of data set parts [64]. In ideal case, AUC is near one.

5.2 Classification methods
There are multiple different methods that can be used to perform classification. They differ
in their implementation and some advantages and disadvantages over the other methods.
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Figure 5.1: Example of ROC characteristic.
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Figure 5.2: Example of decision tree and its rules for categorizing animals.

5.2.1 Methods based on Decision trees

The core of these methods is to create a decision tree from training data and then its
application for new data. The core of the algorithm is to correctly detect attributes that
have big decision impact to determine the correct category. From this knowledge, a set of
rules is created. These rules are compiled as a tree. The individual rules are stored in the
tree knots and based on the evaluation of the knot’s, the correct path is selected. Categories
are stored as leaves. A very simple example can be found on Figure 5.2 After training, the
tree is not changed.

One of the common problems is overfitting. This means that the model is too much
adapted for the training data and lose its ability to correctly evaluate more general new
inputs. Common way how to deal with it is with decision tree pruning. It reduces the size
of the decision tree by removing non-critical and redundant sections of the tree.

In practise, random forest is often utilized. In this method, multiple decision trees are
constructed and each contains different rules. This also helps with overfitting. The result
is then selected by majority selection from all the trees.

5.2.2 Methods based on Bayes’ Theorem

These classifiers are called as probabilistic as they determine probability of input with all
given classes. The class with the highest probability is then chosen to be the selected
one. All methods are based on Bayes’ theorem of probability of an event, based on prior
knowledge of conditions that might be related to the event [55]. Mathematically it looks
like this:

𝑃 (𝐶𝑖|𝑋) =
𝑃 (𝑋|𝐶𝑖)𝑃 (𝐶𝑖)

𝑃 (𝑋)
, (5.5)

where P(X) is constant, 𝑃 (𝐶𝑖|𝑋) is the probability of 𝐶𝑖 when we know that X happened.
For each class in training, distribution of attribute values is created. These are then

used in validation to select the new input. Naive Bayes’ classifiers assume that all categories
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Figure 5.3: Simple Schema of perceptron with n number of X inputs with corresponding
weights w and Z is an output.

are independent, however, that is rarely the case. Because of that, these classifiers often
lack accuracy. However, there are also Bayesian Networks, which are graphical models
where dependency between categories can be modelled. This often improves accuracy and
usability. Unfortunately, it is more demanding than Naive Bayes [96].

5.2.3 Methods based on Neural networks

Neural networks have been designed to look like humans’ central neural network. They are
based on an artificial neuron called perceptron. The input to the perceptron is a weighted
vector and a single number is its output. The scheme of perceptron can be found in Figure
5.3. Usually, high number of perceptrons is combined together in one network.

There are plenty of algorithms to learn neural network with different complexity and
accuracy. They are generally based on iterative learning and changing the weights of input
of individual perceptrons.

Neural networks are used in various applications such as regression and non-supervised
training as they are greatly versatile in problem-solving. The core is to find a correct
number of layers and perceptrons to have great results. The main disadvantage is the quite
long training phase, as generally, it takes more than one iteration through training data.
Neural networks are usually not utilized for highly unbalanced data, as it tends to pick the
largest group [96].

5.2.4 Linear methods with kernel

Linear methods made decision based on the value of linear combination of the character-
istics. Their aim is to divide inputs into groups which can be distinguished (Figure 5.4).
The main method in this group is Support-vector machines (SVM).

The aim of SVM is to create as wide gap as possible between individual groups. This
helps with the correct determination of the new input into the correct group. Nonlinear
distribution is dealt using mapping training samples into new higher dimensional feature
space. The classification is then linear in the created feature space.

SVM methods require quite high computational power, however, as they are very accu-
rate and can integrate a combination of multiple attributes, they are often used in bioinfor-
matics [11]. There is a modified version of SVM to support-vector clustering algorithm [13],
where the statistics of support vectors developed in SVM are applied for categorization of
the unlabelled data.
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Figure 5.4: Example of gap between two samples using SVM.

Figure 5.5: Example of usage and voting in KNN.
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5.2.5 Non-parametric methods

These methods do not have any parameter, that would have direct impact on the result
of training and classification. One of the most known method is K-nearest neighbours
algorithm which can be both used for classification and regression. The input consist of
the k closest examples from training data set. The output for classification is the class
membership that is determined by plurality vote of its neighbours, where the value is set
to be the most common of its k nearest neighbours (Figure 5.5).

These methods are fast to learn and, if parameters are correctly selected, very accu-
rate. Disadvantages can be in the combination of different types of parameters and usage
of metrics for calculation of the distances. For numerical continuous inputs, euclidean dis-
tance can be used. For discrete variables (e.g., text), Hamming distance can be employed.
However, it can get pretty complicated for more category types. The last problem is in
combination of all distance results of each attribute [78].

5.3 Calculating accuracy of Regression
As the output of regression is continuous, the accuracy of the model is mostly reported as
an error. For that, two values are often used. The first one is Root mean squared error:

𝑅𝑀𝑆𝐸 =

√︂
1

𝑛
Σ𝑛
𝑖=1

(︁𝑑𝑖 − 𝑓𝑖
𝜎𝑖

)︁2
(5.6)

where 𝑑𝑖 is the predicted value, 𝑓𝑖 is the correct output value and 𝜎𝑖 is a number of times
the prediction was made. The main advantage of RMSE is that the unit of the final result
is the same as the predicted value.

The other way to validate the model is to use the Pearson correlation coefficient, which
is calculated using the following formula:

𝑃𝐶𝐶 =
𝑛
∑︀

𝑥𝑖𝑦𝑖 −
∑︀

𝑥𝑖
∑︀

𝑦𝑖√︁
𝑛
∑︀

𝑥2𝑖 − (
∑︀

𝑥𝑖)
2
√︁
𝑛
∑︀

𝑦2𝑖 − (
∑︀

𝑦𝑖)
2

(5.7)

where 𝑥𝑖 and 𝑦𝑖 are the individual sample points and n is the size of the dataset. The values
can be between -1 and 1 where 1 is the perfect, almost unrealistic, correlation.

5.4 Regression methods
The most basic type of regression is linear regression. If the data contains more than
one independent variable, multiple linear regressions are created. The equation for linear
regression is calculated as:

𝑦 = 𝑚 * 𝑥 + 𝑐 + 𝑒 (5.8)

where m is the slope of the line, c is an intercept, and e represents the error in the model.
The best line is calculated by changing m and c. The point is to find the best combination
of m and c to have the error as small as possible. As single linear regression is susceptible
to outliers, it is not suitable for big datasets.

There are plenty of other methods, including Logistic Regression and Polynomial regres-
sion. One of the more robust examples is Gradient boosting regression, where the prediction
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model is in the form of an ensemble of weaker models. These models are typically decision
trees. Gradient boosting often increases the performance of the more simple models such as
linear regression, but it is harder to interpret the model. However, there are some existing
methods that can help to transform multiple small models into one big model which is
easier to interpret.
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Chapter 6

Data preparation

The main aim of this chapter is to inform about all the processes that have to be done
to obtain valid datasets for training and validation. Both datasets need to be checked to
contain truthful information without any errors, as that would lead to incorrect training or
validation. The training dataset is generally larger than the one used for validation. Both
datasets should be independent, meaning there should not be the same mutation present
in both datasets, as that could inflate the accuracy.

6.1 Creation of the training dataset
The raw version of the dataset consists of more than fifteen thousand mutations. The
data were extracted from ProTermDB and were expanded with experiments measured in
Loschmidt Laboratories.

Validating PDB and Uniprot ID

Both PDB ID and Uniprot ID are present in the dataset, however, we need to firstly validate
if both IDs are representing the same protein. This was done by creating FASTA sequence
from both data-sources. From Uniprot, the FASTA sequence was taken directly. In PDB,
there are two options. The first one is to use FASTA directly, the second is to parse PDB
file to create the sequence manually. As the main goal is to verify the sequence and after
that the mutation, parsing of the PDB file was chosen as the best option.

Parsing of PDB file

PDB file is a textual file format containing information regarding three-dimensional struc-
tures of molecules. The file has specific format, and the detailed description can be found
in [16]. The most important lines for this purpose are lines starting with ATOM and lines
starting with REMARK 465. The ATOM records contain information regarding x, y, z
orthogonal Angstrom coordinates for each atom. For our purpose, the important parts are
Residue sequence number, residue name and chain identifier as in one PDB files, multiple
chains can be stored. For one sequence number, multiple records are stored in PDB file
as all data are experimentally created, so in different experiments, different values were
measured. However, the amino acid is still the same.

As the data in the PDB file are taken from experiments, there are some problems stored
in the PDB file. The first problem is regarding gaps in the chain. An example of gap can be
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Figure 6.1: Example of PDB file with gap. In the highlighted section there is residue on
position 41 followed by position 50. This means that there is a gap of 9 residues missing
from the record.

found in Figure 6.1, where the gap between residues is highlighted on position 41 and 50.
This means that 9 residues are missing in the records. These gaps could happen everywhere
on the protein chain, so those issues need to be taken in consideration when building the
chain.

The other problem is when the database record was created from a low resolution
model. This can cause problem while sequencing the chain that residues would be marked
as position 5 and 6 as an example. However, later when newer higher-resolution model
would be parsed, it would reveal that there are residues between those marked as 5 and 6.
Then it is up to the creator of the file to update the results, often creating something like
5a etc.

The last step needed to be done from the PDB file is to transform 3 characters name of
the amino acid to one-character, which is used in the FASTA sequence. The last thing was
to validate the FASTA sequence for Uniprot and sequence created by us. Due to the nature
of the gaps, we cannot simply compare the values, but we need to align them. This is called
global alignment, where both chains are compared. In Python, there is a pairwise module
in Biopython [27] library which can be utilized. The function used for calculating similarity
of two chains add 1 point for same residue on specific location and 0 for gaps or differing
amino acids. An example of that can be seen on Figure 6.2. All possible combinations are
calculated and the one with the highest score is used. We then divided the number with
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Figure 6.2: Example of alignment of two sequences and their calculated score. Each same
letter on position adds 1 to the total score.

the length of the shorter chain to get relative similarity score, where 1.0 is if the chains are
identical. As the chains can have different lengths, it is important to take the length of the
smaller one.

Using this method, we have noticed that vast majority of the IDs are valid with only
few exceptions. However, the next part which needed to be done is to validate the PDB
chain on the mutation recorded in the row. This was more crucial as if the mutation would
not align with the chain, we would not be able to use any calculated values for that records
as they would be invalid.

Validating mutations

Mutations were validated against chains calculated from PDB file and have specific format.
1wq5_A:P28S is an example of the mutation from the dataset, where 1wq5 is ID of the
PDB, A means chain A, P is the original residue, 28 is position of the mutation and S is
the new residue. However, for some structures, a PDB file is not created. These mutations
needed to be ruled out of the training as there would be no possibility of calculating features.
However, this affected only a small portion of the mutations.

Extending dataset from AA index

After validating all necessary information, the next step is to append the dataset. We
used data from AA index [58]. Data are stored in custom format. We used 2 different
indexes, i.e., Hydrophobicity index [8] and Residue volume [41]. For both of the indexes,
the difference between values of the original and new one was used.

Calculating features

The last part needed to prepare was the calculation of some additional features. For this
calculation, DSSP[54, 57] module for python was used. This module utilizes PDB files to
create models, and then it is able to calculate specific values, such as secondary structure
and the area that is accessible to solvent (ASA.) Originally, DSSP is recognizing 7 secondary
structures, however, we are mapping it to only 3 different characters. The mapping can
be found in Table 6.1. ASA is already presented in the training dataset, however, DSSP
values seems to be relative and data exported from ProTermDB seems to be absolute.
Therefore, we are calculating the ASA to be used for training later as ASA is missing from
the validation dataset, and we need to ensure the same source of data to achieve the best
accuracy.
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Structure DSSP code Our used code
Alpha helix (4-12) H H

3-10 Helix G H
β-bridge B E
Strand E E
π-helix I C
Turn T C
Bend S C
None - C

Table 6.1: Mapping of 7 characters DSSP code for secondary structures to 3 different
characters used for training and validation.

Determining stability

The last part is to create the final result category. We are trying to predict if the mu-
tation is stabilizing or not. For this purpose, there are 3 different columns in dataset
( ΔΔG_(kcal/mol), ΔΔG_H2O_(kcal/mol), ΔT_m). Positive difference in ΔTm means,
that mutation is stabilizing. For ΔΔG, there is no general rule if positive values are sta-
bilizing or not. This had to be checked manually, and we have found out, that negative
values are stabilizing in this dataset.

6.2 Construction of the validation dataset
The validation dataset was taken from a different source, however, that does not mean that
it is truly independent. For that, it is necessary to exclude all mutations that have been
used for training. This has been done by checking if there exist exactly same mutation on
the protein. This means what amino acid on what position was changed to which amino
acid, to make sure that there are no overlapping mutations.

After we ruled out all overlapping mutations, the dataset was prepared to have the same
structure as the training set. Therefore, we appended same data from AA index and what
we calculated using DSSP as in training for proper validation.

The last step was to determine the outcome of the mutations. The columns used for
this were ddG and dTm ( ℃). The most problematic part was handing ddG as the data are
from two different sources. As described in previous chapters, the choice if positive delta
is stabilizing or not is upon the author. Fortunately, there were only 316 mutations where
ddG was specified from 4 different sources. After manually going through the sources, we
have found whether positive values are stabilizing or not.

6.3 Statistics of the datasets
After all the cleaning and removing mutations where we were unable to calculate some
value needed for training, we ended up with 8,542 different mutation for training purposes
and 691 different mutations for validation.

The training dataset consists of 6,382 destabilizing mutations and 2,160 stabilizing mu-
tations. This has to be taken in consideration during training as we need to use some
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balancing tools. For validation, the dataset is more balanced, as 364 mutations are desta-
bilizing and 327 are stabilizing.

6.4 Creation of the dataset for regression
For regression, we are only considering ΔΔG values, as we can predict only one. For that,
we will be joining both datasets into one big dataset and then in testing, we will be using
a function to split this dataset into two parts. This is done due to the completely different
protein families represented in each dataset. For classification, it was not necessary, as when
we look at the overall spectrum of ΔΔG, it will behave the same. However, for regression,
the aim is to be as accurate as possible, while being as robust as possible. For that, the
best choice is to combine both datasets to achieve the most accurate results.
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Chapter 7

Experiments

The aim of this chapter is to describe the final version of datasets, model and its concrete
implementation and design of the experiments. The construction of both datasets was
described in Chapter 6. The main goal is to create multi-agent system, where each model
would be trained on a different subsection of the dataset, to create a more robust system.

7.1 Dataset splits for Classification
The dataset was split by pH, secondary structure and ASA. This created 9 different splits
of the dataset and each would be used to train a different model.

Splitting by secondary structure was used by using mapping, which is described in Table
6.1. This created 3 different subsets.

pH was transformed into 3 different categories. pH lower than 6 was first category,
6-10 was second category, and last category was for all higher than 10. This was done to
reduce complexity of the pH as usually.

The last division was using ASA where values lower than 0.2 were called as deeply
buried, values between 0.2 and 0.75 were tagged as moderately buried and values higher
than 0.75 were marked as exposed. For this division, values calculated using DSSP were
used as they are on the scale between 0-1.

One of the aims of the dataset split was to see, if some parts would be more balanced.
However, as can be seen in Table 7.1, the splits are also very unbalanced. As can be
observed, the size of the datasets are also not balanced, as the biggest dataset consist of
7,109 mutations and the smallest only 56. This needs to be taken in consideration when
weighting models in multi-agent system, as a model trained on the smallest dataset might
be incorrectly trained due to the size of the training dataset.

7.2 Multi-agent system
The multi-agent system would allow us to use models that would not be usable for the
whole datasets. However, in our case, we will be using mostly SVM and Random forests.
The exact settings of the models would be changed for experiments to find the most optimal
combination of models on datasets, weights of the class in each subset and final weights of
the models in the final voting model.
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Dataset Stabilizing
Mutations

Destabilizing
Mutations

Number of
Mutations

Acid 1801 692 2493
Coil 2547 936 3483
Deeply buried 525 205 730
Exposed 2944 1194 4138
Helix 2627 1051 3678
Moderaly buried 651 100 751
Neutral 5122 1987 7109
None 50 6 56
Sheet 1799 698 2497

Table 7.1: Statistics of stabilizing and destabilizing mutations in dataset splits.

7.3 Implementation details
Two main python frameworks were used to implement the models and training. The main
one is Scikit-learn [86], which is standard for the machine learning applications. From
this package, SVM and RandomForest models were applied to create the classification
model. For regression, linear regression, gradient boosting model regressor, HuberRegressor
and DecisionTreeRegressor were used. We have also used XGBoost package [24]. For
evaluation of the models, various functions, which are inside sklearn package, were utilized
to calculate model performance. The other package that was used is called Mlxtend [95],
where EnsembleVoteClassifier was used. This model from Mlxtend package was chosen
instead of Vote Classifier existing in Scikit-learn as it allows usage of pre-trained models
without the need to refit them again, which is mandatory for this thesis as the aim is to
train every model on a different section of the dataset.

7.4 Experiments design
Classification

There are 3 main metrics we will be focusing on when validating the model. The first is
Accuracy of the prediction, the second one is Matthews’ correlation coefficient (MCC) and
last one is ROC curve. For the validation of the tested model, all 3 parameters has to be
evaluated.

The MCC plays a huge role in predicting, whether the model is getting overtrained or
not. Montunaci et al., [77] calculated that for ΔΔG prediction, the maximum of MCC is
around 0.7-0.8. Higher values of that would suggest overfitting.

The aim is to firstly validate datasets on single RandomForest with pruning to see if
there are some problems with the data such as incorrectly labelled ΔΔG as stabilizing or
some other problems with the data. Using this, we would further modify the dataset to get
some values. As Random Forest with pruning is great to deal with overfitting, we should not
have problems with overfitting on imbalanced datasets, however, we can add class weight
matrix to the model to obtain more reliable results. After this, we would slowly start to
use the validated dataset to train our voting model with modifications such as changing
model type, class weights for specific mode, voting weight of the model and other available
functions.
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Figure 7.1: Left ROC curve of the first attempt suggesting problems with datasets as AUC
is near 0.5. Rigt ROC curve of the second attempt using only ΔTm values.

Regression

In regression, we are going to measure two metrics. Root Mean Square error (RMSE)
and Pearson correlation coefficient (PCC). The main goal is to find the best performing
regression predictor on our dataset. The dataset will be divided into training and validation,
where the validation part is 0.15 of the overall dataset.

7.4.1 Results of initial classification experiments

The first test was done on the whole training and whole validation dataset with weights set
3-times more on stabilizing mutations to create more balanced dataset. The initial results
did not show promising ROC curve as can be observed on Figure 7.1 with Accuracy around
0.48 and MCC -0.10. Those results suggest that there is no correlation in the dataset.
This leads to two possibilities. The first is that there is a problem with the dataset, and
the second one is that proteins used in the validation dataset have completely different
behaviour than those used in the training set.

As the dataset used for that experiment contains both ΔΔG and ΔTm, the next step
was to try splitting this datasets into two parts, i.e., containing only ΔΔG or ΔTm.

As determining ΔTm is the same in all publications, the next step was to determine if
the problem is in this section. The testing was again done on the RandomForrest classifier
with the same weights as in the first experiment. As in the previous experiment, the results
showed no correlation at all (MCC -0.08, ACC 0.56 and ROC on Figure 7.1). This suggest
that problems are in this part of the dataset.

The last step was to verify if mutations measured byΔΔG would have the same problem
as withΔTm. That would lead to the conclusion, that proteins used in both datasets behave
completely different, which would suggest that values that are widely used are not always
accurate. However, when we were using only ΔΔG, AUC near 0.8 (Showed on Figure 7.2),
MCC 0.35 and Accuracy 0.70 was achieved. This suggests that ΔΔG values can be used
for training and validation on this different values, as these results are similar to Rosseta
and other protein stability prediction tools.
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Figure 7.2: ROC curve of the third attempt using ΔΔG values.

7.4.2 Changes to the dataset for final version

The findings using Random Forrest classifier led us to final changes to the dataset. We
will be using only ΔΔG for training and validation, which most tools also utilize. This
significantly changed the size of the training and validation datasets, where new sizes of
splits can be found in Table 7.2.

Overall, training dataset contains of 5,416 different mutation and validating dataset
285, which is still enough to properly train and validate model.
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Dataset Stabilizing
Mutations

Destabilizing
Mutations

Number of
Mutations

Acid 947 342 1289
Coil 1459 501 1960
Deeply buried 299 115 414
Exposed 1608 641 2249
Helix 1425 462 1887
Moderaly buried 56 100 457
Neutral 3083 1024 4107
None 18 2 20
Sheet 1164 405 1569

Table 7.2: Statistics of stabilizing and destabilizing mutations in new dataset splits con-
taining only ΔΔG values.
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Chapter 8

Results

The aim of this chapter is to describe some experiments that were constructed, and then
compare that with existing methods. Detailed data for each experiment can be found in
Appendix A.

8.1 Classification into two classes
The first and main part are experiments designed to determine, whether the mutation was
stabilizing or destabilizing. We are taking in consideration only the single-point mutations.
Stabilizing mutations are marked as 1, destabilizing as 0. The first experiment was created
by using 9 different random forests, each trained on a different subset. No weights were
employed in this experiment. This experiment was done to create some baseline for exper-
iments using Ensemble classifier. Accuracy of this attempt was 0,63 and MCC 0,11. ROC
curve can be seen on Figure 8.1.

Changing to Hard voting from soft voting did not gain noticeable difference (Acc 0.64
with MCC 0.15). So the next step was to add weights. As in most splits of the dataset,
destabilizing mutations appear almost three times as much as stabilizing. Therefore, we
have added weights which would make the dataset more balanced. This did not lead to
a significant performance improvement, as the Accuracy was still around 0.65 and MCC
0,17. ROC curve can be found on Figure 8.1. Looking further into results, we can also
see that True positive rate (TPR) for destabilizing mutations is 1.0, while for stabilizing
class is around 0.05. This means that the model is predicting a destabilizing class in the
majority of cases.

To handle this issue, we have looked into two most imbalanced splits. Moderately
buried section has 7 times more destabilizing mutations than stabilizing, and None sec-
tion has 9 times more. We have changed weights for these two models without gaining
much improvement. The next part was to start changing models from Random Forrest to
SVM. When applied to both problematic splits, while keeping the same weights for better
balancing, the accuracy remained around 0.67. However, the MCC is now around 0.21.

After this, we started to add more SVMs in attempt to find the best combination
between Random Forrest and SVM. The best result yield combination of around fifty—fifty
split. We were slowly adding SVM to each model and tested, if the accuracy or MCC
improved or not. As no further improvement was observed, we reverted those changes. As
a result, we achieved 0.70 accuracy and 0.40 MCC. ROC curve can be found on Figure 8.2.
The TPR for both classes is 0.69 and 0.71, respectively, which suggest nice balance between
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Figure 8.1: Left ROC curve of first attempt where no weights were used on models were
just Random Forrest. Right ROC curve of second attempt where weights of classes were
introduced to model.

predicting both classes. We have tried the same settings with soft voting, which resulted
in prediction of just one class, which we mark as invalid.

As a next step, we have tried to optimize weights of each model. If the model has
only a few mutations to train on instead of few thousands, it has higher risk to provide an
incorrect prediction. We have tried to adjust weights based on size of each model, however,
the final results were worse or similar than when we did not use any weights. The most
accurate model has 0.68 accuracy and 0.38 MCC. Its ROC curve can be found on Figure
8.2.

8.2 Classification into three classes
The next task was to predict three different classes, Stabilizing, destabilizing and neutral.
We have tried 2 different intervals for the neutral class. In the first attempt, the neutral
class consists of values from -1 kcal/mol to 1 kcal/mol. In the second attempt, we have
reduced the class to be from -0.5 kcal/mol to 0.5 kcal/mol. This was made based on the
measured experimental error of 0.48 kcal/mol.

The model and strategy is the same as for predicting two classes. This time, we were
not measuring the ROC curve, however, we have introduced F1 score.

The results of both attempts are quite similar, which suggest that values from 0.5 to 1
are not significant in the final decision of the classifier. However, what needs to be taken in
consideration is that in the validation dataset, the stabilizing class was reduced to 10 when
using the bigger interval, while in the smaller one there are 37.

When using the bigger interval, the first attempt looked similar as when predicting only
two classes, where ACC is 0.64 and MCC 0.31. After that, we tried to implement the best
strategy to contain the highest accuracy and MCC. After few attempts, we have managed to
achieve ACC 0.69 and MCC 0.41, which is comparable to predicting two classes. However,
the TPR for destabilizing class is 0.74, neutral is 0.69 and stabilizing is only 0.1. This
means only one out of ten stabilizing mutations was detected correctly.
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Figure 8.2: Left ROC curve of third attempt, which performed the best with MCC of 0.4
and accuracy 0.7. Right ROC curve of fourth attempt, which performed best when weights
of submodels were applied.

Following these results, we tried to focus the prediction towards the stabilizing muta-
tions, to create the tool more versatile. However, this was a difficult task to achieve as
when there was huge focus on stabilizing, we managed to predict every stabilizing mutation
correctly. Unfortunately, this lead to decrease in overall accuracy of the model. The best
results for the more versatile model had accuracy around 0.53 and MCC 0.31. TPR for
stabilizing class was 0.70, destabilizing is 0.70. The biggest decrease of TPR has the neutral
class, where the TPR dropped to 0.36.

Knowing this, we have lowered the interval and begin training of the model. Thanks
to the results from the larger interval, we did not try to achieve versatility but to keep
the highest overall accuracy. This means the model would be better in the prediction of
the destabilizing mutations, which would not be produced in laboratory. The best model
achieved similar results, with 0.65 accuracy and 0.38 MCC. However, the best TPR for
destabilizing class achieved attempt number 6, where we reached 0.8 TPR. The overall
performance was 0.61 accuracy and 0.29 MCC.

In the end, the models for predicting into two or three classes predict similarly as the
best model in the task of two categories managed to get 0.7 Accuracy and 0.4 MCC, while
for the three-class prediction, the best model achieved 0.69 ACC and 0.41 MCC. The main
improvements were achieved by switching between SVM and RandomForests and with the
class weights for specific model. Surprisingly, the changes of weights of the submodels in
the final voting model did not gain an increase in performance, even though there was a
model built over an extremely limited dataset.

8.3 Regression
In regression, 5 different models were used (Linear Regression, Huber regressor, Decision
Tree Regressor, XGBRegressor and Gradient boosting model). For each model, 19 different
experiments were done with different dataset splits. As can be seen in Table 8.1 the best
performing model is XGBRegressor, which had an average of RMSE across all attempts
about 1.81 and PCC 0.58. It was followed by Gradient boosting regressor, which is the
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Model Average RMSE Average PCC
XGBRegressor 1.81 0.58
Linear Regresion 2.13 0.21
Huber regressor 2.12 0.21
Decision Tree 2.35 0.44
Gradient Boosting 1.99 0.43

Table 8.1: Average of RMSE and PCC for all regression models, that were used.

Parameters CUPSAT Dmutatnt FoldX I-Mutatnt2.0 Imutant 3.0
(sequence)

Accuracy 0.5 0.56 0.54 0.48 0.52
MCC -0.01 0.12 0.08 -0.03 0.05

Parameters Imutant 3.0
(structure)

MUpro MultiMutate SCide SRide Scpread

Accuracy 0.64 0.37 0.44 0.49 0.49 0.49
MCC 0.27 -0.39 -0.13 -0.03 -0.04 -0.03

Table 8.2: Subset of table containing accuracy and MCC from independent dataset taken
from ProTherm to validate accuracy of methods. Full table can be found [61].

only one of the others that managed to have average RMSE below 2. The worst performing
model on average was the Decision tree regressor, which had an average RMSE of 2.35.

The best performing model was achieved in attempt 8 using XGBRegressor, which
managed to have RMSE of 1.67 with PCC 0.53. The interesting point is that the PCC is
almost the lowest with this model, while it shows the highest accuracy. The best model
from Gradient boosting is attempt 12, which achieved RMSE of 1.74 with PCC 0.49. It
can be noted that only XGBRegressor have shown RMSE under 1.7.

8.4 Comparison with existing methods

8.4.1 Classification

As described in previous chapters, comparison with existing methods is a bit complicated,
as each method uses different datasets, and they are often overestimating their results.
Many of the existing methods were cross-validated, which resulted in an overtrained model
where the actual accuracy of the model is way lower than presented. Table 8.2 is taken from
[61], where they prepared a subset from ProTherm consisting of 1,784 mutations obtained
from 80 proteins.

When comparing accuracy and MCC with methods showed in Table 8.2, we can see that
only Imutant 3.0 (structure) can be compared with our presented method, as the others
have MCC negative or close to 0. This shows the problem of overtraining on specific dataset
and failing when true independent dataset is used.

Another comparison review was published in 2021 by Iqbal et al. [52], where they
created 3 different datasets. S1342 dataset containing 1,342 single point mutations in 130
proteins was extracted from ThermoMutDB. This is the bigger dataset and the main source
of the data. The next one is S630, taken from iStable 2.0 which contains 630 mutations
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Figure 8.3: Accuracy and MCC of multiple methods on the biggest dataset from [52].
Accuracy of the best methods are around 0.7 with MCC around 0.17.

from 39 proteins. The last one is S268, taken from the most recent ProThemDB. These
datasets have some overlaps as they are not independent on each other, however, we can
observe how some methods behave differently on different datasets.

The results from the biggest dataset can be found on Figure 8.3. IDeepDDG method
is the best performing on the dataset, achieving over 0.7 accuracy and 0.18 MCC. Other
tested methods are slightly lower, where the worst performing method is SDM with accuracy
around 0.62. However, the method with the lowest MCC is MAESTRO.

Testing on smaller dataset let to increased accuracy and MCC. This can be seen on
Figure 8.4, however, it should be noted that this dataset was taken from iStable, so it is
best suited for their methods. This is indeed correct as only their method is capable of
accuracy higher than 0.8 with MCC around 0.6. However, we should have in mind that the
theoretical limit is around 0.7 [77]. The rest of the methods have MCC lower than 0.4.

The results on the smallest dataset show again completely different results regarding
MCC as the DUET method is the best performing and showing MCC over 0.5 (Figure 8.5).
Accuracy of all methods is between 0.6 and 0.8 where most of them are somewhere around
0.7.

As can be seen from the results, the accuracy of an individual method is fully dependent
on the dataset used for validation. However, the best methods are capable of accuracy
around 0.7 on multiple different datasets, with MCC around 0.4 on the smaller dataset.
This can be used to compare with our independent dataset, where our presented method is
capable of achieving 0.7 accuracy and 0.4 MCC. This seems to be in line with the currently
used state-of-the-art predictors. For the best comparison, testing all methods on the same
dataset, which would be truly independent on the datasets used for training the methods
would be the best approach, however, there are currently not enough experimental data
available for the testing of this scale.

8.4.2 Regression

As regression deals with the same problems as classification, we will be again using values
taken from Iqbal2021. The performance of individual methods is captured in Table 8.3.
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Figure 8.4: Accuracy and MCC of multiple methods on S630 dataset, with accuracy over
0.8 and MCC over 0.6. For many methods, this was the best dataset.

Figure 8.5: Accuracy and MCC of multiple methods on the smallest dataset (S268), where
multiple methods were able to have almost 0.8 accuracy with MCC around 0.4. Figure
taken from [52].
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S1342 S630 S268
PCC RMSE PCC RMSE PCC RMSE

SDM 0.30 2.79 0.35 2.24 0.25 2.06
iStable - - 0.67 1.73 0.26 2.34
mCSM 0.34 2.63 0,45 1.86 0.30 1.94
DUET 0.37 2.61 0.46 1.87 0.33 1.91
INPS - - 0.45 1.92 0.22 2.34
MAESTRO 0.20 2.88 0.33 2.05 0.23 2.30
PopMuSiC 0.36 2.67 0.42 1.92 0.24 2.30
EASE-MM - - 0.54 1.77 0.11 2.40
SDM2 0.32 2.70 0.35 2.09 0.23 2.34
DeepDDG 0.51 2.43 * * 0.19 2.53
iDeepDDG 0.51 2.42 * * 0.33 1.97
iStable2.0_PDB 0.37 2.67 0.71 1.49 0.39 1.81
iStable2.0_SEQ - - 0.70 1.51 0.23 2.26
SAAFEC-SEQ - - - - 0.17 2.36

Table 8.3: Performance of regression methods. The ’-’ means that sequence-based predictors
were not assessed, and ’*’ means that the test dataset was not blind. This table was taken
from [52].

From this table, we can observe, that depending on the dataset the state-of-the-art methods
are achieving RMSE around 1.49 on S630 dataset and 2.88 on the S1342 dataset. The PCC
is between 0.11 and 0.71. Overall, it seems that the best performing method is DUET, as
it reached the RMS of 1.87 on S630, 1.91 on S268 and 2.61 on S1342. If we compare it
to our trained XGBRegressor, which achieved 1.81 RMSE and 0.58 PCC on average, it is
similar to this method. However, it should be noted that the methods were not evaluated
on the completely independent datasets.

There are two methods that are using the same model as the one utilized in our predictor:
iStable2.0 and SAFEC-SEQ. Unfortunately, SAFEC-SEQ could be trained only on S268,
where it got RMSE of 2.36. The iStable2.0 shows the best results on S630 with 1.49 RMSE.
However it should be noted that S630 is the dataset provided by the authors.
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Chapter 9

Conclusion

The main aim of this thesis was to introduce a new method for predicting protein stability.
The proposed method contains a multi-agent system, which consist of Support Vector
Machines and Random Forests for classification and a single predictive model for regression.

For classification, two independent datasets were constructed for training and validation.
The training dataset was taken from ProThermDB with some addition from experimental
results measured in the Loschmidt Laboratories. Each of the submodel was trained on a
specific subset of the training dataset. The splitting was done by pH, ASA and secondary
structure. For the prediction of the protein stability, ΔΔG was used to divide data into
two or three classes (stabilizing, destabilizing and neutral).

The final datasets were also used for regression, as we can predict the ΔΔG. However,
as both datasets contain different protein families, the training and validation datasets were
combined and then randomly split for training and validation. This was done to create a
more robust model, as the exact values of ΔΔG can differ based on different protein family.

The best performing model for classification was able to achieve 0.7 accuracy with
0.4 MCC when predicting two classes and 0.69 accuracy with 0.41 MCC for three classes.
For regression, the best performing model is Extreme Gradient Boosting model, which shows
1.67 RMSE with 0.53 PCC. These results are comparable with the current state-of-the-art
methods.

Nowadays, the major problem in the successful utilization of machine learning methods
lies in the small and imbalanced datasets. For the best comparison with other methods,
the dataset that would be truly independent of the training sets of all methods should be
used. However, this is not possible as there are not enough available data, and therefore,
many of the reported results can be overestimated, due to the usage of the same data for
training and testing.
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Appendix A

Detailed results

Attempt Class ACC MCC TRP TNR PPV NPV FPR FNR FDR
1 0 0.49 0.00 0.11 0.89 0.51 0.48 0.11 0.89 0.49

1 0.49 0.00 0.89 0.11 0.48 0.51 0.89 0.11 0.52
2 0 0.49 0.00 0.11 0.89 0.51 0.48 0.11 0.89 0.49

1 0.49 0.00 0.89 0.11 0.48 0.51 0.89 0.11 0.52
3 0 0.47 -0.05 0.35 0.60 0.48 0.46 0.40 0.65 0.52

1 0.47 -0.05 0.60 0.35 0.46 0.48 0.65 0.40 0.54
4 0 0.47 -0.11 0.79 0.13 0.49 0.36 0.87 0.21 0.51

1 0.47 -0.11 0.13 0.79 0.36 0.49 0.21 0.87 0.64
5 0 0.48 -0.10 0.79 0.13 0.51 0.36 0.87 0.21 0.49

1 0.48 -0.10 0.13 0.79 0.36 0.51 0.21 0.87 0.64
6 0 0.48 -0.07 0.62 0.32 0.51 0.42 0.68 0.38 0.49

1 0.48 -0.07 0.32 0.62 0.42 0.51 0.38 0.68 0.58
7 0 0.48 -0.12 0.79 0.12 0.50 0.34 0.88 0.21 0.50

1 0.48 -0.12 0.12 0.79 0.34 0.50 0.21 0.88 0.66
8 0 0.49 -0.02 0.51 0.47 0.52 0.46 0.53 0.49 0.48

1 0.49 -0.02 0.47 0.51 0.46 0.52 0.49 0.53 0.54
9 0 0.47 -0.01 0.11 0.89 0.52 0.47 0.11 0.89 0.48

1 0.47 -0.01 0.89 0.11 0.47 0.52 0.89 0.11 0.53
10 0 0.47 -0.14 0.80 0.10 0.50 0.31 0.90 0.20 0.50

1 0.47 -0.14 0.10 0.80 0.31 0.50 0.20 0.90 0.69
11 0 0.46 -0.16 0.79 0.09 0.49 0.29 0.91 0.21 0.51

1 0.46 -0.16 0.09 0.79 0.29 0.49 0.21 0.91 0.71
12 0 0.48 -0.13 0.82 0.09 0.50 0.32 0.91 0.18 0.50

1 0.48 -0.13 0.09 0.82 0.32 0.50 0.18 0.91 0.68
13 0 0.47 -0.13 0.81 0.10 0.50 0.32 0.90 0.19 0.50

1 0.47 -0.13 0.10 0.81 0.32 0.50 0.19 0.90 0.68
14 0 0.48 -0.12 0.84 0.08 0.50 0.31 0.92 0.16 0.50

1 0.48 -0.12 0.08 0.84 0.31 0.50 0.16 0.92 0.69
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Attempt Class ACC MCC TRP TNR PPV NPV FPR FNR FDR
15 0 0.46 -0.16 0.81 0.08 0.49 0.28 0.92 0.19 0.51

1 0.46 -0.16 0.08 0.81 0.28 0.49 0.19 0.92 0.72
16 0 0.48 -0.10 0.82 0.10 0.51 0.35 0.90 0.18 0.49

1 0.48 -0.10 0.10 0.82 0.35 0.51 0.18 0.90 0.65
17 0 0.47 -0.14 0.82 0.08 0.50 0.29 0.92 0.18 0.50

1 0.47 -0.14 0.08 0.82 0.29 0.50 0.18 0.92 0.71
18 0 0.48 -0.11 0.82 0.10 0.50 0.33 0.90 0.18 0.50

1 0.48 -0.11 0.10 0.82 0.33 0.50 0.18 0.90 0.67
19 0 0.48 -0.12 0.81 0.10 0.50 0.33 0.90 0.19 0.50

1 0.48 -0.12 0.10 0.81 0.33 0.50 0.19 0.90 0.67
20 0 0.48 -0.01 0.08 0.91 0.52 0.47 0.09 0.92 0.48

1 0.48 -0.01 0.91 0.08 0.47 0.52 0.92 0.09 0.53
21 0 0.32 0.14 0.11 0.97 0.90 0.27 0.03 0.89 0.10

1 0.32 0.14 0.97 0.11 0.27 0.90 0.89 0.03 0.73
22 0 0.96 0.94 0.96 0.98 0.99 0.89 0.02 0.04 0.01

1 0.96 0.94 0.98 0.96 0.89 0.99 0.04 0.02 0.11
23 0 0.96 0.94 0.96 0.98 0.99 0.88 0.02 0.04 0.01

1 0.96 0.94 0.98 0.96 0.88 0.99 0.04 0.02 0.12
24 0 0.96 0.94 0.96 0.98 0.99 0.89 0.02 0.04 0.01

1 0.96 0.94 0.98 0.96 0.89 0.99 0.04 0.02 0.11
25 0 0.47 -0.14 0.82 0.09 0.50 0.30 0.91 0.18 0.50

1 0.47 -0.14 0.09 0.82 0.30 0.50 0.18 0.91 0.70
26 0 0.47 -0.14 0.83 0.08 0.50 0.30 0.92 0.17 0.50

1 0.47 -0.14 0.08 0.83 0.30 0.50 0.17 0.92 0.70
27 0 0.48 -0.13 0.82 0.09 0.50 0.31 0.91 0.18 0.50

1 0.48 -0.13 0.09 0.82 0.31 0.50 0.18 0.91 0.69
28 0 0.48 -0.13 0.83 0.09 0.50 0.31 0.91 0.17 0.50

1 0.48 -0.13 0.09 0.83 0.31 0.50 0.17 0.91 0.69
29 0 0.62 0.10 0.89 0.17 0.64 0.50 0.83 0.11 0.36

1 0.62 0.10 0.17 0.89 0.50 0.64 0.11 0.83 0.50
30 0 0.97 0.95 0.97 0.98 0.99 0.93 0.02 0.03 0.01

1 0.97 0.95 0.98 0.97 0.93 0.99 0.03 0.02 0.07
31 0 0.63 0.12 0.89 0.19 0.64 0.53 0.81 0.11 0.36

1 0.63 0.12 0.19 0.89 0.53 0.64 0.11 0.81 0.47
32 0 0.62 0.09 0.89 0.17 0.64 0.49 0.83 0.11 0.37

1 0.62 0.09 0.17 0.89 0.49 0.64 0.11 0.83 0.51
33 0 0.62 0.10 0.89 0.18 0.64 0.51 0.82 0.11 0.36

1 0.62 0.10 0.18 0.89 0.51 0.64 0.11 0.82 0.49
34 0 0.60 0.06 0.85 0.19 0.63 0.45 0.81 0.15 0.37

1 0.60 0.06 0.19 0.85 0.45 0.63 0.15 0.81 0.55
35 0 0.80 0.47 0.89 0.55 0.84 0.66 0.45 0.11 0.16

1 0.80 0.47 0.55 0.89 0.66 0.84 0.11 0.45 0.34
36 0 0.60 0.06 0.84 0.21 0.63 0.45 0.79 0.16 0.37

1 0.60 0.06 0.21 0.84 0.45 0.63 0.16 0.79 0.55
37 0 0.57 0.01 0.82 0.18 0.61 0.40 0.82 0.18 0.39

1 0.57 0.01 0.18 0.82 0.40 0.61 0.18 0.82 0.60
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Attempt Class ACC MCC TRP TNR PPV NPV FPR FNR FDR
38 0 0.28 -0.36 0.02 0.74 0.10 0.31 0.26 0.98 0.90

1 0.28 -0.36 0.74 0.02 0.31 0.10 0.98 0.26 0.69
39 0 0.29 -0.33 0.02 0.75 0.13 0.31 0.25 0.98 0.87

1 0.29 -0.33 0.75 0.02 0.31 0.13 0.98 0.25 0.69
40 0 0.71 0.35 0.99 0.24 0.69 0.96 0.76 0.01 0.31

1 0.71 0.35 0.24 0.99 0.96 0.69 0.01 0.76 0.04
41 0 0.57 -0.01 0.82 0.17 0.61 0.38 0.83 0.18 0.39

1 0.57 -0.01 0.17 0.82 0.38 0.61 0.18 0.83 0.63
42 0 0.69 0.30 0.97 0.24 0.68 0.81 0.76 0.03 0.32

1 0.69 0.30 0.24 0.97 0.81 0.68 0.03 0.76 0.19
43 0 0.71 0.34 0.99 0.24 0.69 0.93 0.76 0.01 0.31

1 0.71 0.34 0.24 0.99 0.93 0.69 0.01 0.76 0.07
44 0 0.59 0.04 0.85 0.18 0.62 0.44 0.82 0.15 0.38

1 0.59 0.04 0.18 0.85 0.44 0.62 0.15 0.82 0.56
45 0 0.58 0.05 0.80 0.24 0.63 0.43 0.76 0.20 0.37

1 0.58 0.05 0.24 0.80 0.43 0.63 0.20 0.76 0.57
46 0 0.71 0.34 0.99 0.24 0.69 0.93 0.76 0.01 0.31

1 0.71 0.34 0.24 0.99 0.93 0.69 0.01 0.76 0.07
47 0 0.70 0.32 0.98 0.23 0.68 0.89 0.77 0.02 0.32

1 0.70 0.32 0.23 0.98 0.89 0.68 0.02 0.77 0.11
48 0 0.70 0.32 0.98 0.24 0.68 0.86 0.76 0.02 0.32

1 0.70 0.32 0.24 0.98 0.86 0.68 0.02 0.76 0.14
49 0 0.71 0.34 0.98 0.25 0.69 0.90 0.75 0.02 0.31

1 0.71 0.34 0.25 0.98 0.90 0.69 0.02 0.75 0.10
50 0 0.67 0.24 0.98 0.15 0.66 0.84 0.85 0.02 0.34

1 0.67 0.24 0.15 0.98 0.84 0.66 0.02 0.85 0.16
51 0 0.64 0.12 1.00 0.03 0.63 1.00 0.97 0.00 0.37

1 0.64 0.12 0.03 1.00 1.00 0.63 0.00 0.97 0.00

Table A.1: Table of results when training two classes

65



Attempt ACC MCC F1 Recall Precision TPR
1 0.64 0.32 0.49 0.48 0.76 0.75,0.1,0.58
2 0.62 0.27 0.48 0.46 0.75 0.73,0.1,0.56
3 0.65 0.33 0.49 0.48 0.60 0.76,0.1,0.58
4 0.62 0.28 0.47 0.46 0.58 0.75,0.1,0.54
5 0.61 0.26 0.47 0.45 0.58 0.75,0.1,0.52
6 0.66 0.35 0.51 0.49 0.77 0.72,0.1,0.65
7 0.67 0.37 0.52 0.50 0.78 0.71,0.1,0.69
8 0.66 0.35 0.51 0.49 0.77 0.69,0.1,0.68
9 0.64 0.31 0.49 0.47 0.76 0.75,0.1,0.57
10 0.66 0.36 0.51 0.49 0.78 0.79,0.1,0.59
11 0.62 0.29 0.47 0.46 0.53 0.8,0.1,0.5
12 0.62 0.30 0.45 0.46 0.45 0.67,0.1,0.62
13 0.70 0.42 0.53 0.51 0.80 0.75,0.1,0.7
14 0.63 0.29 0.48 0.47 0.59 0.73,0.1,0.57
15 0.68 0.38 0.51 0.50 0.62 0.74,0.1,0.66
16 0.66 0.35 0.50 0.49 0.56 0.75,0.1,0.63
17 0.66 0.35 0.49 0.48 0.49 0.71,0.1,0.66
18 0.64 0.33 0.49 0.50 0.48 0.73,0.2,0.58
19 0.32 0.24 0.29 0.54 0.57 0.54,1,0.08
20 0.34 0.25 0.31 0.55 0.56 0.57,1,0.1
21 0.34 0.23 0.30 0.55 0.52 0.57,1,0.09
22 0.46 0.22 0.37 0.57 0.48 0.71,0.8,0.21
23 0.65 0.32 0.44 0.44 0.44 0.58,0,0.76
24 0.47 0.24 0.38 0.58 0.49 0.71,0.8,0.23
25 0.32 0.21 0.27 0.54 0.47 0.57,1,0.05
26 0.52 0.29 0.43 0.58 0.49 0.7,0.7,0.35
27 0.52 0.29 0.44 0.58 0.49 0.69,0.7,0.37
28 0.54 0.31 0.45 0.59 0.51 0.71,0.7,0.37
29 0.53 0.31 0.44 0.59 0.50 0.71,0.7,0.37

Table A.2: Detailed results when training three classes with interval between -1 and 1
kcal/mol
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Attempt ACC MCC F1 Recall Precision TPR TNR
1 0.61 0.29 0.44 0.46 0.73 0.72,0.03,0.64 0.63,1,0.67
2 0.62 0.34 0.46 0.48 0.75 0.68,0.03,0.74 0.71,1,0.63
3 0.65 0.36 0.47 0.49 0.59 0.79,0.03,0.65 0.63,1,0.73
4 0.64 0.34 0.46 0.48 0.75 0.77,0.03,0.65 0.63,1,0.71
5 0.61 0.29 0.45 0.46 0.62 0.8,0.06,0.53 0.53,1,0.76
6 0.61 0.29 0.44 0.45 0.57 0.82,0.03,0.52 0.53,1,0.76
7 0.61 0.29 0.45 0.46 0.73 0.77,0.06,0.58 0.55,1,0.74
8 0.62 0.31 0.46 0.47 0.63 0.79,0.06,0.58 0.57,1,0.74
9 0.62 0.32 0.45 0.47 0.74 0.74,0.03,0.65 0.64,1,0.68
10 0.64 0.34 0.46 0.48 0.75 0.77,0.03,0.65 0.64,1,0.71
11 0.61 0.30 0.46 0.47 0.62 0.73,0.06,0.64 0.63,1,0.68
12 0.62 0.32 0.45 0.47 0.74 0.7,0.03,0.71 0.69,1,0.64
13 0.65 0.37 0.47 0.49 0.76 0.73,0.03,0.73 0.71,1,0.67
14 0.61 0.29 0.44 0.46 0.73 0.77,0.03,0.58 0.57,1,0.72
15 0.61 0.32 0.45 0.47 0.74 0.67,0.03,0.73 0.71,1,0.62
16 0.62 0.32 0.45 0.47 0.74 0.71,0.03,0.69 0.67,1,0.66
17 0.63 0.34 0.46 0.48 0.58 0.71,0.03,0.72 0.7,1,0.65
18 0.59 0.26 0.43 0.45 0.72 0.7,0.03,0.62 0.62,1,0.65
19 0.61 0.31 0.45 0.47 0.57 0.68,0.03,0.71 0.69,1,0.64
20 0.63 0.36 0.49 0.50 0.75 0.69,0.09,0.74 0.73,1,0.63
21 0.64 0.38 0.50 0.51 0.76 0.7,0.09,0.75 0.74,1,0.64
22 0.63 0.35 0.49 0.50 0.62 0.67,0.09,0.76 0.75,1,0.62
23 0.62 0.34 0.48 0.49 0.75 0.67,0.09,0.74 0.72,1,0.63
24 0.63 0.35 0.47 0.49 0.53 0.72,0.06,0.7 0.7,0.99,0.67
25 0.64 0.36 0.49 0.50 0.67 0.7,0.09,0.74 0.71,1,0.66
26 0.65 0.39 0.50 0.51 0.63 0.73,0.09,0.73 0.73,1,0.68
27 0.63 0.34 0.47 0.49 0.75 0.71,0.06,0.71 0.68,1,0.67
28 0.64 0.37 0.48 0.50 0.65 0.71,0.06,0.74 0.71,1,0.66
29 0.64 0.36 0.48 0.50 0.65 0.71,0.06,0.73 0.7,1,0.67
30 0.65 0.38 0.49 0.51 0.76 0.7,0.06,0.78 0.75,1,0.64
31 0.64 0.37 0.49 0.50 0.63 0.7,0.09,0.74 0.73,1,0.65
32 0.64 0.38 0.50 0.51 0.76 0.68,0.09,0.78 0.76,1,0.63
33 0.64 0.37 0.48 0.50 0.60 0.71,0.06,0.75 0.73,1,0.66
34 0.63 0.36 0.49 0.50 0.76 0.67,0.09,0.77 0.75,1,0.62

Table A.3: Detailed results when training three classes with interval between -0.5 and 0.5
kcal/mol
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Attempt MAE MSE RMSE PCC model
1 1.24 3.53 1.88 0.56 XGBRegressor1
2 1.22 3.15 1.78 0.62 XGBRegressor2
3 1.20 3.28 1.81 0.60 XGBRegressor3
4 1.16 3.33 1.82 0.61 XGBRegressor4
5 1.25 3.51 1.87 0.60 XGBRegressor5
6 1.23 3.84 1.96 0.55 XGBRegressor6
7 1.25 3.53 1.88 0.55 XGBRegressor7
8 1.17 2.81 1.68 0.53 XGBRegressor8
9 1.21 3.14 1.77 0.62 XGBRegressor9
10 1.16 2.89 1.70 0.60 XGBRegressor10
11 1.22 3.15 1.77 0.53 XGBRegressor11
12 1.19 3.43 1.85 0.60 XGBRegressor12
13 1.28 3.56 1.89 0.56 XGBRegressor13
14 1.22 3.32 1.82 0.57 XGBRegressor14
15 1.16 2.88 1.70 0.62 XGBRegressor15
16 1.17 3.04 1.74 0.61 XGBRegressor16
17 1.21 3.53 1.88 0.52 XGBRegressor17
18 1.27 3.72 1.93 0.58 XGBRegressor18
19 1.16 2.81 1.68 0.61 XGBRegressor19
20 1.41 4.35 2.08 0.17 LinearRegression1
21 1.51 4.91 2.22 0.24 LinearRegression2
22 1.46 4.20 2.05 0.29 LinearRegression3
23 1.45 4.47 2.11 0.21 LinearRegression4
24 1.58 5.35 2.31 0.21 LinearRegression5
25 1.43 4.24 2.06 0.20 LinearRegression6
26 1.45 4.07 2.02 0.26 LinearRegression7
27 1.42 4.36 2.09 0.22 LinearRegression8
28 1.50 5.01 2.24 0.22 LinearRegression9
29 1.41 3.79 1.95 0.20 LinearRegression10
30 1.40 4.08 2.02 0.16 LinearRegression11
31 1.49 4.74 2.18 0.22 LinearRegression12
32 1.47 4.68 2.16 0.14 LinearRegression13
33 1.49 5.22 2.29 0.19 LinearRegression14
34 1.47 4.17 2.04 0.25 LinearRegression15
35 1.52 5.12 2.26 0.18 LinearRegression16
36 1.53 4.91 2.22 0.24 LinearRegression17
37 1.47 4.31 2.08 0.25 LinearRegression18
38 1.52 4.71 2.17 0.23 LinearRegression19
39 1.45 4.19 2.05 0.25 HuberRegressor1
40 1.45 4.46 2.11 0.15 HuberRegressor2
41 1.54 5.08 2.25 0.16 HuberRegressor3
42 1.51 4.69 2.17 0.25 HuberRegressor4
43 1.47 4.34 2.08 0.22 HuberRegressor5
44 1.49 4.60 2.15 0.21 HuberRegressor6
45 1.45 4.41 2.10 0.25 HuberRegressor7
46 1.45 4.17 2.04 0.27 HuberRegressor8
47 1.42 4.63 2.15 0.23 HuberRegressor9
48 1.40 3.93 1.98 0.23 HuberRegressor1068



Attempt MAE MSE RMSE PCC model
49 1.41 4.01 2.00 0.20 HuberRegressor11
50 1.44 4.45 2.11 0.20 HuberRegressor12
51 1.52 4.91 2.21 0.21 HuberRegressor13
52 1.40 4.20 2.05 0.20 HuberRegressor14
53 1.46 4.40 2.10 0.22 HuberRegressor15
54 1.49 4.43 2.10 0.23 HuberRegressor16
55 1.48 5.01 2.24 0.22 HuberRegressor17
56 1.50 4.50 2.12 0.19 HuberRegressor18
57 1.50 5.13 2.26 0.24 HuberRegressor19
58 1.52 6.31 2.51 0.41 DTRegressor1
59 1.47 5.72 2.39 0.44 DTRegressor2
60 1.61 5.78 2.40 0.46 DTRegressor3
61 1.48 5.22 2.28 0.45 DTRegressor4
62 1.48 5.36 2.32 0.48 DTRegressor5
63 1.55 5.99 2.45 0.41 DTRegressor6
64 1.54 6.07 2.46 0.41 DTRegressor7
65 1.49 5.62 2.37 0.50 DTRegressor8
66 1.49 5.27 2.29 0.42 DTRegressor9
67 1.51 5.36 2.31 0.43 DTRegressor10
68 1.42 4.89 2.21 0.45 DTRegressor11
69 1.48 5.49 2.34 0.43 DTRegressor12
70 1.55 5.97 2.44 0.42 DTRegressor13
71 1.45 5.28 2.30 0.44 DTRegressor14
72 1.53 5.41 2.33 0.47 DTRegressor15
73 1.51 5.75 2.40 0.49 DTRegressor16
74 1.51 5.18 2.28 0.46 DTRegressor17
75 1.46 5.18 2.28 0.45 DTRegressor18
76 1.44 5.13 2.27 0.39 DTRegressor19
77 1.40 4.02 2.01 0.46 GBRegressor1
78 1.37 4.14 2.03 0.43 GBRegressor2
79 1.37 4.14 2.04 0.44 GBRegressor3
80 1.36 4.00 2.00 0.43 GBRegressor4
81 1.41 4.47 2.11 0.43 GBRegressor5
82 1.37 3.88 1.97 0.40 GBRegressor6
83 1.38 3.80 1.95 0.36 GBRegressor7
84 1.34 3.96 1.99 0.39 GBRegressor8
85 1.35 4.02 2.01 0.45 GBRegressor9
86 1.40 3.79 1.95 0.41 GBRegressor10
87 1.49 4.70 2.17 0.43 GBRegressor11
88 1.28 3.03 1.74 0.50 GBRegressor12
89 1.43 4.01 2.00 0.45 GBRegressor13
90 1.40 4.43 2.10 0.41 GBRegressor14
91 1.31 3.37 1.84 0.48 GBRegressor15
92 1.36 3.97 1.99 0.46 GBRegressor16
93 1.35 3.74 1.93 0.47 GBRegressor17
94 1.41 4.31 2.08 0.43 GBRegressor18
95 1.39 3.96 1.99 0.39 GBRegressor19

Table A.4: Detailed results of regression69
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