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ABSTRACT 
Th is doctoral thesis addresses the "Research on Reliable Low-Power Wide -Area C o m ­
municat ions Ut i l iz ing M u l t i - R A T L P W A N Technologies for l oT Appl icat ions" . Despite 
the immense progress in massive Mach ine-Type Communica t ion ( m M T C ) technology en-
ablers such as Low-Power Wide-Area ( L P W A ) networks, their performance does not have 
to satisfy the requirements of novelty Internet of Th ings ( loT) appl icat ions. The main 
goal of this P h . D . work is to explore and evaluate the l imitat ions of current L P W A tech­
nologies and propose novel mechanisms faci l i tat ing coverage planning and assessment. 
Proposed frameworks are f ine-tuned and cross-validated by the extensive measurement 
campaigns conducted in public L P W A networks. Th is doctoral thesis further introduces 
the novelty approach of m u l t i - R A T L P W A devices to overcome the performance l imita­
t ion of individual L P W A technologies. The current implementat ion primarily focuses on 
diminishing the greatest m u l t i - R A T solut ions disadvantage, i.e., increased power con­
sumption by employing a machine learning approach to radio interface selection. 
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1 Introduction 
The current trend of joining various Internet of Things (IoT) networks and tech­

nologies under one umbrella of mutually connected services, also known as Hetero­

geneous IoT (HetloT), represents a research field that has strong potential. He t loT 

is currently gaining momentum in numerous areas, including smart homes, smart 

cities, intelligent transportation, smart metering, Industry 4.0, and wearables [1-3]. 

W i t h such an extensive basis, He t loT wi l l influence our lives, providing convenient 

services for the upcoming years. The current IoT and Machine-to-Machine ( M 2 M ) 

solutions already represent heterogeneous systems consisting of wireless sensor net­

works, mobile networks, wireless mesh networks, vehicular networks, and Low-Power 

Wide-Area ( L P W A ) technologies [4,5]. However, radically diverse requirements of 

IoT applications, communication technologies, and heterogeneity of network archi­

tecture make the development of He t loT applications extremely complex task [6]. 

1.1 State-of-the-Art M2M Communication 

A t its core, IoT targets ubiquitous interconnected devices with unique digital identi­

ties monitored and controlled by a central server. To provide real-time control, mon­

itoring, and security management, IoT adopts various long and short-range wireless 

communication technologies. In other words, these Het loT networks employ wireless 

communication modules, sensors, and other smart terminals for ubiquitous sensing 

at any time [2,6]. 

It is essential to bear in mind that coexisting heterogeneous network units limit 

the efficiency of channel resource util ization. W i t h the ultimate goal of deliver­

ing the data from smart sensors over different environments, wi th hard-to-reach 

devices, the research of energy-efficient technologies, including L P W A has been in i ­

tiated [4,7]. However, high adoption of He t loT brings another challenge connected 

wi th congestion problems [8,9]. A n immense number of concurrently communicating 

devices effectively prevents the system from operating in a timely manner. There­

fore, it is crucial to optimize the scheduling of network resources wi th respect to 

unexpected/emergency events to be served - having a quality of service in mind. 

Future research tasks also include exploring new networking models for Het loT, 

big data integration, data privacy, and seamless transfer in heterogeneous network 

units [2,5,10]. This work is not trying to give all answers but rather concentrates on 

L P W A technologies as enablers of M 2 M communication and recently also massive 

Machine-Type Communication ( m M T C ) in heterogeneous L P W A networks. 

The upswing of L P W A technologies is primarily initiated by the massive growth 

of M 2 M communication throughout the last decade [11]. These new wireless commu-
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nication technologies are solely oriented on extended coverage and prolonged battery 

life. In line with the M 2 M requirements, L P W A technologies are primarily designed 

for small data transmissions over long distances while maintaining reduced power 

consumption [12,13]. It is expected that L P W A technologies wi l l cover a variety of 

applications, including personal IoT applications, home automation, assets tracking, 

smart grids, and infrastructure monitoring, see F ig . 1.1. 

0 

Smart City Applications H Personal IoT Applications 

ŕ 

Smart Grid & Metering 

S BI I M I 

I I T 

Industrial Assets Monitoring Agriculture 

ň ň 
Home Automation & Safety 

Fig . 1.1 

\ 
Infrastructure Monitoring 

L P W A 

a 

Logistics 

Fig . 1.1: L P W A N technology use cases [13]. 

Concentrating on the fundamental parameter of the L P W A , which is long­range, 

the large link budget is needed. Usually, L P W A technologies operate with a link 

budget ranging between 140 and 160 d B . W i t h such capabilities, it is possible to 

reach a communication distance of 5 k m in the urban environment and more than 

10 k m in rural areas. Extended coverage is also connected with receivers' sensitiv­

ity. In the case of L P W A , communication modules providing sensitivity of more 

than ­130 d B m are not rare. To achieve these sensitivity levels, L P W A technologies 

use a slower modulation rate requiring narrowband channels (usually smaller than 

25 kHz) . Based on the Shanon­Hartley theorem slowing the modulation rate by half 

increases the energy of each bi t / symbol twice ­ thus, it increases the link budget 

two times (+3 dB) as well. Such an approach, however, negatively influences the 

resulting data­rate [12,14]. For example, Sigfox utilizes a modulation rate of 100 B d 

with one­bit Binary­Phase Shift Keying ( B P S K ) modulation. Hence, it results in 

the final data rate of 100 bps, which may look archaic, but it is still sufficient for 

certain undemanding M 2 M applications [15]. 

Another option how to achieve a large link budget is to spread the energy of a 

narrowband channel across a wider band and incorporate processing (coding) gain. 
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This approach is so effective that it is possible to receive signals below the noise floor 

(Signal-to-Noise Rat io (SNR) < -20 dB) . Generally, coded signals provide better per­

formance in terms of minimum detectable energy, wi th higher resilience to jamming 

and narrowband interferences. O n the other hand, the spectrum is not utilized as 

effectively as in the case of narrowband technologies. Considering a 100 Hz channel 

operated by Ultra-Narrowband ( U N B ) technology Sigfox, the thermal noise level is 

-154 d B m . W i t h the required S N R of 10 d B , the theoretical maximum sensitivity 

reaches -144 d B m . For the 125 kHz spread-spectrum channel utilized by L o R a W A N 

technology, the thermal noise power increases to -124 d B m . Therefore even wi th the 

20 dB coding gain, we can only achieve the same sensitivity of -144 d B m , as in the 

case of the narrowband signal [14-16]. 

W i t h the same level of importance, the extended battery life of 10+ years is crit­

ical to reducing M 2 M devices' maintenance costs. To achieve prolonged battery life, 

L P W A technologies implement optimizations in all vertical of the communication 

infrastructure, including (i) network topology, (ii) Duty Cycle (DC) , (iii) transceiver 

complexity, and (iv) lightweight Medium Access Control ( M A C ) layer [4]. 

The use of mesh topology to extend the coverage is not optimal for L P W A 

networks as it requires dense infrastructure to provide reliable services. Also, the 

routing protocols used in mesh networks bring additional communication overheads, 

require more complex devices, increase the cost, and leads to reduced battery life. 

L P W A technologies, on the other hand, use a simple star or start-of-stars topology 

wi th a single-hop transmission. It brings significant energy savings on the End-

Device (ED) side as the complex tasks are delegated to the Base Station (BS), which 

usually continuously listens for incoming data transmission on multiple frequencies 

(channels). Further, the E D can initiate the transmission without prior connection 

setup. Moreover, the channel access is mainly based on purely random Abram-

son's Logic of Hir ing Access ( A L O H A ) protocol, or in the case of Third-Generation 

Partnership Project (3GPP) standards, more deterministic slotted A L O H A is uti­

lized [4,13]. 

1.2 Research Motivation 

The unprecedented growth of the IoT sector and M 2 M communication influences 

even the usually rigid industry sectors including Supervisory Control and Data A c ­

quisition ( S C A D A ) systems. The beginnings of S C A D A systems can be traced back 

to the 1960s [17,18]. In these times, the systems heavily relied on telephony lines, 

and the monitoring functionality was hard-wired to the equipment as the solid-

state devices were in the infancy stage. However, the giant step forward came in 
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the 1970s wi th minicomputers based on 8 or 16-bit processors. The minicomput­

ers automatized the operators' tasks and offered additional functions like scanning, 

monitoring, and alarming. Further advancement led to the appearance of micropro­

cessors, the basis for Programmable Logic Controller (PLC)s . The programmability, 

being the most significant assets of P L C , allowed vendors to develop more efficient 

and cost-effective systems. Since then, the S C A D A has evolved into the complex 

interconnected Internet Protocol (IP)-based systems communicating mostly v ia an 

Ethernet connection [17-19]. 

Though the S C A D A systems were init ial ly designed for inside-the-fence appli­

cations, they are also rapidly adopted in outside-the-fence scenarios. The fastest 

adoption is currently in the energy distribution sector, i.e., water, electricity, and 

natural gas. However, the adoption of S C A D A in the outside-the-fence application 

brought new challenges. In the case of remote assets, both power and communication 

coverage are crucial. Inside-the-fence S C A D A assets, located in the manufacturing 

plant, have access to an unlimited, reliable power source. In contrast, remotely lo­

cated S C A D A assets usually rely on batteries, representing a strongly limited power 

source. A further challenge comes with signal coverage. The devices may operate 

in areas with severe radio conditions, i.e., underground construction, remote de­

ployments, or deep indoor applications. For the telecommunication operators, it 

can be uneconomical to cover these places wi th conventional technologies. However, 

novelty L P W A technologies may help to solve both battery-life and signal coverage 

issues [17,20]. 

Also, the recent wireless networks statistics reveal the importance of wide-area 

IoT in the following years. According to the Ericsson mobili ty report [21], the 

number of wide-area IoT connections wi l l grow from 1.6 bil l ion in 2019 to 5.5 bil l ion 

in 2025. O n top of that, more than half of IoT connections wi l l be realized by 

cellular L P W A technologies, including L T E - C a t M and Narrowband IoT (NB-IoT) . 

Globally, Cisco's annual internet report [11] forecasts a 14% market share of the 

L P W A technologies by 2023, representing the fastest-growing mobile communication 

segment. In total, it means growth from 223 mil l ion L P W A devices in 2018 to 1.9 

bil l ion in 2023. 

However, the massive growth of IoT and M 2 M communication predicted by the 

leading technology companies is not groundless. W i t h i n the European Union, the 

T h i r d Energy Package obligates the member states to implement smart metering 

deployments as a part of a climate-neutral economy by 2050. The most significant 

progress has been made in smart electricity meters deployment, where the European 

Commission expects at least 80 % market penetration by 2021. Namely, it represents 

almost 245 mil l ion connected devices. However, in the case of gas and water, market 

adoption is much lower. A s each smart metering device must provide a remote 
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interface, in most cases supplied by wireless technologies, this market offers enormous 

potential for L P W A technologies [22]. 

Also, the smart meters vendors are aware of the L P W A technologies' importance 

in this area. The latest Device Language Message Specification ( D L M S ) / C o m p a n i o n 

Specification for Energy Metering ( C O S E M ) release, the de facto global standard for 

energy metering, control, and management, introduced a new L P W A N profile. This 

new profile defines how the C O S E M data model and the D L M S / C O S E M application 

layer can be transported via various L P W A technologies using the Static Context 

Header Compression and Fragmentation ( S C H C ) framework. The adaptation layer 

represents a set of mechanisms providing header compression/decompression and 

optional fragmentation/reassembly algorithms for underlying L P W A M A C / P H Y 

layers. From the perspective of higher layers, the standard builds upon full IPv6, 

User Datagram Protocol ( U D P ) , and C O S E M wrapper headers. Currently, the 

L P W A N profile emphasizes L o R a W A N and N B - I o T technologies, but the adoption 

of other standards is also possible [23,24]. 

1.3 Scope of the Dissertation 

Based on the facts mentioned in Section 1.2, it is clear that L P W A technologies 

wi l l play a crucial role as m M T C enablers in the upcoming years. Therefore, it 

is necessary to evaluate their performance in real-world applications and eliminate 

the shortcomings. W i t h the advent of new demanding m M T C scenarios, single 

L P W A technology does not have to be sufficient in terms of communication reliability 

and delay. Thus the m u l t i - R A T L P W A solutions may be crucial to fulfill these 

demands. However, it wi l l be vi tal to select technologies that complement each 

other in their strengths and weaknesses in such a case. O n top of that, it wi l l be 

necessary to develop radio interface selection algorithms mitigating the increased 

power consumption of multiple R A T s . These tasks represent the main goals of this 

doctoral thesis. 

To this aim, this doctoral thesis provides a comprehensive analysis of current 

L P W A technologies in all verticals from the signal propagation up to m u l t i - R A T 

optimizations. In particular, the primary goals are divided into three subsequent 

research studies: 

• L P W A Propagation Models - the precise prediction of signal propagation 

in the radio environment represents the uppermost question during any wire­

less technology design. The development of such empirical propagation models 

requires to conduct a large-scale measurement campaign, data-fitting, and ac­

curacy verification. For this purpose, a new quantitative comparison metric 
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is introduced. Also, the developed models' accuracy is cross-verified by the 

second measurement campaign. 

• Coverage Assessment Planning - the assessment of radio network cover­

age is an essential task for network deployment and maintenance. However, 

the conduct of measurement campaigns on such a scale is a costly and time-

consuming process. Therefore, any reduction of required measurements is 

beneficial. To this aim, this work proposes a new methodology of measure­

ment point selection without the explicit knowledge of BS locations based on 

well-known interpolation algorithms. 

• M u l t i - R A T Solution for m M T C Scenarios - the most crucial challenges 

of m u l t i - R A T deployments include increased power consumption and auto­

matic radio interface selection. Both these issues can be addressed by using 

machine learning algorithms. Specifically, Reinforcement Learning (RL) algo­

rithms solving the M u l t i - A r m e d Bandit ( M A B ) problem seems to be a viable 

solution. However, to gain a sufficient length of traces, also doubly-stochastic 

Markov chain model is developed. This model represents a convenient tool 

for characterizing the dynamics of the radio interface. Further, it is needed to 

have precise knowledge of power consumption in each operating condition and 

state. Therefore, results of the power measurement campaign serve as the basis 

of the developed battery-life expectancy model used by the R L algorithms. 

1.4 Dissertation Outline and Main Results 

This doctoral thesis consists of six individual chapters covering the author's re­

search between 2016 and 2021. The provided results represent the most significant 

outcomes of the author's work published in well-recognized scientific journals, pro­

ceedings of international conferences, and book chapters. Overall the thesis is logi­

cally structured in order to provide insight into al l critical parts of research on low-

power wide-area communications uti l izing m u l t i - R A T L P W A technologies for IoT 

applications. The introduction section enlights the state-of-the-art heterogeneous 

networks, closely followed by the description of L P W A technologies' fundamental 

principles and features. Chapter 2 is dedicated to M T C ' s history in legacy commu­

nication systems, followed by a description of emerging m M T C use cases in both 

IoT and Industry 4.0. Finally, the second chapter concludes by reporting on m M T C 

enablers, namely L P W A technologies, and their connection wi th the m u l t i - R A T ap­

proach. Going further, Chapters 3 - 5 contain the core ideas as well as the main 

outputs of this doctoral thesis. 

Chapter 3 describes two large-scale measurement campaigns of L P W A technolo­

gies in two major cities in the Czech Republic. The chapter further provides a com-
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parison of commonly used sub-GHz empirical propagation models from three pri­

mary sources: (i) standardization bodies, (ii) vendors/operators, and (iii) academia. 

The accuracy of selected models is ranked based on the developed quantitative met­

ric, and the best-performing ones are used in the derivation of the new propagation 

models. Then, data from the second city are used to verify the accuracy of newly 

created models to provide coherent results. 

Bui ld ing upon the acquired knowledge, Chapter 4 provides a comprehensive 

framework for assessing network deployments radio conditions wi th the minimum 

number of measurement points. The developed toolbox estimates the signal quality 

of L P W A technologies in the closest proximity of the measurement point by uti l iz­

ing well-known interpolation methods. Further, two proposed thinning algorithms 

reduce the number of measurement points in a sequential manner to evaluate the 

accuracy of the interpolation wi th decreasing number of generating points. The first 

thinning algorithm uses a probabilistic approach, whereas the second one addresses 

this issue deterministically. 

Going further, Chapter 5 deals with the battery life optimization of L P W A mult i-

R A T devices. Incorporating data from the long-term measurements allow developing 

a doubly stochastic Markov model for generating traces of arbitrary length used in 

subsequent machine learning algorithms. W i t h power consumption results acquired 

during an extensive measurement campaign of several modules, it is possible to 

predict the behavior of L P W A technologies in the whole operational range. In terms 

of L P W A , it means M a x i m u m Coupling Loss ( M C L ) values of up to 164 dB [25] and 

signal levels as low as -135 d B m . This consumption data denotes the rewards for the 

selected R L policies. Identically to the M A B problem, the R L algorithms' ultimate 

goal is to choose the arm wi th the highest average rewards. Theoretically, it leads 

to the highest achievable battery life possible. 

Finally, Chapter 6 concludes the whole doctoral thesis. 
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2 Massive Machine-Type Communications 
in 5G Era 

In the course of the last decade, we are witnessing an unprecedented paradigm 

shift from human-oriented communication towards the direct data exchange between 

machines. According to Cisco annual report, M 2 M applications wi l l represent 50% 

of the connected devices by 2023. It is also expected that the M 2 M connections wi l l 

be the fastest-growing category of devices [11]. 

It is also reflected in the rise of communication technologies solely oriented on 

M 2 M applications. These technologies include L P W A representatives from license-

exempt spectrum such as Sigfox and L o R a W A N along wi th 3GPP-defined ones like 

L T E Cat M 1 / M 2 or NB- IoT . However, M 2 M plays a crucial role also in 5 G New 

Radio (NR) , see Table 2.1. W i t h i n the 5 G ecosystem, m M T C serves as an enabler 

of M 2 M communication [4,7,26]. 

2.1 Legacy Communication Systems 

Before the arrival of 5G technologies, the mobile networks were primarily designed 

wi th Human-to-Human (H2H) communication in mind. In other words, the main 

focus was given to human-centric communication, such as voice services or data 

transmissions in the Downlink (DL) direction [27]. The first shift in this paradigm 

came wi th 3 G P P Release 10, which introduced init ial steps towards the M 2 M capa­

ble networks [28]. 

However, mobile network technologies ratified by 3 G P P are not the only commu­

nication standard available. The need for effective transmission of small data units 

wi th low frequency gave rise to a plethora of long-range wireless technologies. Nev­

ertheless, with the advent of 5 G N R and L P W A networks, these legacy technologies 

lost momentum and became relevant only in particular use cases [29,30]. 

2.1.1 3GPP-Based Technologies 

The 3 G P P originated as a consortium associating several national standards de­

velopment organizations aiming to develop a technical specification for the third 

generation of the cellular communication system. Aside from this task, 3 G P P also 

provided maintenance and improvements to legacy second-generation mobile net­

works. The purpose of this consortium did not vanish after the introduction of the 

third-generation cellular systems. Contrary, the 3 G P P further continued with the 

development of fourth and later fifth-generation mobile networks [31,41,42]. 
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Tab. 2.1: Overview of 3 G P P Releases [28,31-40]. 

3 G P P 
Relase 

Release 
date 

Details 

Phase 1 1992 Basic G S M specification 

Phase 2 1995 G S M extension including E F R Codec 

Release 96 Q l 1997 G S M updates, 14.4 kb/s user data rate 

Release 97 Q l 1998 G S M additional features, G P R S 

Release 98 Q l 1999 
G S M additional features, G P R S for G S M 1900, E D G E , 
A M R Codec 

Release 99 Q l 2000 3G U M T S with W C D M A 

Release 4 Q l 2001 U M T S all-IP core network 

Release 5 Q l 2002 IMS and H S D P A 

Release 6 Q4 2004 
HSUPA, M B M S , IMS enhancements, P T T over cellular, 
W L A N cooperation 

Release 7 Q4 2007 
Improvements in QoS and latency, VoIP, HSPA+, N F C in­
tegration, E D G E evolution 

Release 8 Q4 2008 
L T E introduced, system architecture evolution, O F D M A , 

Release 8 Q4 2008 
M I M O , dual cell H S D P A 

Release 9 Q4 2009 
W i M A X / L T E / U M T S interoperability, dual cell H S D P A 

Release 9 Q4 2009 with M I M O , dual cell HSUPA, L T E Home eNodeB 

L T E Advanced, Backward compatibility with Release 8, 
Release 10 Q l 2011 Multi-Cell HSDPA, M T C subscription, congestion and 

overload control 

HetNet, C o M P , in-device coexistence, advanced IP inter­
Release 11 Q3 2012 connection of services, on-line device triggering, PS-only 

service provisioning 

Enhanced small cell operation, extended carrier aggrega­
Release 12 Q l 2015 tion, massive Multiple-Input Multiple-Output (MIMO), U E 

Cat 0, P S M , D2D communication, M B M S enhancements 

L T E Unlicensed/License Assisted Access, L T E Cat M l , 
Release 13 Q l 2016 L T E Cat NB1, elevation beamforming, full dimension 

M I M O , indoor positioning 

Release 14 Q2 2017 
L T E support for V 2 X , in-band carrier aggregation, L T E Cat 

Release 14 Q2 2017 
M2, L T E Cat NB2, mission critical enhancements 

Release 15 Q4 2018 
5G Phase 1, m M T C , V 2 X Phase 2, W L A N and unlicensed 
spectrum use, network slicing, service-based architecture 

Release 16 Q3 2020 
5G Phase 2, V 2 X Phase 3, U R L L C , unlicensed NR, satellite 
access in 5G, integrated access and backhaul 

Release 17 ~2021 Low complexity N R devices, N R >52.6 GHz, edge comput­
ing in 5G, M I M O enhancements 
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2G Networks 

The first commercially available digital mobile networks started to appear in the 

nineties. In Europe, these networks utilized a Global System for Mobile Commu­

nication ( G S M ) , representing the second generation (2G) of cellular technologies. 

G S M uses the principle of switching physical circuits with channel access based on 

Time-Divis ion Mult ip le Access ( T D M A ) . O n top of the voice services, G S M also pro­

vides data transfer capabilities via the switched circuits. However, wi th the boom 

of data application at the end of the second millennium, the Circuit-Switched Data 

(CSD) reached its limits. A s a result, the 3 G P P consortium released an extension 

of the G S M providing packet-based communication. W i t h General Packet Radio 

Service ( G P R S ) , it is possible to achieve data rates ranging from units to tens of 

kb/s , depending on the signal quality, the mobile station capabilities (modulation 

coding schemes, multi-slot support), and the available radio resources. Further im­

provements in the transmission speed were brought by Enhanced Data rates for 

G S M Evolut ion ( E D G E ) technology. W i t h the newly introduced eight-state Phase 

Shift Keying ( P S K ) , the data rates can reach up to two hundred kb/s [35,36]. 

IP Networks IP Multimedia Subsystem 

GMSC • GGSN • GGSN • GGSN 

M S C / V L R SGSN M S C / V L R SGSN 

8 < o ••6 
ä 

BSC 

BTS BTS 

BSS 

2G 2.5G 
1987-1989 1994-1997 

XT 
RNC - RNC 

~ 
NodeB NodeB NodeB NodeB 

UTRAN 

eNodeB •• eNodeB 

E-UTRAN 
gNB - • gNB •• gNB 

NG-RAN^ 

5G Phase 1 5G Phase 2 

Fig . 2.1: 3 G P P technologies evolution [43]. 

3G Networks 

A t this point, the introduction of the third-generation (3G) mobile networks was 

a logical step. This generation is represented by Universal Mobile Telecommuni­

cations System ( U M T S ) (mainly in Europe) and Code Division Mul t ip le Access 

( C D M A ) 2000 (mostly in the American continent). Bo th technologies utilize the 

novelty approach of channel access called C D M A . This access method allows us­

ing the same frequency band in neighboring cells. Combined wi th the introduction 

of multi-state modulation and a three-level channel model (transport, logical, and 
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physical), C D M A also significantly increased the access network effectiveness. How­

ever, the overall architecture of the system is adopted from 2G networks, see F ig . 2.1. 

Hence, the core of the access network consist of BS and controllers. In the back­

bone part, the circuit-switched domain for voice services is used, and the so-called 

packet-switched domain provides packet-oriented applications. Also, the increase of 

transmission speed in the order of few hundreds of kb /s compared to the E D G E 

technology was only marginal [35,36]. 

The remarkable improvements in transmission speed were introduced wi th High-

Speed Downlink Packet Access ( H S D P A ) , and High-Speed Upl ink Packet Access 

( H S U P A ) joined into High-Speed Packet Access (HSPA) specification. Depending 

on the User Equipment (UE) technical specification and the operator's policy, it 

was possible to reach the speed of units of M b / s up to tens of M b / s . Besides the 

increased throughput, network latency (mainly in its access part) was significantly 

reduced by moving some Radio Network Controller ( R N C ) functions to the U M T S 

BS called Node B . Further innovations were introduced wi th H S P A + supporting 

the Multiple-Input Mult iple-Output ( M I M O ) technique, dual-carrier H S D P A , and 

64 states Quadrature Ampli tude Modulat ion ( Q A M ) [35,36]. 

4G Networks 

A further step towards the new generation of mobile networks came wi th a unified 

way of providing telecommunication services. A t this point, all services provided by 

the system are packet-oriented, i.e., Internet Protocol (IP) based. To this aim, the 

access part of the network was modified by removing the base station controllers and 

introducing a new access solution based on Orthogonal Frequency-Division Mult ip le 

Access ( O F D M A ) . The whole radio access network thus contains only one type of 

element called evolved Node B (eNodeB) as depicted in F ig . 2.1. Together wi th 

other improvements, these steps enable the system to reach the latency in the order 

of tens of ms in the radio part. This already does not prevent the deployment of 

services running in real-time [34,44]. 

These specifications are part of 3 G P P Release 8, and they have been the basis for 

the first generation of Long Term Evolut ion (LTE) devices. Even though this release 

brought a significant amount of innovations, according to International Telecommu­

nication Union (ITU) requirements on International Mobile Telecommunications-

Advanced (IMT-Advanced) standard, it can not be considered as a fourth-generation 

(4G) network. It is also worth mentioning that this release introduced the first study 

on facilitating M 2 M communication in the 3 G P P system. One year after the ini t ial 

introduction of L T E , 3 G P P Release 9 has been released. This standard still does 

not fulfill 4 G requirements but introduces the concept of femtocells (home eNodeB), 
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adds support for Mul t imedia Broadcast Mult icast Service ( M B M S ) , and extends 

the Location Based Services (LBS) functionality. In terms of M 2 M , this release pro­

vides a feasibility study on the security aspects of remote provisioning and change 

of subscription for M 2 M equipment [44]. 

The following 3 G P P Release 10, also known as L T E Advanced, is the first spec­

ification fulfilling the IMT-Advanced specification. Thus, it is the first real 4 G net­

work standard. The data rate of more than l G b / s , requested by IMT-Advanced, 

is achieved mainly via carrier aggregation. Further improvements include enhanced 

M I M O operation in both directions, new communication bands, self-optimizing net­

works, L T E relays, and enhancements to M B M S . However, this release focuses also 

on the issues of M 2 M communication in the L T E terminology called M T C . Firs t ly it 

is an M T C subscription which allows activating/deactivating particular M T C fea­

ture in a unified manner. The subscription to a specific M T C service is bound 

wi th International Mobile Subscriber Identity (IMSI) stored in Universal Subscriber 

Identity Module (USIM) . Further, Release 10 provides four different ways to ad­

dress network congestion and overload. These countermeasures specify (i) low ac­

cess priority, (ii) attach wi th IMSI at Publ ic Land Mobile Network ( P L M N ) change, 

(iii) long minimum periodic P L M N search time, and (iv) specific handling of invalid 

U S I M states. Since not all planned Machine-Type Communication ( M T C ) features 

were implemented, the remaining tasks were moved into 3 G P P Release 11. The 

main changes included fmalization of M T C architecture for better cooperation wi th 

M T C devices in external networks, on-line device triggering, and Packet Switched 

(PS)-only service provisioning [27,28,34]. 

2.1.2 Non-3GPP 

The arrival of L P W A technologies represented a great leap forward for M 2 M com­

munication. However, even before, there were technologies designed explicitly for 

machine type communication. Naturally, they do not possess the same versatility 

and parameters as the L P W A technologies but share a significant resemblance wi th 

them. Similar to L P W A , the legacy technologies predominantly utilized sub-GHz 

due to better signal propagation [14,45]. For a more detailed comparison of legacy 

technologies in question, see Table 2.2. 

IQRF 

Introduced back in 2004 by Czech company Microdis , Intelligent Radio Frequency 

( IQRF) is among the first technologies solely focused on M 2 M communication. 

I Q R F transceivers operate in the sub-GHz Industrial, Scientific and Medical (ISM) 

band with standardized frequencies 868, 433, or 916 M H z based on regional specifics 
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Tab. 2.2: Comparison of legacy M 2 M communication technologies [46-51]. 

I Q R F Wireless M - B U S Wavenis 

Spectrum ISM ISM ISM 

Frequency 915/868/433 MHz 868/433/169 MHz 915/868/433 MHz 

Bandwidth 100 kHz 12.5/50 kHz 25/50 kHz 

Link budget 120 dB 
120 dB 

146 dB (169 MHz) 
125 dB 

137 dB (915 MHz) 

Max. E I R P lOdBm 
14dBm 

30dBm (169 MHz) 
14dBm 

27dBm (915 MHz) 

Max. pay load 64 B 245 B N / A 

Data rate 19.836 kb/s 2.4-32.768 kb/s 4.8-100 kb/s 

Consumption 
Tx: 25 mA 
Rx: 12 mA 

P S M : < l u A 

Tx: 37 mA, 
703 mA (30dBm) 

Rx: 22 mA 
P S M : <0.2uA 

Tx: 45 mA, 
850 mA (27dBm) 

Rx: 18 mA 
P S M : ~0 .5uA 

Battery life 5-10 years +10 years 5-10 years 

Module cost 10$ 12$ 10$ 

and user requirements. In the most commonly used 868 M H z band, it is possible to 

utilize 62 channels, each having a 100 kHz bandwidth. Even though I Q R F provides 

more than 1 k m single-hop communication range (in free space), this technology's 

primary benefit lies in mesh topology. The coordinator controls the network and 

communicates in a synchronous manner with all other nodes. Each node belong­

ing to the routing network further repeats the transmitted signal. A s the routing 

nodes may transmit only in a specific interval, the collisions are excluded. This 

type of pathfinding is called directional flood routing based on Vi r tua l Routing 

Number ( V R N ) , which corresponds to the transmitter's physical location relative 

to the network coordinator and defines time interval when the node can convey the 

data [47,49]. 

A s the primary focus of I Q R F is in M 2 M communication, the infrequent trans­

mission of small data packets is expected. Thus the maximum payload of 64 B wi th 

the data rate of 19.836 kb/s is more than sufficient. In terms of communication 

delay, it is about 50 ms for the maximum payload. However, it must be reckoned 

wi th the mesh network topology. The value of 50 ms is valid for single-hop commu­

nication, but in the worst case of 240 hops ( I Q R F limitation), it leads to a 12 s delay 

in one direction. I Q R F also promises a multi-year battery life by uti l izing multiple 

power-saving features. During the data transmission, the consumption can be as 

high as 25 m A if the maximum output power of 10 d B m is selected. Notably, it is 
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only 12 m A in reception mode and may be reduced even further by activating the 

radio unit only in short intervals. In this mode, it is possible to reach the average 

consumption of around 16 /xA. Nevertheless, the most significant power conservation 

can be achieved when the module is in sleep mode wi th a current consumption of 

only about 1 fiA [47,49]. 

Wireless M - B U S 

This technology originated as an extension of the wired Meter B U S ( M - B U S ) stan­

dard utilized in smart metering systems, primarily in the European region. From 

the perspective of the Open Systems Interconnection (OSI) model, Wireless M - B U S 

represent a new physical and link layer defined by EN13757-4 standard from 2005. 

Higher layers are identical to Meter B U S standard [52]. 

Initially, Wireless M - B U S was designed for the 868 M H z band, where twelve 

100 k H z channels are available. However, later it was extended by 433 and 169 M H z 

options. Aside from the better signal propagation on lower frequencies, also higher 

transmission power values can be used. A practical range of 600 m represented the 

maximum for the 868 M H z band at 14dBm, whereas in the case of 169 M H z wi th 

3 0 d B m , it is more than 2000 m. Wireless M - B U S also provides several operating 

modes that differ in the used frequency band, modulation, coding, directionality, and 

transmission speed. Mode S is designed for stationary devices requiring infrequent 

data transmission with a maximum throughput of 32.768 kb/s . Submodes SI and 

S2 further define if the communication is unidirectional or bidirectional. In SI mode 

the module goes back to the sleep mode immediately after data transmission. O n 

the other hand, in S2, the module is waiting for a short time for incoming data. 

The T mode behaves the same as the S but provides 100 kb/s transmission speed 

and uses coding 3 of 6 instead of Manchester. Also, the submodes Tl and T2 are 

available. The C mode is identical to the T mode but utilizes N R Z coding. When 

the meter does not send data spontaneously, the R2 mode can be used. In this 

mode, the module wakes up periodically and waits for a wake-up frame. Then the 

bidirectional channel wi th a bit rate of 4.8 kb /s is opened. Finally, the N mode 

defines transmission in the 169 M H z band with several channels providing 2.4, 4.8, 

or 19.2 kb/s bitrate uti l izing Gaussian Frequency Shift Keying ( G F S K ) or 4 - G F S K 

modulation. W i t h i n this mode, it is possible to achieve the sensitivity of up to 

-119dBm [50,52,53]. 

The Wireless M - B U S network has a star topology with the concentrator/master 

device in the center. Concentrator never initiates the communication but passively 

wait for incoming connections from client/slave end nodes. This behavior is also 

crucial for battery longevity. A s the module spends most of its lifetime in sleep 
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mode, a battery life of more than 15 years is expected. In this mode, the consumption 

does not exceed 0.2/xA, while during the transmission, it is around 37 m A . When 

the bidirectional mode is selected, the power consumption during the reception is 

about 22 m A [51,54]. 

Wavenis 

Coronis Systems introduced Wavenis wireless protocol stack in 2005 as a solution 

for control and monitoring applications. Wavenis operates in I S M frequency bands, 

including 868, 433, and 915 M H z based on geographical location. Some of the devices 

also support the 2.4 G H z band in which Wavenis can cooperate wi th Bluetooth 

technology [46,48]. 

The data rate may vary from 4.8 up to 100kb/s based on the selected frequency 

and channel bandwidth. Nevertheless, only G F S K modulation is used for all con­

figurations. In 433 and 868 M H z frequency bands, Wavenis may utilize one 25 kHz 

channel. This combination allows for the slowest data rate of 4.8kb/s . However, 

wi th the 50 kHz channel, the data rate is doubled. A s 16 channels are available, 

the Frequency Hopping Spread Spectrum (FHSS) technique improving resistance to 

interference is used. F H S S is also utilized in the 915 M H z band, where 50 chan­

nels are available, allowing for a data rate of 19.2 kb/s per channel. Nevertheless, 

the maximum throughput of 100 kb/s can be achieved only with a 300 kHz wide 

channel [46,48]. 

The output power of 14 d B m , in combination with the 868 M H z frequency band, 

allows Wavenis to achieve a one-hop communication range of up to 1 km. Such 

coverage makes it usable even in a star topology, but Wavenis also support tree and 

mesh topologies extending the communication range. Like other M 2 M technologies, 

Wavenis focuses on the extended battery life of up to 10 years. In the idle mode, 

where the device spends most of the time, 3 /xA consumption is expected. The 

highest consumption is during the data transmission wi th a peak value of 45 m A , 

followed by 18 m A in reception mode [46,55]. 

2.2 MMTC Communication Enablers 

W i t h the increasing importance of M 2 M communication, m M T C was identified as 

one of the 5 G technologies pillars. A s a tremendous number of connected devices 

is expected, a set of basic requirements is defined. The complexity of the devices 

should be significantly reduced to keep the final price low. Due to the possibility of 

deployment in deep indoor locations, m M T C devices must provide extended cover­

age of +20 dB compared to conventional L T E networks. Moreover, the connection 
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Tab. 2.3: Comparison of current L P W A technologies [15,56-64]. 

Technology Sigfox L o R a W A N L T E Cat NB1 L T E Cat NB2 L T E Cat M l L T E Cat M2 

Spectrum ISM ISM Licensed Licensed Licensed Licensed 

Frequency 868/915 MHz 433/868/915 MHz 700-2100 MHz 700-2100 MHz 700-2600 MHz 700-2600 MHz 

Technology Proprietary P H Y : Proprietary 
M A C : Open 

Open L T E Open L T E Open L T E Open L T E 

Bandwidth 100, 600 Hz 125, 250, 500 kHz 200 kHz 200 kHz 1.4 MHz 5 MHz 

Link budget 162 dB 157 dB 164 dB 164 dB 155.7dB 155.7dB 

Max. E I R P U L : U d B m 1 

D L : 27dBm 
14dBm 23dBm 23dBm 23dBm 23dBm 

Max. pay load U L : 12 B 
D L : 8 B 

242 B 1600 B 1600 B 8188 B 8188 B 

U L data rate 0.1-0.6 kb/s 0.25-11 kb/s 2 0.3-62.5 kb/s 0.3-159 kb/s H D : 375? 590 kb/s 4 

F D : l ? 3 M b / s 4 

H D : 2.625 Mb/s 
F D : 7 Mb/s 

D L data rate 0.6kb/s 0.25-21.9 kb/s 2 0.5-27.2 kb/s 0.5-127kb/s H D : 300? 800 kb/s 4 

F D : 0.8? I M b / s 4 

H D : 2.35 Mb/s 
F D : 7 Mb/s 

Tx: 14 mA Tx: 44 mA Tx: 240 mA Tx: 240 mA Tx: 360 mA Tx: 360 mA 
Consumption R X : 7 mA Rx: 12 mA Rx: 46 mA Rx: 46 mA Rx: 70 mA Rx: 70 mA 

P S M : < l / zA P S M : < l / zA P S M : 3 /zA P S M : 3 /zA P S M : 8 (iA P S M : 8 (iA 

Battery life 10+ years 10+ years 10+ years 10+ years 10+ years 10+ years 

Module cost 2 $ 6 $ 8 $ 10 $ 10 $ 10 $ 

Security AES-128 AES-128 L T E Security L T E Security L T E Security L T E Security 

1 The value is relevant for E U . 2 50 kb/s for F S K modulation. 3 3GPP Release 13. 4 3GPP Release 14. 



density of devices can reach up to 1 mil l ion devices per square km. St i l l , the latency 

has to be less or equal to 10 seconds, even on the connectivity edge, i.e., wi th an 

M a x i m u m Coupling Loss ( M C L ) of 164 dB. The battery life of the device operating 

at this M C L must overcome 10 years for the data transfer consisting of 200 and 

50 B messages in U L and D L , respectively. This estimation operates wi th 5 W h 

battery [25]. 

Al though the requirements mentioned above are stringent, and covering all of 

them requires novelty approaches, one group of technologies is capable of this. 

The L P W A networks provide sufficient coverage, excellent battery life in reason­

ably priced devices. Also, global availability is ranking L P W A technologies among 

the best m M T C enablers. Notably, L P W A is currently the fastest-growing area 

of IoT and covers technologies from both licensed and license-exempt bands [11]. 

The first group defines the 3 G P P ratified technologies, such as L T E Cat M l / 2 and 

N B - I o T . The most typical representatives of the second group are Sigfox and Lo-

R a W A N [26,65-67]. 

2.2.1 Limitations of Legacy Technologies 

Reflecting on the m M T C requirements given in the previous section, it is clear that 

non of the m M T C technologies unti l Release 12 could not fulfill any of these [28]. 

Even though the network infrastructure was already well established, allowing for 

almost arbitrary mobility. The main focus was given on the human-centric commu­

nication oriented towards high-speed D L transmissions. Also, the battery life was 

not great, and it was far from the expected +10 year. The first change came wi th 

the introduction of L T E Cat 0 devices in 3 G P P Release 12. Having a reduced data 

rate of 1 M b / s in both directions and an optional half-duplex mode allowed to reduce 

the modem complexity by 50%. In combination with the newly introduced P S M , 

the theoretical lifetime was extended up to 10 years. However, the extended cov­

erage and support for high-density deployments were not tackled unti l subsequent 

3 G P P Release 13. This release brought the first 3 G P P ratified m M T C technologies, 

namely L T E Cat M l and N B - I o T [28,34,38]. 

For the non-3GPP communication technologies, the situation was radically dif­

ferent. These technologies were already designed wi th the M T C concept to provide 

extended battery life and support for tens of thousands of devices in one network. 

However, they are sti l l not capable of achieving the requested link budget of 164 dB. 

Mit igat ing impacts of insufficient M C L , legacy M 2 M technologies often provide ad­

vanced mesh topology. Al though it allows extending the devices' communication 

range, it also decreases their battery life. Each hop in a mesh topology stands for 

message retransmission by an individual machine. The mesh routing protocols are 
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Fig . 2.2: Typical architecture of an L P W A network [68]. 

more computationally demanding, thus require more power. From this perspec­

tive, the star topology used by L P W A networks provides the best performance, see 

F ig . 2.2. The start topology requires only one powerful B S in its center, whereas the 

E D s may be extremely simple. The BS continuously listens for incoming messages, 

whereas the E D wakes up from sleep mode only to transmit the data [13,14]. How­

ever, even the mesh topology was not the Achilles heel of legacy M 2 M technologies. 

The main problem lies in the non-existing infrastructure. Cellular networks are 

from the beginning planned to provide country-scale coverage. But the legacy M 2 M 

networks usually relied on a single B S . Practically it excludes any mobility, which 

is crucial for most of the I o T / m M T C scenarios. This is why the L P W A replaced 

these technologies and became the fastest growing area of IoT. Currently, Sigfox 

provides nationwide coverage in more than 70 countries. None of the legacy M 2 M 

can compete wi th such a developed infrastructure [12,69]. 

2.2.2 3GPP-Based LPWA Technologies 

A s it was already mentioned, 3 G P P Release 12 brought the first M T C capable class 

of devices [28]. From the perspective of M 2 M battery life, the most important 

novelty was the introduction of P S M . It is a special operating mode in which the 

device completely turns off the radio part. Naturally, it disallows any communication 

wi th eNodeB, but the consumption drops down to units of /iA [56]. Pr ior to the 

P S M transition, the device has to negotiate the values of two timers, which drive the 

whole process. A s it is depicted in F ig . 2.3a, the timer T3324 ( G P R S Timer 2, Active 

Timer) defines the activity period, and T3412 ( G P R S Timer 3, Periodic Tracking 

Area Update Timer) characterize the Tracking Area Update (TAU) period. Bo th 
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timers are activated immediately after the Radio Resource Control ( R R C ) release. 

The device still listens for incoming messages for the active period of timer T3324; 

then, the module proceeds to P S M by deactivating the radio part. When the timer 

T3412 reaches its set value, the device wakes up, conveys the T A U message, and the 

whole process is restarted. The maximum periods of T33224 and T3412 timers are 

186 minutes and 413 days, respectively [70]. 
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F ig . 2.3: Power saving mechanisms in 3 G P P Release 13 [70]. 

W i t h the following release, 3 G P P introduced a new method of power conserva­

tion, called Extended Discontinuous Reception (eDRX) [34]. This method is not as 

effective as the P S M but diminishes the problem of long unavailability during sleep 

mode. Basically, e D R X is an evolution of D R X used in legacy L T E networks. In 

D R X , the device only needs to listen for Paging-Radio Network Temporary Identifier 

( P - R N T I ) codes in Physical Downlink Control Channel ( P D C C H ) at the prescribed 

paging intervals. If the paging is intended for the device, the U E starts wi th data re­

ception. Otherwise, the module transit into idle mode unti l the next paging occasion. 

The maximum D R X interval is 2.56 s, as depicted in F ig . 2.3b. Nevertheless, e D R X 

allows U E to listen for the paging interval in a short Paging Transmission Window 

( P T W ) interval followed by a more extended idle period. The e D R X duration ranges 

from 5.12s up to 175minutes wi th P T W between 1.28 and 20.48s [56,70]. However, 

3 G P P Release 13 did not bring only the e D R X but also a new L P W A technologies 

L T E Cat M l and N B - I o T detailed in the following sections. 

N B - l o T 

Initially introduced in 3 G P P Release 13, N B - I o T ( L T E Cat NB1) represents a tech­

nological enabler of m M T C . Due to newly introduced narrowband channels, N B - I o T 

is not backward compatible wi th legacy L T E . St i l l , they can coexist in one system 
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as the majority of the numerology has been kept. Thanks to this fact, the imple­

mentation of N B - I o T to the legacy L T E often represents only a software update. 

Aside from the above described inband deployment, N B - I o T can also operate in 

the guard band of regular L T E channel or as a standalone technology, see F ig . 2.4. 

W i t h the 180 kHz bandwidth, N B - I o T precisely fits in a one L T E Physical Resource 

Block ( P R B ) . For standalone implementation in 200 k H z G S M channel, it means 

10 kHz buffer on each channel side. To provide extended coverage of +20 dB (in 

comparison with L T E ) , N B - I o T heavily relies on message transmission repetitions. 

The Narrowband Physical Random Access Channel ( N P R A C H ) preamble, as well 

as Narrowband Physical Upl ink Channel ( N P U S H ) data, may benefit from up to 

128 repeats. For the Narrowband Physical Downlink Shared Channel ( N P D S C H ) 

data, it is even 2048 repetitions [56,59,64]. 

NB-IoT NB-IoT NB-IoT NB-IoT 

/ Regular I \ I / Regular 
J L T E Data J | / 

Guard-band Guard-band 

(a) In-band. (b) Guard-band. (c) Standalone. 

F ig . 2.4: N B - I o T deployment options [70]. 

Al though N B - I o T reuses a significant part of L T E numerology, some parame­

ters had to be tr immed to reduce modules' complexity. Thus, N B - I o T supports 

only Frequency Divis ion Duplex ( F D D ) half-duplex mode wi th a single antenna 

port. In D L direction, N B - I o T relies on O F D M A with 15 kHz subcarrier spacing 

identical to L T E . Due to l imited complexity, N B - I o T uses Tai l -Bi t ing Convolutional 

Code ( T B C C ) instead of turbo codes. The standard further defines only Quadrature 

Phase Shift Keying ( Q P S K ) modulation to be used in D L with Transport Block Size 

(TBS) limited to 680 bits. It allows for the maximum data rate of approximately 

26kb/s . The U L channel provides more complexity as it supports both mult i- and 

single-tone transmissions. Like in L T E , multi-tone transmission utilizes Singe Car­

rier Frequency Division Mult ip le Access ( S C - F D M A ) with 15 kHz subcarrier spacing. 

Multi-tone transmission can use 3, 6, or 12 Q P S K modulated subcarriers reaching 

the maximum data rate of about 62kb/s . However, single-tone transmission allows 

N B - I o T to utilize typical 15 kHz spacing and introduces a new 3.75 k H z variant. To 

reduce Peak-to-Average Power Rat io ( P A P R ) , 7 r /2 -BPSK, and 7r /4-QPSK modula­

tions wi th continuous phase are selected. The U L may also benefit from slightly 

larger T B S of 1000 bits compared to D L direction. Nevertheless, the maximum 
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message size in both directions is 1600 B , l imited by the Packet Data Convergence 

Protocol ( P D C P ) Service Data Uni t (SDU) [56,59,67]. 

Due to l imited bandwidth, N B - I o T also introduced a new N P R A C H wi th a 

maximum bandwidth of 45 kHz . Overall, the random access channel procedure is 

not much different from L T E , and it is based on the slotted A L O H A approach. 

The N P R A C H uses a single-tone transmission wi th frequency hopping and 3.75 kHz 

spacing. The preamble contains four symbol groups made up of a Cycl ic Prefix 

(CP) and four identical symbols. If needed, the groups can be repeated up to 128 

times. N P R A C H further supports two formats differing in C P length, l imit ing the 

maximum cell radius to 10 or 40 k m [56]. 

A s the uti l ization of a licensed spectrum does not impose strict requirements 

on maximum Equivalent Isotropically Radiated Power (EIRP) or Duty Cycle (DC) 

restriction, N B - I o T Release 13 defines two power classes of 23 and 2 0 d B m . Due 

to such high power values, the consumption during transmission may reach up to 

300 m A . In reception mode, the consumption is around 46 m A with a more relaxed 

6 m A in idle. Notably, these values do not allow for the promised 10-year battery 

life. To this aim, N B - I o T can utilize a combination of both P S M and e D R X modes, 

reaching the average consumption <3/xA [56,71]. 

Even though N B - I o T in 3 G P P Release 13 was a giant leap forward, some of 

the issues connected wi th m M T C persisted. These were resolved in following 3 G P P 

Release 14, referred to as L T E Cat N B 2 . The most crucial change is associated wi th 

U E mobility. In 3 G P P Release 13, the module can initiate reconnection procedure 

only in idle mode, which is ineffective in radio conditions wi th frequent handovers. 

The 3 G P P Release 14 address this shortcoming by allowing reconnection during 

active R R C session. L T E Cat N B 2 further supports Observed Time Difference Of 

Arr iva l ( O T D O A ) and Enhanced Cel l ID (E-CID) positioning, new 1 4 d B m power 

class, multicast connections, and non-anchor carrier operation. Also, by allowing 

larger T B S of up to 2536 bits and increasing the number of Hybr id Automatic Repeat 

Request ( H A R Q ) , higher data rates were achieved. Namely, it is 127kb/s and 

159kb/s for D L and U L , respectively [57]. 

In the 3 G P P Release 15, the N B - I o T functionality was further extended wi th the 

local Radio resource management ( R R M ) policy. It allows Mobi l i ty Management 

Ent i ty ( M M E ) to store information about the U E and its traffic profile, which can 

improve the scheduling. O n top of that, also the wake-up signals and Ear ly Data 

Transmission ( E D T ) are available. The wake-up signal informs the device if it is 

necessary to monitor Narrowband physical downlink control channel ( N P D C C H ) 

for paging when the U E is in D R X or e D R X . W i t h the early data transmission, the 

U E is able to convey the data in Msg3 of the random access procedure (carrying 

approximately 328 to 1000 bits). This release further reduces system acquisition 
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time using E - U T R A Absolute Radio Frequency Channel Number ( E A R F C N ) pre-

provisioning. W i t h the introduction of a new N P R A C H format, the cell radius is 

extended up to 100 km. However, also the small-cells (micro, pico, and femto) are 

supported in 3 G P P Release 15 [57]. 

L T E - C a t M 

This technology introduced in 3 G P P Release 13 is designed explicitly as an 3 G P P 

enabler for applications requiring long battery life, advanced services, and higher 

data throughput. L T E Cat M l is fully compatible wi th legacy L T E systems by shar­

ing its numerology, i.e., channel raster, subcarrier spacing, C P length, and frames 

structure. Thus, the L T E Cat M l is intended for inband deployment. In com­

parison wi th N B - I o T , both full- and half-duplex modes, mobili ty (limited-to-full), 

Time-Divis ion Duplexing ( T D D ) , F D D , and Voice over L T E (VoLTE) are supported 

natively. The m M T C requirements are reflected in reduced bandwidth of 1.08 M H z 

(1.4 M H z , including guard bands), which equals the 6 P R B . It allows L T E Cat M l 

in full-duplex mode to achieve data rates of up to I M b / s (only about 300kb/s in 

half-duplex). Similar to other L P W A technologies, the extended coverage is achieved 

mainly v ia repetitions. The mandatory Mode A wi th a l imited number of repetitions 

(32 for Physical Upl ink Shared Channel ( P U S H ) , Physical Downlink Shared Chan­

nel ( P D S C H ) , and Physical Random Access Channel ( P R A C H ) ) adds 10-12dB to 

the link budget, resulting in the M C L of 155.7dB. Also, only Mode A supports full 

mobility, voice services, 8 H A R Q , and several transmission modes. Optional Mode B 

supports up to 2048 repetitions for both P U S H and P D S C H and 128 for P R A C H . 

It allows L T E Cat M l to add up to 20 dB to the link budget but radically increases 

the latency from milliseconds to seconds (up to 10 s) [56,72,73]. 

In order to provide extended battery life, L T E Cat M l implements both P S M 

and e D R X . Also, two power classes with a maximum E I R P of 20 and 2 3 d B m are 

supported. Nevertheless, the most crucial change is the replacement of the wide­

band Physical Downlink Control Channel ( P D C C H ) with a new narrowband M T C 

Physical Downlink Control Channel ( M P D C C H ) (covers only 6 P R B ) , which bears 

the Downlink Control Information (DCI) . The primary purpose of this channel is to 

schedule uplink and downlink grants and random access procedures [56]. 

The D L direction of L T E Cat M l relies on O F D M A with 15 kHz subcarrier 

spacing, and as in the case of L T E , turbo codes are used. The messages wi th a 

maximum T B S of 1000 bits may be 1 6 Q A M , or Q P S K modulated. For the U L 

direction, the l imitat ion of T B S and available modulations are identical. However, 

U L direction multiplexing is based on S C - F D M A to lower a P A P R and reduce 

intersymbol interferences [56,73]. 
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W i t h the rapid growth of high demanding m M T C scenarios, there was a chance 

that L T E Cat M l wi l l not be sufficient for such devices. Therefore 3 G P P Release 14 

addressed these issues and, on top of that, introduced a new category of U E called 

L T E Cat M 2 . Due to an extended bandwidth of 5 M H z , the maximum data rates 

increased to 7 and 4 M b / s for U L and D L , respectively. The higher data rates 

are also available for L T E Cat M l devices v ia the increased T B S size; the new 

maximum for U L direction is 2984 bits. For L T E Cat M 2 devices, it is 4008 bits in 

D L and 6968 bits for U L . Further, the number of H A R Q processes was increased 

to 10, enabling H A R Q acknowledgment bundling. In order to allow more efficient 

use of subframes, also new repetition factors were introduced. Similar to NB- IoT , 

E - C I D and O T D O A positioning together wi th multicast transmissions are available 

in Release 14 [58]. 

The 3 G P P Release 15 further improves energy efficiency by defining 14dBm 

power class and wake-up signals. B y introducing E D T , the U E can transmit data 

during the random access procedure (up to 1000 bits) without the need to continue 

to the connected state. The acquisition time can be further reduced using E A R F C N 

pre-provisioning, resynchronization signal, and improved System Information Block 

( S I B ) / M I B demodulation. This release additionally supports the flexible starting 

P R B , Channel Quali ty Indicator (CQI) table wi th a broad range, 6 4 Q A M in D L , 

and 7r /2 -BPSK in U L to increase spectral efficiency [58]. 

2.2.3 Non-3GPP LPWA Technologies 

N o n - 3 G P P L P W A technologies initiated the trend of modern M 2 M communica­

tion. More precisely, it was the main interest of the French company Sigfox, which 

started in 2009. Further, in 2012 they also launched the first commercial L P W A net­

work [15]. A t that time, radio technology was finally becoming less expensive, and 

integration applications were becoming easy to use. In order to decrease the ini t ial 

cost, non-3GPP technologies mostly operate in license-exempt bands. It brings ad­

vantages of free radio resources at the expense of restricted D C , limited transmission 

power, and a higher chance of interferences [13,66]. However, all the technologies 

are aware of this and can s t i l l provide adequate services for M 2 M devices. 

Sigfox 

It represents an L P W A technology operating in I S M frequency bands ranging from 

862 to 928 M H z . The used frequency band is dependent on the currently selected 

Radio Configuration (RC); this also covers output power, spectrum access mech­

anism, throughput, and coexistence with other technology. Sigfox network has a 

star or star-of-stars topology consisting of E D s , at least one Gateway ( G W ) , and 
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the cloud core. The E D data are wirelessly transferred towards the G W s and then 

forwarded to the cloud via an Internet connection. Notably, only the E D can ini t i ­

ate the communication at any time instance using an A L O H A - l i k e channel access 

mechanism, not violating the limitations of radio channels imposed by the regulatory 

bodies and network operators. These regulations restrict the maximum payload size 

in U L direction to 12 B . The U L messages are Differential Binary Phase Shift Keying 

( D B P S K ) modulated and conveyed at the rate of 100 b/s ( R C 1, 3, 5, 6, and 7) or 

600 b/s (RC 2, 4). For the first group, it represents Time on A i r (ToA) from 1.12 to 

2.08 s based on the payload size. The regulation in R C 1 and R C 7 further limits the 

D C to 1 % (36 s) per hour period. It practically limits the transmission to 6 messages 

per hour, i.e., 140 messages in 24 hours. In R C 3 and R C 5 , the Listen Before Talk 

( L B T ) technique is used. Before the communication, the device must verify that the 

whole 200 kHz channel is free of any signals stronger than -80dBm. Due to more 

stringent regulations in both Americas, Austral ia, and some Pacific-Asia regions, 

the R C 2 and R C 4 use frequency hopping by repeating the message three times on 

different frequencies. The maximum T o A is l imited to 400 ms on each channel wi th 

no new emission before 20 s. For the 600 b/s data rate, the actual T o A value ranges 

between 187 and 347ms wi th repetitions inter-packet delay of 6.7ms up to 2s. In 

the case of the remaining R C s , the E D can send the packet only once in single-frame 

repetition mode or with multiple repetitions in multi-frame mode. The repetitions 

delay ranges from 40 ms to 2 s [15,59,60]. 

Each R C in Sigfox further defines four power classes 0u-3u based on the maxi­

mum E I R P . The highest power class Ou recommends a maximum limit of 2 4 d B m 

( R C 2, 4), 1 6 d B m (RC 1, 3, 6, 7), and 1 4 d B m (RC5). O n the contrary, the low­

est power class 3u, defines the power limits below l O d B m (RC5) , 2 d B m ( R C 1, 3, 

6, 7), and O d B m ( R C 2, 4). Since m M T C heavily relies on U L data transfer, bi ­

directional communication is an optional feature in Sigfox networks. Bi-directional 

"B-procedure" (contrast to "U-Procedure") transmission is selected on a per-message 

basis by setting a special flag in the U L frame header. When B-procedure is active, 

20 s (19 s for R C 3 and 5) after the first U L packet, the E D opens a receiver window 

for 25 s (33.5s for R C 3 and 5). Upon successful reception of the D L packet, the 

E D must confirm the reception by transmitting the control D L message. The U L 

transmission of service message needs to start within 1.4 to 4 s after the D L mes­

sage reception. This message carries the essential service information, including the 

battery level and Received Signal Strength Indicator (RSSI) of the D L message. A l l 

D L transmissions rely on G F S K modulation wi th a 600 b/s data rate. In compar­

ison wi th U L transfers, the D L regulations are more pronounced wi th a maximum 

payload size of 8 B and four messages per day. However, D L may benefit from an 

increased maximum E I R P of 2 7 d B m [15,60]. 
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L o R a W A N 

It is the next representative of L P W A technologies operating in the I S M spectrum 

from 433 up to 915 M H z . However, the most commonly used bands are 868 M H z 

in Europe and 915 M H z in the United States, Austral ia , and As ia . Like other non-

3 G P P L P W A technologies, L o R a W A N networks have a star or star-of-stars topology 

consisting of three different types of devices. Namely EDs , at least one G W , and a 

network server. O n top of that, these devices can be complemented wi th a network 

join server to handle and coordinate devices inter-network roaming. In most cases, 

communication is initiated by E D using A L O H A - b a s e d channel access mechanism. 

The physical layer of the L o R a W A N standard builds upon proprietary Long 

Range (LoRa) modulation developed by Semtech, whereas the M A C layer represents 

an open standard. It brings the significant advantage of creating private networks 

next to the operator-deployed public ones. The L o R a modulation is based on Chirp 

Spread Spectrum (CSS) modulation and provides substantial flexibility in terms of 

data rates, robustness, and bandwidth. The modulation speed can be controlled by 

Spreading Factor (SF), which can take up to six different values ranging from SF7 

to SF12. W i t h each increase of S F by one, the packet T o A rises 1.5 up to 2 times 

while increasing the link budget by 1.5-2 dB. To provide the most extended battery 

life possible, the E D is typically configured to use the lowest SF ensuring reliable 

communication. Selected SF can be set manually, or an Adaptive Data Rate ( A D R ) 

mechanism can be used [59,61,62]. 

W i t h i n the European frequency band, L o R a W A N supports a maximum of 16 

channels. Each channel supports all SFs values from SF7 to SF12 wi th a bandwidth 

of 125 kHz. On top of that, L o R a W A N defines a single high data rate channel wi th 

SF7 and bandwidth of 250 kHz. This numerology results in the physical data rate 

ranging from 0.25 to l l k b / s . The 868 M H z I S M band regulation further defines a 

maximum E I R P of 14 d B m and 1 % D C . Hence, the selected Data Rate (DR) limits 

the maximum payload that ranges from 51 B (SF12) to 242B (SF7). 

In the 915 M H z frequency band, the situation is more complicated. The first 

64 channels are defined as 125 kHz ones supporting SF7 up to SF10, using a 4/5 

Coding Rate (CR) . Next, additional 8 slots uti l izing 500kHz bandwidth at SF8 are 

delineated in U L direction. The standard also defines 8 D L channels wi th 500 kHz 

bandwidth at SF7 to SF11. This numerology allows overcoming the l imitation of 

400 ms T o A by employing at least 50 channels, each occupying less than 250 kHz 

wi th the power level not greater than 30 d B m . For the 500 k H z channels, the Power 

Spectral Density (PSD) can not be higher than 8 dB per 3 kHz of spectrum. In prac­

tice, it l imits the E D output power to 26 d B m . Based on the allowed transmission 

time, the maxim payload size varies from 11 to 242 B , with data rates between 0.98 
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and 21.9 kb/s [59,61]. 

To enable D L transmission, E D opens one or two Receive Window (RW)s at 

specific timeslots (usually after 1 and 2 s) following each U L data transfer. The RW1 

is opened in the same frequency channel and usually uses the same S F utilized for U L . 

When no data was received in R W 1 , the E D should open another R W (RW2) using a 

pre-specified channel and SF. The RWs can be used to deliver U L acknowledgments, 

carry user payload, or control commands. The above-described behavior defines A 

class device. O n top of that, the E D may periodically open another R W s (class B) 

or spend the whole idle time in reception mode (class C) [61,62]. 

2.3 Emerging multi-RAT Use Cases and Applications 

Despite the immense advancement in m M T C and the coming of L P W A technolo­

gies, there wi l l never be a silver bullet solution that fits all scenarios. In that 

respect combination of multiple radio technologies into a single device presents a 

viable solution. This solution already found its place in human-type terminals such 

as laptops, smartphones, and tablets, enabling nearly ubiquitous connection. Natu­

rally, multi-Radio Access Technology ( R A T ) has its drawbacks, including increased 

complexity, higher price, and power consumption. However, due to the progression 

in lithography and other chips manufacturing processes, radio modules' costs are 

rapidly dropping. Thus the prevailing l imitat ion is mostly the increased consump­

tion. But with modern machine learning and optimizing algorithms, even this can 

be mitigated [74-76]. 

2.3.1 Smart City 

The smart city scenarios are currently representing the most challenging tasks for 

m M T C . No other system puts such different requirements on the heterogeneity of 

the network deployments. The needs of various smart city applications tremendously 

differ in throughput, latency requirements, coverage, and battery life. Logically, the 

low power technologies suitable for sensor networks can not handle the needs of 

Augmented Reality (AR) and V i r t ua l Reality ( V R ) applications. Thus the mult i-

R A T deployment can serve as an enabler for these heterogeneous applications. The 

smart sensor periodically reporting the environmental conditions may be equipped 

wi th a second interface allowing to transmit the video transmission in unexpected 

events such as fire or car crash. Also, cell-free and cooperative multi-cell solutions 

are highly discussed in smart city scenarios. The traditional cellular networks are 

not capable of handling ultra-dense deployments, including millions of connected 
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devices. However, in this concept, the m u l t i - R A T equipped devices uti l izing high-

rate and low-rate backhaul links wi l l appear as cell-free distributed systems. It 

allows for achieving a significant performance gain compared to traditional mobile 

networks [2,77-79]. 

2.3.2 Smart Transportation 

It is clear that smart transportation and V 2 X communication wi l l be a strongly 

heterogeneous system wi th many different communication technologies, see F ig . 2.5. 

Very likely, there wi l l not be a single universal technology providing universal com­

munication channel. Inter-vehicles communication requires the lowest latency pos­

sible as the cars may move at high speeds, and even the small delay makes a signif­

icant difference in distance. This is crucial, especially for autonomous/self-driving 

vehicles, where mutual coordination without latency is vi ta l . O n the other hand, 

communication wi th infrastructure has far inferior requirements on both latency and 

data throughput. Combined, this represents the optimal use-case for a m u l t i - R A T 

solution. O n a highway, the vehicle wi l l use a low-latency connection to commu­

nicate with other cars. However, it can send service reports to the owner via a 

long-range interface wi th undefined delays when parked [80-82]. 

F ig . 2.5: Example of m u l t i - R A T connectivity scenario. 
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2.3.3 Tracking/Logistic 

Currently, inter-modal containers represent the most common way of shipping prod­

ucts around the globe. However, no single-hop R A T can provide reliable and cost-

effective communication during the whole shipping process. Albei t satellite commu­

nication provides nearly ubiquitous coverage, it is stil l a costly service. Moreover, 

the satellite connection inside a warehouse or cargo hold represents a challenging 

task. The most common cellular networks are not omnipresent, and their offshore 

coverage is sparse and does not exceed a few kilometers. The technologies operating 

in the I S M band represent a low-cost solution but suffer from fragmented coverage 

and lack of spectrum harmonization. W i t h a m u l t i - R A T solution, the containers can 

convey their data via a private infrastructure when available. Whi le traveling by 

land, the devices monitor surroundings networks and automatically selecting among 

them. A t the open sea, ships' onboard private infrastructure ensures communication 

services and further uses a satellite link to send aggregated/compressed data. In the 

case of coast proximity, the ships' coverage can be extended by uti l izing Unmanned 

Aerial Vehicle ( U A V ) as repeater/switch, see F ig . 2.5. In summary, m u l t i - R A T im­

proves connectivity, reduces outages, and provides augmented reliability. It also 

allows for reducing data delivery latency by avoiding retransmissions [75,80,83]. 

2.3.4 Smart Metering 

The smart metering usually represents a delay-tolerant system wi th low require­

ments on the transmission latency. However, in unexpected events such as alarms, 

tampering, or unauthorized access, it is necessary to deliver this information in a 

delay-critical manner. Such a case represents the optimal use of a m u l t i - R A T so­

lution. In the standard situations, the data are transferred via a low-performance 

interface, whereas the alarm events use a more powerful one. The second interface 

can further serve for firmware upgrades. For the low-performance interface, the 

firmware package may require division into several smaller chunks transferred in 

several batches. O n the receiver side, the individual parts must be merged, and the 

integrity verified. However, the more powerful interface can download the firmware 

as a single file, omitt ing the merging process. A s a result, the m u l t i - R A T solution 

allows accelerating the firmware upgrade, which is a crucial task as it may contain 

a fix for security vulnerabilities. Indirectly, it can also increase battery life as one 

message v ia high-performance technology may result in lower power consumption 

than several transmission of low-power communication technology [75,83,84]. 
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2.3.5 Wearables and eHealth 

In the area of wearables and eHealth, the benefit of m u l t i - R A T is threefold. Firstly, 

the life-threatening events which are connected with unexpected changes in vi tal 

signs can be directly reported to the attending physician. For this purpose, the de­

vice uses low-latency communication, ensuring the fastest reaction. In the remaining 

time, the heartbeat status is transferred via a more power-efficient interface. The 

m u l t i - R A T solution can also serve as an aggregation unit. Mult ip le on-body sensors 

equipped with different technologies communicate wi th the m u l t i - R A T aggregation 

unit, which wraps the sensor data and transfers them to the cloud application. 

Thus the sensors may use only short-range communication technologies having re­

duced power consumption compared to long-range aggregation units. Finally, a 

combination of multiple technologies in m u l t i - R A T solutions provides ultra-reliable 

communication [83,85,86]. 
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3 LPWA Propagation Models 
A t this point, it is clear that m M T C wi l l become a key player in the emerging 

5G and beyond systems. Compared to H 2 H communication, m M T C services have 

drastically different design goals requiring a new approach to designing communi­

cation infrastructure. More specifically, m M T C involves deploying new radio access 

technologies referred to as L P W A , see Section 2.2. However, extended coverage 

for various indoor and outdoor applications together wi th capacity requirements, 

making the L P W A systems deployment a challenging task [59,87]. Therefore, to 

accurately capture/predict the coverage and communication performance, the prop­

agation models represent a vi tal tool for network planning (i.e., the location of both 

BSs and EDs) . However, the abundance of such models differing in their struc­

ture, intended propagation environments, and other factors hampering the clear 

conclusion about their use for particular technologies. This fact has a vast impact 

specifically on the complex city-scale urban L P W A network deployments. W i t h the 

ultimate goal of finding the best propagation model, this work covers the whole spec­

t rum of primary sources, including standardization bodies, vendors/operators, and 

academia. The most commonly referenced models (in literature) are supposed to 

provide an accurate prediction in the whole L P W A technologies operating spectrum 

(predominantly sub-GHz) were selected from each group [59,88-90]. 

Since the accuracy of empirical propagation models heavily depends on the prop­

agation environment, this work aims to improve models' accuracy for L P W A deploy­

ments in urban city scenarios. First , the selected models are fine-tuned using the 

data from a large-scale measurement campaign from the city of Brno in the Czech 

Republic. Finally, these enhanced models' accuracy is cross-validated wi th the data 

from the second measurement campaign conducted in the Czech town Ostrava [59]. 

3.1 Models Requirements 

Based on the way how the resulting path loss is derived, the propagation models 

can be divided into three main categories: (i) deterministic, (ii) stochastic, and 

(iii) empirical [91]. Deterministic models are the most precise but often require a 

3D map of propagation environments and a lot of computing power. O n the oppo­

site side of computational demand lies stochastic models using a series of random 

variables to model the environment. Logically these models are the least accurate. 

Based on observations and measurements, empirical models lie between these two 

extremes providing a trade-off between accuracy and computational demands. Also, 

this works focuses solely on empirical models [59]. 
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Notably, this work covers three well-known L P W A technologies: (i) Sigfox, 

(ii) L o R a W A N , and (iii) N B - I o T , occupying frequency bands ranging from 433 up 

to 2100 M H z . The lower bound of this range is delineated by L o R a W A N technol­

ogy, whereas N B - I o T bounds the upper l imit . Al though N B - I o T supports frequency 

bands over 2 G H z , the real deployments usually use sub-GHz spectrum due to better 

signal propagation, which is the crucial requirement of L P W A networks. Therefore, 

selected models must provide accurate results in the whole operational spectrum 

of the L P W A technologies mentioned above. Considering the channel bandwidth, 

it has a particular impact on signal propagation similar to operational frequency. 

However, narrow bandwidth (< 200 kHz in most cases) of selected L P W A technolo­

gies compared to carrier frequencies usually leads to frequency flat-fading. For this 

reason, the channel bandwidth parameter can be omitted, and only the carrier fre­

quency is considered [59,87]. 

Aside from the frequency and channel bandwidth, also the physical layout of 

L P W A networks must be considered. Like most of the L P W A standards, selected 

technologies rely upon a star topology (in the case of Sigfox and L o R a W A N , star-

of-stars) wi th the E D s directly communicating with the B S / e N o d e B . In a typical 

deployment, the E D s are positioned slightly above the ground level, albeit below 

ground, or high-rise constructions/building deployments are also possible. Contrary, 

the BSs antennas are often located high above the ground to provide the most 

extensive communication range [59]. 

3.2 Selected Models 

The analysis covered five extensively used propagation models from all three primary 

sources, summarized in Table 3.1. The 3 G P P Urban and European Cooperation in 

Science and Technology ( C O S T ) 231 Walfish-Ikegami (WI) models represent the 

standardization group [92,93]. Further, the Ericsson 9999 propagation model is an 

example of a vendor's group [94]. Finally, academia is represented by Okumura-Hata 

and Stanford University Interim (SUI) models [90,91]. 

Tab. 3.1: Basic parameters of selected propagation models [59]. 

Model Frequency BS Ht. E D Ht. B S - E D Dist. 

3GPP Urban < 2600 MHz 0-50 m* - <8km 

C O S T 231 150-2000 MHz 4-50 m 1-3 m 0.2-50 km 

SUI < 11000 MHz 15-40m 2-10 m < 10 km 

Okumura-Hata 150-1900 MHz 30-200m l-10m 1-20 km 

Ericsson Urban 150-1900 MHz 20-200m 1-5 m 0.2-100 km 

Above average rooftop level. 
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3.2.1 3GPP Macrocell 

This propagation model is specifically designed for macro cells in urban and sub­

urban areas outside the high-rise cores, with the buildings characterized by nearly 

uniform height. The resulting mean path loss is calculated as: 

L = 40 (1 - 4 • 10-3hb) log 1 0 (d) - 18 \og10(hb) + 21 l o g 1 0 ( / ) + 80, (3.1) 

where d is the separation distance between BS and E D , / denotes carrier frequency 

in M H z , and hf, is the B S height above the average rooftop level. The hb may range 

from 0 to 50 meters wi th B S - E D distance from a few hundred meters to kilome­

ters. Unfortunately, the model is not particularly accurate for shorter distances 

(<200m) [59,92]. 

3.2.2 COST 231 Walfish-lkegami 

This propagation model represents the joint effort of the C O S T association. A t its 

core, the model combines the Walfish-Bertoni model and the final building path 

loss of the Ikegami model [95]. The model is intended for macro cells in urban and 

suburban environments. It can be used for carrier frequencies ranging from 800 up 

to 2000 M H z wi th a B S height interval from 4 to 50 m. O n the other hand, the 

expected E D height is between 1 and 3 m. From the perspective of inter B S - E D 

distance, the model provides accurate results in a range from 0.2 to 50km [59,93]. 

Considering the Line-of-Sight (LoS) conditions, the mean path loss is calculated as: 

L 0 = 32.4 + 201og 1 0(d) + 201og 1 0 ( / ) , (3.2) 

where d is the distance between BS and E D , and / denotes the carrier frequency. 

For Non-Line-of-Sight (NLoS) propagation, the combination of free-space loss L 0 , 

roof-to-street loss Lrts, and multiscreen diffraction loss Lmsd connotes the resulting 

path loss. The basic propagation loss formula is given by: 

^ _ I Lq + LRTS + Lmsd, LRTS + Lmsd > 0 (3 3) 

[ Lq, LRTS + Lmsd < 0 

where Lrts is calculated based on the Ikegami model as: 

Lrts = - 8 . 2 - 10 l o g 1 0 H + 10 l o g 1 0 ( / ) + 20 l o g ( A / i m ) + Lori. (3.4) 

Here, the Ahm stands for the difference between average rooftop level hr and height 

of mobile station antenna hm. The remaining parameter w denotes street width, and 
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Lori defines correlation factor accounting for loss due to street orientation angle (p: 

(3.5) 

- 1 0 + 0.354^, 0 ° < v ? < 3 5 ° 

2.5 + 0 . 0 7 5 ( ^ - 3 5 ) , 35° < <p < 55° 

4 . 0 - 0 . 1 1 4 ( ^ - 55), 5 5 o < y ? < 9 0 ° 

Further, the multiscreen diffraction loss Lmsd is calculated as: 

Jmsd Lbsh + ka + kd log 1 0 (d) + kf l o g 1 0 ( / ) - 9 log 1 0 (6), (3.6) 

where b is the mean separation distance between buildings, and L^h value depends 

on the difference between B S height hb and average rooftop level hr: 

•>bsh 
- 1 8 1 o g 1 0 ( l + Ahb) for hb > hr 

0 for hh < hr 

(3.7) 

Finally, the coefficients ka, kd, and kf are defined as follows: 

ka = < 

54, 

54 - 0 . 8 A / i 6 , 

5 4 - 0 . 8 A / i 6 ^ , 

hb > hr 

hb < hr, d > 0.5 km 

hb < hr, d < 0.5 k m 

(3.8) 

18, hb > hr 

1 8 - 1 5 ^ , hb < hr ' 

- 4 + 0.7 (gfg - l ) , Med ium cities 

4 + 1.5 (925 — l ) ) Metropoli tan centers 

(3.9) 

(3.10) 

3.2.3 Stanford University Interim 

Based on an extensive measurement campaign conducted at Stanford University, the 

SUI propagation model represents the extension of the Erceg model developed by the 

A T & T Wireless group [96]. The SUI model divides the propagation environment into 

three categories based on terrain morphology to calculate the mean path loss value. 

Category A displays the highest path loss values describing the hi l ly environment 

wi th high tree density. On the contrary, Category C predicts the lowest path loss 

referring to flat terrain wi th minimal tree density. However, Category B intended for 

the hi l ly environment wi th rare vegetation producing intermediate path loss levels 

has been selected for this work. 
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Considering SUI model operational conditions, it is suitable for cells with a 

diameter of up to 10 k m and B S antenna heights ranging from 15 to 40 m. For the 

E D , the antenna can vary from 2 to 10m [59,91]. Finally, the path loss formula is 

defined as: 

2 0 1 o g 1 0 ( ^ ) for d<d'0 

A+«h**„(t) for d > d > - <311' 
bh 

where d is the distance separating BS and E D , whereas do represents the reference 

distance of 100 m with corresponding path loss value A. The signal wavelength is de­

fined as A, and 7 denotes the path loss exponent. Further, the remaining parameters 

A L b f and A L ^ represent frequency and antenna correction factors, respectively. In 

the extended form, the SUI model modifies the antenna correction factor A L ^ . It 

results in the introduction of a new formula for the calculation of reference distance 

do- This new reference distance, denoted as d'0, is derived as: 

ALbf+ALbh 

d'Q = d010 V 1 0 7 J. (3.12) 

The remaining parameters of the extended model are calculated as follows: 

f Aird' \ r 

A = 201og 1 0 — ± , 1 = a - b h b + - . (3.13) 

Here, h b represents BS height, and variables a, b, c stands for constants dependent 

on the terrain category depicted in Table 3.2. 

Lastly, the correction factors for the antenna height h < 3 m are defined as 

follows: 

A L B F = 61og 1 0 J , ALBH = - 1 0 1 o g 1 0 ( £ ) . (3.14) 

Tab. 3.2: SUI model parameters [59]. 

Category A Category B Category C 

a 4.6 4.0 3.6 

b 0.0075 0.0065 0.005 

c 12.6 17.1 20 
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3.2.4 Okumura-Hata 

This propagation model belongs among the most well-known representatives of aca­

demic efforts in this area. It is based on the extensive measurement campaign carried 

out in Tokyo during the 1960s. The Okumura-Hata model can be used for carrier fre­

quencies from 150 to 1500 M H z wi th the B S - E D separation distance ranging between 

1 and 20 km. Further, the module provides accurate results for B S antenna height 

in the range from 30 to 200 m wi th E D elevation between 1 and 10 m [59,90,97]. 

The model gives the median value of the propagation loss expressed as: 

Lb = 69.55 + 26 .16log 1 0 ( / ) - 1 3 . 8 2 l o g 1 0 ( / i 6 ) -
(3.15) 

- a(hm) + (44.9 - 6.55 log 1 0 ( / i 6 ) ) l o g 1 0 ( c Q , 

where / denotes the carrier frequency, hj, references to B S height, hr is E D antenna 

height, and d stands for the inter-transceivers distance. Lastly, a(hm) represents 

the E D antenna correction factor. In the case of large cities with carrier frequency 

/ > 200 M H z is computed as: 

a(hm) = 3.21og 1 0 (11.75/i m ) 2 - 4.79. (3.16) 

Based on the formula mentioned above, the resulting path loss for urban areas can 

be simplified to: 

L = L b - 4 .781og 1 0 ( / ) 2 + 18.33 l o g 1 0 ( / ) - 40.94. (3.17) 

3.2.5 Ericsson 9999 

A t its core, Ericsson 9999 represents an improvement of the Okumura-Hata propa­

gation model with adjustments for different morphology types. It makes the model 

optimal for macro sites wi th a cell radius from 0.2 to 100 km. O n top of that, the 

model provides accurate results for the frequencies from 150 M H z up to 2 G H z . Fur­

ther, the BS antenna height may range from 20 to 200 m with E D antenna elevation 

between 1 and 5 m [59,94]. The resulting path loss is calculated as: 

L = a0 + a i log 1 0 (d) + a2 log 1 0 ( / i 6 ) + a 3 log 1 0 ( / i 6 ) x 

x l o g 1 0 ( d ) - 3 . 2 1 o g 1 0 ( 1 1 . 7 5 / i r ) 2 + ^ ( / ) , 

where hb is BS antenna height, hr denotes E D antenna height, / stands for carrier 

frequency, and d represents the distance between BS and E D . The parameters a$-

a 3 , see Table 3.3, are constants dependent on the selected propagation environment. 
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Lastly, the frequency correction factor g(f) is calculated as: 

s ( / ) = 4 4 . 4 9 1 o g 1 0 ( / ) - 4 . 7 8 1 o g 1 0 ( / ) 2 . (3.19) 

Tab. 3.3: Ericsson 9999 model constants [59]. 

Environment aO a l a2 a3 

Urban 36.2 30.2 -12 0.1 

Suburban 43.2 68.93 -12 0.1 

Rural 45.95 100.6 -12 0.1 

3.3 Propagation Models Discussion 

Side-by-side comparison of all considered propagation models wi th identical input 

parameters reveals significant diversity between their results. The most remarkable 

differences can be seen at shorter distances, where the divergence between the most 

optimistic and pessimistic model reaches up to 35 d B , see F ig . 3.1. However, this 

difference gradually decreases with the distance. A t the 4 k m mark, the disparity 

drops down to only 22 dB [59]. 
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F ig . 3.1: Comparison of propagation models. 

The results indicate that the SUI model provides the most optimistic path loss 

prediction. This is mainly caused by the selected terrain morphology type, as the 

category B is intended for suburban areas. Further, it is worth noting that the 

SUI model predictions follow the free space model characteristics up to a distance 
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of 0.09km (do). However, this finding is not surprising as it is in line with the for­

mula 3.11. Considering 3 G P P and Okumura-Hata model, they perform comparably, 

especially for intermediate distances from 1 km. Nevertheless, on greater distances, 

the 3 G P P model tends to predict more pessimistic values, i.e., higher path loss. For 

the C O S T 231 Walfish-Ikegami (WI) model, the additional losses due to building 

scattering can be seen [98]. It starts with the relatively optimistic predictions; how­

ever, the path loss value steeply rises even wi th the small distance increments. This 

behavior indicates dominant energy contribution over the rooftop diffraction, but 

it rapidly vanishes wi th increasing distance. A s a result, the C O S T 231 W I model 

produces the steepest path loss curve. Finally, the most pessimistic predictions are 

present at the Ericsson Urban model. Nevertheless, these gloomy predictions are 

caused by high path loss at the ini t ial point. Vice versa, the Ericsson Urban model 

curve rises least sharply [59]. 

It must be noted that all propagation models mentioned above are empirical, 

i.e., based on data from measurement campaigns. Empir ica l models are often tuned 

for a specific environment; thus, they might indicate inaccurate results in areas wi th 

different geographical locations or terrain morphology. It is the main reason why it 

is necessary to fine-tune the propagation models to achieve the most accurate results 

in specific environments. In what follows, the selected models are fine-tuned to data 

from Brno and cross-validated wi th measurement results from Ostrava [59]. 

3.4 Measurement Campaigns 

The performed measurement campaigns included two mid-size cities in the Czech 

Republic, namely Brno and Ostrava. The test points wear spread throughout the 

cities and co-allocated with public transportation stop points. The first campaign 

conducted in the city of Brno covered over 300 unique test points, as depicted in 

F ig . 3.2. In comparison, the validation campaign organized in Ostrava included only 

34 exclusive places [59]. 

A t each location, all available statistics from L P W A modules were acquired. 

For Sigfox and L o R a W A N , the signal levels were reported only in the form of 

RSSI . Therefore, only this parameter can be used as the coverage quality indicator. 

N B - I o T , on the other hand, provides a variety of signal parameters, including RSSI 

but also Reference Signal Receive Power ( R S R P ) . This work focuses on the latter 

mentioned R S R P , as it gives more accurate signal power estimation by excluding 

interference from other antenna sectors and synchronization channels [59]. 
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(c) LoRaWAN. 

F ig . 3.2: Coverage by L P W A technologies in the city of Brno [59]. 

3.4.1 Measurement Equipment and Setup 

For Sigfox and L o R a W A N coverage assessment, two commercial field network testers 

from the Adenuis company operating in an 868 M H z frequency band equipped wi th 

a 0 d B i omnidirectional antenna were used [99]. More precisely, the Sigfox tester 

designated as Adenuis A R F 8 1 2 1 A A was set to utilize the maximum radiated power 

of 14 d B m (25 mW) to achieve the most extended communication range. In summary, 

it allowed achieving a sensitivity of up to -146 d B m with the standard SBS-T3 B S . 

In the case of L o R a W A N , the Adenuis A R F 8 1 2 3 A A tester was used. The tester 

utilized the maximum radiated power of 14 d B m (25 mW) wi th the SF12 and C R 

set to 4/5 ensuring the sensitivity of -137 d B m . Even though this C R value did not 

provide the longest communication range, it was selected to satisfy the L o R a W A N 

specification requirements for the E U region [100]. However, the packet delivery 
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ratio should not be noticeably affected even with 4/5 C R as study [101] suggests. 

Contrary, the higher C R values such as 4/8 significantly increases the number of 

collisions. Based on the study conducted in [102], the difference may be as high as 

20%. For N B - I o T measurements, the testing device developed at Brno University 

of Technology ( B U T ) equipped wi th uBlox S A R A N210 module was used [103]. 

The selected module supports only single-band operation in the 800 M H z (B20) 

spectrum with a maximum radiated power of 2 3 d B m (200 mW) and sensitivity of 

up to -135 d B m . Its output is further connected to the 2 d B i omnidirectional half-

wave antenna. Specifically, it is a pentaband antenna by R F Solutions designated 

as A N T - P C B 8 1 2 1 - F L [59]. 

Customer IT 

(jBjf NB-IoTBS (jfijf SigfoxBS ^ LoRaWAN GW 

Fig . 3.3: Network architecture of considered L P W A technologies. 

The actual measurements of all technologies in both cities followed the same 

pattern. The tester was transferred to the measured location and positioned ap­

proximately one meter above the ground level, apart from visible obstacles such 

as metal construction, high-rise buildings, and large trees. When the test devices 

started up, each of them transmitted 10 messages wi th 30 s period. It is worth 

mentioning that the testers were used sequentially to avoid interferences between 

L P W A technologies. Reflecting the l imitation of Sigfox standard, the message size 

was limited to 12 B also for L o R a W A N and NB- IoT . The overall view on the mea­

surement scenario and the path of each packet is depicted in F ig . 3.3. Once the 

measurements were finished, all available data were collected from the appropriate 

web management interfaces. Unfortunately, only the positions of L o R a W A N G W s 

are publicly available and accessible from the management interface. Therefore, it 

was necessary to enter into the non-disclosure agreement with network operators to 

acquire the locations of Sigfox and N B - I o T BSs. Thus, even though this information 

is known to the author, it can not be revealed publicly [59]. 
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3.4.2 City-Scale Coverage 

A s mentioned several times, the measurement campaign included two mid-size cities 

situated in the Czech Republic. If geographical topology and urban development 

are considered, both cities share similar properties. Therefore, comparable signal 

propagation is also expected, which makes these cities perfect candidates for the 

independent cross-validation of the developed models [59]. 

Tab. 3.4: Parameters of the city coverage [59]. 

L P W A 

Technology 

Avg. B S - E D 

distance [km]1 

Number of 

BS [-] 

Avg. signal 

level [dBm] 
L P W A 

Technology 
Brno Ostrava Brno Ostrava Brno Ostrava 

NB-IoT 0.52 0.53 78 31 -76 -79 

Sigfox 3.45 5.27 13 16 -112 -118 

L o R a W A N 1.86 3.97 19 16 -98 -105 

It is considered the distance to the closest BS. 

A side-by-side comparison of measurements in both cities reveals that the mea­

surement campaign covered 150 k m 2 in Brno and 140 k m 2 in Ostrava, despite the 

tremendous difference in the number of measurements points. Brno's measurement 

campaign was more extensive, wi th 303 individual test points contrasting wi th only 

34 locations in Ostrava. Due to the tremendous difference in the number of mea­

surement points over the same area, it is expected that also the average distance 

to the closest BS is going to be influenced. Indeed, this difference is reflected in 

the average B S - E D distance for Sigfox and L o R a W A N ; see Tab. 3.4. Naturally, the 

increased average length to the BS also influences the signal level. O n the other 

hand, in the case of N B - I o T , only the number of utilized B S is affected. Ostrava's 

results include almost 50 % of BSs compared to the Brno data, wi th only one-tenth 

of the measurement points. For Sigfox and L o R a W A N , the difference is virtually 

negligible. The higher density of N B - I o T BSs and lower density of measurement 

points primarily causes this divergence as the E D connected to the unique B S at 

each testing point. For the competitors, wi th significantly less dense deployments, 

this fact has almost no effect on the number of used BS [59]. 

3.5 Evaluation of Propagation Models 

This section introduces the steps needed for the derivation of the reference model, 

describes the proposed quantitative averaged metric, and discusses selected models' 
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accuracy. Further, the section reports on the propagation models' fine-tuning and 

cross-validation. 

3.5.1 Methodology 

The propagation models' fine-tuning from the acquired data sets from two cities can 

be divided into several steps. First , the reference models for each L P W A technology 

fitted to the measurement data are derived. To this aim, all available data from 

Brno's campaign are used. In the case of Sigfox and L o R a W A N technologies, it 

represents all packets received by reachable BSs, as multiple G W s can receive a single 

message. In the most extreme case, one message was received by 15 BSs. For N B -

IoT, however, only the serving eNodeB can receive the data. Therefore, the input 

data set is smaller. Then, the accuracy of the verified models from Section 3.2 is 

compared to the fitted reference models, and those having the closest approximation 

are considered in the next steps. The selected propagation models are further fine-

tuned to provide the highest accuracy for the fitted data by changing the floating 

intercept value. Finally, the tuned models' accuracy is cross-validated wi th results 

from Ostrava [59]. 

Reference Mode l Derivation 

The measurement results represent a set of R S R P / R S S I samples, but the propaga­

tion models generally operate wi th path loss values. Hence, the conversion from the 

signal levels to path loss values is necessary. The respected path loss is derived as: 

where S N R represents the signal-to-noise ratio, Prx denotes the transmitter Effec­

tive Radiated Power ( E R P ) , G stands for the sum of antennas gains, and Prx is the 

value of received signal power ( R S R P for N B - I o T , RSSI in the case of Sigfox and 

L o R a W A N ) . Then, the reference model for each L P W A technology is derived from 

the converted path loss data using the non-linear regression. This procedure's main 

output is the path loss exponent, later used as an input of the log-distance path loss 

model denoted by: 

In this formula, L(ofo) represents the path loss value in the reference distance 

do = 0 .1km, also known as floating intercept [104]. The letter 7 identifies the 

PL = SNR + P T X + G - P ! (3.20) 

(3.21) 
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path loss exponent, and d represents the distance between B S and E D . The float­

ing intercept value L(do) is derived from the free-space path loss formula with an 

additional 10 dB attenuation reflecting the losses caused by the propagation in the 

urban environment [59]. 

Propagation Models Fitting 

When the reference propagation model is derived, the procedure can continue wi th 

the fine-tuning of the verified models from Section 3.2. This step includes two main 

phases. First , visual estimation is used to tune the models. In other words, the 

floating intercept of the verified propagation model is moved to be as close to the 

reference model as possible (such a model is then called fine-tuned). Further, the 

newly introduced cumulative deviation formula gives the numerical representation 

of the fine-tuned model accuracy. To achieve the maximum precision, as a next step, 

the fine-tuned model floating intercept is moved by a difference A , and the quality 

factor is recomputed. When the resulting quality factor is smaller than the previous 

one, the whole process is repeated. This process continues unti l the lowest deviation 

value is found [59]. 

This work proposes to use Mean Absolut Error ( M A E ) metric specifying the 

cumulative deviation providing a quantitative comparison between any two models 

under consideration (reference and fine-tuned) defined as: 

N 

Q l

xY. i r , ] : - i r r . 0.22) 

=1 

Here, and represent the sample values of fitted and verified models at pre­

cisely the same point. Finally, N denotes the overall number of measurement points. 

Note that the modulus is used to account for positive and negative deviations. The 

M A E metric is also independent of the number of measurement points N as it pro­

duces the absolute deviation from the actual coverage averaged over all considered 

points [59]. 

Voronoi Tessellation 

Even though the M A E metric represents the straight forward method for comparing 

two propagation models, it also includes subtasks of the measurement points deriva­

tion. First , the BSs locations serve as an input of the Voronoi diagram. Notably, 

the Voronoi's main property is that it partitions the plane into regions containing 

one generating point (BS), and each point in a given area is closer to its generating 

point than to any other. The resulting tessellated area of each L P W A technology 

can be seen in F ig . 3.4. The results further illustrate the tremendous difference 
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in the B S deployment density. The most pronounced divergence is visible between 

N B - I o T and Sigfox. It must be noted that the use of Voronoi tessellation may cause 

some discrepancies which are not in line wi th actual network coverage topology. For 

example, the E D message does not always have to be received by the closest B S , or 

in the case of Sigfox and L o R a W A N , it can be perceived by multiple BSs. However, 

these minor discrepancies do not significantly influence the results, and the ease of 

implementation makes Voronoi an optimal solution for this work. 

Finally, the measurement points' locations are acquired in the last step by di­

viding the tessellated area into a regular grid wi th 50 m resolution. Also, the mea­

surement point's distance to its closest BS is used as the reference and fine-tuned 

propagation models input parameter [59]. 
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(b) Sigfox. 
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(c) LoRaWAN. 

F ig . 3.4: Voronoi diagram of L P W A BSs in the city of Brno. 

3.5.2 Models Fitting 

The evaluation process can continue with the first two steps of the proposed method­

ology, i.e., selecting the most suitable propagation models and fine-tuning the models 

to Brno data. 
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To this aim, F ig . 3.5 displays the measurement samples acquired in Brno com­

plemented by the verified propagation models from Section 3.2 together wi th the 

derived reference models. Based on the cursory visual analysis, it can be stated 

that 3 G P P Urban, Okumura-Hata Urban, and SUI represent promising candidates 

for accurate approximation. The remaining C O S T 231 and Ericsson models signifi­

cantly overestimate the path loss values. In order to certify the visual observation, 

quantitative M A E metric (3.22) is applied, giving the mean deviation between the 

reference models (fitted to measurement data) and the verified ones. The numeri­

cal results, depicted in F ig . 3.6, indeed match the visual observations. In its basic 

form, the SUI model provides the most accurate prediction for both N B - I o T and 

L o R a W A N technologies. In contrast, Sigfox is best characterized by the 3 G P P Ur­

ban model. However, it is necessary to bear in mind that these results are gathered 

from the basic form models. Thus, the final results may differ [59]. 
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F ig . 3.5: Comparison of reference and standardized models in the city of Brno [59]. 

In the next step, the analysis continues by fine-tuning the verified propaga­

tion models. A s a first step, the selected models are transformed into the generic 
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F ig . 3.7: Comparison of reference and fine-tuned models in the city of Brno [59]. 

log-distance path loss model (3.21), allowing for straightforward adjustment of the 

floating intercept value. The results of this fine-tuning operation are presented in 

F ig . 3.7. Visual analysis reveals that for N B - I o T and L o R a W A N technologies, the 

fitted models slightly deviate from the reference ones. This deviation tends to appear 

mainly for the more considerable B S - E D separation distances, i.e., larger than 1 k m 
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for N B - I o T and 2.5 k m for L o R a W A N . However, there is an exception of the Erics­

son Urban model for N B - I o T that predicts accurate results for the whole considered 

B S - E D distances range. In the case of Sigfox, all 3 G P P Urban, Okumura-Hata 

Urban, and C O S T 231 models provide impressive results, wi th the first-mentioned 

being the most accurate. Despite the visible divergence at the larger distances, the 

Ericsson Urban model captures the reference L o R a W A N model the best [59]. 

The fine-tuned models' accuracy is also assessed by employing the M A E integral 

metric, see F ig . 3.8. Indeed, the fine-tuned Ericsson Urban model drastically outper­

forms its competitors in the case of both N B - I o T and L o R a W A N technologies. Sim­

ilarly, the 3 G P P Urban model provides superior results for Sigfox technology. The 

exact parameters of the best performing models are highlighted in Tab. 3.5 1 . Side 

by side comparison of data in F ig . 3.6 and F ig . 3.8 also reveals that the fine-tuning 

shifted the Ericsson Urban from the least to the most accurate model considering 

N B - I o T and L o R a W A N . In terms of the actual numbers, it represents 400 and 36 

times improvement for N B - I o T and L o R a W A N , respectively. For Sigfox, there is no 

such a bold change as the 3 G P P Urban model provides the most accurate results 

in both cases; st i l l , the fine-tuning procedure displays more than 20 fold precision 

improvement [59]. 

Tab. 3.5: Fine-tuned propagation models parameters [59]. 

Propagation NB-IoT Sigfox LoraWAN 

Model PLd0 7 PLd0 7 PLd0 7 

3GPP 112.07 3.76 118.04 3.76 103.54 3.76 

SUI 112.43 4.09 117.09 4.02 102.35 3.89 

Ericsson 111.21 3.04 118.82 3.04 104.82 3.04 

Okumura-Hata 111.22 3.41 118.33 3.38 104.69 3.33 

COST 231 112.03 3.80 118.00 3.80 104.00 3.80 

Finally, if the fine-tuned models' accuracy is compared to the best performing 

verified models (ones in the basic form), the fine-tuned models still clearly dominate. 

In the case of N B - I o T , the fine-tuned model provides 40 times improved accuracy 

over the best performing not-tuned one. For Sigfox and L o R a W A N , the change 

represents a 20 and 8 fold increase, respectively [59]. 

xFor better traceability and repeatability, the fine-tuned models' underlying parameters are also 
listed. The parameters of the log-distance model represent the floating intercept PLdo and path 
loss exponent 7. 
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NB-IoT Sigfox LoRaWAN 

Fig . 3.8: Accuracy of fine-tuned models in the city of Brno [59]. 

3.5.3 Models Cross-Validation 

The most crucial part of propagation model development is related to its applica­

bil i ty to other deployments. In this work, the accuracy of models fine-tuned on 

Brno data is verified using Ostrava's measurement results. A s a first step of the 

cross-validation process, the Ostrava measurement results with the appropriate fit­

ted reference model, as well as the Brno fine-tuned models are depicted in F ig . 3.9. 

The cursory visual analysis shows that all the fine-tuned models (on Brno data) 

can potentially provide an accurate path loss approximation for Ostrava results. 

However, in the case of N B - I o T technology, the Ericsson Urban significantly outper­

forms the remaining competitors. For Sigfox and L o R a W A N , the fine-tuned models 

capture the path loss characteristics for shorter distances wi th substantially higher 

precision compared to more considerable B S - E D separation distances. In this re­

gard, the Okumura-Hata Urban model provides the closest match for the Sigfox 

technology, faithfully capturing the path loss characteristics during the whole 15 k m 

range. Unfortunately, in the case of L o R a W A N , all considered models indicate in­

creased deviation. This divergence tends to grow wi th rising B S - E D separation 

distance. Nevertheless, among all models, Ericsson Urban catches the path loss 

characteristics the best [59]. 

In the next step, the fine-tuned models' accuracy wi th Ostrava data is numeri­

cally quantified by the M A E metric (3.22), see F ig . 3.10. Besides the Brno fine-tuned 

models, the figure also displays the best performing verified models in the raw form 

(i.e., not-tuned propagation models from Section 3.2). It is worth mentioning that 

for all selected L P W A technologies, the SUI model represents the most accurate 

verified model in the basic form. However, this finding is in line wi th the knowl­

edge gained from Brno data, where the SUI model provides the best accuracy for 

N B - I o T and L o R a W A N and holds second place for Sigfox. The numerical analysis 

further verifies that, in general, the L o R a W A N approximation is less precise com-
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Fig . 3.10: Models cross-validation in the city of Ostrava [59]. 

pared to N B - I o T and Sigfox. For N B - I o T , even the worst-performing fine-tuned 

model provides more accurate results than the best performing verified model in the 

raw form. O n top of that, the fine-tuned Ericsson Urban model (the most accurate 

one) displays a 30-fold accuracy increase over the best-performing model in the basic 

form. Unexpectedly, the most accurate fine-tuned model in Ostrava (Okumura-Hata 
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Urban) for Sigfox technology differs from Brno ( 3 G P P Urban). Nevertheless, the 

difference is marginal wi th a value in the range of 0 .3dB (23%). St i l l , the Brno 

fine-tuned models, except SUI, provide more precise predictions than the basic form 

verified model. Surprisingly, even wi th the increased inaccuracy of fine-tuned mod­

els for L o R a W A N technology, they still offer superior performance compared to the 

basic form verified model. Specifically, the most accurate fine-tuned model displays 

a 9 times lower approximation error than the best-performing verified model [59]. 
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4 Coverage Assessment Planning 
The deployment and maintenance of large-scale mult i -BS wireless communication 

networks is a costly and extremely complex process requiring perfect knowledge of 

the propagation environment. To this aim, the network operators regularly conduct 

extensive measurement campaigns to create an accurate coverage map. However, 

the locations and the number of measurement points providing efficient and precise 

results are usually not known in advance. Therefore, this study proposes a new 

methodology for understanding the selection of measurement points balancing spent 

effort and achieved accuracy [105]. 

4.1 Background & Rationale 

A s mentioned before, the coverage assessment is a complex process that can be 

affected by various factors. These constraints may include non-technological aspects, 

including urban layout characteristics, legal issues, and the limited set of locations 

where the B S can be deployed. Usually, the decision on the BS location is made 

based upon three-dimensional city maps. This process may involve several iterations, 

where the measurement results are used to adjust the newly deployed BS locations. 

However, even after the deployment, network operators carry out regular inspections 

to understand whether the coverage characteristics and network performance change 

over time [105]. 

Dynamic fluctuations in the propagation environment over extended periods of 

time were also verified by related studies [106,107]. One of the studies revealed 

that the variance could be as high as 40 d B m even for static deployments over the 

course of several-month period. It is worth noting that these changes are not utterly 

random, but they are represented by a small variation of samples oscillating around 

the mean value. However, these micro-scale fluctuations do not influence the over­

all propagation environment "picture" and are even smoothed by the propagation 

models, which predict the mean value. The rationale behind the more considerable 

changes is that the L P W A network operators may perform infrastructure updates 

or network reconfiguration. However, the propagation conditions may also change 

due to, e.g., seasonal changes or the bui ld of a new construction intersecting the 

propagation path. Therefore, to maintain a relevant coverage map, the assessment 

must be conducted on a regular basis [105]. 

Usually, operators are wil l ing to assess the network coverage at the highest num­

ber of locations possible (ideally in all areas), which is a time-consuming process. 

Notably, one of the most critical issues is selecting the optimal number of measure­

ment points for accurate coverage assessment, as it is hard to determine in advance. 
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In practice, the decision is affected by multiple factors such as city deployment 

characteristics, selected technology, and carrier frequency. Moreover, this problem's 

complexity is even higher when the location of BSs is not known in advance, which 

may be the case of third-party companies aiming to assess the L P W A network cov­

erage and signal quality [105]. 

4.2 Key Contribution 

A s its main output, this study proposes a new methodology of coverage assessment 

without the knowledge of BSs in L P W A networks. Specifically, the study addresses 

the signal quality estimation at points of interest in a specific area based on exten­

sive measurement campaign results. Further, it provides a cumulative metric that 

quantifies how the number of measurement locations affects the assessment accuracy. 

In other words, how the selected interpolation algorithms perform under different 

thinning methods. Notably, the study considers three major L P W A technologies, 

namely, N B - I o T , Sigfox, and L o R a W A N . Further, the coverage assessment maps are 

created using five different interpolation methods, including Nearest-neighbor, L i n ­

ear, Natural-neighbor, Inverse Distance Weighting ( IDW), and Krig ing . It is worth 

mentioning that the first thinning method is inherently random, whereas the second 

incorporates a more deterministic approach [105]. 

The primary outcomes of this work can be summarized as follows. In the first 

phase, the coverage map and reference model are derived using the measurement 

data and the knowledge of BSs locations. The reference model is not the main output 

of this work, but it is later used to compare the accuracy of the already available 

propagation models wi th the constructs produced by different interpolation algo­

rithms. The study then proceeds by gradually reducing the number of generating 

(measurement) points via probabilistic and deterministic thinning. In combination 

wi th the interpolation method, these l imited data sets are used to generate reduced 

coverage maps. Using the portion of the area covered with at least a signal level of 

( x d B m ) and further employing the integral averaged metric, the assessment contin­

ues by comparing the reference model against the coverage maps produced util izing 

the interpolations. Finally, the performance of the reference model and interpola­

tion methods under thinning is compared wi th the actual measurement results. It 

allows assessing the accuracy of each considered approach in the most convenient 

manner. Using the proposed methodology, one can identify the number of measure­

ment points required to produce a coverage assessment map with accuracy for a city 

environment similar to Brno [105]. 
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4.3 Related Work 

Large-scale measurement campaigns represent the most convenient tool for precise 

network coverage assessment. However, it is a challenging and complex task requir­

ing a lot of effort and money. Therefore, by reducing the number of measurement 

points while adhering to a certain accuracy level, primary technological adopters 

can significantly reduce cost and time spent [105]. 

Unfortunately, the research question of assessing large-scale mul t i -BS L P W A 

networks without BSs location knowledge has not yet been sufficiently investigated. 

Therefore the following subsections are devoted to characterizing three main sub-

tasks connected wi th this work. Subsection 4.3.1 features studies related to coverage 

assessment; then, state-of-the-art interpolation methods used for coverage estima­

tion are overviewed in Subsection 4.3.2; finally, the Subsection 4.3.3 summarizes 

standard coverage metrics [105]. 

4.3.1 Coverage and Signal Quality Assessment 

The coverage assessment of L P W A technologies with explicit knowledge of BSs loca­

tions was addressed in several research works. Mostly, standardized channel quality 

indicators such as R S R P , RSSI , or Signal to Interference plus Noise Rat io (SINR) are 

used to access the signal coverage/strength. Even though these indicators provide 

the most straight-forward signal strength/quality assessment, comparison between 

different works may be cumbersome [105]. 

The authors of the study [108] carried out an extensive measurement campaign 

focused on the coverage assessment of L P W A technologies L o R a W A N and Sigfox. 

The data acquired in the city of Antwerp in Belgium was used as an input for the 

developed localization framework. In terms of the number of BSs, Sigfox slightly 

exceeded L o R a W A N wi th 84 BSs distributed over an area of 52.97 k m 2 . The mea­

surement campaign for Sigfox also included rural measurements between the cities 

Antwerp and Ghent. In total, the measurement campaign covered the area of 

1068 k m 2 served by 137 unique BSs. Unfortunately, this study does not provide 

any results from the N B - I o T measurement tr ial focused on the coverage and signal 

quality assessment [105]. 

In research [109], the authors characterized the distribution of L T E BSs in the 

city of X i a n in northern China. The study captured real-world measurements of­

fering the first-order look at the distribution and density of N B - I o T BSs. Though 

the campaign was focused only on L T E technology, it can also provide insight into 

the N B - I o T as they usually share network infrastructure. Concretely, in this ur­

ban scenario, the area of 3 k m 2 was covered wi th 13 BSs. In terms of BSs density, 
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it is more than 4 BSs per k m 2 . Surprisingly, this value is almost identical to the 

N B - I o T measurement campaign results conducted by the author of this doctoral 

dissertation [105]. 

In some works, authors chose a different approach to this problem and used sim­

ulation tools to estimate the L P W A network coverage. The authors of the study 

[110] utilized real Telenor's cellular network structure to simulate the performance 

of three major L P W A technologies, namely N B - I o T , L o R a W A N , and Sigfox. Closer 

inspection of network infrastructure further showed that urban cells' density is five 

times higher in comparison wi th rural areas. The L P W A technologies also displayed 

their domination over the legacy G P R S technology in terms of the number of out­

ages. The N B - I o T and Sigfox provided outages below 1 %, followed by L o R a W A N 

with 2 % messages loss. O n the other hand, the legacy G P R S had the chance of 

message loss of around 8% [105]. 

It must be noted that all studies mentioned above presume the full knowledge 

of BSs locations. Therefore, the operators can easily use the measurement results 

to assess and improve their network deployments. For third parties, however, this 

approach is not convenient as the locations of BSs are not publicly available [105]. 

4.3.2 Interpolation Methods 

A s it is nearly impossible to conduct a measurement campaign wi th an evenly spaced 

grid of testing point locations, the application of interpolation methods at the points 

where no data is readily available is needed. This principle of missing points ap­

proximation by applying interpolation methods was also discussed in several research 

studies. Notably, the authors of study [111] utilized I D W interpolation to predict 

L T E signal strength at the location wi th no measurement data available. However, 

the authors of this publication do not provide any assessment metric. It is the main 

reason why the accuracy of the results can not be verified since the predicted value 

is considered as "ground truth" [105]. 

To create a coverage map, authors in [112] employed Fixed Rank Krig ing , pre­

dicting the signal levels in the region covered by a single B S . Interestingly, in terms 

of prediction accuracy, the Kr ig ing interpolation surpassed even the derived propa­

gation model. More precisely, the Root Mean Square Error ( R M S E ) of F ixed Rank 

Kr ig ing ( F R K ) ranged between 3 and 5 d B . In the next research [109], the au­

thors proposed a new coverage map construction method that uses Mul t i -Cr i te r ia 

Triangulation-induced Interpolation (MTI ) . However, it must be noted that this 

work focuses solely on predicting the covered area without closer specification of 

the expected signal levels. Finally, in [113], the authors proposed an RSS-based 

localization framework bui ld upon interpolation and extrapolation methods to re-
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construct signal fingerprints. Namely, the authors used Linear, Nearest-neighbor, 

and I D W interpolation schemes together wi th Min imum, Mean, Gradient, I D W , 

and Nearest-neighbor extrapolation. Among all of the selected interpolation meth­

ods, the Linear and I D W scheme provided the highest prediction accuracy, wi th the 

mean error ranging between 4.3 and 8 d B [105]. 

In summary, all research works mentioned above focus on signal levels prediction 

incorporating a single B S . Therefore, the results can not be directly compared wi th 

the results of this study, as the derivation of a mult i -BS coverage map represents an 

incomparably more complex and challenging task [105]. 

4.3.3 Coverage Assessment Metrics 

In order to have a convenient tool allowing for quantitative comparison of predicted 

values wi th the reference model, the coverage metric has to be defined. Generally, 

the quantitative metrics can be divided into two main groups, namely averaged and 

cumulative parameters. In the study [109], the authors used averaged assessment 

metric, defined as the ratio between misclassified regions to the total area. Such 

metric allows for a simple comparison of results using a single variable; however, it 

does not provide any measure for comparing signal levels accuracy. In practice, this 

metric focuses only on borders of the covered area, simplified to Boolean variable 

wi th true/false states [105]. 

The study [113] defined the cumulative assessment metric as the cumulative 

probability of RSS error. O n top of that, the mean error as a function of removed 

fingerprints is used to ini t ial ly verify the interpolated values. This mean error metric 

is similar to the approach used in this work but does not account for positive and 

negative deviations by using modulus. Further, in the study [112], the assessment 

metric is given as a Cumulative Distr ibution Function ( C D F ) of empirical errors 

between modeled and predicted values. Such a metric provides useful visual infor­

mation about the distribution of the error in the area. St i l l , it does not allow for a 

simple comparison of deviations in the form of a single number [105]. 

Hence, this work combines two previous approaches from studies [112] and [113] 

wi th certain modifications. In contrast wi th the metric introduced in [112], this 

research utilizes a portion of the area covered wi th a signal level of at least x d B m . 

However, aside from the predicted values, this work also includes samples produced 

by the reference model. To this aim, the second metric provides a single value pa­

rameter in the form of mean deviation between the reference model and interpolated 

values or measured samples called M A E [105]. 
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4.4 Proposed Methodology 

This section's main idea is to propose a methodology for deciding on the minimum 

set of measurement points needed for coverage map construction. The procedure 

is tightly connected wi th the Chapter 3 as it utilizes the same input data acquired 

during the extensive measurement campaign. It also uses the proposed fine-tuned 

models from the previous chapter to create the baseline reference models used by 

this study. In the following stages, the selected interpolation methods and thinning 

algorithms are applied [105]. 

4.4.1 Assessment Procedure Steps 

The whole process of identifying the minimal set of measurement points can be 

divided into four main tasks (i) reference model derivation, (ii) coverage estimation, 

(iii) quantitative comparison between the models, and (iv) accuracy assessment of 

the models against measured values. For a more granular depiction of the procedure 

in question, see F ig . 4.1 [105]. 

Reference model Estimation 

Section 3.4 Section 4-4 

Experimental measurements 
Pre-processing of 

experimental measurement 
data 

i ^ ^ ^ ^ ^ ^ 
Section 3.5.2 Section 4-4-3 

Derivation of the reference 
propagation model based on 

empirical measurements 

Application of the selected 
thinning algorithm to get a 

requested number of 
removes points 

^ ^ ^ ^ ^ ^ ^ ^ ^ t 
Section 3.5.1 Section 4-4-2 

Voronoi tessellation of the 
area based on BS location 

Application of interpolation 
methods to obtain 

estimations for missing 
points 

i t 
Section 4-4-1 Section 4-4-1 

Estimation of signal levels 
based on the reference 

model and distance to the 
nearest BS 

Quantitative comparison 
between reference model, 

interpolation methods, and 
measured data 

F ig . 4.1: M a i n steps of assessment process [105]. 

The knowledge of the exact BSs locations, in the first step of this process, is com­

bined wi th the fine-tuned propagation models to derive a reference model for each 
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L P W A technology. In the second phase, the interpolation methods are employed 

to derive models without the explicit knowledge of BSs locations. To this aim, in­

terpolation methods use measured R S R P values as the input dataset for NB- IoT , 

while Sigfox and L o R a W A N models are derived from RSSI . The R S R P provides a 

more accurate channel assessment as it measures only the RO (also R l when avail­

able) reference signal, thus excludes interferences from other antenna sectors and 

channels [56]. However, for Sigfox and L o R a W A N , this metric is not present as 

they use omnidirectional antennas without reference signals. It is the main reason 

why these technologies are l imited to RSSI, which integrates power from the whole 

bandwidth [105]. 

Notably, two different point reducing methods are applied to identify the minimal 

set of measurement points for an accurate assessment. Namely, it is probabilistic 

and deterministic thinning. These algorithms significantly impact the selection of 

measurement locations, as the deterministic thinning tends to form measurement 

points in a regular grid. In contrast, the output of the probabilistic ones is inher­

ently random. A s a result, the selection of thinning algorithm is expected to affect 

coverage assessment accuracy. Bo th algorithms are consecutively applied to the in­

put dataset unti l the required number of retained points is not achieved. In the next 

step, the M A E metric (3.22) is applied to quantitatively characterize the distance 

between interpolated data wi th a reduced input dataset (created without BSs loca­

tion knowledge) and the reference model (derived using BSs locations knowledge). 

Finally, the accuracy of values predicted by the reference model and interpolation 

methods is assessed by side-by-side comparison with the measured samples. Based 

on these results, the decision on the minimal number of measurement points needed 

to derive a coverage map with a given maximal deviation is made [105]. 

Metrics of Interest 

To provide a simple visual assessment of the derived coverage map, the probability 

that a certain fraction of the area is covered with a signal level of at least x d B m is 

employed. In what follows, this metric is applied to both the reference model and 

the interpolated values. First , the area of interest is divided into a regular grid. 

Then, the coverage quality is estimated by extracting R S R P / R S S I values at each 

grid point and putting them in a cumulative array. In other words, this assessment 

metric represents an inverse C D F of the sample values [105]. 

The inverse C D F metric allows for a straightforward comparison of the reference 

model with interpolated values, but it does not provide a quantitative comparison 

of the distance between these models. Hence, this work reuses the averaged M A E 

metric 3.22 defined in the previous chapter to facilitate the quantitative comparison 

64 



between models. Recall that the modulus is used to account for positive and negative 

deviations, and the resulting value is independent of the total number of sample 

points N [105]. 

Reference Model 

The reference model's derivation represents the same procedure as defined in Sec­

tion 3.5.1. It requires converting the R S R P / R S S I samples to the path loss values. 

Next, the non-linear regression is employed to derive the continuous path loss curve. 

This empirical model is then approximated by the verified propagation models as 

closely as possible, see F i g 4.2. For N B - I o T and L o R a W A N , the fine-tuned Ericsson 

Urban model provides the most accurate prediction as the mean deviation (based 

on the M A E formula 3.22) is not larger than 0.1 and 1.1 dB , respectively. In the 

case of Sigfox, 3 G P P Urban represents the most accurate propagation model wi th 

the mean deviation not exceeding 0.2 dB. 

In the last step, the knowledge of BSs locations is used to divide the area into 

the corresponding regions uti l izing the Voronoi tessellation. It allows splitting the 

area into sections where all polygon points are closer to the appropriate BS than to 

any other seed. Notably, the measurement points are distributed over the area of 

interest in a regular grid wi th a spacing of 50 m. Finally, the fine-tuned propagation 

models are used to predict the expected signal levels at each cell of this grid. A s 

an input parameter of these models, the point's distance to the closest B S is used. 

Such a generated coverage map represents a reference model used in the next steps 

of the accuracy assessment. 

4.4.2 Interpolation Algorithms 

In this work, the interpolation algorithms are essential to predict values at those 

points where the measurement data are not available. However, it must be noted 

that the measurement points are not evenly spaced over the whole area of inter­

est, but they are grouped along the public transport lines stops. Such an in­

put dataset requires the application of interpolation methods for scattered data. 

In this study, five well-known interpolation algorithms for arbitrarily spaced data 

are used. Namely, selected interpolations include (i) Nearest-neighbor, (ii) Linear, 

(iii) Natural-neighbor, (iv) I D W , and (v) Kr ig ing . The algorithms listed above are 

sorted from the simplest Nearest-neighbor interpolation up to the most complex 

Kr ig ing [105]. 
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(c) LoRaWAN. 

F ig . 4.2: F i t t ing of propagation model to measurement data [105]. 

Nearest-Neighbor 

This method represents the most straightforward approach to data interpolation. 

A t the first step, the Delaunay interpolation is applied to the input set of measure­

ment (sample) points denoted as x. After the triangulation, each vertex is lifted by 

the magnitude V which corresponds to the sample point x value. Then, to acquire 

the value of the requested point xq, the same lifting procedure is conducted. The 

requested point xq is lifted unti l it does not intersect the corresponding triangle 

delineated by the sample points x. In other words, it involves traversing the trian­

gulation structure to find the triangle enclosing the requested point. Finally, the 

nearest point x value is computed and reused in the requested point xq [105,114,115]. 

Due to the simplicity of this method, the computational demands are low. How­

ever, this interpolation method accuracy is not the best as it does not predict new 

66 



values for the requested points xq but only duplicates the existing ones. This prop­

erty leads to the formation of sharp transitions between values at the edges of the 

neighboring cells [105,114,115]. 

Linear 

The main principle of Linear interpolation is similar to approach used by the Nearest-

neighbor method. The Delaunay triangulation tessellates the area of interest. Then, 

the vertices of the measurement points x are lifted by the magnitude V. However, 

contrary to the Nearest-neighbor algorithm, the requested points xq are not dupli­

cated from the closest sample point x. Instead, they are calculated as the weighted 

sum of all three vertices that constitute the enclosing triangle [105,114]. 

Linear interpolation employs the Barycentric coordinates system to overcome 

the values prediction problem when the points lie directly on the vertices' connect­

ing lines to provide the most accurate results [116]. When the requested point xq 

is inserted into the triangle and connected to each vertex, the resulting diagram 

contains three separate triangles with the corresponding areas Ai, A2, and A3. If 

the whole area of the original triangle is denoted as A, the Barycentric coordinates 

a, 13, and 7 [117] are derived as 

a = ^ (3 = ^ 7 = ^ (41) 
A ' A ' A ' { ' 

The resulting sum of these coordinates must always be equal to one. Therefore, 

this knowledge can be used to speed up the thi rd coordinate calculation by subtract­

ing the sum of the first two parameters from one. The final value of the interpolated 

point is calculated as 

xq = aVa + $Vb + 1Vc, (4.2) 

where Va, V&, Vc represent the values of the appropriate triangles vertices and a, (3. 

7 denote the Barycentric coordinates [105]. 

The main benefit of this interpolation is its relative simplicity and speed. It is 

still considerably slower than the Nearest-neighbor algorithm, as the calculation of 

Barycentric coordinates and the weighted sum requires additional computing time. 

However, compared to the Nearest-neighbor, the Linear interpolation provides C° 

smoothness [105,115]. 
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Natural-Neighbor 

The Natural-neighbor interpolation builds upon a plane portioning structure called 

the Voronoi diagram. A s an ini t ial step, the known points x are used to tessellate 

the intended area. Each cell of the resulting figure consists of one generator point 

(known point x), which defines the entire polygon's value. Logically, the Voronoi 

tessellation is discontinuous, but the Natural-neighbor interpolation uses its useful 

characteristics. For example, each edge of the polygon represents a link between 

two generating (measurement) points. This property allows for easy identification 

of the corresponding neighbors for the interpolation [105,118]. 

Similar to Linear interpolation, the requested point xq is inserted into the Voronoi 

diagram in the next step. Consequently, the newly inserted point xq produces a new 

polygon added to the resulting Voronoi structure. A s a result, a portion of the 

neighboring polygons is consumed by the new polygon, and edges covered by the 

new cell are subsumed. The main goal of the next step is to calculate the area 

consumed by the inserted polygon from the surrounding cells. Each fraction of 

the area contributed by the neighbor cells represents the polygon weight, which, 

combined wi th its value, gives the resulting requested point xq magnitude. The 

fractional weight of the polygon Aj can be derived as 

\ = % (4-3) 

where Ai represents the area of the contributing cell % and A is the total area of the 

inserted polygon. A s in the case of Linear interpolation, the sum of the weights is 

equals to one. In the last step, the requested point xq value is calculated as 

N 

Xq=J2Xi- Z" (4-4) 
i=0 

where N represents the number of neighboring cells, A, is the element weight, based 

on (4.3), and Zi stands for the sample point value [105,119]. 

The main advantages of Natural-neighbor interpolation include relative simplic­

ity, speed, and resilience to biases introduced by the clustering of the points. O n 

the other hand, its slope discontinuity prevents C1 continuity over the entire sur­

face [105,118,119]. 

Inverse Distance Weighting 

The main premise of I D W interpolation assumes that values of proximate points are 

more related than distant ones. In practice, it means that the interpolated value 

of the requested point xq is calculated as a linearly weighted combination of known 
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sample points. The weight of each point is defined as an inverse function of distance. 

W i t h this knowledge, the requested point value is derived as 

n 

xq = —n , (4-5) 

i=0 

where Zi denotes sample point value, di is the distance between the desired and 

known sample point. Finally, p represents the power parameter that controls the 

influence of the known point x on the interpolated value. The closest points have the 

largest impact on the resulting value of the requested point xq. Notably, the power 

value p is not strictly defined and does not have any connection to the real-world 

process. Usually, the convention is to use the power of two, which is also employed 

in this work. The last parameter n determines the number of samples considered 

for interpolation of the requested point xq. Typical ly values higher than three are 

recommended [105,120]. 

The selection of these input arguments significantly influences the resulting be­

havior of I D W interpolation. O n top of this, I D W provides additional flexibility in 

the selection of sampling points used for interpolation. Instead of the exact number 

of neighboring points, the interpolation may use a fixed search radius in which all 

the points contribute to the resulting predicted value. The search window does not 

have to be a perfect circle, but it can have an almost arbitrary shape. In the cur­

rent study, the requested point xq is interpolated from the five closest neighboring 

points [105,121]. 

I D W represents an intuitive method of data interpolation, which is stil l com­

putationally efficient. However, its accuracy significantly decreases wi th unevenly 

distributed measurement points. It also can not provide C1 smoothness. Moreover, 

the selection of multiple input arguments is arbitrary without connection to the 

physical world, but it radically influences the interpolation behavior [105,120]. 

Kriging 

This interpolation method belongs to the geostatistical algorithms group bui ld upon 

statistical models that incorporate autocorrelation properties (in the sense of math­

ematical relation between sample points). It allows these techniques to produce not 

only the predicted value but also offer accuracy assessment. Notably, the accuracy 

of Kr ig ing is the highest when the input data is spatially correlated over the distance 

or contains a directional bias [105,122]. 

The derivation of the interpolated value stems from an idea similar to the 

Natural-neighbor and I D W mechanisms, i.e., the requested point xq value is cal-
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culated as a weighted sum of neighboring points, see (4.3). However, the way how 

the individual weights are acquired differs drastically. Kr ig ing weights are not de­

rived solely from the distance to the sample point but also account for the measure­

ment points' spatial arrangement. To this aim, Kr ig ing follows a two-step process 

of (i) creating covariogram and covariance function, and (ii) unknown values predic­

tion [105,123]. 

In the ini t ial step of Kriging, an experimental semi-variogram is derived as 

7 0 ) = T ^ r ^ y J2 iz(xi) ~ z(%i + h)]2, (4.6) 

where N(h) represents the number of pairs separated by the distance h and z(xi) 

is the value of the sample point. Then, the experimental semi-variogram is fitted 

to one of the predefined empirical semi-variograms. This step is necessary because 

the experimental semi-variogram does not represent a continuous function, but it is 

only a set of individual points. A Spherical semi-variogram is used in this work as 

it provides the closest match wi th the experimental semi-variogram. The selected 

empirical semi-variogram is denned as 

1(h) 
3h _ l ( h \ 
2a 2 V a ) for 0 < h < a 

for h > a 
(4.7) 

where a is the range, Co denotes the nugget variance, and Co + c\ represents the sill . 

Further, in the last step, Kr ig ing produces the prediction on the value of the 

requested point xq. This work is based on Ordinary Kr ig ing , but there are other 

variants of this algorithm [124]. For the Ordinary Kr ig ing , the system is defined as 

(4-

where \i is the Lagrange parameter, and C\n denotes the covariance between the 

locations of sample points X\ and xn. The samples covariance is derived as 

" A ; " C i i • • C\n 1 
-1 

Cio 

A N 

= 
Cni • • c 1 

1 • • 1 0 1 

Ci„ = Cov(x1 - xn) = C(0) - 7 ( X i - xr, (4.9) 

where C(0) is the semi-variogram sill , and 7 represents the value generated by the 

semi-variogram for the joining points x\ and xn. Finally, the acquired weights A„ 

are used to predict the value of the requested point xq according to (4.4) [105]. 
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The main benefit of Ordinary Kr ig ing over the deterministic methods is that 

the information about spatial relations is readily included in weight calculation. O n 

the other hand, Kr ig ing is computationally demanding. Notably, the derivation of 

sample points weights represents computationally complex task [105,122]. 

4.4.3 Thinning Algorithms 

In theory, the accuracy of the interpolation algorithms under thinning should depend 

on the way how the points are selected. This study, therefore, discusses two different 

approaches to this issue. The first method is entirely random, whereas the second 

algorithm uses a semi-deterministic principle [105]. 

Probabilistic Thinning 

Probabilistic thinning represents a straightforward approach, which has an impor­

tant feature that is directly translated into the selection of the measurement points 

when planning a measurement campaign. In probabilistic thinning, the choice of 

the removed elements is entirely random, and individual points are selected inde­

pendently [105]. 

Deterministic Thinning 

The most accurate predictions should be provided when the measurement locations 

are densely and evenly spread over the entire area. To this aim, the deterministic 

thinning ensures that for a given number of the retained points, they reside as far 

from each other as possible [105]. 

Deterministic thinning follows these steps to acquire the measurement points' 

locations from a random dataset. It (i) specifies M x M grid defining the squares on 

the coverage map, (ii) estimates number the number of in each resulting square and 

sort them in descending order. The algorithm further (iii) determines how many 

points need to be removed, and (iv) removes the measurement points from the square 

wi th the highest number of elements in a way that the number of retained points 

equal to the number of points in the second largest cluster (based on the number 

of points). The thinning continues (v) wi th removing the items from two squares 

having the highest number of points unti l they do not contain the same number 

of points as the third-largest cluster. This process finishes when (vi) the required 

number of points has been removed [105]. 

For all considered interpolation methods, a similar procedure of identifying the 

set of measurement points that characterize the coverage quality wi th a particu­

lar deviation is employed. Namely, 10 % of measurement points are removed at 
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each round, and the coverage estimation metrics are calculated. The application of 

probabilistic thinning is straightforward and does not requires additional discussion. 

However, it must be noted that the latter approach is naturally deterministic only 

on the M x M grid level. The points in individual squares are removed randomly, 

which leads to the probabilistic behavior on the cluster level [105]. 

Artificial Points 

The thinning procedure is also tightly connected wi th the addition of artificial points 

to the corners of the interpolated area. Without this step, extrapolation would be 

necessary in the cases of a large number of removed points. However, such behav­

ior is unwanted. Each artificial point value is set to L P W A technologies minimum 

sensitivity, which is a value around -140 d B m . However, the util ization of artifi­

cial points is reduced as much as possible to mitigate influence on the interpolation 

results. These points are inserted into the input dataset only when the area delin­

eated by the measurement pints can not be fully interpolated (interpolation returns 

undefined values). This approach has been proven reliable, as the interpolation is 

influenced only in the extreme cases of removed points (more than 97%) [105]. 

4.5 Numerical Results 

This section summarizes numerical results and evaluates the considered coverage as­

sessment strategies. The main goal is to assess the accuracy of selected interpolation 

methods with different densities of measurement points in the propagation environ­

ment where the BSs locations remain hidden. To this aim, two assessment metrics 

defined in Subsection 4.4.1 are employed. Notably, the comparison of interpolated 

values wi th the reference model should be considered as a comparison of two models 

rather than an accuracy assessment of the interpolations with the "ground truth". 

The comparison of both interpolated samples and reference model wi th actually 

measured values is employed to this aim. This approach allows the most accurate 

comparison of interpolation algorithms wi th the "ground truth" data [105]. 

4.5.1 Comparison of Interpolation Methods 

Before assessing the constructed coverage maps' accuracy wi th a l imited number of 

measurement points using different thinning algorithms, the performance of selected 

interpolation methods is analyzed. To this end, the candidate interpolation methods 

are applied on the scattered input dataset wi th the ultimate goal of producing a 

regularly spaced grid of predicted values. The interpolation algorithms' performance 
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is directly compared wi th the reference model described in Subsection 4.4.1 using 

both inverse C D F and integral M A E metric [105]. 

The visual comparison of interpolation methods for al l three L P W A technolo­

gies with the reference models employing the inverse C D F metric is depicted in 

F ig . 4.3. Recall that this metric is defined as the cumulative percentage of the area 

featuring the R S R P / R S S I level of at least x d B m . A s one may observe, none of 

the considered interpolation algorithms provide a perfect match with the reference 

model. Nevertheless, some of the algorithms give significantly better results than 

the others. Notably, the Nearest-Neighbor algorithm is characterized by the signifi­

cant deviations from the reference model in the regions of low and high R S R P / R S S I 

values [105]. 

In the case of N B - I o T , the I D W algorithm does not provide satisfactory results, 

especially in the area around the median value of R S R P . Generally, the performance 

-120 -110 -100 -90 -80 -70 

RSSI treshold [dBm] 

(c) LoRaWAN. 

F ig . 4.3: Comparing interpolation methods wi th reference model [105]. 
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Fig . 4.4: Mean deviation for interpolation methods [105]. 

of individual interpolation algorithms indicates the most significant differences for 

N B - I o T . Mainly, this phenomenon is caused by two factors. In comparison wi th Sig­

fox and L o R a W A N , the density of N B - I o T BSs deployment is significantly higher. 

Hence, measurement point interpolation in such a system represents a more chal­

lenging task. It also explains why individual algorithms differ significantly, as each 

method relies on a different approach to value predictions. The second reason is 

that the majority of measurement points lie in a short-range of R S R P values oscil­

lating around -75 d B m . Therefore, the borderline samples have to be interpolated 

using points with less related values resulting in a higher prediction error. For Sig­

fox and L o R a W A N , the differences between individual interpolation methods are 

significantly smaller [105]. 

For the numerical quantification of the interpolation method's performance, 

F ig . 4.4 delivers a comparison wi th the reference model by employing the M A E 

assesment metric (3.22). This parameter can be interpreted as a deviation of pre­

dicted R S R P / R S S I values from the reference model averaged over the number of 

points in the area of interest (points in the regular grid). A s one may observe, 

the average metric results confirm the conclusions drawn from the visual analysis. 

Notably, the Nearest-neighbor algorithm indicates the highest deviation from the 

reference model for all considered L P W A technologies [105]. 

Surprisingly, I D W , the second-worst interpolation for N B - I o T , provides the low­

est deviation from the reference model of all interpolation methods for Sigfox and 

L o R a W A N . B y contrast, the Kr ig ing , being the best performing algorithm for N B -

IoT, performs as the second-worst in the case of Sigfox and L o R a W A N . The remain­

ing methods, i.e., Linear and Natural-neighbor interpolations, provide satisfactory 

results for all L P W A technologies. St i l l , the more complex Natural-neighbor al­

gorithm slightly outperforms the Linear interpolation. In summary, all intended 

algorithms' results are comparable despite having different approaches to deriving 

the predicted value [105]. 
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The next important finding is connected wi th the prediction quality concern­

ing the BSs deployment density. Analyzing data presented in F ig . 4.4, it is clear 

that the highest deviation is observed for the N B - I o T , which also posses the highest 

BSs density of all considered technologies. Contrary, the prediction for Sigfox and 

L o R a W A N indicates noticeably better results - this also confirms the visual obser­

vation gained from F ig . 4.3. In conclusion, the N B - I o T deviation from the reference 

model is around 8.5 dB and approximately 7.4 dB for Sigfox and L o R a W A N [105]. 

4.5.2 Comparison of Models under Thinning 

Once the baseline performance of interpolation methods is evaluated, the study pro­

ceeds wi th assessing the algorithms' performance under thinning. To this aim, two 

different point removal approaches introduced in Subsection 4.4.3 are employed. B y 

employing the thinning methods, the study addresses how interpolation methods' 

accuracy degrades wi th varying percentages of excluded measurement points. Also, 

the influence of different thinning approaches on predicted values and the selection 

of retained points is discussed. Notably, this work targets the dynamic environ­

ments where the radio conditions may change at each measurement location. Due 

to this fact, even the fine-tuned models may provide inaccurate results, and the 

interpolated values can provide higher accuracy. Thus these results should be con­

sidered as a comparison of differences between two models rather than an accuracy 

assessment [105]. 

In F ig . 4.5, the performance of the two most accurate interpolation algorithms 

(Natural-neighbor and Kriging) for N B - I o T technology is displayed. The results 

cover both probabilistic and deterministic thinning, gradually retracting 10, 30, 

and 70 % of measurement points. Notably, the figure illustrates the portion of the 

area covered with a given R S R P value, representing the inverse C D F metric from 

Subsection 4.4.1. The N B - I o T technology is selected because it indicates the highest 

deviation from the reference model for all intended interpolation methods. Also, 

the disparity between individual interpolations algorithms is highest for NB- IoT . 

The results display output of 30 subsequent algorithm runs to provide statistically 

consistent data. Accordingly, the resulting curves represent the results' median 

value, while the translucent areas denote the 5 t h and 9 5 t h percentile [105]. 

The first essential conclusion is that the difference among the median values 

between thinning algorithms is nearly negligible for a low number of retracted mea­

surement points, i.e., 10% (30 out of 300) and 30% (90 out of 300). However, 

the variance of the probabilistic thinning results is significantly higher as it is rep­

resented by a wider translucent area surrounding the median value curve. The 

difference is even more pronounced wi th the larger portion of removed points, i.e., 
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F ig . 4.5: Comparison of interpolation methods under thinning for N B - I o T [105]. 

70% (210 out of 300). A t this point, both thinning algorithms indicate increased 

results variation; however, the fluctuation of the deterministic algorithm is still two 

times smaller. Surprisingly, the median value difference between probabilistic and 

deterministic thinning is significantly lower for Natural-neighbor interpolation. O n 

the other hand, Kr ig ing indicates significant differences, especially for R S R P values 

between -90 and -75 d B m . It is probably caused by the Kr ig ing algorithm's covari-

ogram range, l imit ing the influence of the sampling point on the interpolated value. 

Thus, wi th the more considerable separation distances between measurement points, 

the Kr ig ing algorithm produces bounded areas surrounding the sampling points and 

settles on the average value for the rest of the plane. In summary, the visual ob­

servation reveals that a regular structure such as a grid for planning the coverage 

assessment allows decreasing the variance of the results significantly. It is even more 

important for a lower number of sampling points. Notably, these conclusions are 

not valid only for N B - I o T , but similar behavior has been observed for Sigfox and 

L o R a W A N deployments [105]. 
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In the next step, the interpolation performance under thinning is ranked based 

on the integral M A E metric defined in (3.22). F ig . 4.6 illustrates the mean devia­

tion of considered L P W A technologies for deterministic and probabilistic thinning, 

respectively. Similar to the previous case, the results summarize the output of 30 

procedure runs. The barplot's head represents the median value, while the error 

bars delineate the 5 t h and 9 5 t h percentile [105]. 

Concentrating on N B - I o T , it is clear that the Kr ig ing interpolation provides the 

best predictions for both thinning approaches. Moreover, the closer analysis shows 

that the median values of the mean deviation for deterministic and probabilistic 

thinning are nearly identical. The probabilistic thinning even provides smaller devi­

ation error on several occasions, however, only by a narrow margin (in order of tenths 

of percents). In the case of the prediction variance, the deterministic thinning pro­

vides more coherent results. A s expected, this difference raises proportionally wi th 

the number of removed points. O n average, the variance of probabilistic thinning 

is two times higher regardless of the interpolation method. This finding concludes 

that by using deterministic thinning, one can expect more consistent results, even 

though they can be slightly biased by the selection of the sampling points locations. 

The influence of the biased points selection is most visible for the I D W interpolation 

in the cases of more than 50% removed points. From this point, the probabilistic 

thinning displays superior results over the deterministic method. The I D W pre­

dicts the interpolated values from the five closest neighboring points; thus, there is 

a higher chance of nearby points clustering when probabilistic thinning is applied. 

Conversely, the deterministic thinning tends to spread the measurement points more 

evenly. Thus the interpolation has to select more remote points with weaker mutual 

coherence [105]. 

Surprisingly, for Sigfox and L o R a W A N , the I D W provides significantly lower val­

ues of M A E for both thinning approaches. Un t i l 40 % of removed points, I D W even 

displays the smallest deviation from the reference model for both L P W A technologies 

and thinning methods. For more than 50 % of removed points, I D W represents the 

second best performing interpolation method for Sigfox, while the Natural-neighbor 

holds first place. W i t h 70 % of removed points, the situation changes, as I D W again 

represents the best performing algorithm for deterministic thinning. However, in the 

case of probabilistic thinning, the I D W holds third place after Natural-neighbor and 

Krig ing . For L o R a W A N , the Kr ig ing is superior to all other interpolation methods 

for both deterministic and probabilistic thinning from 40 % of removed points [105]. 

The next important conclusion one can draw from the presented results is that 

the thinning method selection is not a deciding factor for the sparse deployments. 

For Sigfox, which has six times sparser BSs deployment compared to N B - I o T , the 

difference between 5 t h and 9 5 t h percentile variation under deterministic and proba-
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bilistic thinning is nearly negligible. Conversely, for N B - I o T wi th higher deployment 

density, the variance of M A E values is almost two times higher for probabilistic thin­

ning [105]. 

In conclusion, the results presented in F ig . 4.6 share common properties valid 

for all technologies, interpolation methods, and thinning algorithms. A s one may 

observe, by decreasing the number of measurement points, the mean deviation and 

the variance of the results rise, reducing the statistical confidence in obtained re­

sults. However, the denser deployments represented by N B - I o T indicate higher 

mean deviation. Also, the performance of thinning algorithms is influenced by the 

deployment density. For sparser deployments, the selected thinning method has 

only a marginal impact on the results, e.g., median and variation. In the case of 

these sparse deployments, such as Sigfox and L o R a W A N , the I D W interpolation 

represents the best choice for up to 40% of removed points (1.2 points per k m 2 ) . 

For dense cells (e.g., N B - I o T ) , Kr ig ing provides the lowest M A E values throughout 

the whole range of removed points and thinning methods. O n the opposite side 

stands the Nearest-neighbor algorithm, which produces the highest deviation from 

the reference predictions in a l l situations. Finally, the mean deviation metric does 

not indicate any sharp increase in the whole range of retracted points from 10% 

(1.8 points per km 2 ) to 70% (0.6 points per k m 2 ) [105]. 

4.5.3 Lower Bound on Number of Measurements 

A s the previous experiments retracting up to 70 % (0.6 points per km 2 ) of measure­

ment points did not identify any particular point where the M A E deviation sharply 

increases, the whole procedure is relaunched in the range of 95% (0.1 points per 

km 2 ) to 99% (0.02 points per km 2 ) of removed points. This step's primary goal is 

to find a lower bound on the number of required measurement points. The result­

ing integral metric characterizing the average deviation from the reference model is 

depicted in F ig . 4.7 [105]. 

For N B - I o T , one can see the similar characteristics of thinning algorithms as in 

the case of F ig . 4.6. The deterministic thinning provides more consistent results 

compared to the probabilistic approach. Surprisingly, the I D W interpolation un­

der deterministic thinning indicates a better approximation of the reference model. 

In this case, it is the second-best performing prediction algorithm after Kriging. 

However, the Nearest-neighbor and Linear interpolation methods show two times 

higher M A E values than the ini t ia l state of zero removed points. The most exciting 

findings are connected wi th Kr ig ing and Nearest-Neighbor interpolation methods. 

These algorithms show only a marginal increase of mean deviation even for 98 % of 

removed points. It means that the Delaunay triangulation used by Nearest-neighbor 
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with a constant value in each cell provides a better approximation of the reference 

model than Linear and Natural-neighbor interpolations based on the weighted av­

erage. In the case of Kriging, the interpolated values are influenced mainly by the 

variogram range. For the longer distances, Kr ig ing slowly settles to the samples' 

median value [105]. 

Conclusions similar to N B - I o T can also be drawn from L o R a W A N and Sigfox 

results. The Linear and Natural-neighbor interpolations are characterized by the 

highest deviation of all methods, while the Nearest-neighbor provides surprisingly 

consistent results. Further, Sigfox indicates the most balanced outcomes for all inter­

polation methods and thinning algorithms. It confirms the premise of deployment 

density influence on the prediction accuracy. A thorough analysis of the results 

further shows that the largest increase in mean deviation is visible from 98 % of re­

moved points. However, this increase is connected with the influence of the artificial 

sample points on the interpolation [105]. 

4.5.4 Accuracy Comparison with Measurement Data 

Previous evaluations showed that the difference between the reference models and 

interpolation methods. However, these values reflect only the differences between 

the two models. Therefore, in the last step of the numerical evaluation, the accu­

racy of reference and interpolated models is evaluated against the real measurement 

results. Such an approach represents the only way how of comparing the predicted 

values wi th the "ground truth" data. The comparison process is straightforward 

and follows principles similar to the previous steps. In each round of the thinning 

procedure, retracted points' values are compared to those predicted by the interpo­

lation methods and reference model. Predictions accuracy is assessed based on the 

M A E metric defined in (3.22). It must be noted that only the values of removed 

points are considered for the accuracy assessment as the interpolation methods re­

tain the values of generating points even for the predicted samples. It would create 

an unwanted bias for the interpolation methods if all points were considered [105]. 

A s in the previous cases, the comparison of M A E for both thinning procedures 

depicted in F ig . 4.8 confirms the influence of network deployment density on the 

prediction accuracy. On average, the M A E values for the N B - I o T technology which 

is characterized by the highest deployment density, are increased by about 2-3 dB. 

Both deterministic and probabilistic thinning methods independently verify these 

findings. However, the most unexpected finding is related to the performance of 

the reference model in comparison wi th the interpolation methods. In all cases, 

at least one interpolation method (often most of them) displays significantly better 

prediction accuracy than the fine-tuned propagation (reference) model. A s expected, 
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the interpolation method providing the worst approximation is the simple Nearest-

neighbor algorithm. However, for N B - I o T , the I D W interpolation provides the most 

inaccurate results. Al though the I D W performance for L o R a W A N is not convincing, 

in the case of Sigfox, it can keep up wi th other methods. For deterministic thinning, 

it is even one of the most accurate interpolation. These observations suggest that 

I D W is a good choice for the technologies with a lower density of BSs [105]. 

However, the Kr ig ing represents the most versatile interpolation method pro­

viding accurate results independent of selected communication technology, thinning 

procedure, or a number of retracted measurement points. In summary, the result 

also suggests that the influence of thinning algorithms is negligible. Contrary to the 

previous comparison of interpolated values wi th the reference model, the M A E , in 

this case, is nearly identical for both deterministic and probabilistic thinning. Also, 

the results' dispersion is comparable for both methods; only the L o R a W A N under 

deterministic thinning breaks this rule. In this case, the deviation linearly increases 

wi th the number of retracted points. For the rest, the M A E is almost constant from 

10% (1.8 points per km 2 ) up to 70% (0.6 points per km 2 ) of removed points [105]. 

4.5.5 Lower Bound on Number of Measurement Points 

A s in the case of reference and interpolated model comparison, the previous exper­

iment did not reveal any particular point where the accuracy starts to deteriorate 

dramatically. Hence, the whole procedure is repeated for an extreme number of 

retracted points, i.e., from 95% (0.1 points per km 2 ) up to 99% (0.02 points per 

k m 2 ) . The ultimate goal of this step is to identify a lower bound on the required 

number of measurement points that is capable of producing accurate predictions. 

A s usual, the M A E metric defining the absolute deviation from measured values for 

both thinning methods is depicted in F ig . 4.9 [105]. 

Just a brief look at the results reveals that the prediction accuracy for different 

L P W A technologies is enormous. The N B - I o T results confirm the previous findings 

related to the relation between deployment density and the prediction error. Numer­

ically, the M A E of N B - I o T is almost two times higher compared to both Sigfox and 

L o R a W A N . Notably, this finding is valid for both deterministic and probabilistic 

thinning. Clearly, the Kr ig ing algorithm still holds first place as the most accurate 

interpolation for all considered L P W A technologies. It also provides significantly 

higher accuracy compared to the reference model. However, the most surprising 

finding is connected wi th the Nearest-neighbor interpolation. For the extreme num­

ber of removed pints, i.e., 98 % and 99 %, the presence of artificial corner points most 

probably causes the increased inaccuracy of Linear and Natural-neighbor interpola­

tion methods. But in the case of the lower number of removed points, the natural 
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behavior of these algorithms must cause the increased inaccuracy. Notably, Linear 

and Natural-neighbor algorithms cannot adequately capture the relation between 

far-distant points. Thus the Kr ig ing algorithm, specifically designed for this type of 

correlation, shows superior results [105]. 
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5 Multi-RAT Solution for mMTC Scenarios 
The usual consensus on modern M T C communication is that it can be divided into 

two main groups [125]. The first category, also known as m M T C , is characterized by 

extreme densities of E D s without strict requirements on communication delay and 

data loss. Nowadays, the L P W A technologies are the most known representatives 

of this category. W i t h M.2412 requirements in mind, L P W A systems are designed 

to deliver 90 % of messages with a radio interface delay of less than 10 s. On the 

other hand, the second group poses extremely low latency requirements wi th values 

under 5 ms. The 3 G P P is currently working on the standardization of these U R L L C 

technológ part of the 5 G N R interface [126]. 

However, a plethora of newly emerging m M T C applications stand between these 

two extremes. The typical representatives are assets tracking, health monitoring, 

condition-based monitoring, and smart metering. These applications require much 

stricter delay requirements than m M T C but are still more relaxed than the ones 

given by U R L L C . Also, reliability and availability are becoming more critical. One of 

the options to solve this issue is to develop a new R A T supporting these applications, 

for example Digi ta l Enhanced Cordless Telecommunications (DECT)-2020 m M T C 

initiative. The different approach to this issue is to adapt current technologies to 

fulfill the stringent application requirements. These changes can be implemented 

on the E D uti l izing a sophisticated transmission scheme, m u l t i - R A T interface, or 

handover detection mechanism [75,127,128]. 

This work investigates the concept of combining multiple L P W A technologies 

into one m u l t i - R A T device addressing the issues mentioned above. The proposed 

research's premise is that the radio channel conditions between E D and BS may 

change dramatically over the device lifetime. The radio conditions can be affected 

by various environmental changes such as weather conditions, construction works, 

and infrastructural updates. Notably, the timescale of these events may differ sig­

nificantly from seconds to years. In the time of deployment, the prediction of such 

phenomena is difficult, and the effect on the radio channel is not easy to assess be­

forehand. Hence, despite the higher complexity of the m u l t i - R A T solution, it may 

positively impact the E D lifetime [75]. 

The main aim of this research study is to utilize a m u l t i - R A T solution wi th 

dynamic switching to the best technology based on the propagation conditions. A s 

the radio channel conditions are not known in advance, the selection of the most 

suitable technology is conducted automatically in response to the environmental 

changes. Currently, the system employs a R L mechanism that automatically selects 

the radio interface with the ultimate goal of achieving the highest reward. In the 

case of this study, it is to maximize the E D battery life [107]. 
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5.1 Time Dependent Modeling 

Implementation of advanced mechanisms such as the m u l t i - R A T transmission re­

quires full knowledge of the propagation channel, which is subject to variation even 

for static deployments of EDs . Therefore to facilitate the development of a radio in­

terface selection algorithm wi th the ultimate goal of minimizing power consumption, 

a substantial understanding of the time-dependent characteristics of the propagation 

environment is crucial [106]. 

To this aim, a long-term measurement campaign capturing the received signal 

characteristics ( R S R P / R S S I ) of the stationary E D s was conducted. The measure­

ment results show that signal characteristics are subject to drastic changes that may 

influence the E D communication performance. Hence, the first- and second-order 

properties of these radio channel parameters are analyzed and modeled. For this pur­

pose, a doubly-stochastic Markov chain modeling framework is used. The designed 

model can serve as a building block of analytical or simulation-based systems-level 

studies requiring the long traces of samples that faithfully capture time-dependent 

characteristics [106]. 

5.1.1 Measurement Campaign 

To capture long-term time-dependent characteristics of the radio channel in the 

urban environment m u l t i - R A T evaluation board was designed. The prototype is 

equipped wi th communication modules for three major L P W A technologies, namely 

N B - I o T , Sigfox, and L o R a W A N . A s the technologies operate in neighboring fre­

quency bands (for Sigfox and L o R a W A N 8 6 8 M H z , N B - I o T 8 0 0 M H z ) , the device is 

set to perform sequentially to reduce the possibility of interferences [107]. 

The measurement campaign took place in the city of Brno during the two months 

period. In total, two evaluation boards were deployed to capture the time-dependent 

characteristics in different types of urban deployment. The first prototype has been 

deployed on the university building roof, whereas the second board was located in the 

apartment close to the city center. Bo th devices were configured identically to con­

vey 12 B messages with one hour period. The identical datagrams were sent through 

all radio interfaces, and the available statistics were stored for subsequent analysis. 

For each L P W A technology and deployed sensor, more than 1400 messages were 

acquired. A l l tests were conducted in commercial networks wi th a multi-gateway 

setup, reflecting real-world conditions of production deployment. A s in the case 

of previous research, RSSI is used clS cl SI gnal quality indicator for Sigfox and Lo­

R a W A N , whereas N B - I o T relies on the R S R P as it potentially excludes interferences 

wi th other sectors [107]. 
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5.1.2 Statistical Data Analysis 

This section discusses the time-dependent properties of acquired R S S I / R S R P sam­

ples experienced by the two E D in the urban environment. One is placed on top of 

the B U T building ( B U T sensor) while the second is situated in the apartment in the 

Brno city center (Brno city center ( B C C ) ) . O n top of that, first- and second-order 

characteristics, as well as the ergodicity and stationarity needed for the modeling, 

are covered [107]. 

R S S I / R S R P Time-Series 

The main goal of this study is to design simple yet accurate models for time-

dependent channel modeling. The main research area lies in the class of covariance 

stationary ergodic stochastic process to balance between the mathematical traceabil-

ity and the modeling accuracy. Notably, the stationary covariance process is fully 

characterized by the distribution of its single section and Autocorrelation Function 

( A C F ) [129]. Hence, the R S S I / R S R P properties as well as first- and second-order 

characteristics have to be analyzed before selecting the suitable time-dependent 

model. These properties are represented by the histogram of relative frequencies 

and the A C F of empirical data [106]. 

Based on the visual analysis of a long time R S S I / R S R P measurements depicted 

in F ig . 5.1, important conclusions can be drawn. First , there are indeed signifi­

cant variations of signal levels caused by environmental changes in both considered 

locations. Surprisingly, the B U T sensor's rooftop placement indicates better over­

all signal strength, as expected, but shows a higher variation of results. Only the 

N B - I o T displays expected results as the signal fluctuation for rooftop placement is 

minimal. Naturally, the number of interferences and obstacles is minimal for the 

rooftop deployment. However, Sigfox and L o R a W A N results do not hold up to this 

premise. It is also visible that the B C C sensor situated inside the apartment shows 

an additional 10 up to 15 dB attenuation compared to the B U T deployment [107]. 

Further, one can observe that it is possible to apply the "hidden states" notion 

to demonstrate the signal behavior. The R S S I / R S R P samples shift their values 

between a set of "levels" characterized by a long duration of samples around the mean 

level. Moreover, the fluctuations wi thin each group appear stochastically similar to 

the external observer. A l l these findings support the primary idea that the target 

model should differentiate between states wi th unique stochastic properties [107]. 

First and Second Order Characteristics 

The first-order characteristics of the R S S I / R S R P process are depicted in F ig . 5.2 us­

ing histogram of relative frequencies. It can be seen that the histogram has multiple 
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F ig . 5.1: Comparison of R S R P / R S S I samples [107]. 

peaks, which characterize the mean value of different states. Therefore, this finding 

implies that the original premise of state-based behavior is indeed confirmed [107]. 

The normalized A C F depicted in F ig . 5.3 represents the second-order charac­

teristics of the propagation environment. The confidence intervals defined by the 

dashed line confirming the relation at lag x are calculated based on the rule of thumb 
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[130] confirming the relation at lag % as 

\pi\ > (5.1) 

where n is the number of lags. Further, the constant 2 approximates the value 1.96, 

which corresponds to the confidence limit of a = 0.05. Notably, the A C F of empir­

ical data is often prone to outliers and A C F estimation's ini t ial point. Therefore, 

the only qualitative conclusions drawn from the visual analysis of A C F are related 

to its structure, as discussed in [131]. One of the critical conclusions is that the 

A C F s for a l l considered L P W A technologies are characterized by exponentially de­

caying behavior. It implies that such a process can be accurately captured by using 

stochastic models with short-term memory [107]. 

Ergodicity and Stationarity 

The ergodicity of the process must be tested to verify if the considered properties are, 

in fact, representative. Notably, the sufficient condition of ergodicity is K{n) —> oo, 

where K{n) is n-lag A C F of the process. Based on the analysis of A C F depicted in 

F ig . 5.3, one may conclude that this condition does hold for all three L P W A tech­

nologies in both locations. This finding implies that it is safe to use the histogram 

90 



1 

-p, 0.8 
"c 0.6 
I 0.4 
0 0.2 

1 0 
% . 2 

-0.4 

Shift: -—0 —300 —600 
—Measured data ACF 

Confidence interval 

\ -

0 100 200 
Lags [-] 

300 

--- 0.8 
- i . 
c 0.6 
•3 
a 0.4 

0.2 

3 0 

-0.2 
-0.4 

Shift: —0 —300 
Measured data 

— 5 0 0 
ACF 

Confidence interval 

100 200 
Lags [-] 

300 

1 

T 0.8 

a 

1 °-4 

a °-2 

3 

Shift: —0 300 
Measured data 

—600 
ACF 

Confidence interval 
j i _ _ , _ _ - _ _ 

100 200 
Lags [-] 

300 

(a) NB-IoT, B U T . (b) L o R a W A N , B U T . (c) Sigfox, B U T . 

l 
»«, 0.8 

0.6 
J 0-4 1 
0 0.2 

1 o 
% . 2 

-0.4 

Shift: —0 300 
l :—Measured data 

—600 Shift: —0 300 
l :—Measured data ACF 

Confide nee interval . 

100 200 
Lags [-] 

300 

(d) NB-IoT, B C C . 

I o. 
a o.2 
3 

^ 0 

-0.2 

Shift: —0 —300 
—Measured data 

—600 
ACF 

Confide nee interval 

100 200 
Lags [-] 

300 

(e) Sigfox, B C C . 

i 
. 0.8 

1 °-
a o.2 
3 0 

-0.2 

Shift: — 0 —300 
• WAenvurcA Antn 

—600 
ACF 

Confidence interval 

100 200 
Lags [-] 

300 

(f) L o R a W A N , B C C . 
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of relative frequencies and the A C F of a single trace as representative characteristics 

of R S S I / R S R P processes in the analyzed environment. 

5.1.3 Doubly-Stochastic RSSI/RSRP Modeling 

The R S S I / R S R P process analysis revealed that a generic shape characterizes its his­

togram of relative frequencies while the A C F has a distinct exponential diminution. 

Such properties are specific for the doubly-stochastic Markov chains (also known as 

hidden Markov chains) that have been frequently used in the past as a convenient 

tool for modeling traffic dynamics in packet networks. Notably, these models can 

be used either in mathematical and simulation-based studies of L P W A technologies 

as this type of model retains its analytical traceability [106,132-135]. 

The doubly-stochastic Markov models can be fitted using several generic algo­

rithms, including those based on the expectation-minimization technique [136] or 

maximum likelihood estimation adaptation [137]. Nevertheless, these techniques 

are beneficial only when the Markov modulating chain's internal structure is not 

clearly observable, and the Markov chain consists of many states or a combina­

tion of both. In the case of this study, where the number of states is low, more 

straightforward techniques can be employed. The whole process of constructing the 
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doubly-stochastic Markov chain consists of three main steps. First , the number of 

states N must be determined. Then one needs to estimate the transition proba­

bilities Pij,i,j = 1,2,... ,N and the conditional Probabil i ty Mass Function ( P M F ) 

associated wi th each state, fi(j),i — 1, 2,..., N, j > 0. 

The Kernel Density Est imation ( K D E ) clusterization algorithm is applied to in­

put data to determine the number of states N in the modulating Markov chain [138, 

139]. This process consists of two steps: (i) estimation of Probabil i ty Density Func­

tion ( P D F ) and (ii) data clusterization based on the local maxima. The samples' 

P D F is derived as 

where n is the sample size, h denotes the bandwidth, x stands for the actual value, 

and Xi represents the input samples. The kernel smoothing function K uses a P D F 

wi th a normal distribution. The bandwidth of the kernel smoothing function heavily 

impacts the resulting approximation tightness. Therefore, to obtain the optimally 

smoothed K D E , the bandwidth is calculated according to 

In this case, the a is the standard deviation, and ./V represents the sample size [106]. 

Finally, the states of the Markov chain are derived from the local maxima of the 

resulting K D E . Each local maxima on the resulting K D E curve represent a boundary 

of the Markov chain state. Two remaining Markov chain state bounds are derived 

from the minimum and maximum R S S I / R S R P values of the input data set [106]. 

When the number of states N is acquired, it is necessary to determine the 

transition probabilities Pij,i,j = 1,2...,N and P M F s associated with each state 

fi{j)ii — 1 ) 2 , . . . , N, j > 0. These values are gained using conventional statistical 

methods. First , the state boundaries between the states are defined, and the number 

of state changes for particular values of % and j (current and previous trace values) 

is divided by the number of samples in the entire trace [106]. 

5.1.4 Numerical Assessment 

Visua l comparison of measured values wi th the samples generated by the doubly-

stochastic Markov chain depicted in F ig . 5.1, verifies that the main characteristics 

of the empirical traces are adequately captured. Notably, the Markovian process's 

memoryless nature does not allow to follow the input data sequence wi th each value 

change precisely. Recall that the decision on transition to the next state (which 

(5.2) 

(5.3) 
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state wi l l be selected) does not depend on the previous state but only on the current 

one. Hence, the probability of transition to the appropriate future state is solely 

decided by the transition probability matrix of the particular state [106]. 

Visua l analysis of the histogram of relative frequencies depicted in F ig . 5.2 ver­

ifies that the first-order characteristics are captured accurately. Also, y 2 statistical 

test for the heterogeneity of the samples was performed to support these visual ob­

servations. The test shows that both samples belong to the same distribution wi th 

the a = 0.05 level of significance [106]. 

A s expected, the comparison of A C F on F ig . 5.3 reveals no perfect match between 

the A C F s , as they are heavily dependent on the selection of the ini t ial estimation 

point. Nevertheless, the accuracy of the proposed doubly-stochastic Markov model 

can be confirmed by additional statistical tests. To this aim, the Box-Ljung test for 

correlation of the first M lags is employed [140]. The test shows that empirical and 

modeled traces have a statistically confirmed correlation up to the lag n — 10 [106]. 

5.2 Learning-Aided MR-mMTC Implementation 

This study's ultimate goal is to improve the battery life of the L P W A M u l t i Radio 

( M R ) - R A T devices, which is negatively impacted by the use of multiple radio inter­

faces. Therefore, the "selective" m u l t i - R A T functionality is considered as it utilizes 

only a single radio interface at a time (even though the device is equipped wi th 

multiple communication technologies). The main challenge of this approach is how 

to select the best interface at each time [107]. 

The solution to the interface selection problem proposed in this work involves 

reinforcement learning, a subclass of Machine Learning ( M L ) algorithms. The R L 

algorithms focus primarily on the M A B problem with the primary goal of achieving 

the highest reward by pulling the right arms. To this aim, the selected M A B policies 

in this study cover (i) e-greedy, (ii) weighted average, (iii) Upper Confidence Bound 

( U C B ) , and (iv) Thompson sampling algorithms [107]. 

5.2.1 Power Consumption Characterization 

The prediction of m u l t i - R A T device battery life requires full knowledge of each 

technology power consumption in all operating modes. Therefore, an extensive mea­

surement campaign in the laboratory environment was conducted. The laboratory 

setup depicted in F ig . 5.4 allows for power consumption measurements of L P W A 

modules for signal levels ranging from -68 to -133 d B m . In the case of NB- IoT , 

such a wide range covers all Enhanced Coverage Level ( E C L ) classes from E C L 0 to 

E C L 2 [107,141]. 
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The desired signal levels can be set v ia the step attenuator connected between 

the Remote Radio Uni t ( R R U ) and the measured N B - I o T module placed in the 

Radio Frequency (RF) shield box. The actual current consumption is measured by 

the power analyzer Agilent N6705A wi th a sampling period of 0.0248 ms. Due to the 

Sigfox technology limitation, the power consumption is measured only for 12 B mes­

sage transmission. A l l measurements at each signal level (12 in total) are repeated 

ten times to gain sufficient confidence bounds. Notably, Sigfox and L o R a W A N mea­

surements are simplified as these technologies do not require any registration nor 

signalization before U L message transmission. Hence, the power consumption is 

independent of signal strength level. It also allows moving the modules from the 

shielding box during the measurements [107]. 

It must be noted that the N B - I o T technology is represented by the uBlox S A R A 

N210 communication module implementing the Rel . 13 of the 3 G P P standard wi th 

support for single communication band B20. In the case of L o R a W A N , the commu­

nication module from company Microchip designated as RN2483 is used. Finally, as 

Sigfox technological enabler, sub-GHz communication module S2-LP produced by 

ST Microelectronics company is employed [107]. 

Measurement Results 

The power measurement results depicted in F ig . 5.5 clearly illustrate that for N B -

IoT operating in E C L 0 , the current consumption is nearly constant in the whole 

range from -68 to -108 d B m . The first noticeable increase in power consumption 

is present in E C L 1 for -113 and -118 d B m . However, the most significant growth 

is visible for E C L 2 starting from -121 d B m . A side-by-side comparison of N B - I o T 

reveals that the power consumption in E C L 2 can be up to 15 times higher compared 

to E C L 0 . Also, the variation of measurement results, i.e., 5 t h and 9 5 t h percentile 

represented by the error bars, is significantly higher in E C L 2 [107]. 

The message retransmissions primarily cause this difference, as it is one method 

of improving the ling budget heavily used in N B - I o T . The number of retransmission 
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Fig . 5.5: Results of power consumption measurements [107]. 

may vary significantly, which is also the main reason for the results variation. For 

L o R a W A N , the consumption of data transmission with SF12 is comparable wi th 

N B - I o T operating in E C L O . Surprisingly, Sigfox results show the most significant 

resemblance with the E C L 1 class of N B - I o T [107]. 

5.2.2 Reinforcement Learning Policies 

Even though the primary goal of all R L policies is identical, i.e., achieve the highest 

average rewards by pulling the right arms, they differ in how the arm is selected. 

The simplest methods use a purely probabilistic approach without any preferences 

in exploration phases. However, more advanced algorithms prefer arms wi th greater 

chances of getting optimal results. Notably, this problem is also connected wi th the 

exploration-exploitation dilemma, i.e., when to choose between the different arms 

and when it is better to exploit the current one [107]. 

E-Greedy 

The e-greedy is the most straightforward approach to the exploration-exploitation 

problem. During the exploration phase, the arms are pulled randomly without 

any preferences among them. This approach helps e-greedy policy to overcome 

issues wi th the local-optimum solution and discover the arm wi th the actual highest 

rewards. Notably, the exploration phase probability is defined by the e parameter. 

The rest of the time (1 — e), the algorithm operates in the exploitation mode, i.e., 
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attempts to gain the highest reward from each action by pulling the same arm. 

To be able to select the best arm, the algorithm tracks the average rewards from 

each arm and keeps internal statistics. The average rewards statistics are computed 

incrementally in order to keep the computational demands low. W i t h this in mind, 

the value of k + 1 action Qk+i is derived as 

1 
Qk+i = Qk +-j^-^[rk+i ~ Qk], (5.4) 

where k represents the number of rewards (number of previous steps) in the current 

action, Tfc+i is the reward of the actual stage, and Qk denotes the average of the 

first k rewards [142]. 

Weighted Average 

The previous e-greedy greedy algorithm treats a l l samples as equals, which is suit­

able for stationary bandits. However, if the environment changes over time (non-

stationary problem), the e-greedy approach performs poorly as all samples have an 

identical impact on the mean value (internal statistics). For a non-stationary en­

vironment, it is reasonable to increase the importance of recent samples over the 

old ones. To this aim, the weighted average policy introduces a constant step-size 

parameter that controls how much to weigh the next update of the function. W i t h 

this modification, the average mean Qk+i is calculated as 

Qk+l = Qk + a[rk+l - Qk], (5.5) 

where a(0 < a < 1) is the step-size constant, rk+i represents actual reward, and Qk 

denotes the average of the first k rewards [142]. 

Upper Confidence Bound 

The indiscriminate selection of the arms wi th the uniform probability distribution 

employed by the e-greedy algorithm may lead to inefficient exploration. The U C B , 

on the other hand, favors the exploration of actions wi th higher potential to reach 

the optimal value. It follows the principle of optimism, which implies that one should 

optimistically assume that is the right action in the face of uncertainty. In other 

words, among the several actions, U C B wi l l optimistically select the action wi th 

the highest upper bound of the confidence interval. Initially, U C B explores more to 

reduce uncertainty systematically, but the exploration decreases over time. B y this 

decision, the U C B obtains, on average, a greater reward than other policies such as 

£-greedy or weighted average. The U C B actions use uncertainty in the estimates to 
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drive exploration according to formula 

Qk+1 — Qk + C 
In k 

(5.6) 

where Qk represents the current estimate for action at time k, and Nk denotes the 

number of times action has been triggered before time k. Finally,the exploration 

phase is driven by the parameter c > 0, which controls its degree [143]. 

The parameter Qk represents the exploitation part. In this phase, the action 

wi th currently the highest estimated reward wi l l be the chosen action. Conversely, 

the second part describes the exploration phase driven by the parameter c. If the 

action has not been selected often or not at all , the parameter Nk wi l l be small. A s 

a result, it wi l l lead to significant uncertainty, making this action more likely to be 

chosen. However, the uncertainty decreases wi th each selection, making it less likely 

to be chosen in the exploration phase. Notably, when the action is not selected, 

its uncertainty wi l l grow slowly due to logarithmic dependency. Conversely, wi th 

each selection, the certainty proliferates as the increase in Nk is linear. Thus, as 

time progress, the exploration gradually decreases as the second part of the equation 

decreases to zero [143,144]. 

Thompson Sampling 

The Thompson sampling, similarly to U C B , utilizes advanced methods of arm selec­

tion to increase exploration efficiency. Accordingly, Thompson sampling draws from 

the posterior predictive Beta distribution for each choice employing a random vari­

able with uniform distribution. It allows for sampling of non-optimal distribution 

wi th varying frequency. A s the certainty of distribution increases, the probability 

of choice being made dynamically decreases, simultaneously balancing the need for 

more information by creating a currently optimal choice [145]. 

The value of k + 1 action Qk+i is sampled from the Beta distribution defined as 

where JVjJ is the number of times the action got a successful reward prior actual 

state, whereas N® denotes the opposite cases, i.e. when the reward was zero. 

This approach allows the Thomson sampling to balance the exploration-exploitation 

dilemma. Hence, arms that are not explored as often have a wider variance, increas­

ing their chances of being selected based on stochastic sampling [145]. 

(5.7) 
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5.2.3 Average Rewards 

A s the average rewards are the primary performance metric of R L policies, this 

study focuses on this parameter in its first phase. In total, each R L policy has been 

launched 200 times on the input data set containing 5000 samples. These samples 

are derived from the proposed doubly-stochastic Markov model, which relies on 

the measurement samples from the conducted measurement campaign (see section 

5.1.1). The samples generated by the model are further employed to construct the 

matrix of rewards for each L P W A technology. In each row, the best performing 

technology gains the maximum reward of 1. The technology with the second-lowest 

power consumption is rewarded wi th the value of 0.5, and, finally, the technology 

wi th the highest consumption receives 0 value. This process is conducted for both 

deployed boards, i.e., module at B U T campus and prototype near the B C C [107]. 
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F ig . 5.6: Average rewards of reinforcement learning policies [107]. 
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The average rewards for both modules are depicted in F ig . 5.6. In the case 

of B U T dataset, Thompson sampling indicates the best results of all R L policies. 

Surprisingly, the U C B algorithm performance is far from the expected values as 

the average reward is only about 0.63. The main reason for the unsatisfying U C B 

results is probably the exploitation of local minimum solution as the exploration is 

reduced over time. The only algorithm which performs worse is the e-greedy wi th 

exploration mode (e = 1), achieving the expected value of 0.5 rewards on average. 

Notably, the simple e-greedy (e = 0.1, preference for exploitation) policy earns a 

second place with value of 0.8 average reward. Moreover, the e-greedy 0.5 shows 

slightly better results than the U C B policy as well. It suggests that exploitation 

is a better choice for the current scenario than exploration. Further, the weighted 

average R L policy with a = 0.2 provides satisfactory results as it holds thi rd place 

wi th average rewards of more than 0.8 in its steady-state [107]. 

O n the other hand, in the case of the B C C sensor, the U C B policy provides the 

best performance of all algorithms. B y a small margin, the Thompson sampling 

holds second place, making this policy a reliable option for both scenarios. The 

remaining technique order is the same as in the case of B U T sensor but the average 

rewards values are slightly smaller. Surprisingly, the U C B and weighted average 

policies indicate overshoots in the ini t ial phase of the algorithm runs (first 100 steps). 

The U C B even achieves the average reward of 1, which represents the maximum 

achievable value. This behavior is most likely caused by the exploration phase wi th 

a certain level of the serendipity of selecting the correct radio interface. However, 

wi th subsequent selections, the average rewards decrease to expected levels. Notably, 

the best performing R L policies, i.e., Thompson sampling and U C B , can exploit up 

to 85 % of the theoretical gains. Impressively, each R L policy is able to achieve 90 % 

of its maximum rewards during the ini t ial phase with less than 50 messages. In the 

case of the U C B algorithm, this phase is even reduced to only 25 samples. Such a 

short convergence time is especially beneficial for battery-powered devices [107]. 

5.2.4 Battery Life Expectancy 

In the final step of the R L policies assessment, the m u l t i - R A T devices expected 

battery life is evaluated. To this aim, results of the power consumption character­

istics in combination wi th the extended traces are used. The samples are extended 

to equal the nominal capacity of the selected battery. For this study, a commonly 

used l i th ium thionyl chloride battery ( L i / S O C l 2 ) S A F T L S 14500 wi th the capacity 

of 2600 m A h (33696 J) is considered [146]. Notably, the intended scenario operates 

only wi th the number of transmitted messages. Other influences, such as battery 

self-discharge, are not considered, although they impact battery life too [107]. 
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F ig . 5.7: Battery life expectancy of reinforcement learning policies [107]. 

In the case of B U T sensor, it is clear that Thompson sampling provides the most 

extended battery life, as depicted in F ig . 5.7. Compared to the theoretical maximum 

when in each step the best performing technology is selected, Thompson sampling 

is only about 0.5% worse. The next three policies, i.e., U C B , e-greedy wi th £ = 0 . 1 , 

and weighted average, display similar performance by only losing 5-10% to the 

theoretical l imit . However, not a l l average rewards characteristics are not directly 

translated into the predicted battery life. The position of U C B and e-greedy 0.1 

are kept, but the remaining U C B , weighted average, and e-greedy 0.5 policies are 

interchanged. Notably, the second-worst U C B policy in terms of average rewards 

occupies thi rd place in predicted battery life. Conversely, the weighted average and 

£-greedy 0.5 performance are underwhelming, which may seem counter-intuitive. 

Nevertheless, a more detailed analysis of the results reveals the reasons for such 

behavior [107]. 

Al though the U C B average rewards are not the highest, it stil l manages to select 

the suboptimal interface represented by the L o R a W A N technology. Since L o R a W A N 
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consumption is similar to the N B - I o T technology, it creates only a tiny gap between 

them. Hence, by selecting the L o R a W A N interface in most cases, U C B penalization 

of low rewards almost vanishes. O n the other hand, more straightforward policies 

such as e-greedy and weighted average select the radio interfaces in the exploration 

phase randomly, levering the Sigfox arm, which displays the highest power consump­

tion. This bl ind selection is the main reason for the performance drop of these two 

policies in terms of battery life [107]. 

Recalling the B C C sensor average rewards, the first place of best performing R L 

policy is held by the U C B algorithm. This fact is also reflected in the expected 

battery life when it even outperforms the second-best Thompson sampling by a 

small margin of 500 messages. The generally positive results of Thompson sampling 

making this policy a promising candidate for deploying in m u l t i - R A T devices [107]. 

In summary, the results show that for the e-greedy algorithm, the choice of e 

value plays a crucial role. For both sensors, the epsilon values preferring exploitation 

(closer to zero) indicate far superior results than exploration-focused ones (e closer 

to 1). Further, it is also clear that the U C B performance depends heavily on the 

input data as it provides uneven results. Hence, the non-parametric Thompson 

sampling, which allows achieving more than 99% of a theoretical lifetime in both 

scenarios, is a preferred option [107]. 
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6 Conclusion 
The unprecedented growth of smart devices connected to the Internet providing 

sensing, monitoring, and actuating sets the stage for the major wireless/cellular 

evolution towards the m M T C and U R L L C as a part of 5G N R . The central pillar 

of 5G was to bring an enhanced Mobile Broadband ( eMBB) to the end customer 

for the most time. However, the last releases of the 3 G P P standard (Rel. 17, Dec. 

2020) are finally progressing in the standardization of m M T C . In this regard, L P W A 

technologies cooperating wi th the 5 G core are considered as an optimal enabler for 

m M T C . The question of the suitability of these technologies for modern applications 

is answered in this doctoral thesis v ia several measurement campaigns and newly 

proposed evaluation schemes. O n top of that, this thesis proposes new propaga­

tion models, a coverage assessment metric of L P W A technologies, and discusses the 

possibility of m u l t i - R A T L P W A operations. 

Concerning the propagation models for L P W A technologies, Chapter 3 shows 

that none of the well-known radio propagation models is capable of capturing the 

L P W A signal propagation characteristics. O n the other hand, proposed fine-tuned 

models provide significantly improved accuracy compared to the original ones. For 

N B - I o T , the best performing fine-tuned model provides 40 times improved accuracy 

over the model in rudimentary form. Even for the L o R a W A N technology, where 

the accuracy increase is the lowest, the fine-tuned model indicates 9 times better 

results. To further verify the suitability of newly developed propagation models, 

their performance is evaluated on the data from the second city of comparable size 

and geographical constitution. Also, in this experiment, the fine-tuned models show 

superior performance over the original ones. Notably, the models fine-tuned on 

measurement data provide almost 40 times more accurate results for N B - I o T and 

nearly 3 times better values for L o R a W A N . The lowest improvement is visible for 

Sigfox, with only (but still impressive) 50 % accuracy increase. 

In Chapter 4, the new coverage assessment approach is proposed and evaluated. 

The idea of predicting the signal coverage uti l izing sparse data combined wi th in­

terpolation algorithms is not entirely new, but all previous works were limited only 

to a single location. Contrary to the mentioned works, the proposed solution is not 

l imited to a single B S estimation but allows multi-cell coverage prediction. O n top of 

that, most of the considered interpolation methods even outperform the fine-tuned 

propagation models from Chapter 3. Especially the Kr ig ing interpolation provides 

superior performance in almost all situations. Compared wi th the propagation mod­

els, the developed interpolation-based solution allows dynamically reacting to the 

changes in the propagation environment and controlling the surface steepness based 

on the input values. 
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Further, Chapter 5 consists of three subsequent subtasks. First , it was verified 

that the long-term characteristics of the radio channel indicate the level-based be­

havior. It allowed the development of a time doubly-stochastic channel model based 

on the Markov chains. The main benefit of this model is that it retains analyti­

cal traceability. Hence, it can be used either for mathematical or simulation-based 

studies of L P W A technologies. Next, the power consumption of L P W A modules in 

various radio conditions was evaluated. This data represents a unique insight into 

the L P W A module's internal processes. Notably, the N B - I o T repetition scheme in 

severe radio conditions provides valuable information about the expectable battery 

life and communication delay in different extended coverage level classes. 

Finally, the radio interface selection mechanism for m u l t i - R A T L P W A devices 

based on R L is implemented. The best performing Thompson sampling and U C B 

policies can exploit up to 85% of the theoretical gains, i.e., selecting the wrong 

interface for transmission only in 15 % of cases. More impressively, these R L policies 

are able to achieve 90 % of the maximum rewards during the ini t ial phase wi th less 

than 50 messages. It allows the m u l t i - R A T device to provide power consumption 

comparable to a s ingle-RAT solution. In the case of the B C C sensor, the mult i-

R A T offers even better battery life than the single radio interface device. However, 

the results are heavily dependent on the input dataset. Because the difference 

between technologies is only marginal (from the power consumption perspective), 

the potential benefit of a m u l t i - R A T solution is also limited. 

Recall that the main goals of this doctoral thesis cover (i) L P W A technologies 

propagation models development, (ii) coverage assessment planning, and (iii) mult i-

R A T solutions for m M T C scenarios. Based on the results mentioned above, it can 

be stated that the primary goals are successfully accomplished. 
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E I R P Equivalent Isotropically Radiated Power. 

e M B B enhanced Mobile Broadband. 

eNodeB evolved Node B . 

E R P Effective Radiated Power. 

E U European Union. 

F D Ful l Duplex. 

F D D Frequency Division Duplex. 

F H S S Frequency Hopping Spread Spectrum. 

F R K Fixed Rank Krig ing . 

F S K Frequency Shift Keying. 

G F S K Gaussian Frequency Shift Keying. 

G P R S General Packet Radio Service. 

G S M Global System for Mobile Communication. 

G W Gateway. 

H 2 H Human-to-Human. 

H A R Q Hybr id Automatic Repeat Request. 

H D Half Duplex. 

He t loT Heterogeneous IoT. 

HetNet Heterogeneous Network. 

H S D P A High-Speed Downlink Packet Access. 

H S P A High-Speed Packet Access. 

H S U P A High-Speed Upl ink Packet Access. 

I D W Inverse Distance Weighting. 

IMS IP-Mul t imedia Subsystem. 
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IMSI International Mobile Subscriber Identity. 

IMT-Advanced International Mobile Telecommunications-

Advanced. 

IoT Internet of Things. 

IP Internet Protocol. 

I Q R F Intelligent Radio Frequency. 

I S M Industrial, Scientific and Medical . 

I T U International Telecommunication Union. 

K D E Kernel Density Estimation. 

L B S Location Based Services. 

L B T Listen Before Talk. 

L o R a Long Range. 

LoS Line-of-Sight. 

L P W A Low-Power Wide-Area. 

L P W A N Low-Power Wide-Area Network. 

L T E Long Term Evolution. 

M A E Mean Absolut Error. 

M - B U S Meter B U S . 

M 2 M Machine-to-Machine. 

M A B M u l t i - A r m e d Bandit . 

M A C Medium Access Control . 

M B M S Mul t imedia Broadcast Multicast Service. 

M C L M a x i m u m Coupling Loss. 

M I B Master Information Block. 

M I M O Multiple-Input Mult iple-Output . 

M L Machine Learning. 

M M E Mobi l i ty Management Entity. 

m M T C massive Machine-Type Communication. 

M P D C C H M T C Physical Downlink Control Channel. 

M R M u l t i Radio. 

M T C Machine-Type Communication. 

M T I Mul t i -Cr i t e r ia Triangulation-induced Interpo­

lation. 
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NB-IoT Narrowband IoT. 

N F C Near Fie ld Communication. 

NLoS Non-Line-of-Sight. 

N P D C C H Narrowband physical downlink control chan­

nel. 

N P D S C H Narrowband Physical Downlink Shared Chan­

nel. 

N P R A C H Narrowband Physical Random Access Chan­

nel. 

N P U S H Narrowband Physical Upl ink Channel. 

N R New Radio. 

O F D M A Orthogonal Frequency-Division Mult ip le A c ­

cess. 

OSI Open Systems Interconnection. 

O T D O A Observed Time Difference Of Arr iva l . 

P A P R Peak-to-Average Power Ratio. 

P D C C H Physical Downlink Control Channel. 

P D C P Packet Data Convergence Protocol. 

P D F Probabil i ty Density Function. 

P D S C H Physical Downlink Shared Channel. 

P M F Probabil i ty Mass Function. 

P R A C H Physical Random Access Channel. 

P R B Physical Resource Block. 

P - R N T I Paging-Radio Network Temporary Identifier. 

P H Y Physical Layer. 

P L C Programmable Logic Controller. 

P L M N Public Land Mobile Network. 

PS Packet Switched. 

P S D Power Spectral Density. 

P S K Phase Shift Keying . 

P S M Power Saving Mode. 

P T T Push to Talk. 

P T W Paging Transmission Window. 

P U S H Physical Upl ink Shared Channel. 

121 



Q A M Quadrature Ampli tude Modulat ion. 

QoS Quali ty of Service. 

Q P S K Quadrature Phase Shift Keying. 

R A T Radio Access Technology. 

R C Radio Configuration. 

R F Radio Frequency. 

R L Reinforcement Learning. 

R M S E Root Mean Square Error. 

R N C Radio Network Controller. 

R R C Radio Resource Control. 

R R M Radio resource management. 

R R U Remote Radio Uni t . 

R S R P Reference Signal Receive Power. 

RSS Received Signal Strength. 

RSSI Received Signal Strength Indicator. 

R W Receive Window. 

S C - F D M A Singe Carrier Frequency Division Mul t ip le A c ­

cess. 

S C A D A Supervisory Control and Data Acquisit ion. 

S C H C Static Context Header Compression and Frag­

mentation. 

S D U Service Data Uni t . 

SF Spreading Factor. 

SIB System Information Block. 

S I N R Signal to Interference plus Noise Ratio. 

S N R Signal-to-Noise Ratio. 

SUI Stanford University Interim. 

T A U Tracking Area Update. 

T B C C Tai l -Bi t ing Convolutional Code. 

T B S Transport Block Size. 

T D D Time-Divis ion Duplexing. 

T D M A Time-Divis ion Mult ip le Access. 

T o A Time on A i r . 
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U A V Unmanned Aeria l Vehicle. 

U C B Upper Confidence Bound. 

U D P User Datagram Protocol. 

U E User Equipment. 

U L Upl ink. 

U M T S Universal Mobi le Telecommunications Sys­

tem. 

U N B Ultra-Narrowband. 

U R L L C Ultra-Reliable Low-Latency Communication. 

U S I M Universal Subscriber Identity Module. 

V 2 X Vehicle to Everything. 

VoIP Voice over Internet Protocol. 

V o L T E Voice over L T E . 

V R Vi r t ua l Reality. 

V R N V i r t u a l Routing Number. 

W C D M A Wideband Code Divis ion Mult ip le Access. 

W I Walfish-Ikegami. 

W i M A X Worldwide Interoperability for Microwave A c ­

cess. 

W L A N Wireless Local Area Network. 
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