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Abstract 
This thesis introduces several selected algorithms, which were primarily developed for 
CPUs, but based on high demand for improvements; we have decided to utilize it on behalf 
of G P G P U . This modification was at the same time goal of our research. The research 
itself was performed on C U D A enabled devices. 

The thesis is divided in accordance with three algorithm's groups that have been 
researched: a real-time object detection, spectral image analysis and real-time line detection. 
The research on real-time object detection was performed by using L R D and L R P features. 
Research on spectral image analysis was performed by using P C A and N T F algorithms 
and for the needs of real-time line detection, we have modified accumulation scheme for 
the Hough transform in two different ways. 

Prior to explaining particular algorithms and performed research, G P U architecture 
together with G P G P U overview are provided in second chapter, right after an introduction. 
Chapter dedicated to research achievements focus on methodology used for the different 
algorithm modifications and authors' assess to the research, as well as several products 
that have been developed during the research. 

The final part of the thesis concludes our research and provides more information about 
the research impact. 

Keywords 
G P U , C P U , G P G P U , CUDA, LRP, L R D , P C A , NTF, Line Detection, Parallel Coordinates, 
Hough Transform, Spectral Image, Object Detection 

Bibliographic Citation 
Josth, R.: Exploitation of G P U in graphics and image processing algorithms, Ph.D. thesis, 
Faculty of Information Technology, Brno University of Technology, Brno, CZ (2014) 



iv 

Abstrakt 
Táto práca popisuje niekolko vybraných algoritmov, ktoré boli primárne vyvinuté pre 

C P U procesory, avšak vzhladom k vysokému dopytu po ich vylepšeniach sme sa rozhodli 
ich využit v prospech G P G P U (procesorov grafického adaptéra). Modifikácia týchto 
algoritmov bola zároveň cielom nášho výskumu, ktorý bol prevedený pomocou C U D A 
rozhrania. 

Práca je členená podlá troch skupín algoritmov, ktorým sme sa venovali: detekcia 
objektov v reálnom čase, spektrálna analýza obrazu a detekcia čiar v reálnom čase. Pre 
výskum detekcie objektov v reálnom čase sme zvolili použitie L R D a L R P funkcií. Výskum 
spektrálnej analýzy obrazu bol prevedný pomocou P C A a N T F algoritmov. Pre potreby 
skúmania detekcie čiar v reálnom čase sme používali dva rôzne spôsoby modifikovanej 
akumulačnej schémy Houghovej transformácie. 

Pred samotnou častou práce venujúcej sa konkrétnym algoritmom a predmetu skúmania, 
je v úvodných kapitolách, hneď po kapitole ozrejmujúcej dôvody skúmania vybranej prob
lematiky, stručný prehlad architektúry G P U a G P G P U . Záverečné kapitoly sú zamerané na 
konkrétizovanie vlastného prínosu autora, jeho zameranie, dosiahnuté výsledky a zvolený 
prístup k ich dosiahnutiu. Súčastou výsledkov je niekolko vyvinutých produktov. 

V závere nechýba stručné zhodnotenie celého výskumu, jeho vplyv či využitie a dopad 
na budúce štúdie a výskum. 

Klučové slová 
G P U , C P U , G P G P U , C U D A , L R P , L R D , P C A , N T F , detekcia objektov, spektrálna 
analýza obrazu, detekcia čiar, Houghova transformácia, paralelné koordináty; 
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Chapter 1 

Introduction 

Back in 2007, when we started the research for the needs of this thesis, there was a limited 
number of implementations which could enable an effective and energy-efficient use of 
Graphics Processing Units (GPUs). There were many publications describing the new, 
fast implementations of algorithms on Central Processing Unit (CPU), but there was a 
gap and very high demand for improvements of current algorithms that were primarily 
designed for CPUs that time (even though there were also some solutions for specialized 
processors such as F P G A , DSP, etc.). Based on very high computational potential of 
G P U , we have decided to utilize it on behalf of general-purpose computing on graphics 
processing units (known as G P G P U , or G P G P or GP2U) - focusing on computer vision 
and image processing algorithms. These pixel-based applications are very well suited to 
G P G P U technology. 

We have selected a set of existing and successfully implemented algorithms with good 
performance results and optimized them for G P G P U . For computer vision, we have decided 
for object detection using the Local Rank Differences (LRD) and Local Rank Pattern (LRP) 
functions, and for image processing improvement we had chosen Non-Negative Tensor 
Factorization (NTF) and Principle Component Analysis (PCA) algorithms. Research on 
line detection was performed using high-resolution Hough transformation and parallel 
coordinates. 

As all commonly available PCs include G P U , our goal was to off-load C P U (that is 
optimized for a small number of threads) and move the part (or even the whole blocks) 
of program to G P G P U ; and therefore enable better usage of computer resources, and 
enhance the effectiveness of whole P C in the manner of costs and data processing speed. 

Historically, the initial purpose of G P U was to serve as graphic accelerator, which 
supports only specific fixed-function pipelines. Later on, after almost 10 years of devel
opment in 90's, they became increasingly programmable. NVIDIAs ' G P U was for the 
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first time introduced in 1999, but further development was carried on, moving forward to 
high-performance computing methodology - G P G P U , which uses G P U to crunch the data. 

At the time of the research there were an NVIDIA GPUs available for our needs. 
These GPUs had a C U D A parallel computing platform interface and shaders. That time, 
the shaders were on a very high level from the G P U programming availability point of 
view; however they were tailored for graphics rendering and their usage for G P G P U needs 
would cause significant difficulties in optimization when comparing with C U D A parallel 
computing platform. N V I D I A invented C U D A in 2006, and that was the world's first 
solution for general-computing on GPUs. In parallel with C U D A development, there was 
an OpenCL developed. These are the two different interfaces for programming the GPUs. 
While OpenCL is an open standard that can be used to program CPUs, GPUs or other 
devices; C U D A is specific to NVIDIA GPUs. 

For the needs of this thesis, C U D A was used as primary computing platform, as at the 
time the research, OpenCL was in a stage of development - it was not stable enough, and 
was unable to use the full potential of GPUs. Moreover, several months later, NVIDIA 
introduced Parallel Nsight, a development platform for heterogeneous computing, what 
enabled us to debug, and fully optimize the performance of G P U . This tool was used to 
identify and analyze bottlenecks, and to observe the behaviour of the system. 

G P G P U makes a significant impact affecting wide range of application domains, such as 
weather forecasting, fluid-flow, or molecular dynamics. Algorithms that we were focusing 
on, can find an application on the field of computer vision, physics, astronomy, medicine 
and many others. 

Thesis Structure 

After introduction, the second part of this thesis discusses the background and architecture 
of G P U and G P G P U . Beside products available at the time of our research, the past, 
current and further GPUs are listed. 

Next three chapters discuss different types of algorithms, we have been focusing on. 
Namely - L R D and L R P features are explained in Chapter 3., research on P C A and N T F 
algorithms is discussed within Chapter 4, and Hough transform with parallel coordinates 
are described in Chapter 5. These three chapters provide an insight, and basic information 
about the particular algorithms, with an outline of related researches, performance analysis 
and results for each research. 

Chapter 6 points out the research gains of the author, his contribution and results. 

Whole thesis is concluded within Chapter 7., which except overall conclusion includes 
also the citation analysis performed in order to assess research impact. 
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Within the thesis, the list of published papers is enclosed as Appendix A. Appendix B 
conclude the list of products developed during our research. 

1.1 Research Motivation 

As already stated, our whole research can be divided into three main parts: 

• Speed-up of real-time object detection algorithms using CUDA; 

• Optimizations of spectral image analysis algorithms; 

• Modifications of real-time line detection algorithm (Hough transform). 

Each of these topics had a different reason for research initiative and those are further 
explained in a consequent section. 

1.1.1 Real-Time Object Detection Algorithms - Problem For
mulation 

Object detection, having a wide range of applications, was in 2001 subject of research for 
Viola and Jones [92], who introduced very successful face detector which was combining 
boosting, Haar low-level feature calculated on integral image, and a focus-of-attention 
cascade of classifiers. The detector provided a precision of detection high enough for 
practical applications. Success of Viola and Jones encouraged further research in similar 
approaches and resulted in a great number of modifications to this original detector. 

It was a popular trend to use statistical classifiers (such as AdaBoost and its modifica
tions) for object detection. Statistical classifiers, as very powerful and common approach 
to object detection, classified individual locations of the input image and made a binary 
decision whether the location contains the object or not. The result was a set of candidate 
locations, which was further proceeded, typically by a non-maxima suppression algorithm. 
Face detector of Viola and Jones was a combination of techniques that all together well 
minimized the average decision time. The classifier extracted relevant information from 
the image with Haar-like features, which were computed very fast and in constant time 
using an intermediate image representation called the integral image. Viola and Jones used 
AdaBoost, a general boosting algorithm, for feature selection by keeping weak hypotheses 
very simple and each based only on single Haar-like feature. However, either this or 
any other consequent proposed approaches ([86]) were still not fast enough for real-time 
applications. 
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As in this period of time, the G P G P U was introduced, we have decided to the accelerate 
object detection in images and video sequences using graphic processors (GPUs). Our 
task included algorithmic modifications and adjustments, constructing variants of efficient 
implementations, and evaluation by comparing with efficient implementations on CPUs. 
C U D A offered a maintainable and portable way of programming general-purpose code 
for the GPUs (in the scope of NVIDIA) , and GPUs controlled by C U D A offered a high 
computational power for tasks that were highly parallel. The aim of our research (Chapter 
3) was also to evaluate the suitability of the C U D A platform for object detection by 
classifiers, and to design efficient version of object detection algorithm. 

1.1.2 Spectral Image Analysis Algorithms - Problem Formula
tion 

The topic that led to initiation of the research on hardware-accelerated Principal Compon
ent Analysis (PCA) algorithm has been revealed from the start-up project called Optical 
Sensor Technology in Medical Applications, introduced by University of Eastern Finland. 
P C A was primarily targeted on real-time spectral image analysis. It could have been 
used on very large data sets, where its utilization has previously been unthinkable. The 
computational speed of P C A , especially the speed of creation of the co-variance matrix, 
was however critical and any improvement was appreciated. 

P C A is often used for data of high dimensionalities. Generally, in the case of spectral 
imaging, the dimensionality of the input data was not high (commonly 6-81 channels) but 
the number of samples (i.e. number of pixels in image or video) was large - millions to 
billions. Existing solutions (e.g. [39, 38, 2, 67]) did not exactly suit this purpose, and so 
this unique situation must have been covered by a particular solution. 

Within this research ( Chapter 4), also motivated by the need of using P C A on spectral 
images in the context of real-time medical imaging, we have optimized two implementations 
of algorithm, one utilizing the SSE instruction set of contemporary CPUs, and the other 
running on graphics processors, using C U D A environment. 

Spectral imaging is except medicine used in many different scientific and industrial 
fields, such as wood analysis, mineral detection or textile industries. Non-Negative Tensor 
Factorization (NTF) can be used for image compression [3], optimal filter generation 
[29], and feature extraction [43], or in fields of global climate analysis, neuroscience, 
psychometrics, etc. [75], [6], [11], [57], [84], [48]. The problem that led us to perform 
the research on this algorithm was that dimensionalities of these problems are often so 
high, that N T F computation takes hours, therefore the acceleration of this process was 
desirable. 
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Having the possibility to use G P U for G P G P U , we were not forced to use shading 
languages and rendering libraries, but were able to use C U D A . Our task was to speed-up 
the N T F computation, enhance the efficiency, and compare it with other available solutions. 

1.1.3 Real-Time Line Detection - Problem Formulation 

The Hough transform is a well-known algorithm for detecting shapes and objects in raster 
images. Originally, Hough [34] defined the transformation for detecting lines. Later it 
was extended for more complex shapes, such as circles, ellipses, etc., and even generalized 
for arbitrary patterns [5]. However, as standard Hough transform was rather slow to be 
usable in real-time, different accelerated and approximated algorithms existed. Previously, 
several research groups invested an effort to deal with computational complexity of 
Hough transform based on the 9-g parametrization, which uses a very straightforward 
transformation from the image space to one bounded space of parameters, and because 
its uniform distribution of discretization error across the Hough space. There have been 
different methods developed ([71], [82], [98], [51] or [8]) focusing on spacial data structures, 
non-uniform resolution of the accumulation array, or special rules for picking points from 
the input image, but there was still a need for real-time implementation of the Hough 
transform. 

Our first research (Section 5.1.) on modification of accumulation scheme for the Hough 
transform was using 9-g parametrization. The algorithm used a modified strategy for 
accumulating the votes in the array of accumulators in the Hough space. The strategy 
was designed to meet the nature of GPUs available at the time of research. 

The second part of this research (Section 5.2.) used new parametrization of lines 
- PClines. Both algorithms were suitable for computer systems with a small but fast 
read-write memory, such as GPUs available at the time of the research. Our second 
algorithm required no floating-point computations or goniometric functions, what made it 
suitable for special, or low-power processors and special-purpose chips. Our task was to 
evaluate proposed algorithm solutions both on synthetic binary images, and on complex 
high resolution real-world photos. 
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Chapter 2 

G P U Architecture and G P G P U 

The aim of this chapter is to provide an overview of G P U and G P G P U evolution and 
theory, together with different G P U products available both at the time of our research 
(years 2007-2011), and those that were not addressed in our research, as they became 
available later on. 

Currently, there are basically two dominant G P U producers. The first one is NVIDIA, 
which invented their first G P U (GeForce 256) in 1999, and unveiled C U D A architecture 
in 2006. NVIDIA GPUs are now powering millions of desktops, notebooks, workstations 
and supercomputers around the world, accelerating computationally-intensive tasks for all 
types of potential customers - professionals, scientists, researchers or random consumers. 

The whole scale of products is now available; such as Tesla for technical and scientific 
computing, Quadro for professional visualization, NVS products for financial industries, 
or their primary product line called GeForce, which is for a years in a competition with 
AMD's Radeon product, and will be the subject of our further discussion. Radeon brand 
was originally launched by ATI Technologies, and acquired by Advanced Micro Devices 
(AMD) in 2006. A M D is therefore the second dominant producer. 

At the time of the research there were N V I D I A GPUs available for our needs. The 
reason why A M D products were not considered for our research is that A M D , supported 
only by OpenCL language, what was that time less mature and less stable than C U D A 
architecture - the base of our research. 

2.1 G P U Architecture 

Historically were GPUs designed as non-programmable 3D-graphics accelerators, support
ing only specific fixed-function pipelines. The evolution of this kind of GPUs started from 
large expensive systems in early 1980s to small workstations and then P C accelerators in 
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the mid to late 1990s, when the hardware became increasingly programmable. [91, 90] 
They were being developed by multiple companies, and during this period the performance 
increased from 50 million pixels to 1 billion pixels per second and from 10 000 vertices 
up to 10 million vertices per second. Within years 1994 and 2001, the progress on chips 
development moved from simplest pixel-drawing functions to implementing the full 3D 
pipeline including transforms, lighting, rasterization, texturing, depth testing and display, 
when the surface of an object was drawn as a collection of triangles. 

Fixed-function pipeline GPUs were represented by products as S3 V i R G E (1995) or 
3DFx VooDoo products line (starting in 1996), followed by first NVIDIA products: "pre"-
GeForce NV3 (known also as RIVA 128 or N3 only, 1997), GeForce 256 (or NV10, 1999), 
later NV11 up to NV16, crowned by GeForce3 (NV20, in 2001), which for the first time 
allowed limited amount of programmability in the vertex pipeline. A l l of these are further 
explained within next sections of this chapter. 

As the chip programmability of GeForce3 was very limited, later GeForce products 
became more flexible and faster, adding separate programmable engines for vertex and 
geometry shadings. This evolution culminated in the GeForce 7800 that had three kinds of 
programmable engines for different stages of the 3D pipeline together with several stages 
of configurable and fixed-function logic. Wi th GeForce 7800, the era of programmable 
pipeline had begun. 

At this point, also G P G P U started its evolution, as to perform non-graphics processing 
on graphics-optimized architectures. This was typically performed by running carefully 
crafted shader code against data presented as vertex or texture information, and retrieving 
the results from a later stage in the pipeline. 

GeForce 7800 and its three engines management led to unpredictable bottlenecks, so 
in 2006 NVIDIA introduced GeForce 8800 (G80 series of Tesla product line) design that 
featured "unified shader architecture" with 128 processing elements distributed among eight 
shader cores, where each of them could have been assigned to any shader task, eliminating 
the need for stage-by-stage balancing and greatly improving overall performance. With 
GeForce 8800, C U D A development environment was introduced (see 2.1 or 2.2 for more 
information about CUDA) . 

Wi th G80 series, NVIDIA introduced their Tesla product line, beginning with PCI 
Express add-in boards, and drivers optimized for G P U computing beside of 3D rendering. 
From now on, G P U could become to be treated like a many-core processor. Tesla product 
line was followed by introduction of Fermi and Kepler product lines, as well as latest 
Maxwell and expected future Pascal products. A l l of these are further, and more in detail, 
discussed within next sections of this chapter. 
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Application Programming Interfaces (APIs) 

In parallel with G P U development, an Application Programming Interfaces (APIs) were 
being developed. Generally, the A P I is standardized layer of software that allows an 
application (e.g. game) to send commands to graphics processing unit to draw objects on 
a display. 

The leader in 3D graphics for workstation was American manufacturer Silicon Graphics, 
Inc. (SGI). Their IrisGL API became industry standard, overshadowing the open standards-
based PHIGS, due to its usage simplicity and immediate mode rendering support. As 
the market started to accommodate more and more competitors, SGI decided to turn the 
IrisGL into an open standard - OpenGL. 

OpenGL is now known as a rendering A P I , providing hardware accelerated (GPU) 
rendering functions. Unlike other popular APIs (like DirectX), OpenGL is platform 
agnostic, in the meaning that you can write an OpenGL application on one platform and 
at the same time OpenGL program can be compiled and run on another platform. 

In 1995, Microsoft released the main competitor of OpenGL - Direct3D interface, and 
consequently in 1997 an SGI initiated the Fahrenheit project, which was a joint effort 
with the goal of unifying the OpenGL and Direct3D. [89] In 1998 Hewlett-Packard joined 
the project. Even though it initially showed some promise of bringing order to the world 
of interactive 3D computer graphics APIs, due to financial constrains at SGI, strategic 
reasons at Microsoft and general lack of industry support, it was abandoned in 1999. [90] 

Several years later, in 2006, the OpenGL Architecture Review Board voted to transfer 
the control of OpenGL A P I standard to the Khronos Group, but still keeping the A R B 
acronym to prefix the name of OpenGL core extensions. [70] 

In the same year, when NVIDIA introduced GeForce 8800, also CUDA was introduced. 
C U D A (stands for Compute Unified Device Architecture) is considered to be industry's 
first C-based development environment for GPUs, which delivers an easier and more 
effective programming model than earlier G P G P U architectures. 

2.1.1 OpenGL and Shader Evolution 

The first version of OpenGL had a fixed-function pipeline (Fig. 2.1), what means that all 
the functions performed by OpenGL were fixed and could not be modified except through 
the manipulation of various rendering states. Programmers therefore didn't have a control 
over the rendering pipeline. [90] The scheme of fixed-function pipeline OpenGL is shown 
at Fig. 2.1, where blue stages are still being used within current versions of OpenGL and 
orange ones represent stages of the fixed-function pipeline, that have been replaced by 
different stages in the programmable shader pipeline. 
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Vertex Data Primitive 1 Transform Primitive Rasterizer Vertex Data Processing l and Lighting k Assembly Rasterizer 
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Figure 2.1: OpenGL Fixed-Function Pipeline. 

OpenGL version 2.0 released in 2004 provided the ability to programmatically define 
the vertex transformation and lightening (T&L) , and introduced fragment operations. 
Vertex shaders offer programmers with more flexibility regarding how the vertices are 
transformed, and it is even possible to perform the lighting computations in the fragment 
shader to archive per-pixel lighting. The primary responsibility of vertex shader is to 
transform the vertex position into "clip space". This is often done by multiplying the 
vertex position by the model-view-projection matrix (known also as M V P matrix). The 
output of vertex shader can go directly to rasterizer (OpenGL version 2.0) or to geometry 
shader (if present; from OpenGL version 3.0). [77] 

In Fig. 2.2, orange stages from Fig. 2.1 are replaced by vertex and fragment program. 

Vertex Data 
Primitive 

Processing 
Vertex 
Shader 
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Depth S 
Stencil 

Color Buffer 
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Figure 2.2: OpenGL 2.0 Programmable Shader Pipeline with Vertex 
Shader. 

Another type of shader, available in OpenGL 2.0 is fragment shader, known also as 
pixel shader that compute colour and other attributes for each fragment. It replaces all of 
the complicated texture blending, colour sum, and fog operations from Fig. 2.1. Fragment 
shader can be used to compute the per-pixel lighting as well as blend together multiple 
textures to determine the final fragment colour. 

OpenGL version 3.2 introduced in 2009 came with additional stage of the programmable 
shader pipeline called geometry shader (Fig. 2.3). This shader comes after the vertex 
shader in the programmable shader pipeline and therefore the output of vertex shader 
becomes an input to the geometry shader. Geometry shader can generate new graphics 
primitives, such as points, lines, and triangles. They are typically used for point sprite 
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generation, geometry tessellation, shadow volume extrusion, or single pass rendering to a 

cube map. 
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Figure 2.3: OpenGL 3.2 Programmable Shader Pipeline with Geometry 
Shader Included. 

Tessellation stages that come after vertex but before geometry shaders were introduced 
in OpenGL 4.0 (2010) (Fig. 2.4). Tessellation Control Shaders and Tessellation Evaluation 
Shaders together allow for simpler meshes to be subdivided into finer meshes at run-time 
according to a mathematical function. 
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Figure 2.4: OpenGL 4.0 Programmable Shader Pipeline with Tessella
tion. 

2.2 G P G P U 

First naive graphic cards had almost no ability to change their graphic pipeline com
putations. NVIDIA Geforce 3/4 brought the first chance of shader programming for 
programmers. However, shaders in early stages couldn't compute very complex algorithms, 
due to graphic hardware limitation and were still used primarily for vertex and pixel 
processing. Lately introduced Geforce 8 provided almost unlimited programmability, not 
only thanks to better shading language, but also for support of CUDA. The CUDA uses the 
same hardware shaders, but the interface for accessing hardware is more straightforward for 
G P G P U programmers. Shading language therefore became to be used for other purposes 
than graphic computations. 
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As already stated, at the time of the research there were an NVIDIA GPUs available 
for our needs. The reason why A M D products were not considered for our research is that 
A M D , supported only by OpenCL language, was that time less mature and stable than 
C U D A architecture, so the performance with OpenCL implementation may not match 
the expected performance specified in particular G P U specification and figures provided 
further in the next chapters of the thesis. Initially, we have been working on an OpenCL 
implementation as well, as it was expected to bring more portability, ease of programming 
and software maintenance. However, we have found out that OpenCL was always one step 
behind, and a full utilization of hardware (NVIDIA) seemed to be impossible. It was just 
too unstable and in comparison with C U D A , it was missing the functionality. 

Ideal G P G P U applications have large data sets, high parallelism, and minimal depend
ency between the data elements. The GPUs usage of data parallelism can be described as 
follows [77]: 

• It uses Single Instruction Multiple Data (SIMD) or Thread (SIMT) model, while 
CPUs maps multiple tasks to multiple threads; 

• It runs thousands of lightweight threads on hundreds of cores, while CPUs runs tens 
of relatively heavyweight threads on tens of cores; 

• The threads are managed and scheduled by hardware, while on C P U each thread is 
managed and scheduled explicitly (Fig. 2.5); 

• The programming is done for batches of threads, while on C P U each thread has to 
be programmed individually; 

Control ALU 

ALU 

ALU 

ALU 

CPU GPU 

Figure 2.5: CPU and GPU Architecture Overview. [64] 

There is also a different hardware architecture needed when performing tasks with 
G P U data parallelism. G P G P U capable graphic card contains several multiprocessors 
that contain a fast and small memory shared between the cores and a register set, and 
large D R A M which can be accessed directly or by using a cache. As already discussed, 
G P U architecture was originally designed for real-time rendering purposes: processing 3D 
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vertices, rasterization of primitives and processing of pixels. A l l these tasks are performed in 
parallel and are done by a simple code with limited requirements for advanced programming 
structures (recursion, branching, loops, etc.). The possibilities and limitations of the GPUs 
are defined by SIMT concept and the different levels of memory. 

Getting back to shaders evolution, as we have already mentioned in 2.1.1, at a particular 
evolution level of GPUs, shaders became to be able to execute very sophisticated and 
complicated computations. Suddenly it was possible to use shaders also for G P G P U 
needs. But to use them this way, we have had to choose special approach to algorithm 
decomposition. If we could divide the whole problem/algorithm in pixel/vertex manner, 
than we could use shaders for G P G P U . But there was still a high probability that we 
will have implementation problems, due to shader limitations. For example, it could be 
impossible to communicate between pixels in one pass, problems with storing temporary 
data, etc. Each program must be kind of "drawn" - even if you draw nothing. And this 
was the main disadvantage - the fact that you cannot focus on the problem itself, but 
wrap the problem into drawing of primitives. 

C U D A / O p e n C L was more generalized approach to overcome some of the limitations 
of shading languages, providing benefits such as: 

• CUDA/OpenCL access to spatial information is much more flexible, than in shading 
language; 

• CUDA/OpenCL provides thread synchronization and atomic functions; 

• CUDA/OpenCL enables to define your own compute space (Fig. 2.6), while shading 
language will hard-wire the vertex/fragment compute space to your shader. 

2.2.1 CUDA 

With G P G P U , the programmers are not forced to use shading languages and rendering 
libraries to use the GPUs, but CUDA [64] - the first and currently the most mature C-like 
programming language. In other words, C U D A is a scalable parallel programming model 
and software environment for parallel computing. It offers a maintainable and portable 
way of programming general-purpose code for the GPUs. C U D A is often linked with the 
three abstractions that are simply exposed to the programmer as a minimal set of language 
extensions: a hierarchy of thread groups, shared memories, and barrier synchronization. 
These abstractions provide fine-grained data parallelism and thread parallelism, nested 
within coarse-grained data parallelism and task parallelism. 

This scalable programming model (Fig. 2.6) allows the G P U architecture to span a 
wide market range by simply scaling the number of multiprocessors and memory partitions: 
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from the high-performance enthusiast GeForce GPUs and professional Quadro and Tesla 
computing products to a variety of inexpensive, mainstream GeForce GPUs. 

Multithreaded CUDA Program 

Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 

G P U w i t h 2 C o r e s G P U wi th 4 Cores 

CoreO Core 1 Core 0 Core 1 Core 2 Core 3 

Block 0 Block 1 Block 0 Block 1 Block 2 Block 3 

Block 2 Block 3 Block 4 Block 5 
r 

Block 6 Block 7 

Block 4 Block 5 

Block 6 Block 7 

Figure 2.6: Automatic Scalability [64]. 

Next section introduces the main concepts behind the C U D A programming model by 
outlining how they are exposed in C. The following description was due to its complexity 
kept in an original wording of C U D A C Programming Guide [64], in order to provide the 
reader with accurate and compact set of essential information. 

Kernels 

C U D A C extends C by allowing the programmer to define C functions, called kernels, that, 
when called, are executed N times in parallel by N different CUDA threads, as opposed to 
only once like regular C functions. 

A kernel is defined using the __global__ declaration specifier and the number of CUDA 
threads that execute that kernel for a given kernel call is specified using a new <<<. . . » > 
execution configuration syntax. Each thread that executes the kernel is given a unique 
thread ID that is accessible within the kernel through the built-in threadldx variable. 
[64] 

Here, each of the N threads that execute VecAddO performs one pair-wise addition. 
Two vectors A and B of size N are added and stored into vector C. [64] 

Thread Hierarchy 

For convenience, threadldx is a 3-component vector, so that threads can be identified 
using a one-dimensional, two-dimensional, or three-dimensional thread index, forming a 
one-dimensional, two-dimensional, or three-dimensional thread block. This provides a 
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Algorithm 2.1 Illustration of Kernel invocation. 
// Kernel d e f i n i t i o n 
__global__ void VecAdd(float* A, f l o a t * B, f l o a t * C) 
{ 

int i = threadldx.x; 
C[i] = A[i] + B[i] ; 

} 

i n t mainO 
{ 

// Kernel invocation with N threads 
VecAdd«<l, N»>(A, B, C); 

} 

natural way to invoke computation across the elements in a domain such as a vector, 
matrix, or volume. 

The index of a thread and its thread ID relate to each other in a straightforward 
way: For a one-dimensional block, they are the same; for a two-dimensional block of size 
(Dx, Dy),the thread ID of a thread of index (x, y) is (x + yDx); for a three-dimensional 
block of size (Dx, Dy, Dz), the thread ID of a thread of index (x, y, z) is (x + yDx + zDxDy). 
[64] 

As an example, the following code adds two matrices A and B of size N x N and stores 
the result into matrix C: 

Algorithm 2.2 Illustration of Kernel invocation. 
// Kernel d e f i n i t i o n 
__global__ void MatAdd(float A[N][N], f l o a t B [N] [N] , f l o a t C [N] [N]) 
{ 

int i = threadldx.x; 
int j = threadldx.y; 
C [ i ] [ j ] = A [ i ] [ j ] + B [ i ] [ j ] ; 

} 

i n t mainO 
{ 

// Kernel invocation with one block of N * N * 1 threads 
int numBlocks = 1; 
dim3 threadsPerBlock(N, N); 
MatAdd«<numBlocks, threadsPerBlock»>(A, B, C); 

} 

There is a limit to the number of threads per block, since all threads of a block are 
expected to reside on the same processor core and must share the limited memory resources 
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of that core. On current GPUs, a thread block may contain up to 1024 threads. 

However, a kernel can be executed by multiple equally-shaped thread blocks, so that 
the total number of threads is equal to the number of threads per block times the number 
of blocks. 

Blocks are organized into a one-dimensional, two-dimensional, or three-dimensional 
grid of thread blocks as illustrated by Fig. 2.7. The number of thread blocks in a grid is 
usually dictated by the size of the data being processed or the number of processors in the 
system, which it can greatly exceed. 

Block (0, 0) B lock ( 1 , 0 ) B lock (2, 0) 

B l o c k ( 0 , 1 ) / B lock (1 , 1) \ B l o c k (2, 

/ \ 

/ \ 
~ 7 B lock ( 1 , 1 ) \ ~ 

Threac ( 0 , 0 ) 

> / 

Th reac ( 1 . 0 ) Threac ( 2 , 0 ) Th reac 

\ ; 
( 3 , 0 ) 

; o , D Threac ( 1 , 1 ) Threac (2, 1) Threap (3, 1) 

T h / e a c ( 0 , 2 ) Th read ( 1 , 2 ) Threac ( 2 , 2 ) Th read (3, \?) 

I 
Figure 2.7: Grid of Thread Blocks. 

The number of threads per block and the number of blocks per grid specified in the 
<«...>>> syntax can be of type int or dim3. Two-dimensional blocks or grids can be 
specified as in the example above. 

Each block within the grid can be identified by a one-dimensional, two-dimensional, or 
three-dimensional index accessible within the kernel through the built-in blockldx variable. 
The dimension of the thread block is accessible within the kernel through the built-in 
blockDim variable. 

Extending the previous MatAddO example to handle multiple blocks, the code becomes 
as follows. 

A thread block size of 16 x 16 (256 threads), although arbitrary in this case, is a 
common choice. The grid is created with enough blocks to have one thread per matrix 
element as before. For simplicity, this example assumes that the number of threads per 
grid in each dimension is evenly divisible by the number of threads per block in that 

file:///Block
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Algorithm 2.3 Illustration of Kernel invocation. 
// Kernel d e f i n i t i o n 
__global__ void MatAdd(float A[N][N], f l o a t B [N] [N] , f l o a t C [N] [N]) 
{ 

int i = blockldx.x * blockDim.x + threadldx.x; 
int j = blockldx.y * blockDim.y + threadldx.y; 
i f ( i < N && j < N) 

C[i] [j] = A[i] [j] + B[i] [ j ] ; 
} 

i n t mainO 
{ 

// Kernel invocation 
dim3 threadsPerBlock(16, 16); 
dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y); 
MatAdd«<numBlocks, threadsPerBlock»>(A, B, C); 

} 

dimension, although that need not be the case. 

Thread blocks are required to execute independently: It must be possible to execute 
them in any order, in parallel or in series. This independence requirement allows thread 
blocks to be scheduled in any order across any number of cores as illustrated by Fig. 2.6, 
enabling programmers to write code that scales with the number of cores. 

Threads within a block can cooperate by sharing data through some shared memory 
and by synchronizing their execution to coordinate memory accesses. More precisely, one 
can specify synchronization points in the kernel by calling the __syncthreads() intrinsic 
function; __syncthreads () acts as a barrier at which all threads in the block must wait 
before any is allowed to proceed. Shared Memory gives an example of using shared memory. 

For efficient cooperation, the shared memory is expected to be a low-latency memory 
near each processor core (much like an LI cache) and __syncthreads() is expected to be 
lightweight. [64] 

Memory Hierarchy 

C U D A threads may access data from multiple memory spaces during their execution as 
illustrated by Fig. 2.8. Each thread has private local memory. Each thread block has 
shared memory visible to all threads of the block and with the same lifetime as the block. 
A l l threads have access to the same global memory. 

There are also two additional read-only memory spaces accessible by all threads: the 
constant and texture memory spaces. The global, constant, and texture memory spaces 
are optimized for different memory usages. Texture memory also offers different addressing 
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modes, as well as data filtering, for some specific data formats. 

The global, constant, and texture memory spaces are persistent across kernel launches 
by the same application. [64] 
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Figure 2.8: Memory Hierarchy. 

Heterogeneous Programming 

As illustrated by Fig. 2.9, the C U D A programming model assumes that the CUDA threads 
execute on a physically separate device that operates as a coprocessor to the host running 
the C program. This is the case, for example, when the kernels execute on a G P U and the 
rest of the C program executes on a C P U . 

The C U D A programming model also assumes that both the host and the device 
maintain their own separate memory spaces in D R A M , referred to as host memory and 
device memory, respectively. Therefore, a program manages the global, constant, and 
texture memory spaces visible to kernels through calls to the C U D A runtime. This includes 
device memory allocation and deallocation as well as data transfer between host and device 
memory. [64] 

Compute Capability 

The compute capability of a device [64] is defined by a major revision number and a 
minor revision number. Devices with the same major revision number are of the same 
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Figure 2.9: Heterogeneous Programming. 

core architecture. The major revision number is 5 for devices based on the Maxwell 
architecture, 3 for devices based on the Kepler architecture, 2 for devices based on the 
Fermi architecture, and 1 for devices based on the Tesla architecture. 

The minor revision number corresponds to an incremental improvement to the core 
architecture, possibly including new features. 

CUDA-enabled GPUs lists of all CUDA-enabled devices along with their compute cap
ability. Compute capabilities gives the technical specifications of each compute capability. 
[64] 

2.2.2 OpenCL 

OpenCL language [47] was introduced due to lack of compatibility between hardware 
producers. It was merging various architecture interfaces into one unified OpenCL interface 
and could be used on different hardware. The interface is almost the same as C U D A for C 
interface and reimplementing already existing algorithms from C U D A to OpenCL is not 
difficult at all. C U D A and OpenCL differentiate in several ways: 

• C U D A has better marketing, as it is directly supported by its G P U vendor; 
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• C U D A has developer-support in one package, well-written manuals, examples, tu
torials, etc.; 

• C U D A has more built-in functions and features, as it is re-released always together 
with a new product (up-to-date with NVIDIA products); 

• C U D A was more stable in the time of our research; 

The only disadvantage of C U D A was that it only works on GPUs of NVIDIA, while 
OpenCL is a completely open standard and has a support of more types of processor 
architectures; however it is supplied by many vendors, not provided as one packet or 
centrally orchestrated. 

2.2.3 G P G P U Debugging 

There are several debugging tools available for G P G P U programming. [24] NVIDIA Visual 
Profiler was introduced for a fist time in 2008 and provides a strategic metrics to find 
potential performance problems. It provides the performance analysis for C U D A apps 
Linux, Windows or Mac, and delivers developers vital feedback for optimizing C U D A 
C/C++ applications. It supports all CUDA capable NVIDIA GPUs and is available as part 
of the C U D A Toolkit. CUDA-GDB command line debugger seamlessly debug both the 
C P U and G P U code, setting the breakpoints on any source line or symbol name, executing 
only one wrap per single step. It is capable of handling thousands of threads running 
simultaneously on each G P U in the system. CUDA-MEMCHECK memory analyser 
accurately identifies the source and cause of memory access errors in G P U code and 
allows their quick locating. It also reports runtime execution errors, identifying situations 
that could otherwise result in an "unspecified launch failure" error when an application 
is running. One more tool, mostly during our research is NVIDIA Nsight, an ultimate 
development platform for heterogeneous computing, explained more in detail within next 
section. 

NVIDIA Nsight 

NVIDIA Nsigh enables full optimization of the C P U and G P U performance. This feature-
rich tool provides generally better understanding of the code by identifying and analysing 
the bottlenecks and observing the behaviour of all system activities. A n environment 
integrated into Microsoft Visual Studio extends the debugging and performance analysis 
capabilities of Visual Studio to support G P U computing, and is useful for game development, 
high-performance computing, supercomputing or workstation and content creation software. 
Nsight can be divided three functional parts: 
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1. G P U Debugger that helps to debug applications that uses CUDA. It enables to set 
the breakpoints in C U D A source code, inspect the memory, view the values of local 
variables, perform memory checks, or other common debugging tasks. 

2. Graphics Debugger debug frame by each draw call (vertex shaders, pixel shaders, 
view pipeline states). It creates performance makers and profiles the execution of 
graphics code. 

3. System Analysis and Profiling Tools provide an understanding how workloads are 
distributed across an application and the whole system in general. It enables 
programmer to see A P I calls (including C U D A , OpenCL, DirectX, and OpenGL), 
memory copies, kernel executions, draw calls, and C P U / G P U activity events along a 
visual time-line. Some key features are source code correlation, deep kernel analysis 
to detect factors limiting maximum performance, or unlimited experiments on live 
kernels. 

2.3 G P U Product Lines Overview 

This subsection will provide you with the selection of some major G P U releases aligned 
chronologically, beginning with first generations of fixed-function pipeline GPUs, crossing 
through programmable pipeline NVIDIA Tesla, Fermi, Kepler and Maxwell product lines. 
Section is concluded by some proposed future G P U products. 

During our research, we have been mostly using three particular graphics cards: 

• NVIDIA GeForce 9800GTX (Tesla product line); 

• NVIDIA GeForce G T X 280 (Tesla product line); 

• NVIDIA GeForce G T X 480 (Fermi product line). 

The major differences between the product lines are described below. 

2.3.1 Fixed-Function Pipeline Products 

First Generation of GPUs 

The two significant products since the beginnings of 3D graphics that are worth to be 
mentioned within this section are [53]: 
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S3 V i R G E (1995) graphics chipset is known as first 2D/3D accelerator that has been 
intended for mainstream consumers. The acronym V i R G E stands for Virtual Reality 
Graphics Engine, and S3 powerhouse equipped their first 3D the chipset with 4MB 
of on-board memory (core and memory clock-speeds of up to 66MHz). V i R G E ' s 
pixel throughput gained somewhat faster than the best software-optimized 3D-
rendering available that time, when performing basic 3D-renering with only texture 
mapping without other advanced features. In addition, it offered better (16bpp) 
colour fidelity. However, with additional operations to the polygon load, such as 
perspective-correction, Z-depth fogging or bilinear filtering, the rendering throughput 
dropped to the speed of software-based rendering on an entry-level C P U . This feature 
was unacceptable for the most of the gamers, and after introduction of competing 
product (by 3dfx), the S3 as a company was unable to adapt the rapidly evolving 
market. 

3dfx Voodoo (1996) product line introduced by 3dfx Interactive was the company's 
initial flagship. It heralded a new era of high-performance and high-quality 3D 
graphics for gaming and became a standard for many 3D games. The typical Voodoo 
Graphics PCI expansion card consisted of a D A C , a frame buffer processor and 
a texture mapping unit, along with 4 M B of E D O D R A M . R A M and graphics 
processors operated at 50 MHz. While other video-cards fused on both 2D and 
3D functionality onto a single board, the Voodool concentrated solely on 3D and 
lacked any 2D capabilities. The consumers therefore still needed a 2D graphics card 
for day to day computing, which would be connected to the Voodool via a V G A 
pass-through cable. 

NVIDIA's First Generation of GPUs 

Several years after NVIDIA has been founded, they came with their first 3D G P U [77, 53]: 

NVIDIA "pre"-GeForce (NV3) (1997) product, also known as RIVA 128 or N3, was 
introduced to target the performance segment of the volume PC graphics market. It 
was designed with OpenGL 1.0 and Microsoft's DirectX 5 A P I in mind. NVIDIA 
packed 3.5 million transistors on its first performance part, along with a single pixel 
pipeline. It was also a 2D/3D combo card, whereas 3dfx's Voodoo line still required 
a separate 2D card. This proposition was relatively costly, what was not a welcome 
feature in gamer's community. However, image quality was poor compared to the 
Voodoo line, at least early on, and some games at the time were embracing 3dfx's 
proprietary Glide API . 
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Nowadays, NVIDIA desktop cards carry the GeForce nomenclature. This naming scheme 
first began in 1999 as a result of contest called "Name That Chip". 

NVIDIA GeForce (NV10, NV11-NV16) (1999) firstly introduced NV10, also known 
GeForce 256. This architecture offered significant speed gains over its predecessor, 
almost twice as fast in some cases, and allowed NVIDIA to snatch the performance 
crown from 3dfx in dramatic fashion. The GeForce 256's quad-pixel rendering 
pipeline could pump 480 M/texels, which was about 100-166M more than other 
video-cards on the market that time. It was also equipped with hardware T & L 
(Transformation and Lighting) and a multi-texturing (giving bump maps, light maps, 
cube environment mapping for creating real-time reflections and others). Later 
NV11-NV16 got second texture map unit (TMU) to each of its 2-4 pixel pipelines 
what helped to boost the performance. 

NVIDIA GeForce3 (NV20) (2001) was introduced with Shader Model 1.0. It was 
the first time when a limited amount of programmability in the vertex pipeline was 
allowed, together with volume texturing and multi-sampling for anti-aliasing. 

Consequently, several generations of graphics cards from NVIDIA, ATI and other man
ufacturers were developed. Their enhancements were mainly based on tweaking the 
speed of memory and other computing units, bus expanding, etc. However, any of these 
enhancements did not enter the market with significant step forward. 

2.3.2 NVIDIA Programmable Pipeline Products 

Year 2002 brought the first G P U with programmable pipeline. This section presents the 
selection of some of the major NVIDIA G P U releases having this ability [77, 53]: 

NVIDIA GeForce F X (NV30) (2002) is also known as GeForce5. The NVIDIAs ' 
F X series was the fifth generation of the GeForce line and the first generation of 
fully-programmable graphics cards. They were the company's first video-cards to 
support Shader Model 2.0 with support of Cg, HLSL and GLSL shading language. 
Shader model 2.0 allowed more flexibility in complex shader/fragment programs and 
much higher arithmetic precision. 

NVIDIA GeForce6 (NV40) (2004) series provided innovative feature set of comput
ing, including full support of Shader Model 3.0 for unparalleled gaming effects. This 
series implemented also high dynamic range imaging and introduced scalable link 
interface (SLI) and PureVideo capability. The main benefit of this series, from 
programmable pipeline point of view, was dynamic flow control in vertex and pixel 
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shaders (branching, looping, predication, etc.), increased efficiency, longer shader 

lengths and vertex texture fetch. 

NVIDIA GeForce7 (G70/NV47) (2005) series was the last generation of GPUs that 
could support the A G P bus. It was just the refined version of 6th GeForce generation, 
but providing the major improvement of being a widened pipeline and increase in 
clock speed. The GeForce 7950GT was used in origins of our research, where object-
detection algorithm, which used L R D and Haar features, was implemented by using 
shaders. [73] 

T E S L A Product Line 

Tesla, as NVIDIA's first micro-architecture (Fig. 2.10) was the first product line which 
implemented unified shaders (Fig. 2.11)[77]. Prior to this point, pixel shaders and vertex 
shaders existed as separate units. Tesla started with 8th generation of GeForce and covers 
also GeForce 9 Series, GeForce 100 Series, GeForce 200 Series and GeForce 300 Series, and 
then it was replaced by Fermi product line. Tesla is at the same time NVIDIA's third 
generation of micro-architecture designed as a G P G P U . 
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Figure 2.10: Tesla Architecture 

With unified shaders, unlike the vector processing approach taken with older shader 
units, each stream processor (SP) is scalar and thus can operate only on one component 
at a time. This makes them less complex to build while still being quite flexible and 
universal. Each streaming multiprocessor (SM) consists of eight scalar SPs. Two special 
function units (SFUs) for transcendentals such as exponential function, logarithm, and 
trigonometric functions, an M T I U (multi-threaded instruction unit), and on-chip shared 
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Figure 2.11: Unified Shaders [77]. 

memory. The S M creates, manages, and executes hundreds of concurrent threads in 
hardware with zero scheduling overhead. It can create as many as eight C U D A thread 
blocks concurrently, limited by thread and memory resources. To manage hundreds 
of threads running several different programs, the Tesla S M employs single-instruction, 
multiple-thread (SIMT) architecture. For more details, refer to [64]. Tesla-architecture 
GPUs also provide atomic read-modify-write memory instructions, facilitating parallel 
reductions and parallel-data structure management. [88] 

During our research, we have been using two Tesla GPUs: GeForce 9800GTX and 
GeForce GTX280. 

NVIDIA GeForce 9800GTX (2008) when compared with previous versions (8800GTX), 
benefited in two SLI connectors, higher clock speed, and support for NVIDIA Hybrid 
Power, a technology allowing the discrete G P U to shut off during non-resource 
intensive applications, and use integrated G P U instead. This feature made this 
product relatively expensive. The memory interface width was 256-bit. It supported 
Shader Model 4.0 and Compute Capability 1.1. GeForce 9800GTX has 128 C U D A 
cores (SPs) which are divided into 16 multi-processors (SMs). C U D A capability 
1.1 enabling 8 192 registers and 16 K B of shared memory per one SM. See C U D A 
documentation [60] for more details on Compute Capability. Three months after 
releasing this version, NVIDIA introduced GeForce 9800GTX+ with even faster core 
and shader clocks. This design is since March 2009 manufactured as GeForce GTS 
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250. [53] 

NVIDIA GeForce GTX280 (2008) was almost identical with GeForce 9800GTX but 
providing 240 C U D A cores (SPs) divided into 30 multi-processors (SMs). The 
most interesting feature was the support of Compute Capability 1.3 (while already 
Compute Capability 1.2 supported Atomic function in shared memory). See C U D A 
documentation [60] for more details on Compute Capability and differences between 
any two versions. [53] 

F E R M I Product Line 

Fermi micro-architecture introduced (Fig. 2.13) in the beginning of 2010 was represented 
by GeForce 400 Series and GeForce 500 Series. A complex architecture managed by a 
multi-level programming model allowing programmers to focus on an algorithm design 
to improve the productivity. Fermi was based on collection of four Graphics Processing 
Clusters (GPCs), each of which contained a raster engine and four S M units. Fermi 
supports concurrent kernel (Fig. 2.12) execution, where different kernels of the same 
application context can execute on the G P U at the same time thus fully utilizing G P U 
capacity. [61, 20, 83, 96] 

Figure 2.12: Fermi Concurrent Kernel. 

At this time, NVIDIA has also introduced Nexus (further renamed to Nsight, 2.2.3), 
which is claimed to be the world's first integrated heterogeneous computing application 
development environment within Microsoft Visual Studio. 

Double precision throughput has increased by a factor of eight compared to the 
previous generation. N V I D I A has also added support for E C C memory, which was a 
critical requirement for data-centres and supercomputers looking to deploy GPUs on a 
large scale. 

During our research, we have been using one Fermi G P U - a GeForce G T X 480. 
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Host Interface 

NVIDIA GeForce G T X 480 (2010) provided 480 C U D A cores (SPs) divided into 15 
multi-processors (SMs) and included GDDR5 memory with memory width of 384-bit, 
what is less than the Tesla G T X 280, but the overall maximal bandwidth is up to 
177 GB/s . It supported Compute Capability 2.0. See CUDA documentation [60] for 
more details. 

K E P L E R Product Line The same year as Fermi, NVIDIA introduced Kepler micro
architecture (Fig. 2.14) which brought some very important architectural changes. Kepler 
is represented by GeForce 600 Series and GeForce 700 Series. Taking into account that 
Kepler was still organized into C U D A cores, SMs, and GPCs, and the way how the warps 
were executed, from a high-level view, Kepler was identical to Fermi. However, the key new 
features of Kepler compared to previous Fermi were new S M X processor architecture and 
enhanced memory subsystem (offering additional caching capabilities, more bandwidth 
at each level of the hierarchy, and a fully redesigned and substantially faster D R A M I/O 
implementation). [63] 

Kepler replaced S M with S M X consisting of 192 C U D A cores (SPs), 32 Special 
Function Units (SFU), and 32 Load/Store units (LD/ST) . It was designed from ground 
up to maximize computational performance with superior power efficiency S M X was 3 
times more energy efficient than previous Fermi multiprocessor. Each S M X featured four 
warp schedulers and eight instruction dispatch units, allowing four warps to be issued 
and executed concurrently. Kepler's quad warp scheduler selected four warps, and two 
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independent instructions per warp could be dispatched each cycle. 

Another ability introduced with Kepler was Dynamic Parallelism (Fig. 2.15, 2.16) for 
kernels to be able to dispatch other kernels. By giving kernels the ability to dispatch their 
own child kernels, GK110 could both save time by not having to go back to the C P U , and 
in the process free up the C P U to work on other tasks. Dynamic Parallelism is all about 
scheduling work on G P U based on the data without the need for the CUP to coordinate 
work. The accelerator can generate work for itself; it can launch its own kernels unlike in 
the past where C P U was solely responsible for launching all kernels allowing more of a 
program to directly run on the G P U without communication with the C P U . [40, 62] 

DYNAMIC PARALLELISM 

CPU 6PU CPU GPU 

Figure 2.15: Kepler Dynamic Parallelism. 
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Dynamic Parallelism 
Makes GPU Computing Easier & Broadens Reach 

Too coarse Too fine Just right 

Figure 2.16: Dynamic Parallelism Decomposition. 

M A X W E L L Product Line Maxwell was introduced in 2013 and is represented by 
GeForce 800 Series and GeForce 900 Series. The number of C U D A Cores per S M has 
been reduced to a power of two, however with Maxwell's improved execution efficiency, 
performance per SM is usually within 10% of Kepler performance, and the improved area 
efficiency of the S M means C U D A cores per G P U will be substantially higher versus 
comparable Fermi or Kepler products. The Maxwell S M retains the same number of 
instruction issue slots per clock and reduces arithmetic latencies compared to the Kepler 
design. 

As with S M X , each S M M has four warp schedulers, but unlike S M X , all core S M M 
functional units are assigned to a particular scheduler, with no shared units. Number of 
active thread blocks per multiprocessor has been doubled over S M X to 32, which should 
result in an automatic occupancy improvement for kernels that use small thread blocks 
of 64 or fewer threads. A significant improvement in S M M is that it provides 64KB of 
dedicated shared memory per SM and per-thread-block limit remains 48 K B . [65] 

Future 

In 2013 (the same year when Maxwell architecture was introduced) NVIDIA announced 
that their next G P U architecture will be Volta; with on-package D R A M , utilizing Through 
Silicon Vias (TSVs) to die stack memory and place it on the same package as the G P U . 
However, in the first quarter of this year, Volta was pushed back and architecture named 
Pascal (Fig. 2.17) was announced for year 2016. Pascal is supposed to be the first 
G P U to use stacked, 3D chip packing, and should incorporate a new PCI Express-based 
interconnect technology called NVLink. With Pascal, NVIDIA will achieve 2.5 times the 
capacity and four times the energy efficiency of Maxwell while boosting memory bandwidth 
for multi-GPU scaling even further. 
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Figure 2.17: Nvidia Roadmap. 

Another NVIDIA-announced future event is Echelon (Fig. 2.18) - NVIDIA's Extreme-
Scale Computing Project. NVIDIA Research team Echelon project aims to address 
energy-efficiency and memory-bandwidth challenges and provide features that facilitate 
programming of scalable parallel systems. Echelon is a general-purpose fine-grained parallel-
computing system that performs well on a range of applications, including traditional and 
emerging computational graphics as well as data-intensive and high-performance computing. 
At a 10nm process technology in 2017, the Echelon project's initial performance target 
is a peak double-precision throughput of 16 Tflops, a memory bandwidth of 1.6 T B per 
second, and a power budget of less than 150 W. The goal is to integrate CPUs and GPUs 
on the same die with unified memory architecture. Such a system eliminates some of 
accelerator architectures' historical challenges, including requiring the programmer to 
manage multiple memory spaces, suffering from bandwidth limitations from an interface 
such as PCI Express for transfers between CPUs and GPUs, and the system-level energy 
overheads for both chip crossings and replicated chip infrastructure. Echelon aims to 
achieve an average energy efficiency of 20 pJ per sustained floating-point instruction, 
including all memory accesses associated with program execution. [45, 19] 

Echelon processor promises global address space, flexible memory hierarchy, efficient 
bulk parallelism and heterogeneous cores. 
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Figure 2.18: Echelon System Sketch. 
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Chapter 3 

Real-Time Object Detection Using 
C U D A 

This chapter presents object detection in still images and video sequences. Image classific
ation and detection tasks can be used as a base for various image processing and computer 
vision applications. While it is a very costly task from the computational resources point of 
view, very high demand exists for efficient object detection methods and implementations. 

One of the frequently used techniques of fast object detection is usage of classifiers 
to scan the image and attempt classification of every potential object position or even 
every potential position in the image being searched. Classifiers can be implemented as 
statistical classifiers based on supervised machine learning and can take as their input 
low-level features (sometimes called weak classifiers) extracted from the window being 
classified. In principle, such features can be immediately the image pixels, but by using 
more complex feature extractors, the classifiers can achieve better performance - both in 
the detection rate and speed. 

The research on real-time object detection presented within this chapter was performed 
in cooperation with the following list of co-authors: Adam Herout, Pavel Zemčík, Lukáš 
Polok, Michal Hradiš, Roman Juránek and Jiří Havel. 

3.1 Background of Object Detection by Boosting 

In 2001 Viola and Jones [92] presented the first real-time frontal face detector which 
provided a precision of detection high enough for practical applications. This perform
ance was achieved by combining ideas which together very well minimize the average 
computation time. The individual parts are the Haar-like features used to efficiently 
extract discriminative information from images; the AdaBoost learner which combines 
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simple hypotheses into a powerful decision rule; and the attention-cascade structure of 
the detector which greatly reduces the average decision time. Additionally, bootstrapping 
was used when training the detector to achieve very low false positive rates needed when 
detecting objects in images. The significant success of the Viola and Jones face detector 
consequently encouraged further research in similar approaches and resulted in a great 
number of modifications to this original detector. 

The performance of the detection classifiers largely depends on the type of features 
they use. The ideal features should be computationally inexpensive, and to some degree, 
invariant to geometry and illumination changes, and should provide high discriminative 
power - all at the same time. High discriminative power is needed to achieve high precision 
of detection and it also implies more compact and faster classifiers as lower number of 
features is needed to be computed for the classifier to make a decision. In general, the 
ideal type of features can differ for different types of objects [87]. However, simple image 
filters have been proven to generalize well across various types of objects [79]. These filters 
decorrelate the neighbouring pixel values; utilize knowledge about frequency properties of 
images; and they also provide low tolerance to geometric transformations. Most of the 
filters which are used for object detection do not respond to the zero-frequency component, 
and they can be also normalized to compensate lighting changes. 

When using simple filters, it is possible to transform the data in such a way that all 
the information in the original data is represented with the same number of coefficients 
(wavelet transformation). However, it is more efficient to consider all the possible filters 
and choose only the most discriminative for the classifier. This way, the most relevant 
information is extracted in the least amount of time and the classifier can be simpler. For 
example, Viola Jones ([92]) used a highly over-complete set of Haar-like features totalling 
180,000 for samples 24x24. 

Algorithm 3.1 The original version of AdaBoost [18] with notation modified according 
to [78]. 
Require: S = ((xi, yi),..., (xm, ym)), x,L G X , y,L G Y = {-1,+1} 
Ensure: Di(i) = 1/m 
1: for t = 1,..., T do 
2: Train weak learner using distribution Dt 

3: Choose at = \ In O^f1) 
4: Update: Dt+i(i) = D f M exp(-atytht(xt)) w j i e r e a normalization factor 
5: end for 
6: Output the final hypotesis: H(x) = sign [Y^=i atht{x) J 

Viola and Jones used AdaBoost [18] algorithm to both select informative features and 
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create the classifier. AdaBoost (Alg. 3.1) is one of the boosting algorithms. It combines 
simple (weak) classifiers into a very accurate prediction rule (strong classifier). If each 
of the weak classifiers is based on only a single feature, the boosting algorithm then 
effectively performs feature selection. The weak classifiers are selected in a greedy fashion 
and combined to minimize an exponential loss function. AdaBoost creates large-margin 
classifiers in the weak classifier space. The AdaBoost algorithm has certain properties 
which makes it especially useful for real-time detection. The strong classifier is a linear 
combination of the weak classifiers which makes it very efficient to compute. Also, the 
algorithm rapidly converges to a good solution on training data which minimizes the size 
of the strong classifier. Finally, the AdaBoost algorithm has been proven to reach an 
arbitrarily low classification error rate on the training data as long as the weak classifiers 
provide at least some useful information. This can be generalized in that the AdaBoost 
algorithm is guaranteed to reach a specific error at any operating point. In the Viola 
& Jones detector, this fact is exploited when creating classifiers for the cascade stages, 
where the reaching of a specified error at a specific operating point is used as the stopping 
criterion. This way, the complexity of the classifier is kept low while maintaining the 
required error rate. 

The ensemble classifier created by AdaBoost can be itself a powerful and efficient 
classifier capable of detecting objects in images. However, such a classifier would have 
to still be composed of hundreds of weak hypotheses. Such a large classifier would 
certainly not provide real-time performance in most of the desired scenarios. To reduce 
the computational complexity of the detector, Viola and Jones exploited the fact that 
the vast majority of samples classified when scanning images for desired objects belong 
to background. They created an object-specific focus-of-attention mechanism which they 
called cascade and which is essentially a degenerated decision tree (Fig. 3.1), where each of 
the nodes is a strong classifiers created by AdaBoost. The individual stages of the cascade 
either reject the processed sample as background or they send the sample to the next 
classifier. As the decision task becomes harder for the later stages, the classifiers become 
longer. The cascade is the first mechanism which allows creation of such focus-of-attention 
mechanisms at least partially automatically. 

The detection cascade can be created according to the desired false positive rate and 
false negative rate of each stage. In such a case, AdaBoost increases the size of the strong 
classifier until the required rates are reached. However, in [92], the authors set the lengths 
of the individual stages manually. Moreover, the cascade is in many aspects suboptimal. 
First, all information between the consecutive stages is lost, even though the previous 
stage already provides a very good solution to the problem of the next stage. Second, 
the operating points of the classifiers and their lengths are set ad-hoc and not optimally. 
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Figure 3.1: The detection cascade. The cascade is composed of a series 
of increasingly more complex classifiers which either reject the classified 
sub-window as background or pass it to the subsequent stage. The object 
is detected only if the corresponding sub-window successfully passes 

through all of the stages. [92] 

These two problems were addressed many times ([7] [85] [97]), most notably, [86] presented 
WaldBoost algorithm which solves these two problems in a natural way. The WaldBoost 
algorithm is a combination of real AdaBoost [78] and Wald's [94] sequential probability 
ratio test. In WaldBoost, rejection thresholds are set after each iteration of the AdaBoost 
algorithm. The thresholds are set as Wald proposes in the sequential probability ratio 
test, which he proves is the fastest possible classification strategy for a given target error 
rate. Also, as the resulting classifier is monolithic, no information is lost. 

3.1.1 Image Features Based on Haar Wavelets 

The Haar features were introduced by Papageorgiou et al. [72], who used them as an input 
for support vector machine to create a very accurate classifier. Viola and Jones [92] used 
the Haar features for rapid object detection in a framework with an AdaBoost classifier 
and thresholding weak hypotheses. The features, in their basic form, are based on the 
difference of adjacent rectangular regions of the input image. They respond strongly on 
edges and line segments of the image. 

E H • • B H 

Figure 3.2: Shapes of Haar features. Standard shapes on top and 
extended set on the bottom. 
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The shapes of the wavelets typically used in pattern recognition are displayed in Fig. 
3.2. The Haar features are very popular for their extremely low computational cost when 
evaluated on integral image and for providing good amount of information at the same 
time. The extended Haar feature set was introduced by Lienhart and Maydt [52]. The 
difference from the commonly used features is that new features are rotated by 45 degrees. 

A B 

A+D-B-C 

* D 

\ 
• B 

. 1 ) 

• c 

Figure 3.3: Integral images. Standard integral image (top) and integral 
image required to evaluate 45 degree rotated Haar features (bottom). 

Efficient evaluation of Haar features is achieved by using integral image (Fig. 3.3). The 
integral image stores in each pixel the sum of all pixels above and to the left of it. As a 
consequence, the sum of pixels of an arbitrary axis-aligned rectangular region in the image 
can be obtained by referencing only the corner pixels. For the extended set, a different type 
of integral image is required (Fig. 3.3 bottom). A n important advantage of the features is 
that the response can be obtained in constant time regardless of the size of the feature 
in the image. A preprocessing stage is required to create the integral images, though. 
Similar to other convolution-based features, the Haar features need to be normalized to 
achieve (at least partial) invariance to lighting conditions, which can significantly increase 
computational demands. The typical choice of the normalization value is the standard 
deviation of local intensity for which another integral image is required. 

Cg Implementation as a Reference 

Cg implementation was created as a reference for L R D implementation introduced further 
in this chapter. L R D implementations have been compared to Cg implementation, and 
the results are presented within Chapter 6. 
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Only the simplest (two-fold) Haar wavelet features were used in this testing implement
ation (though also three-fold features are used in the object detectors, whose evaluation is 
slightly slower). The Haar wavelets require normalization by the energy in the classified 
window - both to evaluate the energy and to evaluate the features themselves, integral 
images are used, which is the fastest method available to our knowledge. The calculation of 
the integral images constitutes the preparatory phase evaluated in the comparison. Please 
note that (to our knowledge) there is no effective way of calculating the integral image in 
the shading language, so the preparatory phase is implemented in the C P U . The shader 
evaluating the classifiers is illustrated in Alg. 3.2. 

3.1.2 Local Binary Patterns 

The Local Binary Patterns (LBP) are widely used in texture processing. They were 
introduced by Ojala et al. [68] and some improvements have been proposed since then. 
LBPs in their basic form capture information about local textural structures by thresholding 
samples from a local neighbourhood by its central value and forming the pattern code (Fig. 
3.4). The code is calculated as a weighted sum of the threshold samples. The weights 
correspond to powers of 2, so each sample sets a single bit in the pattern value. 

Figure 3.4: Example Of LBP Evaluation: sampling of the neighbour
hood (left), thresholding sampled values by the central value (middle) 

and forming of the LBP code (right). 

Typically, the circular neighbourhood with 8 samples is used (8 bit pattern), but other 
variants are also possible (Fig. 3.5). L B P are most frequently used in combination with 
local histograms to describe a local image area and segment the image. 

• " • 

• . • 
Figure 3.5: Different Sizes Of Local Binary Patterns. 
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Algorithm 3.2 Evaluation of the Haar-like features in the G P U (Cg). 
f l o a t G etHaar(float2 pO, f l o a t 2 p i , f l o a t 2 p2, 

f l o a t 2 p3, f l o a t 2 p4, f l o a t 2 p5, 
uniform samplerRECT IntegTexId) 

{ 
r e t u r n - texRECT(IntegTexId, pO).a 

+ texRECTdntegTexId, p i ) . a * 2.Of 
- texRECTdntegTexId, p2).a 
+ texRECTdntegTexId, p3).a 
- texRECTdntegTexId, p4).a * 2.Of 
+ texRECTdntegTexId, p5).a; 

} 

f l o a t H o r i z o n t a l ( f l o a t 2 pO, f l o a t 2 d, f l o a t WIntensity, 
uniform samplerRECT IntegTexId, 
uniform samplerRECT AlphaTexId, 
f l o a t Haarld) 

{ 
f l o a t 2 d x l = f l o a t 2 ( d . x , 0 . 0 f ) ; 
f l o a t 2 dx2 = float2(d.x+d.x, O.Of); 
f l o a t 2 p3 = pO + f l o a t 2 ( O.Of, d.y); 

f l o a t haar = GetHaar(pO, pO+dxl, p0+dx2, p3, p3+dxl, p3+dx2, IntegTexId); 
haar /= d.x*d.y * WIntensity; // Normalization 

haar = clamp((haar+1.Of)*0.5f * 120.Of, O.Of, 120.Of); // q u a n t i z a t i o n 

r e t u r n texRECT(AlphaTexId, f l o a t 2 ( H a a r l d , h a a r ) ) . a ; 
} 
sOutPS FragmentProgram(sVS2PS IN, 

uniform samplerRECT IntegTexId, 
uniform samplerRECT IntegSqTexId, 
uniform samplerRECT AlphaTexId) 

{ 
sOutPS OUT; 
f l o a t window_energy = 

+texRECT(IntegSqTexId, IN.texcoordO).a 
-texRECTdntegSqTexId, IN.texcoordO + float2(WND_W, O.Of)).a 
-texRECTdntegSqTexId, IN.texcoordO + f l o a t 2 ( O.Of, WND_H)).a 
+texRECT(IntegSqTexId, IN.texcoordO + float2(WND_W, WND_H)).a; 

f l o a t h a a r i d = 0; 
f l o a t sum = 0; 

sum += Horizontal(IN.texcoordO+float2( O.Of, O.Of), f l o a t 2 ( 8.Of, 8.Of), 
window_energy, IntegTexId, AlphaTexId, h a a r i d ) ; 

haarid++; 
sum += V e r t i c a l (IN.texcoordO+float2( 3.Of, 3.Of), f l o a t 2 ( 2.Of, 8.Of), 

window.energy, IntegTexId, AlphaTexId, h a a r i d ) ; 

haarid++; 

sum += // ... 
OUT.color.r += sum/haarid; 
OUT.color.a = l.Of; 
r e t u r n OUT; 

} 
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The L B P is not rotationally invariant, it is dependent on which sample is considered 
first when forming the code. Rotational invariance can be achieved by normalization of 
the pattern by shifting the bits - the lowest value is selected as the L B P result. The LBPs 
exhibit very good performance when used as features in object detection. [100] 

3.1.3 Local Rank Functions 

The experience with known features, such as Haar features and L B P , suggests that in 
many cases the classification benefits from the intensity information. On the other hand, 
the intensity information is subject to changes due to brightness and contrast adjustments 
of the images while invariance to these changes is very often wanted. This fact causes the 
applications using features directly based on intensity, such as Haar features, to normalize 
the image window being classified (e.g. through equalization of its histogram to have a 
constant energy and zero mean value or through other comparable techniques). However, 
regardless of the normalization method, the normalization can be very costly from the 
computational point of view especially comparing it to the cost of, for example, the 
computation of Haar features evaluation itself. The novel L R F is based on the idea that 
the intensity information in the image can be well represented by the order of the values 
(intensities) of the pixels or small pixel regions (e.g. summed 2x2 pixel rectangular areas). 
This idea is backed by the fact that calculation of the values of features based on the order 
of pixels is equivalent to (or based on the exact evaluation method at least very close 
to) normalizing the image through histogram equalization [1] and then evaluation of the 
feature value based on the pixel or small regions intensities. 

The L R F based on the order of pixel values rather than the values of pixels themselves 
- have several principal advantages over the functions based on the values themselves: 

• Invariance to illumination changes - the L R F are invariant to most of the functions 
used to brightness and contrast adjustments/normalization in the images. More 
specifically, L R F are invariant to nearly all monotonie gray-scale transformations; 

• Strict locality - L R F of objects (parts of objects) do not change locally when the 
object's image is being captured under changing conditions (similar to for example 
SIFT); 

• Reasonable computational complexity - computation and memory accesses can be 
optimized thanks to regular geometric structure. No explicit normalization is needed, 
which is specifically important in some classification schemes, such as WaldBoost 

([86]); 
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Formal Definition of L R F 

Let us consider a scalar image / : Z 2 —> R. On such image, a sampling function can be 
defined (x, u e Z 2 , # : Z 2 -»• R): 

5|(u) = (/*</)(x + u) (3.1) 

This sampling function is parametrized by convolution kernel g which is applied before 
the actual sampling, and by vector x which is the origin of the sampling. Next, let us 
introduce a vector of relative coordinates (n 6 JV): 

U = [ u 1 u 2 . . . u n ] , u ! e Z 2 (3.2) 

This vector of two-dimensional coordinates can define an arbitrarily shaped neighbourhood 
and it will be used together with the sampling function to obtain a vector of values 
describing the neighbourhood of this shape on position x in the image: 

M = [S*(ui)S*(u 2) . . . S»(iO] (3.3) 

This n-tuple of values will be referred to as the mask in the following text. The term mask 
is reasonable as the vector was created by "masking" global information from the image 
and leaving only specific local information. Note that in general, the sampling function 
does not have to be uniform over the mask: 

M=[S»{u1)S»{u2) . . . ? K ) ] (3.4) 

but the implementations described in this text all use the uniform sampling function. 

For each element k in the mask, its rank can be defined as: 

1 if Mi < Mk , . 
(3.5) 

0 otherwise 
i.e., the rank is the order of the given member of the mask in the sorted progression of all 
the mask members. This way an n-tuple of ranks R is obtained. Note that the ranks are 
independent on the local energy in the image. 

On the n-tuple of ranks R, a variety of functions which extract discriminative informa
tion can be defined. These L R F have the form: 

LRF : Z n ^ Z (3.6) 

One of the possible variants of L R F is the Local Rank Pattern (LRP) image feature 
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[35], which selects two specific ranks and encodes their values. The L R P from their nature 
produce a large set of possible results, which can in the context of recognition/detection 
cause problems when only small training datasets are available and when the memory 
available on the target computational platform is limited. One way to deal with this issue 
- and to shrink the output set of the image features - is the Local Rank Differences (LRD). 
The L R D computes the difference of two ranks which is very similar to the Haar-like 
features with added (Fig. 3.2) with added local image contrast normalization. 

These are just brief definitions of L R P and L R D . However, both L R D and L R P were 
the subject of our interest and research and are further explained in the next sections of 
this chapter (3.2,3.3). 

3.2 Local Rank Patterns 

Local Rank Patterns (LRP) are low-level image features introduced in [35] and described 
in detail in [32]. They were designed to constitute an alternative of the commonly used 
Haar wavelets, which would be suitable for hardware implementations (in F P G A and 
ASIC chips). Though designed for implementation by circuitry, they perform very well 
also when implemented on processors and graphics chips. 

The LRPs are based on the idea that the intensity information in the image can be 
well represented by the order of the values (intensities) of the pixels or small pixel regions 
(e.g. summed 2 x 2 pixel rectangular areas). 

Our research addressed in [32] and [30] presents the L R P low-level image feature 
extractor and its efficient implementations on several hardware architectures. 

Formal Definitions of L R P 

Local Rank Patterns [35] are defined as: 

LRP(a, b) = nRa + Rb, a, b e 1,..., n (3.7) 

Note that n is the number of samples taken in the neighbourhood and therefore the 
result of L R P is unique for each combination of values of the two ranks Ra and Rb- This 
fact suggests an alternative definition of the L R P when we allow the results of L R P to be 
pairs of values instead of a single value: 

LRP(a,b) = [RaRb} (3.8) 

The L R P have some interesting properties which make them promising for image 
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pattern recognition. Mainly, L R P are invariant to monotonous gray-scale changes such 
as changes of illumination intensity. This invariance results from using ranks instead of 
absolute values to compute the value of the feature. In fact, using the ranks has the same 
effect as locally equalizing the histogram of the convolved image f * g. 

Further, L R P are strictly local - their results are not influenced by image values outside 
the neighbourhood defined by U. This is a clear advantage over wavelet features (e.g. 
Haar-like features) which, in the way they are commonly used, need global information to 
normalize their results. This locality makes the L R P highly independent, for example, on 
changes of background and on changes of intensity of directional light. 

The meaning of the values produced by the L R P can be understood in two ways. First 
and most naturally, the results give information about the image at the locations of the 
two ranks x + ua and x + Uf, and information about their mutual relation. On the other 
hand, the results also carry information about the rest of the neighbourhood, especially 
if the neighbourhood is small. In such cases the results of L R P carry good information 
about the local pattern in the image. 

In the previous text, the L R P have been defined for two-dimensional images. However, 
the notation allows very a simple generalization for higher-dimensional images by changing 
the dimensionality of x, u and of the relative coordinates in U to Z3 for 3D or Zk for 
general dimensionality. Furthermore, it is possible to use more than two ranks to compute 
the results of the LRP. For example: 

3.2.1 Implementations 

As the core of this thesis was to find the possibility of using CUDA in object detection, the 
main implementation of L R P was C U D A implementation. Consequently was this C U D A 
implementation compared to SSE implementation on multi-threaded C P U . 

C U D A Approach 

The efficient implementation solves problems of two main domains: the classifier operating 
on one fixed-size window and parallel execution of this classifier on different locations of 
the input image. Making the object detector with these two issues separate simplifies 
the design. However, some extra speed-up could possibly be gained from exchanging 
information between different classifier instances. The implementation presented in this 
section keeps the classifier instances as "black boxes" and does not share information 

(3.9) 
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between them. Experiments with sharing the information lay outside the scope of this 
research. 

The problem of object detection by statistical classifiers (from the C U D A implementa
tion point of view) can be divided into following steps: 

1. loading and representing the classifier data; 

2. image pre-processing; 

3. object detection and 

4. retrieving results. 

Loading and Representing the Classifier Data The constant data containing 
the classifier (image features' parameters, prediction values of the weak hypotheses summed 
by the algorithm, WaldBoost thresholds) could be accommodated in texture memory or 
constant memory of the C U D A architecture. This data is accessed on evaluation of each 
feature at each position, so the demand for access speed is critical. Although the access 
would be slightly simpler and faster if the data was stored in the texturing memory of the 
C U D A environment, the experiments showed that the overall detection times are better 
when the classifier data is stored in the constant memory. This is mainly because the 
image is stored in the texturing memory and is heavily accessed, so offloading the access 
to the classifier data to the constant memory relieves a bottleneck of the system. The 
constant memory (as well as the texturing memory) is cached and the referencing to the 
classifier data exhibits a large locality of reference - all the threads are typically processing 
the same weak classifier. 

Input Image Pre-Processing The classifier is trained on a training dataset of 
fixed-scale examples. To be able to detect the object in different scales, the image must 
be scanned in multiple resolutions. The common approach benefits from the ability of 
the Haar wavelets calculated using the integral image to be evaluated in arbitrary scales 
in constant time. The L R P features could be evaluated in a similar manner as well, but 
experiments showed that especially on the graphics card, it is notably more efficient to 
construct a multi-resolution pyramid from the input image and scan it by the detector. 
See Fig. 3.6 for an illustration of how the pyramid is built. Note that some pixels of 
the pyramidal image, which is the actual input of the detection algorithm itself, are left 
unused. More compact layouts of the images of different resolutions could possibly be 
found and the amount of the unused pixels could be slightly reduced. However, thanks 
to the nature of the WaldBoost algorithm, only a very small number of weak classifiers 
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(~2) are evaluated on the unused locations, which are filled with a constant colour. The 
time spent on evaluation of these tiny fraction of the whole processing time 
and sparing a fraction of this amount would not be worth the relatively complicated and 
error-prone layout algorithm. 

H 
(a) Original image (b) Multi-res pyramid 

Figure 3.6: Multi-Resolution Pyramid Constructed from the Input 
Image. 

OpenGL rasterization is used for creation of the multi-resolution pyramid: a pixel 
buffer object of sufficient resolution is created and the input image is rendered for each 
scale. After the rendering is done, this pixel buffer is converted into a CUDA texture (Alg. 
3.3). 

Algorithm 3.3 Pixel Buffer conversion to C U D A texture. 
cudaGLRegisterBufferObject( P i x e l B u f f e r O b j e c t ); 
cudaGLMapBufferObject( CudaData, P i x e l B u f f e r O b j e c t ); 
cudaMallocArray( CudaArray, ... ); 
cudaMemcpyToArrayAsync( CudaArray, CudaData); 

cudaBindTextureToArray( CudaTexture, CudaArray); 

Object Detection — Overall Algorithm Design Programs that are run on the 

graphics hardware using C U D A are executed as kernels, each kernel has a number of 
blocks and block is further organized into threads. The code of the threads consumes 
hardware resources: registers and shared memory; this limits the number of threads that 
can be efficiently executed in a block (both the maximal and minimal number of threads). 

One thread computes one or more locations of the scanning window in the image. 
One thread could as well perform a task of smaller granularity - e.g. one or more weak 
classifiers, but that would imply too much inter-thread communication. The image pixels 
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(or window locations, more precisely) are therefore divided into groups which are calculated 
by the threads. The final solution divides the image into rectangular tiles which are solved 
by different thread blocks (see Fig. 3.7). We have been experiencing with various layouts 
of the position-thread assignments, but this design is both simple and achieves no less 
performance than any other design experimented with. 
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Figure 3.7: Blocks of Threads. 

Experiments showed that the suitable number of threads per block is around 128. 
Executing blocks for only 128 pixels of the image would not be efficient, so we choose that 
one thread calculates more than one pixel - a whole line of pixels in the rectangular tile. A 
nice consequence of this layout is an easy control of the resources used by one block: the 
number of threads is determined by the height of the tile, the width controls the whole 
number of processed window positions by the block. The tile can extend over the whole 
width of the image or just a part of it. Because of thread rearrangement described below 
in 3.2.1, the total number of pixels processed by one thread block is limited proportionally 
to the size of the shared memory (fast memory in one multiprocessor, which is shared 
between the threads of one block), and so the image is divided vertically into several 
columns of tiles. 

When the kernel is started, the image data are referenced by texturing units from the 
multi-resolution pyramid and the parameters of the classifier are read from the constant 
memory. When object is recognized at window position, the coordinates are written 
to the global memory. To avoid collisions of concurrently running threads and blocks, 
atomic increment (atomicIncO) of one shared word in the global memory is used for 
synchronization. This operation is rather costly, but the positive detections are so rare 
that this means of output can be afforded. As a consequence, the results of the whole 
process are at the end available in one spot of the global memory, which can be easily 
fetched to the host computer. The whole architecture is depicted in Fig. 3.8. 
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Figure 3.8: CUDA Object Detection Architecture. On the left side of 
the figure is the host process, on the right is the device kernel. 

Thread Rearrangement The C U D A architecture imposes some requirements on 
the threads to run efficiently. Because of the SIMD (single instruction, multiple data) 
nature of C U D A , at one time the threads must perform identical operations. In case of 
branching, the threads are split into groups according to the variant of code they execute, 
and the groups of identical execution paths are run separately. Not all threads in the block 
are handled in this manner, but the threads are organized into warps - groups of threads 
of fixed count (32 in current hardware implementations). Organization of the threads into 
the warps is done at kernel start and the threads remain in a warp till their end. 

The scanning classifiers indeed execute identical code - they load image data from 
identical positions (differing only by an additive offset), they evaluate identical weak 
classifiers, compare the intermediate sum to identical thresholds etc. However, due to the 
(desired) focus-of-attention capability of WaldBoost, some threads terminate with negative 
decision earlier than others (Fig. 3.9), but the warp continues to evaluate until the very 
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last thread terminates. This leads to relatively low utilization of the hardware resources. 

20 
% survivors (a20) 
% survivors (a 10) 
% survivors (a05) 

60 80 100 
classifier stage 

120 140 

Figure 3.9: Fraction of locations in the image still evaluated after a 
number of evaluated image features. After the first evaluated feature, 60 
— 70% (depending on the used classifier) locations are eliminated. The 

classifier is trained with different target false negative rate 
(a20, alO, a05). 

For illustration, Fig. 3.10 contains the situation in a block after 10 weak classifiers 
evaluated - white pixels indicate that the classifier evaluation was terminated, blue pixels 
indicate positions still evaluated. Note that the threads are arranged into warps of 32 
threads and all threads within one warp must evaluate the same code path or wait for 
the others. In this case it means that the majority of threads is waiting for several 
threads exploring a fraction of the image; note that this happens in each column again. 
However, the situation is not tragic thanks to locality of reference, i.e. that the threads 
evaluate locations close to each other and the responses of the classifiers are therefore 
highly correlated. 

To address this issue, we propose thread rearrangement: at some stage of the classifier, 
all locations in the image that have not been classified as negative are written into a 
memory block shared between the threads, and another phase of the classification is 
started, that processes only these locations. This rearrangement can be performed several 
times during the whole classification process (~500 — 1,000 stages). See Fig. 3.11 for an 
illustration of two rearrangements. 

The intermediate positive (more accurately not-yet-negative) samples are stored into 
the shared memory of the multiprocessor similarly as the final detections are written to 
the global memory, as described above. The shared memory is very fast (as fast as the 
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Figure 3.10: Remaining Candidates for Positive Response after 
10 Weak Classifiers. 

registers) and even the instruction of atomic increment in the shared memory is not as 
costly as in the case of global memory. The scope of accessibility of the shared memory is 
only within one block of threads, which is only appropriate, because the rearrangement 
happens within one block. 

The exact count and locations of the rearrangement steps needs to be determined 
experimentally. Analytical expressions can be sought for, that would determine these from 
some characteristics of the algorithm and the platform. Such expressions, however, would 
depend on many variables: cost of one weak classifier, cost of the rearrangement, speed 
of the classifier in different phases of the classification process, locality of information 
in the processed image and many others and still would be only crude approximations. 
Further in this chapter are described experiments carried out to determine an optimal 
locations rearrangement and the discussion on the measurement results. Generally, the 
major influence of the rearrangements is during the beginning of the classifier, because the 
most of the locations are dropped out very early (see Fig. 3.9) and only a small fraction 
of computational load remains to the further stages. 

Considerations of Alternative Algorithm Designs The purpose of this section 

is to mention several elements of the algorithmic design that were considered for the 

object-detection architecture but were found to be inferior to the solution described above. 

Many efficient image processing C U D A implementations use the shared memory for 
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Figure 3.11: Thread Rearrangement after 10 and after 50 Weak Classi
fiers. 

storing the processed image. The shared memory is very fast and is dozens of kilobytes 
large - tiles of the processed image can be loaded into it and processed by thread blocks. 
We have tried variants of this arrangement and experiments show that using the texture 
memory is more efficient. The texturing units perform bilinear interpolation between 
neighbouring pixels, which can be used for evaluation of LRP. Most importantly, when using 
the texturing memory, the execution is as fast as when using shared memory (apparently 
because the bottleneck is in the calculation, not memory access), and the shared memory 
remains spared for other helpful purposes, as is the thread rearrangement above. 

As discussed in the previous section, one of the factors limiting the performance is 
that the evaluation of different locations in the image is terminated after varying number 
of stages of the classifier and due to the SIMD nature of C U D A some threads are idly 
waiting. We have tried several arrangements, where the threads are assigned the work 
dynamically, so that when the evaluation at one location terminates, the thread "asks 
for" another location in the image and processes it. The idea is that the work unit would 
not be one location in the image, but one weak classifier. The control required by this 
arrangement and especially the need to synchronize the threads seems to be too complex 
and these attempts were much slower than the finally achieved solution with the thread 
rearrangement (although some threads are still idle). 

We have made several experiments (see 3.2.1) with the placement and representation 
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of the classifier data (constant for all images and all locations in the images). A texture 
could be used for storing it, shared memory or constant memory. Both texture memory 
and constant memory were cached; shared memory was very fast by itself. Placement 
of the classifier data into the shared memory required pre-loading it upon start of each 
block from another location and so it was the least efficient solution. The rest two options 
(texture memory or constant memory) seemed to be performing equally well, so storing 
the classifier in the constant memory was preferred to offload the texturing units which 
were used for accessing the pyramidal image. 

SSE Approach 

The performance of the C U D A implementation was evaluated in comparison to an efficient 
SSE implementation of the same classification principle. For details on the implementation 
please refer to [33]; these paragraphs will summarize briefly its main characteristics. 

This implementation addresses two crucial issues: memory accesses performed by the 
algorithm (minimizing the number of memory accesses and ensuring their speed by aligning 
the operands) and the algorithmic evaluation of the local ranks and their differences. It 
uses the SSE2 instruction set which has extensive support of instructions working with 
sixteen 8bit values in a single 128bit register. 

To simplify feature evaluation as much as possible, the convolutions of the input image 
with the sampling function were pre-computed and stored in the memory in such a manner 
that all the results of the L R P grid could be fetched into the C P U registers through two 
64bit loads. Compared to a naive L R P implementation, the described implementation 
benefits from parallel processing when calculating the ranks. The disadvantage was the 
limited number of convolution kernels because for each grid size a separate pre-calculated 
image was required. In our experiments we used four feature sizes 1 x lpx, 1 x 2px, 
2 x lpx and 2 x 2px and therefore four interleaved convolution images needed to be 
pre-computed. 

The evaluation part (Fig. 3.12) first expands selected values (A and B) to full 128bit 
length. The value of A (resp. B) is then compared to all other values loaded from the 
sampling function. Comparison result is masked and the result is summed - the number 
of positive comparisons corresponds to the rank of A (resp. B). Results for A and B are 
then combined to produce the L R P value. 
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Figure 3.12: Evaluation of LRP using SSE instruction set of Intel CPU. 
The input is a vector data of 16 values, mask and indexes A, B of values 

from which LRP is calculated. 

3.3 Local Rank Differences 

A n algorithms exhibits real-time performance in detecting complex patterns, such as 
human faces [92], while achieving precision of detection which is sufficient for practical 
applications. Work of Sochman and Matas [87] even suggests that any existing detector can 
be efficiently emulated by a sequential classifier which is optimal in terms of computational 
complexity for desired detection precision. In their approach, human effort is invested 
into designing a set of suitable features which are then automatically combined by the 
WaldBoost [93] algorithm into an ensemble. This approach may significantly reduce the 
development time of detectors and it may even lead to more computationally efficient 
detectors - Sochman and Matas report successfully emulating the Kadir-Brady saliency 
detector [44], while achieving 70 x faster detection times over the original implementation. 

In practical applications, the speed of the object detector or other image classifier is 
crucial. Real-time performance is required in many applications such as surveillance, even 
when processing several input streams. Use of specialized hardware in image processing 
and computer vision is nothing new (e.g. [81], [55]). The advances in development of 
graphics processors, at the time of our research, were attracting many researchers and 
engineers to the idea of using GPU's not for their primary purpose - rendering 3D graphics 
scenes. Different approaches to so-called G P G P U [69] existed and also the field of image 
processing and computer vision have had seen several successful uses of these techniques 
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(e.g.[81], [55]). 
Statistical classifiers were built by using low level weak classifiers or image features and 

the properties of the classifier largely depended on the quality and performance of the low 
level features. In face detectors and similar classifiers, Haar-like wavelets [52], [93], [87], 
[92] are frequently used, since they provide good amount of discriminative information and 
they provide excellent performance. Other features are used in different contexts, such 
as the Local Binary Patterns [68]. Recently, designed especially for being implemented 
directly in programmable or hard-wired hardware, Local Rank Differences [35] have been 
presented. These features are described in more detail in section 3 of this paper. The 
main strengths of this image feature are inherent gray-scale transformation invariance, the 
ability to capture local patterns and the ability to reflect quantitative changes in lightness 
of image areas. 

Prior to this G P G P U [69] in CUDA [60] implementation and related research, we have 
implemented the L R D features in the G P U as shaders [73]. The Cg implementation was 
fairly efficient, the main disadvantage was the need of complicated control of the rendering 
pipeline from the C P U (by issuing commands to render quads, lines or other primitives 
in a complex pattern that covered the searched area of the image). This disadvantage 
was minimized by the properties of the G P G P U philosophy. The C U D A implementation 
presented in [31], compared to the Cg one [73] benefits also from some memory arrangement 
improvements, from improved training process and other minor advances. 

The following part of this section briefly presents the Local Rank Differences (see [35] 
for more detail) image feature. 

3.3.1 Formal Definition of LRD 

The L R P from their nature produce a large set of possible results, which can in the context 
of recognition/detection cause problems when only small training datasets are available 
and when the memory available on the target computational platform is limited. One way 
to deal with this issue - and to shrink the output set of the image features - are the Local 
Rank Differences (Polok et al., 2008), which can be defined as: 

LRD (a, b) = Ra — Rb (3.10) 

The L R D computes the difference of two ranks which is very similar to the Haar-like 
features (Fig. 3.2) with added local image contrast normalization. 

The definition of the L R P (and LRD) which was given in the previous text is very general. 
It allows arbitrary sizes and shapes of the neighbourhoods and arbitrary convolution kernels. 
However, we can define a set of L R P which is suitable for creating classifiers for detecting 
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objects in images - which is both informative and efficient to compute. This particular 
version is used in the reported experiments. 

Fig. 3.13 shows the simplified flow for evaluating a single L R D classifier. It begins with 
the detection window (e.g. 31x31 pixels) being classified where rectangular mask M ™ n 3 3 

is positioned (considering e.g. 3x3 masks). Each field of the mask spans across several 
pixels which need to be convolved (see Eq. 3.11 below). Next, the ranks are evaluated 
and finally the rank difference is used as index into the alpha table, selecting the weak 
classifier's result. 

3x3 grid B 
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Figure 3.13: Use of Local Rank Differences in the Classifier. 

Input Image Pre-Processing 

™y defined on the For increasing the performance of the L R D evaluation, the function S. 
input image can be pre-calculated. As stated above, low number of combinations ofm x n 
is sufficient for learning an object classier - experiments show that 1 x 1 , 2 x 2 , 2 x 4 and 
4 x 2 combinations are enough. The input image I can be convolved with: 
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(3.11) 

and the resulting images at given location (x, y) can contain the values of the sampling 
function. Such pre-processing of the input images can be done efficiently and the L R D 
evaluation then only consists of 9 look-ups to the memory (for the case of 3 x 3 L R D 
mask) into appropriate pre-processed image and then evaluation of ranks for two members 
of the mask. The evaluation then can be done in parallel on platforms supporting vector 
operations; both G P U and F P G A are strong in such kind of parallelism. 

3.3.2 LRD Compared to Haar Wavelets 

Comparing L R D with Haar wavelets is only natural as both of these types of features were 
first intended to be used in detection classifiers. There are two fundamental aspects in 
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respect to the detection classier which must be addressed: the computational complexity of 
evaluating the features and the amount of discriminative information the features provide. 

Haar wavelets can be computed very rapidly on general purpose CPUs by using the 
integral image representation [92] which can be created in a single pass through the original 
image. The simple Haar wavelets of any size can be computed using only six accesses 
into the integral image, six additions and two bit-shifts. When scanning the image in 
multiple scales, this gives the possibility to scale the classier instead of down-sampling 
the image. The Haar wavelets are usually normalized by the size of the feature and 
the standard deviation of pixel values in the classified sub-window. Computation of the 
standard deviation requires additional integral image of squared pixel values and uses 
square root. 

While the Haar wavelets can be computed relatively efficiently on general purpose 
CPUs, it may not be the same on other platforms. On F P G A s , the six random accesses 
into memory would significantly limit the performance (only single feature evaluated per 
every six clock cycles) and the high bit-precision needed for representing the integral 
images would make the design highly demanding. On the other hand, the nine values 
needed to compute L R D with grid size 3 x 3 can be obtained on FPGAs with only single 
memory accesses [35] (when preprocessed as shown in 3.3.1) and on GPUs with three or 
six accesses [73]. 

Some detection classifiers evaluate on average very low number of features (even less 
than 2). In such cases, computing the normalizing standard deviation poses significant 
computational overhead. Further, the square root which is needed cannot be easily 
computed on FPGAs. The L R D inherently provide normalized results, whose normalization 
is in fact equivalent to local histogram equalization. 

The detection performance of classifiers with the L R D has been evaluated on the 
frontal face detection task and it has been compared to the performance of classifiers with 
the standard Haar features. The results suggest that the two types of features provide 
similar classification precision. One of the two classifiers compared in (Fig. 3.14) uses 
the same Haar wavelets as in [92] and the other uses the L R D with block sizes of the 
sampling function (Eq. 3.3) restricted to l x l , 1 x 2 , 2 x 1 and 2 x 2 . The classifiers were 
trained using 5000 hand annotated faces normalized to 24 x 24 pixels and the non-face 
samples were randomly sampled from a pool of 250 million sub-windows from more than 
3000 non-face images. The results were measured on a set of 89 group photos which 
contain 1618 faces and total 142 million scanned positions (scale factor 1.2, displacement 
2/24). Although the set of L R D features is very limited in this experiment, the detection 
performance it provides is similar to the full set of Haar wavelets. This is probably due to 
the localized normalization of the results of the L R D which provides information about 
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local image patterns that goes beyond simple difference of intensity of image patches. 
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Figure 3.14: ROC of two WaldBoost classifiers on a frontal face detec
tion task. Length of the classifiers is 500 and they differ only in type of 

features which they use (Haar features, LRD). 

3.3.3 Implementations 

Since previous section introduced several L R P implementations, there are also several 
approaches to L R D . The goal of the particular L R D implementations was the comparison 
of their effectiveness. Apart from those mentioned below, two more straight-forward 
(without any optimization) implementations has been developed: 

• "Simple" L R D implementation on C P U , and 

• "Simple" Haar implementation on C P U . 

These "Simple" implementations are due to their simplicity not addressed within this 
thesis. 

C U D A Approach 

C U D A approach is already described in 3.2.1. The only difference is that in this section, 
the L R D evaluation is being used. 

The implementation of the L R D using C U D A corresponds with the theoretical de
scription of the L R D in a straightforward way. It appears that a wise choice is relying 
on the combinations l x l , 1 x 2 , 2 x 1 and 2 x 2 of the L R D sampling function. Such 
sampling limits the descriptive power of the features slightly, but allows nice performance 
improvements. Thanks to the built-in texture sampling with bilinear interpolation on the 
usable graphics cards, sums of 2 neighbouring pixels in vertical or horizontal direction 
or sum of four neighbouring pixels consume the same amount of time as sampling just 
one source pixel. The scanned image can be used in such way without any pre-processing 
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Algorithm 3.4 The central part of the CUDA implementation code. The LRD() function 
loops over all the weak classifiers in the boosted cascade (stored in a ID texture), gets the 
rank difference (by calling GetRankDi(...) and uses the difference as an index to the table 
of alpha values obtained by training the classier. 
__device__ i n t GetRankDiff ( 

unsigned i n t posX, unsigned i n t posY, 
unsigned i n t B l o c k S i z e l d , unsigned i n t BlockABId) 

{ 
unsigned i n t mempos = threadldx.x*9; // address to the temp mem 
f l o a t uiBlockWidth = . u i B l o c k S i z e l d >> 3; // mask s i z e 
f l o a t u iBlockHeight = _ u i B l o c k S i z e I d & 7; // mask s i z e 

// current p i x e l [px.py] 
f l o a t px = posX + AbsXl + f l o a t ( B l o c k S i z e l d » 3)/2.0f; 
f l o a t py = posY + AbsYl + f l o a t ( B l o c k S i z e l d & 7)/2.0f; 

// get sums of each matrix block ( l x l , 1x2, 2x1, 2x2) 
s_fBlockSum[mempos+0] = tex2D(tlmagel, px, py).x; px+=uiBlockWidth; 
s_fBlockSum[mempos+l] = tex2D(tlmagel, px, py).x; px+=uiBlockWidth; 
s_fBlockSum[mempos+2] = tex2D(tlmagel, px, py).x; 

px -= 2.Of*uiBlockWidth; py+=uiBlockHeight; // s h i f t t o next l i n e 

s_fBlockSum[mempos+3] = tex2D(tlmagel, px, py).x; px+=uiBlockWidth; 
s_fBlockSum[mempos+4] = tex2D(tlmagel, px, py).x; px+=uiBlockWidth; 
s_fBlockSum[mempos+5] = tex2D(tlmagel, px, py).x; 

px -= 2.Of*uiBlockWidth; py+=uiBlockHeight; // s h i f t t o next l i n e 

s_fBlockSum[mempos+6] = tex2D(tlmagel, px, py).x; px+=uiBlockWidth; 
s_fBlockSum[mempos+7] = tex2D(tlmagel, px, py).x; px+=uiBlockWidth; 
s_fBlockSum[mempos+8] = tex2D(tlmagel, px, py).x; 

// compute the rank d i f f e r e n c e between blockA and blockB 
i n t iRank = 0; 
unsigned i n t uiBlockA = _blockABId » 4; 
unsigned i n t uiBlockB = _blockABId & 15; 
f o r (unsigned i n t b i = 0; b i < 9; bi++) 
{ 

i f (s_fBlockSum[mempos+bi] < s_fBlockSum[mempos+uiBlockA]) i R a n k — ; 
i f (s_fBlockSum[mempos+bi] < s_fBlockSum[mempos+uiBlockB]) iRank++; 

} 
r e t u r n iRank; 

} 
__device__ unsigned char LRD() 
{ 

f l o a t r e t = O.Of; 
// loop over weak c l a s s 
f o r (unsigned cid=0; c i d < WCCount-1; cid++) 
{ 

u i n t 4 wO = texlD(tWeakParam, c i d ) ; // get W e a k C l a s s i f i e r parameters 
// Compute W e a k C l a s s i f i e r rank and convert i t to p r e d i c t o r value 
r e t += tex2D(PredValues, GetRankDiff(wO.x, wO.y, wO.z, w0.w)+8, c i d ) ; 

} 
r e t u r n (unsigned c h a r ) r e t ; 

} 
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stage. The following Alg. 3.4 contains the central part of the C U D A code implementing 
the L R D evaluation. 

Compared to the previously published Cg implementation of the L R D [73], the CUDA 
offers some advantages. The biggest problem of the shader version was the need for rather 
complicated drawing of geometric primitives on the "screen" to control the object detection 
process. The whole of the input image needs to be covered by the primitives, but for 
efficiency reasons, simple drawing of one rectangle of the same size as the input image 
was not possible. In the G P G P U version, all the coding and control is simpler and more 
straightforward. As shown further in this chapter, the price to pay for such feasibility of 
programming is the performance, or rather performance distribution depending on the 
input size and on the count of the weak classifiers. 

M M X Approach 

The performance of the G P U implementation was compared to an implementation on 
standard Intel C P U using M M X instructions. To simplify feature evaluation as much as 
possible, the convolutions of image are pre-computed and stored in the memory in such 
manner that all the results of the L R D grid can be fetched into the C P U registers through 
two 64-bit loads. This positively affects the evaluation that is performed in M M X C P U 
instructions (introduced by Intel). 

A pseudo-code of the M M X implementation is shown in Alg. 3.5 and the block diagram 
of the evaluation is shown on Fig. 3.15. The L R D are parametrized by the feature's 
position (x, y) and the block size (w, h) which determine the convolution image to use. 
First the data from the subsequent rows of the convolved images are loaded into registers 
(rowl, row2). The values of the rank pixels are loaded from the data (pixelA, pixelB) and 
expanded to the M M X registers. The registers with the data are then compared to the 
expanded values of pixelA and pixelB and the result of the comparison is masked (since 
we are interested in 3x3 grid only and 4x4 pixels were loaded). The comparison's results 
are summed - the resulting registers, therefore, contain the rank sum of differences of a 
pixel and vale A and B. Finally, the 8-bit values in the resulting registers are summed 
together which corresponds to the L R D response. 

The code, compared to C P U without M M X , is more optimal since the values are 
compared in one step. The slowest step of evaluation is the expansion of 8 bit value to the 
64 bit M M X register. Since the instruction set lacks a single instruction to do this, the 
expansion must be done by a sequence of shift-left and or instructions. A similar problem 
is the final sum of rank differences - eight 8 bit values in a register must be summed 
together. Again, there is no support in instruction set. 
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Algorithm 3.5 Pseudo-code of the M M X implementation of the L R D . 
rowl = convolution_{w,h}(x, y) 
row2 = convolution_{w,h}(x. y+l) 
p i x e l A = (A < 8) ? rowl[A] : row2[A-8]; 
p i x e l B = (B < 8) ? rowl[B] : row2[B-8]; 
mmO = expand(pixelA) 
mml = expand(pixelB) 
mm2 = load(rowl) 
mm3 = load(row2) 
mm4 = cmp(mm2, mmO) 
mm5 = cmp(mm2, mml) 
mm6 = cmp(mm3, mmO) 
mm7 = cmp(mm3, mml) 
mask(mm4, validO) 
mask(mm5, v a l i d l ) 
mask(mm6, validO) 
mask(mm7, v a l i d l ) 
mm4 = add(mm4, mm6) 
mm5 = add(mm5, mm7) 
mmO = sum_pi8(mm4) 
mmO += sum_pi8(mm5) 

r e t u r n mmO 

GPU(Cg) Approach 

As shown in 3.3.1, the sampling function for a given sampling block size used by the 
L R D can be pre-processed by convolving the original input image by a simple convolution 
matrix. On G P U , built-in texture sub-sampling can be used to achieve this pre-processing 
efficiently This is done using very simple fragment shaders and the whole convolution 
calculation usually takes less than 10% of frame time and was not further optimized. 

The step that uses the pre-calculated images is the evaluation of the L R D weak 
classifiers. Early analysis of the algorithm revealed that its bottleneck would be texture 
sampling. Therefore, the main goal was to minimize the number of texture samples per 
pixel and to improve texture sampling coherency in order to achieve the best performance. 
A trick was used to do this - interleaving the convolution image into different layers of a 
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3D texture. The dimensions of the texture are: 

wt = — ht — — dt = mn (3.12) 
m n 

Where Wi, hi are the input image's dimensions, m, n are the sampling block's dimensions 
and wt, ht, dt is the texture size. The texture organization is illustrated in Fig. 3.16. Such 
way of storing image data ensures the texture samples needed to evaluate single L R D 
classifiers are tightly connected to each other. 

Figure 3.16: (from left to right) Original image, interleaved convolution 
images (for 2x2 kernel) and interleaved images stored as a 3D texture. 

To read the 3x3 L R D mask in a naive way, nine texture samples are needed; however, 
most of today's hardware is not capable of loading nine samples without stalling the 
pipeline. To avoid this limitation, the (8-bit grayscale) pixels of the convolution texture 
are packed by four into R G B A vectors stored in the texture memory. Then it takes three 
or six texture samples, depending on the modulo 4 position, to read all the nine pixels of 
the mask (in contrast to the nine reads without the use of 3D texture). 

Pixel unpacking is done in the fragment shader and it needs to choose one of four 
different branches. It could be solved by a simple if statement, but the (expensive) 
branching instruction can be avoided by rasterizing the image in vertical stripes, one pixel 
wide and four pixels apart, using a different shader for each modulo 4 position. 

Having read the 3x3 grid, the next step is to evaluate the local ranks. The SIMD 
nature of the G P U can be exploited by keeping the pixels in three 3D vectors. First, the 
pixels on positions a and b are picked. Unfortunately, no index parameter can be used in 
a shader so the pixels are selected using dot product (which is fairly efficient on G P U ) . 
The ranks are calculated using the Alg. 3.6. 

The AdaBoost/WaldBoost Object Detection Runtime Framework in G P U 
One fragment shader evaluates several LRD's and accumulates them in an accumulated 
(see above). After accumulating all the weak classifiers in the learned AdaBoost classifier, 
a decision is made based on a threshold. The overall AdaBoost classifier structure 
implemented using the shader is in Fig. 3.17. 
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Algorithm 3.6 Calculation of the local rank difference; rowO, rowl and row2 are vec3 
and contain the input pixels, A and B are pixel values on positions a and b. The lessThan 
function compares its arguments by component and the result is vec3, containing zeros or 
ones based on comparison. The dot product sums up the Local Rank Difference. This 
snippet of code evaluates in approximately 14 G P U instructions. Finally, alpha is chosen 
from table (texture). 
vec3 accum = lessThan(vec3(A), rowO); 
accum += lessThan(vec3(A), rowl); 
accum += lessThan(vec3(A), row2); 
accum -= lessThan(vec3(B), rowO); 
accum -= lessThan(vec3(B), rowl); 
accum -= lessThan(vec3(B), row2); 

f l o a t r a n k . d i f f e r e n c e = d o t ( v e c 3 ( l , 1 , 1 ) , accum); 

Shader parameters 
(global variables) 

Classifier 0 code 

mainQ 
(contains result accumulator, 

writes to the frame-buffer) 

Classifier 1 code 

Classif ier n code 
] 

Figure 3.17: AdaBoost/WaldBoost object detection G P U runtime 
shaders with several classifiers. 

The WaldBoost [93] pipeline is fairly similar to the one of AdaBoost (described above), 
it only needs facilities to terminate the calculation on individual pixels. This can be done 
using depth test - the classifier evaluation remains unchanged, but extra rendering passes 
are added which compare the intermediate accumulated sum with a given threshold and 
modify the depth-buffer accordingly. That means if output is below the threshold, zero is 
written into the depth-buffer, otherwise one is written (using step to avoid branching). 
The outputs from the classifier are rasterized on depth 1 so shaders are not executed on 
positions with zero depth (see Alg. 3.7). 

This approach benefits from early depth-test that discards all fragments with the wrong 
depth (without evaluation). The limitation is that fragments modifying their depth must 
be evaluated so the number of the stopping decisions must be low. Therefore, training of 
WaldBoost classifier must include costs of the decisions. 

GPU(GLSL) Approach 

This section presents our experiments with an OpenGL implementation of the L R D 
detector, consisting of the convolution precalc module and a feature extractor. It can 
work on most of today's common GPU's which support OpenGL 2.0. To achieve better 
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Algorithm 3.7 AdaBoost shader code; ri-texture-0 is the id of the right texturing unit. 
vjpixeLOO is the pixel size of that texture, n-alphas is the id of the alphas texturing unit, 
V-alphci-pixel is site for alphas texture, V-block-toslice contains constants required for 3D 
texture slice from 2D texcoords (width/number of layers, convolution kernel width/number 
of layers, height/number of layers*convolution kernel width and slight z-offset to aid the 
right layer sampling), vselector.aOO and vselector J) 00 are vectors selecting the right 
column from 3x3 grid). 
uniform sampler3D n_texture_0; 
uniform vec2 v_pixel_00; 
uniform sampler2D n.alphas; 
uniform vec2 v_alpha_pixel; 
uniform vec4 v_block_to_slice_00; 
uniform vec3 v_selector_aOO, v_selector_bOO; 

v o i d mainO 
{ 

f l o a t f . r e s u l t = .0; // r e s u l t accumulator 
{ 

// c l a s s i f i e r 0 
} 

// c l a s s i f i e r n 
} 
g l _ F r a g C o l o r . r = f . r e s u l t ; // w r i t e output fragment 

} 

compatibility and portability, our implementation prefers the frame-buffer objects (FBO) 
above platform-dependent P-buffers and GLSL shading language above the Cg language. 

The implementation takes a raster image in the system memory as input, then it needs 
to upload it to an OpenGL texture in the G P U memory, feature evaluation shaders get 
executed and a raster with detector responses is downloaded back to the system memory. 
There was no attempt for asynchronous data transfers to hide transport delay, but earlier 
work proved that such transfers are possible on G P U . 

One implementation is already described in [73] which relies on complex, optimized 
image data storage. The implementation measured here is more straightforward because 
it is limited to sampling function dimensions l x l , 1 x 2 , 2 x 1 and 2 x 2 . Such a 
limitation does not notably harm the information content extracted by the features, but 
significantly improves the performance. The bilinear filter (implemented in the texturing 
hardware of GPU) samples four pixels and assigns them weights, based on fractional 
texture coordinates. It is possible to simulate 1 x 1 , 1 x 2 , 2 x 1 and 2 x 2 pixel sums just 
by a texture coordinate offset. 

This introduces some interesting consequences. There is no need for a pre-calculation 
phase; also, we just need a single texture to evaluate all weak classifiers in the WaldBoost 
classifier, which is important for two reasons: 

1. there is no need for branching in the classifier to select the proper convolution texture 
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for a particular weak classifier and, therefore, there is no need to split the classifier 
evaluation into multiple rendering passes as in [73]; 

2. all textures required to evaluate the WaldBoost classifier can be bound simultaneously 
to available texturing units. 

Now, we can evaluate all the weak classifiers in a loop in a single pass, than we had to 
store the classifier properties.Weak classifier properties was stored in two pixels of a R G B A 
texture. Once the textures with classifiers properties were generated, it was possible to 
evaluate the features in the fragment shader. The shader requires the data textures and 
the image texture as its input. For each weak classifier, the properties texture is read first 
so the mask can be read from the source image texture. Then it is necessary to get values 
of blocks a and b from the mask. In the fragment shader it is not possible to use an array 
referencing operator to select values from the matrix, so these needs to be masked-out 
using dot products. Once the values of blocks a and b are known it is straightforward to 
evaluate their ranks Ra and Rt,. A l l that remains is to read the alpha texture, accumulate 
the classifier response and compare it with the WaldBoost thresholds. Detailed description 
of algorithm can be found in [32]. 

SSE Approach 

This section presents a brief description of SSE implementation, which was introduced in 
[32]. It is similar to implementation described in [31], where L R P classifiers evaluation 
was used. 

The L R D evaluation is described in Fig. 3.18. First, the data are compared to A and 
B vectors and masked (temporary results cmpA, cmpB). The sums of absolute differences 
of cmpA and cmpB are subtracted and the results for high and low parts are summed 
together producing the L R D value. The evaluation is much more efficient compared to 
C P U code without SSE since all the values are processed in parallel. The slowest step of 
the evaluation is the expansion of an 8- bit value to a full 128-bit SSE register. 
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Figure 3.18: Block Scheme of the SSE Code (evaluation part only). 

3.4 Detection Performance 

In the context of real-time object detection, the main measurable criterion which should 
be used to compare individual types of features is how much useful information they 
can extract in a certain amount of time. The second criterion is how much are they 
invariant to irrelevant information. Both of these criteria have to be evaluated with 
respect to a certain learning algorithm. The first criterion can be directly evaluated on a 
training set and the second corresponds to generalization on a test set. When using some 
focus-of-attention mechanism, the amount of extracted useful information determines the 
speed of the classifier which can be then related to the precision of detection on a testing 
set. 

We have used WaldBoost ([86]) as the learning algorithm and tested the features on 
two detection tasks - face detection and eye detection. We have compared the Haar-like 
features, L B P , L R D and L R P (all neighborhoods Umn which completely fit into the 
samples are used). For each type of the features, classifiers for five different target error 
rates (1%, 2%, 5%, 10% and 20%) were created. The five target error rates resulted in 
five gradually faster classifiers which allowed us to explore the speed/precision trade-off 
provided by the features on the particular detection task. Ideally, the speed of the classifiers 
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should be measured using some efficient implementation of the features. However, such 
an approach distorts the results with a different level of optimality of the individual 
feature implementations. To remove these, we report here the speed in average number of 
evaluated features per classified position. 

As seen in Fig. 3.19, Haar-like features, L B P and L R P all perform very similarly on 
the face detection task followed by the L R D . On the other hand, clear differences can be 
seen on the eye detection task where L B P are the best, the second are the L R P which are 
followed by the L R D , while the Haar-like features are the worst. These results show that 
it is not possible to select a single best feature set for a variety of detection tasks. The 
performance of the features can be influenced by the number of the training samples, the 
type of distinguishing information and by the amount of intra-class variance. However, the 
experiments show that L R P and L R D provide in general similar detection performance as 
Haar-like features and LBP. Also, L R P should perform better than L R D on most tasks. 
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Figure 3.19: Comparison of performance of image features on face 
detection (top) and eye detection (bottom) tasks. The graphs show the 
area above ROC (integrating miss-rate over false positives) as a function 
of average classifier speed (lower is more precise and to the left is faster). 
The classifiers were created by the WaldBoost algorithm for five different 
target error rates (1%, 2%, 5%, 10% and 20%) for each type of feature-set. 
The five target error rates resulted in five gradually faster classifiers -
shown as a single line. The graphs can be also used to evaluate the 
precision/speed trade-off for each type of feature-set for the particular 

task. 
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3.5 Performance Evaluation of LRD Implementations 

L R D implementation was measured within two separate studies. The first one, with an 
exact number of weak classifiers (WC) was mainly focusing on the execution speed of L R D 
classifier features and the second one explores execution speed of real video. It is difficult 
to compare the two studies together, as within the first one the goal was to find out the 
L R D performance at different platform and compare it with Haar-like implementation, 
while within the second one the analysis was performed based on real data. 

Research of exact number of W C observed the performance of L R D related to each 
W C . Real video research uses WaldBoost algorithm to speed-up the whole process of 
execution. WaldBoost algorithm is a combination of real AdaBoost [78] and Wald's [94] 
sequential probability ratio test. The thresholds are set as Wald proposes in the sequential 
probability ratio test, which he proves to be the fastest possible classification strategy for 
a given target error rate. Also, as the resulting classifier is monolithic, no information is 
lost. 

3.5.1 Exact Number of Weak Classifiers 

To evaluate the efficiency of the presented G P G P U implementation of the L R D , the 
following implementations were compared: 

L R D on G P U Using C U D A refers to implementation in 3.3.3. 
Even though Cg implementation was fairly efficient, its main disadvantage was 
the need of complicated control of the rendering pipeline from the C P U by issuing 
commands to render quads, lines or other primitives in a complex pattern that covered 
the searched area of the image. This disadvantage was minimized by the properties 
of the G P G P U philosophy. The C U D A implementation presented compared to the 
Cg one benefits also from some memory arrangement improvements, from improved 
training process and other minor advances. 

L R D on G P U Using Cg Shading Language refers to implementation in 3.3.3. 
A n efficient memory layout was used (utilizing 3D textures and other techniques) 
to allow the shader to access all the nine values of the L R D mask in 3 or 6 texture 
look-ups. The pixel data were stored as components of the .rgba vector, and vector 
operations could have been used in the calculation. 

For the pre-processing task, which was constituted by several passes of sub-sampling 
by an integer fraction (3.3.1), built-in hardware means of texture sampling were used 
on the G P U - see Tab. 3.1for results. 
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L R D on C P U Using M M X Instruction Set refers to implementation in 3.3.3. 

The performance of the G P U implementation was compared to an implementation 
on standard Intel C P U using M M X instructions. To simplify the feature evaluation 
as much as possible, the convolutions of the image with the sampling function kernel 
were pre-computed and stored in the memory in such manner that all the results of 
the L R D grid could be fetched into the C P U registers through two 64-bit loads. This 
positively affected the evaluation that was performed in M M X C P U instructions 
(introduced by Intel). 

Haar on C P U + G P U Using Cg Shading Language refers to implementation in 3.1.1. 
Within this implementation, only the simplest (two-fold) Haar wavelet features were 
used (though also three-fold features are used in the object detectors, whose evalu
ation is slightly slower). 

The Haar wavelets require normalization by the energy in the classified window -
both to evaluate the energy and to evaluate the features themselves, integral images 
were used, which was the fastest method available to our knowledge. The calculation 
of the integral images constituted the preparatory phase evaluated in the comparison. 
Please note that (to our knowledge) there was no effective way of calculating the 
integral image in the shading language, and the implementation in C U D A was also 
not straightforward and efficient, so the preparatory phase was implemented in the 
C P U . The shader code evaluating the classifiers can be found in [73]. 

The evaluation was performed for different resolutions of the image, for different sizes of 
the classified window and for different amount of the weak hypotheses calculated for each 
classified window. Note that this evaluation was to determine the evaluation speed of the 
weak classifiers only, not the overall performance of the boosted classifier. 

In Tab. 3.1, a coarse comparison of the performance of the pre-processing stage is 
given. It was difficult to compare the pre-processing for the Haar wavelets with the L R D 
convolutions, because the integral image calculation was difficult to implement on the G P U . 
Note that this is an important advantage of the L R D over the Haar wavelets, especially 
when in G P U implementation. The actual C U D A implementation worked without the 
pre-processing, because it relied on the l x l , 1 x 2 , 2 x 1 and 2 x 2 set of mask dimensions. 
As indicated by the graph in Fig. 3.14, such limited set of sampling function dimensions 
was still sufficient and well comparable with the commonly used Haar features. 

Tab. 3.2 includes such regimes of evaluation, that were designed to correspond to real
time operation even on slower platforms, as is the C code for the C P U (it was considered 
slow compared to the parallel architectures as F P G A or GPU) . In that table, the C U D A 
code did not perform excellently, but a tremendous increase of performance was observed 
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L R D L R D L R D H A A R 

resol C U D A Cg C P U C P U 

320X200 — 0.72 2.52 1.22 

640X480 — 1.22 9.13 10.29 

800X600 — 3.51 13.80 16.41 

1024X768 — 3.75 24.80 27.94 

1280X1027 — 4.53 37.45 45.16 

Table 3.1: Evaluation of the pre-processing stage (convolutions for the 
LRD, integral image for Haar wavelets); the pre-processing needs to be 
performed on every frame. Times are given in milliseconds. Note that 
pre-processing for the LRD is notably cheaper, even on CPU and performs 
excellently on GPU. Note also, that the presented CUDA implementation 

requires no pre-processing stage. 

when the number of weak classifiers is increased (towards 50 in the table). 

frame-time [ms] time-per- wc [ns] 

num L R D L R D L R D Haar L R D L R D L R D Haar 

resol wc C U D A Cg M M X Cg C U D A Cg M M X Cg 

320X200 5 13.90 0.244 17.7 0.370 43.44 0.872 55.29 1325 

320X200 10 13.63 0.527 25.0 0.469 21.29 0.942 46.71 0.839 

320X200 50 13.50 2.524 82.0 3.010 2.20 0.902 40.04 1.076 

640X480 5 56.87 1.173 101.8 1.642 37.03 0.810 58.55 1.134 

640X480 10 53.82 2.232 149.0 2.159 17.52 0.771 51.82 0.745 

640X480 50 32.95 11.066 493.0 15.731 2.14 0.746 44.05 1.086 

Table 3.2: Performance table for LRDonGPU, HAARonGPU and 
LRDonMMX; the table contains the times of sole evaluation of the 
classier, since the pre-processing for the Haar wavelets (integral image 

calculation), cannot be easily implemented in the GPU. 

Further exploration showed that the C U D A platform (at its current version 2.0beta) 
exhibited relatively slow and constant load-time of the code to be executed. Also the 
current implementation of the boosted classier, as indicated in Tab. 3.3, consumed constant 
run time for wide range of increasing number of weak classifiers - though the computational 
load should be linearly proportional to it. This anomaly should have been further explored 
and may be related to some characteristic of the G P U architecture or a flaw in the 
compiler. However, if the boosted classier would be a standard AdaBoost [92] or similar, 
the number of weak classifiers would be constantly high (hundreds). In such case the 
C U D A implementation outperformed tremendously any other solution available to our 
knowledge. 
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Frame time Feature time 

num of Load Exec Total Load Exec Tot 

resol W C [ms] [ms] [ms] [ns] [ns] [ns] 

128X128 5 2.18 4.26 6.44 26.69 52 78.69 

256X256 5 2.29 11.94 14.23 7 36.43 43.44 

512X512 5 2.35 46.17 48.53 1.79 35.23 37.02 

1024X1024 5 3.37 169.67 173.04 0.64 32.36 33 

1600X1600 5 4.86 403.88 408.74 0.38 31.55 31.93 

128X128 40 2.18 4.85 7.03 3.32 7.1 10.73 

256X256 40 2.26 11.38 13.64 0.86 4.34 5.2 

512X512 40 2.3 42.62 44.93 0.22 4.06 4.28 

1024X1024 40 2.79 165.58 168.38 0.06 3.94 4.01 

1600X1600 40 3.47 399.88 403.35 0.03 3.9 3.93 

128X128 160 2.01 4.37 6.38 0.76 1.66 2.43 

256X256 160 2.34 11.34 13.69 0.22 1.08 1.3 

512X512 160 2.36 42.36 44.73 0.05 1.01 1.06 

1024X1024 160 2.65 165.29 167.95 0.01 0.98 1 

1600X1600 160 3.6 411.19 414.8 0.01 1 1.01 

128X128 640 1.98 12.31 14.3 0.19 1.17 1.36 

256X256 640 2.24 25.54 27.79 0.05 0.6 0.66 

512X512 640 2.36 98.16 100.52 0.01 0.58 0.59 

1024X1024 640 2.7 385.54 388.25 0 0.57 0.57 

1600X1600 640 4.25 1028.21 1032.46 0 0.62 0.63 

Table 3.3: Behaviour of the CUDA implementation for a range of image 
sizes and number of weak classifier per scanned window. Two parts of 
the table show the time consumed per frame and this measure divided 
per the number of weak classifiers in the frame. The times are structured 
into Load time of the program, Execution time and the sum of these 

both. 

3.5.2 Real Video 

Comparing the performance of these diverse implementations was not trivial. The most 
significant performance metric was probably the detector throughput in frames per second 
for a sufficiently long video. The processing time for one frame does not reflect the case 
where more frames are processed in parallel or pipelined. The processing was divided into 
two pipeline stages - transfer to/from the card and detection. Also with four detection 
engines on the Uni lp card, up to eight frames could be processed in one moment; this 
situation also occurs on the G P U implementation. On the other hand, the time for one 
frame was an important metric in situations where separate frames were processed. 

The processing time can be split into several phases. The crudest division is on 
preprocessing and scanning. The preprocessing can be further divided into construction of 
the image pyramid and calculation of the convolutions. In some implementations, some of 
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these phases did not exist at all or were interleaved. In that case, the time was measured 
for all interleaved phases together, since separate measurement would seriously affect the 
performance. 

The tests were performed on a computer with: 

• C P U Intel Core2 Duo E8200 at 2.66 GHz, 3 G B DDR3 R A M and ASUS NVidia 
E N G T X 2 8 0 / H T D P graphics card. 

The table below shows all three partial times for one frame, together with the total frame 
processing time. These times are in milliseconds. The times for missing or interleaved 
phases are left blank, meaning the time is equal to zero. The last column shows the 
theoretical throughput in frames per second (only the detection phases were measured, no 
video reading/decoding, waiting for the camera or image displaying were counted in). 

A recording of television news was used as the test data. Three experiments with 
differently sized video were executed: 

• low resolution video (640x350px, Tab. 3.4); 

• broadcasting quality video (720x576px, Tab. 3.5); and 

• high resolution HD video (1920x 1080px, Tab. 3.6). 

L R D on G P U Using C U D A refers to implementation described in 3.3.3. 

L R D on G P U Using G L S L Shading Language refers to implementation described 
in 3.3.3. 
This was a new implementation, which substitute NVIDIA Cg shading language, 
which was used in previous subsection (3.5.1). 

L R D on C P U Using SSE Instruction Set refers to implementation described in 3.3.3. 

Simple L R D and Haar refers to straightforward C P U implementation of L R D and 
Haar evaluation with no special optimizations. 

Note that the percentage of participation of the preprocessing and scanning phases do not 
have to sum up to 100 %; the rest small amount of time is overhead spent in the auxiliary 
parts of the program. 
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Preprocessing Scanning Total Throughput 

[ms] % [ms] % [ms] [fps] 

Simple Haar 7.6 3.9 187.7 95.8 195.9 5.1 

Simple L R D 3.2 1.6 191.2 98.0 195.0 5.2 

SSE L R D 0.5 1.4 31.3 96.8 32.3 31.1 

C U D A L R D 0.2 1.1 12.1 94.5 12.8 78.7 

GPU(GLSL) L R D 0.1 1.0 10.0 87.3 11.5 86.9 

Table 3.4: Results for Low Resolution Video (640x350px). 

Preprocessing Scanning Total Throughput 

[ms] % [ms] % [ms] [fps] 

Simple Haar 20.4 3.5 551.8 96.2 573.8 1.7 

Simple L R D 8.5 1.8 448.0 97.8 458.0 2.2 

SSE L R D 1.4 1.7 78.4 96.5 81.2 12.3 

C U D A L R D 0.5 2.8 17.2 89.7 19.2 52.1 

GPU(GLSL) L R D 0.3 1.4 20.4 85.0 24.0 41.6 

Table 3.5: Results for Broadcasting Quality Video (720x576px). 

Preprocessing Scanning Total Throughput 

[ms] % [ms] % [ms] [fps] 

Simple Haar 48.2 4.3 1059.9 95.3 1111.4 0.9 

Simple L R D 20.2 2.5 764.3 97.0 787.9 1.3 

SSE L R D 3.2 2.0 153.1 96.0 159.6 6.3 

C U D A L R D 1.1 3.1 28.2 86.2 32.7 30.6 

GPU(GLSL) L R D 0.5 1.4 25.4 77.3 32.8 30.4 

Table 3.6: Results for Full HD Video (1920x 1080px). 



3.6 Performance Evaluation of L R P Implementations 73 

3.6 Performance Evaluation of LRP Implementations 

This section summarizes the two implementations (CUDA and SSE) and experiments 
carried out in order to optimize and evaluate the object detection architecture defined 
earlier in this chapter. Following subsection describes the measurements made to optimize 
the thread rearrangement count and their locations; and are dedicated to compare an 
efficient SSE implementation of the same algorithm. C U D A implementation is described 
more in details (by discussing the influence of block width on an overall speed of data 
processing, determining an optimal thread rearrangement stages and comparison to the 
SSE implementation). 

As already discussed, the height of the computed block of image defines the number 
of threads and its width controls the number of locations computed by each thread. 
Measurements shown in Fig. 3.20 illustrates the two main aspects that need to be taken 
into account when tuning the implementation for a target application: 

• higher block width reduces the computation time, because it lowers the number of 
blocks necessary, and 

• since the number of blocks is always integer and the blocks must share the same 
dimensions in C U D A , block widths that are equal or slightly higher than integer 
fractions of the image width are desired. 

For a particular application (described among others by video resolution) a proper block 

width must be found according to these rules. 

3.6.1 Influence of Block Width 

25 

video 1 (576x256) — • — 
video 2 (720x540) — « 
video 3 (720x576) - • -

5 

0 

5" 100 15" 200 250 
bloek width 

Figure 3.20: Influence of Block Width on Detector's Speed. 



74 Real-Time Object Detection Using C U D A 

3.6.2 Determining Optimal Thread Rearrangement Stages 

The scanning window locations need to be rearranged several times during the classifications 
to better use the hardware resources. We have run a number of tests to determine optimal 
spots for this rearranging. The tests reported that in the current set-up, no more than 
three rearrangements are worth doing. Fig. 3.21 summarizes the detection times for 
different stage of the 1 s t, 2 n d and 3 r d rearrangement. 

The experiments confirmed that the 1 s t rearrangement matters the most, because 
it rearranged a large number of threads. Note that there can be a lower bound of the 
1 s t rearrangement stage imposed by the size of the shared memory. The tests were run 
for six different videos (news broadcasting and movie fragments) resized to standard 
P A L resolution. Note the difference in the average detection times between different 
video contents, but rather uniform optima of the rearrangement stage. However, the 
optimal points for rearrangement were notably different for classifiers trained with different 
parameters - the shown experiment therefore did not result into fixed rearrangement spots, 
but rather illustrated the process of optimization for a given classifier. 

3.6.3 Comparison to the SSE Implementation 

This subsection gives some measurements done to compare the C U D A implementation 
with the SSE processor implementation. Tab. 3.7 contains the pure detection times per 
frame for the implementations on six videos of different content and resolution. These 
detection times do not include any preparatory phases (video decompression, pyramid 
construction, image handing, etc.), only the algorithmic detection times. Tab. 3.8 contains 
the total detection times; these were important for the actual use of the detectors. Fig. 
3.22 visualizes the pure detection times graphically. 

17-920 C2D E8200 

GTX280 9800GTX 

video C U D A SSE C U D A SSE 

576x256 9.4 12.6 9.0 24.2 

720x540 12.5 30.5 16.8 61.1 

720x576 11.1 31.4 14.9 56.5 

1280x720 20.4 59.3 27.5 118.0 

624x256 8.1 10.5 8.0 21.3 

640x272 9.5 12.7 8.9 26.0 

Table 3.7: Pure detection times [ms] (i.e. without preprocessing) on 
different videos, two different hardware setups, CUDA vs. SSE. 

The main observations made out of these tests were: 
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17-920 C2D E8200 

GTX280 9800GTX 

C U D A SSE C U D A SSE 

576x256 12.0 14.5 11.6 26.5 

720x540 17.5 35.2 22.7 67.1 

720x576 15.9 36.1 20.3 62.0 

1280x720 36.8 76.4 49.6 141.2 

624x256 11.0 12.4 10.5 23.7 

640x272 11.9 14.7 11.6 28.6 

Table 3.8: Total detection times [ms] on different videos, two different 
hardware setups, CUDA vs. SSE. 

• CUDA outperformed the processor implementation mainly for large videos. This can 
be explained by extra overhead connected with transferring the image to the G P U , 
starting the kernel programs, retrieving the results etc. These overhead operations 
consumed typically constant time independent of the problem size, so they were 
better amortized in high-resolution videos. 

• The Intel 17 920 processor outperformed the Core2 Duo E8200 very significantly - it 
had twice as many cores and the computational speed was indeed twice as good. 
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Figure 3.21: Detection time for different stages of rearrangement. The 
results of such measurement will be different for different classifiers. 
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Figure 3.22: Visualization of Tab. 3.7. 
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Chapter 4 

Spectral Image Analysis Using 
C U D A 

This chapter presents the C U D A implementation of two different algorithms primarily 
targeted on spectral image analysis in real-time. The first one - Principal Component 
Analysis (PCA), presented in [41], explains our two different approaches to implementation 
- one utilizing the SSE instruction set of contemporary CPUs, and one running on GPUs. 
The second one is an algorithm of Non-Negative Tensor Factorization (NTF), presented in 
[4] that uses C U D A to run contemporary graphics processors in a G P G P U manner and 
uses their massive parallelism. 

The exact motivation for the research presented in this section was to analyse medical 
surgery videos by using P C A . The topic of the problem has been revealed from the start-up 
project Optical sensor technology in medical applications of the University of Eastern 
Finland. This research was therefore performed within close cooperation of our colleagues 
from University of Eastern Finland in Joensuu, namely: Marku Hauta-Kasari and Jukka 
Antikainen; as well as, other research co-authors: Jiří Havel, Adam Herout and Pavel 
Zemčík. 

Principal Component Analysis (PCA) is an approach that is traditionally used for analysis, 
simplification of large data sets, dimensionality reduction, etc. Using modern computer 
technology, the P C A can be used on very large data sets where its utilization has previously 
been unthinkable and it can also be used in real-time applications. Therefore, the 
computational speed of P C A , especially the speed of creation of the co-variance matrix, is 
critical and any improvement is appreciated. In this section, implementations using either 

4.1 Principal Component Analysis 



80 Spectral Image Analysis Using C U D A 

SSE instruction set of current processors or using a G P U are presented. These solutions 
are performing P C A on large data sets with relatively low dimensionality. 

This research was motivated by the need of using P C A on spectral images in the context 
of real-time medical imaging. Accurately defined colour is shown as an important factor 
in many scientific and industrial purposes. Normal digital cameras, displays, and even 
the human vision system produce colour by using three primary colours: red, green and 
blue (RGB). In many cases, the representation based on three colour components cannot 
capture all information and spectral imaging and analysis must be used (e.g. wood analysis 
[76], mineral detection [23], textile industry [99] and many other interesting targets). One 
spectrum can contain tens or even hundreds of wavelength channels which provide a much 
better colour presentation than three-colour R G B . 

In the case of spectral images, P C A is used mostly for dimensionality reduction [27] 
and feature extraction [10]. For example, if the spectral image contains 81 wavelength 
channels, spectral dimensionality could be reduced to 6-11, depending on the complexity 
of the data set, without losing any important amount of information [49]. P C A is often 
used for data of high dimensionalities. Generally, in the case of spectral imaging, the 
dimensionality of the input data is not high (commonly 6-81 channels) but the number of 
samples (i.e. number of pixels in image or video) is large - millions to billions. Existing 
solutions (e.g. [39, 38, 2, 67]) do not exactly suit this purpose and this unique situation 
must be covered by a particular solution. Please note that the dimensionality of the data 
considered in this research is relatively low, so the computation of eigenvectors - addressed 
by the mentioned works - is relatively cheep. It is the computation of the co-variance 
matrix, which is costly for the considered data, what is accelerated by the algorithms 
presented in this chapter. 

The spectral resolution of different image sensors can vary, however, in the presented 
approach we suggest considering approximately 6 to 81 channels as from the human vision 
point of view, images starting with approximately 6 spectral channels can be considered 
as having enough information to accurately represent the colour information for distinct 
human observers with differences in colour vision. The upper boundary, 81 channels, is 
determined from the visible range of the human vision from 380 to 780 nm when the 
spectral information is captured using 5-nm steps. The step of 5 nm is generally considered 
to be reasonable in optical spectrum processing in order to accurately distinguish between 
colours/materials unless very special requirements on subtle spectral changes are required 
[50]. In theory, the range of channel numbers can be wider and the presented approach 
handles these well, but the measurements were made for the dimensionalities 

practically interesting in spectral image processing. 
A surgeon uses a surgery microscope during the operation and the video can be seen 
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live on the display The microscope can be equipped with a standard R G B camera or 
spectral camera [46] with additional spectral channels of different wavelengths - existing 
solutions support up to 6 channels. P C A can help in revealing information normally 
unseen by humans through analysis of spectral information contained in the image in the 
wavelengths not seen or distinguishable by the human eye. One of the possible approaches 
is to search for the best possible three-component vector space that can represent the 
spectral information in the image and then visualize the obtained information in the RGB 
colour space. 

4.1.1 PC A in Spectral Imaging 

P C A is commonly used on datasets of various dimensionalities. In the case of spectral 
imaging, the dimensionality is usually in the order of 6-81 components. The dimensions 
of the spectral image's pixels correspond to different light wavelengths. One pixel s of the 
spectral image is defined as: 

s(\) = [s(\1),s(\2),...,s(Xn)Y (4.1) 

where n is the count of wavelength channels. The spectral image - in the context of 
statistical colour analysis - can be perceived as a two-dimensional martix S where each 
column presents all wavelengths from one pixel of the spectral image: 

/ si(Ai .(Ai) \ 
(4.2) 

(An) J 
where m is the count of the pixels in the spectral image. For such an image a correlation 
matrix can be computed: 

R = - S S T 

rn 
(4.3) 

From the correlation matrix R, eigen values and eigen vectors are solved so that the 
following equation is fulfilled: 

R$ = cr$ (4.4) 

where $ is a matrix of eigen vectors and a is a diagonal matrix with eigen values on the 
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diagonal. Matrix B is formed from the solved eigen vectors: 

/ ftxCAx) . . . 6x(An) \ 

B (4.5) 

where rj is the number of wanted base vectors. Innerproduct images are calculated by 

using the selected base vectors B and the previously defined 2D matrix of pixels S: 

B S (4.6) 

4.1.2 Real-Time Implementation of P C A 

From the implementational point of view, Eq. 4.3 can be reformulated as a sum of matrices 

of the same dimensions computed independently for all image pixels: 

1 rp 

R = - S S T 

rn 

— ^2 [S*(^l) • • • Si(^n)f [Si(Al) • • • Si(An)] 
I 

m I J 

(4.7) 

where S j is a square matrix computed from each image pixel. 

This idea is used in the plain-C implementation (Alg. 4.1): 

Algorithm 4.1 Computation of correlation matrix - basic implementation. 
Require: image pixels siy Vz G { 0 , . . . , m — 1} 
Ensure: correlation matrix R 

1: a[u, v] <— 0, Vm, v G {1 , . . . , n} 
2: for % G { 0 , . . . , m — 1} do 
3: for v G { 1 , . . . , n} do 
4: for u G {1,..., v} do 
5: a[u,v] <— a[u,v] + Si(\u)si(\v) 
6: end for 
7: end for 
8: end for 
9: return —a 

which is used as the baseline in measurements and constitutes a starting point of the 

SSE and C U D A implementations described further in this section. 
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Once the correlation matrix is computed, the eigen-vectors and values are found using 

the standard Jacobi iterative method [21]. This algorithm is used also in the SSE and 

C U D A solutions described later. The target application of this article - spectral imaging 

- counts on a low numbers of components per pixel (3 — 81), so that the algorithm for 

finding eigen-vectors and values takes only a small fraction of the computational time and 

the choice of the method is not very important. 

Intel SSE Instruction Set Approach 

SSE offers speeding-up computations by executing instructions in a SIMD manner. Two 

basic approaches can be considered when using SSE for P C A computation and for similar 

tasks in general: either multiple channels of one pixel are processed in parallel or one 

operation is done for several pixels at once. Processing multiple pixels has several 

advantages in this case so this approach is used - see Alg. 4.2 for a pseudo-code of the 

implementation. 

Algorithm 4.2 Correlation matrix computed by SSE. 
Require: image pixels S j , Vz G { 0 , . . . , m — 1}, 4|m 
Ensure: correlation matrix R 

1: a[u, v] <— 0, Vii, v G { 1 , . . . , n} 
2: for i G { 0 , . . . , f - 1} do 
3: for j G { 1 , . . . ,n} do 
4: for k G { 0 , . . . , 3} do 
5: <p\j,k] <~ S(4i+fc)(Aj) 

6: end for 
7: end for 
8: for v G { 1 , . . . , n} do 
9: for u G { 1 , . . . , v} do 

10: a[u,v] <— a[u,v] + ip[u\ip[v] 
11: end for 
12: end for 
13: end for 
14: return —a 

A straightforward way of representing the (spectral) image in memory is an array of 

pixels, where each pixel is an n-tuple of values. This is the way the input data is stored 

and passed on to the algorithm. However, for efficient use of SSE, the image needs to be 

stored in a slightly modified manner. When SSE is used to process multiple pixels at once, 

the image must be organized as an n-tuple of pixel arrays. Generally, for efficient SSE 

operation, the data needs to be aligned to 16 bytes. The algorithm does not rearrange the 

whole image in this way but only uses a four-pixel buffer which is re-used for groups of 
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four pixels. Steps 3-7 perform this rearrangement into buffer ip. Note that the buffer is 

addressed as two-dimensional in this preparatory phase, but its values are read as vectors 

by the SSE in Step 10. 

Step 10 is the only line of the pseudo-code which fully uses the SSE vector (SIMD) 

instructions: vector addition (_mm_add_ps) and vector multiplication (_mm_mul_ps). This 

operation also uses an intrinsic function to load the 4-component float value from memory 

into an SSE vector register (_mm_load_ps). It should be noted that the loading of one 

argument of the multiplication can be done once for each pass of the for loop beginning in 

Step 8. 

The computation of the inner-product image is straightforward and uses the same 

principles to speed-up the execution by vector multiplication and addition as in the case 

of the correlation matrix computation. 

C U D A Approach 

The image can be represented in the natural way - as a linear array of pixels, each 

composed of n chars or floats {n is the input image pixel's dimensionality, typically 3 

for R G B , but higher for spectral images). This linear memory is buffered by the C U D A 

threads into the fast shared memory as described below. 

The correlation matrix (Eq. 4.7) is computed as follows. Matrix S j is symmetrical, so 

for n-dimensional input image pixels, \n(n + 1) values need to be calculated and summed. 

Each component (or several components when n > 32) of the matrix is calculated by a 

C U D A thread. However, to use the G P U efficiently, a minimal number of threads needs 

to be running in parallel within a block, so P matrices S j are calculated in parallel and 

thus T = \Pn{n + 1) threads are executed in a block. The input data is buffered in the 

shared memory in chunks of C pixels for each of the P matrices computed in parallel. 

Alg. 4.3 describes the computations done by one block of threads. 

Each block of threads computes a part of the sum from Eq. 4.7. Shared memory is 

used for buffering the input pixels: Step 4 reads P chunks of C pixels into the shared 

memory. Each thread then processes a given chunk of pixels, computing one component of 

the output matrix s, (Step 6) and summing it into the accumulator a. The component's 

coordinates within the matrix are denoted as u and v; in our implementation, these values 

are stored in a precomputed ID texture and read by each thread in Step 2. Since the 

whole sum computed by the algorithm is subdivided into P parallel groups of threads, 

their partial results need to be summed by Step 9 by using the shared memory. 

A n important characteristic of the presented arrangement is that it can be scaled in 

different dimensions to perfectly fit the hardware it is executed on. The dimensionality of 
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Algorithm 4.3 Correlation matrix contribution of each block. 
Require: block number b G { 0 , . . . , B — 1}, input image pixels Sj, Vz G { 0 , . . . , m — 1} 

RPC 
Ensure: s^jjpc+j), i.e. a part of the sum in (4.7) 

i=0 

1: a -G- 0 
2: for each thread £ € { 0 , . . . , T — 1} determine: 

u,v - coordinates within the matrix Sj 
p - index of matrix computed in parallel with others 

3: for r = 0 to R - 1 do 
4: read pixels s^RPc+rPC+i),^ £ {0, • • •, -PC — 1} by T available threads 
5: __syncthreads() 

c - i 
6: for each thread a G- a + ^ s ( w ?pc+rpc+pc+ c) (A Js(w?PC+rPC+pc+ c) (A„) 

c=0 

7: __syncthreads() 
8: end for 
9: threads £ G { 0 , . . . , \n(n — 1) — 1} sum up P corresponding (by pair u, v) accumulators 

pixels n is given a priori by the application. Based on it, the optimal thread count can 
be obtained by setting an appropriate number of parallel groups of threads P - optimal 
number of threads for current GPU's is in the order of 128 and higher, actual measurements 
are given in 4.1.3. 

The pixel chunk size C can be set arbitrarily to control the use of the shared memory of 
the CUDA multiprocessors. One logical option is to fill the whole shared memory with the 
buffered pixels. However, using one half, one third or other fraction of the shared memory 
might allow running several blocks in parallel on one multiprocessor. The number of 
blocks B can also be controlled by arbitrarily setting the number of repetitions R, because 
N = BRPC, where ./V is the total number of pixels processed (to simplify the calculation, 
the memory following the image data is filled with zeros to the next multiple of PC so TV 
is slightly bigger than the actual number of pixels in the image). A n optimal value of B 
again depends on the hardware used for the calculation - its number of multiprocessors, 
number of blocks runnable on one multiprocessor, etc. Measurements (refer to 4.1.3 for 
details) show that the number of blocks is surprisingly not a very important factor. The 
ideal number according to our findings is identical to the number of multiprocessors present 
in the graphics chip (30 for contemporary GPUs). Further parallelization by submitting 
more than one block to a multiprocessor does not introduce any speed-up because the 
limiting factor seems to be access to global and shared memory. 

Each block of threads running by Alg. 4.3 produces a part of the desired sum of 
matrices Sj(4.7). These B matrices have to be summed, which can be performed by a tree 
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scheme [25] or by simple linear summation, since B never reaches high values and the 
summation is limited anyway by the speed of the global memory. 

Since contemporary implementations of C U D A support only 512 threads, the number 
of components n is limited to 31, because for a higher n, the number of components in a 
exceed the maximal number of threads. For a higher n, more than one component of a is 
computed by one thread. 

For finding the eigen values, the same function as in the C and SSE version is used, 
being reimplemented into C U D A for C with some small modifications. Only one thread is 
used in this case because the algorithm (for the practical usable problem sizes) does not 
consume any measurable portion of time and its parallelization would be inconvenient due 
to a high degree of branching. 

The last step of converting the input image into the new base (Eq. 4.6) is 
rather straightforward: the whole image is processed by threads in blocks and each thread 
multiplies one or more pixels with the eigen-vector and the result is stored in a different 
location in the global memory. 

4.1.3 Performance Evaluation of P C A Implementation 

For performance evaluation of P C A implementation, all experiments were primarily done 
with respect to the target application - real-time imaging for surgical operations. However, 
the range of tested image dimensions and component count were wider in order to show 
the general usability of the P C A algorithms for spectral imaging and other applications. 

For experimenting with C U D A , SSE and C versions of the algorithm, a simple frame
work was created which loads a video (or a set of images) from a selected source, processes 
the frames and reports the time durations for a selected implementation. Video in
put was done via DSVideoLib, a DirectShow wrapper supporting concurrent access to 
frame buffers from multiple threads. Time measurement was done using very accurate 
QueryPerf ormanceCounter WinAPI function over a number of frames, so the variability 
of the measured times was below 1 %. 

The testing was performed on two computers: 

• C2D~E8200+9800GTX Intel Core2Duo E8200 2.66GHz, 4 G B 2 x D D R 2 - R A M -
1066(533MHz), nVidia GeForce 9800GTX and 

• i7-920+GTX280 Intel Core i7-920, 6 G B 3xDDR3-RAM-1066(533MHz), graphics: 
nVidia GeForce GTX280 

The measurement times reported in this section include computation of the correlation 
matrix, eigen vectors and values, and production of one inner-product image. Especially 
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for the C U D A algorithm, the time is "all-inclusive", meaning that transfer of the input 
image data to the graphics card, the computation itself, initiation of the transfer of the 
inner-product image back to C P U memory, and waiting for the transfer to be complete are 
included in the time. Real usage of the real-time P C A computation may avoid especially 
the transfer of the inner-product image back because its purpose might be to be displayed 
using the graphics card. Also, the original image should be displayed in any case and the 
transfer to the G P U would be necessary even if the computation was done on C P U . 

Performance on Videos of Different Resolutions 

The P A L resolution (720 x 576) videos were actual surgery videos recorded from the 
surgery microscope (see Fig. 4.1 for an example of a frame); higher resolution videos were 
random videos from T V broadcasting - the algorithm contained no conditions depending 
on the image contents, so the actual origin of the video should not influence the measured 
time results. 

Figure 4.1: An example of a frame from a surgery video and its inner-
product images. 

Tab. 4.1 reports the measured time per frame by the C, SSE and C U D A imple
mentations, running on the two above-mentioned computers. The algorithms have time 
complexity linearly proportional to the number of pixels. As expected, the time per-pixel 
(for reasonable frame dimensions) was constant for C and SSE versions of the algorithm. In 
the case of CUDA, the per-pixel times were slightly improving with the image resolution, 
which was caused by some constant overheads related to C U D A initialization, program 
loading, data transfer, etc. These constant overheads amortized better for larger images. 
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C2D E8200, 9800GTX 
resolution C SSE CUDA C/SSE C / C U D A 

640x480 10.5 4.9 2.3 2.1 4.6 
720x756 14.4 6.9 3.1 2.1 4.7 
1280x720 34.8 15.0 6.4 2.3 5.4 
1920x1080 72.0 35.2 14.4 2.0 5.0 
2560x1600 143.2 71.1 27.8 2.0 5.2 

i7-920 GTX280 
resolution C SSE CUDA C/SSE C / C U D A 

640x480 4.9 2.0 0.4 2.4 11.1 
720x756 6.4 2.6 0.6 2.4 11.4 
1280x720 14.1 5.7 0.9 2.5 15.2 
1920x1080 32.2 13.2 1.9 2.4 16.7 
2560x1600 63.6 26.6 3.7 2.4 17.2 

Table 4.1: Computational times per frame in milliseconds on different 
videos (RGB), two different hardware set-ups, C vs. SSE vs. CUDA. 

Different Numbers of Spectral Channels 

Surgical microscopes can contain several optical slots for cameras. These slots can be 
equipped with several cameras where each one of them works on individual wavelength 
responses. In this manner, a spectral image from the surgery can be captured in real-time. 
Therefore, videos with six or more spectral components were also examined. Measured 
times of P C A computation per frame (PAL resolution 720 x 576) for different numbers of 
channels are presented in Tab. 4.2. 

Note that for 31 spectral channels, the SSE version matches the speed of CUDA. The 
P C A computation was demanding especially on the memory bandwidth, while the compu
tational load was relatively low. The memory chips used both by the C P U and G P U used 
similar technology, so for some cases, the difference between the computational capacities 
became irrelevant. The C U D A solution had the disadvantage of bus communication and 
the need to upload the data to the graphics card and read back the inner-product image 
(all these actions are included in the computation times). The C U D A algorithm is surely 
useful in the cases when the presented measurements report superior performance to 
the SSE, which are cases with a lower number of spectral components. When the speed 
of the SSE solution matches C U D A , off-loading the computation to the graphics card 
still helps the medical software offer immediate responses by keeping the C P U free of 
computation. Also, the measurements include downloading the inner-product image back 
to C P U memory, which in many cases would not be useful because it is used on the G P U 
to be displayed on the display. On the contrary, if the computations were done on the 
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C2D E8200, 9800GTX 
# of ch. C SSE CUDA C/SSE C / C U D A 

3 14.3 7.5 3.1 1.9 4.6 
4 17.4 7.8 4.0 2.2 4.3. 
5 21.8 8.8 4.9 2.5 4.4 
6 24.9 10.9 6.2 2.3 4.0 
9 37.9 17.0 8.8 2.2 4.3 
16 74.9 28.8 14.7 2.6 5.1 
25 150.9 50.3 22.5 3.0 6.7 
31 209.3 67.9 44.1 3.1 4.7 

i7-92C , GTX280 
# of ch. C SSE CUDA C/SSE C / C U D A 

3 5.9 2.6 0.6 2.3 9.4 
4 6.9 2.7 0.7 2.6 9.6 
5 8.6 3.0 0.9 2.8 9.7 
6 10.0 3.4 1.1 3.0 9.1 
9 14.9 4.8 1.8 3.1 8.4 
16 29.1 10.3 5.0 2.8 5.9 
25 52.5 18.9 11.5 2.8 4.5 
31 71.5 26.1 34.5 2.7 2.1 

Table 4.2: Computation times per frame in milliseconds on frames 
(PAL, 720 x 576) of different number of spectral channels; speed-ups SSE 

vs. C and CUDA vs. C; two different hardware set-ups. 

C P U , the time to upload the resulting images to the graphics card for displaying them 
would need to be included. 

The Optimal Set-up of C U D A Program Parameters 

As mentioned in 4.1.2, one important advantage of the presented C U D A algorithm is 
that it can be scaled in different dimensions to fit the graphics hardware and fully use its 
potential. We have performed different measurements to explore the possibilities of the 
set-up, two most interesting of them are described below. 

Fig. 4.2 shows the performance depending on the number of blocks of threads. It 
should be noted that GeForce 9800GTX has 16 multiprocessors, GTX280 contains 30 
multiprocessors. The graph shows - as could be expected - that the number of blocks 
should always be a multiple of the number of multiprocessors, because the blocks performed 
identical actions; their duration was, therefore, identical and they were issued in groups 
running in parallel on the multiprocessors. What was not as obvious and expected was 
that for higher numbers of blocks, the algorithm performed the same or just slightly worse 
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than for smaller numbers. For practical implementations (such as the one suggested in 
the following 6.2.2), choosing B ~ 200 (and corresponding R) was a safe choice. For 
appropriate values of C (see 4.1.2, Alg. 4.3), more than one block could run on one 
multiprocessor at a time, which could increase the parallelism. However, since no speed-up 
was achieved by this arrangement, we could deduce that the limiting factor was access to 
the global memory with the input data and further parallelism did not help, but introduced 
a small overhead. 

20 

15 

I 10 
u 
S 

C2D E8200, 9800GTX 
i7-920, GTX280 

50 100 150 
# of blocks 

200 

Figure 4.2: Performance of the CUDA implementation depending on 
the number of blocks. The best times are for 16 and 30 blocks (marked by 
dashed vertical lines), which correspond to the number of multiprocessors 

on each graphics chip. 

A similar experiment has been carried out to explore the influence of the number 
of threads in each thread block - see Fig. 4.3. This measurement confirmed general 
recommendations for C U D A programs that the number of threads should be at least 128. 
The measurements reported that 256 threads and higher numbers were secure, from 128 
the differences were barely measurable. 
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Figure 4.3: Performance of the CUDA implementation depending on 
the number of threads in each block. 

4.2 Non-Negative Tensor Factorization 

Non-Negative Tensor Factorization (NTF) can be used - in the context of spectral imaging 
- for image compression [3], optimal filter generation [29], and feature extraction [43]. 
N T F is also used in other scientific and industrial fields, such as global climate analysis, 
neuroscience, psychometrics, etc. [75], [6], [11], [57], [84], [48]. The dimensionality of these 
problems are often so high that N T F computations take hours so acceleration of this 
process is desirable. 

This research shows an efficient G P U implementation for general iterative N T F com
putation by gradient descent, based on Gauss-Seidel and Jacobi methods [29], using the 
C U D A programming environment. The efficiency of the algorithm is compared to other 
available solutions. This section summarizes iterative N T F computation and fast modi
fications of this algorithm. Section 4.2.1 describes the proposed C U D A implementation, 
namely the decomposition of the problem into parts that can be calculated in parallel. 
Section 4.2.2 gives measurements of our implementation's performance and compares it 
with state-of-the-art solutions. The C U D A implementation of N T F was wrapped into a 
D L L , which is usable by C programs in both the Windows and Linux environments, and 
also by a M A T L A B plugin. Information about this publicly available tool is given in 6.2.3. 

In contrast to other analytical tools, such as Principal Component Analysis (PCA) or 
Singular Value Decomposition (SVD), N T F produces the matrix factors (basis vectors) 
that are always non-negative and which meet other requirements that enable real-world 



92 Spectral Image Analysis Using C U D A 

interpretations. In the context of spectral imaging, N T F allows the decomposition of a 
spectral colour into a set of filters that can be manufactured and can be used in optical 
systems [59]. 

Let G G M i ? x 5 x T be a third order non-negative tensor to be analysed. Non-negative 
tensor factorization of G requires solving a non-linear minimization problem: 

min IIG - G\\% 
G>0 

(4. 

where G is the tensor of reconstructed data and \\A\\2

F is the square Frobenius norm. 
Also other cost functions such as a or /^-divergences could be used [12]. The rank-if 
reconstruction is defined by sums of tensor products: 

K 
G = y > (4.9) 

fe=i 
where u^fc^ G M.R, G M.s and ŵ fc^ G M T are basis vectors of non-negative values. This 
reconstruction process is illustrated in Fig. 4.4. 

Figure 4.4: Principle of third order tensor factorization by using sums 
of rank-1 tensors. 

The most commonly used approaches to non-negative tensor factorization are based 
on the Block Gauss-Seidel (BGS) method [22]. Using a combination of Gauss-Seidel 
and Jacobi iterative update schemes, Hazan et al. [29] derived a gradient descent that 
repeatedly updates \ ^ k \ and w(fc); these are calculated using iterative rules (Eq. 4.10-
Eq. 4.12: 

wk <-

E x 

Vi Er,t °r,i,tUkM 

Wk) 

E x __xv™ (um,uk) (wm, 

Wi Er,s Gr,s,iUk

rV* 

Wk) 

EK ,vk) 

(4.10) 

(4.11) 

(4.12) 

where G is the dataset and (x, y) denotes inner product. Usually, this iterative procedure 
must be repeated hundreds or even hundreds of thousands times to converge to the correct 
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solution depending on the complexity of the dataset. Therefore, iterative N T F computation 
is quite time consuming, and approaches to speeding it up would be useful. 

4.2.1 CUDA Implementation of N T F 

Our algorithm closely follows the theoretical description in 4.2. The structure of the 
calculation is shown by Alg. 4.4. The first line in the algorithm initializes the vectors 
u, v and w by using random values between 0 and 1. The N T F problem can be divided 
into three sub-problems, corresponding to rules of Eq. 4.10-Eq. 4.12. Functions for 
their computation are named STEP in Alg. 4.4. The inner products in the equations' 
denominators can be calculated in advance and stored in K x K sized matrices. In Alg. 4.4, 
these matrices are named M u , M„, and M w , where M u = u T u, i.e.: 

M , 

/ ( u W u W ) . . . < u « u W ) \ 
( u ^ u W ) . . . ( u ( 2 \ u W ) 

V ( u W , u « ) . . . (uW,uW) j 

(4.13) 

and M„ and M m are defined similarly. The function for their computation is named 
C M A T in Alg. 4.4. These matrices are symmetrical, so only the upper or lower triangle 
matrix needs to be calculated and stored. 

Algorithm 4.4 Structure of the N T F algorithm. 
Require: the input G (size R x S x T), the method rank K, and the iteration count I 
Ensure: the output vectors u, v and w 
1 
2 
3 
4 
5 
G 
7 
8 
9 
10 
11 
12 
13 

Init u, v and w 
Mu <- CMAT(u) 
Mv <- CMAT(v) 
Mw <- CMAT(w) 
for i e { 0 , . . . , 1-1} do 

u <- STEP U (G , u, v, w, M„, Mw) 
Mu <- CMAT(u) 
v <- STEP V (G, u, v, w, M t t , Mw) 
Mv <- CMAT(v) 
w <- S T E P W ( G , u, v, w, M u , M„) 
Mw <- CMAT(w) 

end for 
return u, v and w 

Calculating the numerator in the sub-problem steps is the most time consuming 
operation. A l l other calculations, including creating the correlation matrices such as Eq. 
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4.13, do not take a significant amount of time in comparison. The numerator calculation 
consists mostly of repeated summing of a large array, so it is more demanding of memory 
bandwidth than it is computationally intensive. The sub-problem steps only differ in the 
direction in which the layers of G are taken. Therefore, the following text will describe 
only the step for w, corresponding to Eq. 4.12; the pseudo-code for u and v is identical, 
except for renamed variables. 

The sub-problem calculation must be divided into C U D A thread blocks. One straight
forward solution could be to have each block calculate one value of w, so TK blocks are 
executed. Because G has T layers and K values are calculated for every layer, this division 
into blocks means that every layer is traversed and summed K times. To lower the number 
of reads from G (notably speeding up the computation), the calculation can be divided 
into T blocks, so every block calculates K values and traverses each layer of G only once. 

N 

N 

R 
• - V K 

Figure 4.5: Tiling of one thread block. One slice of G is divided into 
N x N tiles computed by individual blocks of threads. 

Because the number of threads in each block will often be lower than the G layer 
dimensions R x S, the block must be divided into tiles. Each tile contains a number 
of elements equal to the number of threads in the block, which is TV2 arranged to a 
square matrix. Fig. 4.5 shows the tiling of G and the parts of u and v corresponding 
to each tile (for K = 3). Because each element of these parts is accessed TV times, these 
parts are cached in the shared memory (C u and C„). Each tile of G is multiplied by K 
corresponding parts of u and v, forming a block of size K x TV x N, which is then added 
to a shared memory buffer a. After all tiles are processed, the buffer is summed via tree 
summation [25] to form K values. The rest of the work - calculation of the denominator 
and of the output value - only requires K threads. The work done by one block is shown 
in Alg. 4.5. 
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Algorithm 4.5 Computation Done by One Thread Block. 
Require: G, u, v, w, M u , M„ 

block index t, thread indices i, j 
Ensure: new iteration w' 

1: a[k,i,j] ^ 0 , V f c e {0, ...,K-1} 
2: for x G {0 , . . . , § - 1}, y G {0 , . . . , -J - 1} do 
3: if i < K then 
4: Cu[i, j] <- u[i, j +XN] 
5: Cv[i,j]<-v[i,j + yN] 
6: end if 
7: __syncthreads() 
8: e <- G[i + xN, j + yN] 
9: for k E {0,...,K - 1} do 

10: a[k,i,j] <- a[k,i, j] + eCu[k,i]Cv[k, j] 
11: end for 
12: end for 
13: __syncthreads() 

N-l N-l 

14: a[k, 0, 0] <r- Yl iJ],Vke{0,...,K- 1} 
i=0 j=0 

15: fc <r- i + jN 
16: if k e {0, - 1} then 

17: W [ M ] < - g l ^ M M W ] 
X]m =o w [ ^ " , t]Mu[k, m]Mv[k, m] 

18: end if 

The calculation of the correlation matrices takes a negligible amount of time compared 

to the rest of the calculation, so no special optimizations were performed. The calculation 

of K(K + l ) / 2 elements of a correlation matrix (upper or lower triangular part of the 

matrix) is simply divided into an equal number of blocks, so every block traverses one pair 

of w rows and outputs one element of the correlation matrix. 

Because TV2 should be a power of two for easy tree summation, reasonable values of TV 

can be 8 or 16. For N = 8, the block consists of 64 threads; for TV = 16 it consists of 256 

threads. A bigger value of TV means that every element of the cache is used more times, 

so 16 was selected. However, a bigger TV also requires larger arrays in the shared memory. 

The same holds for K, so for TV = 16, 16KB of the shared memory is only sufficient for 

K < 15. If a greater value of K is needed, a lower value of N must be used. Fortunately, 

such cases are not common, so this limitation is mostly theoretical. 

Another limitation of the implementation on current graphics chips is the maximum 

number of blocks per kernel, which limits the maximum of each dimension of the input 

tensor to 65536. 
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Both limits can be overcome when necessary, so the only remaining limitation of this 
implementation is the memory capacity of the graphics card. Storing tensors requires a 
huge amount of memory, so for current high-end graphics cards with two gigabytes of 
memory, the limit is a cube with approximately 800 elements in each direction (or a tensor 
with varying dimensions of equivalent volume). 

4.2.2 Performance Evaluation of N T F Algorithm 

In case of N T F algorithm, the computation times were measured using different sizes of 
spectral images (Fig. 4.6a); Fig. 4.6b shows rank 3 tensors that were calculated using NTF. 
The spatial resolution of the image varied between 100 x 100 and 1000 x 1000. The spectral 
dimensionality was either 31 or 62 (values common in spectral imaging). Channels in the 
31-dimensional spectral images ranged from 420 nm to 720 nm with 10 nm steps captured 
by a spectral camera. The 62-channel spectral images were created by interpolating the 
31-channel images to 61-channel image by using 5 nm steps. One extra channel was added 
by duplication into the red end to achieve double size images (62-channels) which can be 
compared easily to 31-channel images. Also, a simulated 600 x 400 x 200 data set was 
used to provide a better comparison between our G P U algorithm and another recently 
published parallel implementation [75]. 

Figure 4.6: (a) RGB representation of the used spectral image; (b) 
calculated rank-3 factors in spectral domain. 

Computational Times 

A l l tests were performed using Intel Core i7-920 processor, 6 GB of DDR3 R A M and an 
N V I D I A GeForce GTX280 with 1 GB of GDDR3 memory. The G P U implementation 
presented in this section was compared to a standard C implementation of the same 
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method[29] compiled by Microsoft Visual Studio 2009 (compiler ver. 15.00.30729.01). The 
G P U version was compiled using NVIDIA's compiler (CUDA compilation tools, release 
3.0, VO.2.1221). 

Fig. 4.7 shows the computation times, with 500 iterations, for both implementations. 
Speed-ups achieved by the G P U implementation are also displayed as a function of the 
spectral image's spatial size. The C P U calculations used both single and double precision 
floating point numbers. The G P U implementation could that time work with single 
precision only (fast access to the input tensor required texture lookup, that did not support 
double precision). The G P U implementation, which processed inputs with double precision, 
computed in single precision and only used fast page-locked memory for data conversion. 
The difference between single and double on the G P U was, therefore, the time needed for 
conversion from double to single precision. 

Figure 4.7: Computational times with different sizes of spectral images: 
(a) CPU times; (b) GPU times; (c) G P U speed-ups - CPU/CUDA; (d) 
CPU speed-ups for multiple cores, whereNis the spatial size of the image. 

The computation times show that the speed-up factor rises logarithmically with respect 
to the size of the spectral image. Speed-ups for the computation times between the 
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single-core C P U and G P U versions for practical dataset dimensions are around 60 — lOOx. 

Graph (d) of Fig. 4.7 shows the impact of using multiple threads on the C P U . The 
C P U used has four physical cores and eight logical cores via hyper-threading. The rest of 
the C P U measurements are done in the single-threaded form, the speed-ups achievable by 
multi-threading are limited to 3.5x. 

The spikes in the speed-up graphs for the C P U measurements are a consequence of the 
cache implementation of the C P U . When the image has certain dimensions, neighbouring 
pixels in the x, y, and z axis directions were coherent with the alignment of the C P U cache 
records. Thus, some parts of the C P U cache were used heavily, while the rest of the cache 
memory was sparsely used or not used at all. Similar behaviour can be observed in various 
image processing algorithms. This behaviour could be avoided by deliberately misaligning 
image rows in the main memory, but this further complicated the algorithm, introduced 
some minor computational overhead, and slightly increased memory consumption. The 
C U D A environment did not suffer from similar effects. 

The C P U implementation has been tried with both double and single floating-point 
precisions. The use of single precision might harm the precision of the results, so the 
GPU's effective inability to use double precision might appear limiting. Our observations, 
however, indicate that the floating-point implementation in modern GPUs was precise 
enough. In fact, the results from a G P U are comparable to the double precision C P U 
result and are much better than using single precision in the C P U . Errors between the 
single and double precisions were estimated by using root mean square error (RMSE). 
The R M S E difference between the C P U double precision version and the single precision 
version was 6.0 x 10~5, while the error with the G P U version was only 6.6 x 10~8. This 
can be explained by considering the summation strategy. When summing a large number 
N of items with limited (single) precision: 

Once % becomes high, the mantissas in the memory representations of a and f(i) are 
overlapped by smaller and smaller numbers of bits. The accuracy can be increased by 
reformulating the accumulation strategy as: 

N 

(4.14) 
i=0 

a <— a + f(i) 
i <- % + 1 

(4.15) 

(4.16) 
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Discussion Regarding Another Parallel Version of N T F 

In 2009, Zhang et al. [75] introduced a multiprocessor implementation of the same N T F 
algorithm used as the starting point of our solution and evaluated its efficiency for a 
600 x 400 x 200 data set of climatic data. They used a Sun Fire X4600 M2 server for their 
computations. 

For comparison, we measured the efficiency of both our C P U and G P U implementations 
using a dataset of the same size. The C P U computation time for the data set was 
290 seconds for 100 iterations (with one core of the Intel Core i7 920 processor) and the 
equivalent G P U computation time was 2.36 seconds. 

It was not possible to compare the absolute times, since the processors were different 
and it was impossible to imitate all circumstances of the measurement. However, Zhang et 
al. [75] report that their speed-up by adding further nodes was capped at about 7x while 
our G P U algorithm achieved over 100 x speed-up compared to the single-core C P U version 
(our multi-core version on state-of-the-art processors achieved up to 3.5x speed-up). 
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Chapter 5 

Real-Time Line Detection Using 
C U D A 

The Hough transform is a well-known and popular algorithm for detecting lines in raster 
images. Standard Hough transform is rather slow to be usable in real time, so different 
accelerated and approximated algorithms exist. This study proposes a modified accumula
tion scheme for the Hough transform, using a new parametrization of lines "PClines". The 
algorithm discussed within this chapter is suitable for computer systems with a small but 
fast read-write memory, such as today's graphics processors. It requires no floating-point 
computations or goniometric functions. This makes the algorithm suitable for special and 
low-power processors and special-purpose chips. The proposed algorithm was evaluated 
both on synthetic binary images and on complex real-world photos of high resolutions. 
The results showed that using today's commodity graphics chips, the Hough transform 
can be computed at interactive frame rates, even with a high resolution of the Hough 
space and with the Hough transform fully computed. 

This chapter presents an insight into our research on real-time line detection using 
Hough transform and parallel coordinates. The research presented in this chapter was 
performed in close cooperation with the following list of co-authors: Markéta Dubská, 
Adam Herout and Jiří Havel. 

5.1 Line Detection Using Accelerated High-Resolution 
Hough Transform 

The Hough transform is a well-known tool for detecting shapes and objects in raster 
images. Originally, Hough [34] defined the transformation for detecting lines; later it was 
extended for more complex shapes, such as circles, ellipses, etc., and even generalized for 
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arbitrary patterns [5]. 
When used for detecting lines in 2D raster images, the Hough transform is defined by 

a parametrization of lines: each line is described by two parameters. The input image is 
preprocessed and for each pixel which is likely to belong to a line, voting accumulators 
corresponding to lines which could be coincident with the pixel are increased. Next, the 
accumulators in the parameter space are searched for local maxima above a given threshold, 
which correspond to likely lines in the original image. The Hough transform was formalized 
by Princen et al. [74] and described as a hypothesis testing process. 

Hough [34] parametrized the lines by their slope and y-axis intercept. A very popular 
parametrization introduced by Duda and Hart [16] is denoted as 9 — g; it is important 
for its inherently bounded parameter space. It is based on a line equation in the normal 
form: y sin(9) + xcos(9) = g. Parameter 9 represents the angle of inclination and g is 
the length of the shortest chord between the line and the origin of the image coordinate 
system. There exist several other bounded parametrizations, mainly based on intersections 
of lines with image's bounding box [58, 17, 95]. Different properties of these intersects are 
used as parameters. 

The majority of currently used implementations seems to be using the 9-g paramet
rization - for example the well-known OpenCV library implements several variants of 
line detectors based on the 9-g parametrization and none other. It is mainly because the 
parametrization uses a very straightforward transformation from the image space to one 
bounded space of parameters and because of its uniform distribution of the discretization 
error across the Hough space. 

Several research groups invested effort to deal with computational complexity of the 
Hough transform based on the 9-g parametrization. Different methods focus on special 
data structures, non-uniform resolution of the accumulation array or special rules for 
picking points from the input image. 

O'Rourke and Sloan developed two special data structures: dynamically quantized 
spaces (DQS) [71] and dynamically quantized pyramid (DQP) [82]. Both these methods 
use splitting and merging cells of the space represented as a binary tree, or possibly a 
quad-tree. After processing the whole image, each cell contains approximately the same 
number of votes; that leads to a higher resolution of the Hough space of accumulators at 
locations around the peaks. 

A typical method using special picking rules is the Randomized Hough Transform 
(RHT) [98]. This method is based on the idea, that each point in an n-dimensional Hough 
space of parameters can be exactly defined by an n-tuple of points from the input raster 
image. Instead of accumulation of a hypersphere in the Hough space for each point, n 
points are randomly picked and the corresponding accumulator in the parameter space is 
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increased. Advantages of this approach are mostly in rapid speed-up and small storage. 
Unfortunately, when detecting lines in a noisy input image, the probability of picking two 
points from same line is small, decreasing the probability of finding the true line. 

Another approach based on repartitioning the Hough space is represented by the Fast 
Hough Transform (FHT) [51]. The algorithm assumes that each edge point in the input 
image defines a hyperplane in the parameter space. These hyperplanes recursively divide 
the space into hypercubes and perform the Hough transform only on the hypercubes with 
votes exceeding a selected threshold. This approach reduces both the computational load 
and the storage requirements. 

Using principal axis analysis for line detection was discussed by Rau and Chen [8]. Using 
this method for line detection, the parameters are first transferred to a one-dimensional 
angle-count histogram. After transformation, the dominant distribution of image features 
is analysed, with searching priority in peak detection set according to the principal axis. 
There exist many other accelerated algorithms, more or less based on the above mentioned 
approaches; e.g. HT based on eliminating of particle swarm [9] or some specialized tasks 
like iterative R H T [54] for incomplete ellipses and N-Point Hough transform for line 
detection [56]. For more information about different existing modifications of Hough 
transform, please see [36]. 

This section presents an algorithm for real-time detection of lines based on the standard 
Hough transform using the 9-g parametrization. The classical Hough transform has some 
advantages over the accelerated and approximated methods (it does not introduce any 
further detection error and it has a low number of parameters and therefore usually requires 
less detailed application-specific fine-tuning). That makes the real-time implementation of 
the Hough transform desirable. The algorithm uses a modified strategy for accumulating 
the votes in the array of accumulators in the Hough space. The strategy was designed to 
meet the nature of today's graphics chips (GPUs). 

5.1.1 Real-Time Hough Transform Algorithm 

Before discussing the new real-time Hough transform algorithm, let us review the "clas
sical" Hough transform procedure based on the 9-g parametrization in Alg. 5.1 (the 9-g 
parametrization itself is depicted by Fig. 5.1). 

Points in the input image / with dimensions Iw and Ih are classified with a binary 
decision on line 3 (e.g. by en edge detector and thresholding). Lines 2-6 rasterize 
and accumulate curves into the Hough space. The function g(9, x, y) calculates the 
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Algorithm 5.1 HT for detecting lines based on the 9-g parameterization. 
Require: Input image I with dimensions Iw,Ih, Hough space dimensions HB,Hq 
Ensure: Detected lines L — {(9i, Qi),...} 
1: H(g, 9) <— 0, £ {1,..., H8}, 9e{l,...,He} 

for all x G {1,... ,Iw},y e {1,... ,4} do 
if I(x, y) is edge then 

increment H(g(9,x,y),9),V9 e {1,... ,He} 
end if 

end for 
L = {(9(9), g(g))\g e {1,..., He} A 9 e {1,... if*}A 
at (p, 0) is a high max. in i7} 

y 
^ Ik 

X 

Figure 5.1: The 9-g parametrization of lines in a coordinate system 
with origin in the centre of the input image. 

corresponding Q for each line passing through point (x, y) at angle 9: 

g(9,x,y) 
He((y - f ) s i n ( ^ 9) + (x-I-f) cos (^ §)) H 

+ (5.1) 

Line 7 detects above-threshold local maxima in the accumulated space and transforms the 
discretized Hough space coordinates g and 9 to g and 9 by the following functions: 

Q{Q) 

9(9) 
(5.2) 

Usually, a small neighbourhood (3 x 3 in OpenCV, 5 x 5 or 7 x 7 in cases of high resolution 
of the Hough space) is used for detecting the local maxima by line 7. The accumulator 
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value must be above a given threshold to be considered for a "high local maxima". The 
threshold is another input parameter of the algorithm, but since it does not influence the 
algorithm's structure, it is used silently by line 7 for simplicity of the algorithmic notation. 

The key characteristic of this algorithm is that line 4 must rasterize the half-period of 
the sinus curve and increment the corresponding accumulators in the Hough space. On 
some systems, such a large random-access read-write memory might be expensive or even 
not available at all. 

5.1.2 CUD A Implementation 

The key characteristic of Alg. 5.1 in the previous section is that steps 4 must rasterize 
the curves (the half-period of the sinus curve in the case of the h. parametrization) and 
increment the corresponding accumulators in the Hough space. In some systems, such a 
large random-access read-write memory might be expensive or even not available at all. 
This section presents an algorithm that overcomes this limitation and which is suitable 
for graphics processors and other special-purpose or embedded systems. The principle of 
these algorithms can work with other line parametrizations as well. 

Hough Transform on a Small Read-Write Memory of Accumulators 

The classical Hough transform accesses sparsely a relatively large amount of memory. 
This behaviour can diminish the effect of caching. On C U D A and similar architectures, 
this effect is even more significant, as the global memory is not cached. To achieve 
real-time performance, the memory requirements must be limited to the shared memory 
of a multiprocessor (typically 16 kB). 

Alg. 5.2 shows the modified Hough transform accumulation procedure. The key 
difference from Alg. 5.1 is the actual size of the Hough space. The new algorithm stores 
only HQ x n accumulators, where n is the neighbourhood size required for the maxima 
detection. Functions g, 9, g, and the edge and maxima detection are identical to Alg. 5.1. 
First, the detected edges are stored in a set P (line 1). Then, first n rows of the Hough 
space are computed by lines 2-7. The memory necessary for containing the n lines is all 
the memory required by the algorithm and even for high resolutions of the Hough space, 
the buffer of n lines fits easily in the shared memory of the G P U multiprocessors. 

In the main loop (lines 9-18), for every row of the Hough space, the maxima are 
detected (line 10), the accumulated neighbourhood is shifted by one row (lines 11-13) 
and a new row is accumulated (lines 14-17); please refer to Fig. 5.2 for an illustration of 
the algorithm. Thus only the buffer of n lines is being reused. The memory shift can be 
implemented using a circular buffer of lines to avoid data copying. 
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Algorithm 5.2 HT accumulation strategy using a small read-write memory. 
Require: Input image / with dimensions Iw,Ih, Hough space dimensions Hg,Hd, 

neighborhood size n 
Ensure: Detected lines L — {(0i, gi),...} 

1: P<- {{x,y)\x G {1,...,IW} Ay G { 1 , . . . , Ih} A I(x, y) is an edge} 
2: H(g,i)^0,Vge{l,...,Hp},Vi G { l , . . . . n } 
3: for all % G { 1 , . . . , n} do 
4: for all (x, y) G P do 
5: increment H(g(i,x,y),i) 
6: end for 
7: end for 
8: L^{} 
9: for 9 = [f 1 to He - [f J do 

10: L g L U {(0(0), G { 1 , . . . He} A (£, [f]) is a high local max. in H} 
11: for « = 1 to n - 1 do 
12: H(g,i) <- H(g,i + l),yge{l,...,He} 
13: end for 
14: H(Q,n)<-0,Vge{l,...,He} 
15: for all (x, y) G P do 
16: increment H(g(9+ \^],x,y),n) 
17: end for 
18: end for 

In the pseudo-code, maxima are not detected at the edges of the Hough space. Eventual 
handling of the maxima detection at the edge of the Hough space does not change the 
algorithm structure, but it would unnecessarily complicate the pseudo-code. Two solutions 
exist - either copying the border data or rasterizing necessary parts of the curves outside 
of the Hough space. Both approaches perform similarly and their implementation is 
straightforward. 

On C U D A , the threads in a block can be used for processing the set of edges P 
(lines 15-17 and 4-6) in parallel, using an atomic increment of the shared memory to avoid 
read-write collisions. In order to use all the multiprocessors of the G P U , the loop on line 9 
is broken to a number (e.g. 90 is suitable for current NVIDIA GeForce graphics chips) of 
sub-loops processed by individual blocks of threads. 

The algorithm as described above uses exactly He x n memory cells, typically 16-bit 
integer values. In the case when the runtime system has more fast random-access read-write 
memory, this memory can be used fully, and instead of accumulating one line of the Hough 
space (lines 15-17 of the algorithm), several lines are are accumulated and then scanned 
for maxima (line 10). This leads to further speed-up by reducing the number of steps 
carried out by the loop over 9 (line 9). 
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Figure 5.2: Illustration of Alg. 5.2. The grey rectangle represents the 
buffer of n lines. For row 4, the above-threshold maxima are detected in 
each step within the buffer. Then, the row 7 values are accumulated into 
the buffer, using the space of row 2, which will not be needed in future 

processing. 

Harnessing the Edge Orientation 

In 1976 O'Gorman and Clowes came with the idea not to accumulate values for each 9 but 
just one value instead [66]. The appropriate 9 for a point can be obtained from the gradient 
of the detected edge which contains this point [80]. One common way to calculate the 
local gradient direction of the image intensity is using the Sobel operator. Sobel detector 
uses two kernels, each approximates the derivation in horizontal (Gx), respectively vertical 
(Gy) direction. Sobel kernels for convolution are as follows: Gx = [1,2,1]T • [1,0, —1] and 
Gy = [1,0, —1]T • [1, 2,1]. Using these two values, the gradient's direction can be obtained 
as 9 = arctan(^r-). To avoid errors caused by noise and rasterization, accumulators within 
several degrees around the calculated angle are also incremented. From experimental 
testing, the interval's radius equal to 20° seems suitable. This approach reduces the 
computation time and highlights the maxima peaks. A disadvantage of this method is 
its dependency of the results on another user parameter - the radius. Small radius of 
the incremented interval of 9 can lead into discarding some maxima due to inaccurate 9 
location. On the other hand, too high a radius can diminish the performance benefits of 
the method. 

This approach to utilizing the detected gradient can be incorporated to the new 
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accumulation scheme presented in the previous section. When extracting the "edge points" 
for which the sinusoids are accumulated in the Hough space (line 1 in Alg. 5.2), also the 
edge inclination is extracted: 

1: P <- {(a,x,y)\x e {1,...,IW} Aye {l,...,Ih} 
A I(x,y) is an edge with gradient slope a}. 

P <- {(a,x,y)\x e {1,. . . ,I w } A y e { 1 , . . . , 4 } A I(x,y) is an edge with 
gradient slope a}. 

Then, instead of accumulating all points from set P (lines 4-6), only those points which fall 
into the interval with radius w around currently processed 9 are processed and accumulated 
into the buffer of n lines: 

4: for all (a, x, y) 6 P A i — w < a < i + w do 
5: increment H(g(i,x,y),i + |_§J) 
6: end for 

and similarly for lines 15-17: 

16: for all (a, x, y) e P A 9 + [ f J - w < a < 9 + Lf J + w do 

17: increment H(g(9 + [^\,x,y),n) 

18: end for. 

Please, note that the edge extraction phase (line 1) can sort the detected edges by 
their gradient inclination a, so that loops on lines 15-17 and 4-6 do not visit all edges, 
but only edges potentially accumulated, based on the current 9 (line 9 of Alg. 5.2). For 
(partial) sorting of the edges on G P U , an efficient prefix sum can be used [26]. 

5.1.3 Performance Evaluation of Hough Transform 

This section evaluates the speed of the newly presented line-detection algorithm, which is 
explained more in detail within 5.1. Two groups of experiments were made: 

• the first one was focused on the speed-up in the case when g was calculated for each 
9 (see 5.1.2, Alg. 5.2); 

• the second test evaluated the situation when the Sobel operator was used for detection 
of edge orientation and only an interval of the sinusoid curves was accumulated to 
the Hough space (see 5.1.2). 

Each test compared the computation time of 4 implementations: 

• ASUS nVIDIA GTX480 graphics card (1.5GB GDDR5 R A M ) running the new 
algorithm; 
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• ASUS nVIDIA GTX280 graphics card (1GB GDDR3 RAM) running the same code; 

• an OpenMP parallel C P U implementation of the presented algorithm (Intel Core i7-
920, 6GB 3xDDR3-1066(533MHz) R A M - the same machine was used for evaluating 
the G P U variants); 

• and an OpenMP parallel "standard" implementation running on the same machine. 
As the "standard" implementation, the code based on OpenCV functions was used 
and optimized by parallelization. 

Synthetic Binary Images 

As the dataset for this experiment we used automatically generated black-and-white images. 
The generator randomly placed L white lines and then inverts pixels on P different positions 
in the image. The evaluation was done on 36 images (resolution 1600 x 1200): images 1-6, 
7-12, 13-18, 19-24, 25-30, 31-36 were generated with L = 1, 30, 60, 90,120,150 respectively, 
with increasing P = 1, 3000, 6000, 9000,12000,15000 for each L. The parameters of the 
experiments were He = 960 and He = 1170 (resolution of the Hough space) and the 
threshold for accumulators in the Hough space was 400. 

Fig. 5.3 reports the results of the four implementations. Please note that the C U D A 
version is several times faster than the commonly used OpenCV implementation (paral
lelized to utilize the 8 cores of the processor) and achieves real-time or nearly real-time 
speeds. 

Real-Life Images 

The images used in this test were real-world images depicted by Fig. 5.4. For possibility 
of comparison with previous test, resolution of Hough space was same; i.e. He = 960 and 
Hd = 1170; the threshold for accumulators in the Hough space was dependant on the input 
image resolution (one fourth of the diagonal); this corresponds to the shortest possible line 
detected by Hough transform); the radius of the accumulated interval (see 5.1.2) was 20°. 

Fig. 5.5 contains the measured results. The results indicate that even for complex 
real-world images and high-resolution Hough space, the proposed algorithm implemented 
on commodity graphics hardware can detect lines at interactive frame rates. Contrary to 
the version that works with the whole sinusoids in the Hough space (see 5.1.3), the speed 
of the C P U implementation of the presented algorithm is about as fast as the standard 
C P U version. This can be explained by better cache coherency when only fractions of 
the sinusoids are rasterized. However, for efficient implementation on C U D A and similar 
architectures, the presented algorithm is required. 
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Figure 5.3: Performance Evaluation on Synthetic Binary Images. Red: 
GTX480, Orange: GTX280, Green: Striped algorithm on the CPU, Blue: 

Standard HT accumulation. 

0 x 525 1200 

3359x2236 ' 

Figure 5.4: Images used in the test. The number in the top-left corner 
of each thumbnail image is the image ID - used on the horizontal axis 
in Figure 5.5. The bottom-left corner of each thumbnail states the pixel 

resolution of the tested image. 
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300 

0 -• = 1 

5 10 15 20 
input image 

Figure 5.5: Performance evaluation on real-world images (see Fig. 5.4) 
using the Sobel operator and only accumulating intervals of the sinusoids. 
Red: GTX480, Orange: GTX280, Green: Striped algorithm on the CPU, 

Blue: Standard HT accumulation. 
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5.2 Line Detection Using Parallel Coordinates 

The following section reviews existing parametrizations of lines suitable for a fast and/or 
precise detection of lines. The classical Hough transform (based on any parametrization) 
has some advantages over the accelerated and approximated methods (it does not intro
duce any further detection error and it has a low number of parameters and, therefore, 
usually requires less detailed application-specific fine-tuning). This makes the real-time 
implementation of the Hough transform desirable. 

This study presents an algorithm for real-time detection of lines based on the PClines 
parametrization of lines. The algorithm discussed within this section used a modified 
strategy for accumulating the votes in the array of accumulators in the Hough space. 
The strategy was designed to meet the nature of today's graphics chips (GPUs) and 
other special-purpose computational platforms. The implementation achieves real-time 
performance at executing the "full" Hough transform on the G P U . 

Parallel coordinates (PC) were invented in 1885 by d'Ocagne [13] and they were further 
studied and popularized by Inselberg [37]. The coordinate system used for representing 
geometric primitives in parallel coordinates is defined by mutually parallel axes. Each 
N-dimensional vector is represented by (N - 1) lines connecting the axes (see Fig. 5.6). In 
this thesis, we will be using an Euclidean plane with a u-v Cartesian coordinate system to 
define positions of points in the space of parallel coordinates. For defining these points, a 
notation (u,v,w)p2 will be used for homogeneous coordinates in the projective space P 2 

and (u, i>)e 2 will be used for Cartesian coordinates in the Euclidean space E 2 : 

In the two-dimensional case, points in the x-y space are represented as lines in the 
space of parallel coordinates. Representations of collinear points intersect at one point-
the representation of a line (see Fig. 5.7). 

Based on this relationship, it is possible to define a point-to-line mapping between 
the original x-y space and the space of parallel coordinates. For some cases, such as line 
£ : y = x; the corresponding point ' in the parallel coordinates lies in infinity (it is an 
ideal point) and the points on this line are represented by the parallel horizontal lines. 
Projective space P 2 (contrary to the Euclidean E 2 space) provides coordinates for these 
special cases. A relationship between line £ : ax + by + c = 0 (denoted as [a, b, c]) in 
Cartesian coordinates and its representing point £ in parallel coordinates can be defined 
by mapping: 

(5.3) 

where d is the distance between parallel axes xO and yO. 
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Figure 5.6: Representation of a 5-dimensional Vector in Parallel Co
ordinates. The vector is represented by its coordinates C i , . . . , C5 on 

connected by a complete poly line (composed of 4 infinite 
lines). 

Parametrization "PClines" for Line Detection 

This section gives an overview of the "PClines" parametrization introduced by Dubská et 
al. [15]. The text is kept very concise; for more information, the original paper should be 
consulted. In the following section, we will use the intuitive slope-intercept line equation 
y = mx + b where m defines the slope of the line and b the y-coordinate of an intersection 
between the line and y-axis. Using this parametrization, the corresponding point £ in the 
parallel space has coordinates (d,b, 1 — m ) p 2 . The line's representation I is between the 
axes x' and y' if and only if —00 < m < 0. For m — 1, I is an ideal point (a point in 
infinity). For m = 0, £ lies on the y' axis, for vertical lines (m = ±00), £ lies on the x' 
axis. The system defined by parallel axes x', y' is further referred as straight (S) space. 

The representations of the lines with a positive slope lie in an infinite area outside 
the space between axes x', y'. To enclose also these representations to a finite part, we 
propose a twisted (T) system x', —y', which is identical to the straight space, except that 
the i/'-axis is inverted. In the twisted space, I is between the axes x' and —y' if and only if 
0 < m < 00. By combining the straight and twisted spaces, the whole TS plane can be 
constructed, as shown in Fig. 5.8. 

Fig. 5.8 (left view) shows the original x-y image with three points A, B, and C and 
three lines £1, £2, and £3 coincident with the points. The origin of x-y is placed into the 
middle of the image for the convenience of the figures and the right view depicts the 
corresponding TS space. It should be noted that a finite part of the u-v plane sufficient 
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Figure 5.7: Three collinear points in parallel coordinates: (left) 
Cartesian space and (right) space of parallel coordinates. Line £ is 

represented by point I in parallel coordinates. 
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Figure 5.8: Left Original x-y space and right its PClines representation, 
the corresponding TS space. 

for representing all possible lines in the bordered input image is defined as follows: 

—d < u < d 

—max (-y, y 1 < v < max (-y, y J 

where W and i f are the width and height of the input raster image, respectively. 

Any line £ : y = mx + b is now represented either by point Is i n the straight space or 

by It m the twisted space of the u-v plane: 

Is = (d, b, 1 — m)p2 —oo < m < 0 
(5.5) 

£t = (—rf, — b, 1 + m)P2 0 < m < oo 

Consequently, any line £ has exactly one image £ in the TS space; except for cases that 
m = 0 and m = ±oo, when Z lies in both spaces either on y' or x'-axis. That allows the T 
and S spaces to be "attached" one to another. Figure 3 illustrates the spaces attached 
along the x'axis. Attaching also the y' and — y'axes results in an enclosed Möbius strip. 
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Eq. 5.5 defines line-to-point mapping which can be used as a parametrization for the 
Hough transform. In this case, the TS space is used as an accumulator space, as depicted 
in Alg. 5.3. 

Algorithm 5.3 Detection of Lines Using Parallel Coordinates 
Require: Input image I with dimensions W, H 
Ensure: Detected lines L = {(mi, bi),...} 

1: S(u,v) <- 0,Vm e {-d,... ,d},v G {vmin,.. .,vmax} 
2: for all x e {1,..., W}, y e {1,..., H} do 
3: if I(x, y) is an edge then 
4: rasterize line in the S space 
5: rasterize line in the T space 
6: end if 
7: end for 
8: L <- {} 
9: L = {(m(u), b(u, v))\u e {-d,... d}A 

v e {vmin,..., vmax] A S(u, v) is a high local max.} 

The space TS is discretized directly according to Eq. 5.4; other discretizations (denser 
or sparser) would be possible by just linearly mapping the u and v coordinates used in the 
algorithm. The condition used in step 3 is application specific and it typically involves an 
edge detection operator and thresholding. The lines rasterized in Steps 4 and 5, in fact, 
constitute a two-segment polyline defined by three points: (—d, —y) — (0, x) — (d, y); where 
(—d, —y) and (0,x) are vertices of the line accumulated in the T half and (0,x) and (d,y) 
are vertices of the line accumulated in the S half. Step 9 scans the space of accumulators 
S for local maxima above a given threshold-this is a standard Hough transform step. The 
line's parameters m-b are computed by the functions m(u) and b(u, v) based on the u and 
v coordinates of the point in the TS space using Eq. 5.3; any other parametrization of 
lines can be the output of the algorithm. 

Step 9 of the pseudo-code looks for local maxima above a given threshold in the TS 
space. Usually, a small neighbourhood (3 x 3; 5 x 5 or 7 x 7 in cases of high resolution of 
the Hough space) is used for detecting the local maxima. The accumulator value must 
be above a given threshold to be considered for a "high local maxima". The threshold is 
another input parameter of the algorithm, but since it does not influence the algorithm's 
structure, it is used silently by Step 9 for simplicity of the algorithmic notation. 

5.2.1 CUDA Implementation 

The key characteristic of Alg. 5.3 in the previous section is that steps 4 and 5 must 
rasterize the lines in the T and S spaces (or the half-period of the sinus curve in the case 
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of the h. parametrization) and increment the corresponding accumulators in the Hough 
space. In some systems, such a large random-access read-write memory might be expensive 
or even not available at all. It builds upon an algorithm recently published by the authors 
of this article [42]. 

As already discussed, algorithm for rasterization into Hough space in 5.1.2, a prin
ciple of Hough transform algorithm remains same. The difference is only in a way of 
parametrization, originally 9 — g, into TS parametrization [28]. 

Harnessing the edge orientation is also based on 5.1.2 with difference in TS space 
modification. 

5.2.2 OpenGL Implementation as a Reference 

Contrary to the "standard" 9 — g parametrization where sinusoids need to be rasterized 
into the accumulator space, in the case of PClines, for each edge point detected in the input 
image, two-line segments were rasterized. Rasterization of line segments (and blending 
the rasterized pixels into a frame buffer) is a natural task for the graphics chips. There is 
a separate paper published on OpenGL implementation of the PClines [14]. The whole 
process was done by the graphics chip, programmed in OpenGL and GLSL: 

• Edges are extracted by a geometry shader which accesses a texture with the input 
image and, for each pixel in the input image, it emits zero, two, or three endpoints 
of a poly-line to be rasterized into the TS space; 

• Line segments are rasterized by OpenGL and blended into the frame buffer; 

• The TS space is searched by another geometry shader which emits the parameters 
of detected lines. 

This implementation using OpenGL and GLSL will be used as a reference and referred to as 
"PClinesGL" in the charts. For more information on the algorithm and its implementation, 
please refer to the original paper [14]. 

5.2.3 Performance Evaluation of Parallel Coordinates 

This section presents the experimental evaluation of the proposed algorithm of PC, which 
are explained in 5.2 and briefly describes a PClines-based algorithm for OpenGL that 
was used as a reference in the measurements. 5.2.3 contains the results achieved by a 
C U D A implementation of the PClines-based algorithm presented in this section compared 
to other implementations. 
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The following hardware was used for testing (in bold face is the identifier used later on 

in this text): 

• GTX480: NVIDIA G T X 480 in a computer with Intel Core i7-920, 6 GB 3xDDR3-
1066 (533 MHz) R A M ; 

• GTX280: NVIDIA G T X 280 in a computer with Intel Core i7-920, 6 GB 3xDDR3-
1066 (533 MHz) R A M ; 

• HD5970-1: A M D Radeon HD5970 (single core used) in a computer with Intel Core 
i5-660, 4 GB 3xDDR3-1066 (533 MHz) R A M ; 

• HD5970-2: A M D Radeon HD5970 (both cores used) in a computer with Intel Core 

i5-660, 4 GB 3xDDR3-1066 (533 MHz) R A M ; and 

• i7-920: Intel Core i7-920, 6 GB 3xDDR3-1066 (533 MHz) RAM—the same computer 
is used for testing the G T X 480 and G T X 280. 

A n evaluation of the accuracy of the PClines line parametrization can be found in paper 
where the PClines parametrization was introduced in [15]. The measurements reported 
that PClines are equal or more accurate than the "standard" 9 — g parametrization. 

Real-Life Images 

Two datasets were used for measuring the performance of different algorithms. The first 
one was a set of real photographs with different amounts of edge points and different 
dimensions (Fig. 5.9). 

The images are sorted according to the number of edge points detected by the Sobel 
filter. Only this limited set of images is selected for the graphs to be readable. The images 
were selected randomly from a large set of images and they well represent the behaviour 
of the algorithms for all images we have observed. 

The presented algorithm (referred to below as PClines-CUDA) was compared to 
different alternatives: 

• Software implementations of the PClines based on a Hough transform implementation 
taken from the OpenCV library and parallelized by OpenMP and slightly optimized; 

• A C U D A implementation of the standard 9 — Q. parametrization (ThetaRho-
CUDA) . The arrangement of the algorithm is very similar to the presented PClines-
based one; 

• The OpenGL implementation of PClines (PClines-OpenGL) as described in 5.2.2. 
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Figure 5.9: Images used in the test. The number in the top-left corner 
of each thumbnail image is the image ID used on the horizontal axis 
in Figs.5.10 and 5.11. The bottom-left corner of each thumbnail image 
states the number of edge points and pixel resolution of the tested image. 

The results are shown in Fig. 5.10. The measurements verify that the computational 
complexity is linearly proportional to the number of edge points extracted from the input 
image and the edge-detection phase is linearly proportional to the image resolution. The 
GPU-accelerated implementations are notably faster than the software implementation.A 
detailed comparison of the GPU-accelerated implementations is shown in Fig. 5.11. 

Synthetic Binary Images 

The second dataset consisted of automatically generated black-and-white images. The 
generator randomly places L white lines in an originally black image and then inverts pixels 
on P random positions in the image. The evaluation is done on 36 images (resolution 
1600x1200): images 1-6, 7-12, 13-18, 19-24, 25-30, 31-36 are generated with L = 1, 30, 
60, 90, 120, 150, respectively, with increasing P = 1, 3000; 6000; 9000; 12000 for each L. 
The suitable parameters for images of these properties were He = 960 and Hg = 1170 
(resolution of the Hough space) and the threshold for accumulators in the Hough space 
was 400. The purpose of this test was to accurately observe the dependency of processing 
time on the number of lines in the image and on the number of pixels processed as edges. 
These two quantities determine the number of repetitions in critical parts of the algorithm. 

Fig. 5.12 shows the results of the four implementations; Fig. 5.13 contains a selection 
of the graphs-only the hardware-accelerated methods. Once again, it should be noted 
that all the accelerated versions are several times faster than the commonly used OpenCV 
implementation and achieve real-time or near real-time speeds even for high-resolution 
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Figure 5.10: Performance evaluation on real-world images (see Fig. 5.9) 
using the Sobel operator and only accumulating an interval on the w-axis 

(see 5.2.1). 

inputs. 

On current graphics chips, the algorithm presented here (PClines-CUDA) and the 
previously published algorithm (ThetaRho-CUDA) perform equally fast (it should be 
noted that, in Fig. 5.11 and 5.13, their curves totally overlap). On special, embedded, 
and low-power architectures, the PClines-based version may perform much better or 
can be the only feasible one, because it requires no floating-point computations and no 
goniometric functions (which are cheaply available on the GPUs). The only advantages of 
the PClines-based algorithm on G P U is, therefore, its better accuracy [15] and its ability 
to directly detect parallel lines and sets of lines coincident with one point. 

Fig. 5.11 and 5.13 show that, on the pre-Fermi NVIDIA card (GTX280), the OpenGL 
version of the PClines-based Hough transform performs better than CUDA. That is because 
the atomic increment operation (atomiclnc) in the shared memory is not optimized on 
this generation of the graphics chips. Very good results also come from recent Radeon 
graphics chips (with the OpenGL version). Fig. 5.11 and 5.13 also show that the OpenGL 
algorithm by Dubská et al. [14] scales well on the dual-core graphics card Radeon HD5970. 
When executed on both the cores, the speed is almost doubled compared to the single-core 
version. A comparable scaling is achieved also on the C U D A version of the algorithm. 
However, on CUDA, the problem must be "manually" divided into an appropriate number 
of blocks within the kernel. Such a division is discussed in 5.2.1. 
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Figure 5.11: Performance evaluation on real-world images (see Fig. 5.9) 
using the Sobel operator and only accumulating an interval on the w-axis 
(Sect. 5.2.3). Only the hardware-accelerated methods are shown here for 

better clarity. 

Discussion 

The Fermi architecture (compared to the previous generation) speeded up the algorithm 
in the OpenGL version just the amount which can be expected from the increase in the 
number of the streaming multiprocessors. However, the C U D A version presented in this 
study speeded up notably more (about 4 times) on the Fermi architecture. This can 
be explained by the improved atomic operations in the shared memory, involving the 
new design of the L2 cache on the GTX480 [[20]]. Attribution of the performance boost 
between the GTX280 and GTX480 to the atomic instructions was verified by running 
the algorithm with the non-atomic equivalents of the increment/add instructions (Fig. 
5.14). For weaker graphics chips (low-power, mobile, etc.), the OpenGL version of the 
PClines-based algorithm might be the right choice. 

We have evaluated several different configurations of the shared memory as it is 
used by the algorithm. Namely, different number of columns can be allocated for the 
circular buffer of columns, as noted in the last paragraph of 5.2.1. We allocated varying 
numbers of these columns and observed the results in Fig. 5.15. Different configurations 
of the shared memory also illustrate the performance of the algorithm in terms of being 
computation/memory bound. We measured instructions per cycle (1/CPI) and the 
effective bandwidth in Fig. 5.16. These measurements indicate that the algorithm is 
mostly computation bound and using the whole shared memory helps in accessing the 
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Figure 5.12: Performance Evaluation on Generated Data 

global memory more efficiently. This behaviour reflects the nature of the algorithm which 
was designed to be using memory efficiently by processing the data in stripes. This access 
strategy helps serialize and minimize the accesses to the global memory. 
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Figure 5.13: Performance evaluation on generated data. Only the 
hardware-accelerated methods are shown here for better clarity. 

individual images 

Figure 5.14: Comparison of the speed on graphics cards of two different 
generations: GTX480 and GTX280. In the case of GTX480, execution 
without atomic instructions (atomic add and inc were replaced by non-
atomic equivalents) is about three times faster (blue, red). However, 
in the case of GTX280 (magenta, green), the performance when using 
atomic instructions is about 259 slower. It should be noted that this 
includes only the edge-detection part of the algorithm. This part is the 
most time-consuming one and more importantly it is much more prone 
to the speed of atomic instructions. The rest of the algorithm is severely 
affected by the incorrect results produced by non-atomic operations and 

thus their timing was omitted. 
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Figure 5.15: Time performance for several selected images from Fig. 
5.9 for different configurations of the shared memory usage (i.e., number 
of spare columns used by the algorithm). Note that as expected in the 
algorithm design, using the whole shared memory for the accumulation 
buffer indeed speeds the computation up. However, for high number of 
blocks within the kernel, the impact of this improvement is diminished 
and also, very large shared memory would not help notably any more (as 
illustrated in Fig. 5.16). Time performance for several selected images 
from Fig. 5.9 for different configurations of the shared memory usage 
(i.e., number of spare columns used by the algorithm). Note that as 
expected in the algorithm design, using the whole shared memory for 
the accumulation buffer indeed speeds the computation up. However, for 
high number of blocks within the kernel, the impact of this improvement 
is diminished and also very large shared memory would not help notably 

any more (as illustrated in Fig. 5.16). 
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Figure 5.16: Usage of the graphics chip in terms of memory and 
computation percentual load compared to theoretical limits. Green boxes 
represent percentual usage of the computational power of the graphics 
board (CPI/theoretical maximum). Red boxes reflect the usage of the 
theoretical memory bandwidth (effective bandwidth/ theoretical max). 
The graph shows five series of measurements on five different images 
(selected from Fig. 5.9); a single measurement within the series represents 

one shared memory configuration, equally as in Fig. 5.15. 

Figure 5.17: Original x-y space (left) and its PClines representation 
the corresponding TS space (right). 



Chapter 6 

Research Achievements 

As all the research activities presented in this thesis were performed as a collective work, 
this chapter aims to conclude the research achievements of me, as an author, and my 
asset to this thesis. First section provides an overview of work I have done, across all 
the research areas corresponding with my overall area of focus (CUDA implementation 
and optimization). Second section concludes and presents products whose development 
was supported by our research outputs. A l l those products are however not an outcome 
of single individual, but are the result of the group of people, all those, that have been 
participating on the research. 

6.1 Author's Achievements and Contribution to Re
search 

This section is divided into three parts in accordance with all researched areas, where each 
of them points out the areas that were a subject of my responsibility. Any other details to 
research are available in previous chapters. 

6.1.1 Real-Time Object Detection Performance Boost 

Real-time object detection and boosting its performance, is a very costly task from the 
computational resources point of view. As stated in 1.1.1, there was a high demand for 
efficient object detection methods and implementations. My inputs to this research were 
two proposed CUDA implementations (see 3.2.1 and 3.3.3) that were promising to be more 
efficient from various points of view such as portability, maintenance, speed-ups, and time 
consumption during the development. It was then compared to, except others, shader 
solution (which was the closest solution to CUDA) . This was shown to have complicated 
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drawing of geometric primitives on the "screen" to control the object detection process. 

To be able to perform both implementations, the knowledge of weak classifiers was 
beneficial. Knowledge of weak classifier cascade enabled me to conform distribution of 
computation capacity between different parts of G P U , what is explained further in this 
section. 

C U D A implementations brought memory arrangement improvements in comparison 
with Cg shader. Another improvement was that it was working without pre-processing 
phase, because it relied on the l x l , 1 x 2 , 2 x 1 and 2 x 2 set of mask dimensions. As 
indicated by the graph in 3.14, such limited set of sampling function dimensions was still 
sufficient and well comparable with the commonly used Haar features. 

In Tab. 3.2, the C U D A code did not perform excellently, but a tremendous increase 
of performance was observed when the number of weak classifiers is increased (towards 
50 in the table). However, if the boosted classier would be a standard AdaBoost [92] or 
similar, the number of weak classifiers would be constantly high (hundreds). In such case 
the CUDA implementation outperformed tremendously any other solution available to our 
knowledge. 

The following paragraphs describes in detail particular functional blocks of algorithms 
that I was focusing on. Initially I have taken into account two facts: 

• the classifier was operating on one fixed-size window; and that 

• the execution of the classifier on different locations of the input image was parallel. 

Loading and Representing the Classifier Data 

I was experimenting with placement of the classifier data in shared, constant and texture 
memory; and tried to balance all access of whole algorithm into units of texture memory 
and constant memory. 

The placement into the shared memory required pre-loading it upon start of each block 
from another location, what made this solution the least efficient solution. Two other 
options (texture memory or constant memory) seemed to be performing equally well, so 
storing the classifier in constant memory was preferred in order to offload the texturing 
units which were used for accessing the pyramidal image (see 3.2.1). 

Although the access would have been slightly simpler if the data was stored in texturing 
memory of C U D A environment; the experiments showed that the overall detection times 
are better when the classifier data is stored in the constant memory. This was mainly 
because the image was stored in texturing memory and was heavily accessed, so off-loading 
the access to classifier data to the constant memory relieved a system bottleneck. 
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The constant memory (as well as texturing memory) was cached and the referencing 
to the classifier data exhibited a large locality of reference - all the threads were typically 
processing the same weak classifier. 

Input Image Pre-Processing 

To be able to detect the object in different scales, the image must have been scanned in 
multiple resolutions. The common approach benefited from the ability of Haar wavelets 
calculated using the integral image to be evaluated in arbitrary scales in constant time. 
The L R F features could have been evaluated in a similar manner as well, but experiments 
showed that especially on the graphics card, it was notably more efficient to construct a 
multi-resolution pyramid from the input image, and scan it by the detector. See Fig. 3.6 
for the illustration of how the pyramid was built. I used constant colour filling to eliminate 
empty spaces by classifier itself. 

Also, I didn't need to pre-process image for various feature sizes, because I choose 
to rely on the combinations l x l , 1 x 2 , 2 x 1 and 2 x 2 of the sampling function, what 
allowed nice performance improvements. Thanks to built-in texture sampling with bilinear 
interpolation (Alg. 3.4) on the usable graphics cards, sums of 2 neighbouring pixels in 
vertical or horizontal direction or sum of four neighbouring pixels consumed the same 
amount of time as sampling just one source pixel. 

Object Detection 

M y main goal in this subtask was to divide whole work into small tasks for threads as 
efficiently as possible. Threads were consuming hardware resources: registers and shared 
memory what was limiting the number of threads that could have been efficiently executed 
in a block (both the maximal and minimal number of threads). 

One thread could also perform the task of smaller granularity (e.g. one or more weak 
classifiers), but that would imply too much the inter-thread communication. Image pixels 
(or window locations, more precisely) were therefore divided into groups, which were 
calculated by the threads. The final solution divided image into rectangular tiles, which 
were solved by different thread blocks. Experiments showed that the suitable number of 
threads per block was around 128 (detailed measurements were done and are presented 
within 4.1.3). 

However, executing blocks for only 128 pixels of the image would not have been efficient, 
so we chose than one thread will calculate more that one pixel - a whole line of pixels 
in the rectangular tile (Fig. 3.10). One thread was computing one or more locations of 
the scanning window in the image. The tile could extend over the whole width of the 
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image, or just a part of it. Because of the thread rearrangement described in 3.2.1, the 
total number of pixels processed by one thread block was limited proportionally to the 
size of the shared memory (see 6.1.1). 

When object was recognized at window position, the coordinates were written to 
the global memory. To avoid collisions of concurrently running threads and blocks, 
atomic increment (atomicIncO) of one shared word in the global memory was used for 
synchronizat ion. 

I have also studied the influence of CUDA block width size (see 3.6.1). As shown from 
measurements in Fig. 3.20, bigger block reduced the computation time, because it lowered 
the number of blocks necessary, and since the number of blocks is always integer and the 
blocks must share the same dimensions in CUDA, block widths that were equal or slightly 
higher than integer fractions of the image width were desired. For a particular application 
a proper block width must have been found in accordance with these rules. 

Thread Rearrangement 

In case of branching, the threads were split into groups in accordance to the variant of 
code they were executing, and the groups of identical execution paths were run separately 
from other groups. Threads were organized into warps and remained in a warp until their 
end. 

The weak classifier cascade thresholds were set as Wald proposed in the sequential 
probability ratio test, which he proved was the fastest possible classification strategy for a 
given target error rate. Due to desired focus-of-attention capability of WaldBoost, some 
threads terminated with negative decision earlier than others (Fig. 3.9), but the warp 
continued to evaluate until the very last thread terminated. This led to relatively low 
utilization of the hardware resources. 

To address this issue, I proposed thread rearrangement: at some stage of the classifier, 
all locations in the image that have not been classified as negative were written into 
a memory block shared between the threads, and another phase of the classification 
was started (that processed only these locations). This rearrangement could have been 
performed several times during the whole classification process. See Fig. 3.11 for an 
illustration of two rearrangements. 

The intermediate positive (more accurately not-yet-negative) samples were stored into 
the shared memory of the multiprocessor similarly as the final detections were written to 
the global memory, as described above. The exact count and locations of the rearrangement 
steps needed to be determined experimentally. 

Generally, the major influence of the rearrangements was during the beginning of the 
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classifier, because the most of the locations were dropped out very early (Fig. 3.9) and only 
a small fraction of computational load remained to the further stages. Determining optimal 
thread rearrangement stages must have been done experimentally based on knowledge of 
classifier discrimination characteristic. Basically, scanning window locations needed to be 
rearranged several times during the classifications to better use the hardware resources. In 
our environment, no more than three rearrangements were worth doing. My experiments 
(Fig. 3.21) confirmed that the 1 s t rearrangement matters the most, because it rearranged 
a large number of threads. The optimal points for rearrangement were notably different 
for classifiers trained with different parameters - the shown experiment therefore did not 
result into fixed rearrangement spots, but rather illustrated the process of optimization 
for a given classifier. 

There are many efficient image processing CUDA implementations that use the shared 
memory for storing the processed image. The shared memory is very fast and is dozens of 
kilobytes large - tiles of the processed image can be loaded into it, and processed by thread 
blocks. I have tried variants of this arrangement and experiments I have performed showed 
that using the texture memory was more efficient. The texturing units performed bilinear 
interpolation between neighbouring pixels, which could have been used for evaluation of 
L R P . Most importantly, when using the texturing memory, the execution was as fast as 
when using shared memory (apparently because the bottleneck was in the calculation, not 
memory access), and the shared memory remained spared for other helpful purposes, as 
was the thread rearrangement described above. 

I have also tried several arrangements, where the threads were assigned the work 
dynamically, so that when the evaluation at one location terminated, the thread "asked 
for" another location in the image and processed it. The idea was that the work unit 
would not be one location in the image, but one weak classifier. The control required by 
this arrangement, and especially the need to synchronize the threads seemed to be too 
complex and these attempts were much slower than the finally achieved solution with the 
thread rearrangement (although some threads were still idle). 

6.1.2 Spectral Image Analysis Performance Boost 

My research achievements in the field of spectral image analysis boosting and optimization 
were described into details in sections 4.1.2 and 4.2.1. The research performed in those 
sections was fully covered by me, but also with the great support of my colleagues. As the 
problem research was too complex, following paragraphs are just a brief description. 
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Principal Component Analysis 

The topic of the problem has been revealed from the start-up project Optical sensor 
technology in medical applications of the University of Eastern Finland. 

Using modern computer technology, the P C A can be used on very large data sets 
where its utilization has previously been unthinkable, and it can also be used in real-time 
applications. 

This research was motivated by the need of using P C A on spectral images in the 
context of real-time medical imaging. 

Generally, in the case of spectral imaging, the dimensionality of the input data was not 
high (commonly 6-81 channels) but the number of samples (i.e. number of pixels in image 
or video) was large - millions to billions. Existing solutions (e.g. [39, 38, 2, 67]) did not 
exactly suit this purpose and this unique situation must have been covered by a particular 
solution. 

M y research assumed that the dimensionality of the data was relatively low, so the 
computation of eigenvectors, addressed by the mentioned works, was relatively cheap. It 
was the computation of the co-variance matrix, which was costly for the considered data, 
and my goal was to accelerate the algorithms presented in this part of the research. 

In the presented approach I was considering spectral dimensionality from 6 to 81 
channels (see 4.1). M y goal was to search for the best possible three-component vector 
space that could represent the spectral information in the image, and then visualize the 
obtained information in the R G B colour space. 

Result of my work was effective computation of the correlation matrix (Eq. 4.7). I 
had to consider minimal number of C U D A blocks and also the minimal number of CUDA 
threads for best usage of available G P U resources. The number of C U D A blocks and its 
usage was not such a problem to overcome, as the number of C U D A blocks should be 
the same as number of multiprocessors in G P U . Bigger problem was the arrangement of 
threads when spectral image didn't have so many recorded wavelengths and we needed at 
least ~ 100 threads to run [64]. To overcome this problem I came with a solution where 
threads were divided into groups - chunks p (Fig. 6.1) and each group processed another 
part of Si (Eq. 4.7). Threads in the same group iterated and accumulated results in one 
chunk of pixels (Alg. 4.3 Step 6) for pre-computed [u,v] coordinates. These pre-computed 
coordinates also reflected symetricity of the output matrix. 

In the initialization phase of each repetition (Alg. 4.3 Step 4), all threads loaded all 
chunks of pixels, which they will process, to shared memory. After initialization and 
synchronization, processing phase began with thread arrangement mentioned above (each 
thread processed specified coordinates [u,v], threads were divided into groups, and all 
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threads traversed over specified number of pixels C (see 4.1.2)). Another problem was 
that we could not load enough pixels of Si into the shared memory and utilize each CUDA 
thread block as much as possible. To overcome this problem, I made algorithm to repeat 
with another set of pixels r (Fig. 6.1). 

At the end of C U D A block algorithm, we needed to summarize all threads which have 
the same [u,v] coordinates, but different groups of pixels S j . To resolve this problem, I 
used tree summation. 

This approach helped us to utilize G P U to maximum and as we measured the results, 
we found that the biggest issue in this case was the speed of memory. 

Details to the whole proposed algorithm, with measurements of performance impact 
for various C U D A thread and block arrangements, can be found in 4.1.2. 

| t0[0,0] t21[0,0] t105[0,0] t0[0,0] 
| t1[0,1] t22[0,1] t106[0,1] t1 [0,1] 
I— t2[0.2] t23[0.2] t107[0.2] t2[0.2] 

t20[6.6] t41[6.6] t125[6.6] t20[6.6] 

s 0 S 1 S 2 S 3
 S P C - 1 

p=0 p=1 p=P p=0 p=1 

r=0 r=1 

Figure 6.1: Example of one CUDA block thread arrangement for PCA 
correlation matrix computation. 

Non-Negative Tensor Factorization 

N T F have various fields of usage, but the dimensionality of these problems is often so high 
that N T F computations takes hours, so the acceleration of this process was desirable. My 
N T F research was focused on the efficient G P U implementation for general iterative N T F 
computation by gradient descent, based on Gauss-Seidel and Jacobi methods [29], using 
the C U D A programming environment. The aim was to decompose the problem into parts 
that can be calculated in parallel. Details on algorithm and design can be found in 4.2. 

As the baseline for my algorithm (Alg. 4.4) I have used Hazan's et al. [29] iterative 
rules (Eq. 4.10 - Eq. 4.12). My goal was to divide those rules/equations to smaller tasks, 
which could be parallelized. The first opportunity for parallelization were temporary 
matrices M u , M„, and M w (Eq. 4.13), created by inner product of vectors u, v and w. 
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The second one was numerator of Eq. 4.10 - Eq. 4.12, which was the most significant 
time-consuming part of the whole N T F computation. The numerator calculation consisted 
mostly of repeated summing of the large array, so it was more demanding for memory 
bandwidth than computationally intensive. 

After analysis of the iterative formulas, I came with an effective division of the numerator 
summing part for threads (Alg. 4.5). Instead of calculating each value of vector u and 
v resp. w independently and after that traverse all K layers in the same manner, which 
will cause memory bandwidth problems, I calculated whole set of values for each layer 
in vector in one pass. High demand for memory bandwidth was solved by lowering the 
number of reads from G matrix. 

The algorithm depicted on Fig. 6.2 starts with a straightforward solution, where 
each C U D A block computes one Uj (resp. V i , Wi) value from Eq. 4.10, Eq. 4.11 or Eq. 
4.12 for whole set of layers K. Than the calculation was divided into independent tiles 
of G, so every tile was covered with N x N threads (8 x 8 or 16 x 16 for better tree 
summation), which calculated one summation per one vector layer k, and stored it in array 
of accumulators a. This traversed G only once, and reduced whole needed bandwidth. In 
the next step the whole set of threads moved to next tile, and accumulated new sums to a 
of each thread. 

Parts of vector u and v resp. w, corresponding to the working tile, were cached in the 
shared memory. This gave us a big performance speed-up, because each element of these 
cached parts was accessed many times. The reason why tiling is performed is that it was 
not possible to fit whole vectors with all layers into fast shared memory. 

After traversing all tiles, tree summations were used for final result and then summed 
by tree summations [25] to form K values. After all tiles are processed by all C U D A 
blocks, the whole set of values for output vector is formed. 

Details of whole algorithm design can be found in 4.2.1. With this design of algorithm, 
up to 100 x speed-up was achieved. 

6.1.3 Real-Time Line Detection Performance Boost 

Standard Hough transform was known to be too slow to be usable in real time. My task 
within this part of the research was again the optimization and implementation of the 
proposed algorithm discussed within Chapter 5, suitable for computer systems with a 
small but fast read-write memory, such as today's graphics processors. As we knew that 
currently available algorithm was working with large amount of data, what was hard (or 
almost impossible) to be processed in real-time in GPUs, we needed to design an algorithm 
that would suit these limited but fast resources. 
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Figure 6.2: NTF algorithm overview. 

To achieve real-time performance, the memory requirements must have been limited 
to the shared memory of a multiprocessor. Following sections are concluding my main 
achievements within the area of C U D A boosting. 

C U D A version proposed by me was several times faster (Fig. 5.3, 5.5, 5.10, 5.11, 5.12, 
5.13) than the commonly used OpenCV implementation (parallelized to utilize the 8 cores 
of the processor) and achieved real-time or nearly real-time speeds. The real-life image 
test showed that the proposed algorithm implemented on commodity graphics hardware 
could detect lines at interactive frame rates. 

Small Read-Write Memory of Accumulators 

The first part of my idea was storing just a small part of Hough space. My goal was to fit 
Hough space into small shared memory of a multiprocessor. I have observed that just a 
small part of Hough space would be enough for maxima detection performed in next steps. 

The new algorithm (Sec. 5.1.2) stored only He x n accumulators (see Fig. 6.3), where 
n was the neighbourhood size required for the maxima detection. The memory necessary 
for containing the n lines was all the memory required by the algorithm and even for high 
resolutions of the Hough space, the buffer of n lines fitted easily in the shared memory 
of the G P U multiprocessors. Whole scheme worked on principle of shifts by one or more 
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rows, where the new row/rows were accumulated. Thus only the buffer of n lines was 
being reused. The memory shift was implemented using a circular buffer of lines to avoid 
data copying (Alg. 5.2). 

In the case, when the runtime system had faster random-access read-write memory, 
this memory could be fully used, and instead of accumulating one line of the Hough space, 
several lines were accumulated and then scanned for maxima. This led to further speed-up 
by reducing the number of steps carried out by the loop over 9. 

Processed 

Maxima detection 

Next line for processing 

q . n 

Delete old line 
and replace 
with new line 

e 

Going to process 

Figure 6.3: Small Read-Write Memory of Accumulators 

Harnessing the Edge Orientation 

The second part of my idea was special edge orientation harnessing. This special approach, 
described in 5.1.2, to utilize the detected gradient could have been incorporated to the 
new accumulation scheme presented above and in the 5.1.2. 

Instead of accumulating all points from set P (see 5.1.2), only those points which 
fell into the interval with radius w around currently processed 9 were processed and 
accumulated into the buffer of n lines. 

The edge extraction phase sorted the detected edges by their gradient inclination 9, so 
that loops did not visit all edges, but only edges potentially accumulated, based on the 
current 9. This basically increased the efficiency of point look-up. 

First of all I have detected the edges and their orientation (Tab. 6.1a). Consequently I 
have had to sort the edges and for each group of them, count the number of edges that fell 
into that particular group (Tab. 6.1b). Groups were set to be split into specified width. 
Width of each group was based on our Hough space 9 resolution. 
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For rough sorting of the edges on G P U , an efficient prefix sum was used (Tab. 6.1c) 
[26]. Based on these prefix sums I have allocated the buffer, and this buffer was then filled 
with edges in accordance with their orientation (Fig. 6.4). When the buffer was prepared, 
it was used for filling HQ X n accumulators. Finally, the rest of the algorithm was left in 
the original manner. 

X Y 9 G 
"20 120 15° 200 
53 165 126° 151 
48 975 78° 54 
158 304 26° 186 
624 546 105° 76 
297 89 5Q 42 
352 805 8Q 94 
245 312 19° 115 

(a) Sobel operator output 

9 range Count 
0Q-10Q 64 
10Q-20Q 81 
20Q-30Q 75 
30Q-40Q 124 
40Q-50Q 106 

9 range Count 
0Q-10Q 0 
10Q-20Q 64 
20Q-30Q 145 
30Q-40Q 220 
40Q-50Q 344 

(b) Edge Counts for a-ranges (c) Prefix-sums for a-ranges 

Table 6.1: Example of Harnessing the Edge Orientation 

0°-10s 10°-20s 20°-30s 30°-. 

64 145 220 

Figure 6.4: Example of Sorted Edge Buffer 

6.2 Developed Products 

The research described within this thesis, contributed in development of four products 
that are further described in this section. As already mentioned in the beginning of this 
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chapter, the following products are not an outcome of single individual, but are the result 
of the group of people, all those, that have been participating on the research. 

6.2.1 Object Detection Framework 

Object detection framework software, developed in 2009, contains general framework for 
object detection by classification. It uses classifiers trained by WaldBoost algorithm (see 
Chapter 3). The framework contains several modules that implements feature extraction 
from image on various architectures (CPU+SSE, G P U , C U D A ) . The package could be 
used in various applications, while the most prominent of them are detection of faces and 
facial features. The other possible application include detection of persons, licence plates, 
cars and others. The package itself contains runtime framework, classifiers and videos, 
it is free of charge and is available on the following link: www.fit.vutbr.cz - products -
Object Detection Framework. 

6.2.2 CUDA P C A Plug-in 

P C A (see Chapter 4) dynamically linked library and M A T L A B plug-in, developed in 2009, 
can be used for any purposes - both research or industrial. It is free of charge, and the 
library is available on the following link: 
www.fit.vutbr.cz - products - C U D A P C A Matlab Library. Researchers using the library 
are asked to kindly cite this article in works using the library. A detailed guide to using 
the library is a part of the package, however, this section gives a brief summarization of 
the library's design and a sketch of its usage. 

The dynamically linked library exports several functions cudaPCA_char, cudaPCA_f loat, 
cudaPCA_double, ssePCA_char, ssePCA_f loat, and ssePCA_double. Since C U D A sup
ports only single precision ( C U D A does support also double, but it is much slower and 
generally hardly usable), the cudaPCA_double version only uses page-locked memory for 
faster conversion to float and back. 

One function prototype is: 

cudaPCA_char(unsigned char * p i x e l s , 
unsigned width, unsigned height, unsigned n, 
f l o a t *eigen_vec, f l o a t *eigen_val); 

and prototypes of the other functions are analogous. The image data is stored in p i x e l s , 
which contains width*height*n bytes of image data, row alignment padding is not 
supported for simplicity, though modification of the algorithm to support it is possible. 

http://www.fit.vutbr.cz
http://www.fit.vutbr.cz
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Identifiers eigen_vec and eigen_val are output variables, with preallocated buffers for 
the eigen vectors and values. 

The function in the M A T L A B plug-in takes arguments corresponding to the above 
mentioned function and returns the eigen vectors and values. The plug-in internally calls 
the cudaPCA_char or cudaPCA_double functions. 

6.2.3 CUDA N T F Plug-in 

N T F (see Chapter 4) dynamically linked library and M A T L A B plug-in, developed in 2009, 
can be used for any purpose - both research or industrial. It is free of charge and is 
available on the following link: www.fit.vutbr.cz - products - C U D A Nonnegative Tensor 
Factorization Library. Researchers using the library are asked to kindly cite this article in 
works using the library or its source code. A detailed guide to using the library is part of 
the package. 

The library interface is designed to be very simple. The dynamically linked library 
exports only two functions cudantfFloat and cudantfDouble. 

Since C U D A supports only single precision, the variant processing double inputs 
computes in single precision and only uses page-locked memory for faster conversion to 
float and back. The prototype of the cudantfFloat function is: 

cudantfResult cudantfFloat(ds 
const f l o a t * G, // float[R*S*T] 
unsigned R, unsigned S, unsigned T, 
unsigned rank, unsigned i t e r a t i o n s , 
c udantfInit i n i t , 
f l o a t * U, // float[R*rank] 
f l o a t * V, // float[S*rank] 
f l o a t * W // float[T*rank] 

) ; 

The double precision function cudantf Double is similar. Identifiers G, U, V, and W corres
pond to the same names in Eq. 4.10 - Eq. 4.12; R, S and T are the input tensor dimensions. 
The initial values of U, V, and W can be randomly generated or supplied in the output 
arrays. This behaviour is specified by the i n i t parameter. 

The function in the Matlab plug-in takes three parameters: the input tensor, the 
method rank, and the iteration count. It returns the U, V, and W vectors. The plug-in 
internally calls the cudantf Double function with randomly generated initial values. 

http://www.fit.vutbr.cz
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6.2.4 GStreamer AdaBoost Plug-in 

This implementation was developed in 2010 and enables the integration of the AdaBoost 
algorithm to any program as a component of the GStreamer framework. The application 
is executable both on Linux OS and the embedded devices with operating system Maemo 
Linux. The plug-in is available on the following link: www.fit.vutbr.cz - products -
GStreamer Adaboost plugin. 

http://www.fit.vutbr.cz
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Conclusions 

Research performed on C U D A architecture gave us lot of chances for algorithm improve
ments. Evaluations done within research assignments presented in this thesis showed 
us the real performance benefits. Graphic cards capable of G P G P U operations (using 
C U D A framework) are nowadays common equipment available in research laboratories, 
so the solutions proposed in this thesis does not require any special supercomputer-like 
investments. 

Gained speed-up was not as high as could have been expected from the rough compu
tational power of the G P U in comparison with C P U , but this was mainly due to nature of 
the algorithms, which did not match the requirements of C U D A and G P U environment in 
general. 

As demonstrated by the measurements carried out within the research, a computer 
equipped with one or more graphics boards with powerful GPUs, can process a multiple 
video signals in high resolution in real-time. Using the G P U technology would therefore 
find its application in surveillance and other real-world industrial tasks. After all, the next 
section provides an overview of impact of our outcome, and therefore lists several possible 
applications of proposed solutions. 

Eight articles in total - evaluating performance of L R D , L R P , P C A , N T F , Hough 
transform and parallel coordinates algorithms - have been produced during the research, 
together with four products in form of dynamically linked library and M A T L A B plug-ins. 
Those have been developed by the group of my colleagues participating on this research. 

The experimental implementation of the Local Rank Functions (namely LRD) image 
feature using C U D A G P G P U environment , its comparison to other approaches such as 
C P U implementation and Haar-like features on the G P U leaded to the conclusion that the 
L R D is a vital low-level image feature set, which outperforms the commonly used Haar 
wavelets (especially in case of higher resolutions) in several important measures, and that 



140 Conclusions 

fast implementations of object detectors and other image classifiers, should consider the 
L R D as an important alternative. Hardware-accelerated implementations speeded-up the 
baseline L R D implementations more than by order of magnitude. Measurements have also 
shown that the performance on the GPUs was equal for C U D A and GLSL programming. 

Optimized algorithm of P C A computation , primarily targeted on spectral image 
analysis in real-time, achieved speed-ups that allow processing of high-resolution images 
with several colour channels (both common R G B and spectral images) in real-time. P C A 
algorithms presented in this thesis allows also many other useful applications where fast 
computation is needed, and can help to solve some problems where real-time image 
segmentation and pattern recognition tasks are used. 

Research of optimized implementation of an efficient N T F algorithm for G P G P U 
computation achieved around 60 x - 100 x speed-up compared to a C implementation 
compiled by an optimizing compiler running on a state-of-the-art computer. This results 
were considered to be outstanding, when taking into account that Zhang et al. [75] reported 
their speed-up by adding further nodes was capped at about 7x. This speed-up value is 
attractive in this field, since computation of N T F for typical problems in spectral image 
analysis takes hours. 

Other positive results were achieved in study of modified algorithm for line detection 
using the Hough transform based on 9 — g parametrization. This algorithm was designed 
to be intensively using a small read-write memory; what made it suitable for execution 
on recent graphics processors. The experiments showed that on commodity graphics 
hardware, the algorithm can operate at interactive frame rates even on high-resolution 
real-life images, while accumulating to a high-resolution Hough space to achieve accurate 
line detections. While the algorithm was designed for G P U processing, it outperformed 
the standard H T implementation even on the C P U , thanks to better cache usage of the 
new accumulation scheme. 

Finally, the last, but not least significant improvement was achieved in study of an 
algorithm based on the PClines parametrization, which allowed real-time computation 
of the "full" Hough transform on high-resolution images. Measurement showed that the 
GPU-accelerated algorithm achieved interactive (or faster) detection times even for images 
of really high resolutions. Other proposed usage of the algorithm were low-power and 
embedded devices, as well as designing specialized circuity such as F P G A , as it requires 
no floating-point calculation or goniometric functions. 

Considering the fact that CUDA is much more intuitive and compatible to standard C 
language programming, C U D A was a good selection for exploiting graphics hardware for 
non-rendering tasks, such as object detection, spectral image analysis or line detection. 
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7.1 Research Impact 
During our research, eight papers (publications) have been published in different journals, 
or as a book chapter. Following section provides the citation analysis, in order to assess 
our research impact, and gauge the extent of publication's influence on the academic field. 

7.1.1 Citation Analysis 

Citation analysis is distinguished as internal, self-citing or reciprocal citations by our 
colleagues - where at least one author is already an author of the publication itself; and 
external citations refers to authors also from our university, but not in relation with our 
research group, or international authors from different academic fields all over the world. 
Detailed list of both internal and external citations is not a part of this thesis, but is 
available on request, and is also one of the supplements of the thesis. Within this section, 
mostly external citations are analysed. 

Table 7.1 counts the number of times each article has been cited in general, both 
internally and externally. Data were collected via Google Scholar tool. A l l citations 
have been analysed and divided into internal and external citations. Some of them were 
published twice (duplicates). Those external have been analysed further, and if available, 
the purpose of citation was defined. The purposes were defined as follows: 

• Attribution of ideas/research (A) if the citation is in the manner of confirming or 
illustrating a point; in the manner of disputing, correcting or questioning; or in the 
manner of the use of methods, tools, design, definition or data which are one of the 
outputs of our research; 

• Providing proof that position is well-researched (P) by providing holistic view of 
research, literature review, or using our publication as a primary source; 

• Helping to disseminate useful knowledge (H) in the manner of demonstrating other 
points of view, or referring to our publication as a source of supplementary informa
tion; 

• Giving a formal credit for research (G) as a normative research practice. This 
purpose of citation is not present in our analysis. 

7.1.2 Research Impact Conclusion 

Our outcomes of real-time object detection using C U D A were primarily used as a reference 
providing supplementary information to continuing researches on: 
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Publication Number of citations Internal External Duplicates 
Local Rank Differences Image 

Feature Implemented on G P U 
10 6 3 l 

G P - G P U Implementation of 

the "Local Rank Differences" 

Image Feature 

9 4 4 l 

Low-Level Image Features for 

Real-Time Object Detection 
n 8 2 l 

Real-Time Line Detection 

Using Accelerated 

High-Resolution Hough 

Transform 

9 5 4 0 

Real-time object detection on 

C U D A 
18 1 16 l 

Non-Negative Tensor 

Factorization Accelerated 

Using G P G P U 

8 0 8 0 

Real-Time P C A Calculation 

for Spectral Imaging (using 

SIMD and GP-GPU) 

8 0 6 2 

Real-Time Detection of Lines 

Using Parallel Coordinates 

and C U D A 

2 1 1 0 

Table 7.1: List of author publications. 

• Weak classifier applications, increasing accuracy of AdaBoost classifiers; 

• Development of real-time image processing system for anomaly detection; 

• Medical imaging applications such as foreground/background classification, 3D pose 
detection, and boundary delineation; 

• Improvement of performance, and reduction of power consumption in many image 
processing applications - using different approach than we have been using during 
our research; 

• Corner point detection; 

• Highly optimized Haar-based face detector that works in real-time over high definition 
videos; 

• Studying different parallelization strategies of image-filtering algorithms; 

• Video photo mosaics; 
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• Implementation of Haar-Classifier for face detection and tracking based on the 
Haar-Features on System on Chip (SoC) to be used in a human machine interface 
and action interpretation; 

• Recognition of the scene presented in an image with specific application to scene 
classification in field sports video; 

L R F algorithm novel [32] also impacted the development of mobile application allowing 
user to discover the information about a given building or landmark. The outcome of 
Real-time object detection on C U D A [30] supported the consequent research on parallel 
algorithm of face detection on images for G P U architecture, using different approach that 
the one used during our research. 

Our research on spectral image analysis using CUDA was used as a source of information 
during consequent researches and some of them are: 

• Military applications - target detection surveillance using hyperspectral remote 
sensing, demanding real-time or near real-time processing; 

• Signal processing - calculating the overall covariance matrix by accumulating a group 

of partial covariance matrices; 

• Steelworks - parallel dynamic solidification model development; 

• Analysis of metabolomics and transcriptomics data; 

• Large scale data processing using MapReduce; 

• Sclera Vein Recognition; 

• Non-negative multiple tensor factorization; 

And our last subject of research - real-time line detection using C U D A produced outcomes 
that were used as source of information during following different implementations of 
Hough transform both on F P G A and G P U , and subsequent research on line detection 
both internally and externally. 
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G P G P U General Purpose Graphics Processing Unit 

G P U Graphics Processing Unit 
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R M S E Root Mean Square Error 

ROC Receiver Operating Characteristi 
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