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ABSTRACT

Throughout the paper, the reader is introduced to basic concepts and issues of exterior ballistics.
Considering the problem stiffness, a suitable model of atmosphere is determined and combined
with the optimal method of ballistic trajectories numerical modeling. Using PRODAS V3
software a basic aerodynamical characteristics of the small caliber reference projectile (diabolo
type) model are estimated. Detailed attention is given to the description of the measurement
platform, its errors, and optimization. Based on the experimental measurements of the given
standard projectile, a new drag law JSBE is determined. The results between numerical
solutions and real measurements are compared against measured drag law JSBE, G1/GA drag
law, and software PRODAS V3 drag law estimation.

ABSTRAKT

V prubéhu prace je ¢tenar seznamen se zakladnimi koncepty a problematikou vnéjsi balistiky.
Na zaklad¢€ narocnosti zvoleného modelu vnéjsi balistiky je sestaven odpovidajici model
atmosférickych podminek spole¢né s optimalnim feSenim pohybovych diferencialnich rovnic
numerickou integraci. Pomoci balistického softwaru PRODAS V3 jsou aproximovany zakladni
aerodynamické charakteristiky referenéniho malorazového projektilu typu diabolo. Disledna
pozornost je vénovana popisu, vyhodnoceni chyb a optimalizaci méfici platformy. Na zaklad¢
experimentalnich métfeni zvoleného referencniho projektilu je stanoven novy zdkon odporu
JSBE. Rozdily mezi vysledky numerickych feSeni a redlnych méfeni jsou nasledné
porovnavany se stanovenym zakonem odporu JSBE, dale zakonem odporu G1/GA a
aproximaci zdkonu odporu softwarem PRODAS V3.
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ROZSIRENY ABSTRAKT

Prace je zamétena na popis a zvySeni presnosti vypocetnich modell vnéjsi balistiky plynovych
zbrani. U plynovych zbrani projektil ziskava kinetickou energii z expanze plynu, ktery byl
pfedtim mechanicky stlacen. Plynem je myslena jakékoliv latka nebo smés latek v plynném
skupenstvi jako naptiklad vzduch, odtud se zbran¢ Casto nazyvaji jako vzduchové zbran¢ neboli
vzduchovky (airguns). Konstrukce a operace plynovych zbrani limituje maximalni dosazitelnou
hodnotu tlaku vzduchu a z tohoto diivodu vystielené projektily nedosahuji vysokych rychlosti.
Stielivo ur¢ené do plynovych zbrani je nejcastéji typu diabolo nazyvaného také diabolka
(pellet). Projektily typu diabolo se od ostatnich odliSuji pfedevsim konstrukci a zplisobem
stabilizace béhem letu.

Zakladnim ukolem vypocetnich modeli vnéjsi balistiky je urceni polohy a rychlosti projektilu
Vv zavislosti na ¢ase. Trajektorie opisovana projektilem po opusténi hlavné se nazyva balistickou
ktivkou, pfi¢emz jeji tvar zavisi na fad¢ faktort. Uvazujeme-li pohyb projektilu v tihovém poli
a atmosférickych podminkach Zem¢, jsou nejvyznamnéjSimi z nich odporova sila prostiedi a
pusobeni gravitace. Ostatni dynamické veli¢iny zptisobené pohybem projektilu kolem své osy
nebo sklonem trajektorie zanedbame (pohyb hmotného bodu). Smér tihového zrychleni je vzdy
kolmy k teoretickému vodorovnému povrchu Zemé. Smér odporové sily je vzdy opacny ke
sméru okamzitého pohybu projektilu. Zname-li sméry pisobicich sil a zrychleni, mizeme
sestavit soustavu pohybovych rovnic zaloZzenych na Newtonoveé zakonu odporu a Newtonove
druhém pohybovém zakonu. Kvili povaze problému musi byt rovnice v diferencialnim tvaru.
Pro zvoleny model plochych trajektorii je dostacujici uvazovat projektil jako hmotny bod ¢imz
se feSeni redukuje na tii stupné volnosti (3DOF), odpovidajici ttem skupindm diferencialnich
rovnic. Diferencialni rovnice lze feSit riznymi metodami numerické integrace, pficemz je
vhodné zvolit kompromis odpovidajici pozadavkiim na ptesnost vypocéti a zaroven jejich
naro¢nost. Numerickd integrace ma obvykle velmi vysoké mnozstvi iteraci a je realizovéana
pomoci softwarovych algoritmi.

Zatimco velikost tthového zrychleni povazujeme za konstantni, odporova sila zavisi predevSim
na relativni rychlosti projektilu vi¢i okolnimu vzduchu. Abychom urcili jeji velikost, je
zapotiebi definovat odporové parametry prosttedi a aerodynamické vlastnosti daného
projektilu. Zemska atmosféra je tvofend smési plynid souhrnn€ nazyvanych jako vzduch.
Vlastnosti vzduchu lze popsat stavovou rovnici idealniho plynu, s vyjimkou piispévku od vodni
pary. Na zaklad¢ této charakteristiky lze vzduch rozdé€lit na suchy a vlhky, pfi¢emz popis
vlastnosti vlhkého vzduchu je zna¢né komplikovanéjsi. Vlastnosti statick¢ atmosféry jako
ideéalniho plynu s absenci vodni pary (suchy vzduch) popisuje napiiklad model MSA (anglicky
ISA — International Standard Atmosphere). Vystupem atmosférického modelu jsou udaje o
hustoté vzduchu a rychlosti Sifeni zvuku v ném.

ProtoZe feSime soustavu se tfemi stupni volnosti (3DOF) bude nds zajimat pouze jedna
aerodynamickd charakteristika, a to zdkon odporu. Zakony odporu vychdzi z vlastnosti



soucinitele odporu, ktery je definovany jako soucet dil¢ich soucinitelii odporu pro dany
aerodynamicky jev (napf.: soucCinitel vinového odporu, tvaru, tieni, ...). Velikost dil¢ich
koeficientli se méni v zavislosti na relativni rychlosti projektilu vii¢i odporovému prostredi.
Sectenim jednotlivych piispévkil obdrzime zavislost koeficientu odporu na rychlosti projektilu.
Ta se nazyva zékon odporu. Rychlost projektilu je vyjadiena v nasobcich rychlosti zvuku, tedy
Machové c¢isle. Zakony odporu vzduchu zahrnuji do vypoctu pouze tvar projektilu a
neumoziuji tak porovnavat vysledné vlastnosti projektilti mezi sebou. Uplné charakteristiky je
dosazeno pomoci balistického koeficientu, ktery kromé zakonu odporu zahrnuje do vypocta i
hmotnost a priimér daného projektilu.

Zakony odporu se odkazuji na ilustra¢ni vykres referencniho projektilu, pro ktery byl dany
zékon naméten, pro projektil typu diabolo vSak tento zakon neexistuje. Obvykle je nahrazovan
zakony odporu G1/GA, jejichz referen¢ni projektil typu diabolo neodpovida. Zakon odporu I1ze
ur¢it pomoci experimentalniho meéfeni aerodynamickych vlastnosti daného projektilu.
Nejdulezitéjsi casti této prace je praveé experimentalni méteni nového zdkonu odporu JSBE
odkazujiciho se na referen¢ni projektil JSB Exact v raZi 4.5 mm. M¢fici aparatura je sloZena ze
dvou sériové umisténych optickych hradel Caldwell Precision Chronograph a je urcena
k méfeni ubytku rychlosti projektilu na definované vzdalenosti nazyvané rozestup hradel.
Uvazujeme-li odporovou silu a zrychleni projektilu na této vzdalenosti konstantni,
z pohybovych rovnic lze zpétn€ vyjadfit zavislost koeficientu odporu na rychlosti.
K aproximaci aerodynamickych charakteristik projektilu JSB Exact byl vyuzit i software
PRODAS, jehoZz primarnim vystupem byl odhad zédkonu odporu. Zakon odporu JSBE byl
nameéten pro definované rychlostni spektrum omezené vykonem pouzitych plynovych zbrani,
zbylé ¢asti byly aproximovany na zakladé namétenych dat a odhadu softwaru PRODAS.

Porovnéni pfesnosti zakonil odporu je realizovano pomoci vypocti poklesu rychlosti projektilu
Vv zavislosti na vzdalenosti balistickym softwarem. Veli¢iny vstupujici do balistického softwaru
byly vzdy atmosférické podminky, pocatecni rychlost, hmotnost a balistické koeficienty
projektilu odkazujici se na zékony odporu JSBE, G1 a odhad softwaru PRODAS. Vysledky
vypoctl byly nasledné porovnany se sadou radarovych méfeni projektilu JSB Exact firmou JSB
Match Diabolo. Zikon odporu JSBE dosahl vyssi ptesnosti pouze v urCitém rozsahu
pocatecnich rychlosti projektilu, cile prace tedy bylo dosaZzeno pouze ¢astecné.
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1 INTRODUCTION

Airguns, also known as air rifles, are operating on a principle of mechanically compressed gas,
which is then simultaneously released accelerating the projectile down the barrel. The first
mentions of this type of firearms comes from the 16" century. To this day, airguns are still
popular among public as they are quiet, inexpensive and their ownership often does not require
any license or permit. Together with the widespread usage grows a demand for a modern, more
accurate and powerful airguns with increased range and lethality. Many of these airguns are
used for pest control or sports shooting in a close vicinity to people and buildings which
emphasizes the requirement of accurate estimation of projectile’s maximum range, its position
at each point in flight and the energy on impact. These data are subsequently used to prevent
unwanted injuries or damages to property.

Current external ballistics models cannot accurately describe the trajectory of the diabolo type
projectile, due to the lack of aerodynamic characteristics of the projectile. External ballistic
models must be established on experimentally determined drag characteristic for the given
projectile, based on the projectile shape, aerodynamic behavior and other properties. The basic
aerodynamic characteristic is known as drag function, in technical literature described as the
drag law. The drag law of the diabolo type projectile has not yet been determined; therefore, it
IS substituted with the drag law of other similar projectiles, resulting in non-negligible error in
computed trajectories.

This work focuses on the description and improvement of the external ballistic model of diabolo
type projectile trajectories. The first two chapters serve as a theoretical basis, describing the
effect of atmospheric conditions and external forces acting on the projectile in flight. The reader
is also introduced to the numerical solution used in the developed BA4E ballistic solver [9]. The
rest of the work is dedicated to measuring, processing and evaluation of the resulting
aerodynamical characteristics of the diabolo type projectile. The resulting model was then
compared to the current model and subsequently implemented in the B4E open-source ballistic
solver available to the public.



2 ATMOSPHERE

Most problems related to exterior ballistics arise in the Earth's atmosphere. The trajectory of a
projectile is influenced by various aerodynamic forces and rapidly changing winds. The
atmosphere is a layer of gravitationally attracted gases, known collectively as air. It is mainly
composed of nitrogen N,(~78 %), oxygen 0,(~21 %) and other gases of which Argon
Ar (~0.9 %) and water vapor H,0 (up to ~3 %) are the two most abundant. The key objective
of this chapter is to determine the density of air and the speed of sound. The properties of air
vary significantly with increasing altitude. To characterize the relationship between
temperature, pressure and altitude various mathematical models had been established. I will use
the International Standard Atmosphere (ISA) model. ISA can be described as a static
atmospheric model with fixed air properties at given altitudes. It also considers air as a fully
compressible ideal gas. Although not comparable with recent global atmospheric models, the
ISA is often used by many for ballistics or aviation computations with sufficient accuracy, while
not requiring hard-to-obtain data. Depending on altitude the ISA atmosphere is divided into six
segments. From sea level to Karman line, defining an imaginary boundary between atmosphere
and outer space.

Layer Name Average altitude [km]
1 Troposphere 0—-11
2 Tropopause 11-20
3 Stratosphere 20 — 47
4 Stratopause 47 — 51
5 Mesosphere 51 -85
6 Mesopause 85— 100

Table 1: Atmospheric layers distribution with altitude.

The Table 1 and Figure 1 considers average layer height, which varies with latitude. For
example, at the poles the Troposphere ends at mere 6 km above sea level, while at the equator
it can as well reach 18 km. Each atmosphere layer has its own temperature vs altitude linear
distribution. Pressure and density decrease with altitude at exponential rates. One would expect
the temperature in lower atmospheric layers to steadily decrease with increasing altitude.
Despite that, the temperature in stratosphere rapidly increases due to high concentration of
ozone. Production of ozone generates heat, increasing the air temperature. Additionally, ozone
IS a greenhouse gas and can retain heat. Small arms projectiles cannot reach out of the
Troposphere even when fired perpendicularly to the ground, therefore defining the Troposphere
is our only concern.
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(ISA) model. Adapted from: [1].



2.1 Definition of fundamental variables

p [Pa] — Absolute air pressure

Paa [Pa] — Partial pressure of dry air

Pwv [Pa] — Partial pressure of water vapor

Pwvs [Pa] — Partial pressure of saturated water vapor

r[J - kg~! - K~1] - Specific gas constant

Tae = 287.050 [J - kg1 - K~1] — Specific gas constant of dry air

T, = 461.495 [J - kg~! - K~1] — Specific gas constant of water vapor
v [m3 - kg™1]; v [m - s~1] — Specific air volume; Velocity of an object relative to air
p [kg - m~3] — Air density

Paa [kg - m™3] — Density of dry air

Pwv [kg - m3] — Density of water vapor

@ [%] — Relative air humidity

T [K] — Absolute air temperature

T [°C] — Relative air temperature

h [m] — Altitude (Height above sea level)

¢ [m - s~1] — Speed of sound

Cgq [m - s™1] — Speed of sound in dry air

¥ [—] — Poisson’s constant (For dry air y = 1.4)

K [MPa] — Bulk modulus of liquid

2.2 Density of dry air

Using the ISA static atmospheric model (Figure 1), we can compute the density in three ways,
depending on the available data. In first and the best-case scenario we know the exact air



pressure and temperature. In the second, the most common case, we know the exact temperature
and altitude. Finally, in the third case, we only know the altitude.

Neglecting the effect of water vapor, the water vapor partial pressure p,,,, must be equal to zero.
That means any of the computed variables of dry air is equal to its absolute value in air.

P = Pda (1)
P = Pda (2)

The ISA considers the air as an ideal fully compressible gas, so it can be solved using the
standard equation of state. The equation is written using the specific volume and specific gas
constant:

pv=r-T. (3)

By expressing the air density from the standard equation of state, we get the equation for first
case scenario problem computation:

1_ pda -3 (4)
e [kg - m™°].

Pda =

For the second case scenario computation we need to combine the equation of state with a
pressure altitude equation ( 10 ) to determine atmospheric pressure at a given altitude. Expecting
the air pressure, density and temperature in Troposphere to decline at a known rate, first, we
must define initial conditions bound to zero altitude (sea level):

po = 101325 Pa,
po = 1.225kg - m~3,
T, = 288.15 K.

To derive the pressure altitude equation, we must consider some quantities as constant. First,
we need to separate the pressure from the standard equation of state ( 3 ), getting the Barometric
formula:
1 T T (5)
= —- 7" ] T .
P=3 P

If atmospheric pressure comes from the hydrostatic pressure, we can use the hydrostatic
equation for ideal fluid:

dp= —p-g-dh. (6)



Dividing the hydrostatic equation (6 ) by the Barometric formula ( 5) and then integrating this
equation between altitudes h, = 0 m (sea level) and h:

dp  g-dh (7)
p r-T’
Pd h (8)
f __ 9 ("
Pop reT ho

With all integration steps completed, we can implement the ISA equation of linear temperature
decrease in Troposphere (T = T, — 0.0065 - h) [1]. Additionally, if we consider that the
gravitational acceleration in Troposphere has a constant value of g = 9.81 m - s~ and knowing
the specific gas constant of dry air, we can substitute both into the equation and simplify:

(T)r-o.goes (1 0.0065 - h>5'2577 (9)
Since all previous computation steps are based on the given initial temperature T, and pressure
Po, We can also substitute their exact value getting a final form of pressure altitude equation for
our second case scenario computation:

5.2577 (10)
) [Pa].

p = 101325 - (1 VLT
Using similar process, we can derive the relationship between altitude and density for the third
case scenario computation:

T, ) = 1.225-(1—44331) [kg - m™°].

pP=po- <1 -
To determine accuracy of the ISA modified model we will select six random atmospheric data
measurements from two RBCN stations in Czechia, operated by Czech hydrometeorological
institute CHMU. All measured data represents an average daily variable value. To test the
model on wider range of temperatures and altitudes, each selected measurement is taken in a
different season and at different altitude. Since CHMU datasheet does not contain any air
density data, the error of the computation scenarios will be compared against the first case
scenario (theoretically most dependable).



Data from the RBCN meteorological station in Pfibyslav [2]:

Date [—-] | Altitude | Averageair | Average air | Relative | Wind speed Total
above sea | temperature | pressure | humidity | [m-s™] rainfall
level [m] [°C] [hPa] [%] [mm]
11.01.2022 | 5325 -7.1 967.9 92 2.9 0
04.08.2022 | 532.5 24.6 955.5 41 34 0
07.10.2022 | 5325 12.6 961.8 87 4.6 0

Table 2: Data from the RBCN meteorological station located in Ptibyslav (Czechia). Data available

from: [2].

Case | Altitude | Airtemperature | Air pressure | Air density | Proportional deviation
[—] [m] [°C] [hPa] [kg - m~3] from Case 1 [%]

1 532.5 -7.1 967.9 1.2674 -

1 532.5 24.6 955.5 1.1179 -

1 5325 12.6 961.8 1.1726 -

2 532.5 -7.1 950.9 1.2451 -1.8

2 532.5 24.6 950.9 1.1126 -0.5

2 532.5 12.6 950.9 1.1593 -1.2

3 532.5 - - 1.1636 -8.9

3 532.5 - - 1.1636 3.9

3 532.5 - - 1.1636 -0.8

Table 3: Computed values of air pressure and air density for each case from the Table 2 using
equations (4), (10), (11).




Data from the RBCN meteorological station at Lysa Hora mountain [2]:

Date [-] | Altitude | Average air | Average air | Relative | Wind speed Total
above sea | temperature | pressure | humidity | [m-s™] rainfall
level [m] [°C] [hPa] [%] [mm)]
11.01.2022 1322 -10.8 873.2 99 7.5 0
04.08.2022 1322 18.5 872.9 59 2.8 0
07.10.2022 1322 9.9 876.3 83 6.3 0

Table 4: Data from the RBCN meteorological station located at Lysa Hora mountain (Czechia). Data
available from: [2].

Case | Altitude | Air temperature | Air pressure | Air density | Proportional deviation
[—] [m] [°C] [hPa] [kg - m™3] from Case 1 [%]

1 1322 -10.8 873.2 1.1595 -

1 1322 18.5 872.9 1.0427 -

1 1322 9.9 876.3 1.0785 -

2 1322 -10.8 864.2 1.1476 -1.0

2 1322 18.5 864.2 1.0323 -1.0

2 1322 9.9 864.2 1.0636 -14

3 1322 - - 1.0769 -1.7

3 1322 - - 1.0769 3.2

3 1322 - - 1.0769 -0.1

Table 5: Computed values of air pressure and air density for each case from the Table 4 using

equations (4), (10), (11).
Summarizing all the computed data, we can conclude that the second case scenario is clearly
more accurate than the third, especially at evaluating air density during temperature deviations.
Although the second case scenario does not always give accurate atmospheric pressure value,
we can say that in most cases the error of air density computation should be within 2 % of the
first case scenario. Note that both models usually predict a lower air density value than the first
case scenario.

2.3 Density of humid air

Humid air can be considered as an extension of dry air accounting for the dispersed water vapor
rather than separate model, creating somewhat more realistic model of atmospheric conditions.



The ISA doesn’t account for water vapor presence. Computation of water vapor partial density
requires the partial pressure of dry air and the overall air temperature. Since the dry air pressure
computation is based on ISA static atmosphere model, the estimation of humid air density can
only be as good as the ISA estimation is.

Accounting for water vapor, the final pressure becomes a sum of partial dry air pressure and
partial water vapor pressure. The same is true for air density.

P = Pda + Pwv (12)

P = Pdat Pwy (13)

Expressing the water vapor density from equation of state ( 3 ), we get:

_ pwv . -3 ( 14 )
Pww = [kg - m™].
Substituting all the variables we obtain the equation for computing density of humid air:
Pda Pwv (15)

= + kg -m™3].
i [kg - m™]
Now we are left with one unknown variable — partial water vapor pressure. Water vapor is not
an ideal gas, meaning its properties are determined by experimental measurements. The
saturation pressure of water vapor is dependent on the humid air temperature. Water vapor
saturation pressure represents water vapor pressure at relative humidity ¢ = 100 %.

Using the Arden Buck equation for computation of saturated water vapor pressure [3]:

=0.61121 [(18 678 — —C ) ( Tc )] [kPa] (16)
Pwvs = 1. R 2345) \257.14 + T, al
The relative humidity can be written as the ratio of partial water vapor pressure and saturated
water vapor pressure:

@ = Pwe . 100 [%].

pWUS

(17)

We can substitute the saturated water vapor pressure into the Arden Buck equation ( 16 )
obtaining the final form of equation for partial water vapor pressure computation dependent on
the saturated water vapor pressure and temperature:

=61121 ¢ - [(18678— Te )( Tc )] [Pa] (18)
Pwv = B grexpite 2345) 25714 +71.)] V2

Note that this form of Arden Buck equation cannot be used for temperatures T, < 0 °C, when
the water in the air can exist in all three states — water vapor, ice crystals and water drops.
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Except of precise ballistics computations (trajectories of long-range artillery shells and such)
partial density of water vapor is often neglected for its little or no effect on the air density. To
test this hypothesis let’s consider the following atmospheric conditions to achieve maximum
effect of water vapor pressure: T, = 40 °C, h = 500 m, ¢ = 100 %.

Solving for partial dry air and water vapor pressure:

5.2577 500 5.2577
Pda = 101325 - (1 - m) =101325- (1 - m) = 95459 Pa,
=6.1121-100 [(18 678 *0 ) ( +0 )] = 7382 P
Pwo = O P 2345) \257.14 + 40/] ~ a

Solving for the partial dry air and water vapor density and the final air density:

_ Pda _ 95459
Paa = =7 = 287.05-313.15

=1.062kg - m3,

Do 7382 )
= = =0.051 kg m™>,
Pwo = T T 461.495 - 313.15 g+ m

p= paa+ Puwy=1.0620+0.0511 = 1.113 kg - m™3.

Neglecting the partial density of water vapor is, under given circumstances, justifiable. Water
vapor density in this extreme case made up just 4.59 % of the total density. Furthermore, we
can say that in majority of cases the water vapor density will not exceed 2 % of the total air
density.

2.4 Speed of sound

Speed of sound as a quantity and sound barrier as an aerodynamic phenomenon is the subject
of research not only in ballistics. It also serves as a basis for majority of characteristics including
drag laws. The exact value of speed of sound is often referred to as Mach number [Ma] — a
dimensionless ratio of an object velocity compared to the speed of sound v,,, = v/c. Unlike
air density, the speed of sound is relatively easy to approximate and is independent of changes
in air pressure and humidity. Sound can be defined as a pressure wave which propagates through
a given liquid at velocity, described by the Newton—Laplace equation [4]:

(19)

Assuming dry air as an ideal gas, we can express the Bulk modulus of liquid as follows:

11



K=vy-p. (20)

Substituting dry air pressure into the Newton—Laplace equation ( 19 ) using the standard
equation of state ( 3 ), we get the final relation of the speed of sound and dry air temperature:

p=p-1aa-T, (21)

p da (22)

Since the y and r,, are both constants and since the temperature is often measured in degrees
Celsius, we may encounter additional form of the same equation based on linear function
approximation [4]:

Cga = 3313+ 0.6 T; [m-s~1]. (23)
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speed of sound in dry air
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Figure 2: Approximation of the speed of sound in dry air based on the heat capacity ratio (in green)
against the truncated Taylor expansion (in red, described by equation ( 23)). Available at: [4].
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Figure 3: Speed of sound vs. temperature and relative humidity, p = 101.3 kPa, 314 ppm CO..
Available at: [5].

Once again, measurements and more complex approximations gives us the knowledge of
boundaries within which the linear approximation can be used. According to the data displayed
in the Figure 2 and Figure 3, we will set the computation limits of temperature T from Tepin =
—40°C t0 Tepgy = 40 °C.
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3 MATHEMATICAL DESCRIPTION OF EXTERNAL BALLISTICS

3.1 Definition of fundamental variables

p [kg - m~3] — Air density

S [m?] — Cross-sectional area of the projectile

SD [Ib-in~?, kg- m~2] — Sectional density of the projectile
m [kg] — Weight of the projectile

C, [—] — Drag coefficient

C, [—] — Drag coefficient of the drag law reference projectile

i [—] — Form factor

BC [Ib-in"2, kg m™2] - Ballistic coefficient

g [m - s72] — Gravitational acceleration

d [m] — Diameter of the projectile

v [m - s71] — Velocity of the projectile

Vyyz [M* s~1] — Axial components of projectile’s velocity

a [m - s~2] — Acceleration of the projectile

@y, [m-s™?] - Axial components of projectile’s acceleration
x,¥,Z [m] — Axial components of projectile’s position from origin
t [s] — Time of projectile movement

h [s] — Time step of numerical integration

k [NaN] — Column of numerical integration

3.2 Differential equations

The purpose of differential equations is to describe the change in defined system over time.
Forming the core of each ballistic solver, differential equations of motion are solved using

15



numerical integration with a given time step. The time step can be preset or changed based on
the input data throughout the computation process.

Airguns are handheld shoulder fired firearms. Similarly, to most handheld firearms we can
characterize the projectile trajectory as flat. Doing so, the atmospheric density does not change
with altitude, and we consider the projectile as a point mass, reducing the solution to 3DOF
(Three Degrees of Freedom — axes x, y, z). The solution is partially derived from the Newton's
second law of motion and drag equations ( 37 ), (48 ), (49 ). For 3DOF point mass solution we
can write the following system of second order differential equations:

dv _ Cy-p-S-v?
dt 2-m
dv, dv v,

— = —-—Z 49,
ac dt v 9

dt dt v’

dv,

a4

q (24)

Y _

e Y

dx

Fra

dz_

dt %

Notice that the solution could be written using just four differential equations instead of five.
The velocities form a right triangle, and we can use the Pythagorean theorem to describe them:

v: =vi 4+ vy + 2 (25)

Now that we have the relevant flat trajectory model described, we need to choose an appropriate
method of numerical integration. Due to the relatively low difficulty of the 3DOF model, we
will choose from a few common integration methods used to solve ordinary differential
equations. Generally characterizing the initial problem, we introduce an unknown variable y,
whose magnitude is changing over time. The value of y at t, = 0 s is initial value marked as
Yo-

y(to) = Yo (26)
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The change of variable y over time depends on the value of y at the beginning of each
integration step:

dy (27)

This equation further underlines the importance of using numerical integration method as the
change of defined variable depends on itself. The last undescribed variables are: h, representing
a constant time interval also called time step and k, representing result obtained by single
integration also called integration column. The time step h can be set as desired but it is
important to do an analysis of the algorithm accuracy as an incorrectly set time step may cause
degradation in accuracy or increase in computation time.

Fourth order Runge—Kautta integration method (RK4) [6]:

kl = h ) f(tn' yn):

h ky
a=nef (g n+7)

h k,
ks =h'f<tn+_r yn+_>;

2 2 (28)
k4- =h 'f(tn + hﬂyn + k3)'
1
Yn+1 = Ynt g'(k1+2'k2+2'k3+ ks),
tTl+1 = tn + h
Second order Runge—Kutta integration method (RK2) [6]:
kl =h- f(tn' yn)'
ky, = h'f(tn +hy, + ki),
(29)
1
Yn+1= Ynt 5 (ky + k),
tTl+1 = tTl + h
Euler integration method [6]:
k=nh-f(tyyn),
30
Yne1 = Yn + k, (30)

17



tn+1 == tn + h.

In general, we want all algorithms to be as accurate as needed and as fast as possible. Translated
into our problem we want to find the optimal combination of the integration method and time
step. To do so all integration methods were programmed in software MATLAB R2022b. The
total duration of each computation process was measured, and the resulting trajectory compared
against the MATLAB numerical integration function ODE45 in terms of maximum projectile
range. The results are displayed in Figure 4.

Based on the plotted data we can conclude that the RK2 with step size of h = 1073 s is the
optimal method for the flat trajectory 3DOF model as it achieved nearly similar results as RK4.
Nevertheless, the RK4 method is still great option for solving difficult differential equations
but implementing it for this solution does not yield any advantages. Euler method on the other
hand is the simplest and fastest method of numerical integration but has a big disadvantage of
error accumulation and inaccuracy.
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Figure 4: Logarithmic comparison between the speed and accuracy of the algorithms against the step size. Each algorithm is based on one of the defined
numerical integration methods (28 ), (29), (30).
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In the following section | decided to add a complete implemented flat trajectory exterior
ballistic model reduced to 2DOF (just x and y axes) using the RK2 integration method ( 29 ).
This is the exact algorithm used in the B4E ballistic solver [9] whose results are used many
times throughout this paper. Keep in mind that the solution consists of second order differential
equations and therefore must be integrated twice. First integration is to find the velocity in next
step assuming the acceleration throughout the time step as a constant. Second integration is to
find the position of the projectile assuming the velocity throughout the time step as a constant.

Establishing the change in time:
ther = tn + h. (31)

Solving for the velocities v;,.1, vy, ,,, vy, .-

o _CeopeSvE
= 2m-h’
k :Cx'p'S'(vn_kl)z (32)
2 2-m-h ’

1
Uny1 = Up t 5 (k1 + ky),

vy, — ki), (33)

1
vxn+1 = vxn +§ (kl + kz),

v — U
klzu.vyn_i_g.h’
Un
V. — U
ky = n+; = (vy, — k1) + g h, (34)
n

1
vyn+1 = vyn +E (k1 + kz)

Solving for the positions x,, 41, Yn41:
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k, = vy -h,
(35)
1
Xn+1 = Xp t E (kl + kz),
ki = (2 "Uyn — v}’n+1) “h,
kz ES Uyn ' h,
(36)

1
Yn+1 = Yn T E (kl + kz)-

Computed velocities v, .., v, ., (33 ), (34 ) and positions x, .1, ¥n4+1 (35), (36 ) are the
inputs into the next integration step in which they are marked as v, _, v,, and x,, ,,. Repeating
this process hundreds or thousands of times yields a 2DOF flat ballistic trajectory.

3.3 Drag laws

This chapter will focus purely on the drag coefficient and its complex behavior throughout the
projectile flight. Its importance is due to occurrence in the Newton's drag equation used in
numerical integrations:

(37)

1
==-C.-p-S-v*|[N].

F,
b=»

The drag coefficient C,, also known as Cp, is defined as a sum of many drag components.
Simple exterior ballistics models acknowledge three drag components: pressure drag, wave
drag, and friction drag. Each can be influenced by the projectile’s design. Depending on
application, the magnitude of each component varies greatly. For example, lift induced drag is
an important aspect in aviation but not so much in ballistics.

The friction drag is caused by contact of air molecules with the projectile body. Higher
velocities and greater projectile surface results in increased friction drag. Regardless, the
friction drag has the lowest share out of three mentioned. Meaning the longer and more
“streamline” the projectile is, the less overall drag it will experience. However, the friction of
air molecules with the projectile surface has a major effect on other types of drag and cannot
be neglected, mainly due to its ability to create boundary layers resulting in airflow separation.
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Pressure drag, also referred to as form drag, is the main drag component at subsonic velocities
(vma < 1 Ma) and in some cases even at supersonic velocities. The flow of air around the
projectile creates two regions, high pressure at the tip/front and low pressure at the back/tail.
Because of this a further division into two subcategories known as Fore-drag (Figure 5) and
Base drag could be encountered. Both pressures create a force acting in the direction opposite
of projectile movement.

Wave drag originates from shock waves forming on or in front of the projectile. Formation of
shock waves starts when the projectile enters the transonic region (0.8 Ma < vy, < 1.2 Ma)
and stay throughout the whole supersonic region. During and shortly after the Second World
War a lot of research was done regarding the formation of shock waves and possible ways to
reduce its negative effect on wave drag. As a result, multiple nose shapes offering minimum
wave drag and therefore minimum overall drag at supersonic velocities had been developed,
such as the % power law and Sears-Haack (Figure 5) [7].

~——————i—— PARABOLOID
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Figure 5: Foredrag coefficient (Drag coefficient at the front of the projectile and zero yaw angle) of
multiple projectile nose shapes vs Mach number. Available at: [7].

Despite the deeper structured theoretical description, the drag coefficient C,, is a sum of many

other drag components:
C, = Z C. (38)
i=1

And the magnitude of drag components (for example wave drag) varies depending on the
instantaneous velocity of the projectile:
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C, # const. (39)

If we determine the drag coefficient C, at different velocities, for each velocity we get a
different value. Doing so we collected a number of two-dimensional points consisting of values
for drag coefficient and velocity [v; C,], which together form the drag law. Note that due to
the dependence of aerodynamical phenomena on the speed of sound, the unit of velocity is
converted to Mach number [Ma; C,] or [vy, ; C.]. To this day, there are countless drag laws
in existence of which the most widespread are the G-Series (GL, GS, G1, ..., G8) [7]. We will
mention three of them as an example, the drag law of a sphere GS, drag law G1 used for
handgun or simple rifle projectiles and drag law G7 used for very low drag projectiles (Figure
6, Figure 7). The data in Figure 6 were processed from drag functions found in the book [7].
Note that in the Figure 6 a drag coefficient C, instead of C, is used. It is the same coefficient,
only marked differently specifying that this coefficient refers only to the standard projectile
(Figure 7). Drag laws are often written in tables and must be accompanied by a sketch or
drawing of a standard projectile to which it refers to (Figure 7). Both must include basic
projectile dimensions often given as multiples of bore diameter or radius.

23



Drag laws of standard projectiles
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Figure 6: Drag laws (Dependence of drag coefficient on Mach number) of standard projectiles
displayed in Figure 7. Both parameters are dimensionless.
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Figure 7: Sketch of standard projectiles referring to drag laws GS, G1 and G7 in Figure 6. Dimensions
are referring to given diameter or radius of the bore.

The drag laws are often confused with drag functions, meaning the dependence drag force
acting opposite of the projectile motion on projectile velocity. Nevertheless, computed drag
function displayed in Figure 8 certainly shows the difference between the two and gives us a
measure of how important projectile design is at supersonic velocities.
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Figure 8: Drag function. Drag force acting on standard projectiles GS (red), G1 (blue) and G7 (black)
(d = 10 mm,p = 1.129 kg - m~3) vs Mach number. This plot corresponds to the plot in Figure 6
when the drag coefficient (law) is implemented in the Newton's drag equation ( 37 ).

Drag laws are often neglected, mentioning only a measured value of drag coefficient C,. The
equations of motion using drag laws are in general more complicated and up to around vy, ~
0.5 Ma, there is little to no benefit of not considering the drag coefficient as a constant. But as
the object reaches velocities beyond that mark, it becomes a necessity.

3.4 Ballistic coefficient

Ballistic coefficient is a quantity that represents the overall ability of given projectile to
overcome the air drag. Due to its simplicity, it is the most used ballistic characteristics of a
projectile marketed for the common user. Simply put, the higher the ballistic coefficient, the
better the projectile is at retaining its velocity. Compared to drag coefficient, the ballistic
coefficient is adding projectile weight, diameter and drag law into the equation. It consists of
two variables: sectional density ( 41 ) and the form factor ( 42 ). Beware that a lot of
manufacturers do not specify units. The most common units for ballistic coefficient in western
markets are pounds per square inch [Ib - in~2].
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SD (40)

The sectional density characterizes the ratio of projectile’s cross-section to its weight:

m (41)

SD: ﬁ

The form factor is a ratio of drag coefficient of given projectile to drag coefficient of standard
projectile referring to drag law. Both coefficients must be compared at the same instantaneous
velocity according to the standard projectile’s drag law. The closer the ratio of given vs standard
projectile is to i =1, the less error is made by using the standard projectile’s drag law as
substitution for unknown drag law of given projectile. To compute the form factor, either
ballistic coefficient must be known or at least one drag coefficient related to velocity must be
measured.

G (42)
C

Substituting form factor ( 42 ) and sectional density (41 ), we get:

SD m m- Cs (43)
BC=—= = kg - m~2].
C T @ arc, kem
Introducing the conversion ratio from metric to imperial units:
m - 2.20462262 m- Cq _ (44)
BC = = -0.00142233 [Ib - in~2].

i-(d-39.3700787)2  d?-C,

To demonstrate the meaning of ballistic coefficient we shall consider the following scenario:
The unknown projectile drag has been measured and we obtained the following data: d =
4.52 mm, m = 0.547 g and C,, = 0.505 measured at velocity vy, = 0.71 Ma. The goal is to
compare the form factors referring to the three mentioned standard projectiles GS, G1 and G7
(Figure 7) and determine the correct ballistic coefficient for the unknown projectile. From
Figure 6 we obtain the drag coefficients C, for each standard projectile at velocity vy, =
0.7 Ma: C4(GS, vy, = 0.71 Ma) = 0.592, C,(G1, vy, = 0.71 Ma) = 0.217, C,(G7, vy,
0.71 Ma) = 0.120.

Solving for form factors ( 42 ):

C,(vy, = 0.71 Ma 0.505
x( Ma ) _ _ 0.85,

i(GS) = - _
UGS) = CGS vy = 0.71Ma) ~ 0.592

C,.(vy, = 0.71 Ma 0.505
x( Ma ) _ _ 2.33’

i(G1) = _ _
HGD) = e L vy = 071 Ma) ~ 0217
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Co(vyg =071 Ma) _ 0.505

i(G7) = - -
U{G7) = C (67, vy = 071 Ma) ~ 0.120

4.21.

18 Drag laws modified by form factors of JSB Exact pellet
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Figure 9: Possible drag laws of JSB Exact projectile created by modifying the drag laws of standard
projectiles GS, G1 and G7 (Figure 6) by form factors (42).

The closest reference projectile from the test set compared to our pellet would be the sphere,
referring to drag law GS. The plotted modified drag laws can be seen in Figure 9. Note that the
form factor i is not always a constant and may vary depending on the velocity at which the drag
coefficient C, has been measured. To achieve more accurate results, we would have to evaluate
it at multiple different velocities. Unfortunately, most ballistic solvers doesn’t support the drag
law GS. So again, choosing the closest option possible, which happens to be the drag law G1
(44):
m- Cs(G1) 0.000547 - 0.217

BC(G1) = dZ—Cx +0.00142233 = 0.00452Z- 0505 0.00142233 = 0.0161b-in"2.

This is a valid and least expensive option of determining the ballistic coefficient based on the
estimated similarity of different projectile’s drag law. Doing so, we completed the task but also
introduced an error resulting from the difference of compared projectile quantified by the form
factor.
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Additionally, ballistic coefficient can also be substituted into differential equation of projectile
acceleration. By canceling projectile weight and diameter it creates simplified and less
demanding form of equation. The projectile weight is still required for muzzle and impact
energy calculations, so it is not much of an advantage overall. Expressing acceleration of the
projectile from Newton’s drag equation and second law of motion ( 37 ), (49):

C,-m-d?p-v? (45)
L CeSopevr TP o opiazpey?
“= 2-m 2-m B 8-m '

Expressing the drag coefficient from final ballistic coefficient equation (44 ):

(146)

m- Cs

T d2-BC

C, .0.00142233.

Substituting drag coefficient into the acceleration equation ( 45 ) we get projectile acceleration
as a function of velocity:

m-Cs-m-d?-p-v?

Q= d? - BC .0.00142233 =
8'm

47
_Cormep-v? (47)

. v e—2
Spe 000142233 [m 577
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4 MODELING THE JSB EXACT PROJECTILE IN THE
PRODAS V3 SOFTWARE

PRODAS V3 is a software made by Arrow Tech Associates, Inc. used mainly for designing
and modelling of missiles and projectiles. It offers detailed analysis of aerodynamical
properties, interior ballistics, and terminal ballistics. The name PRODAS is an acronym for
Projectile Rocket Ordnance Design and Analysis System. Since PRODAS was made for
analysis of military grade weapons (artillery shells, armor piercing rounds, precision guided
munitions, ...) and their effects on potential targets, the user is required to have a U.S. State
Department approved export license before obtaining the software. | was given the opportunity
to work with PRODAS through Department of Weapons and Ammunition at University of
Defense in Brno.

PRODAS can offer a lot of data, but for the purposes of this work we only need to focus on a
drag law estimation of the JSB Exact projectile (JSBE).

1.28D

0.3D 0.26D, 0.3D

. |
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e
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Figure 10: Authorized sketch of a JSB Exact projectile (Diabolo type projectile). Variable D [mm]
expresses the diameter of the bore.

Upon request, the company JSB Match Diabolo provided a complete drawing of JSB Exact
projectile (pellet). The drawing is considered as a manufacturing secret; therefore, only sketch
(Figure 10) of the projectile with dimensions authorized by the manufacturer can be published.
Based on the drawing a model of the projectile was created and analyzed and the result is an
estimation of the JSB Exact projectile drag law (Figure 11, Table 6).
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Figure 11: PRODAS V3 drag law estimation curve of the JSB Exact projectile (Figure 10).
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Mach number

Drag coefficient

Mach number

Drag coefficient

Ma [-] Ce [-] Ma [-] e [-]
0.000 0.3309 1.050 1.0108
0.400 0.3199 1.100 1.0646
0.600 0.3357 1.200 1.1071
0.700 0.3491 1.350 1.1221
0.750 0.3747 1.500 1.1275
0.800 0.4198 1.750 1.1381
0.850 04771 2.000 1.1465
0.875 0.5244 2.250 1.1556
0.900 0.5692 2.500 1.1677
0.925 0.6047 3.000 1.1807
0.950 0.6615 3.500 1.1834
0.975 0.7357 4.000 1.1722
1.000 0.8295 4.500 1.1654
1.025 0.9401 5.000 1.1592

Table 6: PRODAS V3 drag law estimation of the JSB Exact projectile (Figure 10).
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5 MEASUREMENT AND ITS PROCESSING

As of now, we have all the theoretical knowledge to determine the drag law of the JSB Exact
projectile (pellet) when given the right data. In this chapter we will focus on the possible ways
to select, obtain, process and evaluate these data. Additional attention will be given to selection,
capabilities and examination of the tools and devices used for measurements.

5.1 Definition of fundamental variables

Fp [N] — Drag force

p [kg - m~3] — Air density

Pda [kg - m™3] — Dry air density

p [Pa] — Air pressure

Paa [Pa] — Partial pressure of dry air

T4qa = 287.050 [J - kg~! - K~1] — Specific gas constant of dry air
T [K] — Absolute air temperature

T [°C] — Relative air temperature

¢ [m - s~1] — Speed of sound

Caq [m - s™1] — Speed of sound in dry air

a [m - s~2] — Acceleration of the projectile

v [m - s~1] — Velocity of the projectile

x [m] — Position of projectile from origin in x —axis

L [m] — Distance between chronographs (Chronograph spacing)
l [m] — Distance between chronograph optical sensors

t [s] — Time of projectile movement

tsiudent [—] — Critical value of Student’s distribution

S [m?] — Cross-sectional area of the projectile

d [m] — Diameter of the projectile
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m [kg] — Weight of the projectile

C, [—] — Drag coefficient

E [J]] - Energy

W []] — Work

n [—] — Number of measurements

k [—] — Number of degrees of freedom

W, [—] — Critical file of Student’s distribution

X [m-s™1, ft-s™1] - Arithmetic mean of projectile’s velocity
X [m-s™1, ft+s™1] — Median of projectile’s velocity

s [m?-s72, ft? - s~2] — Variance of projectile’s velocity

s[m-s™1, ft-s~1] — Standard deviation of projectile’s velocity

5.2 Methods of measurement

First, the measured variables must be selected. Let’s start with the atmospheric conditions
during the measurement session. For computation of the dry air density and the speed of sound
we can use equations (4 ), (10), (23) derived in the first chapter, thus only requiring data of
air temperature and altitude. Temperature will be measured with standard digital thermometer
commonly used in houses, as the computation do not require high measurement precision.
Altitude can be read from the contour lines on the map often done by online map browsers such
as https://developer.mapy.cz/rest-api/tutorialy/zjisteni-nadmorske-vysky-pomoci-rest-api/.

As we already know, drag law consists of a set of points and each of those points consists of
velocity and drag coefficient [vy,, ; C,]. Unfortunately, neither can be directly measured, but
both can be expressed as change in projectile position over time. Velocity can be described
directly as a change of projectile position over time:

_dx (48)
V=

To describe drag coefficient as a change of position over time, we need to add Newton's drag
equation ( 37) into the Newton’s second law of motion (49 ):
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F=m-a, (49)

1 ) (50)
F=F,=>m-a= E-Cx-p-S-v .
Expressing the drag coefficient from the resulting equation ( 50 ) and substituting differential

forms of acceleration and velocity we get:

2-m-a m
S (51)

dv 5
a_2m g _Z-m_dzx_<dx>
vZ p-S (d_x)z_p-S dez \dt

dt

_2
p-S-vZ_p-

The reason behind equation (51 ) is to prove that both drag coefficient and projectile velocity
can be expressed by the projectile’s position as a function of time. This allows the use of
numerous different measurement outputs if they involve at least one combination of
acceleration a, velocity v, position x or time t.

In general, there are two common types of devices used for measurement in external ballistic
of small arms projectiles: Doppler radars (Figure 12) and Optical chronographs (Figure 13).

Line of fire

Doppler
radar

/ J LSS S S S S S S S

Figure 12: Illustration of the Doppler radar measurement platform.
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V = Vyq

Line of fire

Chronograph

7 SIS S S S S S S S S S S S S

Figure 13: Illustration of the Optical chronograph measurement platform.

The Doppler radar measures the change of projectile’s position over time. Optical chronograph
measures the time it takes the projectile to travel a given distance. The Doppler radars are
superior in terms of accuracy and in amount of available data. Unfortunately, they are very
expensive. The affordability of optical chronographs is much better, therefore | decided to use
them. Unlike Doppler radar, optical chronograph displays just the average projectile velocity.
However, using two optical chronographs placed in series (Figure 14) while knowing the
distance between them, we will get the change in projectile velocity over distance [Av; L].
Measured velocities are marked gradually — Chronograph C; measures velocity v; and
Chronograph C, measures velocity v, (Figure 14).
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| L

Figure 14: lllustration of two optical chronographs placed in series. This exact platform was used to
measure the change in projectile velocity at a given distance.

For the project | chose a set of two Caldwell Ballistic Precision Chronographs one of which |
bought with additional LED lighting source to reduce the number of failed measurements
caused by poor lighting conditions. The Caldwell Ballistic Precision Chronograph displays
velocity readings as an integer either in meters per second [m - s~1] or feet per second [ft - s™1].
Measuring in feet per second offers a finer scale, therefore the measurements will be recorded
in feet per second and later converted to meters per second 1 ft- s~ = 0.3048 m - s~ 1.

To cover the entire subsonic region multiple airguns have been used, one of which had the
option to regulate air pressure in the piston allowing the pellet to achieve a wide range of muzzle
velocities. The airguns used were Benjamin 397S (regulated piston pressure), Gamo Hunter
440 and Crosman Quest NP. All of them were thoroughly tested and provided low initial
velocity extreme spread and consistent accuracy up to a 30 m distance.

5.3 Platform optimization

Before each set of measurements, the platform must be optimized to achieve a balance between
the magnitude of projectile velocity decrease and the chronograph spacing. To proceed we must
make few simplifications about the nature of the measurements: during the motion of projectile
in the section L (between the chronographs) the force of gravity acting on the projectile is
neglected and an assumption that the drag force has a constant value is made (Figure 15).
Meaning the deceleration of the projectile is constant, the decrease in velocity is linear and the
total traveled distance is equal to the chronograph spacing L.
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vl =280m/s, d=4.52mm, p=1.148 kg!ma, m=0.547g, Cx=062, L=5m
0.73 ' T ' T -1180

Assumed drag force
Real drag force T -1200 r

Assumed acceleration
Real acceleration

-1220 |

-1240

-1260

a [mfs2]

-1280 1

0.67 y -1300 ¢

0.66 1 -1320

0.65 : : : : -1340 : : : :
0 1 2 3 4 5 0 1 2 3 4 5
S [m] S [m]

Figure 15: The differences between assumed and real value of drag force and acceleration of the JSB
Exact projectile. Data in figures have been computed using the Newton's drag equation ( 37 ) and the
B4E solver [9].

The magnitude the chronograph spacing L depends on the projectile initial velocity and drag.
Theoretically, smaller spacing results in decrease of the linear assumption error (Figure 16), but
simultaneously increases the platform measurement error. Considering all factors, | decided the
ideal Chronograph spacing for the JSB Exact projectile should be around L = 5 m (Figure 16),
whereas | changed the spacing between L = 2 m at the higher and L = 8 m at the lower velocity
measurement sets.

The reason behind this paragraph can be fully understood after examining Chapter 4:
Measurement and its processing. Theoretically you would want to place the chronographs as
close to each other as possible to replicate the function of Doppler radar, practically it has no
use. The setup just isn’t accurate enough to measure such incremental differences in projectile
velocity and the measurement error bar could easily exceed the measured differences in
velocity. Placing the chronographs too far from each other has no use either, because of the
nature of the measured projectile. The JSB Exact projectile is small and sometimes doesn’t
create enough shade to trigger the optical sensors, therefore it must be shot directly above the
sensors which becomes harder with increasing distance when you are simultaneously trying to
get the best alignment with the chronographs while also not damaging them via inaccurate fire.
For example, | tried increasing the spacing to L = 12 m, where the second chronograph (C,)
gave me reading on just one in five pellets. All of this is not universal and depends on a lot of
factors ranging from the equipment and conditions you have. Generally, with larger projectiles
like the JSB Exact King 6.35 mm you should be able to increase the spacing a lot more
compared to the maximum spacing | set for the JSB Exact 4.5 mm.
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vl =280mfs, d=4.52mm, p=1.148 kg!ma, m=0.547g, Cx=062, L=210;25m
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Figure 16: The differences between assumed and real value of velocity of the JSB Exact projectile
depending on the chronograph spacing L (L =2m, L =10m, L = 25 m).

5.4 Data processing

There are many possible ways to compute the drag law points based on the measured data. As
an example, | chose two of them. For both, the assumption that the projectile acceleration has
a constant value applies. The first one, which | find to be easier and more intuitive, expresses
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the drag coefficient using basic equations of motion. The second one is based on energy
conservation and is thoroughly described in the book [8].

Motion approach: We start with expressing the drag coefficient from the drag equation using

substitution of the drag force into the Newton's second law of motion ( 37 ), (49 ):

1
FDmean = E ) Cx ’ p ) S ) vﬁnean [N]!

FDmean =m: Amean (52)

. 2-m- Qpean
8 p-S- vrznean
Considering a linear distribution of velocity decrease, we can determine the average velocity of

projectile in the section L:

v+ v, (53)

Umean = 2

Using the average velocity ( 53 ), we can compute the time it takes the projectile to travel a
distance S = L:

. L _ L _ 2L (54)
_vmean_ ¥_v1+v2.

Knowing the decrease in velocity over a distance S = L we now have all the variables to express
the absolute value of projectile mean acceleration as a function of two measured velocities and
the chronograph spacing:

Av = v, — v,, (95)
A vy —vy (1) (1) (56)
Amean T_ 2.1 2. .
v, + 1,

By substituting the acceleration ( 56 ) and mean velocity ( 53 ) into the drag equation we get:

Z_m_(v1—vz)'(v1+vz)

C. = 2-L _ 4-m- (v; —vy)
x vy + vy)\2 p-S-L-(v;+vy) (57)
pes- (F77)
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Energy approach [8]: We suggest that the work of gravity force on a small distance is equal
to zero. The only force doing the work is the drag force. The work can be defined as the decrease
of projectile Kinetic energy:

W = AE,, (58)
W= Dmean.L’ (59)
1 (60)
Ey= =" 2,
k > m-*v
1 (61)
AEk = Ekl _Ekz = Em (1712 —17%)
The dependency of work on kinetic energy can also be written as follows:
1 x2 (62)
om (V2 — p2) = — :
5 m i — vy) = Fp - dx.
x1
Completing the integration steps, we obtain:
1 vzz - 1712 p- vﬁnean Umean (63)
FDmean—E'm'—L =S > 'Cx( a );
C, (‘Umean> _ 4'm .Ul_vzl (64)
a p-SL vi+v,

Both ways achieved the same result: An equation for computation of the drag coefficient as a
function of the velocity decrease on section L. Note that the drag coefficient must always relate
to the mean velocity of given measurement [v,,,0.qn ; Cx]. EXpressing the cross-sectional area
of rotationally symmetric projectiles, we obtain the final form of the equation:

4-m-(v; —vy) 16-m- (v, —v,) (65)

C, = = :
x - d? prm-d?-L-(v; +v,)

7 L (v, +vy)
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5.5 Anexample of drag law point computation

As a summary of the entire computation process, we will solve one point of the drag law step-
by-step. To do so, we need the following data:

v, =913 ft-s71 =27828m-s7 %, v, =866 ft-s7! =263.96m-s?!
L=4m, d = 4.53 mm, m = 0547 g, T, = —1.5°C, h =541 m.

Let’s start with determining the atmospheric condition during the measurement. Solving for air
density preceded by the computation of air pressure (10), (4):

5.2577 541 52577
) = 94990 Pa,

pzpda=101325-(1— =101325-(1—44331

44331)

o p ~ 94990.4
P Pda = LT~ Taa- (Tc+27315)  287.05- (—1.5 + 273.15)

= 1.218 kg m™3,
To display the resulting drag law as a dependency on Mach number we need to compute the
speed of sound ( 23):

¢~ cgq~3313+06-T,=331.3+0.6(—1.5)=3304m-s" L
Solving for the Mach number (x — axis coordinate) ( 53 ):

v +v
Vroan = — : 2=27112m-s?,

o Vmean _ 271.12
Ma c 330.39

Solving for the drag coefficient corresponding to v,,, (v - axis coordinate) ( 65 ):

_16rm (v —v) 16 - 0.000547 - (278.28 — 263.96)
*pm-d?-L-(v;+v,) 1.218-1-0.004532-4-(278.28 + 263.96)

= 0.7358.

The last step is to write the coordinates as a two-dimensional point:

[x; Y] = [Vya; Cc] = [0.821; 0.7358].

5.6 Errorsin measurements

A verification of the chronograph reading validity must be done prior to proceeding with the
measurement itself. The manufacturer guarantees the maximum deviation for the Caldwell
Precision Chronograph to be within + 0.025 %, that is if set properly. Both chronographs must
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be set on the same horizontal plane with the airgun. In my conditions this is not achievable due
to the location of the safe impact zone which requires the airgun to be shoulder fired (Figure
17). Rather than verifying the manufacturer’s claims the overall deviation in a realistically
achievable conditions will be verified just to rule out a potential critical error occurring during
the measurement.

Real line of fire

Xq i L

X2

Figure 17: Illustration of the most common error in measurement. Both chronographs will measure a
lower velocity than actual.

Both chronographs have been set outside in uncontrolled environment in line parallel to each
other and a total of 25 JSB Exact projectiles (pellets) has been fired through each of them.
Distance between airgun muzzle and each chronograph has been kept as constant as possible.
To limit differences in reading due to changing muzzle velocity caused by internal gas piston
heating or due to changing light conditions, the chronographs were alternated 10 times during
the measurement. Statistically, the more measurements we take, the less will the computed
average velocity differ and therefore the more valid the test becomes. Since the purpose of the
test is to detect a potential critical error, 25 measurements for each chronograph are sufficient.
Otherwise, to verify the manufacturers claims much more precise firearm, controlled
environment and significant number of measurements would be needed.

Formulas for calculating basic statistical quantities - Arithmetic mean:

1 v (66)
== Zfi " X
=1
Median:
.1 (67)
X = E (x%+x%+1).
Variance:
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Standard deviation:

(68)

(69)

Chronograph €4 Chronograph C, (R
X[ft-s71] 772.84 768.92 3.92
% [ft-s71] 773 778 6
X [ft-s71] 772 768 4
s? [ft?-s72] 8.8544 20.0736 19.5936
s [ft-s71] 2.9756 4.4803 4.4264

Table 7: Computed basic statistical quantities.

As expected, the difference between the readings (Table 7) is order of magnitude higher than
the guaranteed percentage given by manufacturer. Despite this, the setup is still getting a more
than enough accuracy-well within +1 % error. Judging based on the available data, the C;
chronograph (without artificial light source) measured on average 0.51 % higher velocities than
the C, chronograph. To confirm this claim, we can test it on 95 % confidence level if we
consider the measured velocities to be in a Student’s distribution.

Coefficient of Student's distribution for 95 % confidence interval:

t

k=n—-1=24

Student 1—%(1‘) = Cstudent 0.975(24) = 2.064.

(70)

(71)

Testing hypothesis Hy: u(C; — C,) = 0 compared to alternative hypothesis H,: u(C, — C,) #

0, a = 0.05:
x (€, —Cy)
tstudent = s(C, — Cy) \/E =
1 2
WO—’ = (_tStudent 1—%(k)’ tStudent 1-

3.92
4.4264

a(k)) = (—2.064,
2

tStudent e Wa-
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Therefore, we can say with 95 % certainty ( 73 ) that the chronograph C; would give us higher
velocity reading than the chronograph C,.

6 DRAG LAW JSBE

Overall, over 500 measurements were taken and processed, 474 of which were non faulty. We
will call them individual measurements and they will serve as a basis for further statistical data
processing. Individual measurements (Figure 18) were taken in groups. Each group has its own
data about air temperature, projectile diameter, projectile initial velocity and chronograph
spacing. Each group is also represented by the arithmetic mean of drag coefficient and
arithmetic mean of Mach number (Figure 19). The standard deviation error bars have not been
included to preserve the clarity of the graph.

Groups with very similar average velocities were again combined, using the arithmetic mean to
form the averages of groups or clusters (Figure 20). Based on the averages of groups an
extrapolation curve (Figure 21) was generated in software MATLAB R2022b using the
Modified Akima (makima) interpolation function. The extrapolation curve serves just as a
personal estimate of the drag law therefore its base points were artificially created to represent
the smooth increase/decrease of drag coefficient.

The last step is approximation of the drag coefficient value where it has not been measured
(Figure 22, Table 8). This is not directly necessary in terms of publishing the results, but it must
be done due to its use in ballistic software where the user can enter a higher velocity v, >
1 Ma. The base points for approximation were also created artificially based on the measured
data and PRODAS V3 drag law and interpolated with the Modified Akima (makima) function.
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Figure 18: Evaluated non-faulty individual measurements divided into 32 groups.
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Averages of measurements (Groups) - Drag coefficient vs Mach number
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Figure 19: The arithmetic averages of Mach number and drag coefficient taken from each measurement group. Values are displayed without the standard
deviation error bars to maintain clarity.
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Averages of groups of measurements with standard deviation error bars - Drag coefficient vs Mach number
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Figure 20: The arithmetic averages of clusters of groups linked based on similar average value of velocities. Each point has error bars consisting of standard

deviation of the drag coefficient (y-axis) and Mach number (x-axis).
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1 Extrapolation of drag law JSBE
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Figure 21: Interpolation curve of drag law JSBE generated by MATLAB Modified Akima function. The curve is based on artificially extrapolated points
created from the averages of groups of measurements (averages of clusters of groups) to represent the smooth gradual increase in drag coefficient.
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Aproximation of drag law JSBE
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Figure 22: Approximation of the drag law JSBE (red) based on the PRODAS V3 drag law approximation, measured and extrapolated data. This figure
represents the final form of drag law JSBE.
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Mach number Drag coefficient Mach number Drag coefficient
Ma[~] Cs [-] Ma [~] Cs [-]
0.00 0.310 0.70 0.465
0.05 0.308 0.75 0.531
0.10 0.305 0.80 0.600
0.15 0.300 0.85 0.665
0.20 0.295 0.90 0.728
0.25 0.295 0.95 0.794
0.30 0.299 1.00 0.855
0.35 0.313 1.10 0.960
0.40 0.332 1.20 1.030
0.45 0.212 1.30 1.060
0.50 0.208 1.40 1.070
0.55 0.256 1.60 1.080
0.60 0.324 1.80 1.090
0.65 0.395 2.00 1.100

Table 8: Drag law JSBE consisting of extrapolated points (white) and approximated points (red).

Between vy, = 0.40 Ma and v, = 0.60 Ma | measured a strange sudden decrease in drag
coefficient. To exclude the possibility of measurement error | recreated the group measurement
twice and confirmed the steep decrease. In my opinion this effect is related to sudden change
in airflow around the projectile (boundary separation layer). Investigating this phenomenon
requires a detailed step by step measurement with at least two airguns of different calibers
(boundary layer separation depends on the projectile diameter) with the possibility to increase
the muzzle velocity by fraction of magnitude compared to the airgun Benjamin 397S.
Purchasing additional firearms would be indeed too expensive for this project. Therefore, |
leave this subject open for additional research.
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7 RESULTS COMPARISON

There are numerous ways to verify the accuracy of a drag law, or to compare them between
each other, of which the most common is the downrange velocity measurement. The initial
velocity of the projectile is measured and then the velocity is measured again at given time
interval or distance from the muzzle. The best tool for this measurement is the Doppler radar.
Optical chronograph can be used as well but with greater difficulty. Using the initial velocity,
among other variables, the estimated velocities at a given time interval or distance are then
computed by the ballistic solver and the results compared with the radar measurements.

7.1 Definition of fundamental variables

C, [—] — Measured drag coefficient of the projectile

C, [—] — Drag coefficient of the projectile corresponding to the given drag law
BC [Ib - in~2] — Ballistic coefficient of the projectile corresponding to the given drag law
i [—] — Form factor corresponding to the given drag law

T [°C] — Air temperature

h [m] — Height above the se level

v, [m - s~1] — Projectile velocity at given distance x

n [—] — Number of velocity measurements

S [m] — Distance from the muzzle

d [m] — Diameter of the projectile

m [kg] — Weight of the projectile

7.2  Determination of ballistic coefficients

First, we need to compute the value of ballistic coefficients for each drag law. Since the G1
drag law is not accurately representing the shape of the JSB Exact projectile (pellet), the value
of computed ballistic coefficient changes depending on the Mach number. Thus, we need to
estimate the correct velocity around which the projectile is fired most often. Regarding 4.5 mm
airgun projectiles the most common value of initial velocity is around v, = 240 m -
s™Y (Vo ya = 0.71 Ma).
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Obtaining the drag coefficients for each drag law at velocity vy, = 0.71 Ma [7]:
C,(0.71 Ma,JSBE) = C, (0.71 Ma, measured) = 0.465,
C,(0.71 Ma, G1) = 0.217, C;(0.71 Ma, PRODAS V3) = 0.349.
Computing the value of ballistic coefficients (44 ):

m- C5(G1) _ 0.000547 - 0.217

BC(G1) = - .0.00142233 = 0.0178 Ib - in~2
CGD) == ¢ = 0.004522 0465 000142233 = 0.01781b-in"%,
m-C,(JSBE) m  0.000547
BC(SBE) = ——=s¥22%) _ I o 500142233 = 0.0381 b - in"2,
C(JSBE) rava > = Soogs57 000142233 = 0.03811b - in
m - C,(PRODASV3)  0.000547 - 0.349
BC(PRODAS V3) = = £0.00142233,

dz-C, ~0.004522 - 0.465
BC(PRODAS V3) = 0.02861b - in~2.

As an initial comparison, we can also add the comparison of the JSB Exact projectile to the
reference projectile using the form factor (42 ):

Gsmry - G 0465 o
' = C.USBE) 0465
i(PRODAS V3) = Cx _ 0465 _ 1.33
! ~ C.(PRODASV3) 0349
C 0.465
i(G1) = —— = 2.14.

C.(G1) ~ 0217

7.3 Comparison between ballistic solver computation and radar measurements

To verify and compare the accuracy of the JSBE drag law with the G1 drag law and the
PRODAS V3 drag law approximation | used the JSB Exact projectile downrange velocity data
measured by company JSB Match Diabolo using the amateur Doppler radar Labradar (Table
9). Note that the velocities are marked as vs 4,,; Where S is the instantaneous distance of the
projectile from the muzzle. The measurements took place during following atmospheric
conditions:

h = 204 m, Tc. = 16.7 °C.
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n Vo avg V10 avg V20 avg V30 avg V40 avg Us0 avg
(<] | s | fmes™] | mesT | [mesT | fmesT] | [mesT
16 327.2 291.3 261.5 239.8 225.2 219.3
38 302.7 272.8 247.7 228.8 214.3 205.7
16 266.9 245.4 226.8 212.4 198.2 192.0
20 237.1 222.1 208.2 194.4 182.4 178.3
14 206.1 194.7 182.4 169.0 155.8 145.0
17 157.0 146.4 134.4 121.5 113.9 111.2

Table 9: Arithmetic means of measured velocities of the JSB Exact projectile with increasing distance

from the muzzle. The first column expresses the total number of measurements from which the
average was computed. The data were measured by JSB Match Diabolo company in Bohumin using a
civilian Doppler radar Labradar.

The computation of downrange velocities based on JSB Match Diabolo initial velocity
measurements was done by the ballistics solver B4E [9] using drag laws G1, JSBE and
PRODAS V3 drag law approximation. The results were then separately compared to the radar
measurement and after that to each other. Given that we have enough radar measurements we
will be able to achieve quantitative comparison. All three drag laws were programmed into the
B4E software [9], and we will refer to them through the computed ballistic coefficients.

327 288 261 239 222 205
303 272 249 229 212 196
267 244 226 209 193 179
237 219 203 188 174 161
206 191 177 163 151 139
157 145 134 124 114 106

Table 10: Velocities of the JSB Exact projectile (pellet) at given distances computed by the ballistic

software B4E [9] using the G1 drag law [7].
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Vo V1o V20 V3o Vao Uso
m-s] | [mes] | [mes | [mes) | mes™] | [mesT]
327 288 259 238 221 207
303 270 246 227 213 201
267 243 225 211 200 189
237 220 207 196 187 180
206 196 186 179 172 166
157 151 145 140 133 126

Table 11: Velocities of the JSB Exact projectile (pellet) at given distances computed by the ballistic
software B4E [9] using the JSBE drag law (Table 8).

Vo V1o V20 V30 Vao Uso
m-s™] | [mes] | [mes | fmes™] | fmes™] | [mesT]
327 287 260 239 221 204
303 271 248 229 211 196
267 245 226 208 193 179
237 219 202 188 174 161
206 191 177 164 152 141
157 146 135 125 116 108

Table 12: Velocities of the JSB Exact projectile (pellet) at given distances computed by the ballistic

software B4E [9] using the PRODAS V3 drag law approximation (Table 6).

We can compare the drag laws by subtracting the computed velocities (Table 10, Table 11,
Table 12) from the measured velocities (Table 9). Obtained difference between measured and
computed data will be marked as Av (Av = Veomputea — Vmeasurea)- 1Nhe difference in

velocities Av displayed in Figure 23 is simultaneously the ultimate accuracy test and

comparison of each drag law’s performance.
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Figure 23: The differences between computed (red, purple, and yellow) and measured (black) velocities of the JSB Exact projectile (pellet). Segments are
divided by projectile’s initial velocity v,. The measured velocities (black) always assume zero deviations, because they serve as a reference. The colored plots
correspond to the colored tables above (Table 9, Table 10, Table 11, Table 12).
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To simplify the comparison, we will divide the results from the Figure 23 into two segments.

First segment: v, = 327;303;267;237 m-s~1. We can say that measured drag law JSBE
outperformed both G1 and PRODAS V3 approximation. Also, PRODAS V3 approximation
produced slightly better results than the G1 drag law.

Second segment: v, = 206; 157 m - s~ 1, The JSBE drag law highly underperformed against
both the G1 and PRODAS V3 approximation. Again, PRODAS V3 approximation was slightly
more accurate than G1 drag law. The reason behind dividing the results in this way is the fact
that the last two radar measurements are within the previously described region where the
sudden decrease in drag coefficient has occurred. Due to the large deviation in results, we can
conclude that the Labradar velocity measurement indirectly did not confirm the previously
measured decrease in drag coefficient. This only strengthens the idea to thoroughly examine
this region.
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8 CONCLUSION

The contents of the thesis can be divided into two levels, theoretical and practical. The
theoretical level was aimed to introduce the reader to basic concepts regarding solving ballistics
trajectories using differential equations, numerical integration algorithms and the unusual
behavior of the drag coefficient resulting in formation of drag laws. The dimensions of the JSB
Exact 4.5 mm projectile had been defined and its aerodynamical properties approximated using
software PRODAS V3. Furthermore, the measurement platform was described by a
mathematical model resulting in the calculation of the drag coefficient from the measurements.

The practical level consists of recognition and evaluation of measurement errors, optimization
of the measurement platform to yield usable data, and the measurement itself. Measurement
evaluation resulted in formation of drag law JSBE referring to the projectile JSB Exact 4.5 mm.
Drag law JSBE together with the drag law G1 and drag law approximation obtained using the
PRODAS V3 were compared against the Doppler radar Labradar downrange velocity
measurement provided by the company JSB Match Diabolo. Downrange velocity results
corresponding to each drag law were computed using the B4E ballistic solver [9]. Performance
of the final form of JSBE drag law is displayed in detail in Figure 23, which combines the
Doppler radar experimental projectile velocity measurements against the computed projectile
velocity based on the mentioned drag laws (JSBE, G1, PRODAS V3 Drag law approximation).

Overall, we can say that the drag law JSBE partially achieved desired results of improved
accuracy compared to G1 drag law. During the measurement a critical problem in form of
sudden decrease in drag was encountered which did not correspond to the Doppler radar
measurements. PRODAS V3 drag approximation compared to G1 drag law achieved better
accuracy in all scenarios and in the theoretical absence of JSBE, it would form a better
substitution for the G1 drag law.

With all the above said, we can conclude that the goals of the work were met.
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