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ABSTRACT 

Throughout the paper, the reader is introduced to basic concepts and issues of exterior ballistics. 

Considering the problem stiffness, a suitable model of atmosphere is determined and combined 

with the optimal method of ballistic trajectories numerical modeling. Using PRODAS V3 

software a basic aerodynamical characteristics of the small caliber reference projectile (diabolo 

type) model are estimated. Detailed attention is given to the description of the measurement 

platform, its errors, and optimization. Based on the experimental measurements of the given 

standard projectile, a new drag law JSBE is determined. The results between numerical 

solutions and real measurements are compared against measured drag law JSBE, G1/GA drag 

law, and software PRODAS V3 drag law estimation. 

 

ABSTRAKT 

V průběhu práce je čtenář seznámen se základními koncepty a problematikou vnější balistiky. 

Na základě náročnosti zvoleného modelu vnější balistiky je sestaven odpovídající model 

atmosférických podmínek společně s optimálním řešením pohybových diferenciálních rovnic 

numerickou integrací. Pomocí balistického softwaru PRODAS V3 jsou aproximovány základní 

aerodynamické charakteristiky referenčního malorážového projektilu typu diabolo. Důsledná 

pozornost je věnována popisu, vyhodnocení chyb a optimalizaci měřící platformy. Na základě 

experimentálních měření zvoleného referenčního projektilu je stanoven nový zákon odporu 

JSBE. Rozdíly mezi výsledky numerických řešení a reálných měření jsou následně 

porovnávány se stanoveným zákonem odporu JSBE, dále zákonem odporu G1/GA a 

aproximací zákonu odporu softwarem PRODAS V3. 
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ROZŠÍŘENÝ ABSTRAKT 

Práce je zaměřena na popis a zvýšení přesnosti výpočetních modelů vnější balistiky plynových 

zbraní. U plynových zbraní projektil získává kinetickou energii z expanze plynu, který byl 

předtím mechanicky stlačen. Plynem je myšlena jakékoliv látka nebo směs látek v plynném 

skupenství jako například vzduch, odtud se zbraně často nazývají jako vzduchové zbraně neboli 

vzduchovky (airguns). Konstrukce a operace plynových zbraní limituje maximální dosažitelnou 

hodnotu tlaku vzduchu a z tohoto důvodu vystřelené projektily nedosahují vysokých rychlostí. 

Střelivo určené do plynových zbraní je nejčastěji typu diabolo nazývaného také diabolka 

(pellet). Projektily typu diabolo se od ostatních odlišují především konstrukcí a způsobem 

stabilizace během letu. 

Základním úkolem výpočetních modelů vnější balistiky je určení polohy a rychlosti projektilu 

v závislosti na čase. Trajektorie opisovaná projektilem po opuštění hlavně se nazývá balistickou 

křivkou, přičemž její tvar závisí na řadě faktorů. Uvažujeme-li pohyb projektilu v tíhovém poli 

a atmosférických podmínkách Země, jsou nejvýznamnějšími z nich odporová síla prostředí a 

působení gravitace. Ostatní dynamické veličiny způsobené pohybem projektilu kolem své osy 

nebo sklonem trajektorie zanedbáme (pohyb hmotného bodu). Směr tíhového zrychlení je vždy 

kolmý k teoretickému vodorovnému povrchu Země. Směr odporové síly je vždy opačný ke 

směru okamžitého pohybu projektilu. Známe-li směry působících sil a zrychlení, můžeme 

sestavit soustavu pohybových rovnic založených na Newtonově zákonu odporu a Newtonově 

druhém pohybovém zákonu. Kvůli povaze problému musí být rovnice v diferenciálním tvaru. 

Pro zvolený model plochých trajektorií je dostačující uvažovat projektil jako hmotný bod čímž 

se řešení redukuje na tři stupně volnosti (3DOF), odpovídající třem skupinám diferenciálních 

rovnic. Diferenciální rovnice lze řešit různými metodami numerické integrace, přičemž je 

vhodné zvolit kompromis odpovídající požadavkům na přesnost výpočtů a zároveň jejich 

náročnost. Numerická integrace má obvykle velmi vysoké množství iterací a je realizována 

pomocí softwarových algoritmů. 

Zatímco velikost tíhového zrychlení považujeme za konstantní, odporová síla závisí především 

na relativní rychlosti projektilu vůči okolnímu vzduchu. Abychom určili její velikost, je 

zapotřebí definovat odporové parametry prostředí a aerodynamické vlastnosti daného 

projektilu. Zemská atmosféra je tvořená směsí plynů souhrnně nazývaných jako vzduch.  

Vlastnosti vzduchu lze popsat stavovou rovnicí ideálního plynu, s výjimkou příspěvku od vodní 

páry. Na základě této charakteristiky lze vzduch rozdělit na suchý a vlhký, přičemž popis 

vlastností vlhkého vzduchu je značně komplikovanější. Vlastnosti statické atmosféry jako 

ideálního plynu s absencí vodní páry (suchý vzduch) popisuje například model MSA (anglicky 

ISA – International Standard Atmosphere). Výstupem atmosférického modelu jsou údaje o 

hustotě vzduchu a rychlosti šíření zvuku v něm. 

Protože řešíme soustavu se třemi stupni volnosti (3DOF) bude nás zajímat pouze jedna 

aerodynamická charakteristika, a to zákon odporu. Zákony odporu vychází z vlastností 



 

 

součinitele odporu, který je definovaný jako součet dílčích součinitelů odporu pro daný 

aerodynamický jev (např.: součinitel vlnového odporu, tvaru, tření, …). Velikost dílčích 

koeficientů se mění v závislosti na relativní rychlosti projektilu vůči odporovému prostředí. 

Sečtením jednotlivých příspěvků obdržíme závislost koeficientu odporu na rychlosti projektilu. 

Ta se nazývá zákon odporu. Rychlost projektilu je vyjádřena v násobcích rychlosti zvuku, tedy 

Machově čísle. Zákony odporu vzduchu zahrnují do výpočtu pouze tvar projektilu a 

neumožňují tak porovnávat výsledné vlastnosti projektilů mezi sebou. Úplné charakteristiky je 

dosaženo pomocí balistického koeficientu, který kromě zákonu odporu zahrnuje do výpočtů i 

hmotnost a průměr daného projektilu.  

Zákony odporu se odkazují na ilustrační výkres referenčního projektilu, pro který byl daný 

zákon naměřen, pro projektil typu diabolo však tento zákon neexistuje. Obvykle je nahrazován 

zákony odporu G1/GA, jejichž referenční projektil typu diabolo neodpovídá. Zákon odporu lze 

určit pomocí experimentálního měření aerodynamických vlastností daného projektilu. 

Nejdůležitější částí této práce je právě experimentální měření nového zákonu odporu JSBE 

odkazujícího se na referenční projektil JSB Exact v ráži 4.5 mm. Měřící aparatura je složena ze 

dvou sériově umístěných optických hradel Caldwell Precision Chronograph a je určena 

k měření úbytku rychlosti projektilu na definované vzdálenosti nazývané rozestup hradel. 

Uvažujeme-li odporovou sílu a zrychlení projektilu na této vzdálenosti konstantní, 

z pohybových rovnic lze zpětně vyjádřit závislost koeficientu odporu na rychlosti. 

K aproximaci aerodynamických charakteristik projektilu JSB Exact byl využit i software 

PRODAS, jehož primárním výstupem byl odhad zákonu odporu. Zákon odporu JSBE byl 

naměřen pro definované rychlostní spektrum omezené výkonem použitých plynových zbraní, 

zbylé části byly aproximovány na základě naměřených dat a odhadu softwaru PRODAS.  

Porovnání přesnosti zákonů odporu je realizováno pomocí výpočtů poklesu rychlosti projektilu 

v závislosti na vzdálenosti balistickým softwarem. Veličiny vstupující do balistického softwaru 

byly vždy atmosférické podmínky, počáteční rychlost, hmotnost a balistické koeficienty 

projektilu odkazující se na zákony odporu JSBE, G1 a odhad softwaru PRODAS. Výsledky 

výpočtů byly následně porovnány se sadou radarových měření projektilu JSB Exact firmou JSB 

Match Diabolo. Zákon odporu JSBE dosáhl vyšší přesnosti pouze v určitém rozsahu 

počátečních rychlostí projektilu, cíle práce tedy bylo dosaženo pouze částečně.
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 INTRODUCTION 

Airguns, also known as air rifles, are operating on a principle of mechanically compressed gas, 

which is then simultaneously released accelerating the projectile down the barrel. The first 

mentions of this type of firearms comes from the 16th century. To this day, airguns are still 

popular among public as they are quiet, inexpensive and their ownership often does not require 

any license or permit. Together with the widespread usage grows a demand for a modern, more 

accurate and powerful airguns with increased range and lethality. Many of these airguns are 

used for pest control or sports shooting in a close vicinity to people and buildings which 

emphasizes the requirement of accurate estimation of projectile´s maximum range, its position 

at each point in flight and the energy on impact. These data are subsequently used to prevent 

unwanted injuries or damages to property. 

Current external ballistics models cannot accurately describe the trajectory of the diabolo type 

projectile, due to the lack of aerodynamic characteristics of the projectile. External ballistic 

models must be established on experimentally determined drag characteristic for the given 

projectile, based on the projectile shape, aerodynamic behavior and other properties. The basic 

aerodynamic characteristic is known as drag function, in technical literature described as the 

drag law. The drag law of the diabolo type projectile has not yet been determined; therefore, it 

is substituted with the drag law of other similar projectiles, resulting in non-negligible error in 

computed trajectories. 

This work focuses on the description and improvement of the external ballistic model of diabolo 

type projectile trajectories. The first two chapters serve as a theoretical basis, describing the 

effect of atmospheric conditions and external forces acting on the projectile in flight. The reader 

is also introduced to the numerical solution used in the developed B4E ballistic solver [9]. The 

rest of the work is dedicated to measuring, processing and evaluation of the resulting 

aerodynamical characteristics of the diabolo type projectile. The resulting model was then 

compared to the current model and subsequently implemented in the B4E open-source ballistic 

solver available to the public. 
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 ATMOSPHERE 

Most problems related to exterior ballistics arise in the Earth's atmosphere. The trajectory of a 

projectile is influenced by various aerodynamic forces and rapidly changing winds. The 

atmosphere is a layer of gravitationally attracted gases, known collectively as air. It is mainly 

composed of nitrogen 𝑁2(~78 %), oxygen 𝑂2(~21 %) and other gases of which Argon 

𝐴𝑟 (~0.9 %) and water vapor 𝐻2𝑂 (𝑢𝑝 𝑡𝑜 ~3 %) are the two most abundant. The key objective 

of this chapter is to determine the density of air and the speed of sound. The properties of air 

vary significantly with increasing altitude. To characterize the relationship between 

temperature, pressure and altitude various mathematical models had been established. I will use 

the International Standard Atmosphere (ISA) model. ISA can be described as a static 

atmospheric model with fixed air properties at given altitudes. It also considers air as a fully 

compressible ideal gas. Although not comparable with recent global atmospheric models, the 

ISA is often used by many for ballistics or aviation computations with sufficient accuracy, while 

not requiring hard-to-obtain data. Depending on altitude the ISA atmosphere is divided into six 

segments. From sea level to Kármán line, defining an imaginary boundary between atmosphere 

and outer space. 

Layer Name Average altitude [km] 

1 Troposphere 0 − 11 

2 Tropopause 11 − 20 

3 Stratosphere 20 − 47 

4 Stratopause 47 − 51 

5 Mesosphere 51 − 85 

6 Mesopause 85 − 100 

Table 1: Atmospheric layers distribution with altitude. 

The Table 1 and Figure 1 considers average layer height, which varies with latitude. For 

example, at the poles the Troposphere ends at mere 6 km above sea level, while at the equator 

it can as well reach 18 km. Each atmosphere layer has its own temperature vs altitude linear 

distribution. Pressure and density decrease with altitude at exponential rates. One would expect 

the temperature in lower atmospheric layers to steadily decrease with increasing altitude. 

Despite that, the temperature in stratosphere rapidly increases due to high concentration of 

ozone. Production of ozone generates heat, increasing the air temperature. Additionally, ozone 

is a greenhouse gas and can retain heat. Small arms projectiles cannot reach out of the 

Troposphere even when fired perpendicularly to the ground, therefore defining the Troposphere 

is our only concern. 



4 

 

 

Figure 1: Air temperature variation with altitude according to the International Standard Atmosphere 

(ISA) model. Adapted from: [1]. 
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 Definition of fundamental variables 

𝒑 [Pa] – Absolute air pressure 

𝒑𝒅𝒂 [Pa] – Partial pressure of dry air 

𝒑𝒘𝒗 [Pa] – Partial pressure of water vapor 

𝒑𝒘𝒗𝒔 [Pa] – Partial pressure of saturated water vapor 

𝒓 [J ∙ kg−1 ∙ K−1] – Specific gas constant 

𝒓𝒅𝒂 =  287.050 [J ∙ kg−1 ∙ K−1] – Specific gas constant of dry air 

𝒓𝒘𝒗 =  461.495 [J ∙ kg−1 ∙ K−1] – Specific gas constant of water vapor 

𝒗 [m3 ∙ kg−1]; 𝒗 [m ∙ s−1]  – Specific air volume; Velocity of an object relative to air 

𝝆 [kg ∙ m−3] – Air density 

𝝆𝒅𝒂 [kg ∙ m−3] – Density of dry air 

𝝆𝒘𝒗 [kg ∙ m−3] – Density of water vapor 

𝝋 [%]  –  Relative air humidity 

𝑻 [K] – Absolute air temperature 

𝑻𝑪 [℃] – Relative air temperature 

𝒉 [m] – Altitude (Height above sea level) 

𝒄 [m ∙ s−1] – Speed of sound 

𝒄𝒅𝒂 [m ∙ s−1] – Speed of sound in dry air 

𝜸 [−] – Poisson´s constant (For dry air 𝛾 = 1.4) 

𝑲 [MPa] – Bulk modulus of liquid 

 

 Density of dry air 

Using the ISA static atmospheric model (Figure 1), we can compute the density in three ways, 

depending on the available data. In first and the best-case scenario we know the exact air 
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pressure and temperature. In the second, the most common case, we know the exact temperature 

and altitude. Finally, in the third case, we only know the altitude. 

Neglecting the effect of water vapor, the water vapor partial pressure 𝑝𝑤𝑣 must be equal to zero. 

That means any of the computed variables of dry air is equal to its absolute value in air. 

 𝑝 = 𝑝𝑑𝑎 ( 1 ) 

 𝜌 =  𝜌𝑑𝑎 ( 2 ) 

The ISA considers the air as an ideal fully compressible gas, so it can be solved using the 

standard equation of state. The equation is written using the specific volume and specific gas 

constant: 

 𝑝 ∙ 𝑣 = 𝑟 ∙ 𝑇. ( 3 ) 

By expressing the air density from the standard equation of state, we get the equation for first 

case scenario problem computation: 

 
𝜌𝑑𝑎 =  

1

𝑣
=  

𝑝𝑑𝑎

𝑟𝑑𝑎 ∙ 𝑇
 [kg ∙ m−3]. 

( 4 ) 

For the second case scenario computation we need to combine the equation of state with a 

pressure altitude equation ( 10 ) to determine atmospheric pressure at a given altitude. Expecting 

the air pressure, density and temperature in Troposphere to decline at a known rate, first, we 

must define initial conditions bound to zero altitude (sea level): 

𝑝0 = 101325 Pa, 

𝜌0 = 1.225 kg ∙ m−3, 

𝑇0 = 288.15 K. 

To derive the pressure altitude equation, we must consider some quantities as constant. First, 

we need to separate the pressure from the standard equation of state ( 3 ), getting the Barometric 

formula: 

 
𝑝 =

1

𝑣
∙ 𝑟 ∙ 𝑇 =  𝜌 ∙ 𝑟 ∙ 𝑇. 

( 5 ) 

If atmospheric pressure comes from the hydrostatic pressure, we can use the hydrostatic 

equation for ideal fluid: 

 d𝑝 =  −𝜌 ∙ 𝑔 ∙ dℎ. ( 6 ) 
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Dividing the hydrostatic equation ( 6 ) by the Barometric formula ( 5 ) and then integrating this 

equation between altitudes ℎ0 = 0 m (sea level) and ℎ: 

 d𝑝

𝑝
= −

𝑔 ∙ dℎ

𝑟 ∙ 𝑇
, 

( 7 ) 

 
∫

d𝑝

𝑝
= −

𝑔

𝑟 ∙ 𝑇
∙ ∫ dℎ.

ℎ

ℎ0

𝑝

𝑝0

 
( 8 ) 

With all integration steps completed, we can implement the ISA equation of linear temperature 

decrease in Troposphere (𝑇 =  𝑇0 − 0.0065 ∙ ℎ) [1]. Additionally, if we consider that the 

gravitational acceleration in Troposphere has a constant value of 𝑔 = 9.81 m ∙ s−2 and knowing 

the specific gas constant of dry air, we can substitute both into the equation and simplify: 

 

𝑝 =  𝑝0 ∙ (
𝑇

𝑇0
)

𝑔
𝑟∙0.0065

= 𝑝0 ∙ (1 −
0.0065 ∙ ℎ

𝑇0
)

5.2577

. 

( 9 ) 

Since all previous computation steps are based on the given initial temperature 𝑇0 and pressure 

𝑝0, we can also substitute their exact value getting a final form of pressure altitude equation for 

our second case scenario computation: 

 
𝑝 = 101325 ∙ (1 −

ℎ

44331
)

5.2577

 [Pa]. 
( 10 ) 

Using similar process, we can derive the relationship between altitude and density for the third 

case scenario computation: 

 
𝜌 = 𝜌0 ∙ (1 −

0.0065 ∙ ℎ

𝑇0
)

4.2577

= 1.225 ∙ (1 −
ℎ

44331
)

4.2577

[kg ∙ m−3]. 
( 11 ) 

To determine accuracy of the ISA modified model we will select six random atmospheric data 

measurements from two RBCN stations in Czechia, operated by Czech hydrometeorological 

institute ČHMÚ. All measured data represents an average daily variable value. To test the 

model on wider range of temperatures and altitudes, each selected measurement is taken in a 

different season and at different altitude. Since ČHMÚ datasheet does not contain any air 

density data, the error of the computation scenarios will be compared against the first case 

scenario (theoretically most dependable). 
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Data from the RBCN meteorological station in Přibyslav [2]: 

Date [−] Altitude 

above sea 

level [m] 

Average air 

temperature 

[℃] 

Average air 

pressure 

[hPa] 

Relative 

humidity 

[%] 

Wind speed 

[m ∙ s−1] 

Total 

rainfall 

[mm] 

11.01.2022 532.5 -7.1 967.9 92 2.9 0 

04.08.2022 532.5 24.6 955.5 41 3.4 0 

07.10.2022 532.5 12.6 961.8 87 4.6 0 

Table 2: Data from the RBCN meteorological station located in Přibyslav (Czechia). Data available 

from: [2]. 

 

Case 

[−] 

Altitude 

[m] 

Air temperature 

[℃] 

Air pressure 

[hPa] 

Air density 

[kg ∙ m−3] 

Proportional deviation 

from Case 1 [%] 

1 532.5 -7.1 967.9 1.2674 - 

1 532.5 24.6 955.5 1.1179 - 

1 532.5 12.6 961.8 1.1726 - 

2 532.5 -7.1 950.9 1.2451 -1.8 

2 532.5 24.6 950.9 1.1126 -0.5 

2 532.5 12.6 950.9 1.1593 -1.2 

3 532.5 - - 1.1636 -8.9 

3 532.5 - - 1.1636 3.9 

3 532.5 - - 1.1636 -0.8 

Table 3: Computed values of air pressure and air density for each case from the Table 2 using 

equations ( 4 ), ( 10 ), ( 11 ). 
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Data from the RBCN meteorological station at Lysá Hora mountain [2]: 

Date [−] Altitude 

above sea 

level [m] 

Average air 

temperature 

[℃] 

Average air 

pressure 

[hPa] 

Relative 

humidity 

[%] 

Wind speed 

[m ∙ s−1] 

Total 

rainfall 

[mm] 

11.01.2022 1322 -10.8 873.2 99 7.5 0 

04.08.2022 1322 18.5 872.9 59 2.8 0 

07.10.2022 1322 9.9 876.3 83 6.3 0 

Table 4: Data from the RBCN meteorological station located at Lysá Hora mountain (Czechia). Data 

available from: [2]. 

 

Case 

[−] 

Altitude 

[m] 

Air temperature 

[℃] 

Air pressure 

[hPa] 

Air density 

[kg ∙ m−3] 

Proportional deviation 

from Case 1 [%] 

1 1322 -10.8 873.2 1.1595 - 

1 1322 18.5 872.9 1.0427 - 

1 1322 9.9 876.3 1.0785 - 

2 1322 -10.8 864.2 1.1476 -1.0 

2 1322 18.5 864.2 1.0323 -1.0 

2 1322 9.9 864.2 1.0636 -1.4 

3 1322 - - 1.0769 -7.7 

3 1322 - - 1.0769 3.2 

3 1322 - - 1.0769 -0.1 

Table 5: Computed values of air pressure and air density for each case from the Table 4 using 

equations ( 4 ), ( 10 ), ( 11 ). 

Summarizing all the computed data, we can conclude that the second case scenario is clearly 

more accurate than the third, especially at evaluating air density during temperature deviations. 

Although the second case scenario does not always give accurate atmospheric pressure value, 

we can say that in most cases the error of air density computation should be within 2 % of the 

first case scenario. Note that both models usually predict a lower air density value than the first 

case scenario. 

 

 Density of humid air 

Humid air can be considered as an extension of dry air accounting for the dispersed water vapor 

rather than separate model, creating somewhat more realistic model of atmospheric conditions. 
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The ISA doesn’t account for water vapor presence. Computation of water vapor partial density 

requires the partial pressure of dry air and the overall air temperature. Since the dry air pressure 

computation is based on ISA static atmosphere model, the estimation of humid air density can 

only be as good as the ISA estimation is. 

Accounting for water vapor, the final pressure becomes a sum of partial dry air pressure and 

partial water vapor pressure. The same is true for air density. 

 𝑝 =  𝑝𝑑𝑎 +  𝑝𝑤𝑣 ( 12 ) 

 𝜌 =  𝜌𝑑𝑎 +  𝜌𝑤𝑣 ( 13 ) 

Expressing the water vapor density from equation of state ( 3 ), we get: 

 𝜌𝑤𝑣 =  
𝑝𝑤𝑣

𝑟𝑤𝑣 ∙ 𝑇
 [kg ∙ m−3]. 

( 14 ) 

Substituting all the variables we obtain the equation for computing density of humid air: 

 𝜌 =
𝑝𝑑𝑎

𝑟𝑑𝑎 ∙ 𝑇
+

𝑝𝑤𝑣

𝑟𝑤𝑣 ∙ 𝑇
 [kg ∙ m−3]. 

( 15 ) 

Now we are left with one unknown variable – partial water vapor pressure. Water vapor is not 

an ideal gas, meaning its properties are determined by experimental measurements. The 

saturation pressure of water vapor is dependent on the humid air temperature. Water vapor 

saturation pressure represents water vapor pressure at relative humidity 𝜑 = 100 %. 

Using the Arden Buck equation for computation of saturated water vapor pressure [3]: 

 
𝑝𝑤𝑣𝑠 = 0.61121 ∙ exp [(18.678 −

𝑇𝐶

234.5
) ∙ (

𝑇𝐶

257.14 + 𝑇𝐶
)] [kPa]. 

( 16 ) 

The relative humidity can be written as the ratio of partial water vapor pressure and saturated 

water vapor pressure: 

 𝜑 =  
𝑝𝑤𝑣

𝑝𝑤𝑣𝑠
∙ 100 [%]. 

( 17 ) 

We can substitute the saturated water vapor pressure into the Arden Buck equation ( 16 ) 

obtaining the final form of equation for partial water vapor pressure computation dependent on 

the saturated water vapor pressure and temperature: 

 
𝑝𝑤𝑣 = 6.1121 ∙ 𝜑 ∙ exp [(18.678 −

𝑇𝐶

234.5
) ∙ (

𝑇𝐶

257.14 + 𝑇𝐶
)] [Pa]. 

( 18 ) 

Note that this form of Arden Buck equation cannot be used for temperatures 𝑇𝐶 ≤ 0 ℃, when 

the water in the air can exist in all three states – water vapor, ice crystals and water drops. 
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Except of precise ballistics computations (trajectories of long-range artillery shells and such) 

partial density of water vapor is often neglected for its little or no effect on the air density. To 

test this hypothesis let´s consider the following atmospheric conditions to achieve maximum 

effect of water vapor pressure: 𝑇𝐶 = 40 ℃, ℎ = 500 m, 𝜑 = 100 %. 

Solving for partial dry air and water vapor pressure: 

𝑝𝑑𝑎 = 101325 ∙ (1 −
ℎ

44331
)

5.2577

= 101325 ∙ (1 −
500

44331
)

5.2577

= 95459 Pa, 

𝑝𝑤𝑣 = 6.1121 ∙ 100 ∙ 𝑒𝑥𝑝 [(18.678 −
40

234.5
) ∙ (

40

257.14 + 40
)] = 7382 Pa. 

Solving for the partial dry air and water vapor density and the final air density: 

𝜌𝑑𝑎 =
𝑝𝑑𝑎

𝑟𝑑𝑎 ∙ 𝑇
=

95459

287.05 ∙ 313.15
= 1.062 kg ∙ m−3, 

𝜌𝑤𝑣 =
𝑝𝑤𝑣

𝑟𝑤𝑣 ∙ 𝑇
=

7382

461.495 ∙ 313.15
= 0.051 kg ∙ m−3,  

𝜌 =  𝜌𝑑𝑎 +  𝜌𝑤𝑣 = 1.0620 + 0.0511 = 1.113 kg ∙ m−3. 

Neglecting the partial density of water vapor is, under given circumstances, justifiable. Water 

vapor density in this extreme case made up just 4.59 % of the total density. Furthermore, we 

can say that in majority of cases the water vapor density will not exceed 2 % of the total air 

density. 

 

 Speed of sound 

Speed of sound as a quantity and sound barrier as an aerodynamic phenomenon is the subject 

of research not only in ballistics. It also serves as a basis for majority of characteristics including 

drag laws. The exact value of speed of sound is often referred to as Mach number [Ma] – a 

dimensionless ratio of an object velocity compared to the speed of sound 𝑣𝑀𝑎 = 𝑣/𝑐. Unlike 

air density, the speed of sound is relatively easy to approximate and is independent of changes 

in air pressure and humidity. Sound can be defined as a pressure wave which propagates through 

a given liquid at velocity, described by the Newton–Laplace equation [4]: 

 

𝑐 = √
𝐾

𝜌
. 

( 19 ) 

Assuming dry air as an ideal gas, we can express the Bulk modulus of liquid as follows: 
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 𝐾 =  𝛾 ∙ 𝑝. ( 20 ) 

Substituting dry air pressure into the Newton–Laplace equation ( 19 ) using the standard 

equation of state ( 3 ), we get the final relation of the speed of sound and dry air temperature: 

 𝑝 =  𝜌 ∙ 𝑟𝑑𝑎 ∙ 𝑇, ( 21 ) 

 

𝑐𝑑𝑎 = √
𝛾 ∙ 𝑝

𝜌
= √𝛾 ∙ 𝑟𝑑𝑎 ∙ 𝑇. 

 

( 22 ) 

Since the 𝛾 and 𝑟𝑑𝑎 are both constants and since the temperature is often measured in degrees 

Celsius, we may encounter additional form of the same equation based on linear function 

approximation [4]: 

 𝑐𝑑𝑎 ≈ 331.3 + 0.6 ∙ 𝑇𝐶  [m ∙ s−1]. ( 23 ) 
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Figure 2: Approximation of the speed of sound in dry air based on the heat capacity ratio (in green) 

against the truncated Taylor expansion (in red, described by equation ( 23 )). Available at: [4]. 
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Figure 3: Speed of sound vs. temperature and relative humidity, p = 101.3 kPa, 314 ppm CO2. 

Available at: [5]. 

 

Once again, measurements and more complex approximations gives us the knowledge of 

boundaries within which the linear approximation can be used. According to the data displayed 

in the Figure 2 and Figure 3, we will set the computation limits of temperature 𝑇𝐶 from 𝑇𝐶𝑚𝑖𝑛 =

−40 ℃  to  𝑇𝐶𝑚𝑎𝑥 = 40 ℃. 
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 MATHEMATICAL DESCRIPTION OF EXTERNAL BALLISTICS 

 Definition of fundamental variables 

𝝆 [kg ∙ m−3] – Air density 

𝑺 [m2] – Cross-sectional area of the projectile 

𝑺𝑫 [lb ∙ in−2, kg ∙ m−2] – Sectional density of the projectile 

𝒎 [kg] – Weight of the projectile 

𝑪𝒙 [−] – Drag coefficient 

𝑪𝒔 [−] – Drag coefficient of the drag law reference projectile 

𝒊 [−] – Form factor 

𝑩𝑪 [lb ∙ in−2, kg ∙ m−2] – Ballistic coefficient 

𝒈 [m ∙ s−2] – Gravitational acceleration 

𝒅 [𝑚] – Diameter of the projectile 

𝒗 [m ∙ s−1] – Velocity of the projectile 

𝒗𝒙,𝒚,𝒛 [m ∙ s−1] – Axial components of projectile´s velocity 

𝒂 [m ∙ s−2] – Acceleration of the projectile 

𝒂𝒙,𝒚,𝒛 [m ∙ s−2] – Axial components of projectile´s acceleration 

𝒙, 𝒚, 𝒛 [m] – Axial components of projectile´s position from origin 

𝒕 [s] – Time of projectile movement 

𝒉 [s] – Time step of numerical integration 

𝒌 [NaN] – Column of numerical integration 

 

 Differential equations 

The purpose of differential equations is to describe the change in defined system over time. 

Forming the core of each ballistic solver, differential equations of motion are solved using 
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numerical integration with a given time step. The time step can be preset or changed based on 

the input data throughout the computation process. 

Airguns are handheld shoulder fired firearms. Similarly, to most handheld firearms we can 

characterize the projectile trajectory as flat. Doing so, the atmospheric density does not change 

with altitude, and we consider the projectile as a point mass, reducing the solution to 3DOF 

(Three Degrees of Freedom – axes 𝑥, 𝑦, 𝑧). The solution is partially derived from the Newton´s 

second law of motion and drag equations ( 37 ), ( 48 ), ( 49 ). For 3DOF point mass solution we 

can write the following system of second order differential equations: 

 d𝑣

d𝑡
=  

𝐶𝑥 ∙ 𝜌 ∙ 𝑆 ∙ 𝑣2

2 ∙ 𝑚
, 

d𝑣𝑦

d𝑡
=  

d𝑣

d𝑡
∙

𝑣𝑦

𝑣
+ 𝑔, 

d𝑣𝑥

d𝑡
=  

d𝑣

d𝑡
∙

𝑣𝑥

𝑣
, 

d𝑣𝑧

d𝑡
= 𝑎𝑧 , 

d𝑦

d𝑡
= 𝑣𝑦 , 

d𝑥

d𝑡
= 𝑣𝑥 , 

d𝑧

d𝑡
= 𝑣𝑧 . 

 

 

 

 

 

 

 

 

( 24 ) 

Notice that the solution could be written using just four differential equations instead of five. 

The velocities form a right triangle, and we can use the Pythagorean theorem to describe them: 

 𝑣2 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2. ( 25 ) 

Now that we have the relevant flat trajectory model described, we need to choose an appropriate 

method of numerical integration. Due to the relatively low difficulty of the 3DOF model, we 

will choose from a few common integration methods used to solve ordinary differential 

equations. Generally characterizing the initial problem, we introduce an unknown variable 𝑦, 

whose magnitude is changing over time. The value of 𝑦 at 𝑡0 = 0 s is initial value marked as 

𝑦0: 

 𝑦(𝑡0) = 𝑦0. ( 26 ) 
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The change of variable 𝑦 over time depends on the value of 𝑦 at the beginning of each 

integration step: 

 d𝑦

d𝑡
= 𝑓(𝑡, 𝑦). 

( 27 ) 

This equation further underlines the importance of using numerical integration method as the 

change of defined variable depends on itself. The last undescribed variables are: ℎ, representing 

a constant time interval also called time step and 𝑘, representing result obtained by single 

integration also called integration column. The time step ℎ can be set as desired but it is 

important to do an analysis of the algorithm accuracy as an incorrectly set time step may cause 

degradation in accuracy or increase in computation time. 

Fourth order Runge–Kutta integration method (RK4) [6]: 

 𝑘1 = ℎ ∙ 𝑓(𝑡𝑛, 𝑦𝑛), 

𝑘2 = ℎ ∙ 𝑓 (𝑡𝑛 +
ℎ

2
,  𝑦𝑛 +

𝑘1

2
), 

𝑘3 = ℎ ∙ 𝑓 (𝑡𝑛 +
ℎ

2
,  𝑦𝑛 +

𝑘2

2
), 

𝑘4 = ℎ ∙ 𝑓(𝑡𝑛 + ℎ, 𝑦𝑛 + 𝑘3), 

𝑦𝑛+1 =  𝑦𝑛 +  
1

6
∙ (𝑘1 + 2 ∙ 𝑘2 + 2 ∙ 𝑘3 +  𝑘4), 

𝑡𝑛+1 =  𝑡𝑛 + ℎ. 

 

 

 

 

( 28 ) 

Second order Runge–Kutta integration method (RK2) [6]: 

 𝑘1 = ℎ ∙ 𝑓(𝑡𝑛, 𝑦𝑛), 

𝑘2 = ℎ ∙ 𝑓(𝑡𝑛 + ℎ, 𝑦𝑛 + 𝑘1), 

𝑦𝑛+1 =  𝑦𝑛 +  
1

2
∙ (𝑘1 +  𝑘2), 

𝑡𝑛+1 =  𝑡𝑛 + ℎ. 

 

 

( 29 ) 

Euler integration method [6]: 

 𝑘 = ℎ ∙ 𝑓(𝑡𝑛, 𝑦𝑛), 

𝑦𝑛+1 =  𝑦𝑛 +  𝑘, 

 

( 30 ) 
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𝑡𝑛+1 =  𝑡𝑛 + ℎ. 

In general, we want all algorithms to be as accurate as needed and as fast as possible. Translated 

into our problem we want to find the optimal combination of the integration method and time 

step. To do so all integration methods were programmed in software MATLAB R2022b. The 

total duration of each computation process was measured, and the resulting trajectory compared 

against the MATLAB numerical integration function ODE45 in terms of maximum projectile 

range. The results are displayed in Figure 4. 

Based on the plotted data we can conclude that the RK2 with step size of ℎ = 10−3 s is the 

optimal method for the flat trajectory 3DOF model as it achieved nearly similar results as RK4. 

Nevertheless, the RK4 method is still great option for solving difficult differential equations 

but implementing it for this solution does not yield any advantages. Euler method on the other 

hand is the simplest and fastest method of numerical integration but has a big disadvantage of 

error accumulation and inaccuracy. 
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Figure 4: Logarithmic comparison between the speed and accuracy of the algorithms against the step size. Each algorithm is based on one of the defined 

numerical integration methods ( 28 ), ( 29 ), ( 30 ).
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In the following section I decided to add a complete implemented flat trajectory exterior 

ballistic model reduced to 2DOF (just 𝑥 and 𝑦 axes) using the RK2 integration method ( 29 ). 

This is the exact algorithm used in the B4E ballistic solver [9] whose results are used many 

times throughout this paper. Keep in mind that the solution consists of second order differential 

equations and therefore must be integrated twice. First integration is to find the velocity in next 

step assuming the acceleration throughout the time step as a constant. Second integration is to 

find the position of the projectile assuming the velocity throughout the time step as a constant. 

Establishing the change in time: 

 𝑡𝑛+1 = 𝑡𝑛 + ℎ. ( 31 ) 

Solving for the velocities 𝑣𝑛+1, 𝑣𝑥𝑛+1
, 𝑣𝑦𝑛+1

: 

 
𝑘1 =

𝐶𝑥 ∙ 𝜌 ∙ 𝑆 ∙ 𝑣𝑛
2

2 ∙ 𝑚 ∙ ℎ
, 

𝑘2 =
𝐶𝑥 ∙ 𝜌 ∙ 𝑆 ∙ (𝑣𝑛 − 𝑘1)2

2 ∙ 𝑚 ∙ ℎ
, 

𝑣𝑛+1 = 𝑣𝑛 +
1

2
∙ (𝑘1 + 𝑘2), 

 

 

 

( 32 ) 

 𝑘1 =
𝑣𝑛+1 − 𝑣𝑛

𝑣𝑛
∙ 𝑣𝑥𝑛

, 

𝑘2 =
𝑣𝑛+1 − 𝑣𝑛

𝑣𝑛
∙ (𝑣𝑥𝑛

− 𝑘1), 

𝑣𝑥𝑛+1
= 𝑣𝑥𝑛

+
1

2
∙ (𝑘1 + 𝑘2), 

 

 

( 33 ) 

 

 𝑘1 =
𝑣𝑛+1 − 𝑣𝑛

𝑣𝑛
∙ 𝑣𝑦𝑛

+ 𝑔 ∙ ℎ, 

𝑘2 =
𝑣𝑛+1 − 𝑣𝑛

𝑣𝑛
∙ (𝑣𝑦𝑛

− 𝑘1) + 𝑔 ∙ ℎ, 

𝑣𝑦𝑛+1
= 𝑣𝑦𝑛

+
1

2
∙ (𝑘1 + 𝑘2). 

 

 

( 34 ) 

Solving for the positions 𝑥𝑛+1, 𝑦𝑛+1: 
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 𝑘1 = (2 ∙ 𝑣𝑥𝑛
− 𝑣𝑥𝑛+1

) ∙ ℎ, 

𝑘2 = 𝑣𝑥𝑛
∙ ℎ, 

𝑥𝑛+1 = 𝑥𝑛 +
1

2
∙ (𝑘1 + 𝑘2), 

 

 

 

( 35 ) 

 𝑘1 = (2 ∙ 𝑣𝑦𝑛
− 𝑣𝑦𝑛+1

) ∙ ℎ, 

𝑘2 = 𝑣𝑦𝑛
∙ ℎ, 

𝑦𝑛+1 = 𝑦𝑛 +
1

2
∙ (𝑘1 + 𝑘2). 

 

 

( 36 ) 

Computed velocities 𝑣𝑥𝑛+1
, 𝑣𝑦𝑛+1

 ( 33 ), ( 34 ) and positions 𝑥𝑛+1, 𝑦𝑛+1 ( 35 ), ( 36 ) are the 

inputs into the next integration step in which they are marked as 𝑣𝑥𝑛
, 𝑣𝑦𝑛

and 𝑥𝑛, 𝑦𝑛. Repeating 

this process hundreds or thousands of times yields a 2DOF flat ballistic trajectory. 

 

 Drag laws 

This chapter will focus purely on the drag coefficient and its complex behavior throughout the 

projectile flight. Its importance is due to occurrence in the Newton´s drag equation used in 

numerical integrations: 

 
𝐹𝐷 =

1

2
∙ 𝐶𝑥 ∙ 𝜌 ∙ 𝑆 ∙ 𝑣2 [N]. 

( 37 ) 

The drag coefficient 𝐶𝑥, also known as 𝐶𝐷, is defined as a sum of many drag components. 

Simple exterior ballistics models acknowledge three drag components: pressure drag, wave 

drag, and friction drag. Each can be influenced by the projectile´s design. Depending on 

application, the magnitude of each component varies greatly. For example, lift induced drag is 

an important aspect in aviation but not so much in ballistics. 

The friction drag is caused by contact of air molecules with the projectile body. Higher 

velocities and greater projectile surface results in increased friction drag. Regardless, the 

friction drag has the lowest share out of three mentioned. Meaning the longer and more 

“streamline” the projectile is, the less overall drag it will experience. However, the friction of 

air molecules with the projectile surface has a major effect on other types of drag and cannot 

be neglected, mainly due to its ability to create boundary layers resulting in airflow separation. 
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Pressure drag, also referred to as form drag, is the main drag component at subsonic velocities 

(𝑣𝑀𝑎 < 1 Ma) and in some cases even at supersonic velocities. The flow of air around the 

projectile creates two regions, high pressure at the tip/front and low pressure at the back/tail. 

Because of this a further division into two subcategories known as Fore-drag (Figure 5) and 

Base drag could be encountered. Both pressures create a force acting in the direction opposite 

of projectile movement. 

Wave drag originates from shock waves forming on or in front of the projectile. Formation of 

shock waves starts when the projectile enters the transonic region (0.8 Ma < 𝑣𝑀𝑎 < 1.2 Ma) 

and stay throughout the whole supersonic region. During and shortly after the Second World 

War a lot of research was done regarding the formation of shock waves and possible ways to 

reduce its negative effect on wave drag. As a result, multiple nose shapes offering minimum 

wave drag and therefore minimum overall drag at supersonic velocities had been developed, 

such as the ¾ power law and Sears-Haack (Figure 5) [7]. 

 

Figure 5: Foredrag coefficient (Drag coefficient at the front of the projectile and zero yaw angle) of 

multiple projectile nose shapes vs Mach number. Available at: [7]. 

 

Despite the deeper structured theoretical description, the drag coefficient 𝐶𝑥 is a sum of many 

other drag components: 

 𝐶𝑥 = ∑ 𝐶𝑖

𝑖=1

. 
( 38 ) 

And the magnitude of drag components (for example wave drag) varies depending on the 

instantaneous velocity of the projectile: 
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 𝐶𝑥 ≠ 𝑐𝑜𝑛𝑠𝑡. ( 39 ) 

If we determine the drag coefficient 𝐶𝑥 at different velocities, for each velocity we get a 

different value. Doing so we collected a number of two-dimensional points consisting of values 

for drag coefficient and velocity [𝑣 ; 𝐶𝑥], which together form the drag law. Note that due to 

the dependence of aerodynamical phenomena on the speed of sound, the unit of velocity is 

converted to Mach number [Ma ; 𝐶𝑥] or [𝑣𝑀𝑎  ;  𝐶𝑥]. To this day, there are countless drag laws 

in existence of which the most widespread are the G-Series (GL, GS, G1, …, G8) [7]. We will 

mention three of them as an example, the drag law of a sphere GS, drag law G1 used for 

handgun or simple rifle projectiles and drag law G7 used for very low drag projectiles (Figure 

6, Figure 7). The data in Figure 6 were processed from drag functions found in the book [7]. 

Note that in the Figure 6 a drag coefficient 𝐶𝑠 instead of 𝐶𝑥 is used. It is the same coefficient, 

only marked differently specifying that this coefficient refers only to the standard projectile 

(Figure 7). Drag laws are often written in tables and must be accompanied by a sketch or 

drawing of a standard projectile to which it refers to (Figure 7). Both must include basic 

projectile dimensions often given as multiples of bore diameter or radius. 
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Figure 6: Drag laws (Dependence of drag coefficient on Mach number) of standard projectiles 

displayed in Figure 7. Both parameters are dimensionless. 

 

Figure 7: Sketch of standard projectiles referring to drag laws GS, G1 and G7 in Figure 6. Dimensions 

are referring to given diameter or radius of the bore. 

 

The drag laws are often confused with drag functions, meaning the dependence drag force 

acting opposite of the projectile motion on projectile velocity. Nevertheless, computed drag 

function displayed in Figure 8 certainly shows the difference between the two and gives us a 

measure of how important projectile design is at supersonic velocities. 
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Figure 8: Drag function. Drag force acting on standard projectiles GS (red), G1 (blue) and G7 (black) 

(𝑑 =  10 𝑚𝑚, 𝜌 = 1.129 𝑘𝑔 ∙ 𝑚−3) vs Mach number. This plot corresponds to the plot in Figure 6 

when the drag coefficient (law) is implemented in the Newton´s drag equation ( 37 ). 

Drag laws are often neglected, mentioning only a measured value of drag coefficient 𝐶𝑥. The 

equations of motion using drag laws are in general more complicated and up to around 𝑣𝑀𝑎 ≈

0.5 Ma, there is little to no benefit of not considering the drag coefficient as a constant. But as 

the object reaches velocities beyond that mark, it becomes a necessity. 

 

 Ballistic coefficient 

Ballistic coefficient is a quantity that represents the overall ability of given projectile to 

overcome the air drag. Due to its simplicity, it is the most used ballistic characteristics of a 

projectile marketed for the common user. Simply put, the higher the ballistic coefficient, the 

better the projectile is at retaining its velocity. Compared to drag coefficient, the ballistic 

coefficient is adding projectile weight, diameter and drag law into the equation. It consists of 

two variables: sectional density ( 41 ) and the form factor ( 42 ). Beware that a lot of 

manufacturers do not specify units. The most common units for ballistic coefficient in western 

markets are pounds per square inch [lb ∙ in−2]. 
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𝐵𝐶 =  

𝑆𝐷

𝑖
 

( 40 ) 

The sectional density characterizes the ratio of projectile´s cross-section to its weight: 

 𝑆𝐷 =  
𝑚

𝑑2
.  

( 41 ) 

The form factor is a ratio of drag coefficient of given projectile to drag coefficient of standard 

projectile referring to drag law. Both coefficients must be compared at the same instantaneous 

velocity according to the standard projectile´s drag law. The closer the ratio of given vs standard 

projectile is to 𝑖 = 1, the less error is made by using the standard projectile´s drag law as 

substitution for unknown drag law of given projectile. To compute the form factor, either 

ballistic coefficient must be known or at least one drag coefficient related to velocity must be 

measured. 

 
𝑖 =  

𝐶𝑥

𝐶𝑠
 

( 42 ) 

Substituting form factor ( 42 ) and sectional density ( 41 ), we get: 

 
𝐵𝐶 =  

𝑆𝐷

𝑖
=

𝑚

𝑖 ∙ 𝑑2
=  

𝑚 ∙ 𝐶𝑠

𝑑2 ∙ 𝐶𝑥
 [kg ∙ m−2]. 

( 43 ) 

Introducing the conversion ratio from metric to imperial units: 

 
𝐵𝐶 =  

𝑚 ∙ 2.20462262

𝑖 ∙ (𝑑 ∙ 39.3700787)2
=  

𝑚 ∙ 𝐶𝑠

𝑑2 ∙ 𝐶𝑥
∙ 0.00142233 [lb ∙ in−2]. 

( 44 ) 

To demonstrate the meaning of ballistic coefficient we shall consider the following scenario: 

The unknown projectile drag has been measured and we obtained the following data: 𝑑 =

4.52 mm, 𝑚 = 0.547 g and 𝐶𝑥 = 0.505 measured at velocity 𝑣𝑀𝑎 = 0.71 Ma. The goal is to 

compare the form factors referring to the three mentioned standard projectiles GS, G1 and G7 

(Figure 7) and determine the correct ballistic coefficient for the unknown projectile. From 

Figure 6 we obtain the drag coefficients 𝐶𝑠 for each standard projectile at velocity 𝑣𝑀𝑎 =

0.7 Ma: 𝑪𝒔(𝐺𝑆, 𝑣𝑀𝑎 = 0.71 Ma) = 0.592, 𝑪𝒔(𝐺1, 𝑣𝑀𝑎 = 0.71 Ma) = 0.217, 𝑪𝒔(𝐺7, 𝑣𝑀𝑎 =

0.71 Ma) = 0.120. 

Solving for form factors ( 42 ): 

𝒊(𝐺𝑆) =
𝑪𝒙(𝑣𝑀𝑎 = 0.71 Ma)

𝑪𝒔(𝐺𝑆, 𝑣𝑀𝑎 = 0.71 Ma)
=

0.505

0.592
= 0.85, 

𝒊(𝐺1) =
𝑪𝒙(𝑣𝑀𝑎 = 0.71 Ma)

𝑪𝒔(𝐺1, 𝑣𝑀𝑎 = 0.71 Ma)
=

0.505

0.217
= 2.33, 
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𝒊(𝐺7) =
𝑪𝒙(𝑣𝑀𝑎 = 0.71 Ma)

𝑪𝒔(𝐺7, 𝑣𝑀𝑎 = 0.71 Ma)
=

0.505

0.120
= 4.21. 

 

 

Figure 9: Possible drag laws of JSB Exact projectile created by modifying the drag laws of standard 

projectiles GS, G1 and G7 (Figure 6) by form factors ( 42 ). 

The closest reference projectile from the test set compared to our pellet would be the sphere, 

referring to drag law GS. The plotted modified drag laws can be seen in Figure 9. Note that the 

form factor 𝑖 is not always a constant and may vary depending on the velocity at which the drag 

coefficient 𝐶𝑥 has been measured. To achieve more accurate results, we would have to evaluate 

it at multiple different velocities. Unfortunately, most ballistic solvers doesn´t support the drag 

law GS.  So again, choosing the closest option possible, which happens to be the drag law G1 

( 44 ):  

𝐵𝐶(𝐺1) =
𝑚 ∙ 𝐶𝑠(𝐺1)

𝑑2 ∙ 𝐶𝑥
∙ 0.00142233 =  

0.000547 ∙ 0.217

0.004522 ∙ 0.505
∙ 0.00142233 =  0.016 lb ∙ in−2. 

This is a valid and least expensive option of determining the ballistic coefficient based on the 

estimated similarity of different projectile´s drag law. Doing so, we completed the task but also 

introduced an error resulting from the difference of compared projectile quantified by the form 

factor. 
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Additionally, ballistic coefficient can also be substituted into differential equation of projectile 

acceleration. By canceling projectile weight and diameter it creates simplified and less 

demanding form of equation. The projectile weight is still required for muzzle and impact 

energy calculations, so it is not much of an advantage overall. Expressing acceleration of the 

projectile from Newton´s drag equation and second law of motion ( 37 ), ( 49 ): 

 

𝑎 =  
𝐶𝑥 ∙ 𝑆 ∙ 𝜌 ∙ 𝑣2

2 ∙ 𝑚
=  

𝐶𝑥 ∙ 𝜋 ∙ 𝑑2 ∙ 𝜌 ∙ 𝑣2

4
2 ∙ 𝑚

=
𝐶𝑥 ∙ 𝜋 ∙ 𝑑2 ∙ 𝜌 ∙ 𝑣2

8 ∙ 𝑚
. 

( 45 ) 

Expressing the drag coefficient from final ballistic coefficient equation ( 44 ): 

 
𝐶𝑥 =

𝑚 ∙ 𝐶𝑠

𝑑2 ∙ 𝐵𝐶
∙ 0.00142233. 

( 46 ) 

Substituting drag coefficient into the acceleration equation ( 45 ) we get projectile acceleration 

as a function of velocity: 

 

𝑎 =  

𝑚 ∙ 𝐶𝑆 ∙ 𝜋 ∙ 𝑑2 ∙ 𝜌 ∙ 𝑣2

𝑑2 ∙ 𝐵𝐶
8 ∙ 𝑚

 ∙ 0.00142233 = 

=  
𝐶𝑠 ∙ 𝜋 ∙ 𝜌 ∙ 𝑣2

8 ∙ 𝐵𝐶
∙ 0.00142233 [m ∙ s−2]. 

 

 

( 47 ) 
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 MODELING THE JSB EXACT PROJECTILE IN THE 

PRODAS V3 SOFTWARE 

PRODAS V3 is a software made by Arrow Tech Associates, Inc. used mainly for designing 

and modelling of missiles and projectiles. It offers detailed analysis of aerodynamical 

properties, interior ballistics, and terminal ballistics. The name PRODAS is an acronym for 

Projectile Rocket Ordnance Design and Analysis System. Since PRODAS was made for 

analysis of military grade weapons (artillery shells, armor piercing rounds, precision guided 

munitions, …) and their effects on potential targets, the user is required to have a U.S. State 

Department approved export license before obtaining the software. I was given the opportunity 

to work with PRODAS through Department of Weapons and Ammunition at University of 

Defense in Brno. 

PRODAS can offer a lot of data, but for the purposes of this work we only need to focus on a 

drag law estimation of the JSB Exact projectile (JSBE). 

 

 

Figure 10: Authorized sketch of a JSB Exact projectile (Diabolo type projectile). Variable 𝐷 [𝑚𝑚] 
expresses the diameter of the bore. 

Upon request, the company JSB Match Diabolo provided a complete drawing of JSB Exact 

projectile (pellet). The drawing is considered as a manufacturing secret; therefore, only sketch 

(Figure 10) of the projectile with dimensions authorized by the manufacturer can be published. 

Based on the drawing a model of the projectile was created and analyzed and the result is an 

estimation of the JSB Exact projectile drag law (Figure 11, Table 6).
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Figure 11: PRODAS V3 drag law estimation curve of the JSB Exact projectile (Figure 10).
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Mach number 

Ma [−] 

Drag coefficient 

𝐶𝑥 [−] 

Mach number 

Ma [−] 

 

Drag coefficient 

𝐶𝑥 [−] 

0.000 0.3309 1.050 1.0108 

0.400 0.3199 1.100 1.0646 

0.600 0.3357 1.200 1.1071 

0.700 0.3491 1.350 1.1221 

0.750 0.3747 1.500 1.1275 

0.800 0.4198 1.750 1.1381 

0.850 0.4771 2.000 1.1465 

0.875 0.5244 2.250 1.1556 

0.900 0.5692 2.500 1.1677 

0.925 0.6047 3.000 1.1807 

0.950 0.6615 3.500 1.1834 

0.975 0.7357 4.000 1.1722 

1.000 0.8295 4.500 1.1654 

1.025 0.9401 5.000 1.1592 

Table 6: PRODAS V3 drag law estimation of the JSB Exact projectile (Figure 10). 
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 MEASUREMENT AND ITS PROCESSING 

As of now, we have all the theoretical knowledge to determine the drag law of the JSB Exact 

projectile (pellet) when given the right data. In this chapter we will focus on the possible ways 

to select, obtain, process and evaluate these data. Additional attention will be given to selection, 

capabilities and examination of the tools and devices used for measurements.  

 Definition of fundamental variables 

𝑭𝑫 [N] – Drag force 

𝝆 [kg ∙ m−3] – Air density 

𝝆𝒅𝒂 [kg ∙ m−3] – Dry air density 

𝒑 [Pa] – Air pressure 

𝒑𝒅𝒂 [Pa] – Partial pressure of dry air 

𝒓𝒅𝒂 =  287.050 [J ∙ kg−1 ∙ K−1] – Specific gas constant of dry air 

𝑻 [K] – Absolute air temperature 

𝑻𝑪 [℃] – Relative air temperature 

𝒄 [m ∙ s−1] – Speed of sound 

𝒄𝒅𝒂 [m ∙ s−1] – Speed of sound in dry air 

𝒂 [m ∙ s−2] – Acceleration of the projectile 

𝒗 [m ∙ s−1] – Velocity of the projectile 

𝒙 [m] – Position of projectile from origin in 𝑥 −axis 

𝑳 [m] – Distance between chronographs (Chronograph spacing) 

𝒍 [m] – Distance between chronograph optical sensors 

𝒕 [s] – Time of projectile movement 

𝒕𝑺𝒕𝒖𝒅𝒆𝒏𝒕 [−] – Critical value of Student´s distribution 

𝑺 [m2] – Cross-sectional area of the projectile 

𝒅 [m] – Diameter of the projectile 
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𝒎 [kg] – Weight of the projectile 

𝑪𝒙 [−] – Drag coefficient 

𝑬 [J] – Energy 

𝑾 [J] – Work 

𝒏 [−] – Number of measurements 

𝒌 [−] – Number of degrees of freedom 

�̅̅̅�𝜶 [−] – Critical file of Student´s distribution 

�̅� [m ∙ s−1, ft ∙ s−1] – Arithmetic mean of projectile´s velocity 

�̃� [m ∙ s−1, ft ∙ s−1] – Median of projectile´s velocity 

𝒔𝟐 [m2 ∙ s−2, ft2 ∙ s−2] – Variance of projectile´s velocity 

𝒔 [m ∙ s−1, ft ∙ s−1]  – Standard deviation of projectile´s velocity 

 

 Methods of measurement 

First, the measured variables must be selected. Let´s start with the atmospheric conditions 

during the measurement session. For computation of the dry air density and the speed of sound 

we can use equations ( 4 ), ( 10 ), ( 23 ) derived in the first chapter, thus only requiring data of 

air temperature and altitude. Temperature will be measured with standard digital thermometer 

commonly used in houses, as the computation do not require high measurement precision. 

Altitude can be read from the contour lines on the map often done by online map browsers such 

as https://developer.mapy.cz/rest-api/tutorialy/zjisteni-nadmorske-vysky-pomoci-rest-api/. 

As we already know, drag law consists of a set of points and each of those points consists of 

velocity and drag coefficient [𝑣𝑀𝑎  ;  𝐶𝑥]. Unfortunately, neither can be directly measured, but 

both can be expressed as change in projectile position over time. Velocity can be described 

directly as a change of projectile position over time: 

 
𝑣 =  

d𝑥

d𝑡
. 

( 48 ) 

To describe drag coefficient as a change of position over time, we need to add Newton´s drag 

equation ( 37 ) into the Newton´s second law of motion ( 49 ): 

https://developer.mapy.cz/rest-api/tutorialy/zjisteni-nadmorske-vysky-pomoci-rest-api/
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 𝐹 = 𝑚 ∙ 𝑎, ( 49 ) 

 
𝐹 = 𝐹𝐷 => 𝑚 ∙ 𝑎 =  

1

2
∙ 𝐶𝑥 ∙ 𝜌 ∙ 𝑆 ∙ 𝑣2. 

( 50 ) 

Expressing the drag coefficient from the resulting equation ( 50 ) and substituting differential 

forms of acceleration and velocity we get: 

 

𝐶𝑥 =
2 ∙ 𝑚 ∙ 𝑎

𝜌 ∙ 𝑆 ∙ 𝑣2
=

2 ∙ 𝑚

𝜌 ∙ 𝑆
∙

𝑎

𝑣2
=

2 ∙ 𝑚

𝜌 ∙ 𝑆
∙

d𝑣
d𝑡

(
d𝑥
d𝑡

)
2 =

2 ∙ 𝑚

𝜌 ∙ 𝑆
∙

d2𝑥

d𝑡2
∙ (

d𝑥

d𝑡
)

−2

. 

 

( 51 ) 

The reason behind equation ( 51 ) is to prove that both drag coefficient and projectile velocity 

can be expressed by the projectile´s position as a function of time. This allows the use of 

numerous different measurement outputs if they involve at least one combination of 

acceleration 𝑎, velocity 𝑣, position 𝑥 or time 𝑡. 

In general, there are two common types of devices used for measurement in external ballistic 

of small arms projectiles: Doppler radars (Figure 12) and Optical chronographs (Figure 13).  

 

Figure 12: Illustration of the Doppler radar measurement platform. 
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Figure 13: Illustration of the Optical chronograph measurement platform. 

The Doppler radar measures the change of projectile´s position over time. Optical chronograph 

measures the time it takes the projectile to travel a given distance. The Doppler radars are 

superior in terms of accuracy and in amount of available data. Unfortunately, they are very 

expensive. The affordability of optical chronographs is much better, therefore I decided to use 

them. Unlike Doppler radar, optical chronograph displays just the average projectile velocity. 

However, using two optical chronographs placed in series (Figure 14) while knowing the 

distance between them, we will get the change in projectile velocity over distance [∆𝑣; 𝐿]. 

Measured velocities are marked gradually – Chronograph 𝐶1 measures velocity 𝑣1 and 

Chronograph 𝐶2 measures velocity 𝑣2 (Figure 14). 
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Figure 14: Illustration of two optical chronographs placed in series. This exact platform was used to 

measure the change in projectile velocity at a given distance. 

For the project I chose a set of two Caldwell Ballistic Precision Chronographs one of which I 

bought with additional LED lighting source to reduce the number of failed measurements 

caused by poor lighting conditions. The Caldwell Ballistic Precision Chronograph displays 

velocity readings as an integer either in meters per second [m ∙ s−1] or feet per second [ft ∙ s−1]. 

Measuring in feet per second offers a finer scale, therefore the measurements will be recorded 

in feet per second and later converted to meters per second 1 ft ∙ s−1 = 0.3048 m ∙ s−1. 

To cover the entire subsonic region multiple airguns have been used, one of which had the 

option to regulate air pressure in the piston allowing the pellet to achieve a wide range of muzzle 

velocities. The airguns used were Benjamin 397S (regulated piston pressure), Gamo Hunter 

440 and Crosman Quest NP. All of them were thoroughly tested and provided low initial 

velocity extreme spread and consistent accuracy up to a 30 m distance. 

 

 Platform optimization 

Before each set of measurements, the platform must be optimized to achieve a balance between 

the magnitude of projectile velocity decrease and the chronograph spacing. To proceed we must 

make few simplifications about the nature of the measurements: during the motion of projectile 

in the section 𝐿 (between the chronographs) the force of gravity acting on the projectile is 

neglected and an assumption that the drag force has a constant value is made (Figure 15). 

Meaning the deceleration of the projectile is constant, the decrease in velocity is linear and the 

total traveled distance is equal to the chronograph spacing 𝐿. 
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Figure 15: The differences between assumed and real value of drag force and acceleration of the JSB 

Exact projectile. Data in figures have been computed using the Newton´s drag equation ( 37 ) and the 

B4E solver [9]. 

The magnitude the chronograph spacing 𝐿 depends on the projectile initial velocity and drag. 

Theoretically, smaller spacing results in decrease of the linear assumption error (Figure 16), but 

simultaneously increases the platform measurement error. Considering all factors, I decided the 

ideal Chronograph spacing for the JSB Exact projectile should be around 𝐿 = 5 m (Figure 16), 

whereas I changed the spacing between 𝐿 = 2 m at the higher and 𝐿 = 8 m at the lower velocity 

measurement sets. 

The reason behind this paragraph can be fully understood after examining Chapter 4: 

Measurement and its processing. Theoretically you would want to place the chronographs as 

close to each other as possible to replicate the function of Doppler radar, practically it has no 

use. The setup just isn’t accurate enough to measure such incremental differences in projectile 

velocity and the measurement error bar could easily exceed the measured differences in 

velocity. Placing the chronographs too far from each other has no use either, because of the 

nature of the measured projectile. The JSB Exact projectile is small and sometimes doesn’t 

create enough shade to trigger the optical sensors, therefore it must be shot directly above the 

sensors which becomes harder with increasing distance when you are simultaneously trying to 

get the best alignment with the chronographs while also not damaging them via inaccurate fire. 

For example, I tried increasing the spacing to 𝐿 = 12 m, where the second chronograph (𝐶2) 

gave me reading on just one in five pellets. All of this is not universal and depends on a lot of 

factors ranging from the equipment and conditions you have. Generally, with larger projectiles 

like the JSB Exact King 6.35 mm you should be able to increase the spacing a lot more 

compared to the maximum spacing I set for the JSB Exact 4.5 mm. 
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Figure 16: The differences between assumed and real value of velocity of the JSB Exact projectile 

depending on the chronograph spacing 𝐿 (𝐿 = 2 m, 𝐿 = 10 m, 𝐿 = 25 m). 

 

 Data processing 

There are many possible ways to compute the drag law points based on the measured data. As 

an example, I chose two of them. For both, the assumption that the projectile acceleration has 

a constant value applies. The first one, which I find to be easier and more intuitive, expresses 
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the drag coefficient using basic equations of motion. The second one is based on energy 

conservation and is thoroughly described in the book [8]. 

Motion approach: We start with expressing the drag coefficient from the drag equation using 

substitution of the drag force into the Newton´s second law of motion ( 37 ), ( 49 ): 

 
𝐹𝐷𝑚𝑒𝑎𝑛

=
1

2
∙ 𝐶𝑥 ∙ 𝜌 ∙ 𝑆 ∙ 𝑣𝑚𝑒𝑎𝑛

2  [N], 

𝐹𝐷𝑚𝑒𝑎𝑛
= 𝑚 ∙ 𝑎𝑚𝑒𝑎𝑛, 

𝐶𝑥 =  
2 ∙ 𝑚 ∙ 𝑎𝑚𝑒𝑎𝑛

𝜌 ∙ 𝑆 ∙ 𝑣𝑚𝑒𝑎𝑛
2

. 

 

 

( 52 ) 

Considering a linear distribution of velocity decrease, we can determine the average velocity of 

projectile in the section 𝐿: 

 
𝑣𝑚𝑒𝑎𝑛 =  

𝑣1 + 𝑣2

2
. 

( 53 ) 

Using the average velocity ( 53 ), we can compute the time it takes the projectile to travel a 

distance 𝑆 = 𝐿: 

 
𝑡 =

𝐿

𝑣𝑚𝑒𝑎𝑛
=

𝐿
𝑣1 + 𝑣2

2

=
2 ∙ 𝐿

𝑣1 + 𝑣2
. 

( 54 ) 

Knowing the decrease in velocity over a distance 𝑆 = 𝐿 we now have all the variables to express 

the absolute value of projectile mean acceleration as a function of two measured velocities and 

the chronograph spacing: 

 ∆𝑣 = 𝑣1 − 𝑣2, ( 55 ) 

 
𝑎𝑚𝑒𝑎𝑛 =  

∆𝑣

𝑡
=

𝑣1 − 𝑣2

2 ∙ 𝐿
𝑣1 + 𝑣2

=
(𝑣1 − 𝑣2) ∙ (𝑣1 + 𝑣2)

2 ∙ 𝐿
.  

( 56 ) 

By substituting the acceleration ( 56 ) and mean velocity ( 53 ) into the drag equation we get: 

 

𝐶𝑥 =
2 ∙ 𝑚 ∙

(𝑣1 − 𝑣2) ∙ (𝑣1 + 𝑣2)
2 ∙ 𝐿

𝜌 ∙ 𝑆 ∙ (
𝑣1 + 𝑣2

2 )
2 =

4 ∙ 𝑚 ∙ (𝑣1 − 𝑣2)

𝜌 ∙ 𝑆 ∙ 𝐿 ∙ (𝑣1 + 𝑣2)
. 

 

( 57 ) 
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Energy approach [8]: We suggest that the work of gravity force on a small distance is equal 

to zero. The only force doing the work is the drag force. The work can be defined as the decrease 

of projectile kinetic energy: 

 𝑊 = ∆𝐸𝑘, ( 58 ) 

 𝑊 = 𝐹𝐷𝑚𝑒𝑎𝑛
∙ 𝐿, ( 59 ) 

 
𝐸𝑘 =  

1

2
∙ 𝑚 ∙ 𝑣2, 

( 60 ) 

 
∆𝐸𝑘 = 𝐸𝑘1

− 𝐸𝑘2
=  

1

2
∙ 𝑚 ∙ (𝑣1

2 − 𝑣2
2). 

( 61 ) 

The dependency of work on kinetic energy can also be written as follows: 

 
1

2
∙ 𝑚 ∙ (𝑣2

2 −  𝑣1
2) = − ∫ 𝐹𝐷 ∙ d𝑥

𝑥2

𝑥1

. 

( 62 ) 

Completing the integration steps, we obtain: 

 
𝐹𝐷 𝑚𝑒𝑎𝑛 =  

1

2
∙ 𝑚 ∙

𝑣2
2 −  𝑣1

2

𝐿
= 𝑆 ∙

𝜌 ∙ 𝑣𝑚𝑒𝑎𝑛
2

2
∙ 𝐶𝑥 (

𝑣𝑚𝑒𝑎𝑛

𝑎
), 

( 63 ) 

 
𝐶𝑥 (

𝑣𝑚𝑒𝑎𝑛

𝑎
) =  

4 ∙ 𝑚

𝜌 ∙ 𝑆 ∙ 𝐿
∙

𝑣1 − 𝑣2

𝑣1 + 𝑣2
. 

( 64 ) 

 

Both ways achieved the same result: An equation for computation of the drag coefficient as a 

function of the velocity decrease on section 𝐿. Note that the drag coefficient must always relate 

to the mean velocity of given measurement [𝑣𝑚𝑒𝑎𝑛 ;  𝐶𝑥]. Expressing the cross-sectional area 

of rotationally symmetric projectiles, we obtain the final form of the equation: 

 
𝐶𝑥 =  

4 ∙ 𝑚 ∙ (𝑣1 − 𝑣2)

𝜌 ∙
𝜋 ∙ 𝑑2

4 ∙ 𝐿 ∙ (𝑣1 + 𝑣2)
=

16 ∙ 𝑚 ∙ (𝑣1 − 𝑣2)

𝜌 ∙ 𝜋 ∙ 𝑑2 ∙ 𝐿 ∙ (𝑣1 + 𝑣2)
. 

( 65 ) 
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 An example of drag law point computation 

As a summary of the entire computation process, we will solve one point of the drag law step-

by-step. To do so, we need the following data: 

𝑣1 = 913 ft ∙ s−1 = 278.28 m ∙ s−1, 𝑣2 = 866 ft ∙ s−1 = 263.96 m ∙ s−1 

𝐿 = 4 m, 𝑑 = 4.53 mm, 𝑚 = 0.547 g, 𝑇𝐶 =  −1.5 ℃, ℎ = 541 m. 

Let´s start with determining the atmospheric condition during the measurement. Solving for air 

density preceded by the computation of air pressure ( 10 ), ( 4 ): 

𝑝 ≈ 𝑝𝑑𝑎 = 101325 ∙ (1 −
ℎ

44331
)

5.2577

= 101325 ∙ (1 −
541

44331
)

5.2577

= 94990 Pa, 

𝜌 ≈ 𝜌𝑑𝑎 =  
𝑝

𝑟𝑑𝑎 ∙ 𝑇
=

𝑝

𝑟𝑑𝑎 ∙ (𝑇𝐶 + 273.15)
=

94990.4

287.05 ∙ (−1.5 + 273.15)
= 1.218 kg ∙ m−3. 

To display the resulting drag law as a dependency on Mach number we need to compute the 

speed of sound ( 23 ): 

𝑐 ≈ 𝑐𝑑𝑎 ≈ 331.3 + 0.6 ∙ 𝑇𝐶 = 331.3 + 0.6 ∙ (−1.5) = 330.4 m ∙ s−1. 

Solving for the Mach number (𝑥 − axis coordinate) ( 53 ): 

𝑣𝑚𝑒𝑎𝑛 =
𝑣1 + 𝑣2

2
= 271.12 m ∙ s−1, 

𝑣𝑀𝑎 =
𝑣𝑚𝑒𝑎𝑛

𝑐
=

271.12

330.39
= 0.821. 

Solving for the drag coefficient corresponding to 𝑣𝑀𝑎 (𝑦 - axis coordinate) ( 65 ): 

𝐶𝑥 =
16 ∙ 𝑚 ∙ (𝑣1 − 𝑣2)

𝜌 ∙ 𝜋 ∙ 𝑑2 ∙ 𝐿 ∙ (𝑣1 + 𝑣2)
=

16 ∙ 0.000547 ∙ (278.28 − 263.96)

1.218 ∙ 𝜋 ∙ 0.004532 ∙ 4 ∙ (278.28 + 263.96)
= 0.7358. 

The last step is to write the coordinates as a two-dimensional point: 

[𝑥; 𝑦] = [𝑣𝑀𝑎; 𝐶𝑥] = [0.821; 0.7358]. 

 

 Errors in measurements 

A verification of the chronograph reading validity must be done prior to proceeding with the 

measurement itself. The manufacturer guarantees the maximum deviation for the Caldwell 

Precision Chronograph to be within ± 0.025 %, that is if set properly. Both chronographs must 
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be set on the same horizontal plane with the airgun. In my conditions this is not achievable due 

to the location of the safe impact zone which requires the airgun to be shoulder fired (Figure 

17). Rather than verifying the manufacturer´s claims the overall deviation in a realistically 

achievable conditions will be verified just to rule out a potential critical error occurring during 

the measurement. 

 

Figure 17: Illustration of the most common error in measurement. Both chronographs will measure a 

lower velocity than actual. 

Both chronographs have been set outside in uncontrolled environment in line parallel to each 

other and a total of 25 JSB Exact projectiles (pellets) has been fired through each of them. 

Distance between airgun muzzle and each chronograph has been kept as constant as possible. 

To limit differences in reading due to changing muzzle velocity caused by internal gas piston 

heating or due to changing light conditions, the chronographs were alternated 10 times during 

the measurement. Statistically, the more measurements we take, the less will the computed 

average velocity differ and therefore the more valid the test becomes. Since the purpose of the 

test is to detect a potential critical error, 25 measurements for each chronograph are sufficient. 

Otherwise, to verify the manufacturers claims much more precise firearm, controlled 

environment and significant number of measurements would be needed.  

Formulas for calculating basic statistical quantities - Arithmetic mean: 

 
�̅� =

1

𝑛
∙ ∑ 𝑓𝑖 ∙ 𝑥𝑖.

𝑛

𝑖=1

 

( 66 ) 

Median: 

 
�̃� =

1

2
∙ (𝑥𝑛

2
+ 𝑥𝑛

2
+1

). 
( 67 ) 

Variance: 
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𝑠2 = (

1

𝑛
∙ ∑ 𝑓𝑖 ∙ 𝑥𝑖

∗

𝑛

𝑖=1

) − �̅�2. 
( 68 ) 

Standard deviation: 

 𝑠 = √𝑠2. ( 69 ) 

 

 Chronograph 𝑪𝟏  Chronograph 𝑪𝟐 𝑪𝟏 − 𝑪𝟐  

𝒙 ̅[ft ∙ s−1] 772.84 768.92 3.92 

�̂� [ft ∙ s−1] 773 778 6 

�̃� [ft ∙ s−1] 772 768 4 

𝒔𝟐 [ft2 ∙ s−2] 8.8544 20.0736 19.5936 

𝒔 [ft ∙ s−1]  2.9756 4.4803 4.4264 

Table 7: Computed basic statistical quantities. 

As expected, the difference between the readings (Table 7) is order of magnitude higher than 

the guaranteed percentage given by manufacturer. Despite this, the setup is still getting a more 

than enough accuracy-well within ±1 % error. Judging based on the available data, the 𝐶1 

chronograph (without artificial light source) measured on average 0.51 % higher velocities than 

the 𝐶2 chronograph. To confirm this claim, we can test it on 95 % confidence level if we 

consider the measured velocities to be in a Student´s distribution. 

Coefficient of Student's distribution for 95 % confidence interval: 

 𝑘 = 𝑛 − 1 = 24, ( 70 ) 

 𝑡
𝑆𝑡𝑢𝑑𝑒𝑛𝑡 1−

𝛼
2

(𝑘) =  𝑡𝑆𝑡𝑢𝑑𝑒𝑛𝑡 0.975(24) = 2.064. ( 71 ) 

Testing hypothesis 𝐻0: 𝜇(𝐶1 − 𝐶2) = 0 compared to alternative hypothesis 𝐻𝐴: 𝜇(𝐶1 − 𝐶2) ≠

0, 𝛼 = 0.05: 

 
𝑡𝑆𝑡𝑢𝑑𝑒𝑛𝑡 =  

𝑥 ̅(𝐶1 − 𝐶2)

𝑠(𝐶1 − 𝐶2)
∙ √𝑘 =  

3.92

4.4264
∙ √24 = 4.3385, 

( 72 ) 

 �̅�𝛼 = 〈−𝑡
𝑆𝑡𝑢𝑑𝑒𝑛𝑡 1−

𝛼
2

(𝑘), 𝑡
𝑆𝑡𝑢𝑑𝑒𝑛𝑡 1−

𝛼
2

(𝑘)〉 =  〈−2.064, 2.064〉, 

𝑡𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ∉ �̅�𝛼. 

 

( 73 ) 
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Therefore, we can say with 95 % certainty ( 73 ) that the chronograph 𝐶1 would give us higher 

velocity reading than the chronograph 𝐶2. 

 

 DRAG LAW JSBE 

Overall, over 500 measurements were taken and processed, 474 of which were non faulty. We 

will call them individual measurements and they will serve as a basis for further statistical data 

processing. Individual measurements (Figure 18) were taken in groups. Each group has its own 

data about air temperature, projectile diameter, projectile initial velocity and chronograph 

spacing. Each group is also represented by the arithmetic mean of drag coefficient and 

arithmetic mean of Mach number (Figure 19). The standard deviation error bars have not been 

included to preserve the clarity of the graph. 

Groups with very similar average velocities were again combined, using the arithmetic mean to 

form the averages of groups or clusters (Figure 20). Based on the averages of groups an 

extrapolation curve (Figure 21) was generated in software MATLAB R2022b using the 

Modified Akima (makima) interpolation function. The extrapolation curve serves just as a 

personal estimate of the drag law therefore its base points were artificially created to represent 

the smooth increase/decrease of drag coefficient.  

The last step is approximation of the drag coefficient value where it has not been measured 

(Figure 22, Table 8). This is not directly necessary in terms of publishing the results, but it must 

be done due to its use in ballistic software where the user can enter a higher velocity 𝑣𝑀𝑎 ≫

1 Ma. The base points for approximation were also created artificially based on the measured 

data and PRODAS V3 drag law and interpolated with the Modified Akima (makima) function. 
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Figure 18: Evaluated non-faulty individual measurements divided into 32 groups. 
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Figure 19: The arithmetic averages of Mach number and drag coefficient taken from each measurement group. Values are displayed without the standard 

deviation error bars to maintain clarity. 
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Figure 20: The arithmetic averages of clusters of groups linked based on similar average value of velocities. Each point has error bars consisting of standard 

deviation of the drag coefficient (y-axis) and Mach number (x-axis). 
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Figure 21: Interpolation curve of drag law JSBE generated by MATLAB Modified Akima function. The curve is based on artificially extrapolated points 

created from the averages of groups of measurements (averages of clusters of groups) to represent the smooth gradual increase in drag coefficient. 
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Figure 22: Approximation of the drag law JSBE (red) based on the PRODAS V3 drag law approximation, measured and extrapolated data. This figure 

represents the final form of drag law JSBE.



50 

 

Mach number 

Ma [−] 

Drag coefficient 

𝐶𝑠 [−] 

Mach number 

Ma [−] 

Drag coefficient 

𝐶𝑠 [−] 

0.00 0.310 0.70 0.465 

0.05 0.308 0.75 0.531 

0.10 0.305 0.80 0.600 

0.15 0.300 0.85 0.665 

0.20 0.295 0.90 0.728 

0.25 0.295 0.95 0.794 

0.30 0.299 1.00 0.855 

0.35 0.313 1.10 0.960 

0.40 0.332 1.20 1.030 

0.45 0.212 1.30 1.060 

0.50 0.208 1.40 1.070 

0.55 0.256 1.60 1.080 

0.60 0.324 1.80 1.090 

0.65 0.395 2.00 1.100 

Table 8: Drag law JSBE consisting of extrapolated points (white) and approximated points (red). 

Between 𝑣𝑀𝑎 ≈ 0.40 Ma and 𝑣𝑀𝑎 ≈ 0.60 Ma I measured a strange sudden decrease in drag 

coefficient. To exclude the possibility of measurement error I recreated the group measurement 

twice and confirmed the steep decrease. In my opinion this effect is related to sudden change 

in airflow around the projectile (boundary separation layer). Investigating this phenomenon 

requires a detailed step by step measurement with at least two airguns of different calibers 

(boundary layer separation depends on the projectile diameter) with the possibility to increase 

the muzzle velocity by fraction of magnitude compared to the airgun Benjamin 397S. 

Purchasing additional firearms would be indeed too expensive for this project. Therefore, I 

leave this subject open for additional research. 
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 RESULTS COMPARISON 

There are numerous ways to verify the accuracy of a drag law, or to compare them between 

each other, of which the most common is the downrange velocity measurement. The initial 

velocity of the projectile is measured and then the velocity is measured again at given time 

interval or distance from the muzzle. The best tool for this measurement is the Doppler radar. 

Optical chronograph can be used as well but with greater difficulty. Using the initial velocity, 

among other variables, the estimated velocities at a given time interval or distance are then 

computed by the ballistic solver and the results compared with the radar measurements. 

 Definition of fundamental variables 

𝑪𝒙 [−] – Measured drag coefficient of the projectile 

𝑪𝒔 [−] – Drag coefficient of the projectile corresponding to the given drag law 

𝑩𝑪 [lb ∙ in−2] – Ballistic coefficient of the projectile corresponding to the given drag law 

𝒊 [−] – Form factor corresponding to the given drag law 

𝑻𝑪 [℃] – Air temperature  

𝒉 [m] – Height above the se level 

𝒗𝒙 [m ∙ s−1] – Projectile velocity at given distance 𝒙 

𝒏 [−] – Number of velocity measurements  

𝑺 [m] – Distance from the muzzle 

𝒅 [m] – Diameter of the projectile 

𝒎 [kg] – Weight of the projectile 

 

 Determination of ballistic coefficients 

First, we need to compute the value of ballistic coefficients for each drag law. Since the G1 

drag law is not accurately representing the shape of the JSB Exact projectile (pellet), the value 

of computed ballistic coefficient changes depending on the Mach number. Thus, we need to 

estimate the correct velocity around which the projectile is fired most often. Regarding 4.5 mm 

airgun projectiles the most common value of initial velocity is around 𝑣0 ≈ 240 m ∙

s−1 (𝑣0 𝑀𝑎 ≈ 0.71 Ma). 



52 

 

Obtaining the drag coefficients for each drag law at velocity 𝑣𝑀𝑎 = 0.71 Ma [7]: 

𝐶𝑠(0.71 Ma, 𝐽𝑆𝐵𝐸) = 𝐶𝑥 (0.71 Ma, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) = 0.465, 

𝐶𝑠(0.71 Ma, 𝐺1) = 0.217, 𝐶𝑠(0.71 Ma, 𝑃𝑅𝑂𝐷𝐴𝑆 𝑉3) = 0.349.  

Computing the value of ballistic coefficients ( 44 ): 

𝐵𝐶(𝐺1) =
𝑚 ∙ 𝐶𝑠(𝐺1)

𝑑2 ∙ 𝐶𝑥
=

0.000547 ∙ 0.217

0.004522 ∙ 0.465
∙ 0.00142233 = 0.0178 lb ∙ in−2, 

𝐵𝐶(𝐽𝑆𝐵𝐸) =
𝑚 ∙ 𝐶𝑠(𝐽𝑆𝐵𝐸)

𝑑2 ∙ 𝐶𝑥
=

𝑚

𝑑2
=

0.000547

0.004522
∙ 0.00142233 = 0.0381 lb ∙ in−2, 

𝐵𝐶(𝑃𝑅𝑂𝐷𝐴𝑆 𝑉3) =
𝑚 ∙ 𝐶𝑠(𝑃𝑅𝑂𝐷𝐴𝑆 𝑉3)

𝑑2 ∙ 𝐶𝑥
=

0.000547 ∙ 0.349

0.004522 ∙ 0.465
∙ 0.00142233, 

𝐵𝐶(𝑃𝑅𝑂𝐷𝐴𝑆 𝑉3) = 0.0286 lb ∙ in−2. 

As an initial comparison, we can also add the comparison of the JSB Exact projectile to the 

reference projectile using the form factor ( 42 ): 

𝑖(𝐽𝑆𝐵𝐸) =  
𝐶𝑥

𝐶𝑠(𝐽𝑆𝐵𝐸)
=

0.465

0.465
= 1.00, 

𝑖(𝑃𝑅𝑂𝐷𝐴𝑆 𝑉3) =  
𝐶𝑥

𝐶𝑠(𝑃𝑅𝑂𝐷𝐴𝑆 𝑉3)
=

0.465

0.349
= 1.33, 

𝑖(𝐺1) =  
𝐶𝑥

𝐶𝑠(𝐺1)
=

0.465

0.217
= 2.14. 

 

 Comparison between ballistic solver computation and radar measurements 

To verify and compare the accuracy of the JSBE drag law with the G1 drag law and the 

PRODAS V3 drag law approximation I used the JSB Exact projectile downrange velocity data 

measured by company JSB Match Diabolo using the amateur Doppler radar Labradar (Table 

9). Note that the velocities are marked as 𝑣𝑆 𝑎𝑣𝑔 where 𝑆 is the instantaneous distance of the 

projectile from the muzzle. The measurements took place during following atmospheric 

conditions: 

ℎ = 204 m, 𝑇𝐶 =  16.7 ℃. 
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𝑛  

[−] 

𝑣0 𝑎𝑣𝑔  

[m ∙ s−1] 

𝑣10 𝑎𝑣𝑔  

[m ∙ s−1] 

𝑣20 𝑎𝑣𝑔  

[m ∙ s−1] 

𝑣30 𝑎𝑣𝑔  

[m ∙ s−1] 

𝑣40 𝑎𝑣𝑔  

[m ∙ s−1] 

 

𝑣50 𝑎𝑣𝑔 

 [m ∙ s−1] 

16 327.2 291.3 261.5 239.8 225.2 219.3 

38 302.7 272.8 247.7 228.8 214.3 205.7 

16 266.9 245.4 226.8 212.4 198.2 192.0 

20 237.1 222.1 208.2 194.4 182.4 178.3 

14 206.1 194.7 182.4 169.0 155.8 145.0 

17 157.0 146.4 134.4 121.5 113.9 111.2 

Table 9: Arithmetic means of measured velocities of the JSB Exact projectile with increasing distance 

from the muzzle. The first column expresses the total number of measurements from which the 

average was computed. The data were measured by JSB Match Diabolo company in Bohumín using a 

civilian Doppler radar Labradar. 

The computation of downrange velocities based on JSB Match Diabolo initial velocity 

measurements was done by the ballistics solver B4E [9] using drag laws G1, JSBE and 

PRODAS V3 drag law approximation. The results were then separately compared to the radar 

measurement and after that to each other. Given that we have enough radar measurements we 

will be able to achieve quantitative comparison. All three drag laws were programmed into the 

B4E software [9], and we will refer to them through the computed ballistic coefficients. 

𝑣0 

 [m ∙ s−1] 

𝑣10 

 [m ∙ s−1] 

𝑣20  

[m ∙ s−1] 

𝑣30  

[m ∙ s−1] 

𝑣40  

[m ∙ s−1] 

𝑣50  

[m ∙ s−1] 

327 288 261 239 222 205 

303 272 249 229 212 196 

267 244 226 209 193 179 

237 219 203 188 174 161 

206 191 177 163 151 139 

157 145 134 124 114 106 

Table 10: Velocities of the JSB Exact projectile (pellet) at given distances computed by the ballistic 

software B4E [9] using the G1 drag law [7]. 
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𝑣0  

[m ∙ s−1] 

𝑣10  

[m ∙ s−1] 

𝑣20  

[m ∙ s−1] 

𝑣30  

[m ∙ s−1] 

𝑣40  

[m ∙ s−1] 

𝑣50  

[m ∙ s−1] 

327 288 259 238 221 207 

303 270 246 227 213 201 

267 243 225 211 200 189 

237 220 207 196 187 180 

206 196 186 179 172 166 

157 151 145 140 133 126 

Table 11: Velocities of the JSB Exact projectile (pellet) at given distances computed by the ballistic 

software B4E [9] using the JSBE drag law (Table 8). 

 

𝑣0  

[m ∙ s−1] 

𝑣10  

[m ∙ s−1] 

𝑣20  

[m ∙ s−1] 

𝑣30  

[m ∙ s−1] 

𝑣40  

[m ∙ s−1] 

𝑣50  

[m ∙ s−1] 

327 287 260 239 221 204 

303 271 248 229 211 196 

267 245 226 208 193 179 

237 219 202 188 174 161 

206 191 177 164 152 141 

157 146 135 125 116 108 

Table 12: Velocities of the JSB Exact projectile (pellet) at given distances computed by the ballistic 

software B4E [9] using the PRODAS V3 drag law approximation (Table 6). 

We can compare the drag laws by subtracting the computed velocities (Table 10, Table 11, 

Table 12) from the measured velocities (Table 9). Obtained difference between measured and 

computed data will be marked as ∆𝑣 (∆𝑣 =  𝑣𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 − 𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑). The difference in 

velocities ∆𝑣 displayed in Figure 23 is simultaneously the ultimate accuracy test and 

comparison of each drag law´s performance.



55 

 

 

Figure 23:  The differences between computed (red, purple, and yellow) and measured (black) velocities of the JSB Exact projectile (pellet). Segments are 

divided by projectile´s initial velocity 𝑣0. The measured velocities (black) always assume zero deviations, because they serve as a reference. The colored plots 

correspond to the colored tables above (Table 9, Table 10, Table 11, Table 12).
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To simplify the comparison, we will divide the results from the Figure 23 into two segments.  

First segment: 𝑣0 = 327; 303; 267; 237 m ∙ s−1. We can say that measured drag law JSBE 

outperformed both G1 and PRODAS V3 approximation. Also, PRODAS V3 approximation 

produced slightly better results than the G1 drag law. 

Second segment: 𝑣0 = 206; 157 m ∙ s−1. The JSBE drag law highly underperformed against 

both the G1 and PRODAS V3 approximation. Again, PRODAS V3 approximation was slightly 

more accurate than G1 drag law. The reason behind dividing the results in this way is the fact 

that the last two radar measurements are within the previously described region where the 

sudden decrease in drag coefficient has occurred. Due to the large deviation in results, we can 

conclude that the Labradar velocity measurement indirectly did not confirm the previously 

measured decrease in drag coefficient. This only strengthens the idea to thoroughly examine 

this region. 
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 CONCLUSION 

The contents of the thesis can be divided into two levels, theoretical and practical. The 

theoretical level was aimed to introduce the reader to basic concepts regarding solving ballistics 

trajectories using differential equations, numerical integration algorithms and the unusual 

behavior of the drag coefficient resulting in formation of drag laws. The dimensions of the JSB 

Exact 4.5 mm projectile had been defined and its aerodynamical properties approximated using 

software PRODAS V3. Furthermore, the measurement platform was described by a 

mathematical model resulting in the calculation of the drag coefficient from the measurements.  

The practical level consists of recognition and evaluation of measurement errors, optimization 

of the measurement platform to yield usable data, and the measurement itself. Measurement 

evaluation resulted in formation of drag law JSBE referring to the projectile JSB Exact 4.5 mm. 

Drag law JSBE together with the drag law G1 and drag law approximation obtained using the 

PRODAS V3 were compared against the Doppler radar Labradar downrange velocity 

measurement provided by the company JSB Match Diabolo. Downrange velocity results 

corresponding to each drag law were computed using the B4E ballistic solver [9]. Performance 

of the final form of JSBE drag law is displayed in detail in Figure 23, which combines the 

Doppler radar experimental projectile velocity measurements against the computed projectile 

velocity based on the mentioned drag laws (JSBE, G1, PRODAS V3 Drag law approximation). 

Overall, we can say that the drag law JSBE partially achieved desired results of improved 

accuracy compared to G1 drag law. During the measurement a critical problem in form of 

sudden decrease in drag was encountered which did not correspond to the Doppler radar 

measurements. PRODAS V3 drag approximation compared to G1 drag law achieved better 

accuracy in all scenarios and in the theoretical absence of JSBE, it would form a better 

substitution for the G1 drag law. 

With all the above said, we can conclude that the goals of the work were met.
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