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Anotace

PICKOVA, D. Studium vyznamnych mykotoxinii v biologickém materidlu a jejich mozné
dopady na zdravi ¢loveka. Hradec Kréalové, 2023. Disertacni prace na Prirodovédecké fakulté

Univerzity Hradec Kralové. Vedouci disertacni prace doc. RNDr. FrantiSek Malit, Ph.D. 65 s.

Diserta¢ni prace je koncipovana jako komentovany soubor 8 publikaci se zaméfenim
na vyznamné mykotoxiny a jejich vyskyt v biologickém materidlu. Prace je tak clenéna

tradicnim zplisobem na teoretickou ¢ast a komentovany pirehled publikovanych praci.

Teoretickd ¢ast pojednava o problematice zemédélsky vyznamnych mykotoxind, pfedevs§im
o ochratoxinu A, druhém nejvyznamnéj§im mykotoxinu z pohledu toxicity a prevalence

vyskytu v potravinach, ktery je hlavnim pfedmétem této prace.

Komentovany ptehled publikovanych praci sestavad z komentait doprovazejicich dil¢i vydané
publikace zaméfené predev§im na monitoring mykotoxinli, zejména ochratoxinu A,
v biologickém materidlu, kterym se obecné¢ rozumi jakykoliv materidl rostlinného
a zivo&isného puivodu produkovany & odvozeny od Zijicich organismi. ReSeny jsou jak
potraviny rostlinného i Zivo¢isného plivodu, které z hlediska vyskytu mykotoxinii dosud nejsou

nebo toho ¢asu nebyly regulovany, tak i biologicky materidl z ¢lovéka.

Kli¢ova slova

mykotoxiny, ochratoxin A, nefrotoxicita, biologicky materidl, HPLC, imunoafinitni

chromatografie



Annotation

PICKOVA, D. Study of important mycotoxins in biological material and their possible effects
on human health. Hradec Kralove, 2023. Dissertation at Faculty of Science, University

of Hradec Kralove. Supervisor Assoc. Prof. Frantisek Malir. 65 p.

The dissertation is designed as an annotated collection of 8 publications dealing with important
mycotoxins and their occurrence in biological material. Therefore, the dissertation is divided

in a traditional way into a theoretical part and an annotated overview of the published papers.

The theoretical part deals with the topic of agriculturally important mycotoxins, especially
ochratoxin A, the second most important mycotoxin in terms of toxicity and frequency

of occurrence in food, which is also the main topic of this dissertation.

The annotated overview of the published papers consists of comments on published papers
mainly dealing with the monitoring of mycotoxins, especially ochratoxin A, in biological
material. Biological material is generally defined as any material produced or derived from
living organisms, including raw food materials and products. It refers to food of animal
and plant origin that has not yet been regulated for mycotoxins or was not regulated at that

time, as well as biological material of human origin.
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Seznam pouzitych zkratek

AFs Aflatoxiny

ALT Altenuen

AME Alternariol monomethyl ether

AOH Alternariol

BMDLy Spodni limitni hodnota spolehlivosti referen¢ni davky 10 % dodate¢ného rizika
(Benchmark Dose Lower Confidence Limit for an Extra Risk of 10%)

CIT Citrinin

DG SANTE Generalni feditelstvi pro zdravi a bezpecnost potravin (Directorate General
for Health and Food Safety)

DON Deoxynivalenol

EFSA Evropsky utad pro bezpe¢nost potravin (European Food Safety Authority)

EK Evropska komise

ELISA Enzymova imunoanalyza (Enzyme-Linked ImmunoSorbent Assay)

EU Evropska unie

FUMs Fumonisiny

HPLC-FLD Vysokouc¢innd  kapalinovd  chromatografie s fluorescenénim  detektorem
(High-Performance Liquid Chromatography with Fluorescence Detector)

HT-2 HT-2 toxin

IAK Imunoafinitni kolonky

IARC Mezinarodni agentura pro vyzkum rakoviny (International Agency for Research
on Cancer)

LC Kapalinova chromatografie (Liquid Chromatography)

MOE Hrani¢ni expozice (Margin of Exposure)

MPL Maximalni limit

OATs Transportéry organickych aniontii (Organic Anion Tranporters)

OTA Ochratoxin A

RASFF Systém rychlého varovani pro potraviny a krmiva (Rapid Alert System for Food
and Feed)

T-2 T-2 toxin

VMH Vlaknité mikroskopické houby

ZEN

Zearalenon




1 Uvod

Termin mykotoxiny pochazi z feckého vyrazu ,,mykes* znamenajiciho houba a latinského
vyrazu ,,toxicum‘ znamenajiciho jed nebo také otrava [1]. Nejedna se vSak o synonymni nazev
s ,.,houbovymi jedy“, toxickymi metabolity hub s makrostélkou ,,makromyceti“. Terminem
mykotoxiny jsou zpravidla oznacovany toxické sekundarni metabolity vlaknitych hub
s mikrostélkou ,,mikromycet”, nevédecky oznacovanych jako ,plisné”. Vlaknité
mikroskopické houby (VMH) jsou schopny kontaminovat téméf jakykoli substrat véetné
potravin a krmiv. Jejich pisobenim dochazi ke snizeni nutricni hodnoty substratu, avSak
kontaminantd pfirodniho ptivodu [2]. Mykotoxiniim je tfeba vénovat pozornost, a to nejen
kvili moznym ekonomickym ztratdm, ke kterym dochazi v disledku kontaminace potravin
a krmiv, ale pfedevsim kvuli zdravotnimu riziku plynoucimu z jejich ptivodu do organismu,

ktery je u vétsiny populace zprostfedkovan zejména skrze dietarni expozici [3].

Dietarni expozici danému mykotoxinu lze hodnotit dvéma zpiisoby: 1) odhadem denniho
pfivodu mykotoxinu z potravin, a to na zaklad¢ znalosti: a) celkové spotieby potravin
konzumentem; b) zndmé koncentrace mykotoxinu v danych potravinich; a 2) stanovenim
biomarkeru mykotoxinu v lidském organismu: a) v télnich tekutinach (napt. krev, sérum,
plazma, moc); b) ,,post mortem* ve tkdnich (napft. ledviny), ptipadné ve tkdnich odebranych

pfi operaci [4].

Disertacni prace je primarné¢ zaméfena na druhy nejvyznamnéjs$i mykotoxin, ochratoxin A
(OTA). Pfirozeny vyskyt tohoto mykotoxinu je feSen ve vybranych potravinach,
tj. v jednodruhovych kotenich, bylinach a veptovych jelitech. Uvedené potraviny byly zvoleny
s ohledem na jejich nedostatecné ¢i toho Casu zcela chybé&jici regulace udéavajici maximalni
ptipustny limit (MPL) pro OTA. Soubézné je v mensi mife feSen piirozeny vyskyt dalSich
zem&délsky vyznamnych mykotoxinl ve vybranych komoditach. Vzhledem k nefrotoxickym
ucinkiim byl OTA kromé potravin stanovovan také v télnich tekutindch pacientd s nddorem
ledvin, ktery je v Ceské republice diagnostikovan jako paté nejéast&jsi nadorové onemocnéni

s celosvetove nejvetsi Cetnosti 30,9 incidenci na 100 000 obyvatel (k r. 2020) [5].



2 Cile préace

Disertaéni prace ,,Studium vyznamnych mykotoxinii v biologickém materialu a jejich mozné
dopady na zdravi ¢loveka* je koncipovana jako soubor komentatii k publikovanym pracim,
které se zabyvaji vyznamnymi mykotoxiny a jejich pfirozenym vyskytem v biologickém
materidlu. Biologickym materidlem se obecné rozumi jakykoliv material produkovany ¢i
odvozeny od zijicich organismu [6], pficemz v této praci se pod takovym materidlem rozumi
vedle materidlu lidského plivodu (lidské tkédn€¢ a télni tekutiny) také material ptivodu
rostlinného (rostlinna pletiva, potravinové suroviny a potraviny) a zivoc¢isného (zivocisné
tkan¢ a odvozené produkty). Komentovany piehled publikovanych praci je rozdélen

dle charakteru publikaci do dvou hlavnich ¢ésti.

Prvni ¢ast uvadi literarni reSerSni studie zaméfené na vyznamné mykotoxiny pfirozené se
vyskytujici v jednodruhovych kotenich a dopliicich stravy na bazi ostropestice marianského.
K ptilezitosti 60. vyro¢i od objeveni aflatoxinti (AFs) byly vydany dvé reSerSni publikace

zamétené na tuto nejvyznamnéjsi skupinu karcinogennich mykotoxind.

Druhd cast uvadi vlastni vyzkumné studie zamétené na stanoveni OTA v biologickém
materidlu s vyuzitim vhodné chromatografické analytické techniky. Vyzkumné studie jsou dle
charakteru biologického materidlu déle ¢lenény na vyhledavani ,,novych* dietarné expozi¢nich
zdrojii OTA v biologickém materidlu (a) rostlinného piivodu (jednodruhova koteni a byliny)
a(b) zivocisného puvodu (vepfova jelita) a jeho stanoveni v biologickém materialu

(c) lidského ptivodu (mo¢€ pacientli s nddorem ledvin).

Jednotlivé publikace vychazeji z dil¢ich specifickych vyzkumu (¢. 2112/2019, 2115/2020,
2010/2021 a 2106/2022) podpotenych Piirodovédeckou fakultou Univerzity Hradec Kralové.



3 Teoreticka Cast

3.1 Zemédélsky vyznamné mykotoxiny

Mykotoxiny jsou tzv. pfirodni toxiny, coz jsou chemické latky biologického pivodu
produkované riznymi organismy ¢i mikroorganismy. Producentem mykotoxinli jsou VMH,
které je syntetizuji jako své sekundarni metabolity [2]. Jedna se zejména o zastupce z rodi
Aspergillus, Penicillium, Fusarium, Alternaria, Claviceps a Stachybotrys [7-11], ktefi se
mohou rozvinout za vhodnych teplotnich a vlhkostnich podminek na zemédélskych
komoditach, a to jiz na poli, béhem sklizn¢, ¢i v poskliziovém obdobi pfi transportu

a skladovéani [1].

Dosud bylo identifikovano vice nez 500 mykotoxint, pficemz jejich pocet i nadale narista,
ale pouze nékteré z nich maji vyznam v potravnim fetézci a predstavuji zdravotni riziko pro
cloveéka [12]. Mykotoxiny mohou u ¢lovéka 1 zvifat vyvolat intoxikaci, tzv. mykotoxikézu,
s akutnim (po jednordzovém piivodu velké davky) ¢i chronickym (po dlouhodobém piivodu

nizkych davek) prabéhem [13].

Mykotoxiny mohou byt ¢lenény dle schopnosti destruktivniho cileného plisobeni na burky,
organy ¢i soustavy napt. na hepatotoxiny (cilovym orgédnem jsou jatra), nefrotoxiny (ledviny),
kardiotoxiny (srdce), pulmotoxiny (plice), neurotoxiny (nervovad soustava), imunotoxiny
(imunitni systém), gastroenterotoxiny (gastrointestindlni trakt) ¢i cytotoxiny (bunky). Pozdni
zejména ucinky karcinogenni, vyvoldvajici rakovinné bujeni, mutagenni — zvySujici
pravdépodobnost mutace, genotoxické — poSkozujici genetickou informaci, teratogenni —

poskozujici vyvoj plodu, ¢i imunosupresivni, které tlumi imunitni systém [2, 13].

N 24

v zemédé&lskych potravinach jsou povazovany AFs — aflatoxiny B1, B2, Gi a G2, M| — metabolit
aflatoxinu B; a M2 — metabolit aflatoxinu Bz, OTA, trichotheceny — zejména deoxynivalenol
(DON), nivalenol, T-2 toxin (T-2) a HT-2 toxin (HT-2), dale pak fumonisiny (FUMs) —
zejména fumonisin Bi, B> a B3, zearalenon (ZEN), citrinin (CIT), patulin (PAT), kyselina
cyklopiazonova, ergotové (namelové) alkaloidy a alterndriové mykotoxiny — zejména
alternariol (AOH), alternariol monomethyl ether (AME), altenuen (ALT) a kyselina

tenuazonova [14] — viz Tabulka 1.
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Tabulka 1 Pi‘ehled vyznamnych mykotoxinii v zemédélskych surovinach a potravinach

MT?* IARCP Toxické ucinky Vyznamni producenti v potravinach Vyskyt v potravinach
1 cytotoxické, genotoxické, hepatotoxické, Aspergillus. flavus, A. parasiticus, A. nomius,  obilniny (pSenice, je¢men, kukufice, ¢irok, proso, ryze) a produkty
[15] imunosupresivni, mutagenni, nefrotoxicke, A. pseudotamarii, A. aflatoxiformans, z obilnin (mouka), ofechy (liskové, para, mandle, pistacie, kaStany,
teratogenni, karcinogenni [16] A. agricola, A. arachidicola, A. austwickii, pekanové, vlasské, keSu), lusténiny (arasidy, sdjové boby), kofeni
“, A. cerealis, A. luteovirescens, (zézvor, chilli, piskavice fecké seno, kurkuma, koriandr, paprika,
> A. minisclerotigens, A. mottae, A. parasiticus,  timsky kmin, ¢erny pept, muskatovy otfech, fenykl), ovoce (kokosovy
< A. parvisclerotigenes, A. pipericola, ofech, suSené fiky), seminka (slunecnicovd, bavinénd, sezamova,
A. pseudocaelatus, A. pseudonomius, A. sergi, melounova, hot¢icnd, merunkovd), mléko a mlééné produkty (syr),
A. texensis, A. togoensis, A. toxicus, vejce, kakaové boby, kava, ¢aj, pivo [17-20]
A. transmontanensis, A. olivicola [17]
2B genotoxické, hepatotoxické, imunotoxickeé, Aspergillus carbonarius, A. westerdijkiae, obilniny (je¢men, Zito, pSenice, oves, ryze) a produkty z obilnin, hrozny
[21] nefrotoxické, neurotoxické, embryotoxické, A. steynii, A. lacticoffeatus, A. niger, A. a produkty z hroznl (hroznovy dzus, vino, suSené hrozny), vepiové
teratogenni, karcinogenni, kontroverzni mutagenni sclerotioniger, A. tubingensis, A. foetidus, a kufeci maso, masné vyrobky (salam, suSend Sunka, klobasy, vepiova
ucinky [22, 23] Penicillium verrucosum, P. nordicum [23-25]  jelita), vepfové a kuieci droby (jatra, ledviny), vepiova krev, kofeni
(paprika, muskatovy kvét, kurkuma, zazvor, piskavice fecké seno,
ﬁ kardamom, chilli, ¢erny pept, kmin kotenny, 1ékofice, koriandr, fenykl,
o Cesnek, kajensky pepft, vanilka, pomeran¢ova kura, fimsky kmin,
muskatovy ofech, hoi¢ice bila, bily pept, hiebicek, citronova kira,
sumah, rizovy pepft), ovoce (fiky, olivy), zelenina, lusténiny (fazole,
sojové boby), ofechy (pistacie, kastany, kesu), mléko a mlééné vyrobky
(syr), dynova seminka, kakaové boby, cokolada, caj, kava, pivo
[11,18,22,23,26,27]
3 cytotoxické, genotoxické, hepatotoxicke, Fusarium graminearum, F. culmorum, obilniny (pSenice, zito, je¢men, oves, kukufice, pohanka, ryze, ¢irok)
E [21] imunotoxické, hematotoxické, neurotoxické, ucinek F. poae, F. equiseti, F. crookwellense, a produkty z obilnin (chléb, popcorn, nudle) paprika (koteni), dopliky
- na reprodukci, teratogenni, embryotoxické, i€inky na  F. venenatum [9, 25] na bazi ostropestice marianského, slad, pivo [18, 30, 32, 33]
% gastrointestinalni trakt — vomitus, nauzea, diarea
= [28-31]
~ 3 imunotoxické, dermatotoxické, emetické, Fusarium sporotrichoides, F. langsethiae obilniny (je¢men, kukufice, oves, zito, pSence), snidanové cerealie,
= [21] hepatotoxické, genotoxické, hematotoxické [9, 25] sluneé¢nicova seminka, sluneénicovy olej, koriandr, dopliiky na bazi
Eﬁ [31, 34, 35] ostropestice maridnského [18, 32, 33, 34]
o
~
3 estrogenni a anabolické ucinky, u€inky na reprodukci,  Fusarium graminearum, F. culmorum, [9,25] obilniny (kukufice, pSenice, jeCmen, Zito, oves, ryze, ¢irok), produkty
E [21] imunotoxické, hepatotoxické, hematotoxické, z obilovin (snidanové ceredlie, chléb, téstoviny, mouka), kofeni
N genotoxické, cytotoxicke, fetotoxické [36, 37] (paprika), sezamova semena, lusténiny (fazole, sdjové boby), slad,

pivo, mléko, doplitky na bazi ostropestice marianského [18, 32, 36]
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MT?* IARCP Toxické ucinky Vyznamni producenti v potravinach Vyskyt v potravinach
2B cytotoxické, embryotoxické, hepatotoxické, Fusarium. verticillioides, F. proliferatum, obilniny (kukufice, ryze, oves, zito, pSenice, je¢men) a produkty
- [21,38] imunotoxické, kardiotoxické, nefrotoxické, F. anthophilum, F. dlamini, F. napiforme, z obilnin (kukuficnd mouka, popcorn, polenta, snidafiové ceredlie),
= neurotoxické, pulmotoxické (plicni edém), teratogenni  F. nygamai, F. thapsinum [9, 25] kofteni (paprika, 1ékofice), pivo [18, 39]
E (defekt neuralni trubice), karcinogenni (rakovina

jicnu), Gicinek na gastrointestinalni trakt, i¢inek
na reprodukeci [39]

3 cytotoxické, hepatotoxické, nefrotoxické, Penicillium citrinum, P. expansum, obilniny (je¢men, Zzito, pSenice, kukufice, ryze) a produkty z obilnin
[40] hematotoxické (G€inky na kostni dfen), teratogenni, P. verrucosum, P. radicicola, Monascus (mouka, snidaiové ceredlie, té€stoviny), ovoce (jablka, hrusky, tfesné,
&= kontroverzni genotoxické a mutagenni ucinky [41,42] ruber, M. purpureus [9, 25, 41, 43] ¢erny rybiz, olivy, hrozny, citrusy, fiky), ovocné a zeleninové dzusy,
© koteni (chilli, zazvor, koriandr, piskavice fecké seno), fermentované
produkty (Cervena fermentovand ryze, fermentované klobasy, sufu),

fazole, byliny, syry, pivo [18, 41, 42, 44, 45]

3 hepatotoxické, neurotoxické, imunotoxické, Penicillium expansum, P. griseofulvum, ovoce (jablka a jable¢né produkty, meruniky, citrusy, tiesn€, hrozny,
= [40] genotoxické, mutagenni, teratogenni, i¢inky Aspergillus clavatus, Byssochlamys nivea hrusky, broskve, ananas, jahody, olivy), ovocné dzusy (jable¢ny,
- na gastrointestinalni trakt, nefrotoxicke, [9, 25] hruskovy, li¢i, ananasovy, broskvovy, granatové jablko), zelenina

kardiotoxické, embryotoxické, cytotoxické [46, 47] (rajcata), obilniny [11, 46, 47]
< N ucinky na gastrointestinalni trakt, nefrotoxické, Penicillium camemberti, P. commune, obilniny (kukufice), maso a masné produkty, lusténiny (arasidy),
6 neurotoxické, hepatotoxické, kardiotoxické, P. dipodomyicola, P. griseofulvum, susené fiky, ofechy, olejnata semena, mléko, syr [48, 49]

cytotoxické, imunotoxické [48] Aspergillus flavus, A. oryzae, A. tamarii [48]

N neurotoxické (konvulze, halucinace), vazokonstrikce,  Sphacelia segetum (teleomorfa: Claviceps obilniny (zito, jeCmen, oves, pSenice, proso) a produkty z obilnin
< gangrendzni ztrata koncetin, agalaktie, pocit paleni, purpurea), C. fusiformis, C. paspali [25, 51] (mouka, chléb, téstoviny, pizza, snidanové ceredlie, sladké pecivo)
M [50, 51]

ucinek na gastrointestinalni trakt (nauzea, vomitus),
endokrinni funkci a kardiovaskularni systém [50, 51]

N hepatotoxické, dermatotoxické, imunotoxické, ucinky  Alternaria alternata [53)]
na reprodukei, u¢inky na estrogenni aktivitu,
kardiotoxické (tachykardie), cytotoxické, ucinky
na gastrointestinalni trakt (hemoragie), teratogenni,
fetotoxické, mutagenni, genotoxické [10, 32, 52, 53]

Alternariové
mykotoxiny

obilniny (pSenice, Cirok, jeCmen, oves), ovoce (jablka, jabledné
produkty, mandarinky, olivy, citrusy, japonské hrusky, Svestky,
maliny, rybiz), ovocné napoje (jablecné, brusinkové a hroznové dzusy,
vino), zelenina (paprika, raj¢ata, rajcatové produkty, mrkev, meloun),
olejnaté rostliny, jedlé oleje, slunecnicova seminka, koteni (skofice,
zazvor, chilli, paprika, kmin kofenny, koriandr, fimsky kmin, fenykl,
Cesnek, majoranka, oregano, sumah, tymian, kurkuma), dopliky
na bazi ostropestice marianského, lusténiny [18, 32, 53]

2MT — myktoxiny: AFs — aflatoxiny (AFB1, AFB2, AFGi, AFGz, metabolit AFM1), OTA — ochratoxin A, DON — deoxynivalenol, NIV — nivalenol, T-2 — T-2 toxin, HT-2 — HT-2 toxin, ZEN —
zearalenon, FUMs — fumonisiny (FUMB1, FUMB2, FUMB3), CIT — citrinin, PAT — patulin, CPA — kyselina cyklopiazonova, EA — ergotové (namelové) alkaloidy (ergometrin, ergotamin, ergosin,
ergokristin, egokryptin, ergokornin a odpovidajici -inin epimery), Alternariové mykotoxiny (alternariol, alternariol monomethyl ether, altenuen, altertoxin I-I1I, kyselina tenuazonova); ® Klasifikace
dle Mezinarodni agentury pro vyzkum rakoviny (IARC, International Agency for Research on Cancer): 1 — latky (smési) karcinogenni pro ¢loveka, 2B — latky (smési) s moznym karcinogennim

ucinkem pro ¢loveka®, 3 — latky (smési) jejichz karcinogenita pro ¢lovéka nelze klasifikovat“, N — neni klasifikovano IARC
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3.2 Ochratoxin A
OTA [PubChem CID: 442530] je nejrozsifenéjsi a z toxikologického hlediska nejvyznamnéjsi
mykotoxin ze skupiny ochratoxinli — viz Tabulka 2, kapitola 3.2.1 [2, 54]. V soucasnosti je

také povazovan za druhy nejvyznamnéjs$i mykotoxin — po AFs [7].

OTA byl objeven a chemicky charakterizovan K. J. van der Merwem a jeho spolupracovniky
v Jihoafrické republice v roce 1965, kdy byl poprvé izolovan z VMH Aspergillus ochraceus
(souCasny spravny nazev A. westerdijkiae) rostouci na kukuficné moucce [55, 56].
V pozdéjsich letech byli objeveni dalsi producenti OTA z rodu Aspergillus a Penicillium —
viz kapitola 3.2.2. Pro clovéka ma nejvétsi vyznam dietarni expozice OTA [3],
tj. z kontaminovanych potravin rostlinného a v disledku krmeni hospodaiskych zvitat
kontaminovanym krmivem také zivoc¢isného ptivodu [57] — viz kapitola 3.2.4. Ke kontaminaci
dochazi zpravidla pfi nevhodném skladovani ¢i transportu [54]. Pii bézném vateni je OTA
pouze Castecn€ degradovan [21]. V lidském organismu pusobi toxicky, zejména na ledviny —
viz podkapitola 3.2.3. V 90. letech byl OTA oznacen za hlavni etiologické agens balkanské
endemické nefropatie, nddoru mocovych cest a chronické intersticialni nefropatie [58—60].
Vzhledem k negativnim dopadim OTA na lidské zdravi je nutné zajiStovat bezpecnost
potravin v souladu s Natizenim Komise 1881/2006 ve znéni pozd¢jsich predpisii uvadeéjicim

regulace OTA v nékterych potravinach — viz kapitola 3.2.5.
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Tabulka 2 Vyznamné metabolity ochratoxinu A

Nazev ZKkratka Obecny strukturni vzorec derivati OTA R1 R2 R3 R4 RS R6
Ochratoxin A OTA Phe Cl H H H OH
Ochratoxin B OTB Phe H H H H OH
Ochratoxin C OTC Phe-ethyl-ester Cl H H H OH
Ochratoxin o OTa OH Cl H H H OH
Ochratoxin 3 oTp OH H H H H OH
4R-hydroxy-OTA 4R-OH OTA Phe Cl H OH H OH
4S-hydroxy-OTA 4S-OH OTA Phe Cl OH H H OH
10-hydroxy-OTA 10-OH OTA Phe Cl H H OH OH
Oteviend laktonova forma OTA OP-OTA Phe Cl H H - OH
Oteviend laktonova forma OTB OP-OTB Phe H H H - OH
Oteviend laktonova forma OTa OP-OTa OH Cl H H - OH
Oteviena laktonova forma OTp OP-OTp OH H H H - OH
OTA chinon OTQ Phe 0] H H H (0)
OTA hydrochinon OTHQ Phe OH H H H OH
Dekarboxylovany OTHQ DC-OTHQ Dekarboxylovany Phe OH H H H OH
Konjugat OTQ-glutathion OTQ-Glutathion Phe o H H H O
Konjugat OTA-acyl hexoza Acyl-hex6za-OTA R, Phe acyl hexdza Cl H H H OH
Konjugat OTA-acyl pentdza Acyl-pent6za-OTA R, Phe acyl pentoza Cl H H H OH
OTA-methyl-ester OTA-Me Phe-methyl-ester Cl H H H OH
OTB-methyl-ester OTB-Me M(C20H13CINOg): 403,8 g/mol Phe-methyl-ester H H H H OH
OTB-ethyl-ester OTB-Et Phe-ethyl-ester H H H H OH
4R-hydroxy-OTA-methyl-ester 4R-OH OTA-Me Phe-methyl-ester Cl H OH H OH
10-hydroxy-OTA-methyl-ester 10-OH OTA-Me Phe-methyl-ester Cl H H OH OH
Ethylamid-OTA OE-OTA Phe-ethyl-amid Cl H H H OH
Dekarboxylovany OTA DC-OTA Dekarboxylovany Phe  Cl H H H OH
O-methyl-OTA OM-0OTA Phe Cl H H H OCH;
d-OTA d-OTA d-Phe Cl H H H OH
OTa-ester-methyl M-OTa OCHj3 Cl H H H OH
Tyrosin-OTA OTA-Tyrosin Tyrosin Cl H H H OH

Strukturni vzorec zpracovan v editoru vektorové grafiky Inkscape 0.92. Zpracovano dle Malir et al. [23] a El Khoury & Atoui [61].
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3.2.1 Chemicka a fyzikalni charakteristika ochratoxinu A

OTA [C0HisCINOg, Phenylalanine-OTA, IUPAC: (2S)-2-[[(3R)-5-chloro-8-hydroxy-3-
methyl-1-0x0-3,4-dihydroisochromene-7-carbonyl]amino]-3-phenylpropanoic acid] je bily
krystalicky prasek, bez zapachu, v pfitomnosti svétla nestabilni, ale pomémné termostabilni
s bodem tani 169 °C [62—65]. Chemicka struktura je slozena z dihydroizokumarinového kruhu
spojen¢ho s fenylalaninem pies amidovou vazbu — viz Obréazek 1 [66]. Molekula OTA mitize
diky chirdlnim uhlikim existovat ve 4 stereoizomernich formach, ovSem pfirozené se
vyskytujici forma je 3R14S-OTA [64, 67]. OTA vykazuje silnou pfirozenou schopnost
fluorescence v ultrafialovém svétle [68] projevujici se emitaci zeleného svétla v kyselych
a modrého svétla v alkalickych roztocich [63]. Jako slabd kyselina je vysoce rozpustny
v polarnich organickych rozpoustédlech napt. chloroformu, methanolu, ethanolu, xylenu, slabé

rozpustny ve vod¢ a rozpustny ve zifedénych roztocich hydrogenuhli¢itanu [63—-65].

0 OH
0] OH O

0

ke

T =

s H

*

)
CH
Cl ?

Obrazek 1 Strukturni vzorec ochratoxinu A
Strukturni vzorec zpracovan v editoru vektorové grafiky Inkscape 0.92. Zpracovano dle Kdszegi & Podr [66].

3.2.2 Producenti ochratoxinu A

OTA je v potravinidch rostlinného 1 ZivociSného plivodu produkovan rody Aspergillus
(viz podkapitola 3.2.2.1) a Penicillium (viz podkapitola 3.2.2.2), které se fadi mezi jedny
z nejdominantngjSich rodl svétové houbové mikroflory. Zatimco rod Aspergillus dominuje
spiSe v tropickych oblastech, rod Penicillium je typicky zejména pro oblasti s mirnym
podnebim. Rod Aspergillus je typicky rychlejSim ristem, ale také pomalej$i sporulaci, nez je
tomu v pfipad€ rodu Penicillium. Spory rodu Aspergillus byvaji odolnéjsi vic¢i svétlu

a chemikaliim. Taxonomické zatazeni rod Aspergillus a Penicillium uvadi Tabulka 3.

Tabulka 3 Taxonomické zai‘azeni mikroskopickych vlaknitych hub rodu Aspergillus a Penicillium

Profil taxonu

Latinsky nazev

Cesky nazev

Doména Eukaryota jaderni

Soustava Opisthoconta -

Rise Fungi houby

Oddéleni Ascomycota vieckovytrusé houby
Pododdéleni Pezizomycotina -

Trida Eurotiomycetes -

Podtrida Eurotiomycetidae -

Rad Eurotiales plesnivkotvaré
Celed’ Trichocomaceae plisiovkovité

Rod Aspergillus/Penicillium kropidlak/stetiCkovec

Zpracovano dle Pitt & Hocking [69].
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3.2.2.1 Producenti ochratoxinu A rodu Aspergillus

Rod A4spergillus poprvé popsal italsky kn€z a botanik Pier Antonio Micheli v roce 1729. Nazev
Aspergillus, Cesky kropidlak, vychazi zlat. slova ,aspergillum* znamenajiciho nadoba
na kropeni svécenou vodou, tzv. ,kropitko“, které¢ tento rod svou morfologii pfipomina
[10, 70, 71]. Aspergillus je asexudlni stadium, tzv. anamorfa, charakterizovana tvorbou
metuly s lahvicovitymi konidiogennimi fialidami (biseriatni konidiofor), nebo méné casto
pfimo fialidy (uniseriatni konidiofor). Z fialid bazipetalné puci kulovité konidie, spojujici se
pomoci konektiv v fetizky zakoncené nejstarsi konidii, ktera se nasledné odSkrcuje a dava

vznik novému konidioforu — viz Obréazek 2 [10, 69].

konidie

W
fialidy =3 oo

metuly

|
méchyek

stopka r—\r~
hyfa -‘_\—,/—IJ,

Obrazek 2 Morfologie biseriatniho konidioforu rodu Aspergillus
Vlastni grafické zpracovani dle Ellis et al. [72] pomoci editoru vektorové grafiky Inkscape 0.92

Druhy rodu Aspergillus, které produkuji OTA v potravinach, spadaji do sekci Circumdati
a Nigri. Sekce Circumdati zahrnuje 27 druhti, z nichZ za ochratoxinogenni v potravinach jsou
povazovany dva druhy. Sekce Nigri zahrnuje 25 druhii, z nichz Sest je povaZovano

za ochratoxinogenni v potravinach — viz Tabulka 4.
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Tabulka 4 Druhy rodu Aspergillus produkujici ochratoxin A a jejich vyskyt v potravinach

Sekce Druh Priklad potravin Rok objevu

Circumdati  A. steynii a suSené uskladnéné potraviny, s6jové boby, cizrna, koteni, 2004
A. westerdijkiae’ suSené ovoce, suSené ryby, suSené fazole, sezamova
seminka, fepka, arasidy, ofechy (pekanové, liskové a
vlasské ofechy, keSu, pistacie), obiloviny (ryze, pSenice,
jecmen, kukufice, ¢irok, mouka a otruby), maniok, syry,
zpracované maso, ¢erné olivy

Nigri A. carbonarius hrozny, kavova zrna, fiky, araSidy, vlasské ofechy, 1996
kukuftice, paprika

A. foetidus hrozny 1996

A. lacticoffeatus  kavova zrna 2004

A. niger produkty susené na slunci, hrozny, solené suSené uzené 1994

ryby, susené maso, kakaové boby, cizrna, arasidy, kokos,
ofechy (pekanové a vlasské ofechy, kesu, pistacie, mandle),
obiloviny (kukufice, jeCmen, Cirok, ryze), sdjové boby,
slune¢nicova seminka, fepka, kofeni, olivy, maso, syry

A. sclerotioniger kavova zrna 2004

A. tubingensis hrozny 2005

! Zména identifikace ptivodniho ndzvu druhu A. ochraceus na druh A. westerdijkiae s vyuzitim molekuldrné
biologickych metod. Zpracovano dle Malir et al. [23], Ostry et al. [57] a Pitt & Hocking [69].

3.2.2.2 Producenti ochratoxinu A z rodu Penicillium

Rod Penicillium objevil v roce 1809 némecky ptirodovédec a botanik Heinrich Friedrich Link.
Nazev Penicillium, Cesky stétickovec, ziskal tento rod na zaklad¢ podobnosti fruktifikacnich
organli s malym Stéteckem, latinsky ,penicillus® [69, 70]. Penicillium je anamorfa se tfemi
podrody Aspergilloides, Furcatum a Penicillium, pfi€emz zpohledu produkce OTA je

vyznamny pouze podrod Penicillium.

Fruktifika¢ni organy rodu Penicillium tvoii rizné vétvené struktury — jednoduché nevétvena
(monoverticiliatni  konidiofor), jednostupiiovité vétvena (biverticilidtni konidiofor),
dvoustupniovité vétvena (terverticiliatni konidiofor) a tfistupiovité vétvena (kvarterverticiliatni
konidiofor). Pro podrod Penicillium jsou typické zejména terverticiliatni konidiofory, kde

na stopku jsou navazany vétve, metuly a konidiogenni fialidy — viz Obrazek 3 [69, 72].

o §y—— konidie
o)
| fialidy
LAl

\W metuly

/ vétve
stopka

Obrazek 3 Morfologie terverticiliatniho konidioforu rodu Penicillium
Vlastni grafické zpracovani dle Ellis et al. [72] pomoci editoru vektorové grafiky Inkscape 0.92

|
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Ackoliv je v literatuie mozné se v souvislosti s produkci OTA v potravindch setkat s riiznymi
,producenty* rodu Penicillium [2, 73], uznavané jsou pouze dva druhy z podrodu Penicillium,

série Verrucosa [24] — viz Tabulka 5.

Tabulka S Druhy rodu Penicillium produkujici ochratoxin A a jejich vyskyt v potravinach

Druh Ptiklad potravin Rok objevu

P. verrucosum'  obiloviny (pSenice, je¢men, Zito, oves), syry 1969

P. nordicum substraty s vysokym obsahem proteinu, masné produkty, salam, susena Sunka, 2001
syry

I Zména v identifikaci druhu: diive A. viridicatum. Zpracovano dle Malir et al. [23], Ostry et al. [57]
a Pitt & Hocking [69].

3.2.3 Toxicita ochratoxinu A
Toxicita OTA je udavana jeho toxikokinetikou, tj. zménami jeho koncentrace, pfipadné jeho
struktury, v Case — viz kapitola 3.2.3.1 a toxikodynamikou, tj. interakcemi s biologickymi cili,

mechanismy piisobeni a jeho u€inky na organismus — viz kapitola 3.2.3.2 [65].

3.2.3.1 Toxikokinetika ochratoxinu A
Toxikokinetika popisuje osud OTA v organismu, tj. jeho absorpci (proniknuti do krevniho
ob¢hu), distribuci (transport krvi do cilovych buné¢k, tkani ¢i orgdnil), biotransformaci

(chemickou pfeménu) a exkreci (vylucovani) [65].

Absorpce. Absorpce OTA je pomérné rychla [22]. Dochazi k ni na tzv. branach vstupu, kterymi
mohou byt plice, klize ¢1 gastrointestindlni trakt (GIT). Dermdlni a inhala¢ni expozice ma
vyznam ptedevsim u profesiondlné exponovanych jedinct [74—77]. Pro vétSinu populace vSak
predstavuje nejvetsi vyznam dietarni expozice prostiednictvim konzumace kontaminovanych

potravin [23].

Pti dietarni expozici OTA dochézi v GIT k absorpci do krevniho fecisté [65]. V GIT se mize
OTA vyskytovat v neionizované formé (OTA?) ¢i v ionizovanych formach jako monoanion
(OTA") a dianion (OTA?). Zatimco neionizovana forma OTA je rozpustna v tucich a mé
dominantni zastoupeni v kyselych podminkéach zaludku (pH < 3), ionizované formy OTA jsou
v tucich méné rozpustné a jsou piitomné ve dvanictniku (pH ~ 7) [65, 78]. Formy OTA?
a OTA" jsou absorbovéany do krve pasivnim transportem ze zaludku a stfedni ¢asti tenkého
stteva — lacniku [22, 65, 66], pficemz v tenkém stfevé obecné dochazi diky velké bohaté
prokrvené absorpcni plose k nejvetsi absorpei [2]. V laéniku miize také kromé pasivniho
transportu dochazet k aktivnimu transportu, ktery je ziejmé zprostfedkovan specifickymi

proteinovymi transportéry organickych aniontti (OATs) [22].
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Biodostupnost, tj. podil podané latky, ktery vstoupi do krevniho obéhu v nezménéné formé, se
u raznych zvitecich druhi lisi, napt. biodostupnost OTA u kutat je 40 %, u kralikti 56 %
auprasat 66 % [79]. Biodostupnost zavisi hlavné na konkrétnim druhu, davce, zpiisobu
podani, ale také na naplni zaludku [22]. Ve studii provadéné na lidskych dobrovolnicich byla
8 hodin po ordlnim podani OTA v davce 0,02 nmol/kg t.hm. pii prazdném zaludku zjisténa
biodostupnost 93 % [80]. Poté, co je OTA absorbovan do krevniho ob¢hu, je krvi déle
distribuovan [65].

Distribuce. Distribuce je znesnadnéna, nebot’ je OTA z vice nez 99 % véazan na lidské sérové
proteiny, zejména albumin [65, 81] se saturacni schopnosti v fadu stovek mikrogrami OTA
na mililitr krevniho séra [82]. OTA je také vazén na neznamy protein o molekulové hmotnosti
20 kDa, ktery se v porovnani salbuminem vyskytuje v mnohem nizSich koncentracich,
nicméné vazba OTA na tyto proteiny je az milionkrat vyssi [4, 66] se saturacni schopnosti
10-20 ng OTA/ml krevniho séra [83]. Vzhledem k moznosti volné filtrace pres glomeruly
mohou byt komplexy s témito proteiny jednim z etiologickych faktorti balkanské endemické

nefropatie [66]. Jen méné nez 1 % OTA ziistava ve volné, tzv. biodisponibilni formé [81].

Vzniklé komplexy predstavuji mobilni depa, ze kterych mize byt OTA pozdéji uvolnovan
[2, 65], coz spolu s opétovnou reabsorpci OTA z enterohepatdlniho ob&hu a ledvinovych
proximalnich a distalnich tubult prodluzuje biologicky polocas, tedy ¢as, za ktery koncentrace
OTA v organismu klesne na polovinu [65, 84], a to na 35,5 dne [73]. Tento polocas je
v porovnani s ostatnimi zvifecimi druhy nejdelsi a je diivodem, pro¢ se OTA snadno kumuluje
v lidském organismu, jelikoZ v pribéhu eliminace OTA muze dojit k jeho dalSimu pfivodu
do organismu [66]. Kromé krve se OTA kumuluje v jatrech a ledvinéch, tj. hlavnich orgdnech
biotransformace, ale také ve varlatech, stfevech, svalech, tukovych tkanich a v menSim

mnozstvim také v mozku [4, 65].

Biotransformace. Biotransformace zahrnuje sérii enzymatickych procest, které preménuji
toxické latky na produkty, které jsou méné lipofilni a snadnéji se vylucuji z organismu,
piredevsim moci [2]. Vysledny produkt je obvykle méné toxicky az netoxicky a jedna se tedy
o detoxika¢ni proces, nicméné muze dojit také k bioaktivaci, pfi které ma vysledny produkt
vys$$i toxicitu nez ptivodni molekula [2, 85]. Biotransformace OTA se odehrava ve dvou fazich

oznacovanych jako faze I a faze II.

Faze 1 zahrnuje hydrolytické, oxidacni a redukéni procesy [2, 86] vedouci ke vzniku

metabolitl, jako jsou napt. ochratoxin a (OTa), oteviena laktonova forma OTA (OP-OTA),
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4R-hydroxy-OTA (4R-OH OTA), 4S-hydroxy-OTA (4S-OH OTA), 10-hydroxy-OTA
(10-OH OTA), ochratoxin B (OTB), OTA chinon (OTQ), OTA hydrochinon (OTHQ)
[65, 66,73, 87]. Na téchto procesech se podili fada enzymu, pfiCemz nejdulezitéjsi je

cytochrom P450 [88].

Hlavnim mechanismem detoxikace OTA je hydrolyza na OTa [22, 65]. OTa vznika §t€penim
amidové vazby spojujici L-B-fenylalaninovou ¢ast s dihydroizokumarinovym zakladem,
tj. OTa, prostfednictvim hydrolytickych enzymii karboxypeptidazy A, katepsinu C
a a-chymotrypsinu [73, 89, 90]. OTa ani oddélena fenylalaninova ¢ast nejsou toxické a lze
tedy tento proces oznacit za detoxikac¢ni [73]. Predpoklada se, ze OTA je degradovan na OTa
také stievni mikroflorou, pficemz nejaktivnéjsi jsou v tomto sméru prvoci v travicim traktu
ptezvykavceil, nicméné bakteridlni frakce hraje také vyznamnou roli [22, 91]. Tato degradace
se vSak odehrava az v tlustém stieve, tedy po prichodu hlavnim mistem absorpce, a proto spise
nema u neprezvykavcu velky vyznam [91]. Hydrolyzou laktonového kruhu za alkalickych
podminek vznika metabolit OP-OTA, ktery byl detekovan ve zluci potkand, kterym byl podan

OTA. OP-OTA vykazuje u bakterii nebo mysi nizsi toxicitu, ale pfi intravenéznim podani

potkaniim byl dokonce vice toxicky, nez OTA [92].

Hydroxylaci zprostfedkovanou rodinou enzymu cytochrom P450 mohou vznikat metabolity
4-OH OTA a 10-OH OTA. Metabolit 4-OH OTA vykazuje podobnou cytotoxicitu,
imunosupresivitu [4] a inhibi¢ni u€inek na proteosyntézu jako OTA [21]. Vyskytuje se ve dvou
epimerech, pficemz epimer 4R-OH OTA se tvoii v lidskych a potkanich jatrech a epimer
4S-OH OTA se tvoii v jatrech prasete [22, 65, 93]. O néco méné& toxicky hydroxylovany
metabolit 10-OH OTA byl objeven in vitro v jatrech kralika [94] a v bronchidlnich epitelidlnich
bunikach ¢loveka [95].

Oxidaci zprosttedkovanou cytochromem P450 mohou vznikat chinonové metabolity OTQ ¢i

OTHAQ), kter¢ jsou tidajné zodpoveédné za tvorbu DNA adukti [22, 96].

DalSimi cestami metabolizace OTA jsou reduktivni dechlorace za vzniku arylového radikalu,
ktery je udajné zodpoveédny za vznik uhlikové vazanych DNA adukti OTA-deoxyguanosin
(C-C8dG-0OTA), nebo oxidace na fenoxylovy radikal, ktery je udajné zodpoveédny za vznik
kyslikové vazanych DNA adukti OTA-deoxyguanosin (O-C8dG-OTA) [22, 96, 97]. OTA

muze také projit dechloraci za vzniku méné genotoxického metabolitu OTB [22, 66].
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Faze II zahrnuje syntetické procesy, pifi kterych se na polarni funkéni skupinu, obvykle
ziskanou ve fazi 1 [86], véZe hydrofilni endogenni latka za vzniku nové slouceniny,

tzv. konjugatu, ktery je rychle vylucovén z organismu [88].

OTA muze podléhat tzv. glukuronidaci, pii které se konjuguje s uridindifosfat glukurovonou
kyselinou pomoci enzymu uridindifosfat glukuronosyltransférazy. Déle muze podléhat
sulfataci, pii které dochazi ke konjugaci OTA s 3'-fosfoadenosin-5'-fosfosulfatem, pomoci
enzymu sulfatdzy. Nemén¢ dulezitd je konjugace OTA s glutathionem pomoci enzymu

glutathion S-transferdzy za vzniku OTA-glutathionového konjugétu. Dal§i moznosti je vznik

esterovych konjugati OTA s pentéozou ¢i hexdézou za vzniku konjugatl hex/pen-OTA

[2, 4, 65, 98].

ey o,
a OP-OTA

T=CH,3
OTa ¢ bu
; , dechlorace
hydrolyza amidové vazby
karboxypeptidaza A hydrolyza laktonového kruhu
katepsin C pH>8
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konjugace _ glukuronidovy konjugat
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Obrazek 4 Biotransformace ochratoxinu A
Vlastni grafické zpracovani dle Abrunhosa et al. [73], EFSA [22], Ringot et al. [65], Tran et al. [88], K&szegi & Poor [66]
pomoci editoru vektorové grafiky Inkscape 0.92.

Exkrece. Exkrece OTA je oproti absorpci pomala zejména kviili jeho vazbé na plazmatické

proteiny [22, 99]. Nezavisle na dévce je denné vylouceno 20—-80 ng OTA [99].

OTA je z organismu vylucovan pievazné moci [65, 100]. JelikoZz je glomerularni filtrace z krve
do moce omezena molekulovou hmotnosti filtrované latky do 60 000 Da, neni vzhledem

v v

k vysoké vazebné afinit¢ OTA k albuminu v ptipadé OTA pfili§ ucinnd a podléha ji pouze
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biodisponibilni frakce [2, 65, 66, 84]. VEétSi vyznam ma tzv. tubularni sekrece zprosttedkovana
OATs v proximalnich tubulech [65]. OAT1 a OAT3 na bazolaterdlni membrané jsou
zodpovédné zejména za transport OTA z krve do buiiky proximélniho tubulu, ze které jsou
pomoci efluxnich transportérti na apikalni membrang sekretovany do moéi. Cast sekretovaného
OTA je prostfednictvim OAT4 a dalSich transportérii na apikalni membrané reabsorbovana
zpét do ledvinovych bunék. Jelikoz OATI, 3 a 4 jsou G€inngjsi nez efluxni transportéry,
dochazi ke zpomaleni vylucovani OTA, jeho nasledné akumulaci a nefrotoxickému ucinku

[65, 66, 101-103] — viz Obrazek 5.
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Obrazek 5 Transport ochratoxinu A pomoci transportéri organickych ionti v buiikach proximalniho tubulu.
OTA, ochratoxin A; OATs, transportéry organickych aionti (OATI1, OAT3, OAT4, OATKI1); OATplal, polypeptid
transportujici organické anionty; MRP2, protein multilékové rezistence 2; NPT4, Na+ dependentni fosfatovy transportér;
BCRP, protein rezistence rakoviny prsu. Vlastni grafické zpracovani dle George et al. [102] pomoci editoru vektorové grafiky
Inkscape 0.92.

DalSim zplisobem eliminace OTA je fekalni exkrece, kterd uzce souvisi s biliarni exkreci. OTA
je v tenkém stfevé vstiebavan do krve a nasledn€ odveden do jater, ze kterych je exkretovan
do zluci, ze kter¢ je ve stievech opétovne absorbovan [2, 104]. Tato enterohepatalni recirkulace
vede k redistribuci toxinu do riznych tkani, cozZ mé za nasledek pomalé vyluovani a dlouhy

biologicky polocas [2, 65].

Exkrece mlékem je z kvantitativniho hlediska témét zanedbatelna [2], nicméné vzhledem
k prokazané souvislosti mezi vyskytem OTA ve stravé matky a koncentraci OTA v matefském

mléce [105] mize tento zpisob exkrece piedstavovat znacné riziko pro kojence [2, 65, 104].
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3.2.3.2 Toxikodynamika ochratoxinu A

OTA je znamy pro své nefrotoxické ucinky. Dale vykazuje hepatotoxické, embryotoxické,
teratogenni, imunosupresivni, neurotoxické a genotoxické tcinky. Karcinogenni uc¢inky OTA
byly prokadzany na zvifatech (napf. myS, potkan a pstruh) [101], nicméné z hlediska
karcinogenity pro ¢lovéka je OTA dle IARC od roku 1993 klasifikovéan do skupiny 2B ,,mozny

karcinogen* [21].

V zévislosti na zvifecim druhu se LDso, tj. smrtna davka, pfi které pii peroralnim podani OTA
zahyne 50 % testovanych jedincti, pohybuje v rozmezi od 0,2 (pes) do 58 (myS) mg/kg t. hm.
Toxicita se obecné¢ lisi nejen u riiznych druht zvitat, ale je zavisla také na jejich pohlavi, véku
¢i jinych individualnich vlastnostech. Zptsob podani je téz dilezitym faktorem urcujicim miru
toxicity [73, 101, 106, 107]. Pfesny mechanismus ptisobeni OTA neni dosud pln¢ objasnén,
nicméné jsou zndmy nékteré dil¢i mechanismy podilejici se na jeho toxickém ucinku. Mezi
tyto mechanismy patii napt. naruseni syntézy proteini, DNA a RNA v disledku podobnosti
OTA s fenylalaninem; tvorba reaktivnich forem kysliku a nasledné oxida¢ni poskozeni DNA
a proteint; lipidova peroxidace; naruseni permeability plazmatické membrany s naslednym
narusenim interceluldrni homeostdzy Ca®"; inhibice mitochondridlni respirace a nasledny

ubytek a nedostatek ATP a apoptdza riiznych bunck a tvorba DNA-adukti [65, 81, 99, 108].

3.2.4 Dietdrni expozice ochratoxinu A

OTA se u bézné populace dostdvd do organismu majoritné predevSim dietarni cestou,
tj. prostfednictvim kontaminované potravy [23] — viz Obrézek 6. Pro ¢lovéka ma vyznam
zejména piima expozice OTA prostiednictvim kontaminovanych plodin a produktii z nich
vyrobenych [109]. Dale je moZna také nepiima expozice prostifednictvim zivociSnych produktii
ziskanych z hospodaiskych zvifat (napf. maso, vejce a mléko) krmenych zaplisnénym
krmivem s obsahem OTA [109]. Obilniny ptedstavuji z tohoto pohledu obzvlasteé vysoké
riziko [109], nicméné dochazi ke kontaminaci i dalSich plodin, napt. hroznt, pistacii, fiku,

kofeni, kavy, ryze apod. [18; 23, 110, 111].

VMH produkujici OTA napadaji plodiny zejména v posklizhovém obdobi, tj. spiSe
pfi nevhodném skladovani a transportu nez na poli, pfi¢emz teplotni a vlhkostni podminky maji
na rist VMH zcela zasadni vliv [112]. Kontaminované krmivo narusuje metabolismus a zdravi
hospodaftskych zvitat, pfi¢emz monogastrické druhy, napf. prasata a driibez, jsou citlivejsi nez
polygastrické druhy, napt. skot, ovce a kozy, kvili méné¢ efektivnimu odbouravani OTA

v dasledku absence bachoru, ve kterém je OTA mikrobialné degradovan [109]. Dulezitou roli
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hraje téz slozeni krmiv, nebot’ krmivo pro dobytek se, na rozdil od krmiva pro prasata ¢i dribez,
sklada prevazné z picnin a pouze ¢astecné z obilovin, které jsou z pohledu kontaminace OTA
vysoce rizikové [109]. Pfenos OTA do zivocisSnych produktl zavisi na: 1) trovni expozice
hospodaiskych zvifat OTA z krmiva, 2) mife absorpce OTA do krevniho fecisté, 3) Grovni
perzistence OTA v krvi a jeho akumulace v tkdnich a 4) miie prechodu OTA do kone¢nych
produktt jako jsou maso, mléko a vejce [109]. Z tohoto pohledu jsou nejvice rizikové vepirové
produkty, zejména produkty s vepifovou krvi, droby — ledviny a jatra a dalsi masné produkty.
Drubezi produkty, tj. masné produkty a vejce, jsou mén¢ rizikové nez vepfové vzhledem
k ucinnéjsi exkreci OTA u dribeze, kterd mize byt zapti¢inéna nizsi afinitou OTA k sérovému
albuminu dribeze [79]. Ke kontaminaci hovézich, ovéich ¢i kozich koneénych produktii jako
jsou masné produkty a mléko dochazi az pii velmi vysokych davkach OTA, které se

v krmivech bézné nevyskytuji [109].

Dietarni expozice OTA ma za nésledek predevsim poskozeni ledvin, méné jater ¢i nervové
soustavy. Krmeni hospodaifskych zvifat kontaminovanym krmivem mulze zpuUsobit
ekonomickeé ztraty v dasledku snizeni ptivodu krmiva vedoucimu k ubytku na vaze, celkovému

zhorseni produktivity a zdravotniho stavu zvitete ¢i jeho thynu [109].

. DIETARNI p )
A E.\'P()Z!(‘E

Obrazek 6 Dietarni expozice ochratoxinu A
1) Plodiny nachylné ke kontaminaci ochratoxinem A; 2) Nevhodné skladovéni a transport; 3) Kontaminované
krmivo; 4) Zkrmovéni hospodaiskych zvifat kontaminovanym krmivem; 5) Konzumace kontaminovanych
potravin rostlinného a zivocisného ptivodu lidmi; 6) Dopady na zdravi lidi/zvitat z konzumace kontaminovanych
potravin/krmiv. Vlastni grafické zpracovani pomoci editoru vektorové grafiky Inkscape 0.92.
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3.2.5 Regulace ochratoxinu A v Evropské unii

Vyskyt mykotoxint v potravinach je vzhledem k jejich vaznym dopadiim na zdravi ¢lovéka
zcela nezadouci. Z tohoto diivodu byly v mnoha zemich stanoveny MPL regulujici vyskyt
mykotoxinii v potravinach. Regulace mykotoxinli v Evropské unii (EU) je v celosvétovém

srovnani nejkomplexnéjsi a je zavaznd pro 27 ¢lenskych statt.

V soucasné dob¢ je OTA v urcitych potravinach regulovan dle Natizeni Komise 1881/2006
,ze dne 19. prosince 20006, kterym se stanovi maximalni limity nékterych kontaminujicich latek
v potravinach‘* ve znéni pozdéjsich predpisi, oddilu 2 ,,Mykotoxiny*, polozky 2.2 ,,Ochratoxin
A“—viz Tabulka 6. Krom¢ OTA jsou v oddilu 2 uvedeny také MPL pro dal$i mykotoxiny jako
jsou AFs, PAT, CIT, DON, ZEN, FUMs, T-2 a HT-2 a ergotov¢ alkaloidy [113].

Tabulka 6 Regulace ochratoxinu A dle Narizeni Komise 1881/2006 ve znéni pozdéjSich predpist

Cislo Potraviny OTA* Reference
[ng/kg]
2.2.1 Nezpracované obiloviny 5 [113]
2.2.2 Vsechny produkty pochdzejici z nezpracovanych obilovin, s vyjimkou
potravin uvedenych v bodech 2.2.3-5, 2.2.12 a 2.2.13 3 [114]
Obiloviny uvadéné na trh pro kone¢ného spotiebitele
2.2.3 Pecivo, svacinky z obilovin a snidanové cerealie [114]
Vyrobky neobsahujici olejnata semena, ofechy nebo susené ovoce 2 [114]
Vyrobky obsahujici nejméné 20 % suSenych hroznti révy vinné a/nebo
Sany o 4 [114]
suSenych fikt
Ostatni vyrobky obsahujici olejnatd semena, ofechy a/nebo suSené ovoce 3 [114]
2.2.4 Nealkoholické sladové napoje 3 [114]
2.2.5 Psenic¢ny lepek neuvadény na trh pro koneéného spotiebitele 8 [114]
2.2.6 Susené ovoce
Susené hrozny révy vinné (korintky, rozinky a sultanky) a susené fiky 8 [114]
Ostatni suSené ovoce 2 [114]
2.2.7 Datlovy sirup 15 [114]
2.2.8 Prazend kdava
Prazena kdvova zrna a mleta prazend kéva kromé rozpustné kavy 3 [114]
Rozpustna kéva (instantni kdva) 5 [114]
2.2.9 Vino (v€etné Sumivého vina, s vyjimkou likérového vina a vina s obsahem ) [113]
alkoholu nejméné 15 % objemovych) a ovocné vino
2.2.10 Aromatizované vino, aromatizované vinné napoje a aromatizované vinné
. 2 [113]
koktejly
2.2.11 Hroznova stava, rekonstituovana koncentrovana hroznova §tava, hroznovy
nektar, rekonstituovany hroznovy most a rekonstituovany koncentrovany 2 [114]
hroznovy most uvadéné na trh pro konecného spotiebitele
2.2.12  Obilné piikrmy a ostatni pfikrmy uréené pro kojence a malé déti 0,5 [113]
2.2.13 Dietni potraviny pro zvlastni 1écebné ucely, urené specialné pro kojence a 0.5 [114]
malé déti ’
2.2.14 Kofeni, vCetn¢ suseného koteni, kromé Capsicum spp. 15 [114]
Capsicum spp. (susené plody, celé nebo mleté, véetné chilli, mletého chilli,
. N . 20 [115]
kayenského pepie a papriky)
Smési koteni 15 [114]
2.2.15 Lékorice (Glycyrrhiza glabra, Glycyrrhiza inflata a dalsi druhy)
Kofen Iékofice, mimo jiné jako slozka bylinnych caja 20 [114]
Vytazek zl€kotfice pro pouziti v potravinaiskych vyrobcich, zejména
. iy 80 [116]
v népojich a cukrovinkich
Cukrovinky z 1ékoftice obsahujici > 97 % vytazku z 1€koftice v susiné 50 [114]
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Cislo Potraviny OTA?* Reference

[ng/kg]
Ostatni cukrovinky z 1€kofice 10 [114]
2.2.16 SuSené byliny 10 [114]
2.2.17 Kofeny zdzvoru pro pouziti v bylinnych Cajich 15 [114]
Kofeny proskurniku lékatského, koteny pampelisky (smetanky) a kvéty
. s R P . 20 [114]
pomerancovniku pro pouziti v bylinnych ¢ajich nebo v ndhrazkach kavy
2.2.18 Slunecnicova semena, dynova semena, semena melounu (vodniho), konopna 5 [114]
semena, s6jové boby
2.2.19 Pistacie, které musi byt pfed uvedenim na trh pro koneéného spotiebitele nebo 10 [114]
pred pouzitim jako slozka potravin vytfidény nebo jinak fyzikalné oSetfeny
Pistacie uvadéné na trh pro kone¢ného spotiebitele nebo jako slozka potravin 5 [114]
2.2.20 Kakaovy prasek 3 [114]

? maximalni limit OTA.

Jelikoz byla ptitomnost OTA zjisténa také v potravinach, pro které nebyly stanoveny MPL,
bylo vhodné je stanovit i pro tyto potraviny. Na zaklad¢ diskuse Generalniho feditelstvi pro
zdravi a bezpecnost potravin (DG SANTE) byly ptedlozeny navrhy na nové MPL pro OTA
v dosud neregulovanych potravinach a nédvrhy na zménu nékterych stavajicich limitd [117].
Dne 1. ledna 2023 byly navrhované zmény pro regulaci OTA uvedeny v platnost Natizenim
Komise 2022/1370 ,,ze dne 5. srpna 2022, kterym se méni narizeni (ES) ¢. 1881/2006, pokud
jde o maximalni limity ochratoxinu A v nékterych potravindach®. Nové natfizeni uvadi nové
regulace OTA v dalSich potravinach, konkrétné se jedna o nealkoholické sladové népoje,
susené ovoce jiné nez susené hrozny révy vinné, datlovy sirup, susené byliny, nékteré slozky
bylinnych ¢ajii a nahrazek kavy, nékteré vyrobky z lékofice, vSechna kofeni vcetné jejich
smési, n€kterd olejnatd semena, sdjové boby, pistacie a kakaovy prasek. Zaroven doslo
k uprave, resp. zptisnéni 1 nékterych stavajicich limith u potravin jako jsou pekérenské
vyrobky, susené hrozny révy vinné, praZzena kava a rozpustna kava. Potraviny, kterych se
zména v regulaci OTA tyka a byly uvedeny na trh pfed datem 1. ledna 2023 mohou zlstat
na trhu do uplynuti data minimalni trvanlivosti nebo data spotieby. Pro stanoveni MPL OTA

v Sunce a syrech je doporu¢eno dal$i monitorovani [114].

Produkty, které obsahuji nadlimitni mnoZstvi danych kontaminujicich latek, by nemély byt
uvedeny na trh, a to ani jako sloZky jinych potravin. Nemélo by dochazet k miseni podilt
splitujicich limity s podily, které limity nespliiuji. Dekontaminace plodin chemickou cestou je
v ptipad¢€ mykotoxinl rovnéZ zakazéna. Pro sniZeni tirovné kontaminace potravin je povoleno
pouze tiidéni ¢i jiné fyzikalni oSetfeni, kterym Ize dosahnout pozadovaného -efektu,
a to za predpokladu, Ze se takto oSetfené potraviny nemisi s potravinami urenymi k pfimé

lidské spotiebé nebo s potravinami ur¢enymi pro pouziti jako potravinova slozka [113].
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Pro potraviny, které nepodléhaji pravnim ptedpisim EU je mozné vyuzit tzv. expozi¢ni limity,
které vSak slouzi pouze pro zpétné vyhodnoceni zdravotniho rizika po dietarni expozici. Jesté
donedavna se v ptipadé OTA uplatiioval pfistup tzv. smérné hodnoty stanovené z hlediska
ochrany zdravi (v angl. oznaCovano jako health-based guidance value; HBGV),
respektive tolerovatelny tydenni ptivod 120 ng/kg t. hm. stanoveny Evropskym ufadem pro
bezpecnost potravin (EFSA) v roce 2006 [118]. Ve stanovisku EFSA z roku 2020 zabyvajicim
se hodnocenim rizika OTA v potravinach byl piistup HBGV v pfipadé OTA oznacen
zanevhodny. Vzhledem k nejnovéjs§im poznatkim EFSA preferuje pfistup tzv. hranicni
expozice (MOE), kterd je ddna pomérem spodni limitni hodnoty spolehlivosti referen¢ni davky
10% dodate¢ného rizika (BMDL1o) a dietarni expozice. Pro charakterizaci nenadorovych
ucinkli na zdklad¢ ledvinovych 1ézi u prasat byla stanovena hodnota BMDLg
4,73 ng/kg t. hm./den, pficemz za hodnotu vzbuzujici nizké obavy se povazuje MOE > 200.
Pro charakterizaci nadorovych uc¢inkl na zakladé nadort ledvin u potkanti byla stanovena
hodnota BMDLo 14,5 pg/kg t. hm./den, pficemz za hodnotu vzbuzujici nizké obavy se
povazuje MOE > 10 000. Tuto hodnotu stanovil Védecky panel EFSA pro kontaminanty
v potravinovém fetézci obecné pro latky, které jsou genotoxické a karcinogenni, nicméné dle
védeckého stanoviska EFSA miize byt tato hodnota v pfipadé¢ OTA zvlasté obezietna, jelikoz

nejsou ditkazy pro pfimou genotoxicitu a karcinogenitu OTA prtukazné [22].

K efektivnimu sniZzeni zdravotniho rizika vyplyvajiciho z expozice mykotoxinim
v potravinach je nezbytné pravidelné kontrolovani miry kontaminace potravin mykotoxiny
nebo monitorovani jejich producentti ¢i biomarkertt [119]. Analyza potravin za ucelem
posouzeni miry kontaminace mykotoxiny je dilezitou zdkladni praxi pro zajisténi bezpecnosti

a kvality potravin [120].

Na nérodni Grovni je ufedni kontrola bezpe€nosti potravin zajiStovana dozorovymi organy
v gesci Ministerstva zdravotnictvi, tj. Organy ochrany vefejného zdravi; a Ministerstva
zemédélstvi, tj. Statni zem&dé&lska a potravinaiska inspekce, Statni veterinarni sprava, Ustfedni
kontrolni a zkugebni ustav zemédglsky a Ustav pro statni kontrolu veterinarnich biopreparatt

a1é¢iv [119, 121].

Mykotoxiny obecné predstavuji pomérné Casty diivod pro odmitnuti na hranicich, a tedy vstup
na trh EU [110]. Na trovni EU je kliCovym néstrojem pro bezpecnost potravin, ale i krmiv
Systém rychlého varovani pro potraviny a krmiva (RASFF), jehoz tcelem je co nejrychlejsi

Sifeni ozndmeni o nebezpecnych potravinach a krmivech mezi ¢leny systému, kterymi jsou
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EK, clenské staty EU a EFTA (Island, Lichtenstejnsko a Norsko) a EFSA [122]. Statni
zem&dglské a potravinaiska inspekce predstavuje pro Ceskou republiku tzv. ndrodni kontaktni
misto, které komunikuje na jedné stran¢ s EK a na druhé s ndrodnimi dozorovymi organy nad
potravinami a krmivy. EK vyhodnocuje vSechna hlaSeni a piredava je vSem c¢lentim systému
prostfednictvim 4 typili ozndmeni: 1) varovani (angl. alert notification); 2) informace (angl.

information); 3) odmitnuti na hranicich (ang. border rejection) a 4) novinky (angl. news) [110].

V roce 2021 bylo syst¢émem RASFF hlaseno 437 oznameni na mykotoxiny v potravinach,
ztoho 33 (7,5 %) oznameni na OTA. Ceska republika byla ohlasena dne 10. 12. 2021
(alert notification 2021.6815) jako distributor susenych fikii pochazejicich z Recka s obsahem
OTA 78,1 ng/kg (EU limit 8 pg/kg) [110].

Vroce 2022 (ke dni 14. 12. 2022) bylo systémem RASFF hlaSeno 465 ozndmeni
pro mykotoxiny v potravinach, z toho 51 (11 %) oznameni na OTA. Ceska republika se v roce
2022 objevila ve dvou oznamenich, a to dne 17. 6. 2022 (alert notification 2022.3578) jako
zem& puvodu mouky s obsahem OTA 7,3 pg/kg (EU limit 3,0 pg/kg) a dne 17. 8. 2022
(alert notification 2022.477) jako oznamovatel vyskytu OTA o koncentraci 2,94 pg/kg
(EU limit 0,5 pg/kg) v cerealnich produktech pro kojence pochézejicich z Rakouska [110].

Souhrnna analyza dat za obdobi 2019-2020 ukézala, ze v tomto obdobi bylo zaznamenano
2 635 ozndmeni na mykotoxiny v potravinach; z toho 317 (12 %) na OTA. Vice nez 95 %
oznameni pochdzelo ze sekci ,,ovoce a zelenina®, ,,byliny a koreni®, ,,obilniny a pekarské
produkty, ,,orechy, orechové produkty a seminka*, a ,.kakao a kakaové produkty, kava a caj*

[110]. Obréazek 7 znazoriiuje souhrn oznameni pro OTA.
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Obrazek 7 RASFF oznameni o vyskytu ochratoxinu A v potravinach v letech 2016-2020
,,Ostatni produkty* zahrnuji produkty hlaSené méné nez 5x. ,,Ostatni zemé&* zahrnuji zemé, ze kterych pochéazelo
mén¢ nez 8 oznameni. Data byla zpracovana dle RASFF databaze [110]. Vlastni grafické zpracovani pomoci
online generatoru aluvialnich diagramt The Sankey Diagram Generator a editoru vektorové grafiky Inkscape 0.92
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3.3 Metody pro stanoveni mykotoxin(

Proces stanoveni mykotoxinli mize byt ovlivnén fadou faktorti v riznych fazich, tj. 1) pred
samotnym stanovenim v tzv. (pre-)preanalytické fazi zahrnujici vSechny kroky od odbéru
a transportu vzorku do laboratote, pies skladovani, az po jeho laboratorni ptipravu k analyze;
2) béhem stanoveni, v tzv. analytické fazi zahrnujici vlastni stanoveni analytu meéficim
pfistrojem; 3) po stanoveni, v tzv. (post-)postanalytické fazi zahrnujici vyhodnoceni

a interpretaci vysledka — viz Obrazek 8. Kazda z uvedenych fazi ovliviiuje vysledek [123, 124].

Analyza mykotoxinl

v I ’

Pre—pre?nalyticka Prean:alytlcka Analyticka faze Postan'alyticka Post—post‘analyticka
faze faze faze faze
mimo laboratof v laboratofi mimo laboratof

Obrazek 8 Obecné schéma procesu stanoveni mykotoxinu

Stanoveni mykotoxinii se obvykle provadi metodami, které zahrnuji vzorkovani, piipravu
vzorkil pro analyzu, extrakci hledaného analytu a piecisténi extraktu, detekci a kvantifikaci
[125]. S vyjimkou tekutych nebo vysoce zpracovanych homogennich vzorkli se mykotoxiny
vyskytuji v potravinach pievazné nestejnomérné. Aby bylo mozné zarucit pravdivost vysledku,
je nutné odebrat tzv. reprezentativni vzorek, ktery svym charakterem bude odpovidat

celkovému vzorku [125].

Pro uspésnou analyzu je extrakce hledaného analytu z komplexni matrice vzorku do kapalné
faze nezbytnym krokem [125]. Pro extrakci mykotoxini z matrice se voli extrak¢ni
rozpoustédla dle povahy hledaného mykotoxinu a s ohledem na matrici vzorku [125, 126].
Nejucinngjs$i jsou organickd rozpoustédla jako napi. chloroform, methanol, acetonitril,
dichlormethan, aceton, ethylester kyseliny octové, diethylether, toluen, ptipadné jejich smési
s vodou, ktera napomaha penetraci organickych rozpoustédel do matrice. Pro zvySeni uc¢innosti
extrakce se k témto rozpoustédlim Casto pfidavaji modifikatory ve formé& kyselin nebo zésad,
které mohou naruSit silné vazby mezi analytem a slozkami obsaZzenymi v potraving,

napf. bilkovinami a cukry [125, 127].

Odstfedéni ¢i filtrace ma vyznam pro odstranéni interferujicich céastic pted naslednym
precisténim ziskaného extraktu [125]. PreciSténi extraktu je dilezité pro odstranéni
interferujicich latek, které by mohly naruSovat detekci hledaného mykotoxinu [125, 128].

Precisténi se také doporucuje pro ochranu chromatografické kolony [128].
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Bylo vyvinuto nékolik metod pro piecisténi extraktu, napf. extrakce kapalina-kapalina
¢i extrakce na tuhou fazi. Nejvice vyuzivané a oblibené pro piecisténi jsou imunoafinitni
kolonky (IAK) fungujici specificky na principu antigen-protilatka [129], které jsou vyuzivany
v této praci. Princip IAK spociva v zachyceni antigenu hledaného mykotoxinu a v jeho vazb¢
na specifické protilatky zakotvené na kolonce. Po aplikaci myciho roztoku jsou ostatni balastni
latky odstranény z kolonky. Zachyceny mykotoxin je néasledné uvolnén elu¢nim cinidlem

z komplexu antigen-protilatka. Zobrazeni principu IAK napft. pro OTA — viz Obrazek 9.
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Obrazek 9 Princip separace ochratoxinu A na imunoafinitnich kolonkach
Vlastni grafické zpracovani pomoci editoru vektorové grafiky Inkscape 0.92.

Pro stanoveni mykotoxinli bylo vyvinuto nékolik analytickych metod. Nejvyuzivanéjsi jsou
metody imunochemické a chromatografické [23]. Podrobnéji uvedené principy metod jsou
omezené pouze na ty, které byly vyuzivany v prubéhu doktorského studia: enzymova
imunoanalyza (ELISA) — viz kapitola 3.3.1 a vysokou¢innd kapalinovad chromatografie

s fluorescencnim detektorem (HPLC-FLD) — viz kapitola 3.3.2.

3.3.1 Enzymova imunoanalyza

Metoda ELISA je uzivatelsky pfizniva a ¢asoveé nenarocnd metoda, nebot’ nevyzaduje zadny
postup ¢isténi. Tato metoda slouZzi k rychlému screeningu velkého mnozstvi vzorkd v kratkém
case [130]. Princip metody je zalozen na vysoce specifické interakci mezi antigenem
a protilatkou za tvorby imunokomplexu [130, 131]. Antigen ¢i protilatka mohou v komplexu

vystupovat jak v neznacené formé¢, tak v enzymaticky znacené formé tzv. konjugatu [131].
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ELISA miZze byt vyuzivana v riznych uspofddanich — piimé, nepfima, sendvicova,

kompetitivni [130, 131] — viz Obrazek 10.

&4 54

piima ELISA nepiima ELISA sendvi¢ova ELISA |kompetitivni ELISA

@ Antigen @ Referenéni antigen Y Primarni protilatka Yléchyma imobilizovana protilatka

q/ Konjugovana primarni protilatka :r Konjugovana sekundarni protilatka
Obrazek 10 Zakladni typy usporadani ELISA metody
Vlastni grafické zpracovani pomoci editoru vektorové grafiky Inkscape 0.92.

Pfima metoda spoc¢iva v pfimém navazani konjugatu na hledany antigen, ktery je imobilizovan
na pevné fazi — tj. na dn¢ jamky mikrotitraéni desticky. Po interakci vznikd komplex

antigen-konjugat [131].

Nepiimé metoda je zaloZena na vazb¢ antigenu s primdrni protilatkou, na kterou se néasledné

navaze konjugat. Po interakci vznikd komplex antigen-protilatka-konjugat [131].

Sendvicova metoda je zalozena na interakci dvou odliSnych protilatek — imobilizované
(ukotvené) a signalni (znacené) protilatky se dvéma odliSnymi epitopy, tj. vazebnymi ¢astmi
stanovovaného antigenu. Po interakci vznikd komplex protilatka-antigen-konjugat (pfima
sendviCova metoda), pfipadné protilatka-antigen-protilatka-konjugat (nepfima sendvicova

metoda) [131].

Kompetitivni metoda spoc¢iva v kompetici znacenych a neznacenych protilatek o jeden epitop
antigenu C¢i znacenych a neznacenych antigenii o protilatku. Na rozdil od ptedchozich

uspofadani je signal u této metody nepiimo umerny koncentraci hledan¢ho analytu [131].

Interakce mezi antigenem a protilatkou mohou byt ovlivnény tzv. interferujicimi latkami, coz
muze zpusobit faleSnou pozitivitu ¢i negativitu vysledku [131]. Pfikladem fale$né pozitivity je
tzv. ktizova reaktivita — tj. reakce protilatky se strukturné podobnym, avSak necilovym
antigenem, kterd miZe vést k nadhodnocenym vysledkim [61, 131]. Piikladem falesné
negativity je tzv. ,,hook efekt™, tj. podhodnoceni vysledkii zpiisobené nadmérnym mnoZzstvim
antigenu v reakéni smeési, coz vede komezené tvorbé ,sendvicovych® komplexi
protilatka-antigen-konjugat [131]. Podrobnéji jsou uvedeny pouze principy ELISA metod
vyuzivanych v ramci doktorského studia, tj. pro OTA — viz kapitola 3.3.1.1 a CIT -
viz podkapitola 3.3.1.2.
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3.3.1.1 Princip stanoveni ochratoxinu A pomoci ELISA metody

Pro stanoveni OTA se vyuziva pifima kompetitivni ELISA, ktera je urcena pro detekci
hledaného antigenu, tj. v tomto ptipadé¢ OTA. Princip metody je tedy zaloZen na reakci typu
»antigen-protilatka®. Imobilizované protilatky jsou zakotvené na dné¢ 96 jamek mikrotitracni
desticky. Po aplikaci vzorku/standardu a nésledné konjugatu (OTA znafeny enzymem
umoznujici detekci) do jamky dochazi ke kompetici mezi neznacenymi (ze vzorku/standardu)
a znacenymi (z konjugatu) antigeny. Konjugat, ktery se nenavaze na specifické protilatky, je
pfi promyvacim procesu odstranén z jamky. Po aplikaci chromogen substratu, ktery reaguje
s konjugovanym enzymem, dochazi ke vzniku modrého zbarveni, pficemz intenzita zbarveni
je nepifimo imérna s koncentraci antigenu ve vzorku/standardu. Néslednym pouzitim STOP
substratu dochdzi k zastaveni reakce za vzniku Zlutého zbarveni. Pro kvantitativni stanoveni
OTA je vyuzivan ELISA reader — tj. spektrofotometr, ktery v jednotlivych jamkach odecita
absorbanci pfi vlnové délce 450 nm. Absorbance je vtomto piipadé nepiimo Umeérna
koncentraci OTA ve vzorku. Obrazek 11 znazoriiuje princip stanoveni OTA metodou ELISA

[132].

@ Ochratoxin A ‘ Enzymové znaceny ochratoxin A Y Protilatka ‘ Chromogenni substrat Stop substrat
@ Enzymova reakce s chromogennim substratem P Zastavena enzymova reakce

Obrazek 11 Princip stanoveni ochratoxinu A kompetetivni ELISA metodou
Vlastni grafické zpracovani pomoci editoru vektorové grafiky Inkscape 0.92.
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3.3.1.2 Princip stanoveni citrininu pomoci ELISA metody

V ramci doktorské prace byl paraleln¢ s OTA pomoci metody ELISA okrajové fesen
také CIT. Pro stanoveni CIT se vyuziva nepfima kompetitivni ELISA. Princip metody je
zalozen na reakci typu ,,antigen-protilatka“, kdy antigenem je v tomto ptipad¢ CIT. Dno
48jamkové mikrotitracni desticky je pokryto imobilizovanym antigenem. Po aplikaci
vzorku/standardu a nésledné primarnich anti-CIT protilatek do jamky dochazi ke kompetici
mezi volnym a imobilizovanym antigenem o epitopy, tj. vazebna mista, protilatek.
Po promyvacim procesu, pfi kterém jsou z jamek odstranény volné primarni protilatky, je
aplikovan konjugét obsahujici sekundérni protilatky znacené enzymem peroxidazou, které se
navazi na jiz navazané primarni anti-CIT protilatky. Nenavazané sekundarni protilatky jsou
op¢€t odstranény v promyvacim procesu. Po aplikaci chromogen substratu dochdzi k reakci
s konjugovanym enzymem na sekundarnich protilatkdch za vzniku modrého zbarveni.
Po pfidani STOP substratu dochazi k zastaveni reakce za vzniku zlutého zbarveni.
Pro kvantitativni stanoveni CIT je vyuZivan ELISA reader — tj. spektrofotometr, ktery z jamek
odecita absorbanci pii vinové délce 450 nm. Absorbance je v tomto pfipad¢ nepifimo imérna

koncentraci CIT ve vzorku. Obrazek 12 zndzornuje princip stanoveni CIT metodou ELISA

[133].
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Obrazek 12 Princip stanoveni citrininu kompetetivni ELISA metodou
Vlastni grafické zpracovani pomoci editoru vektorové grafiky Inkscape 0.92.

33



3.3.2 Kapalinova chromatografie s fluorescenénim detektorem

Chromatografie je moderni separacni technika, ktera se pouziva k preparativnim (separace
jednotlivych slozek smési) 1 analytickym (kvalitativni a kvantitativni hodnoceni jednotlivych
slozek smési) ucelim [134, 135]. Princip chromatografie spociva v rozdilné interakci slozek
smési se dvéma nemisitelnymi fazemi — fazi pohyblivou, tj. mobilni (MF) a nepohyblivou,
tj. staciondrni (SF). Technika vyuzivajici jako MF kapalinu se nazyva kapalinova
chromatografie (LC) [135]. Kapalinovy chromatograf sestava znékolika moduli -

viz Obrazek 13.
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Obrazek 13 Schéma kapalinového chromatografu.
Vlastni grafické zpracovani pomoci editoru vektorové grafiky Inkscape 0.92.

MF skladajici se z jednoho ¢i vice roztoki je Cerpana ze zasobnich lahvi pumpou
do odplynovace a nasledné do nastfikového zatfizeni. Slozeni MF, resp. pomér roztokd, mize
byt po celu dobu méfeni konstantni — tzv. izokratickd eluce ¢i promeénlivé v Case —
tzv. gradientova eluce. Za pomoci smycky a vicecestného ventilu je analyzovany vzorek
vnaSen do MF a unasen do termostatované analytické kolony, kterd byva Casto vybavena jesté
piedkolonou. V analytické koloné naplnéné SF nasledné probihd vlastni separacni proces.

Latky s vyssi afinitou k SF jsou v koloné€ zadrZzovany — hovofi se o tzv. retenci. Naopak latky
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s niz$i afinitou k SF jsou kolonou unéseny rychleji. Jednotlivé analyty jsou zaznamenany
detektorem v rozdilném c¢ase. Zaznam z detektoru je vyhodnocen pocitacovym softwarem,
pricemz vystupem je tzv. chromatogram zndzornujici jednotlivé analyty v podobé pika
v danych tzv. retencnich Casech, které udavaji dobu, za kterou byl dany analyt detekovan

od jeho nastiiku, pficemz plati, Zze ¢im je afinita k SF vyssi, tim je retencni Cas delsi [134, 135].

LC technika mtze byt doplnéna riznymi typy detektord, napt. fluorescen¢nim detektorem
[136-139], UV/VIS detektorem [140], hmotnostnim spektrometrem [141] ¢i tandemovym
hmotnostnim spektrometrem [142—144]. Vzhledem k fluorescencni povaze OTA, ale také CIT,
je hojné vyuzivana metoda HPLC-FLD ([23, 145], pficemz fluorescencni detektor je

v poslednich letech povazovéan za tieti nejvyuzivangjsi techniku v LC [134].
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4 Publikované prace

V této Casti je uveden piehled 8 vydanych publikaci zabyvajicich se vyznamnymi mykotoxiny,
znichz 4 jsou reSerSniho charakteru a 4 vyzkumného charakteru. VSechny publikace byly
uvetejnény v impaktovanych casopisech s IF v rozsahu 3,531-6,475, ztoho 7x v prvnim

kvartilu (Q1) a 1x ve druhém kvartilu (Q2).

Vyzkumna c¢innost probihala na pracovisti Univerzity Hradec Kralové, Prirodoveédecké
fakulty, katedry biologie. Dil¢i studie vychazeji ze specifickych vyzkumt ¢. 2112/2019,
2115/2020, 2010/2021 a 2106/2022 podpotenych Ptirodovédeckou fakultou Univerzity
Hradec Kralové.

Kazda publikace je okomentovana komentati 1-8 — viz kapitoly 4.1-4.8. Komentat 9

je vénovan pripravované publikaci vyzkumného charakteru — viz kapitola 4.9.
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A review on mycotoxins and microfungi in spices in the light of the last five years
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II. Vyzkumné prace

11.a Stanoveni ochratoxinu A v biologickém materidalu rostlinného pivodu

Natural occurrence of ochratoxin a in spices marketed in the Czech Republic during 2019-2020
Pickova, D., Toman, J., Ostry, V. & Malir, F.
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https://doi.org/10.3390/foods 10122984
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sprava dat, psani — ptivodni draft, psani — revize a upravy, vizualizace, administrace projektu,

ziskavani finan¢nich prostredkt
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Analyses of biomarkers of exposure to nephrotoxic mycotoxins in a cohort of patients with renal
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4.1 Komentdl 1: Vyskyt mykotoxini v doplficich stravy na bazi ostropestice
marianského (Silybum marianum): Review
Resersni studie ,,Presence of mycotoxins in milk thistle (Silybum marianum) food Supplements:

A review* byla publikovana 8. prosince 2020 v casopise Toxins ve specidlnim vydani

,Occurrence and risk assessment of mycotoxins* — viz Ptiloha 1.

Publikace pojedndva o doplicich stravy na bazi byliny ostropestfce marianského (Silybum
marianum (L.) Gaertn). Shrnuje benefitni U¢inky silymarinového komplexu, tj. obsahovych
latek, ze kterych je silybin povazovan za nejvyznamnéjsi, nebot’ je pro své hepatoprotektivni
ucinky celosvétoveé pouzivan piedevsim lidmi s onemocnénim jater. Zaroven ale poukazuje

na nachylnost téchto doplnkl ke kontaminaci VMH a jejich mykotoxiny.

V tomto prezkumu jsou uceleny vysledky z 9 relevantnich ptivodnich studii vydanych v letech
2009-2019 zabyvajicich se vyskytem VMH a/nebo mykotoxinli v 5 formach dopliki stravy
na bazi ostropestice marianského — seminka, kapsle, tablety, granule a extrakty. Napfi¢
studiemi bylo zohlednéno 57 mykotoxint. Na zaklad¢ dostupnych studii se nejkriti¢téjsi zda
byt 12 mykotoxini: AME, AOH, tentoxin produkované rodem Alternaria a DON, HT-2, T-2,

ZEN, beauvericin a enniatiny A, A1, B, Bi produkované rodem Fusarium — Tabulka 7.

Tabulka 7 Kontaminace dopliiki stravy na bazi Silybum marianum mykotoxiny

Mykotoxin' n+/n n+ (%) Mykotoxin' n+/n n+ (%)
AME 57/58 98 ENNB 54/58 93
AOH 54/58 93 ENNB: 55/58 95
BEA 54/58 93 HT-2 48/65 74
DON 37/67 55 T-2 52/67 78
ENNA 51/58 88 TEN 50/58 86
ENNA; 52/58 90 ZEN 49/67 73

' AME, alternariol monomethyl ether; AOH, alternariol; BEA, beauvericin; DON, deoxynivalenol; ENNA, enniatin A,
ENNALI, enniatin A1, ENNB, enniatin B, ENNBI1, enniatin B1; T-2, T-2 toxin; TEN, tentoxin; ZEN, zearalenon.

Tento ptehled poukazuje na moznost znehodnoceni hepatoprotektivniho ucinku, jsou-li tyto
dopliiky sou€asné kontaminovany mykotoxiny, mimo jiné s hepatotoxickym Uc¢inkem jako
napi. AOH, AME, TEN, DON, T-2 a ZEN. V zavislosti na mnozstvi téchto mykotoxinti mize

hepatotoxicky u€inek mnohdy i pfevazovat nad benefitnimi Gi€inky, a proto je pouzivani takto

kontaminovaného ostropestice nevhodné, a to zejména u uzivateld s jaternimi obtizemi.

Ptehled poukazuje na potiebu striktniho sledovani vyskytu hepatotoxickych mykotoxini
v komer¢né prodadvanych dopliicich stravy na bazi ostropestfce marianského, a také na potifebu
zavedeni regulacnich limitd pro mykotoxiny v dopliicich stravy na rostlinné bazi, nebot’

v pravnich ptredpisech EU nejsou dosud zahrnuty.
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4.2 Komentar 2: Pfehled mykotoxin( a mikromycetu v koreni za poslednich 5 let

Resersni studie ,,4 review on mycotoxins and microfungi in spices in the light of the last five
years‘ byla publikovana 11. prosince 2020 v ¢asopise Toxins ve specidlnim vydani ,,Exposure

to mycotoxins via food chain* — viz Ptiloha 2.

Kofeni je malou, avSak nedilnou soucasti stravy. Jeho produkce probihd pirevazné
v rozvojovych zemich s tropickym a/nebo subtropickym klimatem, kde pfiznivé podminky
usnadnuji rist VMH a produkci mykotoxini. Kontaminace je navic v téchto zemich mnohdy
podpoiena nedostatecnou zemédélskou, hygienickou a vyrobni praxi. Ackoliv kofeni
nepfedstavuje hlavni pfivod mykotoxinid do organismu, jeho Castd konzumace muze vést

k nepietrzitému piivodu.

Reserse poskytuje komplexni souhrn vysledki z 56 relevantnich piivodnich studii zabyvajicich
se kontaminaci kofeni VMH a/nebo mykotoxiny v poslednich 5 letech, tj. od r.2015.
V pfezkumu je zahrnuto 38 druhii kofeni, 17 mykotoxinii a 14 VMH. Paprika, chilli, ¢erny
a bily pepf, zdzvor a kurkuma jsou nejCastéji kontaminované AFs a OTA, pficemz OTA
je typicky také v 1ékofici. Tato kofeni jsou v souvislosti s AFs a OTA soucasti legislativy EU,
nicméné z prehledu je patrné, ze dochézi ke kontaminaci mnoha dalSich druhti kofeni riznymi

mykotoxiny, jejichz regulace v legislativé chybi — viz Tabulka 8.

Tabulka 8 Vyznamny vyskyt mykotoxini v kofeni nepodléhajici regulacim EU

Mykotoxiny Kofeni

Aflatoxiny piskavice fecké seno, koriandr, fimsky kmin, fenykl

Ochratoxin A muskatovy kvét, piskavice fecké seno, kardamom, kmin kofenny, koriandr, fenykl
Citrinin chilli, zazvor, koriandr, piskavice fecké seno

Fumonisiny paprika, 1ékofice

Trichotheceny paprika

Zearalenon paprika

Alternariové mykotoxiny paprika

Studie také poskytuje ptehled o celosvétové produkci kofeni na zakladé statistické databaze
Organizace pro vyzivu a zemédélstvi FAOSTAT a ozndmeni souvisejicich s vyskytem AFs
a OTA v kofeni dle databaze RASFF. Velka pozornost je v€novéana regula¢nim limitim pro
AFs a OTA v kofeni, a to v celosvétovém kontextu. Pfedevs§im se ale zamétuje na legislativu

EU, kterd je celosvétoveé povazovana za nejkomplexnéjsi a je zavazna pro 27 Clenskych stat.

Tento ptehled poukazuje na nedostatecné regulace mykotoxinl v kofeni a zdlraziiuje
dilezitost sledovani riznych mykotoxind, nejen AFs a OTA, vriznych idosud
neregulovanych druzich koteni. Také zdlraziiuje potfebu zvySeni informovanosti spotiebitelt

o zdravotnim riziku plynoucim z expozice mykotoxiniim prostfednictvim kofeni.
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4.3 Komentar 3: Recentni pfehled producentt a zdrojl dietarni expozice aflatoxin(

Resersni studie ,,4 recent overview of producers and important dietary sources of aflatoxins
byla publikovana 3. bfezna 2021 v ¢asopise Toxins ve specialnim vydani ,,Occurrence and risk

assessment of mycotoxins* — viz Ptiloha 3.

Vroce 2020 si  védeckda komunita pfipomnéla 60. vyro¢i objeveni AFs,
tj. mykotoxinti s nejsilnéjS§im prokazanym karcinogennim ucfinkem na ¢lovéka. AFs si vSak
i nadéale zasluhuji pozornost, a to nejen kvili jejich toxicité, a tedy moznym Skodlivym
ucinkim na zdravi clovéka, ale také kvili ekonomickym ztratdm vznikajicim v disledku
kontaminace plodin. O tom svéd¢i nékolik védeckych praci a fada oznameni hlasenych
klicovymi néstroji pro bezpecnost potravin pro sledovani AFs v potravinach, piipadné
krmivech. K pfilezitosti 60. vyroci byl vydan piehled soucasné zndmych producentt

a vyznamnych dietarnich zdroji AFs.

ReserSe poskytuje ptrehled 28 znamych aflatoxinogennich potravinovych producenti rodu
Aspergillus ze sekci Flavi (22 producenti), Nidulantes (4) a Ochraceorosei (2). Druhy
A. flavus, A. parasiticus a A. nomius jsou povazovany za nejvyznamnéjsi producenty ze sekce

Flavi. V roce 2020 byli konfirmovéani tfi novi producenti 4. agricola, A. toxicus a A. texensis.

KaZdodenni dietarni expozice AFs je celosvétovy problém. AFs kontaminuji fadu potravin,
predev§im araSidy, pistaciové ofisky, suSené fiky, liskové ofisky, koteni, mandle, ryzi,
melounova seminka, para ofechy a kukufici. Potraviny zivocisného ptivodu (napt. mléko ¢i

zivocisné tkané) se podileji na ptivodu mykotoxint do organismu méné.

ReSerSe déle poskytuje piehled problematickych komodit z pohledu kontaminace AFs
v zavislosti na kontinentu na zakladé védeckych studii. Z celosvétového hlediska jsou téz
feSeny pravni predpisy stanovujici MPL pro AFs v potravinach. Nejvét§si pozornost je
vénovana regulacnim limitim platnym v EU. Dale je uveden piehled nejnovéjSich oznameni
souvisejicich s vyskytem AFs v potravinach v databazi RASFF za roky 2015-2020
av Mezinarodni siti Gfadl bezpecnosti potravin INFOSAN zaroky 2016-2020.
Prostfednictvim infografiky jsou zndzornény potraviny kontaminované AFs vcetné jejich

puvodu dle RASFF za rok 2020.

Navzdory snahdm o zmirnéni koncentraci AFs v potravinach, a tim zajiSténi bezpecnosti
potravin, jsou AFs i nadale pfitomny, dokonce i ve vysokych koncentracich pfekracujicich
1 000 ng/g, coz je koncentrace spojovana s rozvojem aflatoxikozy. Z tohoto diivodu zlistavaji
1 nadale feSenym problémem ve svéte.
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4.4 Komentar 4: Aflatoxiny: Historie, vyznamné milniky, recentni data o jejich toxicité
a zpUsoby zmirfiovani kontaminace

Resersni studie ,,Aflatoxins: History, significant milestones, recent data on their toxicity
and ways to mitigation* byla publikovana 3. ¢ervna 2021 v Casopise Toxins ve specialnim

vydani ,,Occurrence, toxicity and mitigation od aflatoxins* — viz Ptiloha 4.

Resersni studie je pomyslnym pokracovanim publikace ,,4 Recent Overview of Producers
and Important Dietary Sources of Aflatoxins®. Zabyva se AFs ze tii aspekti — tj. historie,

recentni toxikologie a novodob¢ strategie pro zmiriovani irovni AFs v potravinach.

Prvni ¢&ast prehledu poskytuje historicky vyvoj s vyznamnymi milniky od roku 1960
po soucasnost. Prvni milnik zaznamenavéa vypuknuti aflatoxikézy piezdivané krati ,,.X*
onemocnéni, pfi které na londynské farmé zahynulo vice nez 100 000 krut'at po konzumaci
brazilské arasidové moucky napadené VMH Aspergillus flavus. Toxin objeveny
v kontaminované moucce dostal nazev ,.Aspergillus flavus toxin‘ — aflatoxin. Od té doby byl

zah4jen rozséhly vyzkum AFs a pokracuje dodnes.

Druha cast se zbyva toxikologickymi daty z nenovéjSich studii provadénych na zviratech
in vivo a riznych bunécnych liniich in vitro. Pozornost je dale vénovéana toxikologickym
interakcim mezi: 1) AFs a dalSimi mykotoxiny, tj. DON, OTA a ZEN; 2) AFs a dal$imi
kontaminanty, tj. tézkymi kovy, pesticidy a toxiny sinic; 3) AFs a viry hepatitidy B a C.

Tteti ¢ast pojednava o predskliziovych a poskliziiovych strategiich pro prevenci a zmirnéni
kontaminace plodin AFs, které jsou klicové pro zajisténi bezpecnosti potravin a sniZeni
zdravotniho rizika. N&které fyzikalni (napf. tfidéni, tepelné oSetfeni, ozafovani), chemickeé
(napt. adsorbenty, kyseliny, zasady) a biologické metody (bakterie, kvasinky) a metody
genetického inzenyrstvi byly prokdzany jako uU€inné pii eliminaci AFs v potravinach

1 krmivech.
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4.5 Komentar 5: Pfirozeny vyskyt ochratoxinu A v kofenf zakoupeném na trhu v Ceské

republice v letech 2019-2020

Experimentalni studie ,,Natural occurrence of ochratoxin A in spices marketed in the Czech
Republic during 2019-2020° byla publikovana 3. prosince 2021 v casopise Foods

ve specidlnim vydani ,,Application of chromatography to food analysis* — viz Ptiloha 5.

Kofeni je celosvétove oblibenou ingredienci, a to piedevs§im pro zlepseni chuté a viiné pokrm1.
Pro tyto cely jsou vyuzivany razné Casti rostlin — napf. listy, semena, koteny, plody, ktra,
pupeny nebo stonky. Kofeni je dovdZzeno zejména z rozvojovych zemi, ve kterych klimatické
podminky v kombinaci s nedostate¢nou zemédélskou, hygienickou a vyrobni praxi predstavuji
divod ke zvySenym obavam z kontaminace kofeni VMH a mykotoxiny. Za G¢elem ochrany
zdravi spotiebitele byly v legislativé EU zavedeny limity pro regulaci OTA v kofeni, ovSem
v dobé¢ vydani publikace existovaly jen pro omezeny pocet druhti — tj. pept, muskatovy orisek,
zazvor, kurkuma, chilli a I€kofice. Soucasna legislativa jiz souhrnné pokryva vSechna ostatni

koteni vCetné smési, coz bylo toho ¢asu v EK pouze pfedmétem diskuse.

Studie je zaméfena na vyskyt OTA v 54 druzich jednodruhovych kotfeni zakoupenych
v 6 Sarzich v letech 2019-2020 na ¢eském trhu. OTA byl stanoven pomoci metody HPLC-FLD
za predchoziho preciSténi na TAK. Ziskané vysledky prokazaly, ze je Ceskd populace
exponovana OTA z kofeni, nebot’ celkem u 19 (35 %) druhil byl shleddn vZdy alespoii jeden
vzorek pfevysujici koncentraci OTA limit kvantifikace (0,1 ng/g). Naméten¢ koncentrace OTA

byly v rozmezi 0,11-38,46 ng/g (kurkuma) — Tabulka 9.

Tabulka 9 Primérné koncentrace ochratoxinu A v 19 jednodruhovych koienich zakoupenych na ¢eském trhu

Koieni Primér + SD  Kofeni Pramér = SD  Koreni Primér + SD
(ng/g) (ng/g) (ng/g)
kurkuma 19,82 £ 11,93  chilli drcené 1,43 £0,48 pept cerny 0,31 +0,20
1ékotice koifen 11,94 £3,27 vanilka 1,42+ 0,33 hiebicek 0,29+0,18
chilli mleté 7,50 + 1,34 pomerancova kura 1,04 £ 0,30 citronova kira 0,18+0,12
muskatovy kvét 5,27+0,83 kmin fimsky 0,46 + 0,27 sumah 0,14 + 0,08
zazvor 3,40+ 0,48 muskatovy ofech 0,43 +£0,30 pepr rizovy 0,11"
kajensky pept 2,59+ 0,61 hoft¢ice bila 0,38 +£0,30
paprika sladka 2,26 £ 0,60 pept bily 0,36 £ 0,23

* jediny pozitivni vysledek

Jedine¢nost studie spoc¢iva predevsim ve velkém poctu studovanych druhii kofeni na ¢eském
trhu. Kromé nejvice probadanych koteni, jako je chilli a pept, byly zahrnuty také druhy, které
nebyly z hlediska mykotoxint v legislativé EU regulovéany, véetn€ 20 ,,novych* druhti koteni,

které toho ¢asu nebyly nikdy nebo alespon v recentni dob¢ studovany na ptitomnost OTA.
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4.6 Komentar 6: Vyzkum ochratoxinu A v jelitech: Srovnani s daty v Evropé

Experimentalni studie ,,/nvestigation of ochratoxin A in blood sausages in the Czech Republic:
Comparison with data over Europe‘ byla publikovédna 7. Cervna 2022 v ¢asopise Food research

international — viz Pfiloha 6.

Jelito je masny vyrobek, ktery dle ¢eské receptury obsahuje vepirové maso, je¢né kroupy,
piipadné¢ kousky peciva, veptovou krev, vnitinosti, tuk, kofeni a veptové stiivko. VSechny tyto
ingredience jsou potencialnim zdrojem OTA. Mezi produkty Zivoc¢isného ptivodu jsou vepiové
produkty povazovany z hlediska kontaminace OTA za nejrizikovéjsi. Je to dano citlivosti
vepi na OTA, ktery se jiz pii subchronickych davkach kumuluje, a to zejména v jejich krvi,
kterou je dale distribuovan predevsim do ledvin, jater, svalovych a tukovych tkéni. Vysoka
vazebnost OTA k sérovym proteinim, zejména albuminu, vyznamné ovliviiuje biologicky
polocas, ktery se u prasat pohybuje v rozmezi 72—120 hodin a je mezi béznymi hospodarskymi
zvitaty nejdelsi. Pfidavek veptové krve tak miize vyznamné zvysit obsah OTA ve findlnim
produktu. Kromé zivocisné slozky, véetné sadla, které u prasat tvoii také vyznamné depo OTA,
mohou k celkové kontaminaci pfispivat i slozky rostlinného ptvodu. Z téchto divodi muze

byt konzumace jelit, ale i jinych veptovych produkti vyznamnym zdrojem OTA pro ¢loveéka.

V obchodni siti Ceské republiky bylo v priibdhu let 2020-2021 zakoupeno celkem 200 vzorki
jelit, které byly analyzovany na OTA s vyuzitim metody HPLC-FLD za pfedchoziho piecisténi
na [AK. Tato studie prokézala kontaminaci v§ech 200 vzorki jelit OTA. Koncentrace OTA
ve vSech ptipadech prekrocily limit kvantifikace 0,1 ng/g — viz Tabulka 10. Jelikoz legislativa
EU nezahrnuje regulacni limity pro OTA v Zivoc¢iSnych produktech, byly vysledky porovnany
pouze s italskym limitem 1 ng/g pro ,,vepfové maso a odvozené produkty“. Celkem 66 %

vzorkil obsahovalo OTA v koncentraci piekracujici tento limit.

Tabulka 10 Statistické zpracovani — ochratoxin A v jelitech

n/n* n* (%) Median (ng/g) 90. percentil (ng/g) Rozsah (ng/g)

200/200 100 1,26 2,77 0,15-5,68

Z vysledki je zfejmé, ze u Ceské populace dochazi k expozici OTA prostfednictvim konzumace
jelit. Z toho divodu je tfeba sledovat OTA v Zivocisnych produktech a zavést piislusné
regulacni limity v EU. Pocet studii zabyvajicich se vyskytem OTA v jelitech je vSak velmi
omezeny a existujici studie se zabyvaji relativné nizkym poctem vzorkii. Tato studie
je jedine¢na nejen svym zaméfenim, ale irozsdhlym poctem vzorkl. Velky vyznam maji
predevsim vysledky studie, které prokazaly nejen 100% pozitivitu, ale vzhledem k nalezenym

koncentracim OTA a zndmé spotiebé jelit také potencilni riziko pro nadorovy efekt.
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4.7 Komentar 7: Analyza biomarker( expozice nefrotoxickym mykotoxinim u kohorty

pacientd s nadory ledvin
Experimentalni studie ,,Analyses of biomarkers of exposure to nephrotoxic mycotoxins
in a cohort of patients with renal tumours* byla publikovana 29. ¢ervna 2019 v c¢asopise

Mycotoxin research — viz Pfiloha 7.

Ceska republika zaujima s Getnosti 30 incidenci nadord ledvin a vyvodnych mocovych
cest/100 000 obyvatel prvni misto nejen v Evropé, ale 1 ve svété, ovSem etiologie tohoto
onemocnéni je nejasna a predpoklada se soucasné ptisobeni vice faktorti, pficemz jednim z nich
by mohlo byt ptisobeni nefrotoxickych mykotoxinti OTA a CIT. Byla polozena hypotéza, zda

se zminéné nefrotoxické mykotoxiny mohou na tomto onemocnéni vyznamné podilet.

V letech 2015-2017 byla na Urologické klinice ve Fakultni nemocnici Hradec Kralové
odebrana moc¢ a krev 50 pacientim s diagnézou C64 (zhoubny nador ledvin mimo panvicku),
C675 (zhoubny nador hrdla mocového méchyte) nebo N131 (hydronefréza se strikturou
ureteru). Byla provedena analyza mykotoxinlt metodou HPLC-FLD pro OTA a HPLC-MS/MS
pro CIT za ptedchoziho ptecisténi na IAK — viz Tabulka 11.

Tabulka 11 Koncentrace ochratoxinu A a citrininu v biologickém materialu ¢eskych pacientii s nadorem ledvin

Mykotoxin Material n/n* n* (%) Prumér =+ Median Rozsah
SD (ng/g) (ng/g) (ng/g)
OTA mo¢ 31/50 62 5,9+597 5,41 nd-27,8
krev 24/50 48 145 +£213,8 20 nd-830
CIT mo¢ 45/50 90 16 £20 8 nd-87
krev 49/50 98 61 +35 51 nd—182

Vysledky OTA a CIT v moci a krvi byly porovnany s kontrolnimi skupinami s vyuZitim
neparového dvouvybérového t-testu na hladin€ vyznamnosti a = 0,05. V ptipadé OTA nebyl
prokdzan statisticky vyznamny rozdil mezi naméfenymi koncentracemi OTA v moci a krvi
ceskych pacientii a ¢eskych dobrovolniki. V ptipadé CIT v moci a krvi nebyla dostupna data
od zdravé Ceské populace, a proto byla pro porovnani vyuzita relevantni data zdravé némecké
populace. Zatimco v krvi nebyl prokazan statisticky vyznamny rozdil, v moc¢i byla prokazana
statisticky vyznamna niZ8i koncentrace CIT u Ceskych pacientd neZ u zdravych némeckych

dobrovolniku.

Ackoliv pfitomnost obou mykotoxint v lidské krvi a moci je pfimym ukazatelem expozice
ceskych pacienti OTA a CIT, souvislost mezi expozici témto nefrotoxickym mykotoxiniim

a vyskytem nadorovych onemocnéni ledvin se v této studii nepodatilo jednozna¢né prokazat.
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4.8 Komentar 8: Studium biomarkerd ochratoxinu A v biologickych materidlech
ziskanych od pacientu s karcinomem ledvin
Experimentalni studie ,,/nvestigation of ochratoxin A biomarkers in biological materials

obtained from patients suffering from renal cell carcinoma® byla publikovana

12. listopadu 2021 v casopise Food and chemical toxicology — viz Pfiloha 8.

V navaznosti na studii ,,Analyses of biomarkers of exposure to nephrotoxic mycotoxins
in a cohort of patients with renal tumours® byla provedena analyza OTA vcetné jeho
metabolitti a DNA adukti v biologickém materidlu pacientii s nddorem ledvin. Celkem se této

studie U¢astnilo 33 pacientll, konkrétné 26 muzt a 7 zen ve véku 3980 let.

V letech 2015-2017 byly na Urologické klinice ve Fakultni nemocnici Hradec Kralové béhem
operaci 25 pacientd s diagnostikovanym karcinomem ledvin odebrany vzorky ledvin
a odpovidajicich nadorovych tkani. Analyza OTA byla provedena metodou HPLC-FLD

za predchoziho precisténi na IAK — viz Tabulka 12.

Tabulka 12 Koncentrace ochratoxinu A v biologickém materialu ¢eskych pacienti s nadorem ledvin

Material n/n* n* (%) Primér + SD Medidn Rozsah (ng/kg)
(ng/g) (ng/kg)

Ledviny 25/25 100 160+ 110 186 72-385

Nadorova tkan 25/25 100 150 +£ 100 191 54-431

U 20 pacientt byly v moci analyzovany nasledujici metabolity OTA: OTB, ochratoxin C, OTa,
OP-OTA, oteviena laktonova forma OTB, 4S-OH-OTA, 4R-OH-OTA, OTHQ,
OTHQ-glutathionovy konjugat, OTB-glutathionovy konjugat, OTHQ-N-acetylcystein,
OTB-N-acetylcystein, dekarboxlovany OTHQ. Pouze u dvou pacienti nebyl detekovan zadny
z téchto metabolitii OTA.

Zaroven byly u 20 pacienti v ledvinach analyzovéany nésledujici OTA-DNA adukty:
C-C8dG-OTA, 0O-C8dG-OTA a adukty odvozené od OTHQ. DNA adukty byly nalezeny
u 15 z 20 pacienttl, pticemz adukt C-C8dG-OTA byl detekovan ve vSech 15 ptipadech.

Tato studie ukdzala 100% ptitomnost OTA v ledvindch a nadorové tkani a také korelaci mezi

vyskytem OTA metabolitlh v moc¢i a DNA aduktt v ledvinéch u pacientli s nadorem ledvin.
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49 Komentalf 9: Stanoveni ochratoxinu A a citrininu ve farmaceuticky
vyznamnych rostlinach

V roce 2022 byla provedena experimentalni studie na vyskyt OTA a CIT v bylindch metodou
HPLC-FLD v néavaznosti na ptfedchozi screening metodou ELISA. Studie byla podpoiena
specifickym vyzkumem ¢. 2106/2022. Ziskané vysledky budou publikovany v roce 2023.

24

a zdrav¢jsi nez syntetickd 1éciva [146—148]. V disledku nespravné manipulace, skladovani ¢i
transportu  vSak mohou byt byliny napadeny toxinogennimi VMH a kontaminovéany
mykotoxiny, které se tak mohou vyskytovat ve finalnich produktech [148—150]. Dosud bylo
v bylindch nalezeno vice nez 40 riznych mykotoxini [151]. Lidé konzumujici bylinné
produkty za ucelem posileni zdravi tak mohou byt v disledku pifivodu mykotoxinl
z kontaminovanych bylin vystaveni zdravotnimu riziku [32]. Legislativa EU nebyla toho ¢asu
z pohledu regulaci mykotoxinli v bylinach dostate¢n¢ propracovana a zahrnovala pouze
regulace pro AFs a/nebo OTA pro zézvor a lékotici — viz Nafizeni Komise ¢. 1881/2006
ve znéni pozdé€jSich ptedpistt [113]. Vroce 2022 doSlo ke zménam v regulaci OTA
aod 1. ledna 2023 vesly v platnost nové MPL tykajici se obecné susenych bylin a n¢kterych
jednotlivych druhti bylin véetné kotfeni proskurniku lékaiského ¢i kofeni pampelisky
(smetanky), které jsou soulasti této studie. Vzhledem k moznym zdravotnim rizikiim

plynoucim z uZivani bylin je monitoring mykotoxinil v riiznych druzich bylin nezbytny.

Tato studie je zaméfena na vyskyt nefrotoxickych mykotoxini OTA a CIT, které se mohou
diky spole¢nému producentovi Penicillium verrucosum vyskytovat spolecné a pulsobit
synergicky [152]. Vzhledem ke komplikovanym matricim, které se 1i8i v riiznych ¢astech dané

rostliny i napfi¢ riznymi druhy, miZze byt analyza mykotoxini v bylinach obtizné [153].

Na ¢eském trhu bylo v prabéhu let 2019-2020 zakoupeno 60 vzorkl suSenych bylin ur¢enych
k ptipravé odvarti — viz Tabulka 14. Pro zjiSténi miry kontaminace vzorkli OTA a CIT byl
proveden screening s vyuZitim ELISA metody. Vysledky byly konfirmovany na HPLC-FLD
za predchoziho ptecisténi na IAK — viz Tabulka 13. Procentudlni pfechody OTA a CIT
do odvart byly zjistovany u jednotlivych typt rostlinnych ¢asti (tj. kofen, nat’, list, kvét a plod)

s vyuZzitim nejvice pfirozené¢ kontaminovaného vzorku pro danou ¢ast rostliny.

Tabulka 13 Vysledky ze stanoveni ochratoxinu A a citrininu v bylindch

OTA CIT
n 60 60

n+ (%) 24 (40) 16 (26,7)

Rozsah (ng/g) <LOQ (0,1) - 826 <LOQ (0,25) - 473
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Tabulka 14 Vzorky bylin pro stanoveni nefrotoxickych mykotoxinu ochratoxinu A a citrininu metodou ELISA a HPLC-FLD

¢, Bylina Botanicky nazev ¢, Bylina Botanicky nazev ¢, Bylina Botanicky nazev
1 febricek kvét Millefolii flos 21 tuzebnik nat’ Filipendula ulmaria herba |41 bedrnik kofen Pimpinellae radix cons.
2 ftepik nat Agrimoniae herba 22 jahodnik list ® Fragariae folium 42 jitrocel list Plantaginis folium

3 kontryhel nat Alchemillae herba 23 mafinka vonna nat’ Asperula odorata herba |43 mochna stiibrna nat’ Potentillae argentii herba cons.
4 proskurnik list Althaeae folium cons. 24 svizel nat’ Galium verum herba 44 mochna natrznik kofen Tormentillae radix cons.
5 and¢lika kotfen Angelicae radix 25 hotec koten Gentianae radix 45 prvosenka kvét © Primula veris flos

6 pelynék nat’ Absinthii herba 26 jinan list Ginkgo Ginkgo biloba folium plv. 46 plicnik list Pulmonariae folium

7 lopuch koten ® Bardanae radix 27 chmel otacivy Sistice Strobilus lupuli 47 Sipek ¢aj drceny plod Cynosbati fructus

8 sedmikraska kvét Bellidis flos 28 yzop nat’ Hyssopi herba 48 ostruzinik list Rubi fruticosi folium

9 brutnak nat’ Boraginis herba 29 vlastovi¢nik nat’ Chelidonium herba 49 malinik Rubi idaei folium

10 mésicek 1ékarsky Calendulae sine calice flos 30 ofesak list Juglandis folium 50 cerny bez kvét Sambuci flos

11 pupava kotfen Carlinae radix cons. 31 hluchavka nat’ Lamii albi herba 51 ostropestfec maridnsky plod ® Cardui mariae fructus
12 zemézlu¢ nat’ Centaurii herba 32 levandule kvét Levandulae flos 52 kostival kofen Symphiti radix

13 ¢ekanka nat’ Cichorii herba 33 Inice nat’ Linariae herba cons. 53 pampeliska koten Taraxaci radix

14 benedikt ¢ubet 1¢kaisky nat’ Cardui benedicti herba 34 slézovy kvét Malvae flos 54 matetidouska nat’ Serpylli herba

15 hloh plod Crataegi fructus 35 slézovy list® Malvae folium 55 lipovy kvét Tiliae flos

16 echinacea kvét Echinaceae flos 36 maral nat’ Maral leurea herbal 56 kopiiva nat Urtica herba

17 echinacea koten Echinaceae radix 37 jable¢nik nat’ Marrubii herbal 57 bortivka nat’ Myrtilli herba

18 pyr plazivy kofen Graminis radix 38 komonice nat’ Meliloti herba 58 brusinka list Vitis idaeae folium

19 eukalyptus list Eucalypti folium 39 medunka nat’ Melissae herbal 59 kozlik kofen Valeriana radix

20 pohanka nat’

Fagopyrum saggittatum herbal

40 devétsil kofen

Petasitidis cons.

60

divizna kvét

Verbasci flos

2 Pro stanoveni metodou HPLC-FLD byl misto slézového listu pouzit smilovy kvét (Helichrysum arenarium); ® byliny vybrané pro stanoveni pfechodu mykotoxini do odvaru
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5 Zaver

Predlozena disertacni prace je souhrnem publikacni ¢innosti v oblasti mykotoxinl v ramci
doktorského studia v letech 2018-2023 a zahrnuje jak experimentalni, tak reSersni studie.
Celkem bylo v pribéhu doktorského studia publikovano 8 publikaci v impaktovanych
casopisech, z toho 7 v prvnim kvartilu a 1 ve druhém kvartilu. Devata publikace je v ptipravé
do casopisu Mycotoxin Research v prvnim kvartilu, a je v soucasné dob¢ (k datu 9. 2. 2023)

ve druhém recenznim fizeni.

Mykotoxiny jsou z hlediska lidského zdravi velmi zdvazné kontaminanty, a proto je tieba je
monitorovat. Dietdrni expozice mykotoxinliim je povazovana za majoritni, a proto ma jeji
hodnoceni nejvétsi vyznam. Monitoring mykotoxint 1ze provadét jak v samotném lidském
organismu, resp. jeho tkanich a télnich tekutindch, tak v potravinach. Disertacni prace se
vénuje obéma uvedenym zpisobiim monitoringu — tj. v potravinach zivocisného a rostlinného

puvodu, ale 1 v biologickém materialu lidského ptivodu.

Prace poukazuje na vyznamnost monitoringu mykotoxini i v takovych potravinach
¢i potravinovych dopliicich, které predstavuji oproti ceredliim a cereadlnim produktim mensi,
byt mnohdy pomérné vyznamny zdroj mykotoxinl, nebot” mohou piispivat k celkovému
dennimu dietdrnimu pfivodu mykotoxinl. Pro studium ,,novych® zdroji mykotoxinli byly
vybrany komodity, které v legislativé EU byly toho Casu feSeny prevazné okrajové ¢i nebyly
feSeny viibec. Témito komoditami jsou rtizné druhy kofeni a bylin a veptova jelita, ve kterych
byl stanovovan primarné€ OTA (kofeni, byliny a jelita), sekundarné CIT (pouze byliny). MPL
pro CIT v potravinach nejsou dosud feSeny. Existuje pouze MPL pro CIT v doplicich stravy
na bazi ryze fermentované cervenymi kvasnicemi Monascus purpureus dle Natfizeni Komise
(EU) 2019/1901 [154]. A¢koliv pro OTA, na rozdil od CIT, existuji MPL pro mnoho potravin,

pro koteni a byliny byly toho ¢asu znacné omezené a tykaly se pouze k n¢kolika malo druht.

V pribehu doktorského studia byl na portalu Informacniho centra bezpec¢nosti potravin
Odborem bezpecnosti potravin Ministerstva Zeméd¢lstvi pravidelné vydavan piehled hlavnich
kontaminantd v potravinach, které jsou sledovany a diskutovany v EK DG SANTE. V dobé¢
doktorského studia tak byly studovéany i komodity jako jsou kofeni a byliny, jejichZ regula¢ni
limity byly pfedmétem diskuse. Tyto diskuse byly ukonceny a nové navrhované zmény byly
uvedeny v platnost 1. ledna 2023 Natizenim Komise 2022/1370 ze dne 5. srpna 2022, kterym
se méni nafizeni (ES) ¢. 1881/2006, pokud jde o maximalni limity OTA v nékterych

potravinach. BohuZel, ani v novych regulacich neni ve vztahu k OTA Zadn4d zminka
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o zivoc¢iSnych surovinach, a proto je tieba komoditam tohoto typu i nadéle vénovat pozornost.
Dle DG SANTE by se mél navic monitoring v blizké budoucnosti zaméfit také na stanoveni

OTA v sunkach a syrech, coz by mohl byt namét na dalsi vyzkumné studie v této oblasti.

Prace je déale vyznamna z hlediska monitoringu nefrotoxickych mykotoxini v lidském
biologickém materialu. Nefrotoxické mykotoxiny jako jsou OTA a CIT by mohly byt jednim
z faktort podilejicim se na etiopatogenezi nadorového onemocnéni ledvin, které svou ¢etnosti
tadi Ceskou republiku v celosvétovém méfitku na prvni misto. V této oblasti monitoringu
je snaha pokracovat ve spolupraci s Urologickou klinikou Fakultni nemocnice Hradec Kralové,

nicméné je tento typ monitoringu v soucasné dobé¢ stale predméetem diskuse.

V neposledni tad¢ je samoziejmé velkym piinosem zavedeni a optimalizace metodiky
pro stanoveni OTA a CIT metodou HPLC-FLD na pracovisti katedry biologie Piirodovédecké
fakulty Univerzity Hradec Kralové. Ziskané vysledky ze vSech studii rozSifi poznani
o pfirozeném vyskytu zkoumanych nefrotoxickych mykotoxini a zdravotnim riziku
plynouciho z jejich ptivodu do organismu. Dale poslouZi jako podklad ,,novych zdroji*“ OTA
i CIT pro dalsi vyzkum v této oblasti, a také jako podklad pro hodnoceni rizika v ptipad¢,
ze budou dostupna data o spotiebé danych komodit, ¢i pro zavedeni novych ¢i upravu

stavajicich regulacnich limith stanovujicich MPL.
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Abstract: The consumption of herbal-based supplements, which are believed to have beneficial
effects on human health with no side effects, has become popular around the world and this trend is
still increasing. Silybum marianum (L.) Gaertn, commonly known as milk thistle (MT), is the most
commonly studied herb associated with the treatment of liver diseases The hepatoprotective effects
of active substances in silymarin, with silybin being the main compound, have been demonstrated in
many studies. However, MT can be affected by toxigenic micro-fungi and contaminated by mycotoxins
with adverse effects The beneficial effect of silymarin can thus be reduced or totally antagonized
by mycotoxins. MT has proven to be affected by micro-fungi of the Fusarium and Alternaria genera,
in particular, and their mycotoxins. Alternariol-methyl-ether (AME), alternariol (AOH), beauvericin
(BEA), deoxynivalenol (DON), enniatin A (ENNA), enniatin A; (ENNA1), enniatin B (ENNB), enniatin
B1 (ENNB,), HT-2 toxin (HT-2), T-2 toxin (T-2), tentoxin (TEN), and zearalenone (ZEA) seem to be
most significant in MT-based dietary supplements. This review focuses on summarizing cases of
mycotoxins in MT to emphasize the need for strict monitoring and regulation, as mycotoxins in
relation with MT-based dietary supplements are not covered by European Union legislation.

Keywords: milk thistle; food supplements; liver diseases; silymarin; mycotoxins

Key Contribution: Milk thistle-based supplements are mainly contaminated with Alternaria and
Fusarium mycotoxins. Mycotoxins AME, AOH, TEN, DON, HT-2, T-2, ZEA, BEA, ENNA, ENNA;,
ENNB, ENNB; are the most significant in milk thistle-based dietary supplements. Capsules are the
most contaminated form of milk thistle supplements by Fusarium mycotoxins The use of silymarin
preparations contaminated with hepatotoxic mycotoxins may reduce or completely reverse its
hepatoprotective effects.

1. Introduction

According to the definition set by Directive 2002/45/EC, “Food supplements means foodstuffs the
purpose of which is to supplement the normal diet and which are concentrated sources of nutrients or
other substances with a nutritional or physiological effect, alone or in combination, marketed in dose
form, namely forms such as capsules, pastilles, tablets, pills and other similar forms, sachets of powder,
ampoules of liquids, drop dispensing bottles, and other similar forms of liquids and powders designed
to be taken in measured small unit quantities.” [1] The consumption of herbal-based food (dietary)
supplements, which the manufacturers claim to have beneficial effects on human health, has become
popular and has significantly increased over the last decade [2—4]. These herbal-based supplements are
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generally believed to be safer and healthier than synthetic drugs and free of side effects [4]. This may
not always be the case, since herbal products can cause heavy liver damage leading to transplantation
or even death [5]. One of the potential hazards lies in micro-fungi infestation of the plants, which can,
as a result of inappropriate handling, storage and transport [6], lead to contamination with mycotoxins,
which can persist in the final herbal supplementary products [4,7] The presence of mycotoxins and
other adulterants impairs the quality of supplements and thus the safety of their consumption [4,6]
The dishonesty of some manufacturers allows these reduced quality, and in the worst case potentially
harmful, products to be marketed [4].

Milk thistle (MT) is a wild thorny herb considered a weed in many areas (see Section 2).
Supplements based on this herb are among the top-selling herbal supplements in the US in the
mainstream multioutlet channel. In 2018, it was the 20th best-selling herbal supplement with total sales
of 16.6 million US dollars. However, compared to 2017, sales decreased by 1.6% [8]. MT is the most
commonly researched herb associated with the treatment of liver disease [9], the cause of approximately
two million deaths worldwide each year, accounting for 3.6% of all deaths worldwide [10]. However,
its main biologically active compound, silymarin (see Section 3) has been proven to have many
beneficial effects (see Section 4). Nevertheless, using modern analytical methods (see Section 5),
infestation with various micro-fungi [3,11-14] and contamination with their mycotoxins [2,3,15-17]
in MT-based supplements has been reported in several studies (see Sections 6 and 7) The highest
multi-mycotoxin concentration found in MT-based supplements has reached up to 37.6 mg/kg in total [3].
This concentration slightly exceeds the value earlier determined in the study by Veprikova et al. [15].

Mycotoxins are produced by various micro-fungi as their secondary metabolites, with no
biochemical significance in microfungal growth and development [18]. Although they are harmless
to their producers, they can elicit adverse effects (carcinogenic, genotoxic, hepatotoxic, teratogenic,
estrogenic, immunosuppressive, nephrotoxic, or neurotoxic) in other organisms, mainly in humans
and/or animals upon the consumption of contaminated food/feed [18,19]. Some of the mycotoxins
produced by Alternaria or Fusarium species have been shown to be significant in MT-based supplements
(see Section 8). Although the occurrence of mycotoxins in herbal-based food supplements is not
negligible, they are not yet regulated in EU legislation (see Section 9). This situation needs to be further
monitored. Exposure assessment is also needed, but studies on this topic are scarce (see Section 10).

In this review, a total of nine relevant original papers [2,3,11-17] concerning mycotoxins and/or
micro-fungi have been included. All these publications were published in the period 2009-2019.

2. Botanical Description

Silybum marianum (L.) Gaertn. (syn. Carduus marianus L.) is commonly known as milk thistle but
is known by many other names such as blessed milk thistle, Blessed virgin thistle, Christ’s crown,
heal thistle, holy thistle, Marian thistle, Mary thistle, Saint Mary s thistle, our lady’s thistle, sow thistle,
variegated thistle, venue thistle, or wild artichoke [9,20]. It is a wild thorny annual or, rarely, biannual
plant of the Asteraceae family [20-22], in many areas considered a weed due to its competitive and
aggressive growth, usually reaching a height of 90-200 cm, but even up to 300 cm [23,24]. Purple flower
heads and green leaves with milky white veins and strong spiny edges are typical features of the
plant The fruits are black achenes with oily eliosome that has significance in myrmecochory-dispersal
by ants [24] The plant originates in the Mediterranean basin, but it has spread to central Europe,
America and South Australia [24] and nowadays is found worldwide [20,24].

3. Bioactive Compounds of Milk Thistle

The main bioactive complex of MT, collectively known as silymarin, consists mainly of
flavonolignans (silybin A (PubChem Compound Identification Number /CID/: 31553), silybin B
(PubChem CID: 1548994), isosilybin A (PubChem CID: 11059920), isosilybin B (PubChem CID:
10885340), silydianin (PubChem CID: 11982272), and silychristin (PubChem CID: 441764)), flavonoids
(taxifolin (PubChem CID: 439533) and quercetin (PubChem CID: 5280343)), and polyphenolic
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compounds [25-28]. However, silybin (syn. silibinin) is considered the main bioactive component [23,25]
as it accounts approximately for 50%—-60% of silymarin [9] The content of other components is
approximately 5% for isosilibyn, 20% for silychristin, and 10% for silydianin and other compounds
such as silimonin, isosilychristin, and isosilibinin [9]. Although silymarin is present throughout the
whole plant, the highest concentration is found in the seeds [9,22] The chemical structures of the eight
above-mentioned flavonolignans and flavonoids are depicted in Figure 1.
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Figure 1. Chemical structures of main flavonolignans and flavonoids contained in silymarin complex.

4. Beneficial Effects of Milk Thistle-Based Supplements

MT has been used as a therapeutic herb for 2000 years [25]. Its main compound silymarin
is without a doubt the most popular, most well-researched and potentially most effective herbal
product used in the treatment of liver disease in particular, including toxin-induced liver disease,
viral hepatitis, liver cirrhosis and hepatocellular carcinoma [5,9,15,25]. In addition, MT is also used in
the treatment of kidney, spleen and biliary diseases [25,29]. Besides its well-known hepatoprotective
properties, silymarin has also been shown to have antioxidant, antifibrotic, anti-inflammatory,
choleretic, and immune-stimulating, regenerative, cytoprotective, cardioprotective, neuroprotective,
anti-carcinogenic properties [9,25,29,30]. MT can be used as an antidote or a protective agent against
both chemical (metals, fluoride, pesticides, cardiotoxins, neurotoxins, hepatotoxins, and nephrotoxins)
and biological (snake and scorpion venoms, bacterial toxins, and mycotoxins) xenobiotics [30]. Due to
this wide range of beneficial effects, many recent studies have focused on the effects of silymarin on
various health problems. Several studies have demonstrated the neuroprotective effects of silymarin
and its potential use in the treatment of Alzheimer’s disease [31,32]. Furthermore, positive effects of
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silymarin in the treatment of prostatic disorders such as benign prostatic hyperplasia [33], in decreasing
frequency and severity of menopausal hot flashes [34], or in alleviating the side effects of the
chemotherapeutic drug doxorubicin [35,36] have been demonstrated The possible use of silymarin
against solar-induced skin ageing has been demonstrated in a recent study [37]; however, Fidrus et al.
warn of increased UVA-induced cytotoxicity after silymarin treatment [38]. Moreover, enhanced
proteosynthesis, liver regeneration, increased lactation and immunomodulatory activity have also
been associated with the effect of silymarin [9].

The efficacy of silymarin against the adverse effects of some mycotoxins has also been reported.
As reviewed by Alhidari et al. (2017), many studies have demonstrated the beneficial effect of silymarin
on aflatoxin B;. (AFB,)-induced reduction of feed intake and weight gain of broilers [39]. Additionally,
silymarin has completely prevented the ochratoxin A- (OTA)-induced immunosuppressive effect and
has exerted hepatoprotective and nephroprotective effects in broiler chicks [40]. In a recent study,
silymarin has been reported to provide cytoprotective activity against OTA, fumonisin B; (FB;) and
deoxynivalenol (DON) in porcine kidney-15 (PK-15) cells [41] The alleviating effect of silymarin on
zearalenone (ZEA)-induced liver damage and reproductive toxicity in rats has also been reported [42].

MT is marketed as a “dietary supplement” in various forms including seeds, capsules, tablets,
granules, extracts or teas. Producers tend to specify the amount of the plant extract contained in the
supplement. However, the content of active compounds in the extract itself can vary depending on the
conditions (temperature, climate, season, soil, etc.) in which the plant was grown [4]. The recommended
daily dose (RDD) of silymarin usually ranges from 420 mg to 600 mg, depending on the application
defined by the manufacturer The most common usage is in three doses of 140 mg of silymarin [43].
As demonstrated in a study by Fenclova et al., the content of silymarin compounds can vary considerably
(5-393 mg/g), throughout various supplements as well as inter-batch [3] The inconsistency of the
number of bioactive compounds may lead to a reduced effect or to an overdose [4], which is manifested
with gastrointestinal discomfort (nausea, diarrhea, abdominal pain, etc.) [29].

However, the biomass of MT can also be used in a non-medicinal way, including e.g., human and
animal nutrition, bioenergy production, phytoremediation, agriculture, or cosmetic industry [21].
The supplementation of feed with MT/silymarin has proven useful in the livestock diet The improved
growth rate and meat quality in pigs [44] and rabbits [45] and increased milk yield and/or quality in
cows [46] and sheep [47] have been linked to such supplementation. Moreover, an increase in the egg
yield was observed in hens whose feed has been supplemented with MT [48].

5. Methods Used in the Determination of Mycotoxins in Milk Thistle-Based Dietary Supplements

The extraction of mycotoxins from the matrix of MT-based dietary supplements was usually
based on the “quick easy cheap effective rugged safe” (QuEChERS) approach [2,3,15] or the
dispersive liquid-liquid microextraction (DLLME) approach [2] followed by analysis performed
by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry
(UHPLC-MS/MS) in studies by Arroyo-Manzanares et al. and Veprikova et al. [2,15], or high-resolution
mass spectrometry (UHPLC-HRMS) in a study by Fenclova et al. [3]. A clean-up step based on the
immunoaffinity columns followed by separation and quantification using reversed-phase liquid
chromatography (RPLC) and determination by post-column photochemical derivatization and
fluorescence detection (FLD) was employed in a study by Tournas et al. [17] The enzyme-linked
immunosorbent assay (ELISA) method was used after a clean-up step using multifunctional or
polyamide columns in a study by Santos et al. [16]. For more details concerning methods used in the
determination of mycotoxins in milk thistle-based dietary supplements see Table 1.
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Table 1. Overview of the methods used in studies dealing with mycotoxins in milk thistle-based
dietary supplements.

Supplement Form Mycotoxins Clean-up Method Analysis References
multifunctional columns
(for AFs, ZEA, DON,
Seeds 7 mycotoxins FB.S’ T-2); ELISA [16]
polyamide column
(for CIT);
no clean-up (for OTA)
Seeds, herbs, tea,
alcohol-based liquid immunoaffinity column
seed extract, AFs, AFB; dean_uy RPLC-FLD [17]
oil-based liquid seed p
extract
QuEChERS
+ DLLME
Seeds, extract 15 mycotoxins (for AFBq, AFB,, AFG;, UHPLC-MS/MS [2]
AFG,, CIT, HT-2, OTA,
STEG, T-2, ZEA)
Capsules with dried
powder/oil-based . :
matrix, seeds, tablets, 57 mycotoxins QuEChERS UHPLC-MS/MS [15]
granules, tea
Encapsulated oily
paste, capsules with 55 mycotoxins QuEChERS UHPLC-HRMS [3]
dried powder

Notes: AFs, aflatoxins; AFB;, aflatoxin B1; AFB,, aflatoxin B,; AFG;, aflatoxin Gy; AFG,, aflatoxin G,; CIT, citrinin;
DON, deoxynivalenol; FBs, fumonisins; HT-2, HT-2 toxin; OTA, ochratoxin A; STEG, sterigmatocystin; T-2, T-2 toxin;
ZEA, zearalenone; DLLME, dispersive liquid-liquid microextraction; ELISA, enzyme-linked immunosorbent
assay; QUEChERS, quick easy cheap effective rugged safe; RPLC-FLD, reversed-phase liquid chromatography
with fluorescence detector; UHPLC-HRMS, ultra-high-performance liquid chromatography-high-resolution mass
spectrometry; UHPLC-MS/MS, ultra-high-performance liquid chromatography-mass spectrometry.

6. Micro-fungi in Milk Thistle-Based Dietary Supplements—An Overview

MT has been shown to be infested with numerous saprotrophic and potentially pathogenic molds.
Alternaria genus, mainly A. alternata, is the most prevalent [11-14] The occurrence of Aspergillus spp.,
Eurotium spp., Melanospora spp., Mortierella spp., Mucor spp., Rhizopus spp., Ulocladium spp., Verticillium
spp., and Zygorhynchus spp. is also significant, while the occurrence of Botrytis spp., Phoma spp.,
and Rhizoctonia spp. is seen rather less often [11,13]. Cladosporium spp., Fusarium spp., and Penicillium
spp-. have also been found predominant in a study by Rosinska et al. [13], while less often in other
studies [11,14]. Other fungi species from the genera of Acremoniella spp., Acremonium spp., Arthrinium
spp., Bipolaris spp., Chaetomium spp., Epicoccum spp., Monascus spp., Gliomastix spp., Humicola spp.,
Paecilomyces spp., Papulaspora spp., Phialophora spp., Phomopsis spp., Sordaria spp., Sporotrichum spp.,
Stagnospora spp., Stemphylium spp., Thamnidium spp., Trichoderma spp., and Trichothecium spp. have
also been isolated from MT [3,11-14].

The different maximum limits for molds in various herbal materials, based on their intended
use, have been set at three levels [49]: the limit of 10° colony forming units per gram (CFU/g) for
“Raw medicinal plant and herbal materials intended for further processing”, 10* CFU/g for “Herbal
materials that have been pretreated” and “Herbal medicines to which boiling water is added before
use”, and 103 CFU/g for “Other herbal materials for internal use” and “Other herbal medicines” [49].
In a study by Tournas et al. [14], Aspergillus flavus, A. foetidus, A. penicillioides, A. versicolor, Eurotium
amstelodami, and E. repens have exceeded the limit of 10° CFU/g. Alternaria spp., Aspergillus candidus,
A. niger, A. tritici, Eurotium spp., E. rubrum, Fusarium spp., Fusarium proliferatum, and Penicillium
chrysogenum have met or exceeded the limit of 10* CFU/g. Aspergillus spp., A. parasiticus, A. sydowii,
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A. tamarii, A. tubingensis, Penicillium spp., P. diercxii, Rhizopus spp., Fusarium subglutinans, and Eurotium
chevalieri have met or exceeded the limit of 10* CFU/g.

7. Mycotoxin Contamination of Dietary Supplements Based on Milk Thistle—An Overview

This review provides a summary of five original papers on mycotoxins in various forms of dietary
supplements based on MT The results of the individual original papers have been summarized to
create a comprehensive analysis. For the purpose of this review, the various forms have been grouped
into six categories as follows: (1) seeds, (2) capsules, (3) tablets, (4) granules, (5) extracts, and (6) herbs.

Throughout all five original studies, a total of 57 mycotoxins have been tested in various MT-based
supplements, namely: 3-acetyl deoxynivalenol (3-AcDON), 3/15-acetyl deoxynivalenol (3/15-AcDON),
aflatoxins (AFs), AFBy, aflatoxin B, (AFB,), aflatoxin G; (AFGy), aflatoxin G, (AFG,), agroclavine (AGC),
alternariol-methyl-ether (AME), alternariol (AOH), beauvericin (BEA), citrinin (CIT), cyclopiazonic
acid (CPA), diacetoxyscirpenol (DAS), DON, deoxynivalenol-3-glucoside (DON-3G), enniatin A
(ENNA), enniatin A1 (ENNA), enniatin B (ENNB), enniatin B; (ENNB;), ergot alcaloids (EA; including
ergocornine, ergocorninine, ergocristine, ergocristinine, ergocryptine, ergocryptinine, ergometrine,
ergosine, ergosinine, ergotamine, ergotaminine), fumonisins (FBs), FB;, fumonisin B, (FB;), fumonisin
Bs (FB3), fusarenon X (FUS-X), gliotoxin (GLI), HT-2 toxin (HT-2), meleagriin (MEL), mycophenolic
acid (MPA), neosolaniol (NEO), nivalenol (NIV), OTA, patulin (PAT), paxilline (PAX), penicillic acid
(PeA), penitrem A (PenA), phomopsin A (PHO-A), roquefortine C (ROC), sterigmatocystin (STEG),
stachybotrylactam (STLAC), T-2 toxin (I-2), tenuazonic acid (TEA), tentoxin (TEN), verrucarol (VER),
verruculogen (VERR), ZEA, x-zearalenol (x-ZOL), 3-zearalenol (3-ZOL).

A total of 21 mycotoxins (3-AcDON, AFB;, AME, AOH, BEA, DAS, DON, ENNA, ENNA;,
ENNB, ENNB,, FB3, FUS-X, HT-2, MPA, NEO, STEG, T-2, TEA, TEN, ZEA) have been found
positive at least once in one of the forms throughout all five studies. On the contrary, a total of
36 mycotoxins (3/15-AcDON, AFB;, AFG;, AFG,, AGC, CIT, CPA, DON-3G, EA, FB,, FB,, GLI, MEL,
NIV, OTA, PAT, PAX, PeA, PenA, PHO-A, ROC, STLAC, VER, VERR, «-ZOL, 3-ZOL) have been
tested in various MT-samples, but have never been confirmed positive. For more details regarding the
positivity/negativity and the number of tested samples in the given categories see Figure 2. Among all
mycotoxins, AME, AOH, BEA, DON, ENNA, ENNA;, ENNB, ENNB,, HT-2, T-2, TEN, and ZEA seem
to be the most significant in MT-based dietary supplements. In this review, special attention will be
given to these significant mycotoxins (see Section 8).

As can be seen in Figure 2, AFs (117 samples), AFB; (68), OTA (67), DON (67), T-2 (67), ZEA (67),
FB; (65), FB, (65), FUS-X (65), HT-2 (65), and STEG (65) are the most frequently analyzed mycotoxins
in MT-based dietary supplements, followed by AME (58), AOH (58), BEA (58), DAS (58), ENNA (58),
ENNA; (58), ENNB (58), ENNB; (58), FB3 (58), MPA (58), NEO (58), PAT (58), PenA (58), and TEN (58).
Regarding the positivity of samples for a given mycotoxin, the frequency of testing should be taken
into consideration as the percentages below are the more conclusive the more samples they are based
on. For that reason, the categorization into seven levels: 1) Extremely high (more than 90%), 2) Very
high (up to 90%), 3) High (up to 75%), 4) Moderate (up to 50%), 5) Low (up to25%), 6) Rare (up to 5%),
and 7) None (0%) are based on data with at least 50 tested samples on a given mycotoxin. Extremely
high positivity has been found in case of AME (98.28%, 57/58), ENNB; (94.83%, 55/58), AOH (93.10%,
54/58), BEA (93.10%, 54/58), and ENNB (93.10%, 54/58), very high positivity in case of ENNA; (89.66%,
52/58), ENNA (87.93%, 51/58), TEN (86.21%, 50/58), and T-2 (77.61%, 52/67), high positivity in case of
HT-2 (73.85%, 48/65), ZEA (73.13%, 49/67), and DON (55.22%, 37/67), low positivity in case of NEO
(18.97%, 11/58), AFs (15.38%, 18/117), DAS (6.90%, 4/58), MPA (6.90%, 4/58), and FUS-X (6.15%, 4/65),
as rare in case of STEG (4.62%, 3/65), AFB; (2.94%, 2/68), and FB3 (1.72%, 1/58), and none in case of
OTA (0%, 0/67), FB; (0%, 0/65), FB; (0%, 0/65), PAT (0%, 0/58), and PenA (0%, 0/58).
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Seeds
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AFG, 100 % (6)
AFG, 100 % (6)
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Figure 2. Contamination of milk thistle-based dietary supplement depending on its form. Processed based on the data from original papers [2,3,15-17]. Notes:

EA include ergocornine, ergocorninine, ergocristine, ergocristinine, ergocryptine, ergocryptinine, ergometrine, ergosine, ergosinine, ergotamine, and ergotaminine.
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7.1. Seeds

Beside seeds [2,15-17], the category “Seeds” also includes several samples of seeds intended for
the preparation of tea [15,17]. A total of 31 mycotoxins have been analysed in MT seeds of which a
total of 16 mycotoxins have been found positive. Compared to other categories, seeds appear to be
relatively more contaminated with 3-AcDON, AFs, FUS-X, and NEO. For more details concerning the
positivity of seed samples see Figure 2.

In seeds, the highest concentrations have reached up to 1900 pg/kg for AME, 1740 pg/kg for ENNB,
1450 pg/kg for AOH, 975 pg/kg for TEA [15], 943.7 pg/kg for HT-2 [2], 681 pg/kg for ENNB; [15],
453.9 ng/kg for T-2 [2], 293 ug/kg for DON, 274 pg/kg for ENNA;, 265 ug/kg for 3-AcDON [15],
236.7 ug/kg for FBs [16], 234 ug/kg for BEA, 202 pg/kg for ENNA, 201 pg/kg for TEN, 199 ug/kg for
FUS-X, 110 pg/kg for ZEA, 36 pg/kg for NEO [15], 11.5 ng/kg for AFs [16], 1.9 ug/kg for AFB; [17].

7.2. Capsules

The category “Capsules” consists of capsules with dried powder [3,15], capsules with oil-based
matrix [15], and encapsulated oily paste [3]. A total of 57 mycotoxins have been analysed in MT
capsules of which a total of 20 mycotoxins have been found positive. Compared to other categories,
capsules appear to be relatively more contaminated with DAS, DON, HT-2, MPA, and T-2. For more
details concerning the positivity of capsule samples see Figure 2.

The maximum levels have been reaching up to 10,940 ug/kg for ENNBy, 9260 pg/kg for ENNB,
8340 pg/kg for ENNA [15], 6834 ug/kg for AOH, 6477 pg/kg for DON, 5958 ug/kg for T-2, 3891 ug/kg for
BEA [3], 3200 for AME [15], 2985 pg/kg for HT-2 [3], 2340 pg/kg for ENNA{, 2140 ug/kg for TEA [15],
2127 pug/kg for TEN [3], 1710 ug/kg for MPA, 751 ug/kg for ZEA, 175 ug/kg for 3-AcDON, 126 ug/kg for
NEO, 120 nug/kg for FUS-X [15], 59 ng/kg for DAS [3], 13 ug/kg for FB3, and 11 ug/kg for STEG [15].

7.3. Tablets

A total of 25 mycotoxins have been analysed in MT-tablets of which a total of 13 mycotoxins have
been found positive. Compared to other categories, tablets appear to be relatively more contaminated
with TEA. For more details concerning the positivity of tablets samples see Figure 2.

The maximum levels have been reaching up to 2110 ug/kg for ENNB, 2020 pg/kg for AME,
1560 pg/kg for DON, 1370 pg/kg for TEA, 1340 pg/kg for AOH, 988 ng/kg for TEN, 842 ug/kg for BEA,
716 pg/kg for ENNBy, 640 pg/kg for T-2, 582 ng/kg for HT-2, 403 pg/kg for ZEA, 380 ng/kg for ENNA;,
and 186 pug/kg for ENNA [15].

7.4. Granules

Only one sample of MT granules have been analysed for a total of 25 mycotoxins of which a total
of 5 mycotoxins have been found positive with the following levels: 23 ug/kg for AOH, 16 ug/kg for
ENNB, 6 ug/kg for ENNBy, 5 ng/kg for BEA, and 3 pg/kg for AME [15]. For more details concerning
the positivity of granule samples see Figure 2.

7.5. Extracts

The category “Extracts” covers natural extract in glycerin [2], oil-based liquid seed extract and
alcohol-based liquid seed extract [17]. A total of 16 mycotoxins have been analysed in MT extract of
which a total of 2 mycotoxins have been found positive The maximum levels have been up to 0.06
ug/kg for AFB; (and AFs at the same time) [17]. For more details concerning the positivity of extract
samples see Figure 2.

7.6. Herbs

So far, MT herbs (powdered or minced) have been analysed only for AFs and AFB;, but none of
the tested samples has been found positive [17].



Toxins 2020, 12, 782 9 of 21

8. The Most Significant Mycotoxins in Milk Thistle-Based Dietary Supplements

Based on available studies on the occurrence of mycotoxins in MT-based dietary supplements,
the most critical mycotoxins appear to be AME, AOH, and TEN produced by Alternaria species and
BEA, DON, ENNA, ENNA;, ENNB, ENNB;, HT-2, T-2, and ZEA produced by Fusarium species.
All of these mycotoxins have shown an overall positivity of more than 50% (at least 55% in case
of DON, up to 98% in case of AME) based on at least 58 samples. All of these 12 mycotoxins are
considered significant in this study and will be given special attention (see below) The data regarding
the positivity and concentrations of “significant mycotoxins” are based on original studies reviewed by
Arroyo-Manzanares et al. [2], Fenclova et al. [3], Santos et al. [16], and Veprikova et al. [15]. The chemical
structure of these significant mycotoxins is shown in Figure 3.

wOH
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Figure 3. Chemical structures of significant mycotoxins found in milk thistle-based dietary supplements.
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8.1. Alternaria Mycotoxins (AME, AOH, TEN)

Alternaria mycotoxins are produced by Alternaria genus [50], with A. alternata being the most
common species [51,52]. However, A. tenuissima, A. arborescens [53], A. tangelonis, and A. turkisafria [54]
are also significant in food. Alternaria fungi produce more than 70 different secondary metabolites [55].
Some of these are significant contaminants in food such as fruits, vegetables, cereals and derived
products, and oilseeds [55]. AME (PubChem CID: 5360741), AOH (PubChem CID: 5359485), and TEN
(PubChem CID: 5281143) [28] appear to be significant contaminants in MT-based supplements.
Generally, AOH and AME are so far the most commonly studied Alternaria metabolites [56].

Among the Alternaria mycotoxins, hepatotoxic, genotoxic, mutagenic, clastogenic, immunotoxic
and dermatoxic effects, reproductive toxicity, as well as an effect on estrogen activity, have been
observed. Hepatotoxicity of AOH, AME and TEN have been suggested in vitro on the human
hepatoma (HepaRG) cell line [57]. Genotoxicity of Alternaria toxin mixtures has been reported in vitro
on human endometrial adenocarcinoma (Ishikawa) cells [56] and genotoxicity of AOH and AME
has been reported on Chinese hamster (V79) cells, human liver (HepG2) cells and human colon
(HT-29) cells [58]. Mutagenic effect of AOH has been observed in vitro on Chinese hamster (V79)
cells and mouse lymphoma (L5178Y TK+/-) cells [59]. Clastogenic effect of AOH has been reported
in vitro on human endometrial adenocarcinoma (Ishikawa) cells and Chinese hamster (V79) cells [60].
Immunotoxicity of AOH has been demonstrated in vitro on human colon adenocarcinoma (Caco-2)
cells [61] or human monocytic (THP-1) cells [62]. Dermal toxicity of AOH has been demonstrated
in vivo on mice [63]. Adverse effects on reproductive performance have been suggested in vitro
on porcine ovarian cells [64] The effect on estrogen activity has been reported in vitro and in silico
on human endometrial adenocarcinoma (Ishikawa) cells and Chinese hamster (V79) cells [56,60,65].
Despite some esophageal carcinogenic effects of Alternaria mycotoxins (AOH and AME) having been
reported [66], none has been classified by the International Agency for Research on Cancer (IARC)
so far.

AME has proved to be the most common mycotoxin in MT-based supplements, occurring in 57
out of 58 total examined samples (7 seeds, 43 capsules, 6 tablets and 1 granule) The only negative
sample was a tablet form.

The maximum levels of AME have been found in capsules containing dried powder (3200 pg/kg),
followed by oil-based capsules (2110 ng/kg), tablets (2020 ug/kg) and seeds (1900 pg/kg) [15]. In the
granule sample, a concentration of 3 pg/kg has been observed [15].

AOH is among the mycotoxins with extremely high positivity in MT-based supplements, with 54
positive samples out of 58 total examined samples (6 out of 7 seed samples, 41 out of 43 capsules, 6 out
of 7 tablets and 1 out of 1 granule).

The maximum levels of AOH have been found in capsules containing dried powder (6834 ng/kg),
followed by oil-based capsules (1964 pg/kg) [3], seeds (1450 ug/kg) and tablets (1340 pg/kg) [15]. In the
granule sample, a concentration of 23 pg/kg has been observed [15].

Although less significant than AME and AOH, the positivity of TEN in MT-based supplements is
still very high: 50 positive samples out of 58 total examined samples (5 out of 7 seed samples, 39 out of
43 capsules, 6 out of 7 tablets, and 0 out of 1 granule).

The maximum levels of TEN have been found in capsules containing dried powder (2127 pg/kg) [3],
followed by tablets (988 ug/kg), oil-based capsules (772 ng/kg) and seeds (201 pg/kg) [15].

8.2. Fusarium Mycotoxins

Four “common” Fusarium mycotoxins occur in MT-based supplements in significant amounts
—-DON (PubChem CID: 40024), T-2 (PubChem CID: 5759), HT-2 (PubChem CID: 520286), ZEA (PubChem
CID: 5281576) [28]. Moreover, some emergent Fusarium mycotoxins—BEA (PubChem CID: 3007984),
ENNA (PubChem CID: 57339252), ENNA; (PubChem CID: 57339253), ENNB (PubChem CID: 164754),
and ENNB; (PubChem CID: 11262300) [28] are also significant.
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8.3. Trichothecenes (DON, T-2, HT-2)

Trichothecenes (TCT) are a group of chemically related mycotoxins (types A-D). In food, TCT are
produced by the Fusarium genera. T-2/HT-2 (type A) and DON (type B) are significant contaminants
of MT. DON is the most important TCT produced mainly by F. graminearum and F. culmorum,
especially in cereals [67]. T2/HT-2 are produced mainly by F. sporotrichioides, F. landsethiae, F. poae,
and F. sambucinum [67].

Cytotoxic, hepatotoxic, neurotoxic, and immunotoxic effects, as well as reproductive toxicity
and skin toxicity, have been reported for both T-2 and DON. In vivo hepatotoxic effects have been
reported on mice in case of DON [68] and on broilers in case of T-2 [69]. Neurotoxic effects in vivo
have been reported on chicks in case of DON [70] and on rats in case of T-2 [71] The immunotoxic
effect of T-2 has been reported on rainbow trout (Oncorhynchus mykiss) in vivo [72] and the cytotoxic
effect on monocytes, macrophages, dendritic cells and B and T lymphocytes in vitro [73-75]. DON was
reported to be less cytotoxic on dendritic cells in vitro than T-2 [76]. Reproductive toxicity has been
reported on male mice in vivo in case of T-2 [77] and on boar semen in vitro in case of DON [78].
Skin toxicity has been demonstrated for T-2 on mice and rabbits in vivo [79,80] and suggested for
DON in vitro on human immortalized keratinocytes [81]. Moreover, in vitro, the cytotoxic effect of
T-2 and DON on human liver cancer (HepG2) cells has been confirmed [82,83]. T-2(/HT-2)-induced
cytotoxicity on human chondrocytes [84] and broiler hepatocytes [85] in vitro has been reported.
In terms of carcinogenicity, T-2 and DON are classified by the IARC into group 3 “Not classifiable as to
its carcinogenicity to humans” [86], but no data are available on the carcinogenicity of HT-2 [87].

DON is the least occurring among the significant mycotoxins in MT-based dietary supplements,
as it has been found only in 37 out of 67 total examined samples (4 out of 15 seed samples, 29 out of
43 capsules, 4 out of 7 tablets, 0 out of 1 granule, and 0 out of 1 extract).

The maximum levels of DON have been found in capsules containing dried powder (6477 ug/kg) [3],
followed by oil-based capsules (2890 ng/kg), tablets (1560 ng/kg), and seeds (293 pg/kg) [15].

T-2 has been found in 52 out of 67 total examined samples (10 out of 15 seed samples, 38 out
of 43 capsules, 4 out of 7 tablets, 0 out of 1 granule, and 0 out of 1 extract) The maximum levels of
T-2 have been found in capsules with dried powder (5958 ug/kg) [3], followed by oil-based capsules
(1870 pg/kg), tablets (640 pg/kg) [15], and seeds (453.9 ug/kg) [2].

HT-2 has been found positive in 48 out of 65 total examined samples (7 out of 13 seed samples,
38 out of 43 capsules, 3 out of 7 tablets, 0 out of 1 granule, and 0 out of 1 extract) The maximum levels of
HT-2 have been found in capsules with dried powder (2985 pg/kg) [3], followed by oil-based capsules
(1530 ng/kg) [15], seeds (943.7 pg/kg) [2], and tablets (582 ng/kg) [15].

8.4. Zearalenone (ZEA)

ZEA is a non-steroidal estrogenic mycotoxin produced mainly by the Fusarium genera [88].
F. graminearum and F. culmorum are the main ZEA producers in food. F. equiseti and F. crookwellense also
produce ZEA [67]. ZEA is a common contaminant in grains, mainly in maize, but also in other cereals
such as wheat, barley, oat and sorghum [89,90]. Nevertheless, in the context of this review, ZEA has
been shown to be a significant contaminant in MT-supplements.

ZEA is often associated with reproductive disorders in livestock (e.g., pigs, cattle, and sheep) and
occasionally exerts hyper-estrogenic syndrome in humans [91]. Recently, ZEA reproductive toxicity
has been demonstrated in vitro on boar semen [78,92] and in vivo on rats [42], or model organism
Artemia francisacana [93] The estrogenic effect has been observed in vitro on human endometrial cancer
(Ishikawa) cells [94]. Moreover, developmental toxicity and fetotoxicity have been reported on mice
in vivo [95] and embryotoxicity has been observed in vitro on early porcine embryos [96] and human
embryonic stem cells (hESC) [97].

Besides reproductive and developmental toxicity, xenoestrogenity, fetotoxicity and embryotoxicity,
ZEA was reported to exert cytotoxic, cardiotoxic, nephrotoxic, hepatotoxic, immunotoxic, genotoxic
and neurotoxic effects. ZEA-induced cardiotoxicity has been reported invivo on mice [98]
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The nephrotoxicity of ZEA has been reported in vivo on rats [99,100] The hepatotoxic effect was
observed in vitro on rats [100] and mice [68] The immunotoxicity of ZEA has been confirmed on
mice [101] and rats [102] in vivo and suggested in vitro on swine spleen [103]. ZEA has been found to
promote apoptosis, autophagy and DNA damage in porcine blastocysts [96] The cytotoxic effect of ZEA
has been demonstrated in vitro on human liver cancer (HepG2) cells [82,104,105], human adrenocortical
carcinoma (H295R) cells [106], murine Leukemia virus-induced tumor (RAW 264.7) cells [82] and
pig intestinal epithelial (IPEC-]2) cells [107]. ZEA has been reported to affect mouse brain function
in vivo [108]. Recent studies confirm a gastro-toxic effect of ZEA on piglets [109] and rats [110] in vivo
and reveal in vitro gastro-toxic effects on porcine jejunum explant [111]. From the point of view of the
carcinogenicity, ZEA has been classified by IARC into group 3 “Not classifiable as to its carcinogenicity
to humans” [86].

ZEA has been found in 49 out of 67 total examined samples (7 out of 15 seed samples, 37 out of
43 capsules, 5 out of 7 tablets, 0 out of 1 granule, and 0 out of 1 extract) The maximum levels of ZEA
have been found in capsules with dried powder (751 ug/kg), followed by tablets (403 ng/kg), oil-based
capsules (373 ng/kg), and seeds (110 ug/kg) [15].

8.5. Emergent Mycotoxins (BEA, ENNs)

ENNs and BEA are considered emergent in the recent literature [112]. They are non-trichothecene
secondary metabolites produced by the Fusarium species in particular [113-115]. In food, they are
both produced by Fusarium acuminatum, F. avenaceum, F. poae, F. sambucinum and F. sporotrichioides
The other BEA food-born producers are F. dalminii, F. equiseti, F. longipes, F. nygamai, F. oxysporum,
Eproliferatum, F. subglutinans, F. verticillioides The other ENN food-borne producers are F. langsethiae
and F. lateritium [67].

The European Food Safety Authority (EFSA) has concluded that neither BEA nor ENNs indicates
a serious problem for human health in acute exposure [114], which may be relevant to their rapid
absorption, distribution and elimination [116] The cytotoxic effects in vitro of both BEA and ENNs are
widely researched and confirmed by many studies. Their cytotoxic effect has been reported on human
colon adenocarcinoma (Caco-2) cells [117-119], human liver cancer (HepG2) cells, human bronchial
(BEAS-2B) cells, human gastric (N87) cells, human vascular endothelial cells (HUVEC), and human
keratinocytes (HEK) [119]. Moreover, BEA has been reported cytotoxic in human neuroblastoma
(SH-5Y5Y) cells [120], while ENNs have shown cytotoxic effects on human cervix carcinoma (HeLa)
cells (ENNA) [121]. In some cases, both BEA and ENNs (namely ENNA) have been reported to have a
mild genotoxic [117,121] or hemolytic [119] effect. In addition, ENNB; has been reported to induce
oxidative stress and immunotoxic effects during mouse embryo development [122]. A recent in vivo
study showed an overall toxic effect of BEA on Caenorhaditis elegans, reducing its life span and exerting
reproductive and developmental toxicity, cyto-toxicity and oxidative stress [123].

Due to the common producers, as well as the similar chemical structure of these mycotoxins,
their co-occurrence can be expected. However, they can also occur together with other Fusarium
mycotoxins [114].  Although they are considered to occur especially in cereal grains and
grain-based products [114], they have also been shown as significant in this review concerning
MT-based supplements.

BEA has been found in 54 out of 58 total examined samples (6 out of 7 seed samples, 41 out
of 43 capsules, 6 out of 7 tablets, and 1 out of 1 granule) The maximum levels of BEA have been
found in capsules with dried powder (3891 pg/kg) [3], followed by oil-based capsule (1560 ug/kg),
tablets (842 pg/kg), seeds (234 pg/kg), and granules (5 pg/kg) [15].

ENNA has been found in 51 out of 58 total examined samples (5 out of 7 seed samples, 40 out of
43 capsules, 6 out of 7 tablets, 0 out of 1 granule) The maximum levels have been found in oil-based
capsules (8340 ng/kg), followed by capsules with dried powder (4240 ug/kg), seeds (202 ug/kg),
and tablets (186 nug/kg) [15].
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ENNA; has been found in 52 out of 58 total examined samples (6 out of 7 seed samples, 40 out of
43 capsules, 6 out of 7 tablets, an 0 out of 1 granule) The maximum levels have been found in oil-based
capsules (2340 ug/kg), followed by capsules with dried powder (1420 pg/kg), tablets (380 ug/kg),
and seeds (274 ng/kg) [15].

ENNB has been found in 54 out of 58 total examined samples (6 out of 7 seed samples, 41 out of
43 capsules, 6 out of 7 tablets, and 1 out of 1 granule) The maximum levels have been found in oil-based
capsules (9260 pg/kg), followed by capsules with dried powder (6190 pg/kg), tablets (2110 ug/kg),
seeds (1740 pg/kg), and granules (16 pg/kg) [15].

ENNB; has been found in 55 out of 58 total examined samples (6 out of 7 seed samples, 42 out of
43 capsules, 6 out of 7 tablets) The maximum levels have been found in capsules with dried powder
(10,940 pg/kg), followed by oil-based capsules (4750 pg/kg), tablets (716 pg/kg), seeds (681 ng/kg),
and granules (6 ug/kg) [15].

9. Mycotoxin Regulations

The presence of mycotoxins in herbal-based food supplements cannot be completely avoided.
There is a need to establish maximum levels or action levels of mycotoxins in some kinds of commodities.
Risk management is significantly applied here. No regulatory limits for herbal-based food supplements
have been incorporated into legislation so far The maximum regulatory limits for certain mycotoxins in
foods have been set under EU regulation No. 1881/2006 [124], and later decrees as in force. Nevertheless,
in the case of herbs, the legislation covers only AFs and OTA The maximum limits of 5 and 10 pg/kg
for AFB; and sum of AFs, respectively, have been set for ginger [124]. For OTA, the maximum limit
of 20 pg/kg has been set for liquorice root, ingredient for herbal infusion and 80 nug/kg for liquorice
extract, for use in food in particular beverages and confectionary [125].

10. Mycotoxin Exposure Assessment and Risk Characterization

The Joint FAO/WHO Expert Committee on Food Additives (JEFCA) established provisional
maximum tolerable daily intakes (PMTDI) for DON and its acetylated derivates (3-AcDON and
15-AcDON) of 1 pg/kg body weight (bw) per day [126]. A current group tolerable daily intake (TDI)
of 1 ug/kg bw was established for the sum of DON, 3-AcDON, 15-AcDON and DON-3G, based on
reduced body weight gain in experimental female and male mice [127].

PMTDI was established for T-2 and HT-2 alone or in combination of 0.06 ug/kg bw per day
obtained in a 3-week dietary study in pigs [128]. A new group TDI of 0.02 ug/kg bw was established
by EFSA for the sum of T-2 and HT-2 based on an in vivo sub-chronic toxicity study with rats [129].

PMTDI was established for ZEA of 0.5 ng/kg bw based on the no observed effect level (NOEL) of
40 ug/kg bw per day obtained in a 15-day study in pigs [130] The current TDI for ZEA of 0.25 pg/kg
bw per day established by EFSA is based on estrogenicity in pigs [131].

The increased incidence of microscopic kidney lesions seen in a 3-month feeding study with
pigs [132] was considered as the most appropriate endpoint of non-neoplastic effects of OTA and
the resulting benchmark dose limit (BMDL) of 4.73 pg/kg bw per day was used for comparison with
chronic exposures.

In the absence of elucidated MoAs for the genotoxicity/carcinogenicity of OTA, the Panel concluded
that a margin of exposure (MOE) of 10,000 needs to be applied to the BMDLg of 14.5 ng/kg bw per
day for neoplastic effects (kidney tumors) in the rat The Panel points out that this MOE is likely to be
particularly conservative in this case, as the evidence for a direct interaction of OTA with the DNA is
inconclusive and other threshold mechanisms may play a role in the formation of kidney tumors. As it
was not possible to quantify these variables, the default MOE of 10,000 was applied [133].

Based on studies in animals, the CONTAM Panel selected a BMDL of 0.4 ug/kg bw per day for
the incidence of hepatocellular carcinoma (HCC) in male rats following AFB; exposure to be used
in a MOE approach The calculation of a BMDL from the human data was not appropriate; instead,
the cancer potencies estimated by the JECFA in 2016 were used [134].



Toxins 2020, 12, 782 14 of 21

Studies evaluating the dietary exposure to mycotoxins from MT food supplements are scarce.
Several studies have attempted a very rough assessment of dietary exposure based on the RDD of food
supplements (e.g., capsules) declared by the manufacturers.

For DON, TDI has been set at 1 pg/kg bw per day [135], which means 70 pg for a 70 kg human.
In the worst-case scenario, for a human of this weight, a single RDD of 3 capsules of MT-based
supplement has accounted for 23.0% of TDI [3]. On average, 2.1% of TDI is received by the MT-based
supplements [3,15].

For ZEA, the TDI has been set at 0.25 ug/kg per day [136], which means 17.5 ug for a 70 kg human.
In the worst-case scenario, for a human of this weight, a single RDD of 10 capsules of MT-based
supplement has accounted for 5.3% of TDI [15]. On average, 1.0% of TDI is received by the MT-based
supplements [3,15].

For the sum of T-2 and HT-2, the TDI has been set at 0.02 pg/kg bw per day [129], which means
1.4 pg for a 70 kg human. In the worst-case scenario, for a human of this weight, a single RDD of
3 capsules of MT-based supplement has accounted for 1590% of TDI [3]. On average, 123% of TDI is
received by the MT-based supplements [3,15].

There is insufficient data to establish dietary exposure assessment for any Alternaria
mycotoxins [137], ENNs or BEA [114].

11. Summary

People use silymarin preparations to prevent or treat various diseases, especially, but not limited to,
liver diseases. Although silymarin appears to be effective in this aspect, a number of various mycotoxins
with, inter alia, hepatotoxic effects have been found in marketed MT preparations. Studies have shown
that silymarin can alleviate the adverse effects of some mycotoxins, notably AFB;, but also OTA, FBy,
ZEA or DON. However, the latter two have also been shown to occur in MT-based supplements to a
considerable extent. In addition, it has been shown that the content of silymarin in the preparations
varies considerably The question arises as to whether the consumption of these supplements in order
to improve health does not become rather harmful, with a regard to the detected levels of mycotoxins.
It is, therefore, necessary to monitor both the content of active compounds in MT-based supplements
and the presence of mycotoxins and other contaminants, to assess the intake of the substances into
the body, and to evaluate whether the beneficial effects of marketed MT-preparations outweigh the
harmful effects of the contaminants. It should also be borne in mind that people may take more than
one type of food supplement at the same time, which is worrying if the other supplements are also
contaminated with mycotoxins to a similar extent.

This review examined the current state of contamination of MT-based dietary supplements with
mycotoxins and, to a lesser extent, micro-fungi The results show that these supplements are mainly
infested by micro-fungi of the Alternaria genus. Of the 57 mycotoxins monitored across five original
studies concerning MT-based supplements in various forms, a total of 21 have been found to be positive
in at least one case. A total of 12 (AME, AOH, TEN, DON, HT-2, T-2, ZEA BEA, ENNA, ENNA;, ENNB,
ENNB; ) of these mycotoxins can be considered significant due to their high occurrence meaning more
than 50% of positive samples in the context of this review.

The obtained overview strongly indicates the need for the strict monitoring of mycotoxins in
commercially sold MT-based dietary supplements that are used by many people worldwide to treat or
prevent liver diseases, and thereby enhance their health.
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Abstract: Spices are imported worldwide mainly from developing countries with tropical and/or
subtropical climate. Local conditions, such as high temperature, heavy rainfall, and humidity,
promote fungal growth leading to increased occurrence of mycotoxins in spices. Moreover, the lack
of good agricultural practice (GAP), good manufacturing practice (GMP), and good hygienic practice
(GHP) in developing countries are of great concern. This review summarizes recent data from a
total of 56 original papers dealing with mycotoxins and microfungi in various spices in the last five
years. A total of 38 kinds of spices, 17 mycotoxins, and 14 microfungi are discussed in the review.
Worldwide, spices are rather overlooked in terms of mycotoxin regulations, which usually only
cover aflatoxins (AFs) and ochratoxin A (OTA). In this paper, an extensive attention is devoted to the
limits on mycotoxins in spices in the context of the European Union (EU) as well as other countries.
As proven in this review, the incidence of AFs and OTA, as well as other mycotoxins, is relatively
high in many spices; thus, the preparation of new regulation limits is advisable.

Keywords: spices; contamination; microfungi; mycotoxin

Key Contribution: This review provides a summary of the results of recent original papers focusing
on the occurrence of mycotoxins and microfungi in spices published since 2015 and presents the
results as a summarized comprehensive output, which gives a clear insight on the current state of
mycotoxin contamination. Moreover, this review provides an extensive overview of national legal
limits on mycotoxins, which, to our knowledge, has not been recently published at all.

1. Introduction

The attention of the professional public has been focused on systematic control of the presence of
xenogenous substances in foodstuffs which might endanger the health state of the population. This is
also the case of mycotoxins, toxic secondary metabolites of microfungi. Specific problems and risks
arise from the global climate change and globalization of the food market—these processes may result
in an increased occurrence of mycotoxins due to many reasons including the extension of the scale
of foodstuffs from regional sources, changes of food storage, transportation or dietary patterns [1,2].
Spices have been widely used since ancient times and that, primarily, for their unique flavoring,
coloring, and aromatizing properties and, secondarily, for preservative, antimicrobial, and antioxidant
effects. Moreover, their beneficial effect on human health is valued both in traditional and modern
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medicine [3,4]. One of the definitions describes spices as non-leafy parts of a plant such as bud, fruit,
seed, bark, rhizome or bulb; parts derived from leaf or flower of a plant are considered to form a
distinct group—herbs [5]. However, all parts of a plant should be considered to be spices if they possess
the aforementioned properties for meal enhancement, such as its color, flavor, or even texture [4].
In this review, spices have been selected in line with the definition by Uhl [4] and at the discretion of
the authors.

Unfortunately, certain spices are very susceptible to toxigenic microfungi growth and thus
potential mycotoxin development [3,6-8]. It is known that “spices” are generally more susceptible to
contamination than “herbs” [9,10]. Moreover, spices purchased in open markets are confirmed to be
significantly more contaminated than spices purchased in supermarkets [11].

Agricultural land with infected plant residues serves as the main reservoir of microfungi.
Agricultural products can be infected with spores in situ or ex situ via dust or insects [12]. The mycotoxin
contamination of agricultural commodities is a common phenomenon and despite of various prevention
technologies and recommendations cannot be completely avoided [7]. However, some preventing
physical, chemical, and biological strategies have been developed [7,13,14]. Nevertheless, in the EU,
chemical treatments are not allowed for the decontamination of foodstuffs [15]. Appropriate and
well-designed strategies could result in the reduction of mycotoxins in spices [7]. Beside innovative
technologies, following GAP, GMP, and GHP is also necessary to prevent mold growth and mycotoxin
production [7]. Inappropriate conditions during pre-harvest, harvest, and post-harvest can affect the
quality of the spices. Good hygienic and physical separation are the best approaches for mycotoxin
management in spices [7]. Maintaining good practices can, however, be problematic as spices are mainly
grown in the developing countries from where they are exported and distributed worldwide. Moreover,
their contamination is further supported by local subtropical and tropical climate characterized by high
temperatures, heavy rainfalls, and relative humidity providing suitable conditions for fungal growth
and thus mycotoxin production [1,2,16,17]. Fungal growth is also affected by the landform, soil types,
and its properties, as well as interactions between the microfungus and micro- and macro-organisms
in the soil [18,19]. Mycotoxins in the soil can be absorbed by plant roots and transported via the xylem
to plant tissues [20].

This review summarizes only recent relevant original papers published in the last five years
(since 2015). We consider this time span to be appropriate in terms of reflecting the current situation.
A fair deal of studies concerning mycotoxins and/or microfungi in spices has been published. In the
last five years, a total of 147 and 127 papers dealing with “mycotoxins” and “fungi” in “spices” have
been found in the Web of Science database and a total of 52 and 45 publications in PubMed database,
respectively. In total, 56 relevant papers were selected as the basis for this review. The quality criteria
for the comparative analysis of individual studies were validation of analytical methods and quality of
analytical results of mycotoxin determination.

2. Spices as a Part of the Worldwide Diet

Spices, as an essential part of the human diet, are normally used in small amounts for food
flavoring [21]. Spice consumption varies worldwide, depending on the country and local eating
habits [22]; however, there is a limited number of scientific publications concerning spice consumption
providing comprehensive data on its intake into the human body.

As for European and American countries, oregano is considered the most consumed herbal spice,
followed by basil, bay leaf, parsley, thyme, and chives [22]. In the recent study, pepper, paprika, parsley,
and basil were labeled the most commonly used spices in the European Union (EU) [23].

As for Asia, commonly used spices include black pepper, cardamom, cinnamon, cassia, chili pepper,
cloves, coriander, cumin, garlic, ginger, nutmeg, mace, turmeric, and vanilla [5]. Chili pepper is the
most commonly used spice in India, consumed in much higher amounts per portion than other spices.
Based on the total amount of consumed spice (amount per portion and frequency of consumption),
chili pepper (on average 3.0 g per portion), cumin (1.64 g), turmeric (0.71 g), coriander (1.37 g) and
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mustard (1.07 g) can be considered the top five most important spices in India. Caraway, cinnamon,
cardamom, cloves, black pepper, garlic, and ginger are also commonly used in India [21,24]. Less used
are asafetida, carom, mace, and nutmeg [21]. Fenugreek is also among the less important spices in
India [21]; however, apart from its use as a spice, people also consume its seeds as food [25]. In China,
commonly used spices and herbs include garlic, onions, chili pepper, coriander, basil, cinnamon,
star anise, and ginger [26,27]. In addition, some herbs and spices are used in traditional Chinese
medicine, e.g., galangal or nutmeg [28]. In Thailand, chili pepper, onion (shallot), and garlic are the
most used spices. Other common spices include lemongrass, galangal, basil, mint, and fennel [29].

As for African countries, many commonly used spices are world-known such as garlic, ginger,
chili pepper (Capsicum frutescens), onion, nutmeg or pepper (Ashanti pepper, Piper guineese) [30-33],
while some spices are typical for Africa, such as, e.g., dawadawa, ogiri, okpehe, hwentia, soro wisa or
fem wisa [31,34]. Based on a study by Nguegwouo et al. [35], cloves, white pepper, and black pepper
are also common in Africa. The daily intake of white pepper (mean 1.924 g) is approximately two
times higher than the daily intake of black pepper (mean 0.939 g) in Cameroon [35].

As evident, chili pepper (Capsicum spp.) and peppers (Piper spp.) are ubiquitous spices, normally
consumed in quantities of a few grams per day in many places around the world. Moreover, garlic and
onion (Allium spp.) can be considered to be one of the most used spices worldwide [36]. This makes
Capsicum spp., Piper spp. and Allium spp. one of the most important spices from the perspective of
xenogenous substance and thus also mycotoxin studies. However, many other world-known spices as
well as local and traditional spices are also consumed in relatively high amounts and should be taken
into consideration.

3. The Worldwide Spice Production

According to the data available over the last 5 years (the latest available data from the years
2014-2018), the average worldwide production of spices was c. 12.3 million tonnes per year (13.0 million
tonnes in 2018) and consisted especially of the following spices: “Anise, badian, fennel, coriander”,
“Chilies and peppers, dry” “Cinnamon”, “Cloves”, “Ginger”, “Nutmeg, mace, cardamoms”, “Mustard
seed”, “Pepper, Piper spp.”,” Peppermint”, “Vanilla” and “Spice not elsewhere specified”. The items
such as “Garlic” and “Onions dry” were not included, as their production of 27.8 million tonnes and
84.3 million tonnes, respectively (2018), would increase the total spice production approximately ten
times. Asia, with its production share of 78.2% (10.2 million tonnes in 2018), is undoubtedly the largest
producer of spices in the present world—see Figure 1. India contributes most to this share (5.4 million
tonnes in 2018), by far followed by China (1.2 million tonnes in 2018) [37]. Top 20 world producers are
shown in Table 1.

Table 1. Top 20 spice producers in the world in the last available year 2018.

Country Category of Spice P:;g:ﬁ:;;n Country Category of Spice P{;::;:;“
India 1,2,5,7,8,11 5,393,231 Pakistan 2,511 225,682
China 1,2,3,4,5,6,8,9,10,11 1,163,542 Mexico 1,2,5,6,8,9,10,11 206,232
Indonesia 3,4,5,7,8,10,11 651,075 Myanmar 2,6,11 186,190
Nepal 2,5,6,7,11 550,070 Canada 1,6 186,052
Nigeria 2,511 446,793 Morocco 1,2,9,11 157,365
Thailand 2,5,8,11 419,348 Russian Fed. 1,6 133,653
Vietnam 1,2,3,8 397,770 Cote d'Ivoire 2,5,8,11 125,097
Bangladesh 2,511 393,694 Ghana 2,5,8 119,388
Ethiopia 1,2,5,6,7,8,11 356,239 Brazil 8 101,274
Turkey 1,2,10,11 299,487 Sri Lanka 3,4,5,6,7,8,11 100,745

Notes: Number of spice category: (1) Anise, badian, fennel, coriander; (2) Chilies and peppers, dry; (3) Cinnamon;
(4) Cloves; (5) Ginger; (6) Mustard seed; (7) Nutmeg, mace, cardamoms; (8) Pepper, Piper spp.; (9) Peppermint,
(10) Vanilla; (11) Spice not elsewhere specified. Processed according to FAOSTAT [37].
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Figure 1. The share of spice production in tonnes in the last available year 2018. Note: Number of
tonnes produced in brackets: Africa (1,722,909); Americas (679,830); Europe (420,188); Oceania (13,067);
Anise, badian, fennel, coriander (1,165,683); Pepper, Piper spp. (732,523); Mustard seed (710,350);
Cinnamon (221,815); Cloves (167,506); Nutmeg, mace, cardamoms (109,284); Peppermint (106,728);
Vanilla (7574). Processed according to FAOSTAT [37].

4. Characterization of Mycotoxins and Their Producers Included in This Review

Mycotoxins, one of the most serious contaminants of natural origin [38], are produced by toxigenic
microfungi, mostly by Aspergillus, Penicillium, and Fusarium [8,39] and to a certain extent Alternaria
genera [40] as their secondary metabolites [38,41]. Moreover, some highly mycotoxigenic microfungi
have not been described yet [42].

Currently, more than 500 mycotoxins have been identified, but only a few of them normally occur
in the human diet in significant amounts and, consequently, pose a potential threat to human and/or
animal health [43]. AFs, OTA, fumonisins (FMNs), zearalenone (ZEA), citrinin (CIT), and trichothecenes
(TCT)—deoxynivalenol (DON) and nivalenol (NIV) are considered to be some of the most important
in terms of toxic effect and high prevalence in the agro-food commodities [44,45], including spices [44].
In addition, Alternaria mycotoxins are also common contaminants in spices and other agricultural
products [46]. Mycotoxins dealt with in this review are listed below; their chemical structures are
shown in Table 2.

Table 2. Chemical characterization of mycotoxins.

Mycotoxin Chemical Structure Mycotoxin Chemical Structure

AFB; AFB)

AFG, AFG,
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Table 2. Cont.

Mycotoxin Chemical Structure Mycotoxin Chemical Structure

cl

OTA CIT
FB; FB,
DON NIV
T-2 HT-2
ZEA TEA

AOH g ‘ ALT 6
o]

o™ H o
W ] H

Note: AF—Aflatoxin B;, By, G;, Gp; OTA—Ochratoxin A; CIT—Citrinin, F—Fumonisin B, B,;
DON—Deoxynivalenol; NIV—Nivalenol; T-2—T-2 toxin; HT-2—HT-2 toxin; ZEA—Zearalenone; TEA—Tenuazonic
acid; AOH—Alternariol; ALT—Altenuene. Processed according to PubChem [47].

4.1. Aflatoxins

AFs are the world’s most studied mycotoxins [48] as they have been shown to have
hepatotoxic, genotoxic, mutagenic, teratogenic, immunosuppressive, nephrotoxic, cytotoxic, and
mainly carcinogenic effects [49-51]. According to the International Agency for Research on Cancer
(IARC), all mentioned AFs are classified into group 1 “Carcinogenic to humans” [52].

The most common AFs include aflatoxin By (AFB;) (PubChem CID: 186907), aflatoxin B, (AFB,)
(PubChem CID: 2724360), aflatoxin G; (AFGp) (PubChem CID: 14421) and aflatoxin G, (AFG,)
(PubChem CID: 2724362) [47]. AFB is thought to be the most significant [50].
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AFs are produced by Aspergillus species, mainly by A. flavus, and A. parasiticus [53-55].
A. nomius [55] and A. pseudotamarii have also been reported to be aflatoxigenic in food [42,56].

4.2. Ochratoxin A

OTA (PubChem CID: 442530) [47] is the second most important mycotoxin from the public health
perspective [39]. It is mainly nephrotoxic [57] and hepatotoxic [58]. Furthermore, it exhibits genotoxic,
teratogenic, immunosuppressive, and neurotoxic effects [57,59] and they have been confirmed by
Arenas-Huertero et al. [49] and by EFSA [60]. According to the IARC, OTA is classified in group 2B
“Possibly carcinogenic to humans” [52].

OTA producers of Aspergillus species, especially A. carbonarius, A. ochraceus, A. westerdijkiae,
A steynii, A. lacticoffeatus, A. niger, A. sclerotioniger, and A. tubingensis, are typical for areas with
subtropical and tropical climate while producers of Penicillium species, such as mainly P. verrucosum
and P. nordicum, are typical for areas with temperate or colder climate [59,61]. Aspergillus melleus and
A. alliaceus are less typical OTA producers [62].

4.3. Citrinin

CIT (PubChem CID: 54680783) [47] is reported to have nephrotoxic, hepatotoxic, genotoxic,
mutagenic, teratogenic, and cytotoxic effects [63,64]; they have been confirmed by EFSA [65]. According
to IARC, CIT is classified in group 3 “Not classifiable as to its carcinogenicity to humans” [52].

CIT is produced primarily by Penicillium citrinum [61,66]. Other fungi from Penicillium species
such as P. expansum and P. verrucosum are also able to produce CIT [61]. In addition, Monascus purpureus
and M. ruber have also been confirmed to produce CIT [61,67].

4.4. Fumonisins

FMNs, of which fumonisin By (FBq) (PubChem CID: 2733487) and fumonisin B, (FB,) (PubChem
CID:2733489) [47] are discussed in this review, are reported to have nephrotoxic, hepatotoxic, cardiotoxic,
immunosuppressive, neurotoxic, teratogenic, embryotoxic, pulmotoxic, and cytotoxic effects [49,68,69].
According to IARC, FMNss are classified in group 2B “Possibly carcinogenic to humans” [52].

FMNs are primarily produced by Fusarium species, mainly represented by F. verticillioides [70,71]
and F. proliferatum [54]. Furthermore, Aspergillus niger has been reported to produce FB, [72,73].

4.5. Trichothecenes

TCT involved in this review (DON (PubChem CID: 40024), NIV (PubChem CID: 5284433), T-2 toxin
(T-2) (PubChem CID: 5284461) and HT-2 toxin (HT-2) (PubChem CID: 10093830) [47]) are reported to
have genotoxic, mutagenic, teratogenic, immunosuppressive, hepatotoxic, neurotoxic, and hematoxic
effects [68,74-76]. According to IARC, TCT (DON, NIV, T-2) are classified in group 3 “Not classifiable as
to its carcinogenicity to humans” [52].

In food, TCT are produced primarily by Fusarium species [70,77,78], such as F. graminearum [54],
F. culmorum, F. cerealis [70,78], and F. crookwellense in case of DON or NIV, and F. poae, F. equiseti and
F. acuminatum in case of T-2 and its metabolite HT-2 [70,77].

4.6. Zearalenone

ZEA (PubChem CID: 5933650) [47] has been reported to have estrogenic, genotoxic, mutagenic,
teratogenic, immuno-suppressive, and hematoxic effects [68,79]. According to IARC, ZEA is classified
in group 3 “Not classifiable as to its carcinogenicity to humans” [52]. In food, ZEA is produced by Fusarium
species represented by F. graminearum, F. culmorum, and F. crookwellense [70,77,80].
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4.7. Alternaria Mycotoxins

Alternaria mycotoxins, such as alternariol (AOH) (PubChem CID: 5359485), altenuene (ALT)
(PubChem CID: 5359485), or tenuazonic acid (TEA) (PubChem CID: 54683011) [47], have been reported
to be genotoxic, mutagenic, teratogenic, and cytotoxic [49,81]. As for IARC classification, none of the
Alternaria mycotoxins is listed, although supposed esophageal carcinogenic effects were reported [82].

Alternaria mycotoxins are produced by the Alternaria species [81]. Those that contaminate foods
include A. alternata [83,84], A. tenuissima, A. arborescent [85], A. tangelonis, and A. turkisafria [86].

4.8. Sterigmatocystin

Sterigmatocystin (STEG) (PubChem CID: 5280389) [47] has been reported to possess hepatotoxic,
nephrotoxic, genotoxic, mutagenic, and teratogenic effects [87]. According to IARC, STEG is classified
in group 2B “Possibly carcinogenic to humans” [52] because it can induce tumors including hepatocellular
carcinomas, liver haemangiosarcomas, angiosarcomas in brown fat, and lung adenomas in several
species [87]. However, in comparison with AFB;, STEG toxicity has been assessed to be 10 or even up
to 100 times lower [88,89]. Due to the minor significance of STEG in this review, its chemical structure
is not shown in Table 2.

STEG is produced by more than 50 fungal species [87]. Aspergillus versicolor and Emericella
nidulans (anamorph: A. nidulans) [62] are the main producers in food commodities as they can produce
STEG in high amounts, compared to A. flavus and A. parasiticus which convert a part of STEG into
O-methylsterigmatocystin a direct precursor of AFB;, resulting in lower STEG production [90,91].

5. International Regulation of Aflatoxins and Ochratoxin A in Spices

On the global level, the debate on fixing the limits on mycotoxins in spices seems to be relatively
recent. In 2015, the Codex Alimentarius Commission or, more precisely, its Committee on Contaminants
in Foods (CCCF) agreed to start working on a Code of practice for the prevention and reduction of
mycotoxin contamination in spices and combinations of spices [92]. In the same year, the feasibility
of establishing the maximum levels for selected spices was also discussed as a separate topic in the
CCCEF. It was India which, in 2014, initiated the discussion (the 8th Session; March 2014) and which
simultaneously proposed to establish the maximum levels with respect to (i) total AFs, (ii) AFB;, and
(iif) OTA in five different spices occupying a prominent place in the global trade with spices, namely,
in dried or dehydrated forms of nutmeg, chili/paprika, ginger, pepper, and turmeric [92]. Upon the
Indian proposal, the electronic working group was set up to deal with the issue. Reaching a consensus
on establishing the maximum limits for total AFs and OTA in the proposed spices, however, turned
out to be a complex process. While some states argued that more conclusive data on the occurrence of
mycotoxins in spices were needed, others opined that the general level of the consumption of spices
was too low to justify establishing the maximum limits for mycotoxins contained in spices. Due to the
diverging views of different states, in 2018, the CCCF decided to temporarily discontinue works on
establishing the maximum limits and give time to member states to implement the Code of Practice for
the prevention and reduction of mycotoxins in spices adopted in 2017 [93]. Upon the implementation
of the Code of Practice for the prevention and reduction of mycotoxins in spices, in a three-year horizon,
the new data on the occurrence of mycotoxins in spices should be obtained, and based on them, the
issue of establishing their maximum limits in spices should be re-examined by the CCCF. Nevertheless,
the levels of 20/30 ug/kg for total AFs and the level of 20 pg/kg for OTA have been retained as the
points of departure for future discussion [93].

Thus, for the time being, the most extensive regulation of the presence of mycotoxins in spices
on an international level can be found in EU law. On the grounds of powers conferred by Article
2(3) of Council Regulation (EEC) No 315/93 [94], the European Commission adopted Commission
Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants
in foodstuffs [15].
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Section 2 of the Annex to the Regulation No 1881/2006 fixes the maximum levels of selected
mycotoxins in different foodstuffs including spices and licorice. Section 2 primarily establishes the
maximum levels of AFs in Capsicum spp. (including chilies, chili powder, cayenne, and paprika),
peppers, nutmeg, ginger, turmeric, and in the mixtures of these spices; see Table 3. In addition,
Section 2 lays down the maximum limits for OTA in the same spices, their mixtures, and also in licorice;
see Table 4. The maximum limits for OTA in spices evolved in a rather complex way. They were first
laid down in Regulation No 105/2010 [95], later, they were amended by Regulation No 594/2012 [96].
The present maximum levels have been established by Regulation No 2015/1137.

In other regions, the regulation of the presence of mycotoxins in spices mostly depends on the
sole appreciation of individual states. In this respect, data gathered by the CCCF in a direct link with
the discussion on establishing the maximum limits for mycotoxins in spices provide an interesting
insight on the existing limits in the Codex member states [93].

As it is evident from these data, at present, a fair number of the Codex member states have fixed
the maximum limits on AFs in spices. These limits range from 1 pg/kg (Honduras) to 30 pug/kg (India).

In the case of OTA, the same data suggest the situation is different in that the number of states
which have laid down the maximum limits for the presence of OTA in spices seems to be markedly
lower. The lowest limit of 10 pg/kg has been reported from Armenia while the highest one of 30 ug/kg
has been reported from Brazil. However, even a lower limit has applied in South Korea where, at least
in some spices (such as red pepper), the maximum limit for the presence of OTA has been related to be
7 ug/kg [97].

When it comes to identifying spices in which the presence of AFs and OTA is regulated,
the approaches differ. While many states have limits fixed for all the foodstuffs, in other states, there
are specific limits for spices in general or only for specific spices (such as chili or nutmeg).

These observations can be exemplified by the regulatory practice of several states which play a
prominent role in the global trade in spices.

In India, which has initiated the discussion on the regulation of mycotoxins in spices on
the global level, the maximum limits are prescribed for AFs in spices by the Food Safety and
Standards Authority [98]. Currently, the maximum limit is 30 pg/kg. However, no limits on OTA in
spices have been reported.

In China, the presence of mycotoxins in foodstuffs is currently regulated by the National Food
Safety Standard of Maximum Levels of Mycotoxin in Foods (GB 2761-2012) which is based on
comparative analysis of international and national standards and came into force in October 2011 [99].

In 2017, the National Standard has been updated by the National Food Safety Standard for
Maximum Levels of Mycotoxins in Foods (GB 2761-2017), and in January 2020, the public consultation
on its revision was launched [100]. While under the National Standard, the maximum level is set at
5.0 ug/kg for AFB; in spices, it does not seem that specific maximum limits would apply with regard to
other mycotoxins in spices.

In Brazil, before 2011, only the presence of AFs in some selected commodities such as peanuts was
subject to legal regulation. Under the impact of the introduction of regulatory limits on international
and the EU level, in 2011, however, the Brazilian Surveillance Agency (ANVISA) established the limits
for six mycotoxins, which were amended in 2017 [101]. The existing regulation now applies to more
than 20 categories of foodstuffs including spices. As for AFs (By, By, G1, Gy), the maximum limits are
fixed at 20 ug/kg; as for OTA, the maximum limit equals 30 ug/kg.

In the USA, the world’s largest spice consumer, in case of AFs (B, By, G1, Gy), the action levels
for their presence in foodstuffs have been laid down by the Food and Drug Administration (FDA)
since 1965. Since 1969, the action level has been set at 20 pg/kg for all foodstuffs intended for human
consumption, except milk [102]. The action levels are understood as levels above which the foodstuffs
will be considered to be adulterated, which means the FDA is allowed to bring regulatory and
enforcement action under the Federal Food, Drug, and Cosmetic Act (FFDC Act). As far as OTA is
concerned, the FDA has not been reported to have established any action or guidance levels.
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Table 3. Maximum levels of aflatoxins in spices under EU legislation (Regulation No 1881/2006,
as in force).

Foodstuff AFB; (ug/kg)  Total AFs ? (ug/kg) Reference

Capsicum spp. (dried fruits thereof, whole 5 10 [15]
or ground, including chilies, chili powder,

cayenne, and paprika)

Piper spp. (fruits thereof, including white

and black pepper)

Myristica fragrans (nutmeg)

Zingiber officinale (ginger)

Curcuma longa (turmeric)

Mixtures of spices containing one or more 5 10 [103]
of the abovementioned spices

Note: @ AFs = Sum of aflatoxins By, B, G and Gy,

Table 4. Maximum levels of ochratoxin A in spices and licorice under EU legislation (Regulation No
1881/2006, as in force).

Foodstuff OTA (ug/kg) Reference

Piper spp. (fruits thereof, including white and black pepper) 15 [96]
Muyristica fragrans (nutmeg)

Zingiber officinale (ginger)

Curcuma longa (turmeric)

Capsicum spp. (dried fruits thereof, whole or ground, including 20 [104]
chilies, chili powder, cayenne, and paprika)

Mixtures of spices containing one of the abovementioned spices 15 [96]
Licorice (Glycyrrhiza glabra, Glycyrrhiza inflate and other species) [95]
Licorice root, ingredient for herbal infusion 20

Licorice extract, for use in food in particular beverages and 80

confectionary

6. Mycotoxins and Microfungi in Spices from the Perspective of Research in the Last Five Years
(Since 2015)

This review summarizes the studies concerning mycotoxins and their producers in spices over
the last five years—since 2015. For the evaluation of the positivity on microfungi or mycotoxins,
the following six-level scale was established: (i) none (0%), (ii) rare (up to 5%), (iii) low (up to 25%),
(iv) moderate (up to 50%), (v) high (up to 75%), and (vi) very high (more than 75%) occurrence of
positive results. This scale was used for the evaluation of the percentage of studies with a positive
incidence of microfungi/mycotoxins in a given spice (a study with at least one positive sample,
hereinafter referred to as “positive study”) in the total number of publications dealing with related
microfungi/mycotoxins in spice. The same scale was used in case of the percentage of samples with a
positive finding on mycotoxins in the total number of samples throughout all publications involved.
However, it is important to consider the number of baseline studies, because the listed percentages are
the more conclusive, the more studies they are based on.

6.1. Mycotoxins in Spices Overview

A total of 48 studies altogether covering 17 mycotoxins in 38 spices were included. Namely, these
publications cover (the numbers in brackets indicate the number of publications related to the kind of
spice or type of mycotoxin) allspice (Pigmenta officinalis) (2), anise (Pimpinella anisum) (5), basil (Ocimum
basilicum) (5), bay leaf (Laurus nobilis) (6), caraway (Carum carvi) (7), cardamom (Elateria cardamomum)
(7), carom (Trachyspermum ammi) (1), chili (Capsicum spp.) (30), cinnamon (Cinnamomum burmannii)
(11), cloves (Eugenia caryophyllata) (8), coriander (Coriandrum sativum) (10), cumin (Cuminum cyminum)
(9), cumin black (Nigella sativa) (3), curry (3), dawdawa (Parkia biglobosa) (2), fennel (Foeniculum vulgare)
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(12), fenugreek (Trigonella foenum-graecumy) (4), garlic (Allium sativum) (5), ginger (Zingiber officinale)
(14), licorice (Glycyrrhiza glabra) (3), mace (Myristica fragrans) (1), marjoram (Majorana hortensis) (3),
mint (Mentha piperita) (5), mustard (Sinapis spp.) (3), nutmeg (Myristica fragrans) (12), onion (Allium
spp-) (3), oregano (Origanum vulgare) (5), paprika (Capsicum spp.) (6), parsley (Allium schoenoprasum)
(3), pepper black (Piper nigrum) (23), pepper white (Piper nigrum) (6), rosemary (Salvia rosmarinus) (6),
saffron (Crocus spp.) (2), sage (Salvia spp.) (4), star anise (Illicium verum) (1), sumac (Rhus coriaria) (3),
thyme (Thymus vulgaris) (10), and turmeric (Curcuma longa) (11) in which the following mycotoxins
were analyzed: AFB, (33), AFB; (19), AFG; (19), AFG, (18), OTA (20), CIT (4), ZEA (5), FB1 (9), FB2 (7),
DON (4), NIV (3), T-2 (5), HT-2 (4), ALT (2), AOH (3), TEA (2), and STEG (4).

The percentage of positive studies of the total number of studies dealing with related mycotoxin
and spice are shown in Table S1 of the Supplementary Materials (for mycotoxins produced by Aspergillus
and Penicillium genera), Table S2 of the Supplementary Materials (for Fusarium mycotoxins) and Table
S3 of the Supplementary Materials (for Alternaria mycotoxins). Similarly, the percentage of the total
sum of positive samples to the total sum of tested samples for each unique spice and mycotoxin
combination throughout all included publications are shown in Tables 5-7.

6.1.1. Aflatoxins

As can be seen above, AFs (mainly AFB;) are undoubtedly the most frequently analyzed
mycotoxins in spices. In terms of AFs, studies are most often concerned with chili, black pepper, ginger,
fennel, turmeric, coriander, cinnamon, nutmeg, and thyme, in descending order. The occurrence of
total AFs in the above-mentioned spices is usually high to very high. In the following summaries of
positive findings, only aflatoxin occurrence supported by at least 5 studies or at least 30 samples will
be described in more detail.

Aflatoxin By Number of AFB;-positive studies has been proven as very high in ginger, chili, and
turmeric; as high in black pepper, cumin, coriander, and cinnamon; and as moderate in fennel, caraway,
thyme, and nutmeg—see Table S1 of the Supplementary Materials.

The AFB; occurrence has been proven as high in ginger, chili, fenugreek, turmeric, and coriander;
as moderate in paprika, cumin, black pepper, nutmeg, and fennel; as low in caraway, cinnamon, and
white pepper; as rare in licorice and thyme, and none in oregano and basil—see Table 5.

The highest AFB; concentrations in different spices have been reported in nutmeg (1632.2 ug/kg)
in Indonesia [105], chili (156.0 pug/kg) in Nigeria [106], paprika (155.7 ug/kg) in Italy [107], black pepper
(75.8 pg/kg) in Pakistan [108], licorice (57.0 ng/kg) in Egypt, black cumin (56.8 pg/kg) in Egypt [109],
ginger (39.8 ug/kg) in Iran [110], parsley (27.4 ug/kg) in Egypt [109], saffron (26.5 ug/kg) in Algeria [111],
fennel (21.7 pug/kg) in Malaysia [112], mustard (18.2 ug/kg) and thyme (16.8 ug/kg) in Egypt [109], and
coriander (11.0 pg/kg) in Malaysia [112].

Aflatoxin By Several AFB,-positive studies have been proven as high in chili, turmeric, ginger,
and black pepper; as moderate in coriander and fennel; and as low in cinnamon—see Table S1 of the
Supplementary Materials.

The AFB; occurrence has been proven as moderate in ginger; as low in turmeric, chili, caraway,
paprika, coriander, fenugreek, black pepper, nutmeg, fennel, and cumin; as rare in white pepper; and
as none in cinnamon and licorice—see Table 5.

The highest AFB, concentrations in different spices have been reported in chili (33.3 pg/kg) in
Indonesia [113], paprika (9.9 ug/kg) in Italy [107], parsley (2.5 pg/kg) in Egypt [109], and fennel
(2.3 pg/kg), turmeric (1.7 pg/kg) and coriander (1.6 ug/kg) in Malaysia [112].

Aflatoxin Gi, Number of AFG;-positive studies has been proven as high in turmeric and
cumin and as moderate in chili, black pepper, fennel, cinnamon, and ginger—see Table S1 of the
Supplementary Materials.

The AFG; occurrence has been proven as moderate in fennel and white pepper; as low in cumin,
turmeric, paprika, fenugreek, cinnamon, ginger, chili, coriander, and black pepper; and as rare in
nutmeg, caraway, and licorice—see Table 5.
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The highest AFG; concentrations in different spices have been reported in paprika (318.1 ug/kg)
in Italy [107], anise (157.5 ug/kg), thyme (41.2 pug/kg), black pepper (31.5 pg/kg), rosemary (12.9 ug/kg),
mustard (10.5 pg/kg) and parsley (8.1 ug/kg) in Egypt [109], and chili (7.0 pg/kg) in Malaysia [114].

Aflatoxin Gy, Number of AFG,-positive studies has been proven as moderate in chili, cumin,
ginger, coriander, black pepper, and fennel and as rare in cinnamon and turmeric—see Table S1 of the
Supplementary Materials.

The AFG; occurrence has been proven as moderate in white pepper; as low in fenugreek, turmeric,
coriander, paprika, black pepper, and chili; as rare in fennel, cumin, ginger, and caraway; and none in
nutmeg, cinnamon, and licorice—see Table 5.

The highest AFG, concentrations in different spices have been reported in paprika (45.4 pg/kg) in
Italy [107], black pepper (16.0 pug/kg) in Egypt, mustard (7.6 pug/kg) in Egypt [109], chili (1.5 pg/kg) in
Turkey [115], and cinnamon (0.4 pg/kg) in Iran [116].

6.1.2. Ochratoxin A

OTA is the second most frequently analyzed mycotoxin in spices, after AFs. In terms of OTA,
studies are most often concerned with black pepper, chili, ginger, fennel, and turmeric, in descending
order, where its occurrence is high to very high. In the following summaries of positive findings, only
OTA occurrence supported by at least 5 studies or at least 30 samples will be described in more detail.

The number of OTA-positive studies has been proven as very high in turmeric, chili, and ginger
and as high in black pepper and fennel—see Table S1 of the Supplementary Materials.

The OTA occurrence has been proven as high in paprika and mace; as moderate in turmeric,
ginger, fenugreek, cardamom, chili, black pepper, caraway;, licorice, coriander, and fennel; as low in
white pepper, cinnamon, and cumin; and none in oregano, clove, thyme, and basil—see Table 5.

The highest OTA concentrations in different spices have been reported in chili (907.5 pg/kg) in
Ivory Coast [117], paprika (177.4 ug/kg) in Italy [107], black pepper (79.0 ug/kg) in Sri Lanka [118],
cardamom (78.0 pg/kg) in Saudi Arabia [119], nutmeg (60.7 pg/kg) and licorice (36.7 pg/kg) in the
Czech Republic [120], cumin (20.4 ug/kg) in Malaysia [112], cinnamon (16.1 pg/kg) in Iran [121], ginger
(12.7 pg/kg) in the Czech Republic [120], curry (9.6 pg/kg) in Malaysia [112], turmeric (8.5 pg/kg) in
Iran [121], garlic (5.1 ug/kg) in Lebanon [9], and white pepper (4.9 ug/kg) in Cameroon [35].

6.1.3. Citrinin

Very few studies deal with CIT in spices—only 1 to 3 studies pertain to a single spice at a time.
Publications mentioning CIT-positive findings deal with black pepper, chili, coriander, cumin, fenugreek,
ginger, and licorice. On the contrary, CIT has not been found in basil, caraway, fennel, nutmeg, oregano,
thyme, and turmeric, although they have been tested—see Table S1 of the Supplementary Materials.

The CIT occurrence has been proven as moderate in chili, ginger, coriander, and fenugreek; as low
in black pepper and licorice; and none in basil, nutmeg, oregano, thyme, and turmeric—see Table 5.
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Table 5. Samples positivity: Natural occurrence of mycotoxins produced by Aspergillus and Penicillium species in spices in the last 5 years (since 2015).

) AFB; AFB, AFG, AFG, AFs OTA CIT
MyCOtOXlIl ogs b I’ oge ses ogs o ogs Reference
2/Spice Positive ne Positive n Positive n Positive n Positive n Positive n Positive n
(%) (%) (%) (%) (%) (%) (%)
Allspice - - 0 - - 0 - - 0 - - 0 [} 66.7 3 X 0.0 3 - - 0 [9]
Anise [ ] 80.0 5 X 0.0 1 [ ] 100 1 X 0.0 1 25.0 8 33.3 3 - - 0 [9,109,111,122]
Basil X 0.0 56 - - 0 - - 0 - - 0 X 0.0 2 X 0.0 52 X 0.0 50 [9,110,123]
Bay leaf X 0.0 25 X 0.0 18 11.1 18 22.2 18 X 0.0 6 X 0.0 2 - - 0 [9,110,122,124]
Caraway 25.0 56 241 54 Rt 3.7 54 e 1.9 54 39.3 56 35.9 39 X 0.0 25 [8,9,111,120,124,125]
Cardamom X 0.0 2 X 0.0 1 X 0.0 1 X 0.0 1 [ ] 639 122 422 116 - - 0 [9,109,119,122,126,127]
Carom 50.0 20 X 0.0 20 X 0.0 20 X 0.0 20 50.0 20 - - 0 - - 0 [125]
Chili [} 612 957 243 267 109 311 51 293 [ 589 638 416 586 47.3 55 [8,9,106,108,110-118,120-122,128-138]
Cinnamon 17.6 51 X 0.0 39 154 39 X 0.0 39 32.3 62 ) 20.5 39 - - 0 [9,110-112,116,121,122,125,127,131]
Cloves X 0.0 13 X 0.0 12 X 0.0 12 X 0.0 12 11.1 18 X 0.0 54 - - 0 [9,122,127,131]
Coriander [} 56.5 46 19.0 42 8.1 62 6.5 62 [} 53.1 64 31.1 45 40.0 30 [8,9,109,111,112,120,124,125]
Cumin 33.3 69 8.8 57 24.6 57 e 3.5 57 [ 56.5 62 ) 5.7 35 214 28 [8,9,109-112,122,125]
Cumin, black g 14.3 7 51 4.8 21 [ 100 1 w 4.8 21 [ 81.0 21 - - 0 - - 0 [109,110,125]
Curry [ ] 84.6 13 [ 61.5 13 23.1 13 77 13 [ ] 84.6 13 ° 100 8 - - 0 [112]
Dawadawa [ ) 100 12 - - 0 - - 0 - - 0 - - 0 ) 16.7 12 - - 0 [130]
Fennel 253 91 9.2 76 30.3 76 e 39 76 [} 540 113 29.1 79 X 0.0 25 [8,9,109-112,124-127,131]
Fenugreek [} 58.3 36 16.7 36 16.7 36 13.9 36 [ ) 62.5 40 46.2 39 37.1 35 [8,9,109]
Garlic - - 0 - - 0 - - 0 - - 0 X 0.0 2 50.0 2 - - 0 [9]
Ginger [ ) 63.1 217 29.7 192 13.0 192 e 26 192 [ 59.4 165 479 213 44.4 36 [8,9,109-111,117,120,122,130,139,140]
Licorice w 3.1 32 X 0.0 32 w 3.1 32 X 0.0 32 w 3.1 32 32.6 43 6.5 31 [109,120,141]
Mace - - 0 - - 0 - - 0 - - 0 [} 63.3 30 ° 60.0 30 - - 0 [126]
Marjoram [ ] 100 1 X 0.0 1 X 0.0 1 X 0.0 1 33.3 3 50.0 2 - - 0 [9,109]
Mint X 0.0 25 X 0.0 16 X 0.0 16 X 0.0 16 X 0.0 19 X 0.0 3 - - 0 [9,110,124]
Mustard 50.0 2 X 0.0 1 [ ] 100 1 [ ] 100 1 [ ] 100 1 ) 25.0 12 - - 0 [109,120,127]
Nutmeg 279 104 13.2 53 Rt 3.8 53 X 0.0 53 [} 55.7 131 ° 92.9 14 X 0.0 50 [9,105,109,120,123,127,135]
Onion X 0.0 8 - - 0 X 0.0 8 - - 0 X 0.0 12 X 0.0 12 - - 0 [9,133]
Oregano X 0.0 79 X 0.0 29 X 0.0 29 X 0.0 29 w 3.1 32 X 0.0 65 X 0.0 50 [9,123,124,131]
Paprika 47.6 42 22.6 31 18.4 38 6.5 31 439 41 [ ] 60.4 53 - - 0 [9,107,111,120,133]
Parsley [ ] 100 1 ° 100 1 o 100 1 X 0.0 1 50.0 2 X 0.0 1 - - 0 [9,109]
Pepper, black 31.0 226 138 80 75 120 57 140 448 203 36.0 264 207 92 gi’?,’f;él_qiigﬁ16’117’120_123'123_
Pepper, white 5.3 38 w 2.6 38 26.3 38 263 38 [ 55.0 40 ) 21.1 38 - - 0 [9,35,112,125,131]
Rosemary 14.8 27 29.6 27 At 3.7 27 33.3 27 27.8 18 ) 5.9 17 - - 0 [9,109,124,131]
Saffron 50.0 4 - - 0 - - 0 - - 0 X 0.0 1 X 0.0 1 - - 0 [9,111]
Sage 33.3 3 X 0.0 1 [ ] 100 1 X 0.0 1 50.0 4 33.3 3 - - 0 [9,109,110]
Star anise X 0.0 1 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 [127]
Sumac X 0.0 9 - - 0 - - 0 - - 0 X 0.0 2 X 0.0 2 - - 0 [9,110]
Thyme ¥ 2.7 73 X 0.0 13 77 13 X 0.0 13 6.3 16 X 0.0 53 X 0.0 50 [9,109,110,123,124]
Turmeric [ ] 57.1 70 24.6 65 24.6 65 8.2 85 [ ] 519 129 49.0 104 X 0.0 35 [8,9,109,110,112,116,121,122,125,126]
Notes: @ AFB; = Aflatoxin By, AFB, = Aflatoxin B, AFG; = Aflatoxin Gy, AFG, = Aflatoxin G,, AFs = Aflatoxins, OTA = Ochratoxin A, CIT = Citrinin; ? Positive = the percentage of
positive samples; € n = the total number of samples related to mycotoxin and spice from all publications involved; X = none occurrence (0%), ¥ = rare occurrence (up to 5%), O = low

occurrence (up to 25%), = = moderate occurrence (up to 50%), ® = high occurrence (up to 75%), ® = very high occurrence (more than 75%).
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6.1.4. Fumonisins

As in the case of CIT, there are not many studies for FMNs in spices—only 1-4 and 1-2 studies
dealing with FB; and FB,, respectively, pertain to a single spice at a time. Studies with positive findings
of FMN:s in spices are rather rare; however, some publications in connection with positive findings in
black pepper, licorice, nutmeg, mint, and thyme for FBy; chili for FBy; and paprika, onion spice and
dawadawa for both of them have been published. On the contrary, neither of FMNs have been found
in many kinds of spices—see Table S2 of the Supplementary Materials.

The FB; occurrence has been proven as moderate in paprika and licorice; as low in mint and garlic;
as rare in thyme; and as none in black pepper, oregano, and basil—see Table 6.

The FB; occurrence has been proven as high in paprika and as none in garlic and licorice.

The highest FB; concentrations in different spices have been reported in onion (591.0 pug/kg) in
South Africa [133], garlic (540.0 ug/kg) of unknown origin [142], mint (256.0 ug/kg) in Turkey [143],
paprika (243.9 ug/kg) in Italy [107], dawadawa (165.0 ug/kg) in Nigeria [34], black pepper (135.0 pg/kg)
from Sri Lanka [118], thyme (125.0 pg/kg) in Turkey [143], licorice (39.3 pg/kg) in China [141],
and nutmeg (25.0 ng/kg) originated in Indonesia [123].

The highest FB, concentrations in different spices have been reported in onion (4537.0 pug/kg) in
South Africa, chili (425.0 pug/kg) in South Africa [133], paprika (176.9 pg/kg) in Italy [107], and dawadawa
(170.0 pg/kg) in Nigeria [34].

6.1.5. Trichothecenes (DON, NIV, T-2, HT-2)

As with CIT and FMN:s, there are not many studies for TCT in spices, including DON, NIV, T-2,
and HT-2—see Table S2 of the Supplementary Materials. None of the TCT has been detected in basil,
nutmeg, black pepper, and oregano, while all of the above-mentioned toxins have been detected in
paprika at low to moderate levels. For thyme, DON has been detected at a low level, while none of the
other TCT has been detected—see Table 6.

The highest concentrations in different spices have been reported in paprika (59.8 ug/kg) in
Italy [107] and licorice (11.0 ng/kg) in China [141] for DON, in paprika (243.9 pg/kg) in Italy [107] for
NIV, in dawadawa (32.0 ug/kg) in Nigeria [34] and paprika (27.1 pg/kg) in Italy [107] for T-2, and in
paprika (75.9 pg/kg) in Italy [107] and dawadawa (58.0 ug/kg) in Nigeria [34] for HT-2.

6.1.6. Zearalenone

ZEA is one of the least analyzed mycotoxins in this review. No more than one study pertains to
a single spice—see Table S2 of the Supplementary Materials. The ZEA occurrence has been proven
as very high in paprika (up to 53.6 pg/kg) in Italy [107]; as moderate in dawadawa (up to 86.0 pg/kg)
in Nigeria [34]; as low in thyme (up to 209.0 pg/kg) originated in Poland [123] and licorice (up to
8.8 pg/kg) in China [141]; and as none in chili originated in Korea [137], basil originated in India,
nutmeg originated in Indonesia, oregano originated in Turkey, and black pepper originated in Brazil
and Vietnam [123]—see Table 6.
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Table 6. Samples positivity: Natural occurrence of Fusarium mycotoxins in spices in the last 5 years (since 2015).

14 of 33

FBy FB, DON NIV T-2 HT-2 ZEA

MyCOfOXiIl ogs b oge ope oge Py ops oge Reference
2/Spice Positive ne Positive n Positive n Positive n Positive n Positive n Positive n

(%) (%) (%) (%)
Basil X 0.0 55 X 0.0 5 X 0.0 50 X 00 50 X 0.0 50 X 0.0 50 X 0.0 50  [123,143]
Bay leaf X 00 19 X 0.0 1 - - 0 - - 0 X 00 18 X 00 18 - - 0 [124,143]
Caraway X 0.0 9 - - 0 - - 0 - - 0 X 0.0 9 X 0.0 9 - - 0 [124]
Chili X 00 18 56 18 - - 0 - - 0 - - 0 - - 0 X 0.0 56  [133,137]
Coriander X 00 17 X 0.0 8 - - 0 - - 0 33.3 9 X 0.0 9 - - 0 [124,143]
Dawadawa 471 17 ° 588 17 X 00 17 X 00 17 353 17 59 17 353 17 [34]
Fennel X 00 11 - - 0 - - 0 - - 0 X 00 11 X 00 11 - - 0 [124]
Garlic 54 56 X 0.0 56 - - 0 - - 0 - - 0 - - 0 - - 0 [142]
Licorice 387 31 X 0.0 31 x4 32 31 - - 0 X 00 31 - - 0 129 31  [141]
Mint 6.5 31 X 0.0 15 - - 0 - 0 188 16 X 00 16 - - 0 [124,143]
Nutmeg - - 0 - - 0 X 0.0 50 X 00 50 X 0.0 50 X 0.0 50 X 0.0 50 [123]
Onion 37.5 8 ° 87.5 8 - - 0 - - 0 - - 0 - - 0 - - 0 [133]
Oregano X 0.0 67 - - 0 X 0.0 50 X 00 50 X 00 67 X 00 67 X 0.0 50 [123,124]
Paprika 50.0 38 ° 737 38 387 31 484 31 194 31 194 31 [ 871 31  [107,133]
Pepper, black X 0.0 50 - - 0 X 0.0 50 X 00 50 X 0.0 50 X 0.0 50 X 0.0 50 [123]
Rosemary X 00 11 - - 0 - - 0 - - 0 X 00 11 X 00 11 - - 0 [124]
Thyme g 1.3 76 X 0.0 14 140 50 X 0.0 50 X 00 62 X 00 62 18.0 50  [123,124,143]

Notes: # FB; = Fumonisin By, FB, = Fumonisin B, DON = Deoxynivalenol, NIV = Nivalenol, T-2 = T-2 toxin, HT-2 = HT-2 toxin, ZEA = Zearalenone; b positive = the percentage of
positive samples; © n = the total number of samples related to mycotoxin and spice from all publications involved; X = none occurrence (0%), ¥ = rare occurrence (up to 5%), © = low
occurrence (up to 25%),

= moderate occurrence (up to 50%), ® = high occurrence (up to 75%), ® = very high occurrence (more than 75%).
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6.1.7. Alternaria Mycotoxins

Alternaria mycotoxins (ALT, AOH, TEA) are rarely studied in spices, as most data originated in
just one publication [10]—see Table S3 of the Supplementary Materials. Moreover, very few samples
per single spice have been tested.

All above mentioned Alternaria mycotoxins have been confirmed in cinnamon, ginger, chili and
paprika, but no other findings have been found in anise, basil and parsley. In addition, among
Alternaria mycotoxins, TEA has been found in most of spice samples: bay leaf, caraway, cardamom,
cinnamon, cloves, coriander, cumin, fennel, fenugreek, garlic, ginger, chili, marjoram, mint, nutmeg,
onion, oregano, paprika, black pepper, white pepper, rosemary, sage, sumac, thyme, and turmeric.
More details about single Alternaria toxins and other spices are shown in Table 7.

Table 7. Samples positivity: Natural occurrence of Alternaria mycotoxins in spices in the last 5 years

(since 2015).
ALT AOH TEA
Mycotoxin ?/Spice Reference
Positive ? (%) n¢ Positive (%) n Positive (%) n
Allspice X 0.0 3 333 3 X 0.0 3 [10]
Anise X 0.0 3 X 00 3 X 0.0 3 [10]
Basil X 00 2 X 00 2 X 00 2 [10]
Bay leaf X 00 2 X 00 2 500 2 [10]
Caraway X 0.0 2 X 0.0 2 (] 100 2 [10]
Cardamom X 0.0 4 X 0.0 4 ® 75.0 4 [10]
Chili ( 14.3 7 429 7 ® 100 7 [10]
Cinnamon () 66.7 3 ® 66.7 3 () 66.7 3 [10]
Cloves 500 2 X 00 2 500 2 [10]
Coriander X 0.0 2 X 0.0 2 (] 100 2 [10]
Cumin X 00 5 X 00 5 [ 100 5 [10]
Fennel X 00 2 X 00 2 ® 100 2 [10]
Fenugreek X 0.0 4 X 0.0 4 50.0 4 [10]
Garlic X 00 2 50.0 2 ) 100 2 [10]
Ginger 333 3 333 3 ) 66.7 3 [10]
Licorice - - 0 452 31 - - 0 [141]
Marjoram X 0.0 2 X 0.0 2 ° 100 2 [10]
Mint X 0.0 3 333 3 ) 66.7 3 [10]
Nutmeg X 00 2 50.0 2 500 2 [10]
Onion X 00 4 500 4 500 4 [10]
Oregano X 0.0 3 33.3 3 ® 100 3 [10]
Paprika O 59 34 ) 61.8 34 [ 100 34 [10,107]
Parsley X 0.0 1 X 0.0 1 X 0.0 1 [10]
Pepper, black X 00 4 ( 250 4 o 750 4 [10]
Pepper, white X 0.0 2 50.0 2 50.0 2 [10]
Rosemary X 0.0 2 X 0.0 2 50.0 2 [10]
Sage X 0.0 3 ) 66.7 3 ) 66.7 3 [10]
Sumac X 0.0 2 50.0 2 ® 100 2 [10]
Thyme X 00 3 X 00 3 ) 100 3 [10]
Turmeric 50.0 2 X 0.0 2 ® 100 2 [10]

Notes:  ALT = Altenuene, AOH = Alternariol, TEA = Tenuazonic acid; P Positive = the percentage of positive
samples;  n = the total number of samples related to mycotoxin and spice from all publications involved; X = none
occurrence (0%), ¥ = rare occurrence (up to 5%), © = low occurrence (up to 25%), = = moderate occurrence (up to
50%); ® = high occurrence (up to 75%), ® = very high occurrence (more than 75%).

The highest ALT concentrations in different spices have been reported in clove (11.7 pg/kg) in
Lebanon [10]; paprika (40.3 pg/kg) in Italy [107]; and ginger (5.2 ug/kg), chili (3.6 pug/kg), and turmeric
(2.8 pug/kg) in Lebanon [10]. The highest AOH concentrations in different spices have been reported
in licorice (520.6 ug/kg) in China [141]; paprika (428.4 ug/kg) in Italy [107]; and white pepper
(319.7 ug/kg), black pepper (89.0 ug/kg), garlic (57.4 pg/kg), oregano (13.5 pg/kg), nutmeg (12.7 ug/kg),
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mint (11.8 pg/kg), allspice (8.0 ug/kg), sumac (6.6 pg/kg), and ginger (5.4 pg/kg) in Lebanon [10].
The highest TEA concentrations in different spices have been reported in paprika (8248.5 pg/kg)
in Italy [107] and rosemary (50.4 ug/kg), bay leaf (48.2 ug/kg), nutmeg (22.0 ug/kg), white pepper
(20.3 pg/kg), and clove (14.9 pg/kg) in Lebanon [10].

6.1.8. Sterigmatocystin

STEG has been found in oregano (unknown positivity, up to 28.0 pg/kg) originated in Turkey [123],
at low level in paprika (14.3%, 1/7, 18.0 ug/kg) in South Africa [133], and at rare level in thyme (4%, 2/50,
up to 14 ug/kg) originated in Poland [123]. Black pepper and chili have been found positive in Sri
Lanka at moderate levels (43.9%, 36/82, 49.0 ng/kg and 38.4%, 33/86, up to 32 ug/kg, respectively) [118],
while no STEG has been detected in 50 samples of black pepper originated in Brazil and Vietnam [123]
and in 18 samples of chili in South Africa [133]. STEG has been detected in none of the following spices:
50 basil samples originated in India [123], 31 licorice samples from China [141], 50 nutmeg samples
originated in Indonesia [123], or 8 onion samples from South Africa [133]. For very little data, STEG is
further discussed neither in the text nor in the table.

6.2. Microfungi in Spices Overview

A total of 25 studies altogether covering 14 microfungi in 33 spices were included.
These publications cover (the numbers in brackets indicate the number of publications related
to the kind of spice or microfungi) anise (3), basil (1), bay leaf (2), caraway (6), cardamom (6), chili (14),
cinnamon (8), cloves (8), coriander (6), cumin (5), cumin black (2), curry (4), fennel (8), fenugreek (3),
garlic (3), ginger (7), licorice (1), mace (1), marjoram (1), mint (1), mustard (3), nutmeg (10), oregano (2),
paprika (2), parsley (1), pepper black (12), pepper white (6), rosemary (3), saffron (3), star anise (1),
sumac(2), thyme (3), and turmeric (5) in which the following microfungi were analyzed: Aspergillus
Aflavus (20), A. parasiticus (13), A. niger (20), A. carbonarius (4), A. tamarii (8), A. terreus (6), A. versicolor (7),
A. ochraceus (8), Penicillium citrinum (13), P. verrucosum (3), Fusarium verticillioides (3), Alternaria alternata
(5), Rhizopus nigricans (3), and R. oryzae (4).

The percentage of positive studies to the total number of studies concerning each unique spice and
microfungi combination are shown in Table 8 (for Aspergillus spp., Penicillium spp., and Fusarium spp.),
Table 9 (for Aspergillus species), and Table 10 (for Penicillium, Fusarium, Alternaria, and Rhizopus species).

Aspergillus, Penicillium, and Fusarium genera are the most important mycotoxin producers in
various commodities [39], which also applies to spices in which they are commonly present, as can
be seen in Table 8. Out of the mentioned microfungi genera, spices are predominantly contaminated
by Aspergillus followed by Penicillium and then by Fusarium strains. In the following summary, only
microfungi occurrences supported by at least 5 individual studies are described in more detail.

6.2.1. Aspergillus Species

Aspergillus species are in the vast majority of spices. The occurrence is very high in chili, fennel,
ginger, caraway, coriander, white pepper, turmeric, black pepper, nutmeg, cardamom, and cumin and
moderate in cinnamon and cloves. Based on all included studies, some Aspergillus strains were isolated
from all spices involved in this review except for star anise, which was only analyzed once and with
negative results—see Table 8.

Of the Aspergillus species, A. niger is most common in spices, followed by A. flavus and A. ochraceus.
The occurrence of A. niger is very high in black pepper, cardamom, chili, and fennel, high in cinnamon,
ginger, and nutmeg, and low in cloves. The occurrence of A. flavus is very high in chili, black pepper,
cardamom, and white pepper; high in nutmeg and fennel; and moderate in cloves and cinnamon.
The occurrence of A. ochraceus is very high in black pepper and moderate in chili and fennel. As for the
less significant species, the occurrence of A. tamarii is very high in chili and high in nutmeg, and the
occurrence of A. parasiticus is high in black pepper, ginger, and chili; moderate in cloves; and low in
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fennel. The other Aspergillus species and data supported by less than five studies are shown in more

detail in Table 9.

Table 8. Fungi: Natural occurrence of Aspergillus, Penicillium and Fusarium genera in spices in the last 5

years (since 2015).

Microfungi/Spice Aspergillus spp. Penicillium spp. Fusarium spp. Reference
Positive? (%) nP?  Positive (%) n Positive (%) n

Anise [ ] 100 3 [} 100 2 50.0 2 [109,111,144]

Basil [ ] 100 1 [ ] 100 1 X 0.0 1 [109]

Bay leaf [ ] 100 2 [ ] 100 2 50.0 2 [109,145]

Caraway [ ] 100 6 [ ] 80.0 5 20.0 5 [8,109,111,144-146]

Cardamom [ ] 83.3 6 50.0 6 33.3 6 [109,119,126,127,145,146]

Chili [ ] 100 15 [ ] 66.7 9 [ ] 100 6 553'11]06'1 09,111,113,131,132,144, 146~

Cinnamon 50.0 8 50.0 6 X 0.0 5 [109,111,127,131,144-146,149]

Cloves 37.5 8 14.3 7 X 0.0 4 [109,127,131,145-149]

Coriander ) 100 6 ® 60.0 5 X 00 5 [8109,111,144-146]

Cumin [ ] 80.0 5 [ ] 75.0 4 50.0 4 [8,109,111,144,146]

Cumin, black [ ] 100 2 50.0 2 50.0 2 [109,145]

Curry ° 750 4 X 00 4 X 0.0 2 [144,146-148]

Fennel [ ] 100 8 50.0 6 [ ] 60.0 5 [8,109,111,126,127,131,145,149]

Fenugreek [ ] 100 3 [ ] 66.7 3 33.3 3 [8,109,146]

Garlic [ 100 3 X 00 3 X 00 1 [109,147,148]

Ginger [ ] 100 7 33.3 6 50.0 4 [8,109,111,144,146-148]

Licorice [ ] 100 1 [ ] 100 1 X 0.0 1 [109]

Mace ) 100 1 ) 100 1 ° 100 1 [126]

Marjoram [ ] 100 1 [ ] 100 1 X 0.0 1 [109]

Mint [ ] 100 1 [ ] 100 1 X 0.0 1 [109]

Mustard ) 66.7 3 ) 66.7 3 X 0.0 3  [109,127,146]

Nutmeg [ ] 90.0 10 [ ] 60.0 10 X 0.0 4 [105,109,127,144,146-148,152-154]

Oregano [ ) 100 2 [} 100 1 - - 0 [131,149]

Paprika ) 100 2 ) 100 1 ° 100 1 [107,111]

Parsley [ ] 100 1 [ ] 100 1 X 0.0 1 [109]

Pepper, black ) 91.7 12 ) 750 8 333 6 {i;gi; ,]]]5';]] 8,126,127,131,144,146,

Pepper, white [ ] 100 6 50.0 4 X 0.0 2 [118,131,144,146,149,151]

Rosemary [ ] 100 3 50.0 2 X 0.0 1 [109,131,149]

Saffron [ ] 66.7 3 50.0 2 X 0.0 2 [109,111,146]

Star anise X 0.0 1 X 0.0 1 X 0.0 1 [127]

Sumac 50.0 2 X 0.0 2 50.0 2 [109,145]

Thyme ) 100 3 333 3 ) 100 1 [109,147,148]

Turmeric ° 100 5 ° 800 5 ) 60.0 5  [8,109,126,144,146]

Notes: ? Positive = the percentage of studies with at least one related spice sample positive on related mold;

b

n = number of studies concerning related spice and mold; X = none occurrence (0%); ¥ = rare occurrence (up to
5%); O = low occurrence (up to 25%);

= moderate occurrence (up to 50%); ® = high occurrence (up to 75%);
@ = very high occurrence (more than 75%).
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Table 9. Fungi: Natural occurrence of Aspergillus species in spices in the last 5 years (since 2015).
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A. flavus A. parasiticus A. niger A. tamari A. terreus A. versicolor A. ochraceus A. carbonarius
Microfung/Spice Positive? nP Positive n Positive n Positive n Positive n Positive n Positive n Positive n Reference
(%) (%) (%) (%) (%) (%) (%) (%)

Anise X 0.0 1 X 00 1 ) 100 1 50.0 2 X 00 1 X 00 1 [} 100 1 - -0 [109,144]

Basil X 0.0 1 X 00 1 ® 100 1 X 00 1 X 00 1 ® 100 1 ) 00 1 - -0 [109]

Bay leaf 500 2 X 00 1 ® 100 2 X 00 1 ® 100 1 X 00 1 [} 100 1 - - 0 [109,145]

Caraway 333 3 X 00 3 ) 100 4 X 00 3 50.0 2 X 00 2 50.0 2 - - 0 [8,109,144-146]

Cardamom ® 833 6 50.0 4 ® 100 6 X 00 1 333 3 50.0 2 ® 667 3 - - 0 [109,119,126,127,145,146]

Chili ® 900 10 ® 556 9 ® 909 11 e 800 5 50.0 4 e 750 4 400 5 500 4 [8,109,113,131,132,144,146-151]

Cinnamon 333 6 250 4 ® 667 6 333 3 X 00 2 X 00 2 e 667 3 X 0.0 2 [109,127,131,144-146,149]

Cloves 375 8 333 6 250 8 X 00 2 X 00 2 X 00 3 X 00 3 X 00 2 [109,127,131,145-149]

Coriander 333 3 333 3 e 750 4 00 3 X 00 2 X 00 2 X 00 2 - - 0 [8,109,144-146]

Cumin 50.0 2 X 00 3 ® 667 3 333 3 50.0 2 50.0 2 ® 100 2 - - 0 [8,109,144,146]

Cumin, black 500 2 X 00 1 ® 100 2 X 00 1 X 00 1 ] 100 1 X 00 1 - - 0 [109,145]

Curry 333 3 333 3 333 3 ) 100 1 - -0 X 00 1 - -0 - -0 [144,146-148]

Fennel ® 667 6 200 5 ® 8.7 7 X 00 3 e 750 4 250 4 400 5 X 0.0 2 [8,109,126,127,131,145,149]

Fenugreek 50.0 2 X 00 3 ® 100 3 X 00 2 X 00 2 X 00 2 50.0 2 - - 0 [8,109,146]

Garlic 333 3 ® 667 3 ® 667 3 X 00 1 X 00 1 50.0 2 X 00 1 - - 0 [109,147,148]

Ginger e 750 4 ® 600 5 ® 600 5 X 00 3 50.0 2 333 3 50.0 2 - - 0 [8,109,144,146-148]

Licorice ) 100 1 X 00 1 ) 100 1 ® 100 1 X 00 1 X 00 1 X 00 1 - -0 [109]

Mace ® 100 1 ® 100 1 ® 100 1 - -0 X 00 1 [ ) 100 1 X 00 1 - - 0 [126]

Marjoram X 0.0 1 X 00 1 ) 100 1 X 00 1 X 00 1 X 00 1 X 00 1 -0 [109]

Mint X 0.0 1 X 00 1 ® 100 1 X 00 1 X 00 1 ® 100 1 X 00 1 - - 0 [109]

Mustard X 0.0 3 50.0 2 333 3 X 00 1 X 00 1 X 00 1 X 00 1 - - 0 [109,127,146]

Nutmeg ® 667 9 e 750 4 ® 556 9 ® 600 5 X 00 1 50.0 4 ® 667 3 - - 0 [105,109,127,144,146-148,152-154]

Oregano ) 100 2 X 00 2 ° 100 2 ° 100 1 ° 100 1 ° 100 1 [} 100 2 X 0.0 2 [131,149]

Parsley X 0.0 1 X 00 1 ® 100 1 ® 100 1 X 00 1 X 00 1 [} 100 1 - - 0 [109]

Pepper, black ® 89 9 e 750 8 ® 8389 9 50.0 4 50.0 4 100 4 [} 100 5 ) 100 2 [8,109,118,126,127,131,144,146,149,
151,155]

Pepper, white [} 80.0 5 [ 750 4 [ ] 100 4 [ ] 100 2 [ ] 100 1 [ ] 100 1 X 00 2 X 0.0 2 [118,131,144,146,149,151]

Rosemary e 667 3 e 667 3 ) 100 3 X 00 2 X 00 2 50.0 2 X 00 3 X 0.0 2 [109,131,149]

Saffron X 0.0 2 X 00 2 50.0 2 X 00 1 X 00 1 ® 100 1 X 00 1 - - 0 [109,146]

Star anise X 0.0 1 - -0 X 00 1 - -0 - -0 - -0 - -0 - -0 [127]

Sumac 50.0 2 X 00 1 X 00 2 X 00 1 X 00 1 X 00 1 X 00 1 - - 0 [109,145]

Thyme ) 100 3 ® 667 3 333 3 X 00 1 00 1 50.0 2 ) 00 1 - - 0 [109,147,148]

Turmeric 333 3 50.0 4 50.0 4 X 00 3 X 00 3 X 00 3 ) 100 3 - - 0 [8,109,126,144,146]

Notes: 2 Positive = the percentage of studies with at least one related spice sample positive on related mold; ® n = number of studies concerning related spice and mold; x = none occurrence

(0%); ¥ = rare occurrence (up to 5%); O = low occurrence (up to 25%);

= moderate occurrence (up to 50%); ® = high occurrence (up to 75%); ® = very high occurrence (more than 75%)
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Table 10. Fungi: Natural occurrence of Penicillium, Fusarium, Alternaria, and Rhizopus species in spices in the last 5 years (since 2015).

Penicillium citrinum Penicillium Fusarium Alternaria Rhizopus nigricans Rhizopus oryzae
Microfungi/Spice verrucosum verticillioides alternata Reference
Positive 2 (%) nb Positive (%) n Positive (%) n Positive (%) n Positive (%) n Positive (%) n
Anise X 0.0 1 - - 0 X 0.0 1 ® 100 1 X 0.0 1 - - 0 [109]
Basil X 0.0 1 - - 0 X 0.0 1 X 0.0 1 X 0.0 1 - - 0 [109]
Bay leaf X 0.0 1 - - 0 X 0.0 1 X 0.0 2 X 0.0 1 ® 100 1 [109,145]
Caraway 50.0 2 X 0.0 1 X 0.0 2 X 0.0 3 X 0.0 2 X 0.0 2 [8,109,145]
Cardamom 50.0 4 [} 100 2 50.0 2 ) 66.7 3 X 0.0 2 ® 100 3 [109,119,126,127,145]
Chili 333 6 ) 100 1 [} 100 2 ) 66.7 3 X 0.0 2 ° 100 1 [8,109,132,147-149]
Cinnamon X 0.0 3 - - 0 X 0.0 1 X 0.0 2 X 0.0 1 X 0.0 1 [109,127,145,149]
Cloves X 0.0 5 - - 0 X 0.0 1 X 0.0 2 X 0.0 1 X 0.0 1 [109,127,145,147-149]
Coriander 50.0 2 ° 100 1 X 0.0 2 33.3 3 50.0 2 50.0 2 [8,109,145]
Cumin 50.0 2 X 0.0 1 X 0.0 2 50.0 2 ) 100 2 ® 100 1 [8,109]
Cumin, black X 0.0 1 - - 0 X 0.0 1 X 0.0 2 X 0.0 1 X 0.0 1 [109,145]
Curry X 0.0 2 - - 0 - - 0 - - 0 - - 0 - - 0 [147,148]
Fennel 20.0 5 X 0.0 2 ) 66.7 3 X 0.0 3 X 0.0 3 ) 66.7 3 [8,109,126,127,145,149]
Fenugreek 50.0 2 [} 100 1 50.0 2 50.0 2 X 0.0 2 ® 100 1 [8,109]
Garlic X 0.0 3 - - 0 X 0.0 1 X 0.0 1 X 0.0 1 - - 0 [109,147,148]
Ginger 25.0 4 ) 100 1 50.0 2 X 0.0 2 X 0.0 2 ® 100 1 [8,109,147,148]
Licorice X 0.0 1 - - 0 X 0.0 1 X 0.0 1 X 0.0 1 - - 0 [109]
Mace ® 100 1 [} 100 1 [} 100 1 - - 0 [ 100 1 ® 100 1 [126]
Marjoram ® 100 1 - - 0 X 0.0 1 X 0.0 1 X 0.0 1 - - 0 [109]
Mint X 0.0 1 - - 0 X 0.0 1 X 0.0 1 X 0.0 1 - - 0 [109]
Mustard 50.0 2 - - 0 X 0.0 1 ) 100 1 [} 100 1 - - 0 [109,127]
Nutmeg 50.0 8 - - 0 X 0.0 1 X 0.0 1 X 0.0 1 - - 0 [105,109,127,147,148,152-154]
Oregano X 0.0 1 - - 0 - - 0 - - 0 - - 0 - - 0 [131,149]
Parsley X 0.0 1 - - 0 X 0.0 1 X 0.0 1 X 0.0 1 - - 0 [109]
Pepper, black 40.0 5 ) 100 2 ) 66.7 3 X 0.0 2 ) 66.7 3 ) 100 2 [8,109,126,127,149]
Pepper, white [ 100 1 - -0 - -0 - -0 - -0 - -0 [149]
Rosemary 50.0 2 - - 0 X 0.0 1 X 0.0 1 X 0.0 1 - - 0 [109,149]
Saffron X 0.0 1 - - 0 X 0.0 1 X 0.0 1 X 0.0 1 - - 0 [109]
Star anise X 0.0 1 - - 0 - - 0 - - 0 - - 0 - - 0 [127]
Sumac X 0.0 1 - - 0 X 0.0 1 X 0.0 2 X 0.0 1 ® 100 1 [109,145]
Thyme X 0.0 3 - - 0 [} 100 1 X 0.0 1 X 0.0 1 - - 0 [109,147,148]
Turmeric ) 100 3 ) 100 2 ) 66.7 3 X 0.0 2 X 0.0 3 50.0 2 [8,109,126]

19 of 33

Notes: 2 Positive = the percentage of studies with at least one related spice sample positive on related mold; ® n = number of studies concerning related spice and mold; x = none occurrence

(0%); v = rare occurrence (up to 5%); © = low occurrence (up to 25%);

= moderate occurrence (up to 50%); ® = high occurrence (up to 75%); @ = very high occurrence (more than 75%).
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6.2.2. Penicillium Species

Compared to Aspergillus spp., the occurrence of Penicillium spp. is slightly lower but overall,
still significant, as it has been very high in caraway and turmeric; high in black pepper, chili, nutmeg,
and coriander; moderate in cardamom, cinnamon, fennel, and ginger; and low in cloves.

Based on all included studies, Penicillium spp. was isolated from all spices included in the present
review except for four cases: curry, garlic, star anise, and sumac—see Table 8.

The two Penicillium species considered in this review were P. citrinum and P. verrucosum,
among which the second mentioned is studied rather rarely but in most cases came out positive.
The occurrence of P. citrinum is moderate in nutmeg, black pepper, and chili; low in fennel; and none in
cloves—see Table 10.

6.2.3. Fusarium Species

Fusarium spp. occurs in spice substantially less than Aspergillus spp. or Penicillium spp., although
its occurrence is still very high in chili, then high in fennel and turmeric, moderate in cardamom and
black pepper, and low in caraway. Apart from oregano which has not been tested for Fusarium spp.
and again considering all included studies, this genus has been confirmed in 16 out of 32 involved
spices—see Table 8. F. verticillioides (= F. moniliforme) is very little studied with only 1-3 relevant studies
per spice. It was confirmed to occur in at least one case in cardamom, fennel, fenugreek, ginger, chili,
mace, black pepper, thyme, and turmeric—see Table 10.

6.2.4. Other Microfungi (Alternaria alternata, Rhizopus nigricans and Rhizopus oryzae)

Only a few publications deal with Alternaria alternata and Rhizopus nigricans and even fewer with
R. oryzae in spices; therefore, it is not possible to summarize them based on the previously established
threshold of five studies. All three have been confirmed to appear in cumin and coriander. In addition,
A. alternata has been found in anise, cardamom, fenugreek, chili, and mustard; R. nigricans in mace,
mustard, and black pepper; and R. oryzae in bay leaf, cardamom, fennel, fenugreek, ginger, chili, mace,
black pepper, sumac, and turmeric—see Table 10.

7. Mycotoxin Levels in Spices in Relation to European Legislation

The concentrations of AFs and/or OTA in spices often exceeded the maximum permissible limit
(MPL) set by EU legislation in involved studies where MPL for AFs and AFB; were exceeded more
often than in case of OTA. Chili and paprika (Capsicum spp.) seem to be the most problematic spices.
Aflatoxin concentrations exceeded MPL in 10 of 12 studies (83.3%) and 3 of 3 studies (100%) for total
AFs and 13 of 18 studies (72.2%) and 2 of 3 studies (66.7%) for AFB, respectively. In the case of
OTA, MPL was exceeded by 50.0% for both chili (6/12) and paprika (2/4). Nutmeg seems to be also
problematic, as its concentration exceeded MPL in 3 of 4 studies (75.0%) for total AFs and 2 of 3 studies
(66.7%) for OTA. However, the concentration of AFB; exceeded MPL only in one of 6 studies (16.7%).
On the contrary, in the case of white pepper, MPL was exceeded in a single study dealing with total
AFs (1/4, 25%) and was not exceeded in any of 3 studies concerning AFB; and 4 studies concerning
OTA—see Table 11.
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Table 11. Summary of studies in which above-the-limit values of mycotoxins have been recorded in relation to the European Union legislation.

AFB; Total AFs OTA
Mycotoxin/Spice Positive Over MPL 2 o © Positive Over MPL nr Positive Over MPL ny Reference
T
% nP % n? % n % n % n % n
Pepper, black 583 7 417 5 12 60.0 6 300 3 10 66.7 8 250 3 12 [8,9,35,108-112,116-118,120-123,125-127,129-131]
Pepper, white 333 1 X 00 0 3 500 2 250 1 4 250 1 00 0 4 [9,35,112,125,131]
Nutmeg 33.3 2 16.7 1 6 75.0 3 [} 75.0 3 4 100 3 66.7 2 3 [9,105,109,120,123,127,135,152,153]
Ginger 100 7 429 3 7 66.7 4 333 2 6 833 5 167 1 6 [8,9,109-111,117,120,122,130,139,140,148]
Turmeric 83 5 500 3 6 750 6 375 3 8 100 5 400 2 5 [8,9,109,110,112,116,121,122,125,126]
Chili 944 17 e 722 13 18 917 11 e 833 10 12 833 10 500 6 12 [8,9,106,108,110-118,120-122,128-133,135,136]
Paprika 100 3 ® 667 2 3 100 3 ° 100 3 3 100 4 500 2 4 [9,107,111,120,133]
Licorice 50.0 1 no MPL 2 50.0 1 no MPL 2 100 2 50.0 1 2 [109,120,141]

Notes: * MPL = maximum permissible limit; b 1 = number of studies; © nt = total number of publications related to mycotoxins in spice, with mean or maximum value available or with no
mycotoxin occurrence; X = none over-MPL occurrence (0%); ¥ = rare over-MPL occurrence (up to 5%); © = low over-MPL occurrence (up to 25%); = = moderate over-MPL occurrence (up
to 50%); ® = high over-MPL occurrence (up to 75%); ® = very high over-MPL occurrence (more than 75%).
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8. Mycotoxins in Spices Based on RASFF

Based on Rapid Alert System for Food and Feed (RASFF) database from the last five years
(2015-2019), in terms of several of mycotoxin notifications, the category “Herbs and spices” ranks third
after categories “Nuts, nut products and seeds” and “Fruits and vegetables”. A total of 219 (80.2%)
and 54 (19.8%) mycotoxin notifications relate to AFs and OTA in spices respectively, with 18 of the
notifications concerning both. More than a half (51.3%) of the notifications include chilies (powdered,
whole, and crushed), followed by nutmeg (20.5%). Each of the other spices, such as berbere spice,
sweet powder, ginger, pepper, curry, and turmeric, represents less than 5% and cumin and mace
even less than 1%. The most notifications originated in India (38.5%), far followed by Indonesia
(13.6%), Ethiopia (11.7%), Sri Lanka (9.9%), Pakistan (5.9%), China (4.0%), and Nigeria (1.8%) and other
countries—see Figure 2 [156]. Some of the highest values of aflatoxin contamination are shown in
Table 12 [156].

Chili powder
: n
1
Nutmeg
Aflatoxins
™ X Indonesia ,’;
R Mycotoxins
Chili whole
Ethiopia
Chili crushed
Berbere ﬂ Sri Lanka

)

=

~
—

Ginger

Sweet paprika powder ﬂ
[ o | Pakistan
Pepper (Piperspp.) -

Ochratoxin A Curry s—

. Other countries
Other spices ;

Figure 2. Notifications of aflatoxins and ochratoxin A in spices by the Rapid Alert System for Food
and Feed (RASFF) in 2015-2019. Notes: Number of notifications in brackets: Pepper, Piper spp. (4),
Curry (3), Turmeric (2), Garlic (2), Cumin (1), and Mace (1). The category “Other spices” includes fasika
spice, kebab spice, suya pepper, and other various spice mixtures. The category “Other countries”
includes all countries with less than 5 mycotoxin notifications for spices: Bangladesh, Croatia, France,
Germany, Ghana, Grenada, Hong Kong, Italy, Kosovo, Kuwait, Lebanon, Malawi, Netherlands, Peru,
Spain, Thailand, Turkey, United Kingdom, and Vietnam. Processed according to RASFF [156].
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Table 12. Some of the highest values of aflatoxin B; and total aflatoxins contamination in spices, based on the RASFF database in 2015-2019.

No. Origin Spice Ma;}n];?ﬁl;;:g of l,}f;:ii‘;:la]“(i‘;i(g)f Classification P Date of Case
1 Nigeria Suya pepper 300.00 360.00 I 15/02/2017
2 Indonesia, Sri Lanka € Nutmeg 180.00 210.60 BR, BR € 21/09/2015, 27/01/2016 €
3 Malawi Chilies 96.20 116.00 A 29/08/2017
4 Ghana, Ghana ¢ Kebab spice 93.40 112.30 A,BR€ 14/07/2015, 12/10/2016 €
5 Ethiopia Paprika powder 73.44 239.57 BR 19/01/2016
6 Ethiopia Berbere spice 35.00 91.00 BR 13/05/2016
7 Sri Lanka Curry powder 34.30 36.50 A 25/01/2018
8 Netherlands White pepper 23.90 54.70 A 09/12/2015
9 Nigeria Ginger 22.70 48.70 A 06/04/2017
10 India Turmeric powder 14.80 16.30 A 05/01/2017
11 India Cayenne pepper 11.10 11.60 BR 19/07/2019
12 India Ground cumin 8.82 12.19 A 02/08/2019

Notes:  Total AFs = sum of aflatoxins By, By, G, and Gy; b [ = Information, BR = Border rejection, A = alert; © comma-separated data correspond to value of AFB; and total AFs,
respectively, in case of data originated from separate notifications. Processed according to RASFF [156].
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9. Discussion

Mycotoxins in spices are quite often notified by the RASFF. Unfortunately, the RASFF data can be
difficult to grasp due to occasional data inconsistency—e.g., inconsistent data format, missing unit,
and inconsistent use of decimal point and comma (possibly leading to misunderstanding decimal
for thousands separator). Data containing one of these ambiguities could not be included in overall
data analysis due to possible distortion of the results—however, the amount of omitted data was not
significant. Obviously, the frequency of notifications alone is not conclusive, as it is directly affected by
the volume of production of the spice. Unfortunately, the worldwide production could not be carried
out for each individual spice, since the FAOSTAT data of certain kinds of spices are grouped—e.g.,
in the group of four single spices “Anise, badian, fennel, and coriander” or the group of three single spices
“Nutmeg, mace, and cardamoms”.

As evident from the studies included in this review, AFs and OTA are the most-commonly
researched mycotoxins in spices, especially in chili and black pepper. However, for a better summary
of all data, complete and accurate data (mainly concentration ranges, percentages of positive samples,
and total numbers of analyzed samples) are needed, some of which are often lacking in many
publications. Due to missing data, several publications in this summary had to be omitted.

In general, most spices appear to be prone to fungal infection and thus potentially mycotoxin
contamination. Paprika, chili pepper, black pepper, white pepper, ginger, and turmeric seem to
be one of the most critical in terms of mycotoxin contamination—often contaminated with all AFs
and OTA. In addition, licorice is usually not contaminated with AFs, but quite often with OTA.
All above-mentioned mycotoxins in spices are handled in EU legislation; however, many other spices
are often contaminated not only with both AFs and OTA but even with other mycotoxins. None of
those other spices and mycotoxins are handled in the EU legislation. Among others, e.g., AFs and OTA
mainly in cardamom, mace, fenugreek, and other spices and CIT in chili, ginger, coriander, or fenugreek
and Fusarium mycotoxins in paprika, onion, or chili pepper are all quite common; however, they are
not addressed in the EU legislation.

Most original papers deal with spices that are already infamous for their mycotoxin contamination,
namely, chilies and black pepper. Although these spices indeed appear to be the most crucial in
terms of spice-related human mycotoxin exposure, and their analysis can obviously be expected to
produce highly positive results, there are many other important spices. Of course, regional spices such
as dawadawa can also be of a big concern in a given region and deserve no less attention than the
major ones.

On the contrary, certain spices appear to be either resistant to fungal infection or possess the ability
to inhibit mycotoxin production. In this review, these spices mainly include basil, cloves, mint, oregano,
and thyme, which are only very rarely contaminated with any mycotoxins. Cases of uncontaminated
spices remain in the background and are not discussed in the literature to a greater extent. Usually,
these spices are only mentioned in relation to their essential oils, which can supposedly inhibit fungal
activity and could possibly be the cause of those certain spices being contaminated rarely.

The essential oils of oregano, basil, and sage with their major compounds, thymol, methyl-cavicol,
and thujone, respectively, supposedly inhibit A. ochraceus growth and its OTA production [157], so do
essential oils of cinnamon, thyme, cloves, caraway, and anise [158,159]. On the contrary, oils of mint and
oregano with major compounds menthol and linalool were reported to have no important inhibitory
effect on the growth [157]. In this review, an inhibitory effect on the fungal growth can be partially
confirmed in the case of coriander, cloves, and mint in which A. ochraceus was not detected in any
of involved studies, while its presence was confirmed in case of oregano, basil, cinnamon, thyme,
caraway, and anise. No data were available for confirming this effect for sage.

Similarly, essential oils of cinnamon and cloves (major compounds cinnamic aldehyde and eugenol,
respectively [157]) and also thyme, mint, basil, caraway, and anise (thymol, menthon, methyl-chavicol,
anithol) supposedly inhibit the growth of A. parasiticus [157,159]. In this review, the inhibitory effect
can be supported in the case of caraway, mint, basil, and anise, where A. parasiticus was not detected.
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Its occurrence was relatively low in the case of cinnamon, which may be due to the inhibitory effect
of the essential oil. However, in the case of both thyme and cloves, this inhibitory effect cannot
be confirmed.

The inhibitory effect on the growth of A. flavus and F. verticillioides was reported in the case of
essential oils of thyme, cinnamon, mint, basil, caraway, and anise [159]. In this review, the inhibitory
effect can be supported only in the case of mint, basil, and anise for A. flavus and in the case of cinnamon,
mint, basil, anise, and caraway for F. verticillioides, as the respective mold was not detected in the
mentioned spices.

In addition, in case of cloves, thyme, and oregano, the occurrence of OTA and all AFs was mostly
none or rare, although the occurrence of various fungi of Aspergillus and Penicillium genera has been
confirmed, which may indicate the inhibitory effect on the mycotoxin production rather than the
growth of the fungi.

10. Conclusions

Mycotoxins are considered potent pathogens. Some of them are highly carcinogenic. Food is
the main source of mycotoxins in human body. Spices are a small but integral part of the diet of all
people in the world. Therefore, spices are certainly not the main source of the supply of mycotoxins to
the human body, but they can contribute to a considerable extent through continuous consumption.
The control of mycotoxins in spices is a constantly evolving process, and the obtained data are very
important not only for the realization of the dietary exposure to mycotoxins and health risk assessment
but also for setting relevant legislation. AFs (mainly AFB;) and OTA are the most common mycotoxins
in spices. However, compared to AFs and OTA, other mycotoxins have been insufficiently studied
in spices, and thus, their share in the supply of mycotoxins is difficult to evaluate under the existing
data. Among Alternaria mycotoxins, an honorable mention belongs to TEA due to its high incidence.
Unfortunately, this fact is supported by very few studies. Even less data have been available in the case
of CIT and Fusarium mycotoxins. As for microfungi, the most common species isolated from spices
belong to Aspergillus and Penicillium and less to Fusarium genera. A. niger and A. flavus are considered
to be dominant species isolated from the spice, followed by A. ochraceus and P. citrinum.

Based on the EU RASFF data, chili, nutmeg, and paprika powder have been the most problematic
spices in terms of the frequency of exceeding maximum EU limits. Data from original papers, on which
this review has been based, only confirm this conclusion. However, AFs, OTA, and also other
mycotoxins have been proven to be present in relatively high amounts in many other spices as well.

This review documents and emphasizes the importance of further monitoring of mycotoxins
in common as well as less common spices. As proven, many spices are neglected in terms of
mycotoxin monitoring but also have the potential for high contamination. Similarly, many mycotoxins
are insufficiently monitored in spices, although their presence has been proven in this review.
Given the findings from the included studies, it seems that the current legislation is rather incomplete,
and inclusion of both less-common spices and less-common mycotoxins should be considered. It is
therefore justified to advise authors to provide complete statistical data or full datasets in their studies,
which may potentially be useful for setting new limits. Moreover, there is a need for regulation to
be harmonized from country to country, depending on local dietary habits and needs. Nevertheless,
more studies are needed to fix these maximum limits. Last but not least, it is also urgent to increase
consumer awareness of the risk posed by mycotoxins in spices and their potential health impact.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/12/12/789/s1.
Table S1: Studies positivity: Natural occurrence of mycotoxins produced by Aspergillus and Penicillium species in
spices in the last 5 years (since 2015). Table S2: Studies positivity: Natural occurrence of Fusarium mycotoxins in
spices in the last 5 years (since 2015). Table S3: Studies positivity: Natural occurrence of Alternaria mycotoxins in
spices in the last 5 years (since 2015).

Author Contributions: Conceptualization, D.P., EM., and V.O.; methodology, D.P.,; investigation, D.P.; data
curation, D.P, V.O., .M., and EM.; writing—original draft preparation, D.P. and ].M; writing—review and editing,


http://www.mdpi.com/2072-6651/12/12/789/s1

Toxins 2020, 12, 789 26 of 33

D.P,JM, VO, EM,, and ].T,; visualization, D.P.; supervision, V.O. and F.M.; project administration, D.P; funding
acquisition, D.P. and V.O. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Faculty of Science, University of Hradec Kralove, Czech Republic, under
specific research project no. 2112/2019; and the Ministry of Health, Czech Republic, under conceptual development
of research organization “National Institute of Public Health—NIPH, IN 75010330”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Marroquin-Cardona, A.G.; Johnson, N.M.; Phillips, T.D.; Hayes, A.W. Mycotoxins in a changing global
environment—A review. Food Chem. Toxicol. 2014, 69, 220-230. [CrossRef]

2. Botana, L.M.; Sainz, M.]. (Eds.) Climate Change and Mycotoxins; Walter de Gruyter GmbH: Berlin, Germany,
2015; ISBN 978-3-11-033305-3.

3.  Kabak, B.; Dobson, A.D. Mycotoxins in spices and herbs—An update. Crit. Rev. Food Sci. Nutr. 2017, 57,
18-34. [CrossRef] [PubMed]

4. Uhl, S.R. Handbook of Spices, Seasonings, and Flavorings, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006; ISBN
978-1-4200-0436-6.

5. Chomchalow, N. Spice Production in Asia—An Overview. AU J. Technol. 2001, 5, 1-14.

6.  Abd El-Tawab, A.A.; El-Diasty, E.M.; Khater, D.F.,; Al-baaly, Y.M. Mycological identification of some fungi
isolated from meat products and spices with molecular identification of some Penicillium isolates. Adv. Anim.
Vet. Sci. 2020, 8, 124-129. [CrossRef]

7. Tha, M.H.; Trucksess, M.W. Management of mycotoxins in spices. |. AOAC Int. 2019, 102, 1732-1739.
[CrossRef]

8.  Jeswal, P.; Kumar, D. Mycobiota and natural incidence of aflatoxins, ochratoxin A, and citrinin in Indian
spices confirmed by LC-MS/MS. Int. ]. Microbiol. 2015, 2015, 242486. [CrossRef]

9. El Darra, N.; Gambacorta, L.; Solfrizzo, M. Multimycotoxins occurrence in spices and herbs commercialized
in Lebanon. Food Control 2019, 95, 63-70. [CrossRef]

10. Gambacorta, L.; El Darra, N.; Fakhoury, R.; Logrieco, A.F.; Solfrizzo, M. Incidence and levels of Alternaria
mycotoxins in spices and herbs produced worldwide and commercialized in Lebanon. Food Control 2019,
106, 106724. [CrossRef]

11. Jalili, M,; Jinap, S. Natural occurrence of aflatoxins and ochratoxin A in commercial dried chili. Food Control
2012, 24, 160-164. [CrossRef]

12. Winter, G.; Pereg, L. A review on the relation between soil and mycotoxins: Effect of aflatoxin on field,
food and finance. Eur. J. Soil Sci. 2019, 70, 882-897. [CrossRef]

13.  Udomkun, P; Wiredu, A.N.; Nagle, M.; Miiller, J.; Vanlauwe, B.; Bandyopadhyay, R. Innovative technologies
to manage aflatoxins in foods and feeds and the profitability of application—A review. Food Control 2017, 76,
127-138. [CrossRef] [PubMed]

14. Sanatombi, K.; Rajkumari, S. Effect of processing on quality of pepper: A review. Food Rev. Int. 2019, 36,
626—643. [CrossRef]

15. European Commission. Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum
levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, L364, 5-24.

16. Yogendrarajah, P; Van Poucke, C.; De Meulenaer, B.; De Saeger, S. Development and validation of a
QuEChERS based liquid chromatography tandem mass spectrometry method for the determination of
multiple mycotoxins in spices. J. Chromatogr. A 2013, 1297, 1-11. [CrossRef]

17.  Oguntoyinbo, FA. Safety challenges associated with traditional foods of West Africa. Food Rev. Int. 2014, 30,
338-358. [CrossRef]

18. Pfliegler, W.P; Pécsi, I.; Gyori, Z.; Pusztahelyi, T. The Aspergilli and their mycotoxins: Metabolic interactions
with plants and the soil biota. Front. Microbiol. 2020, 10, 2921. [CrossRef]

19. Zhang, C.; Selvaraj, ].N.; Yang, Q.; Liu, Y. A survey of aflatoxin-producing Aspergillus sp. from peanut field
soils in four agroecological zones of China. Toxins 2017, 9, 40. [CrossRef]

20. Snigdha, M.; Hariprasad, P.; Venkateswaran, G. Transport via xylem and accumulation of aflatoxin in seeds

of groundnut plant. Chemosphere 2015, 119, 524-529. [CrossRef]


http://dx.doi.org/10.1016/j.fct.2014.04.025
http://dx.doi.org/10.1080/10408398.2013.772891
http://www.ncbi.nlm.nih.gov/pubmed/26528824
http://dx.doi.org/10.17582/journal.aavs/2020/8.2.124.129
http://dx.doi.org/10.1093/jaoac/102.6.1732
http://dx.doi.org/10.1155/2015/242486
http://dx.doi.org/10.1016/j.foodcont.2018.07.033
http://dx.doi.org/10.1016/j.foodcont.2019.106724
http://dx.doi.org/10.1016/j.foodcont.2011.09.020
http://dx.doi.org/10.1111/ejss.12813
http://dx.doi.org/10.1016/j.foodcont.2017.01.008
http://www.ncbi.nlm.nih.gov/pubmed/28701823
http://dx.doi.org/10.1080/87559129.2019.1669161
http://dx.doi.org/10.1016/j.chroma.2013.04.075
http://dx.doi.org/10.1080/87559129.2014.940086
http://dx.doi.org/10.3389/fmicb.2019.02921
http://dx.doi.org/10.3390/toxins9010040
http://dx.doi.org/10.1016/j.chemosphere.2014.07.033

Toxins 2020, 12, 789 27 of 33

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

Siruguri, V.; Bhat, R.V. Assessing intake of spices by pattern of spice use, frequency of consumption and
portion size of spices consumed from routinely prepared dishes in southern India. Nutr. J. 2015, 14, 7.
[CrossRef]

Shylaja, M.R.; Peter, K.V. The functional role of herbal spices. In Handbook of Herbs and Spices: Volume
2; Peter, K.V,, Ed.; Woodhead Publishing Limited: Cambridge, UK, 2004; Volume 2, pp. 26—45. ISBN
978-1-85573-721-1.

Szfics, V.; Szabo, E.; Lakner, Z.; Székacs, A. National seasoning practices and factors affecting the herb and
spice consumption habits in Europe. Food Control 2018, 83, 147-156. [CrossRef]

Pradeep, K.U.; Geervani, P.; Eggum, B.O. Common Indian spices: Nutrient composition, consumption and
contribution to dietary value. Plant Foods Hum. Nutr. 1993, 44, 137-148. [CrossRef] [PubMed]

Mathur, P.; Choudhry, M. Consumption pattern of fenugreek seeds in Rajasthani families. J. Hum. Ecol. 2009,
25,9-12. [CrossRef]

Lu, M,; Yuan, B.; Zeng, M.; Chen, J. Antioxidant capacity and major phenolic compounds of spices commonly
consumed in China. Food Res. Int. 2011, 44, 530-536. [CrossRef]

Yin, M.-C.; Cheng, W.-S. Inhibition of Aspergillus niger and Aspergillus flavus by some herbs and spices. J. Food
Prot. 1998, 61, 123-125. [CrossRef]

Tapsell, L.C.; Hemphill, I.; Cobiac, L.; Sullivan, D.R.; Fenech, M.; Patch, C.S.; Roodenrys, S.; Keogh, ].B.;
Clifton, PM.; Williams, P.G. Health benefits of herbs and spices: The past, the present, the future. Med. J. Aust.
2006, 185, 4-24. [CrossRef]

Tantipopipat, S.; Boonpraderm, A.; Charoenkiatkul, S.; Wasantwisut, E.; Winichagoon, P. Dietary intake of
spices and herbs in habitual northeast Thai diets. Malays. J. Nutr. 2010, 16, 137-148.

Akeem, S.; Joseph, J.; Kayode, R.; Kolawole, F. Comparative phytochemical analysis and use of some Nigerian
spices. Croat. ]. Food Technol. Biotechnol. Nutr. 2016, 11, 145-151.

Borquaye, L.S.; Darko, G.; Laryea, M.K.; Gasu, E.N.; Amponsah, N.A.A.; Appiah, E.N. Nutritional and
anti-nutrient profiles of some Ghanaian spices. Cogent Food Agric. 2017, 3, 1348185. [CrossRef]

Nwinuka, N.M.; Ibeh, G.O.; Ekeke, G.I. Proximate composition and levels of some toxicants in four commonly
consumed spices. J. Appl. Sci. Environ. Manag. 2005, 9, 150-155. [CrossRef]

Otunola, G.A.; Oloyede, O.B.; Oladiji, A.T.; Afolayan, A.]. Comparative analysis of the chemical composition
of three spices—Allium sativum L. Zingiber officinale Rosc. and Capsicum frutescens L. commonly consumed in
Nigeria. Afr. ]. Biotechnol. 2010, 9, 6927-6931. [CrossRef]

Chilaka, C.A.; De Boevre, M.; Atanda, O.O.; De Saeger, S. Quantification of Fusarium mycotoxins in Nigerian
traditional beers and spices using a multi-mycotoxin LC-MS/MS method. Food Control 2018, 87, 203-210.
[CrossRef]

Nguegwouo, E.; Sone, L.E.; Tchuenchieu, A.; Tene, H.M.; Mounchigam, E.; Njayou, N.F; Nama, G.M.
Ochratoxin A in black pepper, white pepper and clove sold in Yaoundé (Cameroon) markets: Contamination
levels and consumers’ practices increasing health risk. Int. ]. Food Contam. 2018, 5, 1. [CrossRef]

Dalhat, M.H.; Adefolake, F.A.; Musa, M. Nutritional composition and phytochemical analysis of aqueous
extract of Allium cepa (Onion) and Allium sativum (Garlic). Asian Food Sci. ]. 2018, 3, 1-9. [CrossRef] [PubMed]
FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/
faostat/en/#data/QC/visualize (accessed on 25 February 2020).

Bennett, ].W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497-516. [CrossRef]

Bhat, R.; Rai, R.V.; Karim, A.A. Mycotoxins in food and feed: Present status and future concerns. Compr. Rev.
Food Sci. Food Saf. 2010, 9, 57-81. [CrossRef]

Frisvad, J.C.; Andersen, B.; Samson, R.A. Association of moulds to foods. In Food Mycology: A Multifaceted
Approach to Fungi and Food; Dijksterhuis, J., Samson, R.A., Eds.; CRC Press: Boca Raton, FL, USA, 2007;
pp. 199-239. ISBN 978-0-8493-9818-6.

Ismaiel, A.; Papenbrock, J. Mycotoxins: Producing fungi and mechanisms of phytotoxicity. Agriculture 2015,
5,492-537. [CrossRef]

Frisvad, J.C.; Hubka, V.; Ezekiel, C.N.; Hong, S.-B.; Novakova, A.; Chen, A ].; Arzanlou, M.; Larsen, T.O.;
Sklenét, F.; Mahakarnchanakul, W.; et al. Taxonomy of Aspergillus section Flavi and their production of
aflatoxins, ochratoxins and other mycotoxins. Stud. Mycol. 2019, 93, 1-63. [CrossRef]

Haque, M.A.; Wang, Y.; Shen, Z.; Li, X.; Saleemi, M.K.; He, C. Mycotoxin contamination and control strategy
in human domestic animal and poultry: A review. Microb. Pathog. 2020, 142, 104095. [CrossRef]


http://dx.doi.org/10.1186/1475-2891-14-7
http://dx.doi.org/10.1016/j.foodcont.2017.04.039
http://dx.doi.org/10.1007/BF01088378
http://www.ncbi.nlm.nih.gov/pubmed/8397396
http://dx.doi.org/10.1080/09709274.2009.11906127
http://dx.doi.org/10.1016/j.foodres.2010.10.055
http://dx.doi.org/10.4315/0362-028X-61.1.123
http://dx.doi.org/10.5694/j.1326-5377.2006.tb00548.x
http://dx.doi.org/10.1080/23311932.2017.1348185
http://dx.doi.org/10.4314/jasem.v9i1.17274
http://dx.doi.org/10.5897/AJB10.183
http://dx.doi.org/10.1016/j.foodcont.2017.12.028
http://dx.doi.org/10.1186/s40550-017-0063-9
http://dx.doi.org/10.9734/AFSJ/2018/43165
http://www.ncbi.nlm.nih.gov/pubmed/31508602
http://www.fao.org/faostat/en/#data/QC/visualize
http://www.fao.org/faostat/en/#data/QC/visualize
http://dx.doi.org/10.1128/CMR.16.3.497-516.2003
http://dx.doi.org/10.1111/j.1541-4337.2009.00094.x
http://dx.doi.org/10.3390/agriculture5030492
http://dx.doi.org/10.1016/j.simyco.2018.06.001
http://dx.doi.org/10.1016/j.micpath.2020.104095

Toxins 2020, 12, 789 28 of 33

44.

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.
61.

62.

63.

64.
65.

66.

67.

Ojuri, O.T.; Ezekiel, C.N.; Sulyok, M.; Ezeokoli, O.T.; Oyedele, O.A.; Ayeni, K.I.; Eskola, M.K.; éarkanj, B.;
Hajslova, J.; Adeleke, R.A ; et al. Assessing the mycotoxicological risk from consumption of complementary
foods by infants and young children in Nigeria. Food Chem. Toxicol. 2018, 121, 37-50. [CrossRef]

Selvaraj, ].N.; Wang, Y.; Zhou, L.; Zhao, Y.; Xing, F,; Dai, X.; Liu, Y. Recent mycotoxin survey data and
advanced mycotoxin detection techniques reported from China: A review. Food Addit. Contam. Part A 2015,
32,440-452. [CrossRef]

European Food Safety Authority. Dietary exposure assessment to Alternaria toxins in the European population.
EFSA J. 2016, 14, e04654. [CrossRef]

PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 15 April 2020).

Pitt, ].I; Miller, ].D. A concise history of mycotoxin research. J. Agric. Food Chem. 2017, 65, 7021-7033.
[CrossRef] [PubMed]

Arenas-Huertero, F; Zaragoza-Ojeda, M., Sanchez-Alarcén, ], Mili¢, M,; éegvié Klari¢, M.;
Montiel-Gonzalez, ].M.; Valencia-Quintana, R. Involvement of AhR pathway in toxicity of aflatoxins
and other mycotoxins. Front. Microbiol. 2019, 10, 2347. [CrossRef] [PubMed]

Kensler, T.W.; Roebuck, B.D.; Wogan, G.N.; Groopman, J.D. Aflatoxin: A 50-year odyssey of mechanistic and
translational toxicology. Toxicol. Sci. 2011, 120, 528-548. [CrossRef]

Kumar, P.; Mahato, D.K.; Kamle, M.; Mohanta, TK.; Kang, S.G. Aflatoxins: A global concern for food safety,
human health and their management. Front. Microbiol. 2017, 7, 2170. [CrossRef]

Ostry, V.; Malir, F; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens—The IARC monographs
classification. Mycotoxin Res. 2017, 33, 65-73. [CrossRef]

Benkerroum, N. Aflatoxins: Producing-molds, structure, health issues and incidence in Southeast Asian and
Sub-Saharan African countries. Int. J. Environ. Res. Public Health 2020, 17, 1215. [CrossRef]

Medina, A.; Valle-Algarra, EM.; Mateo, R.; Gimeno-Adelantado, J.V.; Mateo, E; Jiménez, M. Survey of the
mycobiota of Spanish malting barley and evaluation of the mycotoxin producing potential of species of
Alternaria, Aspergillus and Fusarium. Int. ]. Food Microbiol. 2006, 108, 196-203. [CrossRef]

Varga, J.; Frisvad, J.C.; Samson, R.A. Two new aflatoxin producing species, and an overview of Aspergillus
section Flavi. Stud. Mycol. 2011, 69, 57-80. [CrossRef]

Calderari, T.O.; lamanaka, B.T.; Frisvad, ].C.; Pitt, ].L; Sartori, D.; Pereira, ].L.; Fungaro, M.H.P,; Taniwaki, M.H.
The biodiversity of Aspergillus section Flavi in Brazil nuts: From rainforest to consumer. Int. J. Food Microbiol.
2013, 160, 267-272. [CrossRef]

Pfohl-Leszkowicz, A.; Manderville, R.A. Ochratoxin A: An overview on toxicity and carcinogenicity in
animals and humans. Mol. Nutr. Food Res. 2007, 51, 61-99. [CrossRef] [PubMed]

Shin, H.S.; Lee, H.].; Pyo, M.C.; Ryu, D.; Lee, K.-W. Ochratoxin A-induced hepatotoxicity through phase I
and phase II reactions regulated by AhR in liver cells. Toxins 2019, 11, 377. [CrossRef] [PubMed]

Malir, E; Ostry, V.; Novotna, E. Toxicity of the mycotoxin ochratoxin A in the light of recent data. Toxin Rev.
2013, 32, 19-33. [CrossRef]

European Food Safety Authority. Risk assessment of ochratoxin A in food. EFSA J. 2020, 18, 6113. [CrossRef]
Ostry, V.; Malir, E; Ruprich, J. Producers and important dietary sources of ochratoxin A and citrinin. Toxins
2013, 5, 1574-1586. [CrossRef]

Samson, R.A.; Visagie, C.M.; Houbraken, J.; Hong, S.-B.; Hubka, V.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.;
Susca, A.; Tanney, ].B.; et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol.
2014, 78, 141-173. [CrossRef]

De Oliveira Filho, JW.G.; Islam, M.T.; Ali, E.S.; Uddin, S.J.; Santos, ].V.O.; De Alencar, M.V.O.B.; Junior, A.L.G.;
Paz, M.E.C].; De Brito, M.R.M.; E Sousa, ] M.C ; et al. A comprehensive review on biological properties of
citrinin. Food Chem. Toxicol. 2017, 110, 130-141. [CrossRef]

Flajs, D.; Peraica, M. Toxicological properties of citrinin. Arch. Ind. Hyg. Toxicol. 2009, 60, 457-464. [CrossRef]
European Food Safety Authority. Scientific Opinion on the risks for public and animal health related to the
presence of citrinin in food and feed. EFSA J. 2012, 10, 2605. [CrossRef]

Broggi, L.E.; Gonzalez, H.H.L.; Resnik, S.L.; Pacin, A.M. Mycoflora distribution in dry-milled fractions of
corn in Argentina. Cereal Chem. 2002, 79, 741-744. [CrossRef]

Blanc, PJ.; Laussac, J.P,; Le Bars, J.; Le Bars, P; Loret, M.O.; Pareilleux, A.; Prome, D.; Prome, ].C.; Santerre, A.L.;
Goma, G. Characterization of monascidin A from Monascus as citrinin. Int. J. Food Microbiol. 1995, 27,201-213.
[CrossRef]


http://dx.doi.org/10.1016/j.fct.2018.08.025
http://dx.doi.org/10.1080/19440049.2015.1010185
http://dx.doi.org/10.2903/j.efsa.2016.4654
https://pubchem.ncbi.nlm.nih.gov/
http://dx.doi.org/10.1021/acs.jafc.6b04494
http://www.ncbi.nlm.nih.gov/pubmed/27960261
http://dx.doi.org/10.3389/fmicb.2019.02347
http://www.ncbi.nlm.nih.gov/pubmed/31681212
http://dx.doi.org/10.1093/toxsci/kfq283
http://dx.doi.org/10.3389/fmicb.2016.02170
http://dx.doi.org/10.1007/s12550-016-0265-7
http://dx.doi.org/10.3390/ijerph17041215
http://dx.doi.org/10.1016/j.ijfoodmicro.2005.12.003
http://dx.doi.org/10.3114/sim.2011.69.05
http://dx.doi.org/10.1016/j.ijfoodmicro.2012.10.018
http://dx.doi.org/10.1002/mnfr.200600137
http://www.ncbi.nlm.nih.gov/pubmed/17195275
http://dx.doi.org/10.3390/toxins11070377
http://www.ncbi.nlm.nih.gov/pubmed/31261931
http://dx.doi.org/10.3109/15569543.2013.782504
http://dx.doi.org/10.2903/j.efsa.2020.6113
http://dx.doi.org/10.3390/toxins5091574
http://dx.doi.org/10.1016/j.simyco.2014.07.004
http://dx.doi.org/10.1016/j.fct.2017.10.002
http://dx.doi.org/10.2478/10004-1254-60-2009-1992
http://dx.doi.org/10.2903/j.efsa.2012.2605
http://dx.doi.org/10.1094/CCHEM.2002.79.5.741
http://dx.doi.org/10.1016/0168-1605(94)00167-5

Toxins 2020, 12, 789 29 of 33

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

Escriva, L.; Font, G.; Manyes, L. In vivo toxicity studies of fusarium mycotoxins in the last decade: A review.
Food Chem. Toxicol. 2015, 78, 185-206. [CrossRef] [PubMed]

Kamle, M.; Mahato, D.K; Devi, S.; Lee, K.E.; Kang, S.G.; Kumar, P. Fumonisins: Impact on agriculture, food,
and human health and their management strategies. Toxins 2019, 11, 328. [CrossRef] [PubMed]

Desjardins, A.E. Fusarium Mycotoxins: Chemistry, Genetics, and Biology; APS Press: St. Paul, MN, USA, 2006;
ISBN 0-89-54-335-6.

Logrieco, A.; Visconti, A. An Overview on Toxigenic Fungi and Mycotoxins in Europe; Springer: New York, NY,
USA, 2004; ISBN 978-1-4020-2645-4.

Frisvad, J.C.; Smedsgaard, J.; Samson, R.A.; Larsen, T.O.; Thrane, U. Fumonisin B2 production by Aspergillus
niger. J. Agric. Food Chem. 2007, 55, 9727-9732. [CrossRef] [PubMed]

Mogensen, ].M.; Frisvad, J.C.; Thrane, U.; Nielsen, K.F. Production of fumonisin B2 and B4 by Aspergillus
niger on grapes and raisins. J. Agric. Food Chem. 2010, 58, 954-958. [CrossRef] [PubMed]

European Food Safety Authority. Scientific opinion on the risks for animal and public health related to the
presence of T-2 and HT-2 toxin in food and feed. EFSA J. 2011, 9, 2481. [CrossRef]

European Food Safety Authority. Risks to human and animal health related to the presence of deoxynivalenol
and its acetylated and modified forms in food and feed. EFSA |. 2017, 15, e04718. [CrossRef]

Ostry, V.; Dofkova, M.; Blahova, J.; Malir, F.; Kavrik, R.; Rehurkova, I.; Ruprich, J. Dietary exposure assessment
of sum deoxynivalenol forms, sum T-2/HT-2 toxins and zearalenone from cereal-based foods and beer.
Food Chem. Toxicol. 2020, 139, 111280. [CrossRef]

Desjardins, A.E.; Proctor, R.H. Molecular biology of Fusarium mycotoxins. Int. ]. Food Microbiol. 2007, 119,
47-50. [CrossRef]

Frisvad, J.C.; Thrane, U.; Samson, R.A. Mycotoxin producers. In Food Mycology: A Multifaceted Approach to
Fungi and Food; Dijksterhuis, J., Samson, R.A., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 135-159.
European Food Safety Authority. Appropriateness to set a group health-based guidance value for zearalenone
and its modified forms. EFSA |. 2016, 14, 4425. [CrossRef]

Bertero, A.; Moretti, A.; Spicer, L.; Caloni, F. Fusarium molds and mycotoxins: Potential species-specific
effects. Toxins 2018, 10, 244. [CrossRef] [PubMed]

Ostry, V. Alternaria mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and
occurrence in foodstuffs. World Mycotoxin J. 2008, 1, 175-188. [CrossRef]

Liu, G.T.; Qian, Y.Z.; Zhang, P.E.; Dong, WH.; Qi, YM.; Guo, H. Etiological role of Alternaria alternata in
human esophageal cancer. Chin. Med. ]. (Engl.) 1992, 105, 394—400.

Logrieco, A.; Bottalico, A.; Mulé, G.; Moretti, A.; Perrone, G. Epidemiology of toxigenic fungi and their
associated mycotoxins for some mediterranean crops. Eur. J. Plant Pathol. 2003, 109, 645-667. [CrossRef]
Romero, S.M.; Comerio, R.M.; Larumbe, G.; Ritieni, A.; Vaamonde, G.; Fernandez Pinto, V. Toxigenic fungi
isolated from dried vine fruits in Argentina. Int. |. Food Microbiol. 2005, 104, 43—49. [CrossRef] [PubMed]
Andersen, B.; Kroger, E.; Roberts, R.G. Chemical and morphological segregation of Alternaria arborescens,
A. infectoria and A. tenuissima species-groups. Mycol. Res. 2002, 106, 170-182. [CrossRef]

Andersen, B.; Hansen, M.E.; Smedsgaard, ]. Automated and unbiased image analyses as tools in phenotypic
classification of small-spored Alternaria spp. Phytopathology 2005, 95, 1021-1029. [CrossRef] [PubMed]
European Food Safety Authority. Scientific opinion on the risk for public and animal health related to the
presence of sterigmatocystin in food and feed. EFSA J. 2013, 11, 3254. [CrossRef]

Chrevatidis, A. Mycotoxins|Occurrence and determination. In Encyclopedia of Food Sciences and Nutrition,
2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 4089-4096. ISBN 978-0-12-227055-0.
Piontek, M.; Luszczyniska, K.; Lechéw, H. Spergilli on building partitions infested with moulds in residential
housing and public utility premises. Civ. Environ. Eng. Rep. 2017, 27, 91-104. [CrossRef]

Rank, C.; Nielsen, K.E; Larsen, T.O.; Varga, J.; Samson, R.A.; Frisvad, J.C. Distribution of sterigmatocystin in
filamentous fungi. Fungal Biol. 2011, 115, 406—420. [CrossRef]

Yu, J.; Chang, P-K,; Ehrlich, K.C.; Cary, ].W.; Bhatnagar, D.; Cleveland, T.E.; Payne, G.A.; Linz, ]J.E,;
Woloshuk, C.P; Bennett, ].W. Clustered pathway genes in aflatoxin biosynthesis. Appl. Environ. Microbiol.
2004, 70, 1253-1262. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.fct.2015.02.005
http://www.ncbi.nlm.nih.gov/pubmed/25680507
http://dx.doi.org/10.3390/toxins11060328
http://www.ncbi.nlm.nih.gov/pubmed/31181628
http://dx.doi.org/10.1021/jf0718906
http://www.ncbi.nlm.nih.gov/pubmed/17929891
http://dx.doi.org/10.1021/jf903116q
http://www.ncbi.nlm.nih.gov/pubmed/20014861
http://dx.doi.org/10.2903/j.efsa.2011.2481
http://dx.doi.org/10.2903/j.efsa.2017.4718
http://dx.doi.org/10.1016/j.fct.2020.111280
http://dx.doi.org/10.1016/j.ijfoodmicro.2007.07.024
http://dx.doi.org/10.2903/j.efsa.2016.4425
http://dx.doi.org/10.3390/toxins10060244
http://www.ncbi.nlm.nih.gov/pubmed/29914090
http://dx.doi.org/10.3920/WMJ2008.x013
http://dx.doi.org/10.1023/A:1026033021542
http://dx.doi.org/10.1016/j.ijfoodmicro.2005.04.001
http://www.ncbi.nlm.nih.gov/pubmed/16054260
http://dx.doi.org/10.1017/S0953756201005263
http://dx.doi.org/10.1094/PHYTO-95-1021
http://www.ncbi.nlm.nih.gov/pubmed/18943299
http://dx.doi.org/10.2903/j.efsa.2013.3254
http://dx.doi.org/10.1515/ceer-2017-0053
http://dx.doi.org/10.1016/j.funbio.2011.02.013
http://dx.doi.org/10.1128/AEM.70.3.1253-1262.2004
http://www.ncbi.nlm.nih.gov/pubmed/15006741

Toxins 2020, 12, 789 30 of 33

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

Committee on Contaminants in Foods. Report of the 9th Session of the Codex Committee on Contaminants
in Foods. 16-20 March 2015. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/tr/
?Ink=1&url=https%253A%252F%252Fworkspace.fao.org %252Fsites %252Fcodex%252FMeetings %252FCX-
735-12%252FREPORT%252520%2528 FINAL%2529%252FREP18_CFe.pdf (accessed on 20 April 2020).
Committee on Contaminants in Foods. Report of the 12th Session of the Codex Committee on Contaminants
in Foods. 12-16 March 2018. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/
?Ink=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites %252Fcodex%252FMeetings%252FCX-
735-12%252FWD%252Fcf12_11e.pdf (accessed on 20 April 2020).

Council of the European Communities. Council Regulation (EEC) No 315/93 of 8 February 1993 laying down
Community procedures for contaminants in food. J. Eur. Union 1993, 37, 1-3.

European Comission. Commission Regulation (EU) No. 105/2010 of 5 February 2010 amending Regulation
(EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards ochratoxin A.
Off. J. Eur. Union 2010, L35, 7-8.

European Comission. Commission regulation (EU) No 594/2012 of 5 July 2012 amending Regulation (EC)
1881/2006 as regards the maximum levels of the contaminants ochratoxin A, non dioxin-like PCBs and
melamine in foodstuffs. Off. J. Eur. Union 2012, 176, 43-45.

Ham, H.; Kim, S.; Kim, M.-H.; Lee, S.; Hong, S.K.; Ryu, J.-G.; Lee, T. Mycobiota of ground red pepper and
their aflatoxigenic potential. J. Microbiol. 2016, 54, 832—-837. [CrossRef]

Food Safety and Standards Authority of India. FSSAI Publishes Guidance Note of Aflatoxins. Available
online: https://foodsafetyhelpline.com/fssai-publishes-guidance-note-of-aflatoxins/ (accessed on 20 April
2020).

Wu, L.; Zhu, D. Food Safety in China: A Comprehensive Review, 1st ed.; CRC Press: Boca Raton, FL, USA, 2014;
ISBN 978-1-4822-1833-6.

Tao, L. China Consults on GB 2761, 2762 and 29921 for the Maximum Limits of Mycotoxins, Contaminants
and Pathogenic Bacteria in Foods. Available online: https://food.chemlinked.com/news/food-news/china-
consults-gb-2761-2762-and-29921-maximum-limits-mycotoxins-contaminants-and-pathogenic-bacteria-
foods (accessed on 20 April 2020).

Taniwaki, M.H.; Pitt, J.I; Copetti, M.V.,; Teixeira, A.A.; Iamanaka, B.T. Understanding mycotoxin
contamination across the food chain in Brazil: Challenges and opportunities. Toxins 2019, 11, 411. [CrossRef]
Kolybye, A.C., Jr. Statement. Hearings before the Subcommittee on Science, Technology and Space of the Committee on
Commerce, Science and Transportation, United States Senate, Ninety-fifth Congress, First Session on Toxic Substances,
Polybrominated Biphenyls (PBB) Contamination in Michigan; US Government Printing Office: Washington, DC,
USA, 1977.

European Commission. Commission Regulation (EU) No. 165/2010 of 26 February 2010 amending Regulation
(EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. Off. J.
Eur. Union 2010, 50, 8-12.

European Comission. Commission regulation (EU) 2015/1137 of 13 July 2015 amending Regulation (EC) No
1881/2006 as regards the maximum level of Ochratoxin A in Capsicum spp. spices. Off. J. Eur. Union 2015,
L185,11-12.

Dharmaputra, O.S.; Ambarwati, S.; Retnowati, LN.A.; Nurfadila, N. Fungal infection and aflatoxin
contamination in stored nutmeg (Myristica fragrans) kernels at various stages of delivery chain in North
Sulawesi province. Biotropia 2016, 22, 129-139. [CrossRef]

Singh, P.; Cotty, PJ. Aflatoxin contamination of dried red chilies: Contrasts between the United States and
Nigeria, two markets differing in regulation enforcement. Food Control 2017, 80, 374-379. [CrossRef]
Gambacorta, L.; Magista, D.; Perrone, G.; Murgolo, S.; Logrieco, A.F.; Solfrizzo, M. Co-occurrence of toxigenic
moulds, aflatoxins, ochratoxin A, Fusarium and Alternaria mycotoxins in fresh sweet peppers (Capsicum
annuum) and their processed products. World Mycotoxin J. 2018, 11, 159-174. [CrossRef]

Zahra, N.; Khan, M.; Mehmood, Z.; Saeed, M.; Kalim, I.; Ahmad, 1.; Malik, K. Determination of aflatoxins in
spices and dried fruits. J. Sci. Res. 2018, 10, 315-321. [CrossRef]

Migahed, F.; Abdel-Gwad, M.; Mohamed, S. Aflatoxigenic fungi associated with some medicinal plants.
Annu. Res. Rev. Biol. 2017, 14, 1-20. [CrossRef]


http://www.fao.org/fao-who-codexalimentarius/sh-proxy/tr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-12%252FREPORT%252520%2528FINAL%2529%252FREP18_CFe.pdf
http://www.fao.org/fao-who-codexalimentarius/sh-proxy/tr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-12%252FREPORT%252520%2528FINAL%2529%252FREP18_CFe.pdf
http://www.fao.org/fao-who-codexalimentarius/sh-proxy/tr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-12%252FREPORT%252520%2528FINAL%2529%252FREP18_CFe.pdf
http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-12%252FWD%252Fcf12_11e.pdf
http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-12%252FWD%252Fcf12_11e.pdf
http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-12%252FWD%252Fcf12_11e.pdf
http://dx.doi.org/10.1007/s12275-016-6480-2
https://foodsafetyhelpline.com/fssai-publishes-guidance-note-of-aflatoxins/
https://food.chemlinked.com/news/food-news/china-consults-gb-2761-2762-and-29921-maximum-limits-mycotoxins-contaminants-and-pathogenic-bacteria-foods
https://food.chemlinked.com/news/food-news/china-consults-gb-2761-2762-and-29921-maximum-limits-mycotoxins-contaminants-and-pathogenic-bacteria-foods
https://food.chemlinked.com/news/food-news/china-consults-gb-2761-2762-and-29921-maximum-limits-mycotoxins-contaminants-and-pathogenic-bacteria-foods
http://dx.doi.org/10.3390/toxins11070411
http://dx.doi.org/10.11598/btb.2015.22.458
http://dx.doi.org/10.1016/j.foodcont.2017.05.014
http://dx.doi.org/10.3920/WMJ2017.2271
http://dx.doi.org/10.3329/jsr.v10i3.37075
http://dx.doi.org/10.9734/ARRB/2017/34797

Toxins 2020, 12, 789 31 of 33

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

Khazaeli, P, Mehrabani, M.; Heidari, M.R.; Asadikaram, G.; NAJAFI, M.L. Prevalence of aflatoxin
contamination in herbs and spices in different regions of Iran. Iran. |. Public Health 2017, 46, 1540-1545.
[PubMed]

Azzoune, N.; Mokrane, S.; Riba, A.; Bouras, N.; Verheecke-Vaessen, C.; Sabaou, N.; Mathieu, F. Contamination
of common spices by aflatoxigenic fungi and aflatoxin B1 in Algeria. Qual. Assur. Saf. Crop. Foods 2015, 8,
137-144. [CrossRef]

Ali, N.; Hashim, N.H.; Shuib, N.S. Natural occurrence of aflatoxins and ochratoxin A in processed spices
marketed in Malaysia. Food Addit. Contam. Part Chem. Anal. Control Expo. Risk Assess. 2015, 32, 518-532.
[CrossRef]

Wikandari, R.; Mayningsih, 1.C.; Sari, M.D.P.; Purwandari, FA.; Setyaningsih, W.; Rahayu, E.S,;
Taherzadeh, M.]J. Assessment of microbiological quality and mycotoxin in dried chili by morphological
identification, molecular detection, and chromatography analysis. Int. J. Environ. Res. Public Health 2020, 17,
1847. [CrossRef]

Alsharif, AM.A.; Choo, Y.-M.; Tan, G.-H. Detection of five mycotoxins in different food matrices in the
Malaysian market by using validated liquid chromatography electrospray ionization triple quadrupole mass
spectrometry. Toxins 2019, 11, 196. [CrossRef]

Karaaslan, M.; Arslangray, Y. Aflatoxins B1, B2, G1, and G2 contamination in ground red peppers
commercialized in Sanliurfa, Turkey. Environ. Monit. Assess. 2015, 187, 184-192. [CrossRef]

Jalili, M. Natural occurrence of aflatoxins contamination in commercial spices in Iran. Iran. J. Health Saf.
Environ. 2016, 3, 513-517.

Manda, P.; Adanou, KM.; Ardjouma, D.; Adepo, A.].B.; Dano, D.S. Occurrence of ochratoxin A in spices
commercialized in Abidjan (Cote d’'Ivoire). Mycotoxin Res. 2016, 32, 137-143. [CrossRef]

Jacxsens, L.; Yogendrarajaha, P.; Meulenaer, B. Risk assessment of mycotoxins and predictive mycology in Sri
Lankan spices: Chilli and pepper. Procedia Food Sci. 2016, 6, 326-330. [CrossRef]

Gherbawy, Y.A.; Shebany, Y.M. Mycobiota, total aflatoxins and ochratoxin A of cardamom pods. Food Sci.
Technol. Res. 2018, 24, 87-96. [CrossRef]

Ostry, V.; Malir, F.; Dofkova, M.; Skarkova, ].; Pfohl-Leszkowicz, A.; Ruprich, J. Ochratoxin A dietary exposure
of ten population groups in the Czech Republic: Comparison with data over the world. Toxins 2015, 7,
3608-3635. [CrossRef] [PubMed]

Jalili, M. Natural occurrence of ochratoxin A contamination in commercial spices in Tehran. Nutr. Food Sci.
Res. 2016, 3, 25-30. [CrossRef]

Abd-Elhaleem, Z.A. Determination of common spices and herbs contamination with aflatoxin in Al Majmaah
province. |. Chem. Biol. Phys. Sci. 2017, 8, 69-77. [CrossRef]

Reinholds, I.; Pugajeva, I.; Bavrins, K.; Kuckovska, G.; Bartkevics, V. Mycotoxins, pesticides and toxic metals
in commercial spices and herbs. Food Addit. Contam. Part B 2016, 10, 5-14. [CrossRef] [PubMed]

Potorti, A.; Tropea, A.; Turco, V.; Pellizzeri, V.; Belfita, A.; Dugo, G.; Bella, G. Mycotoxins in spices and
culinary herbs from Italy and Tunisia. Nat. Prod. Res. 2019, 34, 167-171. [CrossRef]

Naz, N.; Kashif, A.; Kanwal, K.; Khan, A.M.; Abbas, M. Quantitative scrutinization of aflatoxins in different
spices from Pakistan. Int. . Anal. Chem. 2016, 2016, 4907425. [CrossRef]

Jeswal, P.; Kumar, D. Natural occurrence of toxigenic mycoflora and ochratoxin A & aflatoxins in commonly
used spices from Bihar state (India). J. Environ. Sci. Toxicol. Food Technol. 2015, 9, 50-55. [CrossRef]

Aiko, V.; Mehta, A. Prevalence of toxigenic fungi in common medicinal herbs and spices in India. 3 Biotech
2016, 6, 159-168. [CrossRef] [PubMed]

Aye, C.; Nakagawa, H.; Kushiro, M. Occurrence of aflatoxins in processed chili pepper sold in Myanmar.
JSM Mycotoxins 2019, 69, 9-13. [CrossRef]

Barani, A.; Nasiri, Z.; Jarrah, N. Natural occurrence of Aflatoxins in commercial pepper in Iran. Food Agric.
Immunol. 2016, 27, 570-576. [CrossRef]

Fofana-Diomande, A.; Kuaou, K.; Narcisse, A.; Sory, T.; Dembele, A. Study of the contamination of some
spices from Céte d’'Ivoire by mycotoxins (AFB1 and OTA). J. Chem. Biol. Phys. Sci. 2019, 9, 389-399.
[CrossRef]

Garcia, M.V.; Mallmann, C.A.; Copetti, M.V. Aflatoxigenic and ochratoxigenic fungi and their mycotoxins in
spices marketed in Brazil. Food Res. Int. 2018, 106, 136-140. [CrossRef]


http://www.ncbi.nlm.nih.gov/pubmed/29167773
http://dx.doi.org/10.3920/QAS2014.0426
http://dx.doi.org/10.1080/19440049.2015.1011712
http://dx.doi.org/10.3390/ijerph17061847
http://dx.doi.org/10.3390/toxins11040196
http://dx.doi.org/10.1007/s10661-015-4402-0
http://dx.doi.org/10.1007/s12550-016-0248-8
http://dx.doi.org/10.1016/j.profoo.2016.02.065
http://dx.doi.org/10.3136/fstr.24.87
http://dx.doi.org/10.3390/toxins7093608
http://www.ncbi.nlm.nih.gov/pubmed/26378578
http://dx.doi.org/10.18869/acadpub.nfsr.3.3.25
http://dx.doi.org/10.24214/jcbps.B.8.1.06977
http://dx.doi.org/10.1080/19393210.2016.1210244
http://www.ncbi.nlm.nih.gov/pubmed/27397646
http://dx.doi.org/10.1080/14786419.2019.1598995
http://dx.doi.org/10.1155/2016/4907425
http://dx.doi.org/10.9790/2402-09215055
http://dx.doi.org/10.1007/s13205-016-0476-9
http://www.ncbi.nlm.nih.gov/pubmed/28330231
http://dx.doi.org/10.2520/myco.69-1-4
http://dx.doi.org/10.1080/09540105.2016.1148124
http://dx.doi.org/10.24214/jcbps.B.9.3.38999
http://dx.doi.org/10.1016/j.foodres.2017.12.061

Toxins 2020, 12, 789 32 of 33

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

Gherbawy, Y.A.; Shebany, Y.M.; Hussein, M.A.; Maghraby, T.A. Molecular detection of mycobiota and
aflatoxin contamination of chili. Arch. Biol. Sci. 2015, 67, 223-234. [CrossRef]

Motloung, L.; De Saeger, S.; De Boevre, M.; Detavernier, C.; Audenaert, K.; Adebo, O.A.; Njobeh, P.B. Study
on mycotoxin contamination in South African food spices. World Mycotoxin J. 2018, 11, 401-409. [CrossRef]
Mozaffarinejad, A.S.; Giri, A. The measurement of aflatoxin B1 in chilli and black peppers of Qaemshahr,
Iran. J. Kerman Univ. Med. Sci. 2015, 22, 185-193.

Pesavento, G.; Ostuni, M.; Calonico, C.; Rossi, S.; Capei, R.; Lo Nostro, A. Mycotic and aflatoxin contamination
in Myristica fragrans seeds (nutmeg) and Capsicum annum (chilli), packaged in Italy and commercialized
worldwide. J. Prev. Med. Hyg. 2016, 57, E102-E109.

Yilmaz, S. The contamination rate of aflatoxins in ground red peppers, dried figs, walnuts without shell
and seedless black raisins commercialized in Sakarya City Center, Turkey. Ifal. J. Food Sci. 2017, 29, 591-598.
[CrossRef]

Kim, S.; Lee, S.; Nam, T.-G.; Seo, D.; Yoo, M. Comparison of a newly developed liquid chromatography
with tandem mass spectrometry method and enzyme-linked immunosorbent assay for detection of multiple
mycotoxins in red pepper powder. J. Food Prot. 2017, 80, 1347-1354. [CrossRef] [PubMed]

Igbal, S.Z.; Asi, M.R.; Mehmood, Z.; Mumtaz, A.; Malik, N. Survey of aflatoxins and ochratoxin A in retail
market chilies and chili sauce samples. Food Control 2017, 81, 218-223. [CrossRef]

Bisht, D.; Menon, K.R K. Variation in the occurence of Aflatoxins in various processed forms of dried Ginger.
J. Microbiol. Biotechnol. Food Sci. 2017, 7, 110-112. [CrossRef]

Lippolis, V,; Irurhe, B.; Porricelli, A.; Cortese, M.; Schena, R.; Imafidon, T.; Oluwadun, A.; Pascale, M. Natural
co-occurrence of aflatoxins and ochratoxin A in ginger (Zingiber officinale) from Nigeria. Food Control 2016, 73,
1061-1067. [CrossRef]

Huang, X.; Wang, S.; Mao, D.; Miao, S.; Hu, Q.; Ji, S. Optimized QuEChERS method combined with
UHPLC-MS/MS for the simultaneous determination of 15 mycotoxins in liquorice. J. AOAC Int. 2018, 101,
633-642. [CrossRef]

Tonti, S.; Mandrioli, M.; Nipoti, P; Pisi, A.; Toschi, T.G.; Prodi, A. Detection of fumonisins in fresh and
dehydrated commercial garlic. J. Agric. Food Chem. 2017, 65, 7000-7005. [CrossRef]

Giirer, U,; Omurtag Korkmaz, B.I,; Dumlu, M.; Omurtag, G. Occurrence of fumonisins B 1 and B 2 in
homemade medicinal plants: Exposure assessment in northern Turkey. Acta Aliment. 2016, 45, 54—60.
[CrossRef]

Makhlouf, J.; Carvajal-Campos, A.; Querin, A.; Tadrist, S.; Puel, O.; Lorber, S.; Oswald, L.P.; Hamze, M.;
Bailly, J.-D.; Bailly, S. Morphologic, molecular and metabolic characterization of Aspergillus section Flavi in
spices marketed in Lebanon. Sci. Rep. 2019, 9, 5263. [CrossRef]

Mezeal, LA.; Alwaan, N.M. Discovery of Fungi Supplementary with Some Spices Collected from Iraqi
Markets. Available online: https://www.semanticscholar.org/paper/Discovery-of-Fungi-Supplementary-
with-Some-Spices-Mezeal- Alwaan/06182a58968b8ef306d3be6da96f5f066db4c769 (accessed on 30 March
2020).

Temu, G.E. Molecular identification of aspergillus strains and quick detection of aflatoxin from selected
common spices in Tanzania. J. Sci. Res. Rep. 2016, 10, 1-8. [CrossRef]

Haruna, M.; Dangora, D.B.; Khan, A.U.; Saleh, A. Mycobiota and aflatoxin contaminations of some spices
and condiments sold in Katsina central market, Nigeria. UMYU ]. Microbiol. Res. 2016, 1, 143-151.

Haruna, M.; Dangora, D.B.; Khan, A.U. Natural occurrence of fungi and aflatoxin in spices and condiments
sold at Kafur market, Katsina State, Nigeria. Niger. J. Sci. Res. 2017, 16, 720-724.

Garcia, M.V,; Parussolo, G.; Moro, C.; Bernardi, A.; Copetti, M.V. Fungi in spices and mycotoxigenic potential
of some Aspergilli isolated. Food Microbiol. 2018, 73, 93-98. [CrossRef] [PubMed]

Lema, A.A.; Mudansiru, A.; Alexander, B.A.; Sakinatu, M.]. Evaluation of fungal species isolated from three
different varieties of pepper (Capsicum chinense, C. frutescens and C. annum L.) in Dutsin-ma, Katsina State.
Ann. Biol. Sci. 2018, 6, 13—-17. [CrossRef]

Sabokbar, A.; Motevalibashi, M.; Talebi, S. Molecular identification of Aflatoxin B1 Aspergillus flavus in red,
black and white pepper using PCR method. Int. |. Mol. Clin. Microbiol. 2018, 8, 1016-1022.

Dharmaputra, O.S.; Ambarwati, S.; Retnowati, I.; Nurfadila, N. Determining appropriate postharvest
handling method to minimize fungal infection and aflatoxin contamination in nutmeg (Myristica fragrans).
Int. Food Res. ]. 2018, 25, 545-552.


http://dx.doi.org/10.2298/ABS141010028G
http://dx.doi.org/10.3920/WMJ2017.2191
http://dx.doi.org/10.14674/1120-1770-IJFS670
http://dx.doi.org/10.4315/0362-028X.JFP-17-006
http://www.ncbi.nlm.nih.gov/pubmed/28708032
http://dx.doi.org/10.1016/j.foodcont.2017.06.012
http://dx.doi.org/10.15414/jmbfs.2017.7.2.110-112
http://dx.doi.org/10.1016/j.foodcont.2016.10.026
http://dx.doi.org/10.5740/jaoacint.17-0365
http://dx.doi.org/10.1021/acs.jafc.7b02758
http://dx.doi.org/10.1556/066.2016.45.1.7
http://dx.doi.org/10.1038/s41598-019-41704-1
https://www.semanticscholar.org/paper/Discovery-of-Fungi-Supplementary-with-Some-Spices-Mezeal-Alwaan/06182a58968b8ef306d3be6da96f5f066db4c769
https://www.semanticscholar.org/paper/Discovery-of-Fungi-Supplementary-with-Some-Spices-Mezeal-Alwaan/06182a58968b8ef306d3be6da96f5f066db4c769
http://dx.doi.org/10.9734/JSRR/2016/26102
http://dx.doi.org/10.1016/j.fm.2018.01.013
http://www.ncbi.nlm.nih.gov/pubmed/29526231
http://dx.doi.org/10.21767/2348-1927.1000115

Toxins 2020, 12, 789 33 of 33

153.

154.

155.

156.

157.

158.

159.

Nurtjahja, K.; Dharmaputra, O.S.; Rahayu, W.P; Syarief, R. Fungal population and aflatoxin contamination
on stored gamma-irradiated nutmeg (Myristica fragrans) kernels. At. Indones. 2018, 44, 57-61. [CrossRef]
Nurtjahja, K.; Dharmaputra, O.S.; Rahayu, W.P,; Syarief, R. Fungal population of nutmeg (Myristica fragrans)
kernels affected by water activity during storage. Agritech 2017, 37, 288-294. [CrossRef]

Yogendrarajah, P.; Devlieghere, F; Njumbe Ediage, E.; Jacxsens, L.; Meulenaer, B.; Saeger, S. Toxigenic
potentiality of Aspergillus flavus and Aspergillus parasiticus strains isolated from black pepper assessed by an
LC-MS/MS based multi-mycotoxin method. Food Microbiol. 2015, 52, 185-196. [CrossRef]

RASFF. Rapid Alert System for Food and Feed Portal Database. Available online: https://webgate.ec.europa.
eu/rasff-window/portal/ (accessed on 9 February 2020).

Basilico, M.Z.; Basilico, J.C. Inhibitory effects of some spice essential oils on Aspergillus ochraceus NRRL 3174
growth and ochratoxin A production. Lett. Appl. Microbiol. 1999, 29, 238-241. [CrossRef]

Magan, N.; Aldred, D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. ]. Food
Microbiol. 2007, 119, 131-139. [CrossRef]

Soliman, K.M.; Badeaa, R.I. Effect of oil extracted from some medicinal plants on different mycotoxigenic
fungi. Food Chem. Toxicol. 2002, 40, 1669-1675. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.17146/aij.2018.593
http://dx.doi.org/10.22146/agritech.10639
http://dx.doi.org/10.1016/j.fm.2015.07.016
https://webgate.ec.europa.eu/rasff-window/portal/
https://webgate.ec.europa.eu/rasff-window/portal/
http://dx.doi.org/10.1046/j.1365-2672.1999.00621.x
http://dx.doi.org/10.1016/j.ijfoodmicro.2007.07.034
http://dx.doi.org/10.1016/S0278-6915(02)00120-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

Toxins 2020, 12, 789, doi: 10.3390/toxins12120789

1of 4

Supplementary Materials: A Review on Mycotoxins and Microfungi in Spices in the
Light of the Last Five Years
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Table S1. Studies positivity: Natural occurrence of mycotoxins produced by Aspergillus and Penicillium species in spices in the last 5 years (since 2015).

Mycotoxin/ AFB1 AFB: AFG1 AFG: AFs OTA CIT
Spice Positive? Positive n Positive n Positive n Positive n Positive n Positive n Reference
(%) (%) (%) (%) (%) (%) (%)
Allspice - - 0| - - 0| - - 0 - - 0 |e® 100 1 | x 00 1| - - 0 1([9]
Anise [ J 100 2 X 00 1 | e 100 1 x 00 1 ® 750 4 |e 100 1 - -0 |[9,109,111,122]
Basil X 00 2 - -0 -0 - -0 x 00 1 x 00 2 X 0.0 1 |[9,110,123]
Bay leaf X 00 3 X 00 2 50.0 2 50.0 2 50.0 4 x 00 1 - -0 |[9,110,122,124]
Caraway 40.0 5 500 4|0 250 4|0 250 4 500 6 |® 667 3 | x 0.0 1 |[89,120,124-126]
Cardamom X 00 2 x 00 1 X 00 1 x 00 1 ® 600 5 |® 667 3 - -0 {[9,109,119,122,126,127]
Carom () 100 1 | x 00 1 | x 00 1 | x 00 1 | e 100 1 | - - 0| - - 0 |[125]
Chili () 95.7 23| ® 750 12 50.0 12 455 11| ® 9.3 27 | e 857 14| @ 100 2 |[89,106,108110-118,120-122,128-138,147,148]
Cinnamon 500 8 | O 200 5 400 5|0 200 5 |e 571 7 333 3| - -0 ][9,110-112,116,121,122,125,127,131]
Cloves x 00 2 | x 00 1 | x 00 1 | x 00 1 400 5 | x 00 3| - -0 [9,35,122,127,131,147,148]
Coriander () 571 7 500 6 333 6 333 6 |® 625 8 |® 750 4 | e 100 1 |[89,109,111,112,120,124,125]
Cumin () 571 7 400 5 |® 600 5 400 5 |® 667 6 |® 667 3 | @ 100 1 |[89109-112,122,125]
Cumin, black () 66.7 3 500 2 |e® 100 2 500 2 |e® 100 2 | - - 0| - -0 |[109,110,125]
Curry [} 100 1 ® 100 1 |e®@ 100 1 |e@ 100 1 333 3 |e@ 100 1 - -0 |[112,147,148]
Dawadawa [ ) 100 1 | - - 0| - - 0 - - 0|® 100 1 |e® 100 1 | - - 0 |[130]
Fennel 40.0 10 286 7 429 7 286 7 |® 600 10| ® 60.0 5 X 0.0 1 |[8,9,109-112,124-127,131]
Fenugreek 500 2 500 2 |e® 100 2 500 2 |e® 100 3 500 2 | e 100 1 [[89,109]
Garlic - - 0| - - 0| - - 0| - - 0| x 00 3 |e®@ 100 1 | - -0 1[9,147,148]
Ginger [} 100 8 | ®@ 600 5 40.0 5 400 5 |e 818 11| e 833 6 |e® 100 1 |[89109-111,117,120,122,130,139,140,147,148]
Licorice 50.0 2 | x 00 2 50.0 2 | x 00 2 500 2 |e® 100 2 |e 100 1 |[109,120,141]
Mace - - 0| - - 0| - - 0| - - 0|e® 100 1 |e@ 100 1 | - - 0 |[126]
Marjoram () 100 1 | x 00 1 | x 00 1 | x 00 1 500 2 |e® 100 1 | - -0 {[9,109]
Mint x 00 3 | x 00 2 | x 00 2 | x 00 2 | x 00 3 | x 00 1| - -0 1[9,110,124]
Mustard 50.0 2 | x 00 1 |e® 100 1 |®@ 100 1 |e@ 100 1 |@®@ 100 1 | - -0 {[109,120,127]
Nutmeg 333 6 500 2 50.0 2 | x 00 2 |® 87 7 |@ 100 3 | x 0.0 1 |[9,105,109,120,123,127,135,147,148,152,153]
Onion x 00 1| - - 0| x 00 1| - - 0| x 00 2| x 00 2| - - 0 ([9,133]
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Mycotoxin®/ AFB1 AFB:2 AFG1 AFG: AFs OTA CIT
Spice Positive? ne Positive n Positive n Positive n Positive n Positive n Positive n Reference
(%) (%) (%) (%) (%) (%) (%)
Oregano x 00 4 | x 00 3 | x 00 3 | x 00 3 |]0O 250 4 | x 00 3 | x 0.0 1 |[9,123,124,131]
Paprika ® 100 e 100 1 |® 100 2 |® 100 1 |® 100 4 |e® 100 4 | - -0 [9,107,111,120,133]
Parsley ® 100 1 |e® 100 1 |e® 100 1 | x 00 1 500 2 | x 00 1| - -0 {[9,109]
Pepper, black ] 643 14 | ® 571 7 429 7 286 7 |® 733 15| @ 667 12| ® 66.7 3 |[8935108-112,116-118,120-123,125-127,129-
131,134]
Pepper, white 333 3 333 3 333 3 333 3 500 4 | O 250 4 | - -0 1[9,35,112,125,131]
Rosemary 500 4 500 4 | O 250 4 500 4 | e 100 5 50.0 2 | - -0 1[9,109,124,131]
Saffron () 100 1 | - - 0| - - 0| - -0 50.0 2 | x 00 1| - -0 |[9,111]
Sage 500 2 | x 00 1 |e® 100 1 | x 00 1 |e 100 3 |e@ 100 1 | - -0 1[9,109,110]
Star anise x 00 1 - - 0| - - 0 - - 0| - - 0| - - 0| - -0 ({[127]
Sumac x 00 1| - - 0| - - 0| - -0 | x 00 1 | x 00 1| - - 0 ([9,110]
Thyme 400 5 | x 00 3 333 3 | x 00 3 429 7 | x 00 2 | x 0.0 1 |[9,109,110,123,124,147,148]
Turmeric [J 857 7 |® 667 6 |® 667 6|0 167 6 |®@ 778 9 |@ 100 5 | x 0.0 1 |[89,109,110,112,116,121,122,125,126]

Notes: @ AFB1 = Aflatoxin Bi, AFB2 = Aflatoxin B2, AFG1 = Aflatoxin Gi, AFGz2= Aflatoxin Gz, AFs = Aflatoxins, OTA = Ochratoxin A, CIT = Citrinin; ® Positive = the percentage
of studies with at least one related spice sample positive on related mycotoxin; < n = number of studies concerning related spice and mycotoxin; x = none occurrence (0 %);
¥ = rare occurrence (up to 5 %); O =low occurrence (up to 25 %); = = moderate occurrence (up to 50 %); ® =high occurrence (up to 75 %); @ = very high occurrence (more
than 75 %).
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Table S2. Studies positivity: Natural occurrence of Fusarium mycotoxins in spices in the last 5 years (since 2015).

yo—— o DON NIV 5 M2 ZEA

Spice Positive? e Positive n Positive n Positive n Positive n Positive n Positive n Reference
(%) (%) (%) (%) (%) (%) (%)

Basil x 00 2 x 0.0 1 x 00 1 x 0.0 1 x 00 1 x 00 1 x 0.0 1 |[[123,143]

Bay leaf x 00 3 x 00 1 - -0 - -0 x 0.0 2 x 00 2 - - 0 |[124,143]

Caraway x 00 2 - -0 - -0 - -0 x 00 2 x 00 2 - -0 [[124]

Chili x 00 1 ° 100 2 - -0 - -0 - -0 - -0 x 0.0 1 |[118,133,137]

Coriander x 00 3 x 00 1 - -0 - -0 500 2 x 00 2 - - 0 |[124,143]

Dawadawa [ 100 1 ° 100 1 x 00 1 x 00 1 ° 100 1 100 1 o 100 1 |[34]

Fennel x 00 2 - -0 - -0 - -0 x 00 2 x 00 2 - -0 [[124]

Garlic [ ] 100 1 x 00 1 - -0 - -0 - -0 - -0 - -0 [[142]

Licorice [ ] 100 1 x 00 1 [ ] 100 1 - -0 x 00 1 - -0 ° 100 1 |[141]

Mint 333 3 x 00 1 - -0 - -0 500 2 x 0.0 2 - - 0 |[124,143]

Nutmeg ° 100 1 - -0 x 0.0 1 x 0.0 1 x 00 1 x 00 1 x 00 1 [[123]

Onion ° 100 1 (] 100 1 - -0 - -0 - -0 - -0 - - 0 [[133]

Oregano x 00 3 - -0 x 00 1 x 00 1 x 00 3 x 00 3 x 0.0 1 |[[123,124]

Paprika 50.0 2 (] 100 2 () 100 1 () 100 1 (] 100 1 ° 100 1 [ ) 100 1 |[107,133]

Pepper, black 50.0 2 - -0 x 0.0 1 x 00 1 x 00 1 x 00 1 x 0.0 1 [[118,123]

Rosemary x 00 2 - -0 - -0 - -0 x 00 2 x 00 2 - -0 [[124]

Thyme (@) 250 4 x 00 1 [ 100 1 x 00 1 x 00 3 x 00 3 [ 100 1 |[123,124,143]

Notes: 2 FB1 = fumonisin Bi, FB2 = Fumonisin B2, DON = Deoxynivalenol, NIV = Nivalenol, T-2 = T-2 toxin, HT-2 = HT-2 toxin, ZEA = Zearalenone;" Positive = the percentage
of studies with at least one related spice sample positive on related mycotoxin; < n = number of studies concerning related spice and mycotoxin; x =none occurrence (0 %);
% = rare occurrence (up to 5 %); O =low occurrence (up to 25 %); = = moderate occurrence (up to 50 %); ® =high occurrence (up to 75 %); @ = very high occurrence (more
than 75 %).
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Table S3. Studies positivity: Natural occurrence of Alternaria mycotoxins in spices in the last 5 years

(since 2015).
Mycotoxin?/ ALT AOH TEA
Spice PositiveP e Positive n Positive n Reference

(%) (%) (%)

Allspice x 00 1 ° 100 1 x 00 1 |[10]
Anise x 00 1 x 00 1 x 00 1 |[10]
Basil x 00 1 x 00 1 x 00 1 |[10]
Bay leaf x 00 1 x 00 1 [ ] 100 1 [10]
Caraway x 00 1 x 00 1 [ ) 100 1 | [10]
Cardamom x 0.0 1 x 00 1 (] 100 1 [10]
Chili ° 100 1 ° 100 1 [ ) 100 1 | [10]
Cinnamon [ J 100 1 [ J 100 1 [ ] 100 1 [10]
Cloves (] 100 1 x 00 1 [ 100 1 | [10]
Coriander x 00 1 x 00 1 [ ) 100 1 | [10]
Cumin x 00 1 | x 00 1 | @ 100 1 |[10]
Fennel x 00 1 x 00 1 [ 100 1 | [10]
Fenugreek x 00 1 x 00 1 (] 100 1 | [10]
Garlic x 00 1 ° 100 1 [ 100 1 | [10]
Ginger ° 100 1 ° 100 1 [ 100 1 | [10]
Licorice - - 0 |e 100 1 | - -0 |41
Marjoram x 00 1 x 00 1 o 100 1 | [10]
Mint x 00 1 [ 100 1 [ ] 100 1 [10]
Nutmeg x 00 1 ° 100 1 [ ) 100 1 | [10]
Onion x 00 1 [ 100 1 [ ] 100 1 [10]
Oregano x 00 1 ( 100 1 [ 100 1 | [10]
Paprika [} 100 2 | @ 100 2 | @ 100 2 | [10,107]
Parsley x 00 1 x 00 1 x 0.0 1 |[10]
Pepper, black | x 00 1 ° 100 1 [ 100 1 | [10]
Pepper, white | x 00 1 ( 100 1 [ ) 100 1 | [10]
Rosemary x 00 1 x 00 1 ° 100 1 | [10]
Sage x 00 1 ° 100 1 [ ) 100 1 | [10]
Sumac x 00 1 ° 100 1 [ 100 1 | [10]
Thyme x 00 1 x 00 1 [ 100 1 | [10]
Turmeric [ 100 1 X 00 1 [ ] 100 1 [10]

Notes: 2 ALT = Altenuene, AOH = Alternariol, TEA = Tenuazonic acid; ® Positive = the percentage of
studies with at least one related spice sample positive on related mycotoxin; ¢ n = a total number of
studies concerning related spice and mycotoxin; x = none occurrence (0 %); % = rare occurrence (up
to 5 %); O =low occurrence (up to 25 %); = =moderate occurrence (up to 50 %); ® = high occurrence
(up to 75 %); @ = very high occurrence (more than 75 %).
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Abstract: Aflatoxins (AFs) are some of the most agriculturally important and harmful mycotoxins.
At least 20 AFs have been identified to this date. Aflatoxin B; (AFB;), the most potent fungal toxin,
can cause toxicity in many species, including humans. AFs are produced by 22 species of Aspergillus
section Flavi, 4 species of A. section Nidulantes, and 2 species of A. section Ochraceorosei. The most
important and well-known AF-producing species of section Flavi are Aspergillus flavus, A. parasiticus,
and A. nomius. AFs contaminate a wide range of crops (mainly groundnuts, pistachio nuts, dried figs,
hazelnuts, spices, almonds, rice, melon seeds, Brazil nuts, and maize). Foods of animal origin (milk
and animal tissues) are less likely contributors to human AF exposure. Despite the efforts to mitigate
the AF concentrations in foods, and thus enhance food safety, AFs continue to be present, even at
high levels. AFs thus remain a current and continuously pressing problem in the world.

Keywords: aflatoxigenic microfungi; aflatoxins; food

Key Contribution: As of 2020, 60 years have passed since the discovery of aflatoxins. A total of
22, 4, and 2 Aspergillus producers of section Flavi, Nidulantes, and Ochracerosei produce aflatoxins,
respectively. Aspergillus flavus, Aspergillus parasiticus, and Aspergillus nomius are the most important
aflatoxin producers of section Flavi. Groundnuts, pistachio nuts, dried figs, hazelnuts, spices, al-
monds, rice, melon seeds, Brazil nuts, and maize are the most common commodities contaminated
with aflatoxins.

1. Introduction

Aflatoxins (AFs) are some of the most important and harmful mycotoxins. As of 2020,
60 years have already passed since their discovery. AFs are one of the five agriculturally
most important mycotoxins [1-4]. Chemically, the AFs are difuranocoumarin derivatives
with a bifuran group attached to the coumarin nucleus and a pentanone ring (in the case
of aflatoxin AFBs) or a lactone ring (in case of aflatoxin AFGs) [5]. There are more than
20 known AFs, but the most common are aflatoxin By (AFB{) (PubChem CID: 186907),
aflatoxin B, (AFB,) (PubChem CID: 2724360), aflatoxin G; (AFG1) (PubChem CID: 14421),
and aflatoxin G, (AFG;) (PubChem CID: 2724362) (PubChem, 2020), from which AFBy is
the major representative in food crops [6]. Aflatoxin M (AFM;) (PubChem CID: 15558498)
and M, (AFM;) (PubChem CID: 10903619) are the hydroxylated metabolites of AFB; and
AFB; [7-9].

AFs are acutely toxic, hepatotoxic, immunosuppressive, mutagenic, teratogenic,
and carcinogenic compounds [10-14]. The International Agency for Research on Can-
cer (IARC) evaluated the carcinogenicity of naturally occurring AFs (AFB;, AFB;, AFG;,
and AFG;) for humans as Group 1 “carcinogenic to humans” in 1987 [10,15], and re-
evaluated in 2012 [16,17]. AFM); is often misclassified in the literature as Group 1; however,
it was classified as Group 2B “possibly carcinogenic to humans” in 1993 [1] and has not been
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re-evaluated since. For these reasons, AFs need to be monitored and their concentrations
in food should be kept at the lowest possible levels.

While acute exposure to a high dose can result in vomiting, abdominal pain, and even
death, chronic exposure to low doses may lead to liver cancer [18,19], which is generally
considered to be the most significant impact of AFs on human health [10,20]. According to
the latest data from the Global Cancer Observatory, liver cancer is the sixth most common
cancer for both sexes of all ages, with a total of 905,677 new cases estimated in 2020 [21].
It has been estimated that AFs contribute to 4.6% to 28.2% of all global hepatocellular
carcinomas [22].

Nowadays, AFs are of great interest as they are one of the most serious contaminants
that can significantly affect the food chain. Humans, at the top of the food chain, often
consume contaminated foodstuffs of both plant and animal origins. Besides human health,
food insecurity caused by AFs contamination can also affect humanity at the social, political,
and economic levels [23].

Therefore, in this article, attention is paid to AFs in terms of AF producers and the
occurrence of AFs in foods around the world.

2. Producers of Aflatoxins

To date, AFs are produced by 28 species of the genus Aspergillus. Aspergillus subgenus
Circumdati section Flavi contains some of the most important species in the genus, which
usually produce AFs [24-26].

The accurate identification of Aspergillus section Flavi requires a polyphasic approach
that includes the morphological characters (the microscopic structures, such as the uni-
or biseriate conidial heads, the production of dark-colored sclerotia by certain species,
and yellow-green to brown shades of conidia), and the chemical (extrolite data) and
molecular (partial sequences of calmodulin, B-tubulin, and internal transcribed spacer
region) approaches, as these species are closely related and could not be easily distinguished
by morphological characteristics alone [24-26].

Aspergillus section Flavi currently contains a total of 34 species in 8 clades: the As-
pergillus alliaceus-, A. avenaceus-, A. bertholletius-, A. coremiiformis-, A. flavus-, A. leporis-,
A. nomius-, and A. tamarii-clade [24-27]. The three new clades A. texensis-, A. agricola-,
and A. toxicus-clade with three species were presented in the year 2020 [28,29].

Table 1 gives an overview of the current identity of Aspergillus species from Aspergillus
section Flavi as AF producers focus on foodstuffs [24-30].

The most important and most well-known AF-producing species of section Flavi in
foodstuffs are Aspergillus flavus [31,32], A. parasiticus [33-35], and A. nomius [36,37]. While
Aspergillus flavus produces AFB; and AFBy, A. parasiticus and A. nomius can produce AFB,,
AFB2, AFGl, and AFGz.

Aspergillus minisclerotigenes and A. parvisclerotigenes also belong to section Flavi. Both
have morphological and physiological similarities to A. flavus; however, they produce
more but smaller sclerotia. In contrast to A. flavus, this is usually coupled with a high and
consistent production of both the B and G type of AFs [24].

In addition to Aspergillus flavus, four other A. species (A. agricola, A. pseudotamarii,
A. togoensis, and A. toxicus) only produce AFB; and AFB;. Seventeen other Aspergillus
species can produce AFB;, AFBy, AFGq, and AFG,_ It is generally accepted that A. flavus is
unable to produce AFs type G, but it is also reported that some Korean strains are capable
of producing both AFG; and AFG; [25] However, some Aspergillus species from Aspergillus
section Nidulantes [38] or Aspergillus section Ochraceorosei [32,39] can also produce AFs.
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Table 1. Aflatoxigenic Aspergillus species from Aspergillus section Flavi.

. Year of
Species AF Producer Identification Occurrence
A. flavus By, By 1962 Peanuts, maize, spices
A. parasiticus B1, By G1, Gy 1963 Maize, peanuts
A. nomius Bi, By G1, Gy 1987 Wheat, turmeric
A. pseudonomius B1, B, G1, Gy 1997 Brazil nut
A. pseudotamarii B1, By 2001 Brazil nut
A. parvisclerotigenes Bi, By G1, Gy 2005 Peanuts
A. arachidicola B1, B, G1, Gy 2008 Carob flour
A. luteovirescens @ B1, B, G1, Gy 2008 Brazil nut
A. minisclerotigenes By, B, G1, Gy 2008 Peanuts, curry, red chili
A. pseudocaelatus B1, B, G1, Gy 2011 Peanuts, Brazil nut
A. togoensis B, By 2011 Fruit of Landolphia spp.
A. mottae B1, By G1, Gy 2012 Maize
A. novoparasiticus B1, By G1, Gy 2012 No occurrence in food P
A. sergii By, B, G1, Gy 2012 Almond
A. transmontanensis B1, By G1, Gy 2012 Almond
A. texensis B1, B, G1, Gy 2018 Maize
A. aflatoxiformans B1, B, G1, Gy 2019 Peanuts, sesame
A. austwickii B1, By G1, Gy 2019 Rice, sesame
A. cerealis B1, B, G1, Gy 2019 Rice, maize, peanut
A. pipericola By, By G1, Gy 2019 Black pepper
A. agricola sp. nov. By, By 2020 Maize
A. toxicus sp. nov. B, By 2020 Maize

2 Formerly named Aspergillus bombycis; ® Sputum of leukemic patient.

The identification of Aspergillus section Nidulantes requires a polyphasic approach
which includes the morphological characters (the microscopic structures such as the color,
shape, size, and ornamentation of ascospores, the shape and size of conidia and vesicles,
and growth temperatures), and the chemical (extrolite data) and molecular (internal tran-
scribed spacer region, partial 3-tubulin, calmodulin, and RNA polymerase II the second
largest subunit (RPB2) gene sequences) approaches [38]. Based on this polyphasic ap-
proach, Aspergillus section Nidulantes was subdivided into 7 clades and 65 species [38]. The
majority of section Nidulantes species can produce a sexual state, and those species were,
in the dual name nomenclature system, assigned to the genus Emericella. Because of the
adoption of the “one fungus: one name” nomenclatural system, all Emericella species were
transferred to Aspergillus [40]. AFB; was produced by four species: Aspergillus astellatus [41],
A. miraensis [42,43], A. olivicola [44], and A. venezuelensis [45]. Aspergillus ochraceoroseus and
A. rambellii belong to section Ochraceorosei [32]. A. ochraceoroseus produce AFBq [11,39,46,47],
and A. rambellii also produce AFB; [32,39].

With the development of modern molecular biological and chromatographic methods,
other new AF producers will certainly be identified soon and bring new research to
this area.

3. Aflatoxin Occurrence in Foods

The contamination of foods with AFs, like with other mycotoxins, has become a global
problem [48]. For several years, a statement claiming that a total amount of 25% of the
world’s crops are affected by molds and mycotoxins, supposedly estimated by the Food
and Agriculture Organization (FAO), has been circulating worldwide [12,49]. However,
this estimation has been challenged in the most recent studies dealing with the background
of this matter, as this statement was not possible to trace back, since even FAO experts
were not able to do so [50]. On the basis of an extensive study by the BIOMIN Company in
2004-2011, 72% of samples of feed (mainly maize, wheat, barley, and silage) and feed raw
materials (especially for swine, poultry, and cows) from all over the world, but mainly from
Asia (40%) and Europe (38%), contained a detectable amount of at least one mycotoxin
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including AFs. Moreover, a co-occurrence of two or more mycotoxins was confirmed in
38% of samples [51], and of course, AFs can interact in synergy with other mycotoxins. This
fact is alarming since the major intake of mycotoxins into human organisms is usually due
to dietary exposure [52], and even a low concentration of AFs is hazardous for humans [53].

In general, inappropriate storage is considered a major cause of foods contamination
with mycotoxins—especially in developing countries [54,55], in which approximately
20% of the global volume of potentially highly contaminated commodities originate [56].
In some cases, contamination of crops with mycotoxins may already occur in the field
due to stress factors such as insects or drought that facilitate the contamination [57].
Climate conditions, such as high temperatures, heavy rainfalls, and high relative humidity,
are likely to contribute to crop contamination as well, as they make plants more susceptible
to fungal, and thus mycotoxin, contamination [58,59]. Contamination during transport and
processing is also possible [23]. Good agricultural, manufacturing, and hygienic practices,
good plant disease management, and adequate storage conditions can limit mycotoxin
levels in the food chain, yet these practices do not eliminate mycotoxins completely [60,61].

Fortunately, some contamination-reducing chemical (ammonization, hydrogen perox-
ide, sodium bisulfate, organic acids, ozone, and plant extracts), physical (separation, solvent
extraction, mineral adsorbents, heating, extrusion, microwaving, irradiation, and UV ra-
diation) and biological (enzymes, bacterial cells, yeast cells, and non-toxigenic strains)
technologies have been developed to enhance food safety [20,23]. However, the European
Union legislation, in Section 2 of the Annex “Mycotoxins”, does not allow any foods
contaminated with mycotoxins to be detoxified by the chemical approach [62]. Moreover,
foods treated by sorting or other physical means must not be mixed with foods intended for
direct human consumption nor with foods intended to be used as food ingredients [62]. Bio-
logical control, depending on the competition between non-toxigenic and toxigenic strains,
is the most commonly used method, especially in countries where AFs pose a significant
threat [63]. For example, a product Aflasafe™ has begun to be applied to reduce AFs with
an average efficiency of 99% (76%-100%) in maize and groundnuts [64-66]. The principle
of its use lies in the contamination of crops with non-toxigenic strains before they are
contaminated by toxigenic strains of Aspergillus flavus. Aflasafe™ is a relatively cheap and
easy-to-apply product that ensures a long-lasting reduction of AFs (up to consumption
level) [64].

AFs contaminate a wide range of foods of both plant and animal origin. AFB;,
AFB,, AFGq, and AFG; are major contaminants in commodities of plant origin, mainly
groundnuts, tree nuts, spices, seeds, dry fruits, and cereals [67-69]. The daily intake of AFs
at the level of nanograms to micrograms per person per day is mainly achieved through
the consumption of contaminated maize and groundnuts [70]. Animal products are less
likely substrates for AF producers; however, the metabolites AFM; and AFM, are typical
in milk, including human breast milk [71,72], and dairy products of lactating ruminants
that have been fed with contaminated feed (carry-over to dairy milk) [73-76]. AFM; has
also been detected in cheese worldwide [77-79] and AFs (in low concentrations) have been
reported to occur in certain products of animal origin, such as meat and meat products, or
eggs, etc. (carry-over of AFs in products of animal origin) [74].

Drought periods combined with high temperatures significantly increase AF produc-
tion in the fields [80]. It has been estimated that at least 4.5 billion people worldwide are
chronically exposed to AFs from foods, especially in “hot zones” in the regions situated
between 40° N and 40° S latitude [81]. Climate change and the trend of global warming
may lead to an increased occurrence of mycotoxins, for the production of which higher
temperatures are needed, and the same goes for AFs [82]. This might be the case in North-
ern [82] or Western [83] Europe, for example, where AFB; contamination of maize was
recently observed [84]. It should be emphasized that even in the current modern age, cases
of acute aflatoxicosis leading to human death may occur due to climate change [85]. Cli-
mate change is dealt with in more detail in the Special Issue of Toxins entitled “Mycotoxins
in Relation to Climate Change”.
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On the other hand, it is known that the AFs belong to the dominant mycotoxins in
the African and Asian continents, as well as North and South America and the Australian
continent [86]. Additionally, despite all efforts to mitigate AFs in foods, there are still cases
of high AF concentrations in foods. Therefore, to enhance food safety, there is a global need
for regulatory limits and food contaminant monitoring tools.

3.1. The Occurrence of Aflatoxins in Food in the African Continent

In African countries, maize and groundnuts represent the largest exposure to AFs [87,88],
where maize is a staple crop for the majority of the African population [88,89]. The case of
highly contaminated (1-46, 400 ng/kg) maize in Kenya in 2004, associated with 125 human
deaths, is historically relevant [85].

There are still cases of concentrations exceeding the limits set in many countries.
Recently, high concentrations of AFs in maize grains of up to 9091.8 ug/kg (AFB;) were
found in Kenya [89], up to 3760 pg/kg for total AFs (where AFT is the sum of AFB;, AFB,,
AFGj, and AFG,) in Uganda [90], up to 2806.5 pug/kg (AFT) in the Democratic Republic of
Congo [91], up to 1460 pg/kg (AFT) in Nigeria [88], up to 945 pg/kg (AFT) in Ghana [92],
and up to 107.6 pg/kg (AFT) in Zambia [93].

3.2. The Occurrence of Aflatoxins in Food in the Asian Continent

Practically all tropical countries face the problem of AFs [94]. The climate of Asian
countries is very favorable for AF-producing microfungi [95], especially when it comes to
commodities such as cereals—mainly maize and rice, cereal products, beans, groundnuts,
and other oily products—which is alarming, as cereals and groundnuts are considered
major items in the Asian diet [94].

AFs were found in maize in concentrations of up to 1572 pg/kg (AFB;) in Vietnam [96].
However, in Asia, rice is the most important crop in terms of its consumption [55,97], and es-
pecially production, as approximately 90% of the world’s rice is produced in Asia, of which
nearly two-thirds are produced by China, India, and Indonesia [98]. High concentrations of
AFs in rice have been reported in many scientific studies. In the case of AFB4, reported con-
centrations reached up to 361.0 ug/kg in India [99], up to 185.0 ug/kg in Sri Lanka [100],
and up to 26.6 pg/kg in Thailand [101]. In the case of AFT concentrations, they were
found to reach up to 96.3 pg/kg in Malaysia [102], up to 77.8 ug/kg in Vietnam [55], up to
21.4 pg/kg in Turkey [103], and up to 21.0 ug/kg in China [104].

3.3. The Occurrence of Aflatoxins in Food in the American Continent

America is the largest producer of maize (565 million tons in 2019; 49.2% of world pro-
duction). The United States, Brazil, Argentina, and Mexico belong to the top 10 producers
worldwide [98]. Alongside sub-Saharan Africa and Southeast Asia, maize is a staple food
in Latin America [105], especially in Guatemala [106] and Mexico [107].

However, concentrations of AFB; of up to 2656 ug/kg were observed in maize in
Guatemala and are potentially high throughout the rest of Central America and Mex-
ico [106]. Lower concentrations of up to 282.5 pug/kg (AFB) and 303.9 ug/kg (AFT) were
detected in maize kernels in South Haiti [108], and concentrations of up to 49.9 ug/kg
(AFT) were found in Brazil [109]. Processed maize products are also contaminated with
AFs. For example, tortillas and popcorn have been reported to be contaminated with up to
287.23 pug/kg (AFBy) [110] and up to 120 pg/kg (AFT) [111], respectively, in Mexico.

Of course, the problem is not only maize as a staple food, as high levels of AFs are
also found in other local commodities, including up to 33.3 ug/kg (AFT) in nuts, up to
176.4 ug/kg (AFT) in Capsicum spices in Chile [112], and up to 70.9 pug/kg (AFT) in the
case of Brazilian rice [113].

3.4. The Occurrence of Aflatoxins in Food in the Australian Continent

In Australia, hot and dry conditions typical for the arid and semi-arid areas cover-
ing much of the continent are the main stress factors that allow for the contamination of



Toxins 2021, 13, 186

6 of 15

crops with AFs. This represents a major problem in Australia in terms of peanut degra-
dation [114,115]. The occurrence of AFs is not quite as common in Australian maize [116],
and when it occurs, it is in low or moderate concentrations [117] for unknown reasons [115].
Nevertheless, maize is only a small part of the human and animal diet in Australia [115].

The occurrence of AFs in Australian maize is usually in the range of 1-5 pg/kg,
but can also occasionally reach higher concentrations of up to 200 pg/kg [118]. However,
higher concentrations of AFT in maize (up to 311.1 ug/kg), and also in peanuts (up to
384.8 ug/kg), sorghum (up to 138.3 nug/kg), and wheat (up to 26.8 nug/kg), have been
found in Australia [115,119-121].

3.5. Aflatoxin Regulations in the European Union and around the World

The discovery of AFs and their serious negative effects on human and animal health in
the early 1960s led many countries in the world to establish certain regulations of mycotox-
ins in foods to protect consumers from the harmful effects caused by mycotoxins [122,123].
The first limit regulating mycotoxins, namely AFs, was set in the late 1960s, and by 2003
approximately 100 countries in the world had already regulated mycotoxins in foods [123].
Although the number of countries regulating mycotoxins in foods is increasing [123], most
African countries and other developing countries lack regulations [92], as the compliance
with the limits in developing countries would result in a shortage of food, and thus an
increase in its price.

From the perspective of all mycotoxins, the regulations of AFB;, AFT, and AFM; are
the greatest concern of worldwide legislation [124]. The Codex Alimentarius specifies an
AF maximum limit of 15 ug/kg (for almonds, hazelnuts, Brazil nuts, peanuts, and pistachio
nuts for further processing) and 10 pg/kg (for almonds, Brazil nuts, hazelnuts, and pista-
chio nuts for direct consumption and dried figs), and AFM; maximum limit of 0.5 pg/kg
for milk [125]. However, the maximum levels of AFs in foods vary throughout different
countries depending on the type of product and also on the import/export regime [69].

The European Union (EU) has one of the most comprehensive and strictest regulations
on AF levels, set by the commission regulation 1881/2006 [62], and later on by its amending
supplement 165/2010 [126], that are binding upon the 27 member states of the EU. These
levels are in ranges 0.1-12 ug/kg, 4-15 pg/kg, and 0.025-0.05 ug/kg for AFB;, AFT,
and AFM;, respectively, in the case of various foods [62,126].

For comparison with other countries, the maximum limit/regulatory limit/action level
(or the range) for AFB; has been set at 30 pg/kg in India, at 20 ug/kg in the Philippines, at
15-20 pg/kg in Indonesia [127], at 0.5-20 pg/kg in China [128], at 5-10 ug/kg in Japan,
and at 0.1-10 pg/kg in Korea [127].

The maximum/action limit (or the range) for AFT has been set at 20-35 ug/kg
in Indonesia [127]; at 5-15 pg/kg in Malaysia [129]; at 30 pug/kg in Sri Lanka [127];
at 20 ug/kg in the United States [130-133], Thailand, the Philippines [127], and Nige-
ria [134]; at 15-20 pg/kg in Hong Kong [127]; at 1-20 in Brazil pg/kg [135]; at 15 ug/kg
in Canada [136], Korea [69,127], Australia [137], and Zimbabwe [134]; at 0-15 ug/kg
in Taiwan, at 10 pug/kg in Japan, Vietnam [69,127], Kenya, Mozambique, South Africa,
and Uganda [134]; and at 5 pg/kg in Singapore [127].

If a country has any regulation on AFM; in milk or dairy products, it is usually set
at 0.5 ng/kg [128,135,138,139], which is in line with the Codex Alimentarius. However,
in the EU legislation, the AFM; maximum limits (0.025-0.05 ng/kg) are 10-20 times lower
compared to the Codex Alimentarius (0.5 pg/kg) [62,125].

3.6. The Occurrence of Aflatoxins Based on Data by INFOSAN (2016-2020)

The International Food Safety Authorities Network (INFOSAN) is a global information
network jointly managed by the World Health Organization (WHO) and the FAO [140].
The INFOSAN has facilitated urgent international communication during food safety
emergencies between more than 600 members from 188 of the 194 FAO and WHO member
states since 2004. The INFOSAN aims to reduce the incidence of foodborne diseases that
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have a significant impact on public health and international trade [140,141]. Regarding
AFs, only two cases, both of which concerned maize in Tanzania, were reported in 2016
and 2017 [142]. There have been no reports on AFs in foods since.

3.7. The Occurrence of Aflatoxins in Food Based on Data by RASFF (2015-2020)

The Rapid Alert System for Food and Feed (RASFF) is an important warning system for
food and feed safety from the perspective of the EU countries [143]. Regarding the number
of notifications reported by RASFF in 2015-2020, most mycotoxin notifications were related
to AFs (approximately 88%), of which most were of the food category (approximately 94%)
and less were of the feed category (approximately 6%), as shown in Table 2 [144].

Table 2. The share of aflatoxin notifications in 2015-2020.

Substance/Year 2016 2017 2018 2019 2020
Mycotoxins 549 579 655 584 423
AFs? 441 (89.1%) 478 (87.1%) 539 (93.0%) 567 (86.6%) 497 (85.1%) 370 (87.5%)
AFs in food 423 (95.9%) 461 (96.4%) 515 (95.5%) 510 (89.9%) 467 (94.0%) 348 (94.1%)

2 AFs = aflatoxins; processed according to the Rapid Alert System for Food and Feed (RASFF) database [143].

Based on data from the last years (2015-2020), the vast majority of notified products
contaminated with AFs belong to the “nuts, nut products, and seeds” category, followed
behind by “fruits and vegetables”, “herbs and spices”, “cereals and bakery products”,
and others. Namely, the most often notified foods are, in descending order, ground-
nuts, pistachio nuts, dried figs, hazelnuts, spices, almonds, rice, melon seeds, Brazil nuts,
and maize [144].

Throughout the years 2015-2020, cases of very high concentrations of AFs in foods
were notified. Based on these “high-level” notifications, groundnuts, pistachio nuts, al-
monds, dried figs, hazelnuts, chilies, melon seeds, and apricot kernels appear to be highly
contaminated (with the maximum concentration of AFB; or AFT exceeding 1000 ug/kg).
Spices (other than chilies), tiger nuts, Brazil nuts, rice, pecan nuts, walnuts, and maize
represent the less contaminated foods [144]. There is a concern for the development of
aflatoxicosis associated with the consumption of foods with an AF concentration of at least
1000 pg/kg [145]. This implies that the group of above-mentioned highly contaminated
commodities may tend to cause aflatoxicosis in humans or animals. Some of the highest
values of aflatoxin contamination in 2015-2020 are shown in Table 3.

In the year 2020, groundnuts, pistachio nuts, dried figs, spices, hazelnuts, almonds,
and rice were the most notified products in relation to AF contamination. The other notified
products were mostly various seeds (melon, ogbono, sunflower, lotus, and sesame seeds)
and flours (wheat flour, chestnut flour, and banku mix). Single notifications concerned
Brazil nuts, apricot kernels, soya, milk, and date syrup. Most notifications originated in
Turkey (mainly dried figs and pistachio nuts), followed far behind by the United States
(mainly groundnuts) and India (mainly groundnuts and spices). A significant number
of notifications originated in Argentina (groundnuts only), Iran (pistachio nuts only),
Egypt (groundnuts only), China (mainly groundnuts), Pakistan (mainly spices and rice),
Nigeria (mainly groundnuts), and Georgia (hazelnuts only) (see Figure 1) [144]. Fewer
notifications (the number is given in brackets) originated in other countries: Spain (7); Sri
Lanka (6); Brazil (5); Italy and Ghana (3); Ethiopia, United Kingdom, Germany, Ukraine,
and Cameroon (2); and Angola, Vietnam, Hong Kong, South Africa, Jordan, Togo, Hungary,
Nepal, Bolivia, Cambodia, Paraguay, Indonesia, Belgium, Malaysia, Tunisia, Senegal,
and Azerbaijan (1). Two notifications were of unknown origin [144].
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Table 3. The highest concentrations of aflatoxin B and total aflatoxins in foods notified by RASFF in

2015-2020.
AFB, AFT 2 . .

No. Product (ng/kg) (ug/kg) Origin Year
1 Peanut paste 707,000 907,000 Senegal 2016
2 Peanuts 180,200 220,900 China 2015
3 Groundnuts in shell 42,100 46,800 Egypt 2019
4 Groundnuts 17,000 38,000 Turkey 2016
5 Pistachios — 26,300 Germany 2020
6 Peanut in shell 24,000 26,000 China 2015
7 Almonds — 24,000 Us 2018
8 Dried figs 15,300 - Turkey 2020
9 Roasted chopped 4000 15.200 n

hazelnuts 4 urkey 2015
10 Shelled nuts 12,890 14,420 Turkey 2019
1 Organll(ce f;gl‘;nd“m 11,000 14,000 Egypt 2020
12 Dried red chilies 13,700 14,000 India 2020
13 Roasted and salted 13,700 - Turkey 2020

watermelon seeds

14 Shelled almonds 10,440 11,420 Us 2019
15 Hazelnut kernels 7200 — Georgia 2019

2 AFT = sum of aflatoxins B1, B2, G1, and G2; processed according to the RASFF database [144].

H Groundnuts

Aflatoxins

& Other products

4

N

W

-_—m,

N

Turkey

United States

Argentina

India B3

Iran

Egypt

China E

. Pakistan E
Nigeria E

Georgia [EX

Other countries &

E1 E2 EX 7N I

Figure 1. Aflatoxin notifications in food by the RASFF in 2020. Note: All products in the “Other products” category were
notified less than four times in 2020. The category “Other countries” includes notifications from 24 countries, in which less

than 9 notifications originated and 2 notifications were of unknown origin. Processed according to RASFF database [144].
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The amount of the world production of these commodities should be taken into
consideration as demonstrated in Table 4. Although groundnuts are the most often notified
product, pistachio nuts can be labelled as the relatively most frequently notified product,
with approximately one notification per 16,787 tons produced. In contrast, there is one
notification per 344,886 tons of groundnuts produced [144].

Table 4. The number of RASFF aflatoxin notifications concerning certain food products in relation to their average
world production.

Average Annual Production

Product (2015-2019) 2 Number of Notifications by Tons Produced per RASFF

RASFF (2020) Notification
(Tons)
Groundnuts 47,591,548 138 344,866
Pistachio nuts 1,057,587 63 16,787
Dried figs 1,185,768 62 19,125
Spices 14,541,902 30 484,730
Hazelnuts 939,927 17 55,290
Almonds 3,039,020 11 276,275
Rice 748,304,354 10 74,830,435

2 Average annual spice production includes these categories: “Anise, badian, fennel, coriander”, “Chilies and peppers, dry”, “Cinnamon”,

“Cloves”, “Ginger”, “Nutmeg, mace, cardamoms”, “Mustard seed”, “Pepper, Piper pp.”, “Peppermint”, “Vanilla”, and “Spice not elsewhere
specified”. Processed according to FAOSTAT and RASFF databases [98,144].

4. Conclusions

The year 2020 has already passed 60 years of AF discovery. Since then, despite
the scientific progress in the knowledge on AFs and the efforts made to reduce the risk
they pose to public health, developing countries still have to tolerate a high level of AF
contamination of foods to not compromise the food supply. Selected research topics
concerning AFs continue to draw attention worldwide, such as research on the diversity
and genetic variability of AF production in Aspergillus flavus and other AF producers, or on
the problem of using biocontrol strategies for the non-aflatoxigenic strains of A. flavus with
the goal of the better protection of public health and the prevention of economic losses.
The recent occurrence data, the recent food consumption data, and the recent toxicological
data of AFs in foodstuffs are required for the assessment of the severity of AF toxicity,
the estimation of human dietary exposure, and health risk assessments.
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Abstract: In the early 1960s the discovery of aflatoxins began when a total of 100,000 turkey poults
died by hitherto unknown turkey “X” disease in England. The disease was associated with Brazilian
groundnut meal affected by Aspergillus flavus. The toxin was named Aspergillus flavus toxin—aflatoxin.
From the point of view of agriculture, aflatoxins show the utmost importance. Until now, a total
of 20 aflatoxins have been described, with By, B,, Gy, and G, aflatoxins being the most significant.
Contamination by aflatoxins is a global health problem. Aflatoxins pose acutely toxic, teratogenic,
immunosuppressive, carcinogenic, and teratogenic effects. Besides food insecurity and human health,
aflatoxins affect humanity at different levels, such as social, economical, and political. Great emphasis
is placed on aflatoxin mitigation using biocontrol methods. Thus, this review is focused on aflatoxins
in terms of historical development, the principal milestones of aflatoxin research, and recent data on
their toxicity and different ways of mitigation.

Keywords: turkey “X“ disease; aflatoxin; milestones; toxicity; mitigation

Key Contribution: In the year 2020 it was exactly 60 years since aflatoxins were discovered. For
humans, aflatoxins are considered the most important and deleterious mycotoxins. Aflatoxins are
among the five most important mycotoxins in agriculture. The numerous effective pre-harvest and
post-harvest biocontrol methods to aflatoxin mitigation have been applied. Therefore, worldwide,
aflatoxins pose an ongoing and still unsolved problem.

1. Introduction

In 2020, it was 60 years since the discovery of aflatoxins (AFs). AFs began the “second
mycotoxicology era” that built on the “previous mycotoxicology era”, e.g., ergotism, acute
cardiac beriberi, alimentary toxic aleukia, stachybotriotoxicosis, “mouldy corn toxicosis”—
equine leucoencephalomalacia [1-4].

2. A History of Aflatoxin Discovery

In the late 1950s and early 1960s, a new so far unknown turkey disease, characterized
by heavy mortality, was identified in England. After the turkey disease outbreak of
unknown nature and aetiology (the turkey “X” disease), the discovery of AFs began. A total
of 100,000 turkeys died of so-called turkey “X” disease after being fed with contaminated
Brazilian groundnut meal on a poultry farm in London [5].

William Percy Blount (Figure 1) was a veterinary scientist and consultant in poultry
husbandry and developed a highly effective poultry disease diagnostic service for the
customers of a major feed compounding company in England.
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Figure 1. William Percy Blount (*1905-"1968). Photo: World’s Poultry Science Association.

Chief poultry advisor W.P. Blount carried out intensive field and laboratory research,
the findings and conclusions of which were published the following year [5]. Many affected
turkeys were about 4-6 weeks old, but others were aged 10-16 weeks. Affected turkeys
naturally sought the heat of their brooders and then, through weakness, they would sink to
the floor and become somnolent, death taking place within 24-48 h. Another characteristic
of the disease was the position or the posture adopted by the poults when they died.
Mortality varied but was usually high, often with death rates of 50-90% [5]. By the time
the disease had subsided, about 500 outbreaks had been reported involving an estimated
loss of over 200,000 turkeys [6].

A causal relationship between feed toxicity, Brazilian groundnut meal, and disease
has been demonstrated by W.P. Blount, who accurately described the symptoms, especially
liver lesions, and subsequently excluded that the disease could be the cause of the infec-
tious agents. The turkey “X” disease had to be differentiated from Non-specific enteritis,
Transmissible enteritis, Infectious hepatitis, Newcastle disease, New “virus” infection,
and “poisoning” (bacterial, fungal, mineral, vegetable, etc.). Because veterinary examina-
tions for pathogenic microorganisms were generally negative, and as the epidemiological
picture was not that which might be associated with an “infection”, the final possibility
that the turkeys were “poisoned” remained. The histological findings, post mortem in
young turkeys that had died suddenly were described in detail in other studies. They also
suggested that the disorder was caused by poisoning, but the toxic substance had not been
identified [7,8].

W.P. Blount had also excluded the participation of chemical agents and potentially
toxic chemicals that are commonly found in poultry feed, either as contaminants (e.g., toxic
elements, pesticides, glycosides, alkaloids, natural phytotoxins, etc.), ingredients (a toxic
compound in Brazilian groundnut meal), or as a result of dishonest practices. Although his
efforts did not lead to the identification of a causative factor, he provided a solid basis for
peer scientists to make relatively rapid progress towards the goal [5].

The disease continued in the same area of London and induced deaths among turkeys
on farms as a result of previous feeding with Brazilian groundnut from mills carried by
the same company, which included groundnut in the composition of the feed. Groundnut
meal was later proved as the main suspect [6,9-11]. Similar liver lesions, considered
to be the most serious damage, were found during post mortem examination tests on
ducklings, chicken, young pheasants, cattle, rats, and pigs fed with Brazilian groundnut
meal [6,9,10,12,13].

The rats fed on groundnut meal showed toxic effects with the development of liver
cancer [14,15], which was later confirmed by several studies [16-19]. An investigation
of the peanut meal determined that it was highly toxic, with a naturally occurring toxic
metabolite produced by mold infestations that caused the acute toxic effects in the ani-
mals [9]. Although it had been suspected since the end of 1960 that the cause might be
a toxin [10], this was not finally established until the end of the following year when it
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was demonstrated that metabolites synthesized by some strains of Aspergillus flavus Link
ex Fries were responsible [20]. Mold contaminant of Aspergillus flavus Link ex Fries was
identified in the Central Veterinary Laboratory at Weybridge in England. A replica of A.
flavus identification is shown in Figures 2 and 3.

Figure 2. Macroscopic view of Aspergillus flavus on Czapek yeast extract agar (25 °C, 7 days). Photo:
Vladimir Ostry.

Figure 3. Light microscopy of Aspergillus flavus with lactophenol cotton blue. Photo: Vladimir Ostry.

Selected isolates of A. flavus were cultivated on mycological media under laboratory
conditions. The cultures with overgrown mycelium of A. flavus were extracted with CHCl;.
Paper chromatography was used in this experiment with the mobile phase butan-1-ol:
CH3COOH. A total of 12.5% of tested extracts emitted a blue fluorescence spot (retention
factor (Rf) value of 0.7) under UV light. After oral administration of the corresponding
extract to one-day-old ducklings, death was observed within 24 h due to typical symptoms
of turkey “X” disease, especially liver damage [10].
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The isolation of the toxin crystalline form responsible for the turkey “X” disease
has been performed [21]. Because the extract was poorly pure, the blue fluorescent spot
probably contained more toxic metabolites. After separation and quantification by thin
layer chromatography, two different fluorescent spots were detected, the former emitting
blue (Rf 0.6) and the latter emitting green (at slightly lower Rf) fluorescence. Aspergillus
flavus toxin gave rise to the name aflatoxin. The name aflatoxin was given to the toxic
substance, which has since been found to contain several closely related toxic components.

AF discovery was a collective effort, involving a number of experts from various fields
of research in veterinary medicine, animal nutrition, toxicology, chemistry, and mycology,
and etc.

3. The Milestones in Aflatoxin Research

Research on AFs in all areas of interest is very extensive. Several valuable reviews on
AFs have been published in the last decade [1,4,22-30].

These primary and valuable articles served to prepare the principal milestones of
AF research. The older data from the years 1960 to 1990 were independently confirmed.
Studying the principal milestones allows us to present an overview from several fields of
research on AFs from their discovery to 2021.

The principal milestones are summarized in Figures 4-7.
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1960, outbreak of turkey “X” disease
in England poultry farms

1961, association of Aspergillus
flavus contamination with the toxicity
of groundnut

1961, AFB, causes liver cancer
in rats

1962, studies on physicochemical
properties of Afs

1962, animal trials for the fate
of AFs after ingestion of
contaminated feed

1963, identification and chemical
characterization of AFB,, AFG;
and AFG, as difuranocoumarin

derivatives

0961 |

1960, AFs discovery

1961, association of the turkey "X”
disease to the imported Brazilian
groundnut meal

1961, in vivo confirmation
of the toxicity of Brazilian groundnut to

other birds and animals

1962, TLC identification of AF B,G |

1962, preparation of crystalline AFs |

1962, isolationand chemical
characterization of AFB,

1965, US FDA - first regulation
of total AFs in foods (30 pg/kg)

1963, AFs ,new" producer
Aspergillus parasiticus

1966, FAO to control kwashiorkor:
liver damage of malnourished
African children after feeding meals
supplemented with AFs
contaminated peanut

1967, complete chemical synthesis
of AFB;

1970, a case-control study on liver
failure leading to the death of a
teenager fed on mouldy cassava
in Uganda

1964, partial characterization of the
“milk toxin” and its relatedness to
AFB;

1966, designation of the “milk toxin”
as AFM, and AFM,

1966, detection of AFM, in milk, urine,
kidney, and liver

0.6}

N

1969, revising standard levels to
20 pg/kg for total AFs in foods
by the US FDA

Figure 4. The milestones in aflatoxin research over the years 1960-1970 [5,9,11-15,17,19-21,31-48].
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1971, first review by IARC on the
possible relationship between AFs
intake and liver cancer in humans

1977, regulatory action guidelines of
the US FDA - 0.5 pg/kg for AFM; in
milk

1977, AFB, DNA adduct identified

1979, building evidence for a link
between liver damage and AFs
intake

1979, FAO establishes the first
provisional acceptable limit
of 30 ug/kg AFs in food

1984, AFs in respirable airborne
peanut dust

1261 |

1974, outbreak of AFs affecting
humans was reported in India
(106 deaths)

1975, second review by IARC of the
newly generated data on the causality
between AFs and liver cancer

1975, Confirmation of the previous
status IARC of “circumstantial
evidence” for carcinoenicity in humans

1979, AFs in food and feed by HPLC
chromatography

—

1981, AFB; DNA adductin urine

1987, third review of IARC
classification of naturally occurring
mixtures of AFs
in group 1 carcinogens

1988 —, epidemiological studies
on AFs biomarkers determination
in Africa and China

1984, production and characterization
of monoclonal antibodies against
AFM,

1987, AFs ,new" producer
Aspergillus nomius

1987, AFB, albumin adduct identified
and characterised

1988, molecularepidemiology
of AF carcinogenesis: correlation with
AFB1 intake and urinary excretion
of AFM,

< 0661

Figure 5. The milestones in aflatoxin research over the years 1971-1990 [49-65].
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1991, demonstration of the
genotoxicity of AFB; by induction of

point mutation in codon 249 of TP53
tumour suppressor gene

1992, first use of AFP,, AFM,, and
DNA-adduct in urine as a biomarker
for the exposure assessment

1992, Review of the newly generated
data by IARC - addition of AFB;, to
the group 1 carcinogens

1996, detection of aflatoxigenic
microfungiin grains by PCR

1991, metabolic grid involved
in the AFs biosynthesis

1661

1992, establishment of an almost
linear relationship between AFB;
intake and liver cancer

1992, demonstration of synergistic
action between dietary intake of AFs
and hepatitis virus B hepatocellular
carcinoma

1998, cryptic speciationand
recombination in the AF-producing
fungus Aspergillus flavus

1997, study taking into account
available biomarkers to confirm the
carcinogenicity of AFB;

2002, review of new and previous
data on the carcinogenicity of AFs by
the IARC working group -
confirmation of the previous status of
AFB; in the group 1 carcinogens

—

1998, AFs in food by LC-MS/MS

2004, investigations on a large
aflatoxicosis that occurred in Kenya

2004, the first use of AF-albumin
adduct in blood serum as a
biomarker for AFs exposure

2001, AFs legal limits Commission
Regulation (EC) No 466/2001

2003, AFs legal limits Commission
Regulation (EC) No 2174/2003
selected types of spices

< 5002

2004, clustered pathway genes
in AFs biosynthesis

Figure 6. The milestones in aflatoxin research over the years 1991-2005 [66-78].
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2006, regulation (EC) 401/2006 on . .
the official control of the levels of AFs § 20::’ A|an iegal limits Commission
infoodshifts s gulation (EC) No 1881/2006
2007, human AFs exposure in Kenya
- a cross-sectional study Bl - -
2009, first field test
of AFLASAFE™ in Nigeria

2012, the potential increase in AFB; 2011, 50_—year odyssey

in cereals in the EU as a result of of mechan_lstlc and translational

climate change toxicology of Afs
- 2013, nationwide increased

2012, review of new data on the contamination of milk and milk
carcinogenicity of AFs by IARC - the products with AFM, in Europe

status of AFB,, AFB,, AFG,, and

AFG; in group 1 carcinogens
2018, EFSA statement on the possible
effects on human health of an
increase in the maximum permitted
levels of AFs in peanuts and peanut-
based products

2019, AFs proficiency testing and
control in Africa (APTECA)

2019, 25 confirmed AFs producers
of Aspergillus section Flavi, section
Nidulantes and section Ochraceorosei

- 2020, Asperqgillus texensis, A. agricola
2020, EFSA risk assessment ' ASP 'g ’ g
. — and A. toxicus — new AFs producers
of AFs in food . :
from A. section Flavi
. 2017. 202.1'AFS toxmologl_cal N 2021, promising novel and innovative
interactions with other contaminants o L
o o approaches and technologies in
- heavy metals, pesticides, algal - P
. . . aflatoxin mitigation
toxins and polychlorinated biphenyls

N

Figure 7. The milestones in aflatoxin research over the years 2006-2021 [26,79-98].

4. Recent Data on Aflatoxin Toxicity

The human population is often exposed to low AF levels due to the daily intake of
various AF-contaminated products [99]. Approximately 4.5 billion people worldwide,
mainly in developing countries, have been estimated to be chronically exposed to AFs via
contaminated food [100,101]. Moreover, due to the difficulties in food management and
the socio-economic difficulties caused by the ongoing coronavirus pandemic (COVID-19),
an increase in the consumption of AF-contaminated foods can be expected [102]. In 2020
according to the RASFF (Rapid Alert System for Food and Feed) database, AFs were the
most often notified in peanuts; dried figs; spices; rice; and various nuts such as hazelnuts,
almonds, and pistachios [103]. However, in recent years, some of these food products have
shown a relatively high concentration exceeding 1000 pg/kg [103], which may be related to
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the development of aflatoxicosis, which can lead to serious health problems, in particular
damage to the liver and other organs, primary liver cancer, and even death [104].

AFs are infamous for their high toxicity, therefore their presence in food (and feed)
is highly feared. Naturally occurring AFs (AFB;, AFB;, AFG1, and AFGy,) act as strong
carcinogens, thus they are assigned into Group 1 “carcinogenic to humans” by the Interna-
tional Agency for Research on Cancer (IARC) [84,105]. Apart from their carcinogenicity,
they have been reported to have mainly hepatotoxic, genotoxic, mutagenic, teratogenic,
immunosuppressive, nephrotoxic, and cytotoxic effects [106-109].

Some toxic effects of AFs have been observed in the most recent literature. Hepatotoxic
effect of AFB; has been demonstrated in vivo on mice [110,111], rats [112], rabbits [113],
and broiler chickens [114]. The nephrotoxic effect of AFB; has been reported in vivo on
broiler chickens [114] and rats [112]. The neurotoxicity of AFB; has been observed in vitro
on human astrocytes and in vivo on a glial cell in zebrafish [115]. The immunosuppression
of AFB; has been demonstrated in vitro on swine alveolar macrophages [116]. Reproduc-
tive toxicity of AFB; has been demonstrated in vivo on mice [110]. Pulmonary toxicity of
AFBj has been observed in vivo on male albino rats [117]. Gastrointestinal toxicity of AFB;
has been described in vivo on rats [118], pigs [119], and chickens [120]. The genotoxic effect
has been observed in vivo on mice [110]. Cytotoxic and/or genotoxic effects of AFB; have
been reported in vitro on the leghorn male hepatoma (LMH) cell line [121], the liver hepa-
tocellular carcinoma (HepG2) cell line [122], buffalo rat liver (BRL-3A) cells [123], bovine
mammary epithelial (BME) cells [124], and the human keratinocyte (HaCaT) cell line [125].
Cytotoxicity on BME cells has also been observed in vitro in the case of AFM; [124]. The
embryotoxicity of AFB; has been reported in vitro on bovine embryos [126].

It should be emphasized that the impact of AFs, as well as other mycotoxins or
contaminants in general, on human health always depends on the toxicological properties
of the agent, the individual properties of the consumer, and duration of exposure to
the agent, and also the presence of other contaminants with which an interaction (e.g.,
synergistic) could occur [127].

4.1. Toxicological Interactions of Aflatoxins and Other Mycotoxins

Worldwide, food (and also feed) may be infested by more than one type of mold.
Moreover, most molds can produce several mycotoxins simultaneously, as a result of which
humans and animals may be exposed to a “cocktail of mycotoxins” in their diet [95,128,129].
However, the regulations worldwide do not take into account the combined effects of
co-occurred mycotoxins [130]. Various interactions (synergistic, additive, antagonistic)
have been reported, mainly between AFs and ochratoxin A (OTA), fumonisins, and tri-
chothecenes [128]. AFs with fumonisins and AFs with OTA are among the most common
mycotoxin combinations in cereals and cereal products [130].

For example, in the recent literature, the antagonistic effect on inducing cytotoxicity
on the LMH cell line has been observed between AFB; and OTA [121]. On the contrary,
these two mycotoxins, also in combination with zearalenone (ZEA), acted synergistically
in negatively affecting the milk production, blood metabolism, and immune function of
Laoshan goats [131]. Synergistic interaction between AFB; and OTA has also been observed
in vitro on swine alveolar macrophages (3D4/21) [132]. A synergistic effect has also been
reported between AFB;, deoxynivalenol (DON), and ZEA on human epithelial (Caco-2)
cells [133]. However, reduced cytotoxicity of DON on the viability of MA-10 Leydig cells
in vitro has been observed when combined with AFB; [134]. A synergistic effect has also
been observed within the AF group between AFB; and AFM; in compromising intestinal
integrity in vivo on mice and in vitro on Caco-2 cells [135].

4.2. Toxicological Interactions of Aflatoxins with Other Contaminants

Humans (but also animals) can be exposed to many other environmental toxins along
with mycotoxins, such as heavy metals and pesticides, but also algal toxins [95]. Consider-
ing that some mycotoxins and other environmental toxins may share the same target organ
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or tissue, the monitoring of their common combined effects pose a challenge for further
research as these agents are usually studied individually rather than in combination [95].
However, there are several recent studies that address the interaction of AFs with other
contaminants.

Heavy metals such as nickel, arsenic, lead, chromium, mercury, and cadmium share
the main target organ, liver, with AFs [96], and it is therefore important to research their
interactions. In an in vivo study, AFB; and cadmium chloride showed an additive inter-
action in inducing acute oral toxicity in kunming mice [136]. A synergistic effect of AFB,
and sodium arsenite has been observed, including cytotoxicity in vitro in urinary bladder
(HUC-PCQ) cells [137].

The co-contamination of agricultural crops with AFs (and also other mycotoxins) and
pesticides (insecticides, fungicides, herbicides) has been reported [95]. Therefore, due to
their co-occurrence, it is necessary to consider their combined toxic effects. Recently, an
antagonistic interaction between AFB; and the insecticide chlorpyrifos has been observed
on HepG2 cells for cytotoxicity and genotoxicity [122]. In the case of AFB; and insecti-
cide p,p’-DDT, a dose-dependent interaction has been observed on MA-10 Leydig cells
in vitro—additive at doses of 16 uM (5671.84 pg/L and 4996.36 pg/L of p,p’-DDT and
AFBjy, respectively) and 32 uM (11,343.68 pug/L and 9992.64 ug/L of p,p’-DDT and AFB;,
respectively) and antagonistic at 64 uM (22,687.36 ug/L and 19,985.28 ug/L of p,p’-DDT
and AFBy, respectively) [134].

Microcystin-LR (MC-LR), a toxin that is produced by cyanobacteria Microcystis aerug-
inosa, has been observed to possibly increase the liver damage risk in people suffering
from hepatitis B simultaneously exposed to AFB; [94]. Enhanced effects of AFB; and
MC-LR interaction on genotoxicity and cytotoxicity have been observed on the human
liver cell line (HL7702) in vitro [138]. In contrast, a recent study points to the possibility
of an antagonistic effect of low levels of MC-LR on AFB;-induced hepatocarcinogenicity
on HL7702 cells in vitro through decreasing CYPA1A2 expression and AFB;-DNA adduct
generation, while demonstrating that exposure to a combination of MC-LR and AFB;
may not worsen liver damage compared to exposure to AFB; alone on six-week old male
Sprague-Dawley rats in vivo [139]. Additionally, the combination of AFB; and MC-LR
predominantly exerted antagonistic effects in cytotoxicity to HepG2 and Madin-Darby
bovine kidney epithelial (MDBK) cell lines in vitro [140].

Apart from the above-mentioned contaminants, AFs can interact with many other
toxic substances from the environment. For example, polychlorinated biphenyls (PCB) may
potentiate/enhance the genotoxicity effect of AFB; in the human hepatocyte line (L-02 cell
line) by enhancing CYP1A1, CYP1A2, and CYP3A4 expression [141].

4.3. Toxicological Interactions of Aflatoxins with Hepatitis B and C Virus in Relation to
Carcinogenicity

AFs may induce a number of cancer types (liver, breast, lung, gallbladder, esophageal),
the best known of which is liver cancer [142]. Liver injury and hepatocellular carcinoma
(HCC), one of the major types of liver cancer, are considered the main toxic impact of
AFBq [99,107,143,144]. Worldwide, approximately 5-28% of HCC occurrences are attributed
to AF exposure [145]. Globally, a total of 905,677 new cases (corresponding to a crude rate
of 11.6 cases per 100,000 people) and 830,180 deaths (corresponding to a crude rate of 10.7
cases per 100,000 people) due to liver cancer in both sexes and all ages were estimated in
2020. Based on the total number of cases, liver cancer is ranked the 6th and 3rd cancer
type in incidence and mortality, respectively, worldwide [146]. More than 80% of HCC
cases come from developing countries [147]. HCC has become a serious health problem,
especially in sub-Saharan African countries and countries of southeast Asia, and it is also
increasing in Europe and the United States [148,149].

Dietary exposure to AFs is considered the second largest environmental risk factor
for liver cancer development [148] after viral hepatitis B or C infections [150], which act
synergistically with AFs [149]. Especially in developing countries, hepatitis B is considered
the main risk factor for HCC; however, dietary exposure to AFs also plays a significant
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role in HCC etiology [151]. A recent study on Iranian patients suffering from hepatitis B or
C has demonstrated the potential involvement of AFB; exposure as a mean risk factor in
the HCC etiology in these patients [152]. Chronic hepatitis B virus infection may induce
cytochrome P450s, which is responsible for the metabolism of non-toxic AFB; to AFB;-8,9-
epoxide (AFBO) metabolite, with highly toxic and mutagenic effects [153]. AFBO attacks
DNA through binding to the N7 position of guanine residues to produce a pro-mutagenic
unstable DNA adduct AFB;-N7-Guanin. This DNA-adduct induces a specific transverse
mutation G:C to T:A at codon 249 of the tumor suppressor gene p53, which is involved in
cell cycle regulation [149,154-156]. This mutation is typical for HCC patients from regions
of high AF-exposure [149,155].

5. Recent Data on Aflatoxin Mitigation

Several valuable original research articles [157-159] and reviews [97,98,160-163] on
AF mitigation have been published over the last three years.

AF mitigation means reducing the health risk from the occurrence of AFs in foodstuffs.
AF mitigation is key to food safety and nutrition and is any process used to reduce AF
concentrations in foodstuffs [164].

AFs represent a threat to food safety worldwide because they are considered to be
among the most prominent and dangerous toxins that can affect any part of the food chain
from pre-harvest to food processing. Prevention and mitigation of AF contamination is
critical to protect consumers from the adverse health effects associated with AFs [161,165].

AF contamination arises at multiple points in the food system, from the field to the
home (where pest attack or poor drying techniques and inadequate crop storage allow the A.
flavus to grow), and to the marketplace (where lack of quality control allows contaminated
food to be sold). It is important to equip producers, traders, and consumers with knowledge
that can help them manage this issue [157,165].

The weather conditions prior to harvest play a cardinal role in the risk of AF produc-
tion, and the globalization of trade flows, as well as climate change, lead to the occurrence
of unexpected AFs in unusual products [166,167].

AFs present a significant health hazard to consumers. With the potential to contam-
inate a range of common foods and feeds, such as grains (wheat, corn, barley, rice, and
oats), nuts, cocoa, and milk, AFs present an ongoing challenge to food safety all along the
food chain. The ideal way to mitigate their risk to food safety is to prevent these toxins
from entering the food chain at all, and a number of pre-harvest strategies based on good
agricultural practices can help [103,164,165].

Even with the best prevention strategies, however, AFs can end up in the food chain
given that they are ubiquitous worldwide and that ever-changing environmental conditions
preclude strict elimination [157,163].

At the present time, to avoid unfavorable AFs effects on public health, great attention
is being given to prevention as well as to pre-harvest methods intended for A. flavus
contamination reduction [157,162,163,166].

Numerous post-harvest methods to combat AFs are also required, such as emerging
physical methods (e.g., non-thermal treatments as pulsed electric fields), interventions
with chemical agents (e.g., adsorbents, acids, enzymes, and gases), interventions with
microbiological agents (e.g., bacteria, yeast and microfungi), and genetic engineering
technologies. These methods have been reported to be effective in mycotoxin diminution
in food and feed [97,98,160-162].

5.1. The Selected Effective Pre-Harvest Method for Aflatoxin Mitigation

A total of 22, 4, and 2 species of the genus Aspergillus from the Flavi, Nidulantes, and
Ochraceorosei sections produce AFs, respectively, with A. flavus of section Flavi being the
most important and best known species [103].

A. flavus may be divided to the L and S morphotypes. The S morphotype produces a
lot of small sclerotia (average diameter <400 um), few conidia, and a regularly high amount
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of AFBs [168]. In contrast, the L morphotype can produce less numerous, larger sclerotia
(average diameter >400 um), a lot of conidia, and mutable amount of AFBs. There are
also L morphotype genotypes that are not able to produce AFs (i.e., non-aflatoxigenic) due
to inversions, deletions, or defects in at least one of the AF biosynthesis genes (a single
mutation in the pksA (aflC) gene of its AF pathway), which bring in a premature stop
codon and cause it to be defective [169,170]. As a potential biocontrol agent, found in a
peanut fields in Georgia, there is another non-aflatoxigenic A. flavus strain (NRRL 21882),
which demonstrated an important effect against native aflatoxigenic strains in laboratory
tests and is commercially known as Afla-Guard®. The complete absence of the AF gene
cluster is responsible for its inability to produce AFs [170]. Further, in Italy, the biopesticide
(AF-X1TM) was evolved for protection of fodder maize crops [171]. The biopesticide
formulation (A2085) original used strain is comparable to NRRL 21882 due to AF gene
cluster lacking. Mytoolbox Af01 is another commercial product with the biocontrol strain,
with a partial-cluster strain, which successfully reduces AFs in Serbia maize, due to the
lack of AF cluster genes from afIT to afIN [172].

All new findings of these defected non-aflatoxigenic A. flavus isolates support an AF
biocontrol strategy development to mitigate the AF content in crop. This new effective
technology was first used widely in the US. Nowadays, this environmentally friendly
and safe technology is annually employed over hundreds of thousands of hectares of
susceptible crops [157,159,166,170].

Under the commercial name Aflasafe'™ (sorghum seed as a carrier of the non-
aflatoxigenic strain of A. flavus) this improved biocontrol technology has been used in
sub-Saharan Africa for more than 13 nations (Burkina Faso, Burundi, Gambia, Ghana,
Kenya, Malawi, Mozambique, Nigeria, Rwanda, Senegal, Tanzania, Uganda, and Zambia),
where effort to evolve biocontrol products is relevant, and it can be assumed that the
number of participating nations will increase. Especially in African countries, modern
technologies have been used to produce low-cost Aflasafe™ products via mass production.
Registered experimentally, Aflasafe™ products have been proven to reduce AF levels in
treated crops (e.g., maize and groundnut) by more than 80% compared to untreated crops
with the same storage and field conditions [157,159,166,170].

5.2. The Selected Effective Post-Harvest Methods for Aflatoxin Mitigation
5.2.1. Physical Post-Harvest Methods
Sorting

Most often, AFs contaminated grain is broken or damaged, which leads to inhomoge-
neous contamination of the entire volume of the stored crop; therefore, separation methods
are suitable for decontamination [173]. Thus, sorting machines using the weight and size
of particles as a parameter have been used for a long time. Airflow flotation and centrifu-
gation used to be employed for sorting high volumes of grain, but sorting based on the
optical principle was established in the 1960s. Due to the higher efficiency, this method
is still used and is based on the principle of optical control when grains or peanuts are
passing along the sensors. If a grain of a different color is detected, the magnetic valve
opens and a thin stream of compressed air removes the grain [165]. For improvement of
this currently used sorting method, for reduction of the risk of contamination, the single
kernel sorting tool could be used for detection of multiple types of mycotoxins, including
AFs, in peanuts and maize [174].

Dehulling

The precondition for the successful elimination of AF content is the restriction of
colonization by AF-producing fungi on the surface layers of grains [165]. The outer layers
of the grain are removed by dehulling techniques, which can remove up to 93% of the
AFs [175].
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Steeping

The first part of wet milling of maize grains, the steeping, consist of soaking the
grains for 36-50 h at 50 °C in 0.1-0.2% SO, water solution to disrupt protein matrix and
improve germ separation and also induce production of lactic acid, which can be considered
chemical treatment. The result is that the steeping liquor commonly obtains around half
of the AF content [165,176]. Additionally, the level of AFs from sorghum grains could be
decreased by steeping in 0.2% NaOH solution under levels of detection [177].

Wet Milling

Up to 40-50% of AFs could be eliminated from maize into the solution in wet milling;
the remaining levels of AFs could be determined in the fiber fraction (28-38%), the gluten
fraction (11-17%), germ (6-11%), and starch (1%) [165].

Dry Milling
Additional dry milling leads to the reduction of AF concentration in the germ fraction
of the maize grain [165].

Heat Treatment

Temperatures above 160 °C have been shown to be effective in destroying pure AFB,,
with soybean matrix accelerating the destruction process [178]. While temperatures up to
100 °C used for common food preparation have little effect on AFs, the higher temperatures
used in frying, baking, roasting, and extruding may be more effective in reducing AF
contamination [165].

AF levels can be decreased by extrusion by up to 50-80%, depending on the tempera-
ture and humidity of the grain, while the efficiency of the whole process can be increased
by alkaline treatment. Additionally, in the case of peanut meal, extrusion alone leads to
AF reduction by 23-66%, but coupled with ammonium hydroxide it can be up to 87%.
Another heat treatment, roasting, leads to the reduction of AF amount in pecans and
peanuts (50-70%) and maize (40-80%) [165].

Irradiation

Elimination of pathogenic organisms, and also, partially, AFs in food can be achieved
by ionizing (gamma) or non-ionizing (solar, UV, microwave) radiation [165].

Compared with gamma-irradiation at 25 kGy (43% reduction) or microwave heating
for 10 min (32% reduction), sunlight has been found to be more effective. Degradation
of AFs by sunlight in cereals leads to reduction by 40% and up to 75% after 3 h and 30 h,
respectively [179].

In other studies, gamma radiation has been used to irradiate maize, pistachio nuts,
rice, and peanuts. The irradiation at 10 kGy induced 59-88% AF reduction. However, in
another study, where irradiation at 15 kGy was employed, only 11-21% AF reduction has
been proved [180,181].

The emission of UV-A (in dose 1200 mJ/cm?) has been shown to have a significant
reduction effect on AFB; and AFM; in pure water by 70% and 84%, respectively. In cell
culture studies, the increased dosage of UV- A emission has been shown to decreased or
even suppress AF-induced cytotoxicity in HepG2 cells [182].

Pulsed Electric Fields

Due to AF thermostability, a pulsed electric fields (PEF) has been applied for its
effective destruction. AFB; and AF levels have been decreased by 77% and 97%, depending
on the combination of different parameters as output voltage, pulse width, and pH, so the
output voltage (20-65%), pH (4-10), and pulse width (10-26 ps), coupled with 2FI and
quadratic models, result in PEF process optimization, which leads to AFB; and total AF
level reduction [183].

PEF treatment could be used for Aspergillus parasiticus inactivation and AF disintegra-
tion with alleviated mutagenic effects to preserve sesame seeds and their physicochemical
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properties. Levels of AFs By, By, G1, and G,, have been reduced by 86.9%, 98.7%, 94.7%,
and, 92.7%, respectively with PEF energy in the range of 0.97 to 17.28 ], while the maximum
PEF energy caused a 60% reduction of A. parasiticus [184].

5.2.2. Chemical Post-Harvest Methods

Chemical post-harvest methods for AF mitigation are based on intervention with
chemical agents, e.g., adsorbents, acids, and bases.

Adsorbents

Clay-based adsorbents have been proposed for use as a new technique for remov-
ing AFs from contaminated liquids [185]. A potential adsorbent may be, inter alia, ben-
tonite [186], which is listed by United States regulations as a safe ingredient that can be
used as a direct food ingredient for human [187]. The effect of bentonite in reducing AFM;
in milk has been demonstrated by several studies. AFM; reduction has been observed
when bentonite was added directly to naturally contaminated milk [188,189]. However,
bentonite, when added to feed for dairy cattle, has also been found to be effective in reduc-
ing AFM; levels in milk indirectly [190,191] via adsorption of AFB; in the gastrointestinal
tract, leading to reducing its carry-over as AFM; into milk [192].

Acids

Another type of AF treatment using strong acids has been proven to be effective for
the conversion of AFB; and AFG; to their hemiacetal forms, demonstrated in the case of
HCl (pH 2), which decreased AFB; concentration by 19% in 24 h [188]. Among other tested
acids, e.g., citric, acetic, and lactic acids under simulating cooking conditions, the last one
turned out to be the most effective in transformation of AFB; and AFB; [193].

Bases

AFs are unstable under alkaline conditions. Ammonization can reduce AF concen-
tration by more than 99%. AF degradation by ammonia has been widely studied and has
been shown to be effective in both laboratory and field experiments [165,194].

5.2.3. Microbiological Post-Harvest Methods

Microbiological post-harvest methods for AF mitigation are based on intervention
with microbiological agents as bacteria, and yeasts.

Bacteria

Lactic acid bacteria (e.g., Bifidobacterium animalis B subsp. lactis, Enterococcus avium,
Lactobacillus acidophilus, L. selangorensis, Lactococcus lactis subsp. lactis, Pediococcus acidi-
lactici, Streptococcus thermophilus, and Weissella confuse) have inhibitory effects on the AF
production or cause the removal of AFs from foodstuffs and feedstuffs. The quality of AF
binding by lactic acid bacteria strains depends on pH, temperature, the matrix itself, the
incubation time, and also the inherent properties of the strain. AF elimination ranges for
AFB; from 16.3-98% and for AFM; from 5.6-99.9%, and depends on the strain of lactic acid
bacteria [163].

The degradation of AFs by probiotic bacteria to less or even non-toxic products
has been shown to be an effective, safe, cheap, and environmentally friendly strategy of
detoxification, with an approximately detoxification rate of 19-95% (for AFB;) and 12-100%
(for AFM;) [106].

AF elimination by non-lactic acid bacteria (e.g., Bacillus licheniformis, Bacillus stearother-
mophilus, Bacillus subtilis, Brachybacterium spp., Brevundimonas spp., Cellulosimicrobium
funkei, Enterobacter spp., Escherichia coli, Mycolicibacterium fluoranthenivorans, Mycolicibac-
terium smegmatis, Myxococcus fulvus, Nocardia corynebacterioides, Pseudomonas aeruginosa,
Pseudomonas stutzeri, Rhodococcus erythropolis, Streptomyces aureofaciens, Streptomyces lividans,
and Stenotrophomonas maltophilia) have an inhibitory effects on AF production or on the
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removal of AFs from milk at 4 °C. AF elimination ranges for AFB; from 18-97% and for
AFM; from 32-64%, and depends on the strain of bacteria [163].

Yeast

In aflatoxigenic microfungi, the production of AFs has been significantly supressed by
yeasts, e.g., Candida, Debaryomyces, Pichia, Saccharomyces, Saccharomycopsis, Saccharomycodes,
Schizosaccharomyces, Aureobasidium pullulans, Trichosporon, and Zygosaccharomyces. AF elimi-
nation ranges for AFB; from 15-100% and for AFM; from 60-90.3%, and depends on the
strain of yeasts [163].

It is known that yeast supplementation (e.g., Pichia kudriavzevii and Kluyveromyces
marxianus) is able to detoxicate the AFB; in rumina and reduce AFM; levels in milk, which
improves the dairy cattle performances [195].

5.2.4. Genetic Engineering Post-Harvest Methods

Firstly, genetic engineering technologies are based on the regulation mechanism of AF
biosynthesis in A. flavus that lack the ability to produce AFs. Only precise genomic integra-
tion of mutant allele methods is required for accurate understanding of the mechanism
for regulation of AF biosynthesis produced by A. flavus. The new strategy for the foreign
DNA site-specific integration in the A. flavus sdh2 gene locus was evolved to prevent the
disadvantage of ectopic or non-homologous recombination within integration of DNA into
the genome [196].

Single substitution of amino acid (His 249 Leu) is involved in the mutant sdh2R
allele on the pFC-eGFP vector, which has been established through cloning based on the
yeast recombination for the transformation of fungi. A. flavus obtains systemic fungicide
carboxin resistance as a result of a substitution of original sdh2 allele with sdh2R. Proper
integration of the A. flavus NRRL 3357 genome into the locus sdh2 resulted in the highly
efficient generation (>96%) of transformants [196]. The rapidity and effectiveness of this
method consist of the locus sdh2 with inserted eGFP expression cassette, which leads to
the alleviation of virulence and the growth of fungi. This process would be a helpful
instrument for genetic manipulation of A. flavus [196].

On the other hand, genetic engineering technologies are based on transforming maize
plants to a transgenic AF-free cultivar employing host-induced gene silencing [197]. The
evolved transgenic maize with a hairpin construct focused on transcription factor afIR of
the AF biosynthesis was exposed to an aflatoxigenic strain of A. flavus originating from
an endemic AF outbreaks in eastern Kenya. The results demonstrated that A. flavus afIR
transcription factor colonizing transgenic maize was downregulated. Besides, transgenic
maize kernels concentrated 14-fold lower AF levels in comparison with wild maize kernels.
In the transgenic maize, the silencing cassette induced reduced kernel placement and its
stunting, which probable led to “off-target” silencing of unintended genes by afIR siRNAs
in transformed plants [197].

Another study revealed that host-induced gene silencing significantly eliminates
the AF toxin from transgenic maize. The maize plants were transformed by using the
gene cassette, with the kernel-specific RNA interference (RNAI), targeting the aflC gene,
encoding the enzyme at the Aspergillus biosynthetic pathway of the AFs. In these kernels of
transgenic maize, AFs have not been detected, compared to non-transgenic maize kernels,
in which the levels of AF were in thousands of ppb after pathogen infection. Meanwhile,
the same similarity between transcript developing groups of transgenic and non-transgenic
kernels has been observed. It was proved that small interfering RNA molecules could be
employed in maize AF biosynthesis silence, which could lead to its use as an attractive
strategy, and in the view of food safety improvement, may be implemented in other
crops [198].

Finally, there are genetic engineering technologies based on transformed peanut with
genetic A. flavus infection resistance and AF production using host-induced gene silencing.
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In the case of peanuts, the significant resistance method could be used through
biosynthetic AF pathway genes (aflM and afIP) by host-induced gene silencing and by
overexpressed plant defensins MsDefl and MtDef4.2 with antifungal ability. The first
method, in the case of AF infection, suppresses AF production to provide permanent
resistance against various morphotypes of A. flavus, which results in insignificant levels
of AFs in peanuts; the second one improves A. flavus infection genetic resistance. The
significant relation between the accumulation of AFs and biosynthetic AF pathway gene
transcription decrease has been confirmed in the case of overexpressed defensins as well as
in host-induced gene silencing lines [199].

6. Summary

In 2020, it was 60 years since the discovery of AFs, which are, among all mycotoxins,
considered to be the most agriculturally important and harmful. Some toxic effects of AFs
have been observed, including carcinogenicity. The numerous effective pre-harvest and
post-harvest biocontrol methods for AF mitigation have been applied. Research focused
on AF genetic variability and the diversity of A. flavus and other producers of AFs is very
important and solves biocontrol strategy problematics of non-aflatoxigenic A. flavus strains
with a view toward better public health protection and to prevent economic losses. At
Present, biocontrol strategies are sufficient; however, they should be further improved due
to developing knowledge about recombination using transgenic A. flavus strains and the
use of genome editing methods. Future research should be focused on elaborating these
novel biocontrol strategies and their wide testing possibilities in ordinary foodstuffs and
feedstuffs.
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Abstract: Spices are a popular ingredient in cuisine worldwide but can pose a health risk as they
are prone to fungal infestation and mycotoxin contamination. The purpose of this study was to
evaluate ochratoxin A (OTA) in 54 single-kind traditional and less traditional spices, each of which
was purchased in six samples of different batches (324 samples in total) at the Czech market during
2019-2020. The HPLC-FLD method with pre-treatment by immunoaffinity columns was employed
to determine OTA. The limits of detection and quantification were 0.03 ng g~! and 0.10 ng g~ !,
respectively. A total of 101 (31%) samples of 19 spice kinds were positive at concentrations ranging
from 0.11-38.46 ng g~ 1. Only turmeric was contaminated with an OTA level exceeding the European
Union limits. However, most spices have no regulation, thus further extensive monitoring of various
mycotoxins in various kinds of spices is necessary. Chilli and black pepper are the most studied
spices for OTA contamination, however, many other kinds of spice can also be highly contaminated,
but studies on them are less common, rare, or have not yet been performed. The uniqueness of this
study lies in the wide range of spice types studied for the presence of OTA on the Czech market.

Keywords: spices; ochratoxin A; immunoaffinity columns; HPLC-FLD

1. Introduction

There are several definitions for spices that may to some extent overlap with herbs [1-3].
Unlike herbs, which are defined as plants with non-woody tissues, spices are considered
a culinary term rather than a botanical category [2]. This study is guided by the simple
definition that spices are all parts of a plant that are used to improve meals in their colour,
flavour, or even texture. These parts can be leaves, seeds, roots, fruits, bark, buds, or
stalks [3].

The importance of spice may vary through countries worldwide [2]. Although gener-
ally thought to represent only a small portion of the human diet, they cannot be neglected
as they may contribute to the overall intake of mycotoxins from all foodstuffs [4]. Spices
are a widespread commodity [2] as they are exported worldwide, mainly from developing
countries where they are mostly grown. Approximately 15.9 million tonnes of spices
(excluding garlic and onion together exceeding 100 million tonnes) were produced in
2019 [5]. Asian countries were the largest producers of spices (share of production 75.7%;
12.1 million tonnes), followed by African (19.9%; 3.2 million tonnes), American (3.8%;
0.6 million tonnes), European (0.5%; 0.08 million tonnes), and Oceanian (0.1%; 0.012 million
tonnes) producing countries in 2019.

Unfortunately, spices are susceptible to fungal infestation and mycotoxin contamina-
tion. The local subtropical/tropical climate conditions in most spice-producing countries
such as high temperatures in combination with heavy rainfalls pose a suitable environ-
ment for mould infestation and thus mycotoxin production in spices. Moreover, following
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good agricultural, hygienic, and manufacturing practices is particularly difficult in these
countries, which is also likely to contribute to the deterioration of spices by moulds and
mycotoxins [6-9]. Aspergillus carbonarius, A. flavus, A. ochraceus, A. parasiticus, A. tamarii,
A. versicolor, Penicillium citrinum, P. verrucosum, and Fusarium verticillioides are considered
the most common moulds in spices. However, Alternaria alternata, Rhizopus oryzae, and
R. nigricans have also been found in some spices such as cumin and coriander [4]. Ochra-
toxin A (OTA), along with aflatoxins B1, B2, G1, and G2, citrinin, fumonisins Bl and B2,
trichothecenes such as deoxynivalenol, nivalenol, T-2 toxin, and HT-2 toxin, zearalenone,
altenuene, alternariol, tenuazonic acid, and sterigmatocystin, has been confirmed in spices
by many studies [4].

This study focused on OTA (PubChem CID: 442530) [10], which is considered the
second most important mycotoxin from the public health point of view [11]. Moreover, it
is infamous mainly for its nephrotoxic and less hepatotoxic effects, however, teratogenic,
genotoxic, immunotoxic, and neurotoxic effects have also been reported [12]. The Inter-
national Agency for Research on Cancer classifies OTA into group 2B, which is a possible
carcinogen for humans [13,14].

A recent study [4] describing the situation of spice mycotoxin and mould contami-
nation revealed that besides the well-known and most studied spices such as chilli and
black pepper, many other types of spices also deserve attention and need to be monitored
for various mycotoxins. Table 1 shows a summary of the results of recent studies on the
determination of OTA in several types of spices [15-46].

Table 1. Overview of studies dealing with the contamination of spices with OTA from a global perspective.

Mean

Range Min-Max

LOQ

Country Spices n+in n+% (ng g 1) (ngg 1) (ng g 1) References
Africa
Cameroon Black pepper 2/20 10 1.53 1.15-1.91 1.00 [15]
Cloves 0/40 0 - - 1.00
White pepper 8/20 40 3.30 1.81-4.89 1.00
Ivory Coast Black pepper 0/30 0 - - 0.20 [16]
Chilli 25/30 83 68.97 1 0.04-907.57 0.20
Ginger 15/30 50 0.22 0.04-0.56 0.20
Black pepper 7/12 58 4.56 0.27-13.95 0.16 [17]
Chilli 4/12 33 1.50 0.23-4.45 0.16
Dawadawa 2/12 17 1.40 1.26-1.55 0.16
Ginger 3/12 25 0.22 0.17-0.31 0.16
Nigeria Ginger 57/120 48 3.75 0.17-12.02 0.30 [18]
South Africa  Chilli 2/18 11 16.00 7.00-25.00 4.20 [19]
Fruit chutney 1/4 25 6.00* 6.00 * 420
spices
Onion 0/8 0 - - 4.20
Paprika 1/7 14 11.00 * 11.00 * 420
Vegetable spice 0/1 0 - - 4.20
America
Brazil Black pepper 0/15 0 - - N/S [20]
Chilli 0/15 0 - - N/S
Cinnamon 0/13 0 - - N/S
Cloves 0/12 0 - - N/S
Fennel 0/15 0 - - N/S
Oregano 0/12 0 - - N/S
Rosemary 0/15 0 - - N/S
White pepper 0/15 0 - - N/S
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. o Mean Range Min-Max LOQ
Country Spices n+/n n+% (ng g 1) (ng g 1) (ngg1) References
Asia
China Aniseed 5/80 6 0.73 N/S 0.50 [21]
Chilli 15/80 19 6.77 N/S 0.50
Cinnamon 4/80 5 1.10 N/S 0.50
Cumin 5/29 17 1.46 N/S 0.50
Curry powder 5/11 46 2.44 N/S 0.50
Fennel 0/40 0 - - 0.50
Pepper 0/80 0 - - 0.50
Prickly ash 8/80 10 3.17 N/S 0.50
Liquorice 2/31 6 2.00 0.06-3.93 [22]
India Chilli 40/55 73 97.10 1 N/S N/S [23]
Black pepper 33/42 79 154.10 N/S N/S
Caraway 12/25 48 63.20 N/S N/S
Coriander 9/30 30 47.60 /" N/S N/S
Cumin 0/28 0 - - N/S
Fennel 14/25 56 98.10 N/S N/S
Fenugreek 18/35 51 83.20 N/S N/S
Ginger 20/36 56 82.80 T N/S N/S
Turmeric 20/35 57 125.90 1 N/S N/S
Black pepper 31/55 56 155.00 N/S N/S [24]
Cardamom 11/32 34 68.00 N/S N/S
Fennel 8/35 23 10.00 N/S N/S
Mace 18/30 60 128.00 N/S N/S
Turmeric 21/42 50 162.00 N/S N/S
Indonesia Chilli 3/6 50 44877 23.70-84.60 1.77 [25]
Iran Black pepper 10/23 43 3.31 0.70-7.64 0.06 [26]
Cinnamon 8/23 35 5.46 0.45-16.10 0.06
Chilli 4/23 17 5.66 0.56-18.64 0.06
Turmeric 7/23 30 2.77 0.60-8.49 0.06
Black pepper 20/20 100 49.29 15.91-197.64 1.23
Cinnamon 2/20 10 18.5 0.70-139.44 1.23 [27]
Chilli 0/20 0 - - 1.23
Turmeric 0/20 0 - - 1.23
Korea Chilli 6/56 11 2.38 451 M 0.31 [28]
Lebanon Allspice 0/3 0 - - 1.50 [29]
Anise 1/3 33 2.60 * 2.60 * 1.50
Basil 0/2 0 - - 1.50
Bay leaf 0/2 0 - - 1.50
Black pepper 1/4 25 2.30* 230*% 1.50
Caraway 0/2 0 - - 1.50
Cardamom 0/4 0 - - 1.50
Chilli 2/7 29 7.70 N/S 1.50
Cinnamon 0/3 0 - - 1.50
Cloves 0/2 0 - - 1.50
Coriander 0/2 0 - - 1.50
Cumin 1/5 20 3.50 * 3.50 * 1.50
Fennel 0/2 0 - - 1.50
Fenugreek 0/4 0 - - 1.50
Garlic 1/2 50 5.10 * 5.10* 1.50
Ginger 0/3 0 - - 1.50
Marjoram 1/2 50 0.75* 0.75* 1.50
Mint 0/3 0 - - 1.50
Nutmeg 1/2 50 33.90* T 33.90 * 1.50
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Table 1. Cont.

. o Mean Range Min-Max LOQ

Country Spices n+/n n+% (ng g 1) (ng g 1) (ngg1) References
Lebanon Onion 0/4 0 - - 1.50

Oregano 0/3 0 - - 1.50

Paprika 2/3 67 11.40 N/S 1.50

Parsley 0/1 0 - - 1.50

Rosemary 1/2 50 0.75* 0.75* 1.50

Saffron 0/1 0 - - 1.50

Sage 1/3 33 4.20*% 4.20* 1.50

Sumac 0/2 0 - - 1.50

Thyme 0/3 0 - - 1.50

Turmeric 1/2 50 2.40* 2.40* 1.50

White pepper 0/2 0 - - 1.50

Allspice N/S ND - - 1.50 [30]

Anise N/S D 2.6 N/S 1.50

Black pepper N/S D 2.30 N/S 1.50

Cardamom N/S ND - - 1.50

Caraway N/S ND - - 1.50

Cinnamon N/S ND - - 1.50

Cloves N/S ND - - 1.50

Coriander N/S ND - - 1.50

Cumin N/S D 3.50 N/S 1.50

Fennel N/S ND - - 1.50

Garlic powder N/S ND - - 1.50

Ginger N/S ND - - 1.50

Nutmeg N/S D 34.00 N/S 1.50

Onion powder N/S ND - - 1.50

Paprika N/S D 11.40 N/S 1.50

Red chilli N/S D 7.70 N/S 1.50

Turmeric N/S D 2.40 N/S 1.50

White pepper N/S ND - - 1.50
Malaysia Coriander 1/1 100 091* 091* 0.33 [31]

Cumin 1/2 50 20.40* /" 20.40 * 0.33

Curry 8/8 100 2.36 0.14-9.59 0.33

Chilli 1/2 50 0.62* 0.62* 0.33

Fennel 1/2 50 1.26* 1.26* 0.33

Black pepper 0/1 0 - - 0.33

Turmeric 2/2 100 1.89 0.20-3.58 0.33

White pepper 0/1 0 - - 0.33

Chilli 0/10 0 - - 0.30 [32]

Chilli 65/80 81 7.15 0.20-101.20 0.06 [33]
Pakistan Chilti crushed, 14/28 50 19.80 48.70M 0.18 [34]

restaurant

Chilli powdered, 4, /g 41 22901 58.10 M 0.18

restaurant

Chilli crushed, 11/29 38 16.90 5430 M 0.18

open market

Chilli powdered, 5 3, 38 21.40 1 64.50 M 0.18

open market

Chilli 99/242 41 N/S 120.90 M 0.30 [35]
Saudi Arabia Cardamom 38/80 48 60.14 30.00-78.00 3.33 [36]
Sri Lanka Chilli flakes 13/26 50 4.90 15.00 M N/S [37]

Chilli pods 2/18 11 N/S 530M N/S

Red chilli powder 20/42 48 16.00 282.00 M N/S

Black pepper N/S D N/S 79.00 M1 N/S [38]

Chilli 35/86 41 N/S 282.00 M N/S
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Table 1. Cont.
. o Mean Range Min-Max LOQ
Country Spices n+/n n+% (ng g 1) (ng g 1) (ngg1) References
Turkey Black pepper 4/23 17 0.34 3.48 M 0.19 [39]
Cumin 1/19 5 0.63 * 0.63* 0.19
Red chilli flakes 18/24 75 12.34 53.04 M 0.19
Red chilli powder  12/22 55 13.46 98.20M 0.19
Europe
Czech Black pepper 11/12 92 0.83 2.82M 0.20 [40]
Republic Caraway 2/12 17 0.19 0.71M 0.20
Chilli pepper dried  11/12 92 6.70 32.70 M 0.20
Coriander seed 4/12 33 0.46 1.96M 0.20
Fiery paprika 12/12 100 19.00 5.5-91.80 0.20
powder
Ginger root dried ~ 7/12 58 2.04 12.70 M 0.20
Liquorice 12/12 100 15.80 3.8-36.70 0.20
Nutmeg 12/12 100 8.70 0.3-60.70 0.20
Sweet paprika 12/12 100 16.00 1.1-38.40 0.20
powder
Hungary Black pepper 0/6 0 - - 0.60
Chilli 1/5 20 21*% 2.1*% 0.60
Red pepper, 411
PEPPEL 32/70 46 N/S 0.4-66.2 0.60
ground
White pepper 0/5 0 - - 0.60
Italy Paprika 17/31 55 39.64 1 0.11-177.40 0.22 [42]
Chilli 15/25 60 N/S 2.16-16.35 213 [43]
Pepper 4/30 13.3 N/S 1.61-15.85 2.61
Latvia Basil 0/50 0 - - 2.40 [44]
Black pepper 0/50 0 - - 1.50
Nutmeg N/S D N/S 14.00 * 1.50
Oregano 0/50 0 - - 2.40
Thyme 0/50 0 - - 2.40
Poland Allspice 1/5 20 0.20 * 0.20 * 0.30 [45]
Basil 1/3 33 0.05* 0.05 * 0.30
Black pepper, grain  4/4 100 23571 N/S 0.30
Black pepper, 4/5 80 9.46 N/S 0.30
ground
Cayenne pepper 5/8 63 45.64 1 N/S 0.30
Cinnamon 3/4 75 2.14 N/S 0.30
Cloves 1/2 50 0.48 * 0.48* 0.30
Curry 5/5 100 19.01 / N/S 0.30
Garlic 2/3 67 0.11 N/S 0.30
Marjoram 4/5 80 7.13 N/S 0.30
Nutmeg 2/5 40 2.73 N/S 0.30
Oregano, whole 1/2 50 9.38 * 9.38 * 0.30
Oregano, crushed  2/4 50 2212/ N/S 0.30
Rosemary 1/2 50 5.07 * 5.07*% 0.30
Tarragon 1/1 100 6.98 * 6.98 * 0.30
Thyme 3/3 100 15.59 N/S 0.30
Turmeric 1/1 100 11.72% 11.72% 0.30
White pepper 6/7 86 29.41 1 N/S 0.30
Spain Chilli 35/35 100 N/S 0.62-44.60 0.10 [46]
Paprika 63/64 98 N/S 281.00 M 0.10

Note: n: number of samples; n+: number of positive samples: n+%: per cent of positive samples; *: the only measured concentration; ™: the
maximum concentration (the whole range is not known); -: no data; N/S: not specified; D: detected (the quantity of positive samples is not
known); ND: not detected; 1: the average OTA concentrations in regulated spices exceeding the relevant European Union limits EC No.
1881/2006 as in force [47]; ' the average OTA concentrations exceeding the limit of 15 ng g~!, which is currently proposed for ‘all spices’
by the European Commission [48].
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However, several single-kind spices have never (or not recently) been tested for OTA.
Therefore, this study aims to determine OTA in a wider range of spice types to obtain an
overview of the current state of the OTA contamination of spices sold on the Czech market.
As far as the authors know, globally, this is the first study dealing with OTA in many kinds
of spices that are based on a single plant species.

2. Materials and Methods
2.1. Sample Collecting

Fifty-four single-kind of traditional and less traditional spices (six samples of different
batches per kind of spice, 324 samples in total, each in the amount of 30-100 g) were
collected in the years 2019-2020. Of this number, 300 samples (92.6%) were imported and
24 samples (7.4%) were of Czech provenance. The characterisation of all single-kind spice
samples was performed (see Table 2). All samples were stored in consumer packaging or
polypropylene bags at laboratory temperature (21 = 0.5 °C) in a dry place in the dark until
sample preparation before analysis. Most samples originated from Asian and European
countries (see Figure 1).

Table 2. The characterisation of spice samples.

No. Spices Latin Name Form Country of Origin
1 Allspice Pigmenta officinalis Lindl. milled Mexico
2 Anise Pimpinella anisum L. whole Egypt
3 Asafoetida * Ferula assa-foetida L. milled India
4 Basil Ocimum basilicum L. scrubbed Egypt
5 Bay leaf Laurus nobilis L. milled Turkey
6 Black cumin * Nigella sativa L. whole India
7 Black pepper Piper nigrum L. milled Spain
8 Calamint * Saturea hortensis L. scrubbed Germany
9 Caraway Carum carvi L. milled Czech Republic
10 Cardamom Elateria cardamomum L. milled Guatemala
11 Cayenne pepper Capsicum frutescens L. milled Indonesia
12 Celery root * Apium graveolens L. whole Czech Republic
13 Chervil * Anthriscus cerefolium (L.) Hoffm. scrubbed Germany
14 Chilli crushed with seeds Capsicum frutescens L. crushed Thailand
15 Chilli milled Capsicum frutescens L. milled India
16 Chives * Allium schoenoprasum L. chopped China
17 Cinnamon Cinnamomum burmannii (Nees & Th. Nees) milled Indonesia
Nees ex Blume
18 Citronella * Cymbopogon citratus (DC- ex Nees) Stapf cut Albania
19 Clove Eugenia caryophyllata L. milled Madagascar
20 Coriander Coriandrum sativum L. milled Czech Republic
21 Cumin Cuminum cyminum L. milled India
22 Dried dill tip * Anetum graveolens L. chopped Czech Republic
23 Fennel Foeniculum vulgare Mill. whole Egypt
24 Fenugreek Trigonella foenum-graecum L. milled India
25 Galangal root * Alpinia glanga (L.) Wild. milled China
26 Garlic Allium satioum L. granulated China
27 Ginger Zingiber officinale Roscoe milled Peru
28 Green pepper * Piper nigrum L. milled India
29 Juniper * Juniperus communis L. milled Pakistan
30 Lemon peel * Citrus limon (L.) Burm. f. milled Spain
31 Liquorice root Glycyrhiza glabra L. crushed China
32 Lovage * Levisticum officinale W.D.J. Koch cut Poland
33 Mace Myristica fragrans Houtt. milled Indonesia
34 Marjoram Majorana hortensis L. scrubbed Egypt
35 Mint Mentha piperita L. milled Egypt
36 Nutmeg Myristica fragrans Houtt. milled Indonesia
37 Orange peel * Citrus aurantium L. milled Spain
38 Oregano Origanum vulgare L. cut Turkey
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No. Spices Latin Name Form Country of Origin
39 Parsley Petroselinum sativum Hoffm. chopped Poland
40 Pink pepper * Schinus terebinthifolius Raddi whole Brazil
41 Rosemary Rosmarinus officinalis L. cut Morocco
42 Saffron Crocus sativus L. whole Spain
43 Sage Salvia officinalis L. scrubbed Germany
44 Sichuan pepper * Zanthoxylum piperitum (L.) DC. whole China
45 Star anise * Hlicium verum Hook. f. milled India
46 Sumac Rhus coriaria L. milled Turkey
47 Sweet paprika Capsicum annuum L. milled Hungary
48 Tarragon cut Artemisia dracunculus L. cut Poland
49 Thyme Thymus vulgaris L. whole Poland
50 Turmeric Curcuma longa L. milled India
51 Vanilla * Vanilla planifolia Jacks. Ex Andrews milled Tahiti
52 White pepper Piper nigrum L. milled Vietnam
53 White mustard * Sinapis alba L. milled Ukraine
54 Wild garlic * Allium usrinum L. cut Bulgaria

Notes: *: spices in which OTA has never (or not recently) been studied according to the available literature (see Table 1).

4. 7% 1.2%

"

23.43%

19.35%

-

7.13%

Asia = Africa = Europe = Americas = QOceania
Figure 1. The origin of spice samples.

2.2. Sample Preparation—QOTA Purification by Immunoaffinity Chromatography

All spice samples were properly homogenised using a laboratory homogenizer. The
separation step was performed using a modified method according to Zimmerli and
Dick [49] using immunoalffinity chromatography to increase both the selectivity and sensi-
tivity of the method. The immunoaffinity chromatography uses immunoaffinity columns
(IACs) operating specifically on the principle of antigen—antibody. The method consists of
binding the antigen (OTA) by special anti-OTA antibodies anchored in the column. After
the application of the washing solution, the other potentially interfering substances are
removed from the column. The bound OTA is then released with acidified methanol from
the antigen—antibody complex [49].

2.3. Chemicals and Apparatus

Methanol (CH30H), acetonitrile (C;H3N), and chloroform (CHCI3) (all of HiPer-
Solv CHROMANORM gradient grade), formic acid 85% (HCOOH) pro-analysis (p.a.),
orthophosphoric acid 85% (H3PO4) (HiPerSolv CHROMANORM), glacial acetic acid
(CH3COOR)), di-sodium hydrogen phosphate anhydrous (NayHPOj), sodium hydrogen
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carbonate (NaHCO3), sodium chloride (NaCl), and sodium hydroxide (NaOH) (all of
AnalaR NORMAPUR) were purchased from VWR (Stfibrna Skalice, Czech Republic). All
chemicals were stored at laboratory temperature 21 £ 0.5 °C. Analytical standard of OTA
(Petromyces albertensis, >98%, HPLC) was purchased from VWR (Stfibrna Skalice, Czech
Republic) and produced by Sigma-Aldrich spol. s r.o. (Prague, Czech Republic). The
analytical standard was stored in a laboratory freezer at —20 °C. Immunoaffinity columns
(IACs) OCHRAPREP® were purchased from Jemo Trading spol. s r.o., Profood (Bratislava,
Slovakia) and produced by R-Biopharm (Darmstadt, Germany). Nylon syringe filters
(13 mm, 0.22 pm) produced by Labstore (Inverness, Highland, UK) and were purchased
from HPST s.r.o. (Prague, Czech Republic).

All solutions were prepared in ultrapure water using a Milli-Q system (Millipore,
Milford, MA, USA) (hereinafter referred to as ‘water’). The resistivity of ultrapure water
was >18.2 MQ).cm at 25 °C

A IKA A 10 basic homogeniser manufactured by IKA—WERKE GMBH & CO. KG
(Staufen, Germany) was purchased from Fisher Scientific, spol. s r.o. (Pardubice, Czech
Republic); an analytical balance KERN EW1500-2 manufactured by KERN & SOHN GmbH
(Balingen, Germany) was purchased from Fisher Scientific, spol. s r.o. (Pardubice, Czech
Republic); a Reax Multi shaker manufactured by Heidolph Instruments GmbH & Co.
KG (Schwabach, Germany) was purchased from Fisher Scientific, spol. s r.0. (Pardubice,
Czech Republic); and a laboratory centrifuge MPW 351e manufactured by MPW MED.
Instruments (Warsaw, Poland) was purchased from Unimed Praha, spol. s r.o. (Prague,
Czech Republic).

HPLC-FLD, Agilent 1260 Infinity II coupled to 1260 Infinity II Fluorescence Detector
manufactured by Agilent (Santa Clara, CA, USA) was purchased from HPST s.r.o0. (Prague,
Czech Republic).

2.4. Solution Preparation
2.4.1. 3% Solution of Sodium Hydrogen Carbonate (NaHCO3)

A total of 30 g of NaHCO3 was quantitatively transferred to a 1000 mL volumetric
flask (hereinafter referred to as ‘flask’) and dissolved in a small amount of water. After
dissolving the batch, the flask was made up with water.

2.4.2. Phosphate Saline Buffer Containing 15% Methanol (PBS-15% Methanol)

PBS consists of two solutions: solution A (0.02 mol L~! Na,HPOy at pH 7.4) and
solution B (0.29 mol L~! NaCl). Solution A: A total of 1.42 g of NaHPO4 was quantitatively
transferred to a 500 mL flask and dissolved in a small amount of water. After dissolving
the batch, the flask was made up with water. The pH at 7.4 was adjusted with 85% H3PO;.
Solution B: A total of 8.47 g of NaCl was quantitatively transferred to a 500 mL flask and
dissolved in a small amount of water. After dissolving the batch, the flask was made up
with water. PBS was obtained by mixing both prepared solutions A and B in a ratio of 1:1.
PBS is stable for one year. PBS-15% methanol was obtained by mixing 850 mL of PBS and
150 mL of methanol.

2.4.3. 3% Bulffer Solution of Ortho-Phosphoric Acid (H3PO4) and Sodium Chloride (NaCl)
atpH 1.6

A total of 116.9 g of NaCl was quantitatively transferred to a 1000 mL flask and
dissolved in a small amount of water. After dissolving the batch, a total of 33.7 mL of
H3PO,4 was pipetted into the flask. The flask was made up with water. The pH at 1.6 was
adjusted with NaOH. The solution is stable for six months.

2.4.4. Elution Solution of Methanol (CH3OH) Acidified by Glacial Acetic Acid (CH3COOH)

A total of 2 mL of CH3COOH was pipetted into a 100 mL flask. The flask was made
up with CH3;OH.
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All of these solutions were kept at 5 & 0.5 °C. Before direct use, they were tempered
at a laboratory temperature of 21 + 0.5 °C.

2.4.5. OTA Working Standard Solution at a Concentration of 40 pg L~ (25 mL)

A total of 100 uL of OTA stock solution at concentration of 1000 g L~! was pipetted
into a 25 mL flask. The flask was made up with CH3OH.
Stock and working standard solutions were kept at —20 £ 0.5 °C.

2.4.6. Calibration OTA Standards

A total of six calibration OTA standards (0.10, 0.25, 0.50, 1.00, 2.00, and 4.0 ng mL~1)
were prepared with a linear response on each day of the measurement from the working
solution (40 pg L) by its dilution in the mobile phase (MP) in a ratio reaching the target
concentration. The determination coefficient was 0.9999. A blank sample consisting of the
mobile phase was also prepared fresh daily.

2.4.7. Mobile Phase (MP)

The MP consisted of two solutions: solution A (acetonitrile:acetic acid, 99:1) and
solvent B (water:acetic acid, 99:1). Solvents were used in ratio 40:60; A:B.

2.5. Workflow
2.5.1. OTA Extraction

A total of 2 g of the sample was weighed into a polypropylene centrifuge tube (here-
inafter referred to as the tube), 10 mL of buffer was added and left to shake using Vortex
(1 min). The extraction step with 4 x 5 mL of chloroform was performed using Vortex
(3 min) and a centrifuge (15 min; 3305x g; at laboratory temperature 21 =+ 0.5 °C). The
lower chloroform phase was collected into a glass vial and left to evaporate under nitrogen
at 45 °C to dryness. The residue was dissolved in 5 mL of chloroform using Vortex (5 min).
The dissolved residuum was transferred to a new tube. Extraction with 2 x 5 mL of 3%
solution of sodium bicarbonate was performed using Vortex (3 min) and a centrifuge (5 min;
2000 % g, at laboratory temperature 21 £ 0.5 °C) to achieve a compact thin layer between
two phases. The upper aqueous bicarbonate phase was collected into a new tube in which
1 mL of chloroform and 0.5 mL of 85% formic acid had been prepared. The re-extraction of
aqueous bicarbonate with 2 x 2 mL of chloroform was performed using the Vortex (3 min)
and centrifuge (5 min; 2000 g, at laboratory temperature 21 % 0.5 °C) to achieve a compact
thin layer between two phases. The lower chloroform phase at the bottom of the tube was
collected into a glass vial and left to evaporate to dryness under a nitrogen stream at 45 °C.

2.5.2. OTA Separation

The residue was dissolved in 20 mL of PBS—methanol 15% using Vortex (5 min). A
laboratory ultrasonic bath was used (10 min) to enhance the dissolution of the residue.

The IACs were brought to the laboratory temperature (at 21 £ 0.5 °C for approximately
%—1 h) and the buffer was released. A total of 20 mL of PBS-methanol 15% was transferred
to the reservoir above the IAC and left to pass through IAC (at one drop per second;
2 mL min~!). The IACs were purified with 20 mL of water (at one drop per s) followed
by brief air sieving (1-2 s). The elution of potential OTA was performed with 1.5 mL of
methanol:acetic acid (98:2) into a small glass vial (at one drop per second) and followed
by strong air sieving (30 s). The 1.5 mL eluate was evaporated under a nitrogen stream at
45 °C to dryness and kept in the laboratory fridge at 4 °C until analysis with HPLC-FLD.
Before analysis, samples were dissolved in 0.5 mL of MP using an ultrasonic bath (5 min;
37 kHz; at laboratory temperature 21 £ 0.5 °C) and passed through a nylon syringe filter
(13 mm, 0.22 um) into a vial for HPLC.
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2.5.3. Analysis of Ochratoxin A in Spices by HPLC-FLD

HPLC-FLD was employed for the determination of OTA. The column (Kinetex C18,
2.6 um, 100 A, 50 x 21 mm) coupled with a security GuardTM column (Phenomenex C18,
4 x 2.0 mm) was purchased from Chromservis s.r.o. (Prague, Czech Republic) and were
used and kept at 30 °C. The MP was set at a flow rate of 0.2 mL min~!. The injection volume
was 8.0 puL. Fluorescence detection was performed at an excitation wavelength of 333 nm
and an emission wavelength of 465 nm, PMT gain 18, attenuation 100 LU. Chromatography
software Agilent OpenLab software was used to collect the chromatographic data. The
method was validated. The limit of detection (LOD) was 0.03 ng g~! and the limit of
quantification (LOQ) was 0.1 ng g~!. The recovery of the method was verified using
samples spiked with OTA. No reference material for the determination of OTA in spices
was available during the period of this research. Therefore, the recovery was performed
via spiked spice samples at OTA concentration levels of 0.5 and 2.0 ng g~!. OTA levels
of 0.5 ng g~! and 2.0 ng g~ ! were added to the matrix before the extraction step, both
concentrations in triplicate. The same concentrations were added after the separation
step on immunoaffinity columns to the eluate, both concentrations in triplicate again. A
total of 12 spiked samples were analysed for OTA. The recovery was determined for both
concentration levels based on matrix effect—the ratio of the mean concentrations of samples
with spiked matrix and samples with spiked eluate. The mean recovery was 74.2%, which
fulfils the requirements of Regulation (EC) No. 401/2006 [50]. The repeatability standard
deviation (RSD) was 0.76%. The mean measurement uncertainty was 4.03% including all
kind of spices. OTA retention time was 5.4 min. The calibration curve consisted of six
levels of concentrations (0.10, 0.25, 0.50, 1.00, 2.00, and 4.00 ng mL~1). All samples with a
concentration outside the calibration curve were diluted or concentrated to reach value
within the calibration curve. The chromatographs of OTA standard solution (4.00 ng mL~1)
and one of the samples (33-mace) are shown in Figure 2.
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0
0 1 2 3 4 5 6 7 8
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Response [LU]

0

Standard solution (4.0 ng mL?) Sample 33 (mace)

Figure 2. HPLC-FLD chromatogram showing peaks of OTA in spice sample 33 (mace) and standard
solution (4.0 ng mL~1) at a retention time of 5.4 min.

3. Results

A total of 101 (31%) spice samples of 19 spice kinds were positive (exceeding LOQ of
0.1 ng g~ !) for OTA (see Table 3). The concentrations of positive samples were in the range
of 0.11 ng g~ ! (for pink pepper) to 38-46 ng g~ ! (for turmeric).
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Table 3. The concentrations of OTA in a total of 20 positive single-kind spices available on the Czech market.

. . . Mean + SD Median 95th Perc. Range Min-Ma

No. Kind of Spice Incidence n+/n (ngg ) (ngg 1) (ngg 1) X (ng g 1)
50 Turmeric 6/6 19.82 +11.93 17.04 36.01 5.13-38.46
31 Liquorice root 6/6 11.94 + 3.27 12.10 16.18 7.57-17.42
15 Chilli milled 6/6 7.50 +1.34 7.78 8.96 5.28-9.27
33 Mace 6/6 5.27 +0.83 5.25 6.22 3.94-6.33
27 Ginger 6/6 3.40 +0.48 3.46 391 2.18-3.93
11 Cayenne pepper 6/6 2.59 & 0.61 2.71 3.21 1.67-3.27
47 Sweet paprika 6/6 2.26 + 0.60 1.99 3.06 1.73-3.12
14 Chilli crushed with seeds 6/6 1.43 +0.48 1.41 1.98 0.82-2.03
51 Vanilla 6/6 1.42 +0.33 1.49 1.72 0.82-1.74
37 Orange peel 6/6 1.04 + 0.30 1.04 1.41 0.63-1.47
21 Cumin 5/6 0.46 +0.27 0.55 0.70 <LOQ-0.72
36 Nutmeg 5/6 0.43 + 0.30 0.49 0.78 <LOQ-0.84
53 White mustard 5/6 0.38 £ 0.30 0.32 0.76 <LOQ-0.79
52 White pepper 5/6 0.36 + 0.23 0.37 0.61 <LOQ-0.62

7 Black pepper 5/6 0.31 +£0.20 0.37 0.52 <LOQ-0.53
19 Clove 5/6 0.29 +0.18 0.33 0.48 <LOQ-0.50
30 Lemon peel 5/6 0.18 £0.12 0.18 0.32 <LOQ-0.36
46 Sumac 5/6 0.14 £+ 0.08 0.14 0.24 <LOQ-0.26
40 Pink pepper 1/6 0.11* 0.11*% - <LOQ-0.11

Note: n: number of samples; n+ = positive samples > LOQ = 0.10 ng g~'; SD = standard deviation; 95th perc = 95% percentile; *: the
only one positive sample; left censored data: samples that contained OTA levels below LOQ were assigned a value 0 ng g~! for statistical
processing (<LOQ = 0 ng g~ ')—the lower bound approach (LB) [51].

4. Discussion
4.1. Comparison of OTA Results in Spices with Other Relevant Studies in the World

To our knowledge, the set of spices analysed in this study has not been comprehen-
sively analysed for OTA in other research papers, which makes it difficult to compare the
whole dataset with the existing studies. Moreover, some types of spices included in this
study such as asafoetida, black cumin, calamint, celery root, chervil, chives, citronella,
dried dill tip, galangal root, green pepper, juniper, lemon peel, lovage, orange peel, pink
pepper, Sichuan pepper, star anise, vanilla, white mustard, and wild garlic have never, or
not recently, been analysed for the presence of OTA in other studies. The benefit of this
study is certainly a positive OTA finding in some of these previously unanalysed spices
such as lemon peel, orange peel, pink pepper, vanilla, and white mustard.

Therefore, we focused on evaluating our above-detection limit results in relation to
the studies listed in Table 1. The comparability was possible with spices such as turmeric,
liquorice, chilli, mace, ginger, cayenne pepper, sweet paprika, cumin, nutmeg, white pepper,
black pepper, clove, and sumac.

To evaluate the general occurrence of OTA in given spices, we used categories from
our previous study by Pickova et al. [4]. These categories are based on the percentage of a
total number of positive findings out of a total number of samples tested in a given spice
based on recent relevant studies since 2015. These categories are: ‘no occurrence’ (0%),

‘rare occurrence’ (up to 5%), ‘low occurrence’ (up to 25%), ‘moderate occurrence’ (up to

50%), ‘high occurrence’ (up to 75%), and ‘very high occurrence’ (more than 75%).

OTA in turmeric was found to be of a ‘moderate occurrence’. Across all studies
presented in Table 1, the average OTA concentration in turmeric was in the range of 1.89—
162.00 ng g_1 [23,24,26,29-31,45] or was not detected at all [27]. In our study, the average
concentration of 17.04 ng ¢~ ! in turmeric fell within the range found in the literature. The
greatest similarity of results could be observed with the average OTA concentration of
11.72 ng g~ ! in the Polish study [45]. In our study, it was the only one spice kind with OTA
concentration exceeding the EU limit of 15 ng g ! [47]. Given the origin of our samples of
turmeric in India, undoubtedly the largest producer of spices in the world [5], the average
concentration of 17.04 ng g~ does not seem to be as severe as the average concentration of
162.00 ng g~ ! found in the Indian study [24].

OTA in liquorice was found to be of a ‘moderate occurrence’ [9]. Across all studies
mentioned in Table 1, the average OTA concentration in liquorice was found in the range
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of 2.00-15.80 ng g~ ! in only two studies [22,40]. In our study, liquorice with the average
OTA concentration of 11.94 ng g~ ! was within the range found in the literature and was
nearly in line with the OTA concentration of 15.80 ng g~ ! in the Czech study [40]. The EU
limit of 20 ng g~! for OTA was not exceeded in any of the liquorice samples [47].

OTA in chilli was found to be of a ‘moderate occurrence’ [4]. Across all of the
studies mentioned in Table 1, the average OTA concentration was found in the range
of 0.62-97.10 ng g_l [16,17,19,21,23,25,26,29-31,33,37,39,40], but it was not detected in an-
other study [32]. In our study, both average OTA concentrations of 7.50 ng g~ ! in milled
chilli and 1.43ng g~! in crushed chilli with seeds were within the range found in the
literature. The average OTA concentration for milled chilli was very similar to the average
OTA concentrations of 6.77 ng g~ ! in Chinese [21],7.70 ng g ! in Lebanese [29], 7.15 ng g~
in Malaysian [33], and 6.7 ng g’1 in Czech studies [40], while for crushed chilli with seeds
to the OTA concentrations of 1.50 ng g~ ! in the Ivory Coast study [17]. The EU limit of
20 ng g~ ! for OTA was not exceeded in any of the chilli samples [47].

OTA in mace was found to be of a ‘high occurrence’ [4]. It is necessary to note that this
statement was based on only one Indian study in which the average OTA concentration
of 128 ng g~! was found in mace [24]. In contrast, the average OTA concentration of
5.27 ng g~ ! in mace was much lower in this study.

OTA in ginger was found to be of a ‘moderate occurrence” [4]. Across all stud-
ies mentioned in Table 1, the average OTA concentration was found in the range of
0.22-82.80 ng g_1 [16-18,23], but it was not detected at all in other studies [29,30]. In
our study, the average OTA concentration of 3.40 ng g~ ! in ginger was in the range found
in the literature. The greatest similarity was observed with the average OTA concentration
of 3.75 ng g~ ! found in the Nigerian study [18]. The EU limit of 15 ng g~! for OTA was not
exceeded in any of the ginger samples [47].

The average OTA concentration of 2.59 ng g~ ! in cayenne pepper in our study was
not in line with the average OTA concentration of 45.64 ng g~ ! in the Polish study, which
was the only study available for the comparison. The EU limit of 15 ng g~! for OTA was
not exceeded in any of the cayenne pepper samples [47].

OTA in paprika was found to be of a ‘high occurrence’ [4]. Across all studies
mentioned in Table 1, the average OTA concentration was found in the range of 11.00-
39.64 ng g’1 [19,29,30,40,42,46], but was not detected in another study [27]. In our study,
the average OTA concentration of 2.26 ng g~ ! in sweet paprika was not in the range found
in the literature, as it was lower than the average OTA concentration of 11.00 ng g~ ! in the
Lebanese study [29]. The EU limit of 15 ng g~ ! for OTA was not exceeded in any of the
sweet paprika samples [47].

OTA in cumin was found to be of a “low occurrence’ [4]. Across all studies mentioned in
Table 1, the average OTA concentration was found in the range of 0.63-20.4 ng g’l [21,29,31,39],
but it was not detected at all in another study [23]. In our study, the average OTA concen-
tration of 0.46 ng g~ ! in cumin was not within the range found in the literature as it was
lower than the average OTA concentration of 0.63 ng g~ ! in the Turkish study [39].

OTA in nutmeg was found to be of a ‘very high occurrence’ [4]. Across all stud-
ies mentioned in Table 1, the average OTA concentration was found in the range of
2.73-34.00 ng g1 [29,30,40,44,45]. In our study, the average OTA concentration of 0.43 ng g~
in nutmeg was not within the range found in the literature as it was lower than the average
OTA concentration of 2.73 ng g_1 in the Polish study [45]. The EU limit of 15 ng g_1 for
OTA was not exceeded in any of the nutmeg samples [47].

OTA in white pepper was found to be of a “low occurrence’ [4]. Across all studies
mentioned in Table 1, the average OTA was found in the range of 3.30-29.41 ng g~ ! in
only two studies [15,45], but it was not detected at all in other studies [20,29-31,41]. In
our study, the average OTA concentration of 0.36 ng g~ ! in white pepper was not within
the range found in the literature as it was lower than the average OTA concentration of
3.30ng g~ ! in the Cameroonian study [39]. The EU limit of 15 ng g~! for OTA was not
exceeded in any of the white pepper samples [47].
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OTA in black pepper was found to be of a ‘moderate occurrence’ [4]. Across all
studies mentioned in Table 2, the average OTA concentration was in the range of 0.34—
155.00 ng g*1 [15,17,23-25,27,29-31,39,40,45] or was not detected at all [16,20,31,41,44]. In
our study, the average OTA concentration of 0.31 ng g~ ! in black pepper was not within
the range found in the literature as it was found to be very similar, but slightly lower, than
the OTA concentration of 0.0.34 ng g~ ! in the Turkish study [39]. The EU limit of 15 ng g~
for OTA was not exceeded in any of the black pepper samples [47].

OTA in cloves was found to be of a ‘none occurrence’ [4], however, the study by
Pickova et al. [4] dealt with only the most recent publications concerning spices since
2015 [15,20,29,30]. There has been one case of a positive finding with the average OTA
concentration of 0.48 ng g ! in cloves in an older Poland study [45] with which our result
is in agreement as the average OTA concentration of 0.29 ng g~ ! was in cloves.

OTA in sumac was found to be of a ‘none occurrence’ [4]. This statement was based
on only one study in Lebanon [29]. In contrast, our study provided a positive finding of
OTA in sumac with an average concentration of 0.14 ng g~ !, which can be considered a
benefit of the study.

OTA was not found in the other spice kinds included in this study. Our under-
detection limit results were in line with the statement of none occurrence’ in cases of
allspice [29,30], basil [29,44], bay leaf [29], mint [29], oregano [20,29,44], parsley [29],
saffron [29], and thyme [29,44]. However, there is one older Polish study that contradicts
this statement and thus our results, as it presented positive results for the presence of OTA
in allspice, basil, oregano, and thyme [45].

4.2. Comparison of OTA Results in Spices with the Maximal Limits of the EU Legislation

Commission Regulation (EC) No. 1881/2006 [47] is one of the most extensive and
stringent regulations setting maximum limits for certain contaminants including mycotox-
ins in foodstuffs, as amended, and is suitable for comparing the results obtained, especially
because of its complexity with regard to spices. Moreover, all samples were purchased
in the Czech Republic, which is one of the 27 Member States of the EU, therefore only
the EU limits were considered. Results showed that only one sample (50-turmeric) was
contaminated with OTA at a concentration exceeding the maximal limit set by the European
Union. A comparison of OTA concentrations that have been found so far in regulated
spices with the maximal limits of the EU legislation is presented in Table 4.

Table 4. The concentrations of OTA in positive single-kind spices available on the Czech market and
comparison with the European Union legislation.

. 1 s D
Number of Sample Kind of Spice OTA Concerjiratlon EU Lmillts
(ngg~1) (ngg™1

50 Turmeric 19.82°3 15

31 Liquorice root 11.94 20/804

15 Chilli milled 7.50 20

27 Ginger 3.40 15

11 Cayenne pepper 2.59 20

47 Sweet paprika 2.26 15

14 Chilli crushed with seeds 1.43 20

36 Nutmeg 0.43 15

52 White pepper 0.36 15

7 Black pepper 0.31 15

40 Pink pepper 0.11 15

! Positive samples are all samples with concentrations exceeding the limit of quantification of 0.13 ng g~1;2 EU
limits refer to the maximum levels of OTA in spices under the European Union—Regulation No. 1881/2006 as in
force [47]; 3 OTA concentration exceeding the maximum permitted limit set by the European Union legislation;
% The maximum limit of OTA of 20 ng g~ is valid for ‘Liquorice root, an ingredient for herbal infusion’. The maximum
limit of OTA of 80 ng g~ ! is valid for ‘Liquorice extract for use in food in particular beverages and confectionary’
provided that it is pure and an undiluted extract is obtained whereby 1 kg of extract is obtained from 3 to 4 kg of
liquorice root [47].
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4.3. Proposal for New Maximum Limits for OTA in the EU and FAO/WHO Codex Alimentarius

The issue of OTA was also recently discussed in the meeting from 14 to 15 July 2021 at
the Working Group for Agricultural Contaminants of the Directorate-General for Health
and Food Safety, the European Commission. Amendments to the draft maximum levels
for OTA in food for which there are currently no limits and the draft maximum limits for
spices for which there are currently limits are currently under discussion and consideration
(see Table 5) [48].

Table 5. The draft proposal of the maximum limits of OTA in spices.

Proposal of Maximum Limits

Food (ngg 1)
All spices including dried spices except Capsicum spp. 15
Capsicum spp. (dried fruits, whole or ground, including chilli, 2
L . 0
ground chilli, cayenne pepper and red pepper—paprika)
Mixtures of spices 15

Processed according to [48].

The issue of OTA was also recently discussed in the report of the 14th Session of the
Codex Committee on Contaminants in Foods by the Codex Alimentarius Commission
(virtual) 3-7 and 13 May 2021. They discussed the maximum limits for OTA in nutmeg,
dried chilli and paprika, ginger, pepper, and turmeric for comments and consideration by
the Session of the Codex Committee on Contaminants in Foods in the year 2022. Maximum
limits of 15-20 ng g~ ! for OTA in spices should be established [52].

4.4. The Occurrence of OTA in Spices on Data by RASFF (2016-2021)

Rapid Alert System for Food and Feed (RASFF) is a key tool ensuring food safety in
the context of the EU and enables one to orientate oneself in the issue of OTA occurrence in
various foods including spices. Notifications reporting the presence of OTA in spices are
also valuable information for completing the idea of the current state of distributed spices.
Based on the RASFF database, a total of 58 OTA notifications have been related to spices
since 2016 (see Figure 3). The most prevalent notifications concerned OTA in chilli (33%),
sweet paprika powder (21%), and nutmeg (17%). Most OTA notifications originated in
India (17%, mostly chilli) and Indonesia (16%, mostly nutmeg).

India

Indonesia

Chilli

19

) China
Sweet paprika powder

=
Ethiopia [

Nutmeg ST
Sri Lanka

[ Ochratoxin A

Liquorice Spain

Turkey

Berbere

Garlic powder

Spice mix
Cayenne pepper Other countries N3

White pepper HE=E

Fasika spice

Turmeric

Black pepper

Figure 3. Notifications of ochratoxin A in spices by the Rapid Alert System for Food and Feed
(RASFF) since 2016 (current to the 20 July 2021). Notes: The category ‘Other countries’ includes all
countries of origin with only one notification for spices: Azerbaijan, Bangladesh, France, Germany,
Hungary, Italy, Lebanon, Peru, Portugal, Thailand, Ukraine, the United Kingdom, and Vietnam, or
notification of unknown origin. Processed according to the RASFF database [53] using The Sankey
Diagram Generator online tool and vector graphics editor Inkscape 0.92.
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5. Conclusions

Human dietary exposure to OTA from foodstuffs is very common. Despite various
effective methods for OTA mitigation and the reduction of possible health risks of OTA
in foodstuffs, OTA is still a persistent problem. Although spices are not among the main
sources of daily OTA intake in humans, they may contribute significantly to the co-exposure
with major OTA sources such as cereals, wine, pork meat, and coffee. This may result in an
additive effect and thus an increase in OTA toxicity. The significance of this study lies in
the analysis of a large number of types of spices for OTA, focusing only on single-species
spices, not mixtures of spices. In this study, the analysis of 54 single-kind species showed
a total of 19 (35%) OTA-positive spice kinds, meaning that at least one sample of a given
spice kind exceeded LOQ by its concentration. Among these OTA-positive spice kinds
were turmeric, liquorice root, chilli milled, mace, ginger, cayenne pepper, sweet paprika,
chilli crushed with seeds, vanilla, orange peel, cumin, nutmeg, white mustard, white
pepper, black pepper, clove, lemon peel, sumac, and pink pepper. This study therefore
demonstrates that the Czech population is exposed to OTA through various contaminated
single-kind spices available on the Czech market.

As can be seen, the spice kinds with OTA-positive findings included regulated spice
kinds but also those for which regulation has not yet been set, namely mace, vanilla, orange
peel, cumin, white mustard, cloves, lemon peel, sumac, and basil. Fortunately, promising
discussions are already taking place in the European Commission, in which, among other
things, a limit for ‘all spices’ has been proposed at 15 ng g~ !, but has not been adopted yet.
Taking into consideration this proposed limit for all hitherto unregulated spices, none of
the analysed spice samples exceeded this value in this study.

In terms of public health protection, where food safety is an important preventive
component, it is necessary to regulate various mycotoxin contents in various spices. Hence,
our future research will focus not only on OTA monitoring, but also on the other mycotoxins
in spices, as it will be important to verify the mycotoxin intake from this commodity.

Author Contributions: Conceptualisation, D.P,, ].T., V.O. and EM.; Methodology, D.P. and J.T,;
Software, D.P. and ].T.; Validation, D.P. and ].T.; Formal analysis, D.P. and ].T.; Investigation, D.P. and
J.T.; Resources, D.P. and ]J.T.; Data curation, D.P. and ].T.; Writing—original draft preparation, D.P.;
Writing—review and editing, D.P, J.T, V.O. and EM.; Visualisation, D.P,; Supervision, V.O. and EM.;
Project administration, D.P,; Funding acquisition, D.P. and V.O. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Faculty of Science, University of Hradec Kralove, Czech
Republic, under specific research project no. 2110/2021 and by Ministry of Health, Czech Republic—
conceptual development of research organisation (“National Institute of Public Health—NIPH,
IN 75010330”).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: All data are available from the corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

1. Chomchalow, N. Spice Production in Asia—An Overview. AU J. Technol. 2001, 5, 1-14.
2. Sherman, PW.; Billing, ]. Darwinian Gastronomy: Why We Use Spices: Spices Taste Good Because They Are Good for Us.
BioScience 1999, 49, 453-463. [CrossRef]

S

Uhl, S.R. Handbook of Spices, Seasonings, and Flavorings, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 978-1-4200-0436-6.

4. Pickova, D.; Ostry, V.; Malir, ].; Toman, J.; Malir, F. A Review on Mycotoxins and Microfungi in Spices in the Light of the Last Five
Years. Toxins 2020, 12, 789. [CrossRef]

5. FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/
QC/visualize (accessed on 25 February 2020).

6. Botana, L.M.; Sainz, M.J. (Eds.) Climate Change and Mycotoxins; Walter de Gruyter GmbH: Berlin, Germany, 2015;

ISBN 978-3-11-033305-3.


http://doi.org/10.2307/1313553
http://doi.org/10.3390/toxins12120789
http://www.fao.org/faostat/en/#data/QC/visualize
http://www.fao.org/faostat/en/#data/QC/visualize

Foods 2021, 10, 2984 16 of 17

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Marroquin-Cardona, A.G.; Johnson, N.M.; Phillips, T.D.; Hayes, A.W. Mycotoxins in a Changing Global Environment—A Review.
Food Chem. Toxicol. 2014, 69, 220-230. [CrossRef] [PubMed]

Oguntoyinbo, F.A. Safety Challenges Associated with Traditional Foods of West Africa. Food Rev. Int. 2014, 30, 338-358. [CrossRef]
Yogendrarajah, P.; Van Poucke, C.; De Meulenaer, B.; De Saeger, S. Development and Validation of a QuEChERS Based Liquid
Chromatography Tandem Mass Spectrometry Method for the Determination of Multiple Mycotoxins in Spices. J. Chromatogr. A
2013, 1297, 1-11. [CrossRef]

PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 7 June 2021).

Bhat, R.; Rai, R.V.; Karim, A.A. Mycotoxins in Food and Feed: Present Status and Future Concerns. Compr. Rev. Food Sci. Food Saf.
2010, 9, 57-81. [CrossRef] [PubMed]

EFSA. European Food Safety Authority Risk Assessment of Ochratoxin A in Food. EFSA |. 2020, 18, e06113. [CrossRef]

IARC. International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Naturally
Occuring Substances: Food Items and Costituents, Heterocyclic Aromatic Amines and Mycotoxins; IARC Press: Lyon, France, 1993;
Volume 56, ISBN 92-832-1256-8.

Ostry, V.; Malir, F; Toman, J.; Grosse, Y. Mycotoxins as Human Carcinogens—The IARC Monographs Classification. Mycotoxin
Res. 2017, 33, 65-73. [CrossRef]

Nguegwouo, E.; Sone, L.E.; Tchuenchieu, A.; Tene, H.M.; Mounchigam, E.; Njayou, N.F; Nama, G.M. Ochratoxin A in Black
Pepper, White Pepper and Clove Sold in Yaoundé (Cameroon) Markets: Contamination Levels and Consumers’ Practices
Increasing Health Risk. Int. ]. Food Contam. 2018, 5, 1. [CrossRef]

Manda, P.; Adanou, K.M.; Ardjouma, D.; Adepo, A.].B.; Dano, D.S. Occurrence of Ochratoxin A in Spices Commercialized in
Abidjan (Céte d'Ivoire). Mycotoxin Res. 2016, 32, 137-143. [CrossRef] [PubMed]

Fofana-Diomande, A.; Kuaou, K.; Narcisse, A.; Sory, T.; Dembele, A. Study of the Contamination of Some Spices from Coéte
d’Ivoire by Mycotoxins (AFB1 and OTA). J. Chem. Biol. Phys. Sci. 2019, 9, 389-399. [CrossRef]

Lippolis, V.; Irurhe, B.; Porricelli, A.; Cortese, M.; Schena, R.; Imafidon, T.; Oluwadun, A.; Pascale, M. Natural Co-Occurrence of
Aflatoxins and Ochratoxin A in Ginger (Zingiber Officinale) from Nigeria. Food Control 2016, 73, 1061-1067. [CrossRef]
Motloung, L.; De Saeger, S.; De Boevre, M.; Detavernier, C.; Audenaert, K.; Adebo, O.A.; Njobeh, P.B. Study on Mycotoxin
Contamination in South African Food Spices. World Mycotoxin J. 2018, 11, 401-409. [CrossRef]

Garcia, M.V,; Mallmann, C.A.; Copetti, M.V. Aflatoxigenic and Ochratoxigenic Fungi and Their Mycotoxins in Spices Marketed in
Brazil. Food Res. Int. 2018, 106, 136-140. [CrossRef] [PubMed]

Zhao, X.; Yuan, Y.; Zhang, X.; Yue, T. Identification of Ochratoxin A in Chinese Spices Using HPLC Fluorescent Detectors with
Immunoaffinity Column Cleanup. Food Control 2014, 46, 332-337. [CrossRef]

Huang, Y.; Tang, G.; Zhang, T.; Fillet, M.; Crommen, J.; Jiang, Z. Supercritical Fluid Chromatography in Traditional Chinese
Medicine Analysis. J. Pharm. Biomed. Anal. 2018, 147, 65-80. [CrossRef] [PubMed]

Jeswal, P.; Kumar, D. Mycobiota and Natural Incidence of Aflatoxins, Ochratoxin A, and Citrinin in Indian Spices Confirmed by
LC-MS/MS. Int. ]. Microbiol. 2015, 2015, 242486. [CrossRef] [PubMed]

Jeswal, P.; Kumar, D. Natural Occurrence of Toxigenic Mycoflora and Ochratoxin A & Aflatoxins in Commonly Used Spices from
Bihar State (India). J. Environ. Sci. Toxicol. Food Technol. 2015, 9, 50-55. [CrossRef]

Wikandari, R.; Mayningsih, I.C.; Sari, M.D.P,; Purwandari, F.A.; Setyaningsih, W.; Rahayu, E.S.; Taherzadeh, M.]. Assessment of
Microbiological Quality and Mycotoxin in Dried Chili by Morphological Identification, Molecular Detection, and Chromatography
Analysis. Int. ]. Environ. Res. Public Health 2020, 17, 1847. [CrossRef]

Jalili, M. Natural Occurrence of Ochratoxin A Contamination in Commercial Spices in Tehran. Nutr. Food Sci. Res. 2016, 3, 25-30.
[CrossRef]

Zareshahrabadi, Z.; Bahmyari, R.; Nouraei, H.; Khodadadi, H.; Mehryar, P.; Asadian, F.; Zomorodian, K. Detection of Aflatoxin
and Ochratoxin A in Spices by High-Performance Liquid Chromatography. J. Food Qual. 2020, 2020, 8858889. [CrossRef]

Kim, S.; Lee, S.; Nam, T.-G.; Seo, D.; Yoo, M. Comparison of a Newly Developed Liquid Chromatography with Tandem Mass
Spectrometry Method and Enzyme-Linked Immunosorbent Assay for Detection of Multiple Mycotoxins in Red Pepper Powder. J.
Food Prot. 2017, 80, 1347-1354. [CrossRef] [PubMed]

El Darra, N.; Gambacorta, L.; Solfrizzo, M. Multimycotoxins Occurrence in Spices and Herbs Commercialized in Lebanon. Food
Control. 2019, 95, 63-70. [CrossRef]

Al Ayoubi, M.; Solfrizzo, M.; Gambacorta, L.; Watson, I.; El Darra, N. Risk of Exposure to Aflatoxin B1, Ochratoxin A, and
Fumonisin B1 from Spices Used Routinely in Lebanese Cooking. Food Chem. Toxicol. 2021, 147, 111895. [CrossRef] [PubMed]
Ali, N.; Hashim, N.H.; Shuib, N.S. Natural Occurrence of Aflatoxins and Ochratoxin A in Processed Spices Marketed in Malaysia.
Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 518-532. [CrossRef]

Alsharif, AM.A.; Choo, Y.-M.; Tan, G.-H. Detection of Five Mycotoxins in Different Food Matrices in the Malaysian Market by
Using Validated Liquid Chromatography Electrospray Ionization Triple Quadrupole Mass Spectrometry. Toxins 2019, 11, 196.
[CrossRef]

Jalili, M.; Jinap, S. Natural Occurrence of Aflatoxins and Ochratoxin A in Commercial Dried Chili. Food Control 2012, 24, 160-164.
[CrossRef]

Igbal, S.; Rafique Asi, M.; Zuber, M.; Akhtar, J.; Saif, M. Natural Occurrence of Aflatoxins and Ochratoxin A in Commercial Chilli
and Chilli Sauce Samples. Food Control 2013, 30, 621-625. [CrossRef]


http://doi.org/10.1016/j.fct.2014.04.025
http://www.ncbi.nlm.nih.gov/pubmed/24769018
http://doi.org/10.1080/87559129.2014.940086
http://doi.org/10.1016/j.chroma.2013.04.075
https://pubchem.ncbi.nlm.nih.gov/
http://doi.org/10.1111/j.1541-4337.2009.00094.x
http://www.ncbi.nlm.nih.gov/pubmed/33467806
http://doi.org/10.2903/j.efsa.2020.6113
http://doi.org/10.1007/s12550-016-0265-7
http://doi.org/10.1186/s40550-017-0063-9
http://doi.org/10.1007/s12550-016-0248-8
http://www.ncbi.nlm.nih.gov/pubmed/27040819
http://doi.org/10.24214/jcbps.B.9.3.38999
http://doi.org/10.1016/j.foodcont.2016.10.026
http://doi.org/10.3920/WMJ2017.2191
http://doi.org/10.1016/j.foodres.2017.12.061
http://www.ncbi.nlm.nih.gov/pubmed/29579911
http://doi.org/10.1016/j.foodcont.2014.05.052
http://doi.org/10.1016/j.jpba.2017.08.021
http://www.ncbi.nlm.nih.gov/pubmed/28870606
http://doi.org/10.1155/2015/242486
http://www.ncbi.nlm.nih.gov/pubmed/26229535
http://doi.org/10.9790/2402-09215055
http://doi.org/10.3390/ijerph17061847
http://doi.org/10.18869/acadpub.nfsr.3.3.25
http://doi.org/10.1155/2020/8858889
http://doi.org/10.4315/0362-028X.JFP-17-006
http://www.ncbi.nlm.nih.gov/pubmed/28708032
http://doi.org/10.1016/j.foodcont.2018.07.033
http://doi.org/10.1016/j.fct.2020.111895
http://www.ncbi.nlm.nih.gov/pubmed/33271262
http://doi.org/10.1080/19440049.2015.1011712
http://doi.org/10.3390/toxins11040196
http://doi.org/10.1016/j.foodcont.2011.09.020
http://doi.org/10.1016/j.foodcont.2012.09.003

Foods 2021, 10, 2984 17 of 17

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Igbal, S.Z.; Asi, M.R.; Mehmood, Z.; Mumtaz, A.; Malik, N. Survey of Aflatoxins and Ochratoxin A in Retail Market Chilies and
Chili Sauce Samples. Food Control 2017, 81, 218-223. [CrossRef]

Gherbawy, Y.A.; Shebany, Y.M. Mycobiota, Total Aflatoxins and Ochratoxin A of Cardamom Pods. Food Sci. Technol. Res. 2018, 24,
87-96. [CrossRef]

Yogendrarajah, P.; Jacxsens, L.; De Saeger, S.; De Meulenaer, B. Co-Occurrence of Multiple Mycotoxins in Dry Chilli (Capsicum
Annum, L.) Samples from the Markets of Sri Lanka and Belgium. Food Control 2014, 46, 26-34. [CrossRef]

Jacxsens, L.; Pratheeb, Y.; Meulenaer, B. Risk Assessment of Mycotoxins and Predictive Mycology in Sri Lankan Spices: Chilli and
Pepper. Procedia Food Sci. 2016, 6, 326-330. [CrossRef]

Ozbey, E,; Kabak, B. Natural Co-Occurrence of Aflatoxins and Ochratoxin A in Spices. Food Control 2012, 28, 354-361. [CrossRef]
Ostry, V.; Malir, E; Dofkova, M.; Skarkova, J.; Pfohl-Leszkowicz, A.; Ruprich, J. Ochratoxin A Dietary Exposure of Ten Population
Groups in the Czech Republic: Comparison with Data over the World. Toxins 2015, 7, 3608-3635. [CrossRef] [PubMed]
Fazekas, B.; Tar, A.; Kovacs, M. Aflatoxin and Ochratoxin a Content of Spices in Hungary. Food Addit. Contam. 2005, 22, 856-863.
[CrossRef] [PubMed]

Gambacorta, L.; Magista, D.; Perrone, G.; Murgolo, S.; Logrieco, A.F.; Solfrizzo, M. Co-Occurrence of Toxigenic Moulds, Aflatoxins,
Ochratoxin A, Fusarium and Alternaria Mycotoxins in Fresh Sweet Peppers (Capsicum Annuum) and Their Processed Products.
World Mycotoxin . 2018, 11, 159-174. [CrossRef]

Prelle, A.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. Co-Occurrence of Aflatoxins and Ochratoxin A in Spices Commercialized in
Italy. Food Control 2014, 39, 192-197. [CrossRef]

Reinholds, I.; Pugajeva, I.; Bavrins, K.; Kuckovska, G.; Bartkevics, V. Mycotoxins, Pesticides and Toxic Metals in Commercial
Spices and Herbs. Food Addit. Contam. Part B 2016, 10, 5-14. [CrossRef] [PubMed]

Waskiewicz, A.; Beszterda, M.; Bocianowski, J.; Golinski, P. Natural Occurrence of Fumonisins and Ochratoxin A in Some Herbs
and Spices Commercialized in Poland Analyzed by UPLC-MS/MS Method. Food Microbiol. 2013, 36, 426—431. [CrossRef]
Santos, L.; Marin, S.; Sanchis, V.; Ramos, A.]. Co-Occurrence of Aflatoxins, Ochratoxin A and Zearalenone in Capsicum Powder
Samples Available on the Spanish Market. Food Chem. 2010, 122, 826-830. [CrossRef]

European Commission. Commission Regulation (EC) No. 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain
Contaminants in Foodstuffs. Off. . Eur. Union 2006, L364, 5-24.

MoA. The Ministry of Agriculture of the Czech Republic: Current Discussed Topics in the Field of Contaminants in Food—
July 2021. Available online: https://www.bezpecnostpotravin.cz/aktualni-diskutovana-temata-v-oblasti-kontaminantu-v-
potravinach-cervenec-2021.aspx (accessed on 15 May 2021).

Zimmerli, B.; Dick, R. Determination of Ochratoxin A at the Ppt Level in Human Blood, Serum, Milk and Some Foodstuffs
by High-Performance Liquid Chromatography with Enhanced Fluorescence Detection and Immunoaffinity Column Cleanup:
Methodology and Swiss Data. J. Chromatogr. B Biomed. Sci. Appl. 1995, 666, 85-99. [CrossRef]

European Commission. Commision Regulation (EC) No 401/2006 of 23 February 2006 Lying down the Methods of Sampling and
Analysis for the Official Control of the Levels of Mycotoxins in Foodstuffs. Off. J. Eur. Union 2006, L70, 1-42.

EFSA, European Food Safety Authority. Management of Left-Censored Data in Dietary Exposure Assessment of Chemical
Substances. EFSA |. 2010, 8, 1-96. [CrossRef]

FAO/WHO. Joint FAO/WHO Food Standards Programme. In Proceedings of the Codex Alimentarius Commission 44th Session,
Geneva, Switzerland, 8-13 November 2021; Report of the 14th Session of the Codex Committee on Contaminants in Foods
(Virtual) 3-7 and 13 May 2021. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/fr/?Ink=1&
url=https%253A%252F%252Fworkspace.fao.org%252Fsites %252Fcodex%252FMeetings%252FCX-735-14%252FREPORT %25
2FFinalReport%252FREP21_CFe.pdf (accessed on 20 July 2021).

RASFF. Rapid Alert System for Food and Feed Portal Database. Available online: https://webgate.ec.europa.eu/rasff-window/
portal/ (accessed on 20 July 2021).


http://doi.org/10.1016/j.foodcont.2017.06.012
http://doi.org/10.3136/fstr.24.87
http://doi.org/10.1016/j.foodcont.2014.04.043
http://doi.org/10.1016/j.profoo.2016.02.065
http://doi.org/10.1016/j.foodcont.2012.05.039
http://doi.org/10.3390/toxins7093608
http://www.ncbi.nlm.nih.gov/pubmed/26378578
http://doi.org/10.1080/02652030500198027
http://www.ncbi.nlm.nih.gov/pubmed/16192072
http://doi.org/10.3920/WMJ2017.2271
http://doi.org/10.1016/j.foodcont.2013.11.013
http://doi.org/10.1080/19393210.2016.1210244
http://www.ncbi.nlm.nih.gov/pubmed/27397646
http://doi.org/10.1016/j.fm.2013.07.006
http://doi.org/10.1016/j.foodchem.2010.03.070
https://www.bezpecnostpotravin.cz/aktualni-diskutovana-temata-v-oblasti-kontaminantu-v-potravinach-cervenec-2021.aspx
https://www.bezpecnostpotravin.cz/aktualni-diskutovana-temata-v-oblasti-kontaminantu-v-potravinach-cervenec-2021.aspx
http://doi.org/10.1016/0378-4347(94)00569-Q
http://doi.org/10.2903/j.efsa.2010.1557
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/fr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-14%252FREPORT%252FFinalReport%252FREP21_CFe.pdf
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/fr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-14%252FREPORT%252FFinalReport%252FREP21_CFe.pdf
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/fr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-14%252FREPORT%252FFinalReport%252FREP21_CFe.pdf
https://webgate.ec.europa.eu/rasff-window/portal/
https://webgate.ec.europa.eu/rasff-window/portal/

Priloha 6

Investigation of ochratoxin A in blood sausages in the Czech
Republic: Comparison with data over Europe



Food Research International 157 (2022) 111473

ELSEVIER

Contents lists available at ScienceDirect
Food Research International

journal homepage: www.elsevier.com/locate/foodres

FOOD
RESEARCIH

AESEARC
INTERNATIONAL

t.)

Check for

Investigation of ochratoxin a in blood sausages in the Czech Republic: | e

Comparison with data over Europe

Darina Pickova® ', Jakub Toman ™", Petra Mikyskova®, Vladimir Ostry ", Frantisek Malir *

@ Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic
b Center for Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Palackeho 3a, CZ-61242 Brno, Czech Republic

ARTICLE INFO ABSTRACT

Keywords:

Animal product

Porcine blood

Mycotoxin contamination
Nephrotoxin

Czech market

Risk assessment

Blood sausages consisting of groats, pork, porcine offal, fat, blood, and spices are very popular in the Czech
Republic. All these ingredients are potential sources of dietary exposure to ochratoxin A (OTA). OTA has a strong
affinity to serum proteins in porcine blood. Thus, the contamination of blood sausages with OTA can be expected.
This study aims to evaluate OTA in 200 samples of porcine blood sausages purchased at the Czech market during
2020-2021. The analytical method high-performance liquid chromatography coupled with fluorescence detec-
tion with pre-treatment using immunoaffinity columns was employed to determine OTA. The limit of detection
was 0.03 ng/g and the limit of quantification 0.10 ng/g. Recovery was 71.6 %. All samples were positive at
contents ranging from 0.15 to 5.68 ng/g with a mean of 1.47 ng/g, and a median of 1.26 ng/g. A total of 66% of
these samples contained OTA content exceeding the maximum limit of 1 ng/g set in Italy. This study demon-
strates that the Czech population is exposed to OTA from blood sausages. The proposed preliminary action limit
for OTA in blood sausages should be set at 1 ng/g. No regulatory limits for OTA in blood sausages have been
established yet in the European Union legislation. To protect human health, further monitoring of OTA in these

products is necessary.

1. Introduction

Blood sausages (also somewhere known as blood pudding or black
pudding) have been made for thousands of years (Edwards, 1988).
During that time, many recipes have been developed and vary across
countries all around the world (see Table S1 in the supplementary ma-
terials) (Anjos et al., 2019; AtlasMedia Ltd., 2022; Belleggia et al., 2020;
Fellendorf et al., 2016; Gasperlin et al., 2014; Kim et al., 2021; Santos
et al., 2003; Sinclair, 2005). As the name implies, animal blood, namely
from pig, sheep, cow, lamb, and goose, is the key ingredient in all recipes
for blood sausages. Other parts of the animal such as meat, fat, and offal
are also used. Other ingredients are fillers such as oatmeal, bread-
crumbs, barley, buckwheat, other grains, and regional spices (Meats and
Sausages, 2022). A general blood sausage-making process includes six
steps: 1) raw material selection, 2) preliminary preparation of raw ma-
terials such as weighting, size reduction, premixing, precooking, and
curing, 3) mixing, 4) stuffing, 5) cooking, and 6) chilling (Ramos et al.,

2013).

Our study focused on blood sausages manufactured in the Czech
Republic. Porcine blood, meat from pig head or belly, fat, and offal are
preferred in them as the animal ingredients. The usual fillings are grains
such as barley groats or, in some cases, white buns (AtlasMedia Ltd.,
2022). Black pepper, cumin, marjoram, allspice, fried onions and oc-
casionally garlic are the most used spices (Jandasek, 2014). Blood sau-
sages are typically encapsulated in pork intestine casing (AtlasMedia
Ltd., 2022). They are usually consumed heated either by frying or
baking at 150-180 °C for 30-40 min, rarely cold, and most often served
with sauerkraut and boiled potatoes, but bread is also common.

Meat and meat products are commonly contaminated with the pillar
mycotoxin ochratoxin A (OTA) (PubChem CID 442530) (Pleadin et al.,
2021; PubChem, 2021) that is produced by several species of micro-
scopic filamentous fungi of the Aspergillus and Penicillium genera (Malir
etal., 2016; Ostry et al., 2013; Vlachou et al., 2022). OTA is classified as
possibly carcinogenic in humans, group 2B (IARC, 1993). OTA is

Abbreviations: ACN, Acetonitrile; EU, European Union; HPLC-FD, high-performance liquid chromatography coupled with fluorescence detection; IACs, immu-

noaffinity columns; MeOH, methanol, OTA, ochratoxin A; TDS, Total Diet Study.

* Corresponding authors.

E-mail addresses: darina.pickova@uhk.cz (D. Pickova), jakub.toman@uhk.cz (J. Toman).

1 Darina Pickova and Jakub Toman are co-first authors.

https://doi.org/10.1016/j.foodres.2022.111473

Received 4 March 2022; Received in revised form 25 May 2022; Accepted 4 June 2022

Available online 7 June 2022
0963-9969/© 2022 Elsevier Ltd. All rights reserved.


mailto:darina.pickova@uhk.cz
mailto:jakub.toman@uhk.cz
www.sciencedirect.com/science/journal/09639969
https://www.elsevier.com/locate/foodres
https://doi.org/10.1016/j.foodres.2022.111473
https://doi.org/10.1016/j.foodres.2022.111473
https://doi.org/10.1016/j.foodres.2022.111473
http://crossmark.crossref.org/dialog/?doi=10.1016/j.foodres.2022.111473&domain=pdf

D. Pickova et al.

considered a cumulative toxin with relatively rapid absorption and slow
elimination (EFSA, 2020). In the human bloodstream, 99% of OTA binds
to plasma proteins, mainly to albumin, and only a small OTA fraction
occurs in the free form (Malir et al., 2013). The organs of rapid kinetics
are kidneys, liver, testes, intestine and of slow elimination are muscles
and adipose tissue (EFSA, 2020). OTA is nephrotoxic, hepatotoxic,
genotoxic, teratogenic, embryotoxic, neurotoxic, and immunotoxic
(Malir et al., 2016; Zhao & Ambrose, 2017).

In terms of OTA contamination, pork products pose the highest risk
among animal products (Galtier et al., 1981) and have historically been
considered a significant source of dietary exposure to OTA for humans
(Pleadin et al., 2021). The overall estimated contribution of animal
products to human OTA exposure generally did not exceed 3%; how-
ever, in certain regions where the consumption of traditional meat
products like blood puddings was popular, it can reach up to 10 %
(EFSA, 2004; Mitchell et al., 2017; Walker, 2002). The most important
current contributors to the chronic dietary exposure to OTA were ‘Pre-
served meat (ham, pork)’,Cheese’ and ‘Grains and grain-based prod-
ucts” (EFSA, 2020). The digestive tract of monogastric species such as
pigs is less effective in breaking down OTA than that of polygastric
species due to the absence of rumen in which OTA is microbially
degraded to less toxic ochratoxin o (Battacone et al., 2010; EFSA, 2004;
Liu et al., 2022; Pleadin et al., 2021). The feed composition also plays an
important role because pig feed contains more cereals that are risky from
the point of view of OTA contamination (Battacone et al., 2010).

After the exposure of pigs to OTA-contaminated feed, blood sausages
are the most contaminated porcine final products (Persi et al., 2014;
Pleadin et al., 2014). This can be attributed not only to the use of less
valuable parts of the pig such as blood, non-muscular parts and offal, but
also to the addition of other possibly OTA-contaminated materials such
as cereals and cereal products, and, to a lesser extent, spices (Meucci
et al., 2019; Ostry et al., 2013; Vlachou et al., 2022).

The aims of our study were: 1) evaluation of the OTA contamination
of 200 blood sausages purchased at the Czech market using pre-
purification on immunoaffinity columns (IACs) followed by high-
performance liquid chromatography coupled with fluorescence detec-
tion (HPLC-FD) and 2) comparison of the results with those from foreign
studies dealing with the natural occurrence of OTA in blood sausages.

2. Material and methods
2.1. Sample collection and classification

A total of 200 blood sausage samples were collected in retail shops in
18 different cities throughout the whole area of the Eastern Bohemia
during years 2020-2021. These cities are Chlumec nad Cidlinou, Cho-
tovice, Dvur Kralove, Horice, Hradec Kralove, Jaromer, Jicin, Kosmo-
nosy, Mestec Kralove, Mlada Boleslav, Mnichovo Hradiste, Nova Paka,
Novy Bydzov, Pardubice, Prague, Smirice, Sobotka, and Trebechovice
pod Orebem.

Samples, all originated in the Czech Republic, were purchased in a
quantity of 71-518 g based on the packaging. They included blood
sausages purchased at the counter as well as packaged in a protective
atmosphere. All samples were homogenized and stored in disposable
transparent polypropylene containers for food storage at —20 + 0.5 °C
until sample preparation before processing.

The collection of blood sausage samples for the OTA analysis was
carried out within the national food sampling rules and was based on the
methodological design known as the “Total Diet Study” that is suitable
for the surveillance of chronic dietary exposure and respects consumer
behavior of people in the Czech Republic (types of shops, season of the
purchase, brands, etc.) (EFSA, 2011). All steps are described and
documented in standard operating procedure to ensure the accuracy and
precision of food sampling.

Collected blood sausages were classified according to EFSA stan-
dardized food classification and description system FoodEx2 (EFSA,
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2015). Analytical measurements were carried out with individual
sampled items and culinary treatment was not applied. Detailed infor-
mation about sampled blood sausage is presented in Table S2 in sup-
plementary materials.

2.2. Chemicals and apparatus

Acetonitrile (ACN), methanol (MeOH) (all of HiPerSolv CHROMA-
NORM gradient grade), hydrochloric acid, glacial acetic acid, disodium
hydrogen phosphate anhydrous, sodium dihydrogen phosphate dihy-
drate, sodium chloride (all of AnalaR NORMAPUR grade) were pur-
chased from VWR (Stribrnd Skalice, Czech Republic). Laboratory
cleaning agent RBS® 35 was purchased from P-LAB a.s. (Prague, Czech
Republic). All solutions (see section 2.3.) were prepared in ultrapure
water prepared using a Milli-Q system (Millipore, Milford, MA, USA),
hereinafter referred to as ‘water’. The resistivity of water was > 18.2
MQ.cm at 25 °C.

OTA standard (Petromyces albertensis, >98%, HPLC) was from Sigma-
Aldrich (Prague, Czech Republic). The analytical standard was stored in
a laboratory freezer at — 20 + 0.5 °C.

Filter papers Whatman No. 4 or KA-2M were obtained from Merck
(Prague, Czech Republic) and papirna Pernstejn (Pernstejn, Czech Re-
public), respectively. Nylon syringe filters (13 mm, 0.22 pm) originated
from Labstore (Inverness, Highland, United Kingdom). Immunoaffinity
columns (IACs) OCHRAPREP® were obtained from R-Biopharm
(Darmstadt, Germany) and vacuum filtration kit MORTON frita S3 from
KAVALIERGLASS (Prague, Czech Republic).

Two homogenizers, A - Ultra-Turrax T 50 digital and B - Ultra-Turrax
T 10 basic, were manufactured by IKA®-Werke GmbH & Co. KG
(Staufen, Germany). The Reax Multi shaker was from Heidolph In-
struments GmbH & Co. KG (Schwabach, Germany). The chromato-
graphic HPLC system Agilent 1260 Infinity II was coupled to 1260
Infinity II Fluorescence Detector, both manufactured by Agilent (Santa
Clara, CA, USA). Analytical column (Kinetex C18, 2.6 um, 100 A, 50x21
mm) was used with security Guard™ column (Phenomenex C18, 4x2.0
mm), both from Phenomenex (Prague, Czech Republic).

2.3. Standards and solutions preparation

2.3.1. Phosphate buffered saline (PBS) at pH 7.4

A total of 0.62 g of sodium dihydrogen phosphate dihydrate, 2.271 g
of di-sodium hydrogen phosphate anhydrous, and 9 g of sodium chloride
were all quantitatively transferred into a 1,000 mL flask. The flask was
made up with water. The pH of the solution was adjusted at 7.4 with
hydrochloric acid.

2.3.2. Elution solution of methanol acidified by glacial acetic acid

A total of 2 mL of glacial acetic acid was pipetted into a 100 mL flask.
The flask was made up with MeOH.

All of the solutions 2.3.1-2.3.3 were kept at 5 + 0.5 °C. Before direct
use, they were tempered at a laboratory temperature of 21 + 0.5 °C.

2.3.3. OTA stock solution in methanol at a concentration of 10,000 ug/L

A total of 1,000 pg of solid OTA standard was dissolved in 5 mL of
MeOH in the original standard vial. The dissolved standard solution was
quantitatively transferred into a 100 mL flask. The flask was made up
with MeOH. The stock solution was kept at —20 + 0.5 °C. The stock
solution is stable for 1 year.

2.3.4. OTA working standard solution at a concentration of 40 ug/L

A total of 100 uL of OTA stock solution at a concentration of 10,000
ug/L was pipetted into a 25 mL flask. The flask was made up with MeOH.
The working solution was kept at —20 + 0.5 °C.

2.3.5. Calibration OTA standards
Six-point calibration was performed using six calibration standard
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solutions that were prepared from the working solution by its dilution in
the mobile phase (vide infra) in a ratio reaching the target concentrations
of 0.1, 0.25, 0.5, 1.0, 2.0, and 4.0 ng/mL. The determination coefficient
was 0.9999. A blank sample consisting of the mobile phase and all
calibration solution were prepared fresh daily. The calibration curve is
shown in Figure S1 in supplementary materials.

2.3.6. HPLC mobile phase

The HPLC mobile phase comprised a 40:60 mixture of 1% acetic acid
and ACN and 1% aqueous acetic acid.

All glassware contaminated with OTA was decontaminated accord-
ing to systematic instruction for decontamination of OTA reporting an
immersion of glassware in 50 °C bath containing 2% RBS 35 for at least
30 min. This way of decontamination is declared to be effective in
decontaminating 99.99 % OTA content (Ostry et al., 2021).

2.4. Workflow

2.4.1. Homogenization of samples

A total of 200 blood sausage samples in weight range 71-518 g were
homogenized using homogenizer A. The homogenizer and all compo-
nents used for homogenization were washed and rinsed with MeOH
between each sample to avoid sample contamination.

2.4.2. Sample preparation—OTA purification by immunoaffinity
chromatography

A total of 5 g of homogenized sample was weighed and transferred
into a centrifuge tube was mixed with 20 mL 60% aqueous ACN solution
and homogenized again using homogenizer B for 2 min before left to
shake for 5 min using a shaker. The sample was filtered using filter paper
cartridge and a vacuum filtration kit. The filtrate (4 mL) was diluted
with 44 mL PBS buffer (relevant to 1 g of sample) and transferred to the
reservoir above the immunoaffinity column IAC. All solutions were
allowed to drop at a flow rate of 1 drop/s through IAC that had been
previously brought to the laboratory temperature of 21 + 0.5 °C. The
IACs were purified twice with 10 mL of PBS buffer, then briefly sieved
with air for 1-2 s after each OTA adsorption. The elution of OTA was
achieved with 1 mL elution solution consisting of acidified MeOH into a
small glass vial at a rate of 1 drop/s. The eluates were returned to the
IACs and left to drip four more times. Finally, another 0.5 mL of fresh
elution solution was added and passed through IACs followed by strong
air sieving for 30 s. The eluate with a volume of 1.5 mL was evaporated
under nitrogen gas at 45 °C to dryness and kept in the laboratory
refrigerator at 5 & 0.5 °C until analysis. The dry samples were dissolved
in 0.5 mL of mobile phase using an sonication bath and passed through a
nylon syringe filter into a vial for HPLC analysis.

2.5. HPLC-FD conditions

Both security GuardTM (Phenomenex C18, 4x2.0 mm) and HPLC
(Kinetex C18, 2.6 um, 100 A, 50x21 mm) columns were kept at 30 °C.
The mobile phase flow rate was 0.2 mL/min and the injection volume
was 8.0 pL. Fluorescence detection was carried out at an excitation
wavelength of 333 nm and an emission wavelength of 465 nm, PMT gain
18, and attenuation 100 LU. Chromatography software Agilent OpenLab
software was used to collect the chromatographic data.

2.6. Method validation

The limit of detection (LOD) was 0.03 ng/g and the limit of quanti-
fication (LOQ) was 0.10 ng/g, based on the formulas according to the
IUPAC: LOD = % and LOQ = IOT’“, where “6” means the standard de-
viation of ten peak areas of the lowest calibration point of 0.1 ng/g and
“b” means the slope of the calibration curve. No suitable certified
reference material for the determination of OTA was available during
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the period of this research. No interlaboratory comparative examina-
tions Proficiency testing (e.g. FERA, UK) were done. The recovery of the
method was verified using samples spiked with OTA at concentration
levels of 0.5, 1.0, and 2.0 ng/g that were added: a) to the matrix before
the extraction step, b) after the separation step on immunoaffinity col-
umns to the eluate. Each concentration level was measured in triplicate:
therefore, a total of 18 spiked samples were analyzed to determine the
mean recovery. The sample without OTA addition was marked as the
“blank sample” and the measured OTA concentration was subtracted
from the concentrations of samples with OTA addition. The mean re-
covery was 71.6% that fulfils the requirements of Regulation (EC) No.
401/2006 (Commission, 2006). The repeatability RSD was 2.05%. The
mean measurement uncertainty was 4.8%. OTA retention time was 5.2
min. The calibration curve consisted of six concentration levels of 0.10,
0.25, 0.50, 1.00, 2.00, and 4.00 ng/g. All samples with a concentration
outside the calibration curve were diluted to reach the value within the
calibration curve.

3. Theory

3.1. Natural occurrence of ochratoxin a in blood sausages and its
ingredients

The OTA contamination of pork products can occur either directly as
a result of ochratoxigenic microfungi Penicillium nordicum, P. verruco-
sum, Aspergillus westerdijkiae, and A. ochraceus growing on these prod-
ucts, or indirectly as a result of animal feeding with OTA contaminated
feed leading to the carryover (Bernaldez et al., 2018; Ferrara et al., 2016;
Ostry et al., 2013; Parussolo et al., 2019; Rodriguez et al., 2012). OTA
then occurs in the pig tissues and then in the final products as demon-
strated with several studies. A few of them have shown that more toxin
can persist in the kidneys, lungs, and liver (Persi et al., 2014; Pleadin
etal., 2014, 2016). However, the blood is generally considered the most
contaminated material (Altafini et al., 2017; Aoudia et al., 2009; Ber-
tuzzi et al., 2013; Curtui et al., 2001; Duarte et al., 2012; EFSA, 2004;
Lusky et al., 1993; Rossi et al., 2006). The smallest quantities of toxin are
usually found in the muscles and fat (Altafini et al., 2017; Bertuzzi et al.,
2013; Curtui et al., 2001; EFSA, 2004; Gallo et al., 2020; Krogh et al.,
1976, 1979; Lusky et al., 1993; Malagutti et al., 2005; Persi et al., 2014;
Pleadin et al., 2014, 2016; Raja et al., 2008; Rossi et al., 2006). In the
bloodstream, OTA binds to serum proteins, especially albumin, which
significantly affects its biological half-life (EFSA, 2004; Galtier et al.,
1981). In pigs, the OTA biological half-life of 72-120 h is the longest
known among common farm animals (Galtier et al., 1981; Marin et al.,
2009; Sreemannarayana et al., 1988). Therefore, the addition of porcine
blood can significantly increase the OTA content in the final products
(Lusky et al., 1993; Persi et al., 2014). This appears to be the reason why
blood sausages proved to be the most contaminated final product that
originated from OTA-fed pigs (Persi et al., 2014; Pleadin et al., 2014). All
other used porcine tissues contribute to this contamination. Table S3 in
the supplementary materials provides an overview of several studies
dealing with natural OTA contamination of porcine tissues.

The non-animal ingredients of blood sausages are also potentially
dangerous in terms of OTA contamination. Cereals (barley groats) and
cereal products (white buns), which are used in Czech blood sausages as
a filling, are repeatedly found to be contaminated with OTA (Gonzalez-
Osnaya et al., 2007; Hassan et al., 2019; Ibanez-Vea et al., 2012; Pleadin
et al., 2018; Polisenska et al., 2010; Tam et al., 2011; Zaied et al., 2009;
Zinedine et al., 2007). Finally, the added spices can also contribute to
the OTA content in the blood sausages (Meucci et al., 2019) since OTA
has been detected in spices in the past (Pickova et al., 2020, 2021).

Considering the OTA contamination of animal and plant ingredients
of blood sausages reported in the literature, the contamination can also
be expected in the final products. Unfortunately, studies dealing with
the natural occurrence of OTA in blood sausages are scarce as shown in
Table 1 with only a few studies from Belgium (Tangni et al., 2021), the



D. Pickova et al. Food Research International 157 (2022) 111473

Table 1
List of studies dealing with the natural occurrence of ochratoxin A in blood sausages.
Country’ n+/n n+(%) Mean (ng/g) Range (ng/g) LOD? (ng/g) LOQ® (ng/g) Recovery (%) Method® Reference
GER 44/57 77 0.16 <LOD-3.16 0.01 N/S* 67-88 IAC, HPLC-FD (Gareis & Scheuer, 1999, 2000)
CZE 0/12 0 - - 0.1 0.3 85 IAC, HPLC-FD (Ostry et al., 2011)
BEL 0/20 0 - - N/S 0.4 80-85 LC-MS/MS (Tangni et al., 2021)

HPLC-FD, high-performance liquid chromatography coupled with fluorescence detection; LC-MS/MS, liquid chromatography with tandem mass spectrometry.

! GER, Germany; CZE, Czech Republic; BEL, Belgium.
2 LOD, limit of detection.

3 LOQ, limit of quantification.

4 N/S, not specified.

5 IAC, immunoaffinity column clean-up step.

Czech Republic (Ostry et al., 2011), and Germany (Gareis & Scheuer,
1999, 2000).

3.2. Regulation limits regarding OTA in pork and derived products

Although OTA has been reported in various animal-derived products
in most countries of the world, the regulations of OTA presence in these
products have not been established yet. The European Union (EU)
regulation 1881/2006 setting maximum limits for certain contaminants,
as amended, includes maximum limits for OTA in various foodstuffs but
does not concern any meat, meat products, edible offal, or other foods of
animal origin (EC, 2006a). A total of 27 member states including the
Czech Republic, are bound by the EU legislation. Several countries
summarized in Table 2 set themselves maximum limits on commodities
not specified by the EU to protect consumers from OTA contaminated
animal products, (Duarte et al., 2011; FAO, 2004).

To minimize the risk of the OTA occurrence in animal products, it is
also necessary to pay more attention to the monitoring of feed quality
that is considered a key step in preventing the carryover effect (Asefa
et al., 2011; Pleadin et al., 2015; Tangni et al., 2021). The EU Com-
mission recommendation 2006/576/EC on the presence of certain my-
cotoxins, including OTA, in products intended for animal feeding, sets a
guidance value of 50 ng/g for complementary and complete feeding
stuff for pigs. The use of cereals and cereal products contaminated up to
the guidance value of 250 ng/g is permitted provided the contamination
of the total daily dose does not exceed the established limit for complete
feeding stuffs (EC, 2006b).

3.3. Dietary exposure assessment of OTA in blood sausages

Data from the nation-wide dietary survey (SISP04) were used for
calculations of the dietary exposure (Ruprich et al., 2004). This survey
was conducted by repeated 24 h recall on an age and gender represen-
tative sample of the Czech population. The Czech food consumption data
(SISP04) were used as reported to the EFSA Comprehensive European
Food Consumption Database. The Comprehensive Food Consumption
Database is the source of information on food consumption across the EU
containing detailed data for a number of EU countries (EFSA 2018).

Chronic food consumption for consumer only (average consumption

Table 2
Individual national maximum levels of ochratoxin A in foodstuffs of animal
origin set by European Union member countries.

Country Foodstuffs Maximum limit (ng/g)
Denmark Porcine kidney" 10
Porcine kidney” 25
Estonia Porcine liver 10
Italy Porcine meat and derived products 1
Slovakia Meat 5

! Viscera condemned, visibly damaged kidneys are analysed chemically.
2 Whole carcass condemned, visibly damaged kidneys are analysed chemi-
cally. Processed according to (FAO, 2004; Ministero della Sanita, 1999).

of 2 surveyed days) of blood sausages is presented in Table S4 in sup-
plementary materials. The chronic dietary exposure distribution of OTA
in blood sausages in ng/kg bw/day is calculated by multiplying the
arithmetic mean of analytically determined concentrations with indi-
vidual chronic food intake in population groups of interest.

DE = (C x V)

DE is the dietary exposure for an individual (ng/kg bw/day), C is the
arithmetic mean of analytically determined concentrations of OTA (ng/
kg), and V is the individual chronic food consumption (kg/kg bw/day)
(Ruprich et al., 2004; Ostry et al., 2020).

3.4. Risk characterization of OTA in blood sausages

Direct and indirect genotoxic and non-genotoxic modes of action
might each contribute to tumour formation. Since recent studies have
raised uncertainty regarding the mode of action for kidney carcinoge-
nicity, it is inappropriate to establish a health-based guidance value
(HBGV) and a margin of exposure (MOE) approach was applied (EFSA,
2012). For the characterization of non-neoplastic effects, a benchmark
dose lower confidence limit for a 10% response (BMDL;) of 4.73 ng/kg
body weight (bw) per day was calculated from kidney lesions observed
in pigs (EFSA, 2020).

MOE = BMDL,,/exposure dose

MOE of 200 or higher is considered of low concern from a public
health point of view with respect to the non-carcinogenic effect. For
characterization of neoplastic effects, a BMDL1g of 14.5 ug/kg bw per
day was calculated from kidney tumours seen in rats. MOE of 10,000 or
higher is considered of low concern from a public health point of view
with respect to the carcinogenic effect while MOE less than 10,000
represents a high public health concern (EFSA, 2020).

4. Results and discussion
4.1. Ochratoxin a occurrence in blood sausage

All 200 porcine blood sausage samples were positive, exceeding LOQ
of 0.1 ng/g for OTA. The entire data set is given in the Table S5 in
supplementary materials. The mean OTA concentration was 1.47 ng/g.
The summary descriptive statistical data processing of OTA natural
occurrence in blood sausage samples is given in Table 3.

Only very few studies deal with the natural occurrence of OTA in
blood sausages and affect rather low number of samples typically
counting 12-57 (Gareis & Scheuer, 1999, 2000; Ostry et al., 2011;

Table 3
Statistical data on ochratoxin A in blood sausages.
n n+ Mean (ng/ Median (ng/ 90th percentile Range (ng/
% 8) g) (ng/g) 8)
200 100 1.47 1.26 2.77 0.15-5.68
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Tangni et al., 2021). Therefore, our study is unique in a large number of
200 samples. All of them were positive on OTA occurrence with the
concentration levels exceeding LOQ.

In contrast, the Belgian study using LC-MS/MS method without the
previous IAC clean-up step has reported no occurrence of OTA in blood
sausages (Tangni et al., 2021). Comparable results have been reported in
the Czech study using the HPLC-FD method coupled with the IAC clean-
up step (Ostry et al., 2011). This could be due to the relatively high LOQs
of 0.3 and 0.4 ng/g that were determined in the Czech and Belgium
studies, respectively. Our methodology similar to the latter enabled the
LOQ of 0.1 ng/g. The differences were due to different sensitivity of the
methods, equipment, and the composition of the sample depending on
used ingredients. Therefore, our results can only be partially compared
with the German study that used the HPLC-FD method coupled with the
IAC clean-up step (Gareis & Scheuer, 1999, 2000). All parameters such
as OTA positivity of 100% in our study vs. 77 % in the German study,
mean concentration of 1.47 vs. 0.16 ng/g, and maximum concentration
of 5.68 vs. 3.16 ng/g were higher in our study compared to the German
one. Thus, our study provides new worrying information about the di-
etary exposure to OTA from blood sausages and related products.

As mentioned above, no regulation of the occurrence of OTA in
foodstuffs of animal origin exists for the EU. Unfortunately, the Euro-
pean Commission’s latest discussion from December 2021 does not even
mention that any limits regarding these products should come into force
any time soon (MoA, 2021). Therefore, our results were compared with
the Italian OTA limit of 1 ng/g in porcine meat and derived products
(FAO, 2004; Ministero della Sanita, 1999), as only this limit is relevant
for comparison. Our study indicates that the Italian limit was exceeded
in 132 (66 %) samples.

It is generally known that heat treatment used during production
does not significantly reduce content of mycotoxins in meat and meat
products (Pleadin et al., 2021). However, it has been demonstrated that
the OTA content in blood sausages can be reduced by 9.1, 13.8, 70.9,
76.6, and 85.9% via cooking at 100 °C for 30 min, frying at 170 °C for
30 min, and baking at 190, 200, and 220 °C for 60 min, respectively
(Pleadin et al., 2014). Considering our results and the above-mentioned
heat treatment, frying, which is the typical heat treatment of blood
sausages before consumption, would occur insufficient in reducing the
OTA content. It appears possible to achieve an average OTA concen-
tration in our samples lower than the Italian limit only by long-term
baking. However, it should understood that the baking temperatures
and times shown above do not correspond to the typical heat treatment
and food preparation of the blood sausages before consumption.

4.2. Estimation of dietary exposure dose and risk characterization of OTA
in blood sausages

Calculation of dietary exposure dose and MOE for OTA for whole
population (consumers only, 95th percentile) is presented in Table 4.
The 95th percentile chronic exposure of OTA through blood sausages
was determined in the whole population (consumer only) 0.004 pg/kg
bw/day.

MOE of more than 200 (non-neoplastic effects) indicates a low health
concern with the exception of MOEs for high consumers in the whole
population. MOE < 10,000 is considered of high concern from a public
health point of view with respect to the neoplastic (carcinogenic) effect.
This would indicate a possible health concern if genotoxicity is direct.
Uncertainty in this assessment is high and the risk can be overestimated.

The proposed preliminary action limit for OTA in blood sausages
could be set at 1 ug/kg.

5. Conclusion
OTA is a common contaminant of animal products, but in general,

animal products, unlike cereals and cereal products, are not a major
public health hazard in terms of human dietary exposure to OTA.
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Table 4
Calculation of dietary exposure dose and margin of exposure (MOE) for ochra-
toxin A for whole population (consumers only, 95th percentile).

Monitored parameter Units Result
Ochratoxin A in blood sausage (the arithmetic mean) ug/kg 1.47
Expected consumption of blood sausage in the whole g/kg bw/ 2.58
population p95 (consumer only) day
Exposure dose of ochratoxin A for whole population p95 ug/kg bw/ 0.004
(consumer only) day
BMDL;, (non-neoplastic effects) ug/kg bw/ 4.73
day
BMDL;, (neoplastic effects) ug/kg bw/ 14.5
day
MOE (non-neoplastic effects) Limit: > 200 1183
MOE (neoplastic effects) Limit: > 3625
10,000

However, in certain European countries, animal products mainly pork
and products with porcine blood pose a significant dietary exposure to
OTA. Our study confirmed that all 200 blood sausages purchased on the
Czech market were contaminated with OTA above the LOQ. Moreover, a
total of 66% of these sausages contained an OTA content exceeding the
maximum limit set in Italy, which is the only country to regulate OTA in
products of this type. Given the results achieved and the risk assessment
evaluation, it is clear that it is desirable to introduce in the EU at least
the same, or perhaps even stricter limit for OTA in products from animal
tissues. Unfortunately, the literature concerning the natural occurrence
of OTA in blood sausages is limited and more monitoring studies are
needed to address this issue. Therefore, further monitoring of OTA in
these products is necessary to protect human health, e.g. Total Diet
Study (TDS). A TDS most accurately represents the levels of the myco-
toxins in the edible portion of food at the point of consumption, and
takes into account loss during processing, food preparation, and storage.
This might be useful as the starting point toward setting future priorities
for more detailed collections of data.
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Supplementary materials

Table S1. International comparison of the composition of blood sausages

Country Meal local name Main ingredients Side dish/serving

Bulgaria Bahur Blood of sheep, beef, or pork, Consumed cooked in warm form
animal trimmings, rice, onions, or cold form after their drying in a
bay leaves, cumin, allspice, pork  dry and cool place.
intestinal casing

Croatia, Krvavica Porcine blood, skin, offal, rice, Consumed cooked and served with

Krpina- buckwheat, barley, corn flour, boiled potatoes, sauerkraut, and

Zagorje animal intestinal casing sautéed onions.

County

Czech Jelito Porcine blood, ground pork meat ~ Consumed fried or baked, rarely

Republic from head and belly, offal, cold, and most often served with
marjoram and cumin, grains, sauerkraut and boiled potatoes, but
plain white buns, animal intestine  bread is also common.
casing

England Black pudding Porcine blood, oatmeal, and fat, Consumed fried/grilled/boiled,
animal intestine casing sliced or crumbled. It can be

served with vinegar (in
Manchester) or as a part of English
breakfast (in other parts of the
country).

Estonia Verivorst Blood, barley, onions, allspice, Consumed roasted alongside
marjoram, animal intestine casing potatoes and pork, butter, sour

cream, sauerkraut, and lingonberry
compote.

Finland, Mustamakkara Porcine blood, pork meat and fat, Consumed with lingonberry jam.

Tampere crushed rye and flour, animal
intestine casing

France Boudin noir aux Blood sausage with cooked Consumed fried and served with

pommes apples, animal intestine casing chopped cooked apples.

Germany Blutwurst Porcine blood, pork fat and meat, Consumed boiled or fried and
marjoram, allspice, thyme, oats, served warm alongside mashed
bread, bacon, offal, animal potatoes or sauerkraut.
intestine casing

Germany Zungenwurst Porcine blood, fat, pieces of Cured and then consumed without

cooked tongue, ground pepper
and other strong spices, animal
intestine casing; Note: It is
usually made of animal parts with
no fillers or cereals.

prior cooking.




Country Meal local name Main ingredients Side dish/serving

Germany Rotwurst Well-seasoned blood sausage Consumed thickly sliced cold or
containing large chunks of meat fried
and more pieces of fat and flour

Germany Thiiringer blutwurst Pig blood, parboiled pork belly, Consumed cold or served warm
pork rind, liver, offal, spices — with mashed potatoes and
marjoram, caraway, cloves, applesauce.
intestine.

Ireland Drisheen Black pudding with milk, salt, Usually consumed warm and
blood of pig, cow, or sheep, fat, sliced. Together with herbs, it can
breadcrumb or oatmeal, animal also be filled into animal intestines
intestine casing and consumed as blood sausage.

Ireland, Timoleague Brown Porcine blood, pork trimmings, Boiled and, after cooling, sliced

Timoleague Pudding onion, seasonings, spices, cereals, and consume.
oatmeal soaked in blood
overnight, animal intestinal
casings

Ireland, Sneem black pudding Blood pudding, beef suet, onions, Consumed baked/grilled/fried and

Sneem oat, flake, spice, fresh blood from served cut into 10mm thick slices.
local pigs, lambs, or cows

Luxembourg  Triipen Pork blood, ground pork head Consumed fried or baked and
meat, lungs, kidneys, tongues or served with apple sauce.
other pork offal, cabbage, onions,
stale bread, salt, pepper, savoury,
animal intestine casing

Netherland Bloedworst Blood, raisins, oat bran, and pork  Consumed either fried or cold with
fat a little mustard.

Poland Kaszanka Animal blood, pork offal, barley Consumed grilled/fried/cooked and
or buckwheat, spices and fresh served alongside potatoes,
herbs, animal intestine casing sauerkraut, and caramelized

onions.

Poland, Zymlok pork blood, ground pork offal, Can be consumed hot or chilled

Silesian bread rolls soaked in broth, with bread and caramelized onions.

Voivodeship onions, marjoram, nutmeg,
pepper, bay leaves, allspice,
juniper berries, animal intestine
casing

Poland, Krupnioki $laskie Porcine blood, smoked pork, Consumed hot alongside bread,

Silesian buckwheat, salt, pepper, allspice,  mustard, pickled vegetable, and a

Voivodeship onions, garlic, marjoram, animal  glass of Polish beer.
intestine casing

Portugal Cacholeira Pork, liver and other offals, fat, Consumed as an appetizer. Or is

blood, spices — garlic, cumin,

sweet paprika, pepper, animal
casing. Additional ingredients
such as wine are also possible.

used to enrich many typical
Alentejan dishes.




Country

Meal local name

Main ingredients

Side dish/serving

Portugal

Morcela de assar

Porcine blood, pork fat, bread,
onion, coriander, sugar, olive oil,
and salt.

Consumed it is, roasted, fried or
boiled.

Romania

Sangerete

Pork blood, ground pork meat,
fat, boiled rice, garlic, thyme,
allspice, coriander, nutmeg,
animal intestine casing

Consumed cooked.

Scotland,
Lewis and
Harris

Stornoway Black
Pudding

Blood of sheep, cow, or pig, beef
suet, oatmeal, water, onions, salt,
pepper, animal intestinal casings;
Note. No other seasonings are
allowed.

Consumed cooked.

Slovenia

Krvavica

Blood, offal - lungs, tongue,
heart, and kidney, pork or beef,
animal fat, lard or tallow, pork
skin, cracklings, white bread,
rice, barley, millet, buckwheat or
corn, flour spices — black pepper,
marjoram, allspice, cinnamon,
cloves, cumin, thyme, nutmeg,
and peppermint, roasted onions,
rice and millet, animal casing

Consumed baked.

South Korea

Sundae sausage

Porcine blood, meat, rice, glass
noodles, vegetable, barley, bean
sprouts, kimchi, perilla leaves,
soybean paste, scallions, animal
intestine casing; Note: Squid or
fish can be also included in some
regional varieties.

Can be steamed and consumed on
its own. It can be incorporated into
various meals such as hearty
sundaeguk soup.

Spain,
Alicante

Botifarra de ceba

Animal blood, fat, onion, salt,
pepper, pimenton, oregano,
cloves, animal intestinal casing

Can be consumed fresh or
fried/grilled/boiled.

Spain,
Granada

Morcilla de Granada

Animal blood, pork belly, jowl,
salt, oregano, paprika, animal
casing

Consumed as a snack with
asparagus and bread.

Spain,
Province of
Burgos

Morcilla de Burgos

Animal blood, animal fat —
mainly lard and tallow, chopped
and sautéined onion in butter,
rice, spices — mainly black pepper
and paprika, and cumin., animal
intestinal casing; Note: No meat
is included.

Can be consumed as it is, but it is
mostly consumed after being
sautéed or fried.

Sweden

Blodpudding, blodkorv

Porcine blood, flour, beer or
svagdricka, butter, seasonings

Consumed cooked, sliced and fried
with butter until crispy surface and
served along with crispy bacon,
lingonberry jam, pork fat, raisins,




W

Country Meal local name

Main ingredients

Side dish/serving

spices, potato cakes and Swedish
snaps.

The United
Kingdom and
Ireland

Black pudding

Porcine blood and lean pork,
groats, pork fat, chopped onion,
salt, spices, herbs, mancu,
oatmeals, filled into beef runners
or wide hog casings.

Consumed sliced and usually fried
and served along with bacon,
breakfast sausages, eggs, beans and
bread.

United States
of America,
Lousiana

Boudin rouge

Porcine blood, boiled ground
pork meat, rice, strained pork
stock, onions, dried seasonings,
pork intestinal casings

Consumed boiled or steamed and
served alongside mashed potatoes.

Summarized from Anjos et al.,, 2019; AtlasMedia Ltd., 2022; Belleggia et al., 2020; Fellendorf et al., 2016; Gasperlin et
al., 2014; Kim et al., 2021; Santos et al., 2003; Sinclair, 2005.



Table S2. Sampled food and classification

Food sample FoodEx2 name FoodEx2
Code

Blood sausage Blood-type sausage A025S




Table S3 Natural OTA contamination of porcine ingredients used in blood sausages and related products

Country Sample n+/n! n+ Mean Range LOD?> LOQ? Reference
type (%) (ng/g) (ng/g) (ng/g) (ng/g)
Europe
Belgium Kidney 41/110 37 0.22 1.91M 0.06 0.2 (Tangni et al., 2021)
Liver 0/20 0 - - 0.06 0.2
Czech Kidney 1/12 8 0.048 <LOQ- 0.1 0.3 (Ostry etal., 2011)
Republic 0.13MB 0.46*
0.22VB
Liver 0/12 0 - - 0.1 0.3
Meat 1/12 8 0.02t8 <LOQ- 0.1 0.3
0.11M8B 0.20%*
0.20U8
Denmark Meat 64/76 84  0.11LBLOD) 1.3M 0.02- N/S (Jorgensen, 1998)
convention 0.03
al
Meat 4/7 57  0.05LBLOD) 0.12M 0.2- N/S
ecological 0.3
Kidney 230/300 77  (.5LBCLOD) 0-15 0.02  0.06 (Jorgensen &
Petersen, 2002)
Meat 67/300 22 0.1218B 0-2.9 0.03 0.09
France Kidney 3/300 1 N/S 0.48-1.4 0.17-  0-34- (Dragacci et al., 1999)
0.20 0.50
Meat 4/96 4 N/S 0.2-1.15 0.03 0.10 (Dervilly-Pinel et al.,
2017)
Liver 25/70 36 0.158 <LOQ-3.65 0.03 0.10 (Hort et al., 2018)
0.18VB
Germany Blood 93/191 49 5.8" 0.1-67.3 0.1 N/S (Bauer & Garesis,
serum 1987)
Kidney 27/61 44 0.43 <LOD-9.33  0.01 N/S (Gareis & Scheuer,
1999, 2000)
Liver 10/59 17 0.07 <LOD-2.72  0.01 N/S
Meat 10/58 17 0.02 <LOD-0.14  0.01 N/S
Italy Kidney 42/54 78 N/S 0.26-3.05 0.14 0.52 (Monaci et al., 2004)
Kidney 54/54 100 0.29 0.9M 0.01 N/S (Matrella et al., 2006)
Meat 42/54 78 0.02 N/S 0.01 N/S
Intestine 0/5 0 - - 0.1 0.3 (Ceci et al., 2007)
Kidney N/S/5 N/S 25.6 23.9-27.5 0.1 0.3
Liver N/S/5 N/S 4.4 3.2-53 0.1 0.3
Meat 0/5 0 - - 0.1 0.3
Spleen N/S/5 N/S 0.4 0.3-0.5 0.1 0.3
Stomach 0/5 0 - - 0.1 0.3
Blood 285/285 100 N/S 0.03-6.24 0.03 0.1 (Pozzo et al., 2010)
serum
Kidney 5/5 100 0.37 0.17-0.91 0.001 0.002 (Giacomo et al., 2016)
Liver 5/5 100 0.35 0.07-0.59  0.001 0.002
Meat 5/5 100 0.13 0.09-0.2 0.001  0.002
Norway Plasma 178/216 82 0.5* 12.5M 0.1 N/S  (Langseth et al., 1993)
Poland Blood 26/45 58 N/S 0.3-69.5 2.0 N/S (Kotowski et al.,
serum 2000)
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Country Sample n+/n! n+ Mean Range LOD?> LOQ? Reference

type (%) (ng/g) (ng/g) (ng/g) (ng/g)
Portugal Meat 1/13 8 0.01 0.12" 0.01 0.04 (Guillamont et al.,
2005)
Romania Blood 49/52 94 N/S 0.1-13.4 0.1 N/S (Curtui & Gareis,
serum 2001)
Blood 51/52 98 243" 0.05-13.4 0.1 N/S (Curtui et al., 2001)
serum
Kidney 41/52 79 0.54* 3.18M 0.01 N/S
Liver 39/52 75 0.16" 0.61M 0.01 N/S
Meat 9/52 17 0.15" 0.53M 0.01 N/S
Serbia Blood 28/90 31 3.7t 0.22-220.8 0.1 N/S (Mili¢evic¢ et al.,
2008)
Kidney 30/90 33 1.268 0.17-52.5 0.01 N/S
Liver 24/90 27 0.638 0.22-14.5 0.01 N/S
Kidney 14/95 15 1.36" 0.1-3.97 N/S 0.1 (Polovinski
Horvatovic et al.,
2019)
Americas
Canada Blood 910/1200 76 N//S 229M N/S N//S (Marquardt et al.,
serum 1988)
Blood N/S/1588 36 5.1 0.3-211 0.3 N/S  (Ominski et al., 1996)
serum 14.1"
Asia
China Fat 0/3 0 - - N/S N/S (Chen et al., 2012)
Kidney 0/3 0 - - N/S N/S
Liver 1/3 33 1.46" 1.46" N/S N/S
Meat 1/3 33 1.25 1.25 N/S N/S
Kidney 35/40 88 N/S 0.102-0.323  0.03 0.1 (Hou et al., 2015)
Liver 0/10 0 - - 0.05 0.1 (Zhao et al., 2015)
Meat 0/10 0 - - 0.05 0.1
Meat 3/8 38 N/S 1.2-3.0 0.21 0.70 (Luan et al., 2016)
Liver 0/5 0 - - 0.07 0.25 (Cao et al., 2018)
Muscle 1/5 20 0.88" 0.88" 0.07 0.25
Africa
Egypt Kidney 10/10 100 N/S 7,51M 0.01 N/S (Alarousy & Hakim,
2015)
Liver 10/10 100 N/S 3,78M 0.01 N/S
Meat 10/10 100 N/S 6,19M 0.01 N/S

Notes: +, the mean value is based only on positive samples, LB, lower bound - concentrations below LOQ are
regarded as zero, MB, middle bound - concentrations below LOD are regarded as > LOQ, UB, upper bound -
concentrations below LOD are regarded as LOD, LB(LOD), concentrations below LOD are regarded as zero, M, the

only maximum concentration is available; *, the only one positive sample
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Table S4 Expected consumption of blood sausages for the consumer only (g/kg bw/day)

Population group Avg! SD? p50° p95* p99°
Children 4-6 years 0 0 0 0 0
Men 18-59 years 1.0091 0.661 0.917 2.000 2.154
Women 18-59 years 0.641 0 0 0 0
Men 60+ 0 0 0 0 0
Women 60+ 1.523 1.081 1.051 2.843 3.088
The whole population 1.150 0.771 0.976 2.576 3.035

! Avg, average; 2 SD, standard deviation; * p50, 50" percentile; * p50, 95" percentile; > p99, 99™ percentile
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Table S5 Ochratoxin A concentrations in blood sausage samples

o OTA o OTA o OTA o OTA o OTA
(ng/g) (ng/g) (ng/g) (ng/g) (ng/g)
1 0.21 41 1.51 81 0.56 121 1.23 161 0.52
2 0.30 42 1.28 82 1.42 122 2.81 162 1.82
3 0.15 43 1.43 83 0.97 123 1.91 163 0.80
4 1.00 44 1.10 84 0.95 124 3.69 164 0.79
5 0.16 45 0.86 85 2.04 125 5.62 165 0.92
6 0.62 46 1.41 86 2.40 126 5.68 166 0.68
7 0.90 47 1.00 87 0.50 127 3.51 167 1.17
8 0.74 48 0.57 88 0.86 128 2.61 168 1.08
9 0.35 49 0.79 89 1.31 129 2.08 169 2.10
10 0.80 50 1.12 90 0.81 130 1.92 170 2.29
11 0.38 51 0.72 91 0.79 131 3.03 171 2.78
12 0.35 52 0.84 92 1.51 132 2.53 172 0.48
13 0.67 53 0.92 93 0.61 133 2.37 173 1.52
14 1.29 54 1.45 94 1.53 134 2.87 174 1.48
15 1.02 55 1.45 95 1.72 135 1.63 175 1.16
16 2.04 56 1.90 96 2.96 136 1.27 176 1.02
17 1.42 57 0.95 97 3.25 137 2.03 177 1.71
18 1.84 58 1.73 98 0.91 138 1.13 178 1.07
19 3.70 59 0.95 99 0.73 139 4.17 179 1.17
20 1.66 60 1.01 100 1.08 140 3.03 180 0.90
21 1.19 61 0.96 101 0.31 141 2.30 181 2.03
22 0.63 62 1.77 102 0.89 142 3.39 182 1.36
23 1.07 63 1.04 103 1.30 143 1.32 183 1.55
24 1.78 64 1.55 104 2.00 144 1.97 184 1.31
25 0.18 65 0.78 105 0.91 145 1.15 185 1.74
26 0.73 66 1.76 106 1.59 146 1.24 186 1.49
27 0.84 67 1.03 107 1.51 147 0.88 187 1.94
28 0.52 68 0.48 108 0.75 148 1.03 188 1.85
29 0.68 69 243 109 1.08 149 0.78 189 2.60
30 0.35 70 2.76 110 0.92 150 3.09 190 1.20
31 0.80 71 2.20 111 1.88 151 1.59 191 1.02
32 0.73 72 2.93 112 2.39 152 1.15 192 1.56
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o OTA o OTA o, OTA o OTA o OTA
(ng/g) (ng/g) (ng/g) (ng/g) (ng/g)
33 0.85 73 0.57 113 2.14 153 1.67 193 1.35
34 1.11 74 2.30 114 1.66 154 0.83 194 1.48
35 0.38 75 1.86 115 4.56 155 3.31 195 1.51
36 0.84 76 1.93 116 3.03 156 0.93 196 0.68
37 1.26 77 0.66 117 2.22 157 0.21 197 1.33
38 1.26 78 1.21 118 1.64 158 0.73 198 1.30
39 1.19 79 1.27 119 1.46 159 1.02 199 1.06
40 1.02 80 3.29 120 2.20 160 1.67 200 0.54







Figure S1 Ochratoxin A standard calibration curve
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Abstract

The Czech Republic occupies the first place in the world in the frequency of renal and other urinary tract tumours, but their
aetiology is unknown. To explore whether carcinogenic and nephrotoxic mycotoxins may contribute to kidney diseases in the
Czech population, biomarkers of ochratoxin A (OTA) and citrinin (CIT) exposure were determined in biological specimens from
a cohort of 50 patients with malignant renal tumours. Biomarker analyses in blood and urine samples used validated targeted
methods for measuring OTA and CIT plus dihydrocitrinone (DH-CIT) after enrichment of analytes by specific immunoaffinity
clean-up. OTA and CIT plus its metabolite DH-CIT were frequently detected in patient urine samples (OTA 62%; CIT 91%; DH-
CIT 100%). The concentration ranges in urine were 1-27.8 ng/L for OTA, 2-87 ng/L for CIT and 2—-160 ng/L for DH-CIT. The
analyses of blood samples revealed also a frequent co-occurrence of OTA and CIT, in the ranges of 40-870 ng/L serum for OTA
and 21-182 ng/L plasma for CIT. This first analysis of biomarkers in blood and urine samples of Czech patients revealed no
major differences in comparison with published data for the general healthy Czech and European populations. Nonetheless, a
frequent co-occurrence of CIT and OTA biomarkers in patient samples may be of interest with regard to potential interactions

with other risk factors for renal disease.

Keywords Ochratoxin A - Citrinin - Dihydrocitrinone - Biomarkers - Renal carcinogenicity

Introduction

Based on epidemiological information on malignant diseases,
the incidence in the Czech Republic of renal tumours and
other urinary tract tumours is very high in comparison with
other countries (e.g. Germany, see Robert Koch-Institut
2017). The incidence of malignant neoplasms of the kidney
and of renal pelvis and ureter (diagnosis C64—C66) is 29.5
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renal tumours/100,000 inhabitants of the Czech Republic
(Dusek et al. 2017). The tumours diagnosed are mainly renal
carcinoma/adenocarcinoma arising from the proximal tubule
cells (clear cell renal cell carcinoma, ccRCC, formerly called
Grawitz tumour) and papillary renal carcinoma of the renal
pelvis (Tesar et al. 2015). Balkan endemic nephropathy
(BEN), a unique chronic renal disease, is often associated with
upper urinary tract tumours arising from the urothelium
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(Grollman and Jelakovic 2007). Factors suspected of inducing
this disease are nephrotoxins, primarily mycotoxins and
aristolochic acid, metals and metalloids as well as possibly
an individual genetic predisposition (Pfohl-Leszkowicz et al.
2002; Peraica et al. 2008; Pfohl-Leszkowicz 2009; Stiborova
et al. 2016; Chan et al. 2018).

Different factors can play a role in the incidence of ccRCCs
and other kidney tumours, e.g. hypertension and obesity
(Sanfilippo et al. 2014), lifestyle and health behaviours such
as physical activity, alcohol consumption and smoking (Chow
et al. 2010) but also genetic factors (Reaume et al. 2013;
Schmidt and Linehan 2016). Other, mainly occupational risk
factors for renal cancer include high exposure to cadmium,
lead and solder fumes as well as paints, mineral oils, cutting
fluids, benzene, polycyclic aromatic hydrocarbons, trichloro-
ethylene and tetrachloroethylene (Pesch et al. 2000; Radford
et al. 2013). In short, the aetiology of renal cancer is not well
understood, and the impact of various risk factors on disease
may vary in different cohorts. In a Czech cohort of patients
with kidney tumours (main diagnosis C64), we have studied
their exposure to carcinogenic and nephrotoxic mycotoxins,
namely ochratoxin A (OTA) and citrinin (CIT). The contam-
ination of food commodities with OTA is quite frequent in
Europe including the Czech Republic (EFSA 2006; Ostry
et al. 2013; Ostry et al. 2015), whereas available data on
CIT levels in food and feed is rather scarce (EFSA 2012).

Since CIT has similar toxic properties as OTA, their co-
occurrence has raised concerns regarding possible combined
effects on animals and humans, in particular porcine nephrop-
athy and BEN (Pfohl-Leszkowicz et al. 2002; Pfohl-
Leszkowicz et al. 2008; Peraica et al. 2008; Ostry et al.
2013). An experimental co-administration of CIT and OTA
in rodents or in vitro can increase OTA-DNA adducts in kid-
ney (Manderville and Pfohl-Leszkowicz 2008; Pfohl-
Leszkowicz et al. 2008) and also oxidative DNA damage
(Segvic-Klaric et al. 2013). Depending on doses and the rela-
tive proportion of CIT and OTA, either antagonism or synergy
has been observed (Pfohl-Leszkowicz et al. 2008; Follmann
etal. 2014). Thus, it is of interest to assess the exposure to both
mycotoxins in humans.

A valuable tool to investigate human exposure to myco-
toxins is biomonitoring, i.e. the analysis of parent compounds
and/or metabolites in biological fluids such as blood, urine or
breast milk samples. It has served to study exposure to myco-
toxins in different countries and cohorts, and to study the
success of intervention measures aimed to reduce dietary in-
take (Duarte et al. 2011; Turner et al. 2012). Analysis by
means of suitable biomarkers of exposure is considered to
be the preferable tool for human exposure assessment as it
covers mycotoxin intake from all sources and routes, and bet-
ter reflects the individual exposure situation, toxicokinetics
and bioavailability (Duarte et al. 2011; Malir et al. 2012;
Fromme et al. 2016).

@ Springer

In this study, biomarkers of OTA and CIT exposure have
been determined in 50 patients with renal tumours from the
Czech Republic. We applied validated specific methods for
analyses of OTA, CIT and its metabolite dihydrocitrinone
(DH-CIT) in blood and urine samples collected prior to sur-
gery. The structures of the analytes are depicted in Fig. 1.
Their levels in the patient cohort are compared with those of
healthy populations to explore if exposure to nephrotoxic my-
cotoxins may be a contributing factor to the high frequency of
renal tumours observed in the Czech Republic. This first bio-
marker analyses in Czech tumour patients revealed current
mycotoxin exposures well below the tolerable daily intake
values for OTA and CIT. The results will be also discussed
in relation to remaining uncertainties such as potential risks
from past exposure, not reflected in our present study, or com-
bined exposures.

Materials and methods
Chemicals and materials

Glacial acetic acid, hydrochloric acid, ortho-phosphoric acid
85%, magnesium sulphate hexahydrate, sodium chloride, an-
hydrous sodium acetate (all in p.a. purity), methanol and ace-
tonitrile (both gradient grade for HPLC) were obtained from
Merck KGaA (Prague, Czech Republic), and acetic acid
(96%) from Merck KGaA (Darmstadt, Germany).
Acectonitrile and methanol (LC-MS grade) were from
Promochem (Wesel, Germany). Chloroform and sodium hy-
drogen carbonate (both p.a.) were purchased from Riedel-de
Haen (Prague, Czech Republic). OTA standard material
(1 mg, purity >98%) and phosphate-buffered saline of
pH 7.4 were obtained from Sigma-Aldrich (Prague,
Czech Republic). Ultrapure water was prepared by Milli-Q
Plus (Millipore, Billerica, MA, USA).

OTA was dissolved in methanol and spectrophotometrical-
ly calibrated at 333 nm using the molar extinction coefficient
(¢) of 6400 (Reinhard and Zimmerli 1999). A basic OTA
solution was prepared by dissolving 1 mg of OTA in 5 mL

OH OH O
OTA oH
CH,

CIT DH-CIT

Fig. 1 Structural formulas of the analytes
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of methanol, and an OTA stock standard solution (40 ng/mL)
was prepared by further dilution in methanol. The working
standard solutions of OTA in a range of 0.1-20.0 ng/mL were
prepared weekly from the OTA stock solution as dilutions in
the mobile phase (methanol/acetonitrile/0.005 mol/L sodium
acetate/acetic acid, 300/300/400/14, v/viv/v).

CIT standard material (5 mg, purity >98%) was from
Sigma-Aldrich (Taufkirchen, Germany); CIT stock solution
in methanol was calibrated at 321 nm using the absorptivity
€ =5490 (Reinhard and Zimmerli 1999). The CIT metabolite
DH-CIT (purity 98.9%) was obtained from AnalytiCon
Discovery GmbH (Potsdam, Germany). CIT and DH-CIT
working standard solutions were prepared weekly from their
stock solutions (CIT, 200 pg/mL acetonitrile; DH-CIT,
500 pg/mL acetonitrile) by dilution in methanol in a range
of 1-20 ng/mL (1000-20,000 ng/L).

Cohort and collection of samples

Biological samples (blood and urine) were collected
from November 2015 to April 2017 from 50 randomly
selected patients (a group of 39 men and 11 women)
with diagnosis of kidney cancer and aged between 40
and 81 years (see Table 1). For the purposes of this
study, on the basis of the previous standard laboratory
and medical examinations, only those patients without
overall metabolic disruption and cardiovascular compli-
cations were randomly selected. Blood and urine sam-
ples for this study were collected just before surgical
operation as part of standard clinical sampling so that
patients were not excessively burdened (one of the con-
ditions of approval by the Ethics Commission). Samples
of urine were collected from the patients in all standard
preoperative examinations, starting from their arrival at
the Department of Urology until the morning of the
next day when the operation was performed. Blood
samples were divided in three containers from
Sarstedt: (i) two S-Monovettes (2.7 mL, K,EDTA—for
obtaining optimally about 4 mL of plasma overall) were
centrifuged (at 3000 rpm, approximately about 1620xg)
for 15 min for separation of plasma using a B4i Jouan
(France) centrifuge, and then the separated plasma was
placed into a vial; (ii) another container marked S-
Monovette (5.5 mL Z, Clotting Activator/serum) was
used for obtaining the serum, and then the sample of
separated serum was placed into a vial. Urine samples
were collected into a non-sterile container (1.5 L) stored
in the refrigerator. Each urine sample was mixed, and
from it approximately 100 mL of urine after centrifuga-
tion (at 3000 rpm) was placed into a polypropylene
container, and these samples were immediately stored
at —80 °C until analysis. All samples were sent anony-
mously (using a numerical code) to the laboratories.

Personal data on gender, the year of birth and the body
weight of the patient were recorded.

OTA extraction, detection and quantification

Prior to detection and quantification of OTA in serum and
OTA in urine, aliquoted samples of 3 mL of acidified blood
serum (Zimmerli and Dick 1995; Dohnal et al. 2013) and
20 mL of filtered urine sample (Ostry et al. 2010) were ex-
tracted and cleaned on Ochraprep® R immunoaffinity col-
umns (Biopharm Rhone Ltd., Great Britain).

As in previous studies of other cohorts (Malir et al.
2006; Ostry et al. 2010; Dohnal et al. 2013), the validated
and accredited method (CSN EN ISO/IEC 17025) of
reversed-phase high-performance liquid chromatography
with fluorescence detection was employed for purposes
of OTA detection and quantification. OTA was analysed
on a liquid chromatograph consisting of a vacuum degasser
SCM400, gradient pump P2000, autosampler AS 3000 (all
from Spectra System, USA), fluorescence detector 920 FP
(Jasco, Japan) and Solvent Saver 2907 (Jour Research,
Sweden) coupled with the analytical column Inertsil
ODS-3V (5 um x 150 mm x 4.6 mm; Hichrom Ltd., UK)
with a guard column (3.0 x 4.0 mm filled with C,g material
of particle size 5 um, Phenomenex, USA) and—for calcu-
lations and evaluations—equipped with a computer and
CSW 32 (DataApex, Prague, Czech Republic) software.
OTA fluorescence was measured at an excitation wave-
length of 333 nm, and an emission wavelength of 465 nm
for serum analysis or 443 nm for urine analysis. The injec-
tion volumes were 50 pL for serum samples and 100 pL
for urine samples. The mobile phase for OTA analysis
consisted of methanol/acetonitrile/0.005 mol/L sodium
acetate/acetic acid (300/300/400/14, v/v/v/v). The flow rate
was 1.5 mL/min (Dohnal et al. 2013). Under these chro-
matographic conditions, the retention time of OTA for se-
rum samples was about 7.1 min and for urine samples
about 7.9 min. For OTA in serum, the LOD was 40 ng/L
and LOQ was 100 ng/L. For OTA in the urine, the LOD
was 1.0 ng/L and LOQ was 2 ng/L. The linear calibration
curve was constructed by measurement of OTA peak areas
of standard solutions in mobile phase with concentrations
of 0.125 to 4.000 ng OTA/mL for serum analysis, and of
0.1 to 20 ng OTA/L for urine analysis. Blank samples were
mobile phases. Each point of the calibration curve was
measured in triplicate. The recoveries for OTA were 82—
86% in the range of 0.5-1.0 ug/L (500-1000 ng/L) in
spiked blood serum samples and 92.6—85.1% in the range
of 20-50 ng/L in spiked urine samples. The average rela-
tive standard deviations of repeatability (RSD,) for OTA
were 4.5% at 0.5 ng/mL (500 ng/L) and 1.5% at 1 ng/mL
(1000 ng/L) for serum and 4.2% at 20 ng/L and 2% at
50 ng/L for urine.
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Table 1 Characteristics of male

and female Czech patients with Characteristics of patients Subgroup of Subgroup of Whole
diagnosis of kidney cancer men women cohort
Subject-gender (n) 39 11 50
Age (years)
Mean + SD 65+10 58+12 63+11
Range 40-81 40-74 40-81
Weight of patients (kg)
Mean + SD 93+11 80+31 90+18
Range 68-118 57-155 57-155
Area of residence
Rural 6 1 7
Urban 33 10 43
Diagnosis
Malignant neoplasm of kidney, outside renal pelvis 38 10 48
(C64)
Malignant neoplasm on urine bladder neck (C675) 1 - 1
No-malignant neoplasm of kidney (D410) - 1 1
Urinary parameters
Creatinine (mg/L)*
Mean + SD 794 £592 701 £353 773 +£547
Range”” 100-3290 260-1236 100-3290
pH of urine
Mean + SD 6.04+0.54 5.89+0.50 6.01+0.53
Range 5.03-7.08 5.38-7.13 5.03-7.13
Volume of urine (mL)
Mean +SD 444 + 64 459 +131 447+ 82
Range 252-560 110-586 110-586

Biomarker values determined in patient urines (see Tables below) are expressed both as concentration (ng/L), and
also adjusted for urine creatinine content

" Range of creatinine reference value in healthy adults: 500-2500 mg/L (Kommission Humanbiomonitoring des

Umweltbundesamtes 2005)

" In one case i.e. 2% from the whole cohort, urinary creatinine was > 2500 mg/L and in 15 cases i.c. 30% of the
cohort it was <500 mg/L, i.e. higher or lower than the range of creatinine reference values in healthy adults
(Kommission Humanbiomonitoring des Umweltbundesamtes 2005)

CIT and DH-CIT extraction, detection
and quantification

CIT and DH-CIT in urine were analysed by the validated
method of Blaszkewicz et al. (2013) after extraction and
cleanup with CitriTest® columns (Vicam provided by
Ruttmann, Hamburg, Germany), with minor modifications.
A mixture of 5 mL urine diluted with 5 mL of 1 mM acetic
acid was loaded on a CitriTest® column; see Ali et al. (2015a,
2015b). CIT and DH-CIT in plasma were analysed by the
method of Blaskewicz et al. (2013) and Ali et al. (2018). In
short, for protein precipitation, 1 mL plasma was mixed with
1 mL acetonitrile (1/1, v/v) and then centrifuged at 9800xg for
3 min; 1 mL of the upper layer was transferred into a vial and
evaporated to dryness under a gentle stream of nitrogen at a
temperature of 40 °C. Then, the sample was reconstituted in
350 puL methanol, vortexed, and centrifuged at 9800xg for
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3 min; the extract was filtered through a 0.45-um pore size
Teflon syringe filter (WICOM, Germany) before LC-MS/MS
analysis.

Detection of CIT and DH-CIT was performed with a Varian
1200L Quadrupole MS/MS equipped with an electrospray
ionization (ESI) source and a Prostar® Varian HPLC system
and Varian MS Workstation version 6.9.1 data system
(Agilent Technologies, Germany) after separation on a
Nucleosil® 100-5 C18 HD column (125 x 3 mm, Macherey-
Nagel, Diiren, Germany). The mobile phase consisted of wa-
ter containing 1 mmol/L ammonium formate and methanol
containing 1 mmol/L ammonium formate. Instrumental set-
tings and chromatographic conditions were identical with
those used before for urine and plasma extract analyses (Ali
et al. 2015a, 2015b; Ali et al. 2018). A gradient elution was
performed, and the retention times of CIT and DH-CIT were
9.3 and 8.7 min, respectively.
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The method was validated using spiked blank urine and
plasma samples. Recoveries were 79% and 82% in the urine,
and 82% and 84% in plasma, for CIT and DH-CIT, respec-
tively. The LOD and LOQ were determined by an external
calibration curve in the urine and plasma matrix. The LOD
and LOQ were 0.02 ng/mL (20 ng/L) and 0.05 ng/mL (50 ng/
L) for CIT, and those for DH-CIT were 0.05 ng/mL (50 ng/L)
and 0.1 ng/mL (100 ng/L) in the urine matrix. In plasma sam-
ples, the LODs of CIT and DH-CIT were 0.07 ng/mL (70 ng/
L) and 0.15 ng/mL (150 ng/L), respectively, and their LOQs
were 0.15 ng/mL (150 ng/L) and 0.30 ng/mL (300 ng/L),
respectively. Reproducibility was determined by inter-day as-
says on three different days at a level of 0.25 ng/mL (250 ng/
L) in urine and 0.5 ng/mL (500 ng/L) in plasma for the
analytes; the RSD, range was 4.2 to 7.4% for the analytes.
Calibration curves for quantification were done by spiking
urine and plasma matrix that showed no detectable analyte
background.

Creatinine analysis in urines

Urinary creatinine was determined by the Jaffe reaction meth-
od with alkaline picrate at a wavelength of 520 nm using the
spectrometer Cintra 101 (GBC Scientific Equipment Ltd.,
Australia). Creatinine levels were controlled by Lyphochek®
Quantitative Urine Control, levels 1 and 2 (Bio-Rad, Prague,
Czech Republic). Levels of OTA, CIT and DH-CIT in urines
(ng/L) were then adjusted for creatinine content and expressed
as nanograms per gram of creatinine.

OTA exposure calculation

The average OTA daily intake in patients with malignant neo-
plasms was calculated on the basis of OTA serum concentra-
tions as done in previous assessments (e.g. Mértlbauer et al.
2009; Coronel et al. 2009; Duarte et al. 2011) by means of the
Klaassen equation:

Ky=Cl, x C,/A and in the version Ky,=0.99 x C,/0.5 =
1.97where K, is the continuous dietary intake (ng/kg b.w./
day), Cl,, is the plasma clearance (0.99 mL/kg b.w./day), C,
is the plasma OTA concentration (ng/mL) and A is the toxin
bioavailability, estimated at 50%. We opted also to use the
more conservative conversion factor of 1.97 (Miraglia et al.
1996), since this version of the Klaassen equation has resulted
in a better match of biomarker-based intake assessments for
OTA with estimates based on food analysis data (Martlbauer
et al. 2009).

OTA intake (ng/kg b.w.)=1.97 x Cora,

where Cqota is the OTA concentration measured in serum
(ng/mL).

CIT exposure calculation

For CIT exposure assessment, the urine concentrations for
both CIT and its main metabolite DH-CIT were summed up
(“total CIT”) for each individual and then converted to CIT
intake. It was calculated as follows (Degen et al. 2018):

PDI(ug/kg b.w./day)

= C/W*V*100/fraction excreted in urine in%,

where PDI is the provisional daily intake, C is the concentra-
tion measured in the urine sample, W is the standard body
weight of 70 kg (EFSA 2012) and Vis the average daily urine
volume of 1.6 L excreted by adults. As for the assumption for
V, one favours a higher i.e. conservative intake estimate, al-
though the urine volume excreted by patients who are kept
from drinking or eating 12 h before surgery was lower. The
fraction excreted in the urine is the percentage of an oral CIT
dose found in the urine within 24 h and set here to 40%, the
median value in the study of Degen et al. (2018).

Statistical analysis

Obtained data were processed using the universal statistical
software Statistica version 11 (StatSoft). The results as mean +
standard deviation, median and ranges are presented on the
basis of descriptive analysis. The samples with OTA concen-
trations below the limit of detection (LOD) were calculated as
one-half the detection limit for calculation of mean and medi-
an values (Hornung and Reed 1990).

Results

Biomarkers in blood and urine samples: OTA, CIT
and DH-CIT

OTA was frequently detected in body fluids (serum 48%;
urine 62%) from the patient cohort. OTA amounts measured
in blood serum and urine are summarized in Table 2. The OTA
serum concentrations ranged from 40 ng/L (LOD) to 830 ng/
L, with a mean value 145 £213.8 ng/L, median 20 ng/L. OTA
concentrations in the corresponding urines ranged from 1 ng/L
(LOD) to 27.8 ng/L, with a mean value for all urines of 5.9 +
5.97 ng/L, median 5.4 ng/L.. OTA concentrations in both ma-
trices are higher in the male than the smaller subgroup of
female patients (Table 2), yet the differences did not reach
statistical significance. This is also the case for creatinine-
adjusted OTA levels in urine.

Determining OTA in blood and urine is very useful for a
comparison with published data from other cohorts. Yet, bio-
marker analyses data in the two matrices of an individual are
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Table 2  Serum and urinary concentrations of OTA in the Czech patient cohort
Serum Urine
n Positiven  Mean + SD (ng/ Median (range) Positive n Mean = SD Median (range) Mean + SD (ng/g
(%) L) (ng/L) (%) (ng/L) (ng/L) creatinine)
OTA Men 39 21(54) 175.8£232.8 47.3 (nd-830) 24 (62) 6.53+6.41 6.41 (nd-27.8) 8.0+6.0
Women 11 3 (27) 35.7+35.1 20.0 (nd-112.8) 7 (64) 3.66+3.44 2.74 (nd-10.0) 5.0+4.0
All 50 24 (48) 145+213.8 20.0 (nd-830) 31(62) 59+£597 5.41 (nd-27.8) 7.0+£6.0

Note: positive sample refers to urines containing the analyte > the limit of detection (LOD). LOD of OTA in blood was 40 ng/L of serum and in urine
1.0 ng/L. Samples that contained analyte levels below LOD were assigned a value of one half of the LOD for calculation of mean and median values. See

also individual data in Fig. 2 and Fig. 3
nd level below LOD

not necessarily strictly correlated with each other due to the
rather complex kinetics of OTA in the human organisms.
Figure 2 and Fig. 3 depict the OTA concentrations determined
in serum and urine samples of all individuals. Patients with
higher OTA serum amounts generally excreted more OTA
aglycone, the unconjugated OTA form (which was analysed)
in urine than those with lower circulating amounts of OTA.
In blood and urine of the same cohort, CIT is detected in
almost all patients. Table 3 summarizes the data. The CIT
plasma concentrations of all 50 Czech patients ranged from
20 (LOD) to 182 ng/L, median of 51 ng/L, a mean value 61 +
35 ng/L and similar concentrations in both subgroups of men
and women. Due to a high LOD for DH-CIT in plasma
(200 ng/L), the metabolite was not detected in any of the
patient blood samples. CIT concentrations in urine ranged
from 2 (LOD) to 87 ng/L, with a mean value for all patients
of 16 +£20 ng/L, median 8 ng/L and higher mean

900.0

concentrations for the metabolite DH-CIT of 48 +35 ng/L,
median 38.5 ng/L (for 100% of samples in a range of 6 to
160 ng/L), with similar amounts in males and females (see
Table 3).

Figures 4 and 5 illustrate the variability in biomarker con-
centrations among this cohort for biomarkers measured in
plasma and in urine samples of individuals. The biomarker
pattern in both matrices, with higher CIT concentrations in
blood than in urine of patients, and higher urinary levels of
DH-CIT than CIT, resembles that observed in reference
cohorts.

Exposure assessments for OTA and CIT
These data have been used to estimate the exposure to OTA

and CIT of the patients before surgery, and have been com-
pared to the tolerable intake (TDI) for OTA and CIT. Using the
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Fig. 2 OTA in blood serum samples (ng/L) of individual Czech patients
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Fig. 3 OTA in urine samples (ng/L) of individual Czech patients

OTA serum concentrations of Czech patients, we calculate a
probable daily intake, using a conversion factor of 1.97 for the
Klaassen equation as applied in previous exposure assess-
ments for this mycotoxin. The mean blood OTA concentra-
tions of 145 + 214 pg/mL (or ng/L) correspond to a mean daily
dietary OTA intake for the entire cohort of 286 +421 pg/kg
b.w/day (i.e. 0.29 £0.42 ng/kg b.w./day). This daily intake is

lower than the TDI value which was set by several regulatory
bodies for OTA.

For CIT exposure, the urine concentrations for CIT and its
main metabolite DH-CIT were summed up (“Total CIT”) for
each individual (see Fig. 4) and then converted to CIT intake
as explained in “Materials and methods”. The probable daily
CIT intake for the cohort is 3.5 +2.3 ng/kg b.w./day, with no

Table 3  Plasma and urinary concentrations of CIT and its metabolite DH-CIT Positive

Plasma Urine
Positiven  Mean + SD Median (range) Positiven  Mean + SD Median (range) Mean + SD (ng/g
(%) (ng/L) (ng/L) (%) (ng/L) (ng/L) creatinine)
CIT Men 39 39 (100) 63+32 58 (21-170) 35 (90) 17 £ 21 9 (6-87) 24.0 £23.0
Women 11 10 (91) 53+46 45 (nd-182) 10 91) 10 £ 11 6 (nd-31) 14.0 £12.0
All 50 49 (98) 61+35 51 (nd-182) 45 (90) 16 £ 20 8 (nd-87) 22.0 £21.0
DH-CIT Men 39 nd 39 (100) 48 £35 70 (6-160) 87.0 = 85.0
Women 11 nd - - 11 (100) 49 £ 30 39 (6-114) 74.0 £ 37.0
All 50 nd 50 (100) 48 £ 34 38 (6-160) 84.0 £ 77.0
Total Men 39 NC - - 35 (90) 66 + 42 62 (nd-206) 111.0 £ 91.0
CIT  Women 11 NC - - 10091) 59 =40 41 (nd-145) 88.0 + 45.0
All 50 NC - - 45 (90) 64 + 42 57 (nd-206) 106.0 £+ 83.0

Positive sample refer to urines containing the analyte > limit of detection (LOD). Samples with analyte levels below LOD were assigned a value of one
half the LOD for calculation of mean and median values. The LOD in urine were 0.002 ng/mL (2.0 ng/L) for both CIT and its metabolite; in plasma the
LOD for CIT was 0.02 ng/mL (20 ng/L), but for DH-CIT the LOD was 0.2 ng/mL (200 ng/L). Thus, the total CIT (sum of CIT plus DH-CIT) was not
calculated (NC) for plasma, but for urines; see also individual data in Fig. 4 and Fig. 5

nd level below LOD

@ Springer



Mycotoxin Res

200

150

100 HIII
| ‘ “l

= DH-CIT in urine

B CIT in urine

ng/L

12345678 91011121314151617181920212223242526272829303132333435363738394041424344454647484950

Number of patients

Fig. 4 CIT and DH-CIT in urine samples (ng/L) of individual Czech patients

significant difference between males and females. The esti- ~ Comparisons with healthy populations

mated exposure is far lower than the “level of no concern for

nephrotoxicity” (a provisional TDI) derived by EFSA (2012)  Results of this first biomarker analysis for nephrotoxic myco-
for this mycotoxin. toxins in Czech patients with renal tumours are compared with
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Fig. 5 CIT biomarkers in blood plasma and urine samples (ng/L) of individual Czech patients
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data for OTA and CIT biomonitoring in reference cohorts;
more details on the latter studies are provided in “Discussion”.

OTA concentrations both in urine and in serum of Czech
patients in this study and the group representing the Czech
healthy population—reference cohort (236 examined individ-
uals; male/female, 45—60 years old, blood donors) (Ostry et al.
2010)—were compared by the independent sample ¢ test. No
statistically significant difference was observed (p > 0.05).

Comparisons of CIT and DH-CIT urinary concentrations
were made by independent sample 7 test between Czech pa-
tients and those reported in a cohort of German healthy adults
(23 males, 27 females) (Ali et al. 2015a), because similar data
were not available in a healthy cohort in the Czech Republic.
CIT and DH-CIT concentrations in urine of Czech patients
were statistically significantly lower (p < 0.05) compared with
the German control group, but no significant difference was
observed in their blood levels.

Discussion

The aim of this collaborative study was to estimate the expo-
sure of kidney cancer patients (clinical diagnoses: C64—C66)
to two nephrotoxic mycotoxins (OTA and CIT) by sensitive
targeted biomarker analyses in both blood and urine samples.
As sample collection was made in hospital before surgery, the
measured OTA and CIT biomarkers reflect only recent expo-
sure but not the past exposure. Yet, analysis of paired blood
and urine samples from patients allows to consider biomarker
levels in both matrices and compare the outcome to studies in
non-diseased cohorts (e.g. MacDonald et al. 2001; Ostry et al.
2010; Ali et al. 2015a). Table 4 summarizes data from some
studies that used the same or very similar methodology as
applied in the present investigation.

OTA biomarker concentrations in Czech kidney
tumour patients and in other cohorts

For the Czech patients, the mean OTA serum concentration
and the range are similar to those found in a large survey of
serum samples obtained between 1994 and 2002 from healthy
Czech blood donors (Malir et al. 2006), and from another
more recent survey on healthy Czech persons (Ostry et al.
2010). The data for Czech adults are also similar to OTA
values found in a large German study (Rosner et al. 2000)
and a retrospective study of 102 serum samples from 36
healthy persons (Mértlbauer et al. 2009). Higher OTA mean
blood plasma levels and ranges than in the Czech and German
adults have been reported in a 1-month diet duplicate study
carried out in the UK some years ago (MacDonald et al.
2001). This study analysed also unconjugated OTA in 24-h
urines collected by the volunteers. OTA concentrations in
urine were far lower than those measured in the blood plasma,

yet showed a good correlation with dietary OTA intake of UK
adults (Gilbert et al. 2001; MacDonald et al. 2001).

OTA levels now determined in urines from 50 Czech pa-
tients are close to the mean concentration and range were
found previously for the healthy Czech population (Ostry
etal. 2010). In the patient cohort, OTA concentrations in urine
were also much lower than in blood. This is in line with data
from the UK (Table 4) and further biomonitoring data in
healthy persons (reviewed in Fromme et al. 2016; Malir
et al. 2016; Ali et al. 2017).

The fact that both blood and urinary OTA levels in patients
suffering from kidney cancer are not significantly different
from the healthy Czech population or lower than in healthy
persons from other countries is in line with the present knowl-
edge on OTA kinetics. Only a small fraction of the circulating
OTA is excreted in a given time, due to its pronounced binding
to serum proteins (about 99%) which hinders its glomerular
filtration (Gekle et al. 2005). The free (unbound) OTA fraction
is filtered, but reabsorption of the non-ionized form along all
nephron segments delays its elimination (Castegnaro et al.
2006; Ringot et al. 2006). The fraction of OTA bound to
serum proteins constitutes a mobile OTA reserve that can be
released as soon as the fraction of free OTA decreases, e.g.
when more polar metabolites are formed and excreted (Pfohl-
Leszkowicz and Manderville 2007; Ali et al. 2017). An in-
crease in OTA blood concentrations after high intake can be
compensated by increasing urinary OTA excretion, which
brings the OTA concentration back to the former steady-
state level in blood (Castegnaro et al. 2006; Pfohl-
Leszkowicz et al. 2006). In patients with impaired renal func-
tion and decreased filtration capacity, one would expect an
increase in OTA concentration in blood compared to healthy
persons with a similar OTA intake (Duarte et al. 2011). Yet,
this was not the case, except for 30% of patients having a low
creatinine excretion, probably because the steady state was not
reached.

Estimation of the OTA intake before surgery, based on
OTA blood concentrations, is low with about 0.3 ng/kg b.w./
day: This is about 10-fold lower than the most conservative
limit value of 4 ng/kg b.w./day proposed by Health Canada for
a negligible cancer risk intake (Kuiper-Goodman et al. 2010)
and 50 times lower than the tolerable weekly intake (TWI) of
120 ng/kg b.w. proposed by EFSA (2006). OTA biomarker
analysis in urine seems to better reflect short-term variations in
OTA exposure of adults and children (Gilbert et al. 2001,
Castegnaro et al. 2006; Muiloz et al. 2014). Whilst urines
can be obtained by non-invasive sampling, one must keep in
mind that only a very small fraction of the ingested OTA is
excreted with urine, less than 3% within a day (Studer-Rohr
et al. 2000; Degen 2016). Based on this information, the esti-
mated daily intake is about 2.37 ng/kg b.w./day, which corre-
sponds to half of the most conservative limit value for cancer
risk.
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Table 4 Comparison of biomarker levels in Czech patient cohort and some reference cohorts

OTA CIT DH-CIT
Serum Urine Plasma Urine Urine

Cohort (samples; year of collection) Mean + SD

(reference) (range) (ng/L)

Czech kidney tumour patients 145 +214 (nd-830) 59+6 nd-27.7) 61+35 16£20 48 +34 (6-160)
(n=150;2015-2017) this study (20-182) (nd-87)

Czech blood donors 280 (nd-13,700) Not analysed Not analysed Not analysed ~ Not analysed
(n=2206; 1994-2002) Malir et al. 2006

Czech adults healthy volunteers 180 + 146 (nd—660) 73+6.5 Not analysed Not analysed ~ Not analysed
(n=236;2007-2008) Ostry et al. 2010 (nd-27.8)

Czech non-pregnant women 165 (50-1130) Not analysed Not analysed Not analysed ~ Not analysed
(n=115;2012) Dohnal et al. 2013

German adults (n=102; 1990-1997) 368 £217 (50-1290) Not analysed Not analysed Not analysed ~ Not analysed
Martlbauer et al. 2009

German adults (n =927; 1996-1998) 270 (60-2030) Not analysed Not analysed Not analysed ~ Not analysed
Rosner et al. 2000

German adults (n=8; 2010) —(210-1500) Not analysed — (110-260) - -
Blaszkewicz et al. 2013

German adults (n =50; 2013) Not analysed Not analysed Not analysed 30+20 100+100
Ali etal. 2015a, 2015b (20-80) (50-510)

UK adults (n=50; 1997) 1090 (plasma) 21 (10-58) Not analysed Not analysed ~ Not analysed
MacDonald et al. 2001 (400-3111)

nd level below LOD or LOQ

Due to limited financial sources, the diet of the patients was
not tested for OTA and CIT. But the dietary regimen (which
can influence OTA and CIT levels) of all patients was assessed
on the basis of a special questionnaire. There were no apparent
differences in the consumption of OTA-containing foodstuffs
in comparison to the referent Czech population (Ostry et al.
2015). As the average calculated OTA intake in the
Czech Republic was about 3.9 ng/kg b.w./day (Ostry et al.
2015), the above urine OTA-based intake estimate is in accord
with this value.

CIT biomarker concentrations in Czech kidney tumour
patients and in other cohorts

In contrast with rather good databases on the dietary intake of
certain mycotoxins such as aflatoxins or OTA, data on the oc-
currence of CIT in food commodities are still too limited to
reliably estimate human exposure (EFSA 2012). Hence, there
is a need to assess human exposure to CIT to enable a better
characterization of related risks, e.g. by biomarker-based analysis
of its intake (Degen et al. 2018). Recent studies that applied
targeted methods for detection of CIT biomarkers revealed quite
frequent exposure to this food contaminant in cohorts from dif-
ferent countries and also concurrent exposure to OTA (Pfohl-
Leszkowicz 2009; Ali et al. 2015a; Ali et al. 2016a, 2016b; Ali
et al. 2018). Yet, with biomarker analysis for CIT being more
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recently established, there are only few data compared to OTA
data in European cohorts (Table 4).

The new results in plasma and urine samples from the
Czech patients confirm dietary exposure to CIT. CIT was de-
tected in 98% of blood plasma from 50 Czech patients in a
similar, yet somewhat lower range of concentrations than
those found in some healthy German volunteers
(Blaszkewicz etal. 2013). Also in urines of the Czech patients,
their CIT and DH-CIT levels indicate a lower exposure to this
mycotoxin than in a cohort of healthy German adults (Ali et al.
2015a). This pertains to unadjusted concentrations (ng/L) as
well as creatinine-adjusted biomarker levels in Czech and
German urine samples. Average CIT biomarker levels in
urines of Czech patients are significantly (p < 0.05) lower than
those of German adults, but no significant difference exists
between blood samples. The biomarker pattern in paired sam-
ples, with higher CIT concentrations in blood than in urine of
patients, and higher urinary levels of DH-CIT than CIT, is
similar to reference cohorts (Ali et al. 2015a, 2015b; Ali
et al. 2018). A recent kinetic study in volunteers found that a
high fraction (about 40%) of an ingested dose of CIT is ex-
creted in the urine as the sum of CIT and its metabolite DH-
CIT (‘total CIT”) within a day (Degen et al. 2018). This allows
to estimate human dietary CIT exposure based on urine bio-
marker data, and compare it with the provisional tolerable
daily intake (“TDI’) proposed by the EFSA (2012). The CIT
daily intake derived from urine analyses of the Czech patients
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is 3.5 £2.3 ng/kg bw/day; this corresponds to 1.8+ 1.1% of
the “TDI” set for this mycotoxin whereas the German exposure
is slightly higher, but nevertheless represents only 3.7 +3.0%
of the ‘TDI’ (Degen et al. 2018).

Concluding remarks: Overall, the presented data indi-
cate a frequent, but low dietary exposure to CIT and OTA,
although we cannot exclude that higher exposures to
nephrotoxic mycotoxins may have occurred in previous
years in the Czech patient cohort. Biomarker-based intake
estimates for CIT and OTA are well below the respective
health-based guidance values. Thus, we consider combi-
natory effects, found in rodents or in vitro at rather high
mycotoxin doses (see “Introduction”), to be of low con-
cern for the present human exposure scenario. Due to the
short half-life of CIT in human blood (about 9 h), CIT is
unlikely to accumulate in the organism (Degen et al.
2018). In contrast, OTA has a rather long half-life in hu-
man blood (about 35 days) (Studer-Rohr et al. 2000), and
accumulates in the kidneys. As discussed elsewhere, there
is the possibility of OTA uptake in proximal tubules lead-
ing to accumulation in kidney target cells (Gekle et al.
2005; Mally 2012). An analysis of OTA in renal adeno-
carcinoma samples is thus of interest, also regarding the
OTA ratio between kidney and serum. Tissue samples of
the Czech tumour patient cohort could also provide a
chance for tracing changes related to past exposures and
for further research on other factors involved in this mul-
tifactorial disease.
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ARTICLE INFO ABSTRACT

Handling Editor: Dr. Jose Luis Domingo Ochratoxin A (OTA) exposure can result in chronic renal diseases and cancer. The incidence of kidney, renal

pelvis, and ureter malignant neoplasms in the Czech Republic is approximately 29.5 renal tumours per 100,000

Keywords: inhabitants. The question arises whether mycotoxins are also involved in kidney disease and cancer. A sensitive
O_Chratoxm A validated analytical methodology, based on an immunoaffinity clean-up followed by HPLC with fluorescence
Kidney . detection, was developed to explore whether OTA accumulates in clear renal cell carcinoma-adenocarcinoma in
Adenocarcinoma

Czech patients. Simultaneously, DNA-adducts and OTA metabolites were qualitatively analysed in tissues and
urine. OTA was analysed in 33 kidney and tumour samples from 26 men and 7 women collected during ne-
phrectomy from patients of the East Bohemian region from 2015 to 2017. OTA was found in 76% of the analysed
samples. Its concentrations ranged from not detectable to 390 ng/kg with a median of 167 ng/kg in kidney
samples and from not detectable to 430 ng/kg with a median of 122 ng/kg in tumour samples. Urinary OTA
metabolites and DNA adducts were qualitatively analysed for the corresponding 20 patients. The presence of
some OTA metabolites such as ochratoxin A hydroquinone and/or decarboxylated ochratoxin A hydroquinone
correlate with the presence of OTA-DNA adducts.

OTA biomarker
OTA-DNA adduct

1. Introduction (Dusek et al., 2012). This unfavourable number is very high compared to

other countries (CanCon. (Cancer Control J, 2014; Robert Koch Institut,

Approximately 84,000 new cases of kidney cancer and 35,000 deaths
occur in Europe per year (Ferlay et al., 2015). Men are affected more
frequently than women at a ratio of 2:1 (new diagnoses) (Hsieh et al.,
2017). Based on epidemiological data, the incidence of malignant neo-
plasms of the kidney, renal pelvis, and ureter (diagnoses C64-C66) is in
the Czech Republic set at 29.5 kidney tumours per 100,000 inhabitants

2019). The very high incidence of kidney cancer in the Czech Republic is
truly striking. The highest incidence in the Czech Republic is observed in
the Pilsen region, and the situation is similar in neighbouring Bavaria in
Germany. No clear explanation exists for this fact. Unfortunately, no
industrial, nutritional, and genetic data are available that could reveal
the real cause (personal communication, Prof. Pacovsky, 2021). The

Abbreviations: 10-OH-OTA, 10-hydroxy ochratoxin A; 4-R—-OH-OTA, 4R-hydroxy ochratoxin A; 4-S-OH-OTA, 4S-hydroxy ochratoxin A; BEN, Balkan endemic
nephropathy; BMDL; o, benchmark dose lower confidence limit; CIT, citrinin; ccRCC, clear renal cell carcinoma-adenocarcinoma; CT, computed tomography; OTHQ-
GSH, conjugate ochratoxin A quinone-glutathione; OTB-GSH, conjugate ochratoxin B-glutathione; DA, Dark Agouti; DNA, deoxyribonucleic acid; DH-CIT, dihy-
drocitrinone; C-C8dG-OTA, Carbon bound DNA adduct ochratoxin A — deoxyguanosine; O6-OTA dG, DNA adduct ochratoxin A — deoxyguanosine; HE, hematoxylin
eosin; HPLC — FLD, high-performance liquid chromatography with fluorescence detection; LOD, limit of detection; LOQ, limit of quantification; MRI, magnetic
resonance imaging; OTA, ochratoxin A; OTHQ, ochratoxin A hydroquinone; OTHQ-NAC, ochratoxin A hydroquinone - N-acetylcysteine; DC-OTHQ, ochratoxin A
hydroquinone decarboxylated; OP-OA, ochratoxin A open lactone; OTB-NAC, ochratoxin B - N-acetylcysteine; OTB, ochratoxin B (dechlorinated OTA); OTB-dG,
ochratoxin B deoxyguanosine; OTC, ochratoxin C (ethyl ester ochratoxin A); OTa, ochratoxin o; OP-OTB, ochratoxin B open lactone; RCC, renal cell carcinoma; TDI,

tolerable daily intake; UUC, upper urothelial cancer.
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Czech Republic has also the highest mortality rate from kidney cancer
(Bosetti et al., 1970).

Renal cell carcinoma (RCC) designates a heterogeneous group of
cancers derived from renal tubular epithelial cells (International
Agency, 2020). Globally, RCC is one of the ten most common cancers
and accounts for more than 90% of kidney cancers (Hsieh et al., 2017).
So far, ten histological and molecular subtypes of RCC have been
described (International Agency, 2020). Out of these, clear cell RCC
(ccRCCQ) is the most common (Cancer Genome Atlas, 2013; Tesar et al.,
2015). Unfortunately, adenocarcinoma ccRCC growing from proximal
tubule cells (Tesar et al., 2015) is one of the most lethal types of cancer
(Hsieh et al., 2017). The kidney cancer risk is increased by some factors
including age (Tesar et al., 2015), smoking (Hunt et al., 2005), hyper-
tension (Sanfilippo et al., 2014), obesity (Sanfilippo et al., 2014; Aurilio
et al., 2019), in particular individual genetic predisposition (Chan et al.,
2018; Pfohl-Leszkowicz, 2009), certain inherited syndromes, long-term
dialysis (Tesar et al., 2015), aristolochic acids (Hoang et al., 2016), as
well as professional exposure to coke (fuel) production, oil refining and
gasoline, diesel engine exhaust, polycyclic aromatic hydrocarbons,
asbestos, trichloroethylene, tetrachloroethylene, polychlorinated bi-
phenyls, heavy metals (e.g. lead and cadmium) (Slack et al., 2012). The
risks are also increased by the consumption of dairy products, red meat,
and preserved vegetables (Hsu et al., 2007). The possible causes of
carcinogenesis are virtually innumerable. The exposure to some chem-
ical factors such as multi-mycotoxin is known to be a strong modulator
of carcinogenic risk (Cohen and Arnold, 2011; De Ruyck et al., 2015).

The risk of kidney tumour can also be associated with dietary
exposure to nephrotoxic mycotoxins (Malir et al., 2019). Excessive
intake of nephrotoxic mycotoxins, e.g. OTA and citrinin (CIT) in food
enhances the risk for human (Malir et al., 2001). This is also similar to
renal insufficiency that impairs the physiological degradation and
detoxification potential of the organism (Malir et al., 2001). Besides
other mycotoxins such as aflatoxins, deoxynivalenol, nivalenol, fumo-
nisins, zearalenone, and patulin, OTA and CIT attract attention due to
their toxic effects and high prevalence in the agro-food commodities
(Coppa et al., 2019; Ojuri et al., 2018; Selvaraj et al., 2015).

Biomarkers are essential tools used to measure the exposure to a
toxic substance or the scope of any toxic reaction to such an agent, as
well as to predict the likely response (Timbrell, 1998). They are cate-
gorized in markers of internal dose and markers of effective dose. Bio-
markers of internal dose confirm the exposure to a toxic agent by
measuring the compound or its metabolite(s) in body fluids or tissues
(Timbrell, 1998; Malir et al., 2012), e.g. in milk, blood, urine, and
kidney (target dose) (Malir et al., 2012).

The biomarkers of exposure to OTA find OTA in humans evidence the
consumption and indicate that OTA and/or its metabolites are in body
fluids, tissues, and fetuses. The changes in OTA contents in food are not
directly mirrored by changes in blood OTA concentration in humans at a
relatively low dietary OTA intake (Duarte et al., 2009). Using OTA levels
in plasma or serum, the Klaassen equation has been applied with varying
rates of success to calculate continuous dietary exposure to OTA (Malir
et al., 2013a, 2019; Klaassen et al., 1986; Duarte et al., 2011).

Biomarkers of the effective dose provide information that exposure
to a specific toxic compound has led to the compound or its metabolite
(s) achieving a toxicologically important target. Due to many possible
interindividual differences in the rate and pathway of the compound
metabolism, the measurement of the effective dose at the target site is
preferred to the measurement of the internal dose (Timbrell, 1998). In
addition to individual differences in absorption and distribution, this
occurs because the former reflects differences in activation versus
detoxification metabolism and the extent of DNA damage repair
(Pfohl-Leszkowicz et al., 2007a). The effective dose is usually deter-
mined by measuring specific adducts in body fluids and tissues. Elec-
trophilic compounds that are reactive or are metabolized to reactive
intermediates electrophiles and react with DNA are of interest and
concern for genotoxicity due to their possible carcinogenicity. The

Food and Chemical Toxicology 158 (2021) 112669

presence of a chemically specific DNA adduct in human DNA is a good
indicator that chemical exposure has occurred. Therefore, it is used as an
exposure biomarker (Timbrell, 1998; Pfohl-Leszkowicz et al., 2007a).
These adducts are considered markers of exposure and generally reflect
recent exposure rather than that in the distant past.

OTA and CIT are nephrotoxins produced by microscopic fungi of the
genera Aspergillus and Penicillium (Ostry et al., 2013) that often simul-
taneously contaminate a wide range of foodstuff of both plant and ani-
mal origins. OTA often contaminates cereal products, coffee, chocolate,
cocoa, spices, liquorice, raisins, grape juice, wine, beer, as well as pork,
pork blood products, poultry kidney, liver, crude meat, smoked and
salted fish, and cheese (Malir et al., 2013b), while CIT is typically found
in cereals, roasted nuts, black olives, spices, and cheese (Ostry et al.,
2013).

The OTA and CIT co-occurrence in food represents an increased risk
to human health, although contamination may differ year by year (Ostry
et al., 2013). Cereals (about 58%), wine (15%) pork (3%), and coffee
(about 1-10% depending on the actual consumption) are considered the
main sources of daily OTA intake (JECFA FAO/WHO, 2007; Tozlovanu
and Pfohl-Leszkowicz, 2010).

Generally, mycotoxins cause several diseases. OTA [PubChem CID:
442530 or http://www.t3db.ca/toxins/T3D3605] is associated with
various nephropathies including chronic interstitial nephropathy
causing renal dysfunction leading to renal failure (Pfohl-Leszkowicz
et al., 2002a). It is also suspected to be involved in the development of
Balkan Endemic Nephropathy (BEN) (Pfohl-Leszkowicz, 2009; Pfohl--
Leszkowicz et al., 2002a) and related renal tumours (Castegnaro et al.,
2006), in particular upper urothelial cancer (Tesar et al., 2015; Pfohl--
Leszkowicz, 2009).

OTA is a potent nephrotoxic and nephrocarcinogenic mycotoxin
(JECFA FAO/WHO, 2007; Castegnaro et al., 1998; Kathuria et al., 2018;
Mantle, 2009; Pfohl-Leszkowicz and Manderville, 2012). In vivo, OTA
induces genetic damage, particularly aberrant mitoses and karyomegaly
(European Food Safety Authority, 2020). It is also thought to cause
oxidative DNA damage leading to mutagenesis and potential carcino-
genesis (Zepnik et al., 2001). Direct OTA genotoxic mechanisms of ac-
tion have been proposed and a pathway described that metabolizes OTA
into an electrophilic form capable of direct binding to specific nucleotide
bases (Pfohl-Leszkowicz and Manderville, 2012; Pfohl-Leszkowicz and
Castegnaro, 2005; Manderville and Pfohl-Leszkowicz, 2008).

Invivo study on mice showed that the tumour suppressor protein p53
is upregulated during OTA treatment and also investigated the extent to
which p53 inhibits the progression of OTA-induced DNA damage (Kur-
oda et al., 2015). Conversely, it is believed that OTA induces carcino-
genicity by disrupting mitosis and genetic instability (Mally, 2012).
However, the genotoxicity of OTA displayed as the formation of
OTA-DNA adducts, its role in oxidative stress, and the identification of
epigenetic factors involved in OTA carcinogenesis suggested that car-
cinogenicity of OTA was mediated by a mechanism that also operates in
humans (Ostry et al., 2017).

A long-term study using 12 weeks old male and female Dark Agouti
(DA) rats demonstrated that 0.4 mg OTA/kg body weight administered 3
times per week induced a statistically significant increase in the inci-
dence of renal adenocarcinoma. Male DA rats were affected more often
by these tumours than their female counterparts (Castegnaro et al.,
1998).

High OTA levels in slaughtered pigs fed by OTA contaminated
feedstuffs (ranging from 149 pg/kg to 327 pg/kg) were observed to
accumulate in the kidneys and bladder with subsequent development of
macro- and microscopic renal lesions. Even precancerous changes were
detected including large nuclei, hyperchromic nucleoli, and karyor-
rhexis (Ceci et al., 2007). In another study carried out on slaughtered
pigs, the highest OTA level was also found in the kidney and the high
correlation between nephritis severity and OTA level was confirmed
(Milicevi¢ et al., 2008).

According to IARC/WHO, OTA was in 1993 classified as “probably
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carcinogenic to humans” (group 2B) with sufficient evidence of carci-
nogenicity in animal models and insufficient evidence from human
studies (IARC, 1993).

Levels of OTA and CIT in blood and urine of 50 Czech patients
suffering from ccRCC- adenocarcinoma have been analysed in a previous
study (Malir et al., 2019). Depending on the availability of the tissue, we
determined OTA and/or DNA adducts in their kidney and tumour in 33
patients of this cohort. We compare findings obtained in this study with
results from the Czech biological monitoring program that concerned
persons without previous renal failures (Ostry et al., 2005) and with data
from France (Pfohl-Leszkowicz et al., 2007a) and Poland (Grajewski
et al., 2007) acquired from patients who suffered from kidney tumours.

2. Materials
2.1. Diagnosis of clear renal cell carcinoma-adenocarcinoma

The basic steps in the kidney cancer diagnosis at the cohort of
selected patients at the Department of Urology consisted in assessing
clinical symptoms or in ultrasound visualization of the tumour mass. The
cancer diagnosis was always confirmed by computed tomography or
magnetic resonance imaging. The surgery was the first choice in local-
ized, locally advanced, and even in metastatic renal cancer. No tumour
biopsy was indicated before planned surgery. The division between the
nephron-sparing surgery and the radical nephrectomy depended on the
local situation such as the tumour size, localization within a kidney, and
lymphadenopathy, or general situation including renal functions and
general health conditions (personal communication, Prof. Pacovsky,
2019).

Fig. 1 confirms ccRCC diagnosis and shows the interface of non-
tumoural kidney tissue (A) and ccRCC (B). Fig. 2 then presents the
histology of ccRCC.

2.2. Biological material sample collection

A total of 33 samples of kidneys and their corresponding tumour
tissues were collected during the period of 2015-2017 from surgeries of
26 men and 7 women aged between 39 and 80 years with the ccRCC
diagnosis.

All samples were processed anonymously using a numerical code,
while only gender, the year of birth, and the bodyweight of the patient
were recorded. The samples were frozen and stored at —80 °C until the
analysis. More detailed anamnestic data of the patients are only avail-
able in the database of the Department of Urology at Hradec Kralove.

Based on the previous standard laboratory and medical examina-
tions, only those patients that did not exhibit cardiovascular complica-
tions and overall metabolic disruption were randomly selected at the
Department of Urology for this study. Standard clinical pre-operative

Fig. 1. ccRCC. The interface of non-tumoural kidney tissue (A) and clear cell
kidney cancer (B). Photo: Miroslav Louda (April 2017).
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Fig. 2. Histology of ccRCC showing the detail of tumour cells (HE, 200x).
Photo: Miroslav Louda (April 2017). Patient demographics and baseline char-
acteristics of male and female patients with the kidney cancer diagnosis are
shown in Table 1.

Table 1
Characteristics of male and female patients with the kidney cancer diagnosis.
Characteristics of patients” Subgroup of Subgroup of Whole
men women cohort
Subjects - gender (n) 26 7 33
Rural 5 1 6
Urban 21 6 27
Diagnosis 26 7 33
Malignant neoplasm of kidney,
outside renal pelvis (C64)
Smokers 10 2 12
Hypertension 11 1 12
Obesity (BMI >30) 10 1 11
Weight of patients (kg) 92 +11.2 60 + 33.3 90 + 20.0
Mean + SD
Range 68-118 57-155 57-155
Age (years)
Median + SD 67.5+9.3 61 +£12.9 67 +10.6
Range 43-80 39-73 39-80

@ For about 20% of patients (4 males, 2 females) another cancer existed in
their family (e.g. cancer of the oesophagus, or intestine).

blood analysis included glycaemia, liver and renal functions examina-
tions, determinations of minerals (Na, K, Cl), C-reactive protein, blood
count, haemostasis, chemical, and both microscopical urine, and
microbiological analyses (personal communication, Prof. Pacovsky,
2019).

Samples for determination of the OTA and CIT presence in urine and
blood were collected immediately before surgery as a part of standard
clinical sampling to avoid overburdening the patients and to accept only
those with their explicit consent. These results were published elsewhere
and are not mentioned in this study (Malir et al., 2019).

2.3. Control group

Due to the difficulties in obtaining reference kidney samples from
healthy individuals, we used for comparison results published in 2005
concerning OTA concentration in the human kidney (Ostry et al., 2005).
These data were collected during human biomonitoring in 2001 within
the framework of the System of Environmental Health Monitoring in the
Czech Republic.

2.4. Chemicals and materials

Glacial acetic acid, formic acid (85%) (both in p.a. purity),
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orthophosphoric acid (suprapur), chloroform, methanol, and acetoni-
trile (gradient grade for HPLC) were obtained from VWR International s.
r.o. (Stribrna Skalice, Czech Republic). Phosphate buffered saline,
powder, pH 7.4 (for preparing 1 L of solution), sodium hydrogen car-
bonate p.a., and OTA standard were obtained from Sigma-Aldrich spol. s
r.o., (Prague, Czech Republic). Immunoaffinity columns OCHRAPREP®
for sample cleaning before the quantitative determination of OTA by
HPLC were produced by R-Biopharm Rhone Ltd. (Glasgow, Great Brit-
ain) and delivered by Jemo Trading spol. s r.o. (Bratislava, Slovak Re-
public). Paper filters for sample filtration Whatman No. 4 were from
Merck (Prague, Czech Republic) or KA-2M from Papirna Pernstejn spol. s
r.o. (Pernstejn, Czech Republic). Sample extracts were evaporated under
nitrogen 4.7 from SIAD spol. s r.o. (Branany u Mostu, Czech Republic).
All solutions were prepared in ultrapure water produced by Milli Q Plus
system from Merck Millipore (Billerica, MA, USA).

OTA (benzene free, CAS# 303-47-9), 3-morpholinopropanesulfonic
acid, ammonium formate, 5-bromosalicylic acid, tris(3-sulfophenyl)
phosphine trisodium salt, and quinine bisulfate, sulphuric acid were
purchased from Sigma-Aldrich (Saint-Quentin Fallavier, France) and 2'-
deoxyguanosine from ChemGenes (Wilmington, USA). LC grade solvents
acetonitrile, dimethyl sulfoxide, methanol, and chloroform were pur-
chased from ICS (Lapeyrouse-Fossat, France) and used without any
purification. 4-S-OH-OTA, 4-R-OH-OTA, 10-OH-OTA, OTHQ, OTB,
and OTB-methyl ester were prepared in the laboratory using previously
published procedures (Faucet-Marquis et al., 2006; Frenette et al.,
2008). OTHQ, OTB, and OTB-methyl ester were mixtures of
stereoisomers.

3'- dGMP was purchased from Sigma-Aldrich (Saint-Quentin Fal-
lavier, France). The enzymes proteinase K (used as received), RNase A,
RNase T1 (boiled 10 min at 100 °C to destroy DNases), and micrococcal
nuclease (dialyzed against deionized water) were from Sigma-Aldrich
(Saint Quentin Fallavier, France), spleen phosphodiesterase (centri-
fuged before use) was from Calbiochem (Sandhausen, Germany), and
nuclease P1 and T4 polynucleotide kinase were from Roche Diagnostics
(Meylan, France). [y32P-ATP] (444 Tbq/mmol, 6000 Ci/mmol) was
from Amersham (Les Ullis, France), rotiphenol (phenol saturated with
Tris-HCl, pH 8) was from Rothsichel (Lauterbourg, France), cellulose
MN 301 was from Macherey Nagel (Diiren, Germany), poly-
ethyleneimine (PEI) was from Corcat (Portsmouth, Great Britain),
Whatman no. 1 paper was from VWR (Saint-Prix, France). PEI/cellulose
TLC plates used for 32P-postlabeling analyses were prepared in the
laboratory. Acetonitrile (HPLC grade) was purchased from Fisher Sci-
entific (Strasbourg, France).

2.5. Determination of OTA in kidney and tumour tissue

2.5.1. OTA standard preparation

OTA was dissolved in methanol and spectrophotometrically cali-
brated at 333 nm using a molar absorption coefficient (k) of 544 m?/mol
according to EN ISO 15141-1. The basic OTA solution was prepared by
dissolving 1 mg OTA in 5 mL methanol while the OTA stock standard
solution (40 ng/mL) was prepared by further dilution with methanol
(Dohnal et al., 2013).

2.5.2. Working standard solutions of OTA

A working standard OTA solution were prepared on each day of the
measurement from a stock solution via dilution with the mobile phase.
The blank sample, i.e. the plain mobile phase was also prepared fresh
daily. The injection of 50 pL of these standards in HPLC led to the
following standard range points: 0.05; 0.10; 0.20; 0.50; 1.00; 2.00; 4.00
ng OTA/mL.

2.5.3. Acidified chloroform
This solution was prepared from 50 mL of chloroform and 0.75 mL
concentrated orthophosphoric acid.
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2.5.4. Acidified methanol
This solution was prepared from 98 mL of methanol and 2 mL acetic
acid (98/2; v/v).

2.5.5. Acetonitrile/acetic acid
This solution was prepared from 98 mL of acetonitrile and 2 mL
acetic acid (98:2; v/v).

2.5.6. Water/acetic acid
This solution was prepared from 98 mL of water and 2 mL acetic acid
(98:2; v/v).

3. Methods
3.1. OTA extraction and separation in tissues

3.1.1. Sample homogenization

Samples of kidney or tumour tissue were homogenized step by step
on Ultra-Turrax T 25 digital (IKA®-Werke GmbH & Co. KG, Staufen,
Germany), starting at 500 rpm for 10 s, then at 10,000 rpm for another
10 s, and finally at 20,000 rpm for 15 s.

3.1.2. OTA extraction

OTA was extracted from 5 g homogenized sample using 25 mL
acidified chloroform and then re-extracted two times using 12.5 mL
acidified chloroform to get a final volume of 50 mL. Note that the ratio 5
g of sample to 50 mL acidified chloroform was respected and adjusted to
the actual weight of each sample. The homogenized solution was filtered
and the exact volume of the filtrate was measured. Then, 20 mL filtrate
was re-extracted twice using 10 mL of 0.5 mol/L sodium hydrogen
carbonate solution according to Zimmerli and Dick (1995) and vigor-
ously shaken for 3 min. Note that the efficiency of extraction was veri-
fied. The mixture was centrifuged at 3500 rpm for 5 min and the
combined extracts were acidified with 0.5 mL formic acid and 1 mL
chloroform, and then re-extracted two times using 2 mL chloroform. The
mixture was centrifuged each time at 3500 rpm for 5 min to achieve a
compact thin layer between two phases. The clear organic chloroform
layer at the bottom of the tube was collected and evaporated to dryness
under a nitrogen stream at 45 °C.

3.1.3. OTA separation

The residuum was gradually dissolved in 20 mL phosphate-buffered
saline solution, pH 7.4 solution containing 15% methanol (v/v) and
separated on OCHRAPREP® immunoaffinity column. This column was
washed with 20 mL water and dried. The adsorbed compound was then
eluted using acidified methanol and evaporated again (modified
methods of OCHRAPREP® (R-Biopharm - Rhone Ltd. OCHRAPREP®),
2014) and Zimmerli and Dick (1995)).

3.2. Targeted OTA HPLC-FLD analysis

Chromatographic analyses were carried out using HPLC-FLD system
comprising the Jasco PU-2085 Plus pump, the Jasco DG - 2080-54
degasser, the gradient unit Jasco LG-2080-04S gradient unit, the Jasco
AS-2059-SF Plus autosampler, the Jasco FP-2020 Plus fluorescence de-
tector, and the Jasco LC-Net II/ADC hardware interface from Jasco,
Easton USA.

The separation was performed on a Kinetex C18 (50 x 2.1 mm)
analytical column packed with 2.6 pm core-shell particles. The analyt-
ical column was coupled with a SecurityGuard™ column C18, 4 x 2.0
mm (Phenomenex, Torrance, CA, USA). The mobile phase gradient was
formed from the mobile phase A acetonitrile/acetic acid (98:2; v/v) and
the mobile phase B water/acetic acid (98:2; v/v). The gradient shape
was 45% A in B for 1 min, ramped to 98% A in B in 5 min, held for 4 min,
decreased to 45% A in B in 0.1 min, and held at 45% A in B for 8 min. The
evaporated sample was dissolved in 500 pL starting mobile phase
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mixture. The injected sample volume was 50 pL and the flow rate 0.2
mL/min. Fluorescence detection was achieved at an excitation wave-
length of 333 nm and an emission wavelength of 465 nm, gain x 1,000,
attenuation 16. The OTA retention time was around 7.3 min under these
chromatographic conditions. The OTA concentrations were quantified
using the calibration curve method. No internal standards were used.

All calculations and evaluations of the analyses were processed by a
computer using the Jasco ChromPass Chromatography Data System
Connection version 1.8.6.1 software (Jasco, Easton USA).

3.2.1. Performance characteristics

The calibration curve plotting the peak areas vs. the OTA concen-
trations was constructed and verified. The linearity of the calibration
curve was assessed by 7-point calibration in a range of 50-4000 ng/L.
The correlation coefficient was 0.999. The validation process revealed a
limit of detection (LOD) of 8 ng/kg and a limit of quantification (LOQ) of
27 ng/kg. The certified reference material for the determination of OTA
in human kidneys was not available. Therefore, recovery experiments
were performed in triplicate spiked pig kidney samples at OTA con-
centration levels of 500 and 1000 ng/kg. Recovery was 69.8% and
repeatability standard deviation (RSD) was 6.8%. Validations of this
method were carried out according to the protocol approved by the
ITUPAC/AOAC/ISO (Horwitz, 1995) (Thompson et al., 2002).

3.2.2. The calculation of OTA concentration in tumour/kidney
The following equation was used for calculation of the OTA con-
centration Cs:

100-(Pa + Iv
Cs (g OTA /) =5 )

Where Pa is the peak area of the sample, Iv is the intercept value of
calibration curve function, As is the amount of processed sample (g), Sv
is the slope value of calibration curve function, Rv is the recovery value
of the method (69.8%), Cs is the real concentration of OTA in the sample
(ng/g), number 2 is the multiplicator for the amount of dissolved sample
(500 pL), and 100 is the multiplicator for real value (100%).

3.2.3. Statistical analysis

Data were processed using the universal statistical software Micro-
soft Excel (version 2019). The results are presented based on descriptive
analysis (Hornung and Reed, 1990).

3.3. OTA metabolites separation and identification in urine

OTA metabolites OTB-GSH, OTHQ-NAC, OTHQ-GSH, OTB-NAC, DC-
OTHQ, OP OA, 4S-OH-OTA, 4R-OH-OTA, OTHQs, OTBs, OP-OTB, OTC,
OTa, and OTB were analysed on RP HPLC using C18 column PRON-
TOSIL (250 x 4 mm, 3 pm) using the gradient elution. The mobile phase
A was MeOH/ACN/6.5 mM ammonium formate (200/200/600)
adjusted to pH 3 with formic acid while the mobile phase B was MeOH/
ACN/6.5 mM ammonium formate (350/350/300) adjusted to pH 3 with
formic acid. Gradient shape adopted from Faucet-Marquis et al. (2006)
was the following: 100% A for 10 min, ramp to 30% A in B in 15 min and
held for 5 min, increase to 100% B in 5 min and held for 10 min, fol-
lowed by decrease to 100% A in 3 min. Detection was performed with
the programmable fluorimeter GTI Spectrovision (ex = 350, em = 510
nm) and allowed better detection of some OTA metabolites (Frenette
et al., 2008).

Identification of the metabolites have been described elsewhere
(Pfohl-Leszkowicz, 2009; Faucet-Marquis et al., 2006; Tozlovanu et al.,
2012; Mantle et al., 2010). 4-S-OH-OTA, 4-R-OH-OTA, and 10 hy-
droxylated OTA (10-OH-OTA) were generous gifts of Dr. Frederik
Stgrmer, Quinone OTA (OTHQ) was donated by Prof. Richard Mander-
ville, Guelph University, Canada. All other metabolites were synthesized
in our laboratories and identified by mass spectrometry by Dr Fréderic
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Pont.
3.4. DNA adduct identification

Kidney DNA isolation and purification as well as the method used for
32P-postlabeling we used were described by Faucet et al. (Fau-
cet-Marquis et al., 2004) and in detail by Pfohl-Leszkowicz and Cas-
tegnaro (2005). In brief, an equivalent of 7 ug of DNA was dried in vacuo,
dissolved in 10 pL mixture containing 1 pL micrococcal nuclease (2
mg/mL corresponding to 500 U), spleen phosphodiesterase (15 mU/pg
DNA), 1 pL sodium succinate solution (200 mM), and 1 pL calcium
chloride solution (100 mM, pH 6), and digested at 37 °C for 4 h. The
digested DNA was then treated with 5 pL mixture containing 1.5 pL of
nuclease P1 (4 mg/mL), 1.6 pL of ZnCl; solution (1 mM), and 1.6 pL
sodium acetate solution (0.5 M, pH 5) at 37 °C for 45 min. The reaction
was stopped by the addition of 3 pL Tris base solution (500 mM). The
DNA adducts were labelled as follows: 5 pL reaction mixture containing
2 pL bicine buffer containing bicine (800 pM), dithiothreitol (400 mM),
MgCly (400 mM), and spermidine (400 mM) adjusted to pH 9.8 with
NaOH, 10 U of polynucleotide kinase T4, and 100 pCi of [y-32P]JATP
(specific activity 6000 Ci/mmol) was added to the nuclease P1 digest
and the mixture incubated at 37 °C for 45 min. Normal nucleotides,
pyrophosphate, and excess ATP were removed overnight by chroma-
tography on PEI/cellulose TLC plates (D1) in 2.3 M sodium dihydrogen
phosphate buffer, pH 5.7. The original 2 cm areas containing labelled
adducted nucleotides were cut out and transferred to another PEI/-
cellulose TLC plate that was run (D2) in 4.8 M lithium formate and 7.7 M
urea, pH 3.5, for 3 h. A further (D3) migration was performed after
turning the plate 90° anticlockwise using 0.6 M sodium dihydrogen
phosphate and 5.95 M urea, pH 6.4, for 3 h. Finally, the chromatogram
was washed in the same direction in 1.7 M sodium dihydrogen phos-
phate, pH 6, for 2 h (D4). Adduct profiles were analysed qualitatively
and semi-quantitatively by autoradiography of the plates carried out at
—80 °C for 48 h in the presence of an intensifying screen using a radi-
oanalytical system of image analysis (AMBIS, Lablogic).

Identification of the spots of O-C8dG-OTA and C-C8dG-OTA were
achieved via comigration with the authentic DNA-adducts synthesized
by Prof. Manderville as described in Mantle et al. (2010). The adducts
corresponding to OTHQ were also determined via comigration with
DNA samples incubated with OTHQ as described elsewhere (Tozlovanu
et al., 2006).

4. Results
4.1. OTA in kidney, tumour tissue, serum, and urine

Table 2 summarizes OTA contents in kidney and tumour parts ana-
lysed in this study, blood serum and urine (biomarkers of exposure —
markers of internal dose) from 33 patients suffering RCC. The combi-
nation of immunoaffinity chromatography and HPLC-FLD increased the
sensitivity and selectivity of the method.

Only twenty-five samples could be analysed for their OTA content
due to the limited availability of tissue. OTA was detected in all kidney
samples (25/25) in concentrations ranging from 72 to 385 ng/kg, with a
median value of 186 ng/kg. It has also been detected in all the corre-
sponding tumour samples (25/25) in the range from 54 to 431 ng/kg
with a median value of 191 ng/kg. In 12 patients (No. 8, 13, 15, 19, 23,
24, 25, 26, 27, 30, 31, 32) the quantity of OTA found in the tumour was
by 17-75% lower than that found in the kidney.

The amounts of OTA found in kidney tissues was compared to those
found in previous studies published elsewhere. Table 3 summarizes the
OTA concentration in the kidneys and tumours in the Czech Republic,
France, and Poland.

Higher contents of OTA were found in the kidney tissue samples of
Czech patients suffering from ccRCC compared to the samples origi-
nating from the healthy Czech population collected from 2000 to 2001
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Table 2
Detailed overview of OTA contents in kidney, tumour, blood, and urine of pa-
tients with ccRCC.
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Table 3
Comparison of OTA levels in kidney and tumour in Czech, Poland, and French
cohorts.

N°  Gender Area Age  Kidney” Tumour” Serum” Urine”
ng/kg ng/kg ng/L ng/L
1 Female urban 73 327 393 112.8 118.3
2 Male urban 80 161 122 249.2 127.0
3 Female urban 73 205 236 nd* 85.1
4 Male rural 61 NA‘ NA nd 670.1
5 Male rural 72 182 230 nd nd
6 Male urban 73 212 359 nd nd
7 Male urban 48 NA NA 296.7 116.0
8 Female urban 40 171 61 nd nd
9 Male urban 43 186 225 nd nd
10 Male urban 63 NA NA nd nd
11 Male urban 73 NA NA nd nd
12 Male urban 68 NA NA 201.9 44.5
13  Male rural 51 245 197 86.3 nd
14  Female urban 61 163 296 nd nd
15  Male urban 59 347 215 70.3 nd
16  Male urban 71 158 173 205.7 40.2
17 Male urban 69 NA NA 491.1 50.5
18 Male rural 71 NA NA 678.2 nd
19 Male urban 73 385 198 263.3 45.6
20 Male rural 66 NA NA 26.5 156.2
21 Male urban 77 121 191 730.0 15.3
22  Male urban 76 115 226 nd 9.9
23 Male urban 67 223 120 160.0 21.1
24  Female urban 62 213 54 nd 2.7
25  Female  rural 39 163 67 nd 4.1
26  Male urban 68 272 114 150.0 10.6
27 Male urban 60 141 117 410.0 6.7
28  Male urban 53 167 431 660.0 10.4
29 Male urban 51 72 167 nd 11.9
30 Male urban 69 233 180 nd 11.2
31 Male urban 67 215 122 nd 6.5
32  Male urban 62 267 110 nd 10.3
33 Female urban 59 179 193 100.0 2.2

? Positive sample of kidney and tumour containing OTA exceeding the limit of
detection (LOD 8 ng/kg).

b positive sample containing OTA exceeding the limit of detection (LOD in
urine 1.0 ng/L; LOD in serum 40 ng/L).

¢ nd is a level below LOD, see Malir et al. (2019)

4 NA: not analysed.

post mortem within the monitoring program carried out by the National
Institute of Public Health in Prague (Ostry et al., 2005). Resting blood
flow in kidney is 1.2 L/min. This means that 20% of the minute cardiac
output passes through the renal tissue where OTA is metabolized. If
renal function is impaired, OTA metabolism is also impaired, and it
accumulates in the body. The Czech healthy population study included
only kidney samples from healthy people after professional fatalities,
fatal traffic accidents, etc.

In our study, a total of 9% of the kidney samples contained more than
300 ng/kg OTA. In the French study, 27% of the patients had OTA
content in the kidney exceeding 400 ng/kg, and 22% had OTA level over
900 ng/kg (Pfohl-Leszkowicz et al., 2007a). The Polish study revealed
that 21% of the kidney samples obtained after nephrectomy from the
patients suffering from renal tumour also contained more than 300
ng/kg OTA (Grajewski et al., 2007).

In parallel, OTA was analysed in the blood and urine of 33 patients
collected before surgery. OTA was found in 17/33 (51.5%) patients,
ranging from less than LOD to 730 ng/L in blood serum, with a median
value of 26.5 ng/L. OTA also ranged from less than LOD to 670.1 ng/L,
with a median value of 10.3 ng/L, in urine of 23/33 (69.7%) patients.
Five patients (No. 5, 6, 8, 9, 14) did not have any OTA in blood serum
and urine although this compound was detected in both kidney and
tumour samples. OTA was detected in urine of 9 patients (No. 3, 4, 22,
24, 25, 29, 30, 31, 32) but not in blood serum. On the contrary, 3 pa-
tients (No. 13, 15, 18) had a significant amount of OTA in their blood
serum while no detectable amounts of OTA were found in their urine. No

Cohort (samples; year of OTA mean/+ SD (ng/kg)/ References
collection; reference) range (ng/kg)
kidney tumour
1. Czech kidney tumour 160 + 110 150 + 100 this study
samples; dg.ccRCC (nd” - 390) (nd” - 430)
(mean =+ SD)
(n = 33; 2015-2017)
men (n = 26) 150 + 190 150 £ 120
(nd - 390) (nd - 430)
women (7) 180 + 20 150 + 90
(160-210) (50-300)

2. Czech adults” post 70 (nd - 200)  NA®
mortem (n = 30;

2000-2001)

(men; women not

specified, see the

explanation below)

Ostry et al. (2005)

3. French patients with 280 (nd — NA Pfohl-Leszkowicz
kidney carcinoma (n = 1760) et al. (2007a)
18; 2007)

men (n = 13) 240 (nd - NA

1760)
women (n = 5) 400 (nd - NA
1160)
4. Poland kidney samples 220 (nd - NA Grajewski et al.

after nephrectomy (due 450) (2007)
to kidney carcinoma)

(n = 19; 2005)

men (n = 9) 230 (nd - NA
450)

women (n = 10) 200 NA
(50-390)

2 Cohort 2. “persons without previous renal failures”, samples from Moni-
toring of National Institute of Public Health, Prague, Czech Republic.

b nd is the level below LOQ 27 ng/kg.

¢ NA: not analysed. Explanation: Czech study No. 2: The samples were sup-
plied to the laboratory anonymously only under numbers without knowledge of
the age or gender of the patients.

correlation can be established between a high concentration of OTA in
blood and/or urine and the OTA contents found in kidney tissue. Indeed,
4 patients with the highest OTA blood serum concentration (No. 18, 21,
27, 28) did exhibit the highest quantities in kidney and tissue. Similarly,
out of 4 individuals (No. 1, 2, 6, and 28) having the highest OTA con-
tents of around 400 ng/kg in their tumour, individual No. 6 did not have
any trace of OTA in blood serum and urine.

4.2. Determination of OTA metabolites and DNA adducts

The presence of OTA metabolites and DNA adducts were analysed in
urine and kidney tissues of 20 patients including 4 females and 16 males.
Samples from these patients were analysed since they were available.
The retention time of OTA was 44.5 min. An example of the separation
of OTA metabolites in urine of a patient is shown in Fig. 3.

Table 4 shows the results of qualitative analysis of the main OTA
metabolites found in the urine of the patients.

No OTA metabolites were detected in 2 individuals‘ (No. 8, 14) blood
serum and urine.

Decarboxylated hydroxyquinone (DC-OTHQ) was detected in 12
individuals (No. 1, 2, 4, 6, 7, 10, 11, 12, 13, 15, 17, 18, 20) generally
associated with ochratoxin hydroquinone (OTHQ), glutathione-OTHQ
(OTHQ-GSH), N-acetylcystein-OTHQ (OTHQ-NAC), and/or ochratoxin
A open lactone (OP-OA) and dechlorinated OTA (OTB). Ethyl ester
ochratoxin A (OTC) was found in 6 patients (No. 3, 4, 7, 10, 11, 20).

In parallel, specific OTA related DNA adducts were analysed in the
kidneys of the same patients and results are presented in Table 5. The
numbering of the DNA adducts is depicted in the scheme (Fig. 4.).
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Fig. 3. HPLC-FLD chromatogram of OTA metabolites

OP-OA (26min30)
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4R-OH-OTA (32mi30)

45-OH-OTA (31min 30)
OTB (33min30)

DC-
OTHQ (34 min)
OTHQ (36min)
OTB (38 min)

OTB, dechlorinated OTA; OTHQ, ochratoxin hydroquinone; OTHQ-GSH, glutathione-OTHQ; OTB-GSH, glutathione OTB; OTHQ-NAC, N-acetylcystein OTHQ; OTB-
NAC N-acetylcystein-OTB; OP-OA, ochratoxin A open lactone, OP OTB, ochratoxin B open lactone; OTC, ethylester OTA.

Some adducts were found in samples from five patients (No. 5, 8, 9,
14, 16). It should be emphasized that two of them (No. 8, 9) were
younger at 40 and 43 years compared to the other patients. None of
them had a significant amount of OTA in blood and urine. The content of
OTA in the tumour of the female No. 8 was low. Only two metabolites
OTB-GSH and 4R-OT-OTA were found in the male No. 9 sample. OTa,
4R-OH-OTA and two unknown metabolites eluting at 19 and 28 min
were detected in urine of patient No. 16.

Kidney samples of all other patients contained the C-C8dG-OTA
adduct. Four adducts C-C8dG-OTA, 06-OTA dG, and both quinone OTA
related adducts were detected in the kidney samples of 7 patients (No. 2,
6,7,10,11, 12, 13). They also had the main OTHQ metabolites (OTHQ-
GSH; OTHQ-NAC, OTHQ1, OTHQ2), DC-OTHQ, and OTB derivatives
OTB-GSH, OTB-NAC, OTB1, and OTB2 in their urine.

5. Discussion

The mycotoxin and food contaminant OTA is nephrotoxic and is one
of the most potent rodent renal carcinogens studied by the National
Cancer Institute/National Toxicological Program (NCI/NTP) (Boorman,
1989). It is also carcinogenic in chicks (R-Biopharm - Rhone Ltd.
OCHRAPREP®, 2014) and is suspected to be involved in testicular
cancer (Jennings-Gee et al., 2010; Schwartz et al., 2010; Schwartz,
2002). Several studies have shown that OTA can be one of the etiological
factors supposed to be at the origin of the BEN, (Pfohl-Leszkowicz, 2009;
Pfohl-Leszkowicz et al., 2002b, 2007a, 2007b) a tubulo-interstitial ne-
phropathy with unknown origin described in the Balkan Peninsula and
Romania (Stoev, 2017). Over the past decade, new studies have
strengthened the argument that direct genotoxic effects contribute to
OTA-induced tumour formation (Pfohl-Leszkowicz and Manderville,
2012; Hibi et al., 2013a, 2013b; Kuroda et al., 2013). Thus, OTA was
included in Group 2B by IARC in 1993 (Ostry et al., 2017). However new
pieces of evidence suggest that it should be included in a higher group of
toxicity such as 2A (Ostry et al., 2017; Kuiper-Goodman, 1996). For
these reasons, Health Canada recommends a more stringent tolerable
daily intake (TDI) of 4 ng/kg bw/day based on the non-threshold model
of risk assessment that is generally applied to carcinogens that cause
tumours through direct genotoxicity mechanisms (Kuiper-Goodman

et al., 2010; Lock and Hard, 2004) in comparison with the benchmark
dose lower confidence limit (BMDL;o) for neoplastic effects of 14.5
ng/kg bw/day on the basis of kidney tumours in laboratory rats (Euro-
pean Food Safety Authority, 2020).

Biomarkers are useful tools allowing evaluation of aetiology and
biological mechanism involved along the chain from exposure to pa-
thology (Pfohl-Leszkowicz, 2008). Some xenobiotics are excreted
without any modification but they are often biotransformed in the or-
ganism in a more polar compound that is easily excreted via bile, urine,
and milk, while lipophilic compounds are stored in the tissues. Mea-
surement of xenobiotic or one of its metabolites in biologic fluids gives a
notion of the internal dose. Interaction between metabolites and mac-
romolecules such as DNA and proteins reflects biological effective dose
(Pfohl-Leszkowicz, 2008).

In the previous study Malir et al. (2019), the presence of OTA in
blood and urine of Czech patients suffering from ccRCC has been first
measured. This second study concerns analysis of OTA in tissues, its
metabolites in urine, and DNA adducts in tissues in 20 patients.

The concentrations of OTA and its metabolites in biological material
depend on multiple factors including dose, route of intake, duration of
administration, and the degree of serum binding (Pfohl-Leszkowicz
et al., 2007b) (Studer-Rohr et al., 2000; Ringot et al., 2006).

No correlation could be drawn between OTA in blood, urine, and
tissue. Indeed, OTA was found in all kidney and tumour samples, even in
those originating from individuals without OTA in blood and urine (No.
5, 6, 8,9, 10, 11, 14). Conversely, the largest amounts of OTA in the
blood do not correspond to individuals with the highest amounts of OTA
in their tissue (No. 2, 16, 21, 23, 26, 27). OTA has a very high affinity for
plasma proteins. Thus, 99.9% of the circulating OTA is bound to plasma
proteins and only a small fraction of OTA occurs in free form in blood
(Zepnik et al., 2003). OTA bound to proteins cannot be excreted directly
by glomerular filtration (Castegnaro et al., 2006) and remains stored in
tissues (Dai et al., 2004). Typically, equilibrium exists between the
bound and free forms of OTA in blood as well as in tissue (Castegnaro
et al., 2006). In a healthy person, an increase in OTA in blood is usually
rapidly compensated by an increase in urinary OTA excretion that brings
the OTA concentration in blood back to the original steady-state level
(Castegnaro et al., 2006; Pfohl-Leszkowicz et al., 2006). For this reason,
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Table 4
OTA metabolite detected in urine of patients suffering from RCC.

N° OTHOQ- OTB- OTHQ- OTB- DC- OP- 4S-OH- 4R-OH-OTA OTHQs OTBs Other metabolites
GSH GSH NAC NAC OTHQ OA OTA 32.5 min 34 min/36 33.4 min/38
14.8min® 18 min 23.2 min 244min  25.5min 27 31.5 min min® min?
min
1 +° + + + + nd" + + + + OP-OTB (20.8 min);
At 52 min
2 ++ +++ nd +++ + nd ++ ++ ++ ++ OP-OTB (20.8 min)
3 nd nd ++ nd nd nd +/— +/—= nd +/— At 17 min;
At 52 min;
+ OTC (53.6 min)
4 + + + + + nd + + nd nd At 46 min
+ OTC
5 nd + nd + nd nd +/— +/— nd nd At 50 min
6 + nd nd nd + + + + + + At 17 min ++
7 + + + nd + + + + + + OTa (16 min); At 49 min;
At 50 min; OTC (53.6
min);
55 min
8 nd nd nd nd nd nd nd nd nd nd nd
nd + nd nd nd nd nd + nd nd nd
10 + ++ + nd + + + nd + + OP- OTB (20.8 min);
At 17 min;
+ OTC
11 nd nd +/- +/— + + +/—- +/- + + At 17 min; 27.9 min;
28.7 min;
+ OTC
12 + ++ nd +/— + ++ +/— nd + + At 50 min;
52 min
13 + + +/—= +/— nd + nd + nd + nd
14 nd nd nd nd nd nd nd nd nd nd nd
15 + +/—= + + ++ + nd + nd + nd
16 nd nd nd nd nd nd nd + nd nd OTa 19 min; 28 min
17 nd nd ++ ++ + + + + nd + OP-OTB++; 52 min ++
18 + + + + ++ + + + nd nd At 19 min; 52 min
19  + nd + nd nd nd + + nd ++ At 17; 19 min; 50 min
20 + nd nd + ++ + + + nd + At 17;
19 min;
OTC

Abbr.: OTHQ-GSH, ochratoxin A hydroquinone-glutathione conjugate; OTB-GSH, ochratoxin B-glutathione conjugate; OTHQ-NAC, ochratoxin A hydroquinone-N-
acetylcysteine; OTB-NAC, ochratoxin B hydroquinone-N-acetylcysteine; DC-OTHQ, decarboxylated ochratoxin A hydroquinone; OP-OA, ochratoxin A open lactone;
4S-OH-OTA, 4S-hydroxy ochratoxin A; 4R-OH-OTA, 4R-hydroxy ochratoxin A; OTHQ, ochratoxin A hydroquinone; OTB, ochratoxin B; OP-OTB, ochratoxin B open

lactone.
2 Retention time of OTA metabolites.

b Semi-quantitative analysis (nd - +++); on the basis of fluorescence intensity: inconclusive +/—, weak +, medium ++, intense +++.

¢ nd, not detectable.

4 Two retention times for OTHQs and OTBs exist with a different elution time.

OTA in urine in general reflects short-term variations in OTA exposure
(Castegnaro et al., 2006; Pfohl-Leszkowicz et al., 2006; Gilbert et al.,
2001). In patients with impaired renal function and decreased filtration
capacity, we could expect an increase in OTA concentration in blood and
a decrease in OTA excretion compared to healthy persons with a similar
OTA intake (Duarte et al., 2011). The following individuals (No. 12, 16,
17,18, 19, 21, 23, 27, 28, 33) featured accumulation of OTA in the blood
that was accompanied by a reduced elimination. These individuals also
have positive CIT in plasma samples and limited excretion of this toxin
confirming impaired renal kidney function (Malir et al., 2019).
Co-exposure with CIT can explain the reduced excretion, as the presence
of CIT modifies the transport of OTA (Pfohl-Leszkowicz et al., 2008).

The biotransformation of OTA in several metabolites is important as
not only the half-lives and the route of elimination of them but also the
toxicity varies for each individual (Tozlovanu et al., 2006; Li et al., 1997;
Hadjeba-Medjdoub et al., 2012). For example, ochratoxin A open
lactone (OP-OA) (Li et al., 2000) and ochratoxin C, which is ethyl ester
ochratoxin A (OTC), have similar toxicity as OTA (Wu et al., 2011),
while OTHQ is more toxic (Faucet-Marquis et al., 2006; Tozlovanu et al.,
2006).

Several quinones metabolites including ochratoxin hydroquinone
(OTHQ), decarboxylated OTHQ (DC-OTHQ), OTHQ conjugated to
glutathione (OTHQ-GSH), OTHQ conjugated to N-acetylcystein (OTHQ-

NAC) in addition to 4-S and 4-R-OH-OTA and dechlorinated OTA
(OTB), were found in the urine of patients. Interestingly, these metab-
olites were found even in the urine of patients for which no OTA was
detected in blood and urine (No. 5, 6, 9, 10, 11, 14). Thus OTB-GSH and
OTHQ-GSH along with the corresponding NAC-conjugates can serve as
appropriate biomarkers of OTA exposure as predicted by Tozlovanu
et al. (2012). OTC has been found in the urine of several patients (No. 3,
4,7,10, 11, 20).

The biotransformation of OTA, which is a chlorinated compound, is
complex and involves several biotransforming enzymes such as cyto-
chrome P450s, glutathione S-transferases (GSTs), lipoxygenase, and
cyclooxygenase (COX2) present in large quantity in the kidney. The
metabolites conjugated to GSH and/or UDP are excreted in bile and
kidney (Pfohl-Leszkowicz and Manderville, 2012; Pfohl-Leszkowicz and
Castegnaro, 2005; Manderville and Pfohl-Leszkowicz, 2008; Tozlovanu
et al., 2006; Pfohl-Leszkowicz et al., 2007b; Hadjeba-Medjdoub et al.,
2012). OTQ can either undergo a two-electron reduction by the action of
the NAD(P)H:quinone reductase to form OTHQ, or one-electron reduc-
tion occurs to yield a semi-quinone (Fig. 5.).

In general, GSTs are involved in detoxifying pathways. However,
they contribute in some cases to the reactivity and toxicity of xenobiotics
notably by the formation of thiyl radicals that react with macromole-
cules and yield peroxyl radicals. OTHQ could be formed directly from
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Table 5
DNA adducts in the kidney samples of patients.

N° C-C8dG- 06-0TA OTHQ related adduct OTHQ related adduct
OTA (#1) dG (#2) (#3) (dG-benzenoadduct) (#4) (dA-quinone
adduct)

1 +° nd” nd nd

2 + + + +

3 + nd nd nd

4 + nd nd nd

5 nd nd nd nd
6+ + + +

7 + + + +

8 nd nd nd nd

9 nd nd nd nd

10 + + + +
1+ + + +

12 + + + +

13 + + + +

14 nd nd nd nd

15 + nd nd nd

16 nd nd nd nd

17 + nd nd nd

18 + nd nd nd

19 + nd nd nd

20 + nd nd nd

2 4, detected.

b nd, not detected; Abbr.: C-C8dG-OTA, Carbon bound DNA adduct ochratoxin
A — deoxyguanosine; O6-OTA dG, DNA adduct ochratoxin A — deoxyguanosine;
OTHQ, ochratoxin A hydroquinone.

0

2
o,

Fig. 4. Scheme of DNA adduct pattern monitored via TLC.
1 = C-C8dG-OTA adduct (OTB-dG); 2 = 0-C8dG-OTA adduct; 3 = dG-Quinone
adduct = benzenoadduct; 4 = dA-Quinone adduct.

OTA by GST and that can be oxidized in OTQ (Fig. 6.). Indeed, GSTs are
involved in dehalogenation: The first step is the formation of an epoxide,
while the epoxide is converted in phenol in the second step. This process
can lead to OTHQ and/or OTB (Manderville and Pfohl-Leszkowicz,
2008; Faucet-Marquis et al., 2006; Tozlovanu et al., 2012; Manderville
et al., 2006).

Chemically, CIT is a quinone derivative that is a pro-oxidant agent
susceptible to transform OTA in OTHQ and OTB. In addition, a part of
OTA is converted in OP-OA (ochratoxin A open lactone = open ring OA)
(Manderville and Pfohl-Leszkowicz, 2008; Pfohl-Leszkowicz et al.,
2008). This process represents a non-enzymatic pathway for OTA bio-
activation that could play a key role in the synergistic effect observed in
presence of both mycotoxins (Manderville and Pfohl-Leszkowicz, 2008;
Pfohl-Leszkowicz et al., 2008).

Biological studies have predicted the role for ochratoxin quinone
derivatives in OTA-DNA adduct formation (Faucet-Marquis et al., 2006;
Tozlovanu et al., 2006; Pfohl-Leszkowicz et al., 2002b; Dai et al., 2002,
2004). OTA induced a different type of DNA adduct as a result of its
metabolic transformation. The electrophile OTA metabolites reacted
preferentially with deoxyguanine to form benzethenoadduct and
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C8dG-OTA (Fig. 5.) (Jennings-Gee et al., 2010). One deoxyadenine
adduct could also be formed after biotransformation in quinone
(Pfohl-Leszkowicz and Castegnaro, 2005). C-C8dG-OTA was found in
15/20 tissues samples we analysed (No. 1, 2, 3,4, 6,7,10,11,12,13, 15,
17, 18, 19, 20). Three other OTA-DNA adducts were observed in 7/20
patients (No. 2, 6,7, 10, 11, 12, 13). These adducts corresponded to DNA
adducts formed in the kidney of rat developing tumours (Faucet-Marquis
et al., 2004) as well as in the kidney of pig that has developed OTA
related nephropathy (Petkova-Bocharova et al., 2003). It also was pre-
viously observed in renal tumours in Bulgarian patients suffering from
BEN/UTT (Pfohl-Leszkowicz et al., 1993), in renal tumours of Croatian
patients (Pfohl-Leszkowicz, 2009), and in French patients with kidney
tumours (Pfohl-Leszkowicz, 2009; Azemar et al., 1998). It has been
demonstrated that the preferential formation of either C-C8dG-OTA or
OTHQ-DNA adduct depended on the expression of some bio-
transforming enzymes. Indeed, OTHQ-related DNA adduct was formed
after in vitro incubation in the presence of kidney microsomes of un-
treated pig and in healthy human expressing mainly cyclooxygenase
COX1 and CYP 2C9, whereas C-C8dG-OTA was formed mainly after
incubation in the presence of kidney microsomes from a pig fed with
OTA and from a human tumour expressing mainly COX2 and lip-
ooxygenase (Tozlovanu et al., 2006). It is noteworthy that induction of
COX2 often occurred during the cancer process, notably in the kidney.
Incubation in presence of microsome from the peri-tumoural part of the
human kidney has led to the formation of two OTHQ adducts in addition
to C-C8dG-OTA (Pfohl-Leszkowicz, 2009; Pfohl-Leszkowicz et al.,
2007a; Manderville and Pfohl-Leszkowicz, 2008). The presence of
OTB-GSH in samples was correlated to C-C8dG-OTA (OTB-dG), whereas
OTHQ-GSH was correlated to dG-OTHQ and 06-C8dG-OTA. This can be
explained through the fact that the conjugates (OTB-GSH/OTHQ-GSH)
stem from the same electrophiles that were deemed important for
OTA-mediated DNA adduction (Pfohl-Leszkowicz and Manderville,
2012; Tozlovanu et al., 2006; Hadjeba-Medjdoub et al., 2012).

DNA-xenobiotic binding is considered a critical step in the initiation
of mutagenesis and carcinogenesis. The process of chemical carcino-
genesis is initiated by the covalent binding of carcinogens or their
reactive metabolites to DNA, thus forming DNA-adducts (Miller and
Miller, 1981). A good correlation between DNA-adducts formation and
the frequency of mutations (Lutz and Gaylor, 1996) and with the inci-
dence of tumours was observed in animals (Poirier and Beland, 1992).

Akman et al. demonstrated using human mutation reporter plasmid
pSP189 that OTA in presence of microsomal enzymes or by transition
metal ions induced mutation after conversion into a genotoxic com-
pound. Synthetic ochratoxin hydroquinone (OTHQ) was also mutagenic
(Akman et al., 2012).

An increase in mutant frequency, as well as induction of double-
strand breaks and deletion (frameshift) mutations at the red/gam gene
at the carcinogenic target site of gpt delta transgenic rats strongly sug-
gested the involvement of a genotoxic mechanism(s) in OTA-mediated
carcinogenesis (Hibi et al., 2013a, 2013b).

OTB-dG has a tendency to adopt a mixture of major groove, wedge,
and base displaced intercalated conformations when paired against
complementary cytosine in the Narl sequence. The induction of double-
strand breaks indicated that OTB-dG was not easily bypassed during
replication by alternate enzymes (Kathuria et al., 2017; Sharma et al.,
2014). The degree of misincorporation induced by the C-linked C8-dG
adducts correlated with an ability to adopt the promutagenic
syn-conformation within the Narl duplex as predicted by molecular
dynamics simulations (Manderville and Wetmore, 2017). The dominant
mutations induced by OTA were G — C transversions (Kathuria et al.,
2018). Marin et al. recently observed that OTA altered miRNAs that
were strongly connected to the engine of cancer, disturbing nodal points
in different pathways such as TP53 signaling (Marin et al., 2019).
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Fig. 5. OTA metabolites and DNA adduct formation
Abbr.:OTA, ochratoxin A; OTB, ochratoxin B; 4-OH-OTA, 4-hydroxy ochratoxin A; OP-OA, ochratoxin A open lactone; OTHQ, ochratoxin A hydroquinone; OTQ,
ochratoxin A quinone; C-C8dG-OTA, DNA adduct ochratoxin A-deoxyguanosine; O-C8dG-OTA, DNA adduct ochratoxin A-deoxyguanosine.

OTB-NAC

JL on
HaC” NH
o}

Sy,

"CH

GSH
(dechlormat]on)

~

0. _OH
©\j/\ O OH o
NHJ\©/\5 \
o “ch

Epoxy OTA intermediacy
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6. Conclusions

The presence of a chemical-specific DNA adduct in human DNA is a

good indication of exposure to OTA (Swenberg, 2004). Carcinogenic
DNA adducts in target tissues are more relevant markers than internal
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dose because the former reflects not only individual differences in
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absorption and distribution but also differences in the metabolism
(activation versus detoxification) and the extent of repair of DNA dam-
age (Pfohl-Leszkowicz, 2008). Unlike the DNA adduct, OTB-dG,
OTB-GSH, and OTHQ-GSH are stable to acid treatment and can be
extracted from biological samples using methodology established for
extraction of OTA. Thus, OTB-GSH and OTHQ-GSH along with the
corresponding NAC-conjugates can serve as biomarkers of OTA exposure
as predicted elsewhere (Tozlovanu et al., 2012). Our study confirmed
the link between the presence of these metabolites in urine and the
presence of OTA-DNA adduct in the patients suffering from RCC.
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