

Czech University of Life Science Prague

Faculty of Economics and Management

Department of Information Engineering

Diploma Thesis

Parallelism in Computer Architecture

Author: Jan Rúčka

Supervisor: Ing. David Buchtela, Ph. D.

© 2012 CULS in Prague

Declaration

I hereby declare that I have worked on my Diploma Thesis titled “Parallelism in

Computer Architecture” solely and completely on my own and that I have marked all

quotations in the text. The literature and other material which I have used are mentioned

in the Bibliography Section of the Thesis

In Prague 5th April 2012 ___________________________

Acknowledgement

I would like to use this opportunity and thank Ing. David Buchtela, Ph. D. for his

valuable comments and remarks.

1

Parallelism in Computer Architecture

Summary

 This diploma thesis deals with parallelism above all in personal computers in view

of microprocessor and operating system. At the first part are defined important

theoretical background about hardware and software where is basic theory about

parallel programing. The second part of the work deals with parallelism practically.

Firstly there is a simple algorithm where are compared different parallel programing

ways. Then there is a sample GUI (Graphical User Interface) application which explains

advantages and disadvantages of parallelism.

Keywords: parallelism, parallel algorithm, parallel programming, hyper-threading,

multi-core microprocessor, multi-threading, multi-processing, chess algorithm

Paralelismus v architektuře počítače

Souhrn

Tato diplomová práce se zabývá paralelismem především v osobních počítačích

z hlediska procesoru a operačního systému. V první části jsou definovány důležité

teoretické základy o hardwaru a softwaru, kde je základní teorie o paralelním

programování. Druhá část se zabývá paralelismem v praxi. Nejprve jednoduchá aplikace

kde jsou porovnány různé paralelní přístupy. Poté ukázková aplikace s GUI (grafické

uživatelské rozhraní) na které jsou popsány výhody a nevýhody paralelismu.

Klíčová slova: paralelismus, paralelní algoritmus, paralelní programování, hyper-

threading, vícejádrový procesor, multi-threading, multi-processing, šachový algoritmus

2

Contents:

1 Introduction ... 4

2 Objectives of Thesis and Methodology... 5

3 Parallelism and Principles ... 6

3.1 Definition of Parallelism ... 6

3.1.1 Multitasking .. 6

3.1.2 Hyper-Threading ... 7

3.1.3 Multicore ... 10

3.2 Using of Parallelism .. 12

3.2.1 Algorithmic Complexity ... 13

3.2.2 Amdahl´s Law ... 14

3.2.3 Practical Use.. 16

3.3 Parallel Programming.. 17

3.3.1 Parallel Algorithms Problems ... 17

3.3.2 Low-Level Parallel Programming ... 18

3.3.3 High-Level Parallel Programming .. 19

4 Practical Usage, Meaning and Comparison of Parallelism 21

4.1 Matrix Multiplication .. 21

4.1.1 Methodology ... 21

4.1.2 Single-Threaded C++ .. 22

4.1.3 Multi-Threaded OpenMP .. 23

4.1.4 Multi-Threaded POSIX Thread... 26

4.1.5 Multi-Threaded Windows Threading .. 29

4.1.6 Multi-Threaded Qt Framework ... 31

4.1.7 Single-Threaded Java .. 33

4.1.8 Multi-Threaded Java ... 35

4.1.9 Compare and Evaluation of Different Implementation 37

4.1.10 Disadvantage of Hyper-Threading .. 39

4.2 Chess Application ... 41

4.2.1 Methodology ... 41

3

4.2.2 Single-threaded Chess Application Using Minimax 42

4.2.3 Multi-threaded Chess Application Using Minimax 49

4.2.4 Multi-threaded AI Chess Application Using Minimax 52

4.2.5 Multi-threaded Chess Application Using Alfabeta 57

4.2.6 Multi-threaded AI Chess Application Using Alfabeta 59

4.2.7 Chess Application Conclusion .. 61

5 Conclusion .. 62

6 Bibliography .. 63

7 Supplements .. 66

7.1 List of images .. 66

7.2 List of tables .. 66

7.3 List of source codes ... 66

7.4 Attached Files.. 67

7.5 Complete Results of Matrix Multiplication .. 68

4

1 Introduction

Parallelism in computer architecture is used more and more thanks to more modern

technologies of production. While earlier was parallelism in form of multicore or

multiprocessor systems domain of servers, mainframes or workstations, today is

standard even at personal computers.

 Parallel programming is more important with using multicore processors at personal

computers. Parallel programming usually increases complexity but programs can be

several-times quicker and have also other advantages. Meaning of parallelism is getting

more important and we can expect that it will appear more and more frequently.

 Despite the parallelism today is not too much broadly used, author analyses how can

be parallelism used and writes a necessary theoretical background. Author also explains

different ways of parallelism on a simple example and then contributions on a sample

application.

5

2 Objectives of Thesis and Methodology

The aim of this diploma thesis is to define what parallelism is. It explains a necessary

theoretical background for parallelism. The first part of the background is about importance

of hardware features. Afterwards it explains fundamental theory relevant to parallel

programming as is Amdahl´s law and parallel programming theoretical ways.

 The second part starts with parallel programming of a simple algorithm in several

different ways. Specifically it is a matrix multiplication with the standard (trivial)

algorithm and evaluates contributions of parallelism (especially speed-up) and

differences between implementations. Then there is a sample application with GUI

(Graphical User Interface) where are shown contributions of parallelism. The first

contribution is responsible interface during intensive computing. The second is the same

as in the matrix multiplication part – speed-up. Also there are mentioned disadvantages

of parallelism as is difficulty with debugging and to ensuring that application is without

errors. Then it mentions importance of a good design and comparing parallelism with

other possibilities.

 For practical part – the matrix multiplication author has chosen to compare these

possibilities of parallelism: OpenMP, POSIX Thread, Windows Threading, Qt

framework and Java multi-threading. For the sample application – a chess algorithm is

chosen C++ language with Qt framework which is used for multi-threading together

with OpenMP standard.

6

3 Parallelism and Principles

This part of work discusses a theoretical background of parallelism, important elements

of hardware and software architecture which allows parallelism. It looks at the basic

theoretical background of algorithm and analyse ways of the parallel programming

which we divide into the low-level and the high-level.

3.1 Definition of Parallelism

In Personal computer architecture there are a lot of examples of parallelism. In personal

computer is a parallel transfer nearly between every part of computer, almost massive

parallelism in graphic cards. There are multitasking, which can be described as a virtual

or an apparent parallelism, pipelining and superscalar architecture. But the work

discusses above all multicore (or in this meaning almost the same – multiprocessor)

systems and hyper-threading which can be seen as a multicore system.

3.1.1 Multitasking

From the users point of view there is actually no difference between single-core and

multi-core systems. For users it is difference between single-task (DOS-like) and

multitasking systems (typically Windows). With single and multi-core systems users

can do the same amount of work; system behaviour is in most cases the same.

Multitasking is not only operation system matter. Without support of microprocessors is

not possible to interrupt process in work, do some another work and return back without

damage of data in process. Process saves into TSS (Task State Segment). This is

coming with the processor Intel 80286. The processor Intel 80386 is improving these

properties; principle remains the same until today. [1] [2]

 These properties with support of operation system make possible the illusion of

doing multiple tasks simultaneously. This is achieved by switching between the running

processes many times per second. But this is (on single-core system) not true, progress

can do only single task in one moment. With multi-core system there are more

processes but also only small finite number in comparison with the illusion of system.

7

 In multitasking system processes are running under protected mode. This should

prevent from “freezed” system and prevent from unauthorized access to computer

peripherals and resources. These properties have all modern operating system running

on x86 (or x64) architecture as Windows NT, Unix-like, MAC OS and so on.

3.1.2 Hyper-Threading

In personal computer this is quite new technology. Firstly introduced with Intel Pentium

4 Processor 3.06GHz core Northwood in year 2002. But in the fact Hyper-Threading

(HT) is actually not a new technology it is only Intel implementation of Simultaneous

multithreading (SMT). Simultaneous multithreading was firstly researched by IBM in

1968. Simultaneous multithreading or Hyper-Threading allows processor (core of

processor) to execute more than one thread in case of Hyper-Threading exactly two. In

the case of another Simultaneous multithreading even more – good example is SPARC

architecture. This can be a little bit confusing because there are virtual CPU´s. The

computer has dual-core processor but thanks Hyper-Threading technology it seems as it

has quad-core processor because of two virtual CPUs. [3] [4]

 The idea of Hyper-Threading is actually pretty easy processor seldom uses all its

resources. If the same amounts of resources are allocated into two (or more) threads,

processor probably uses more resources and does more work. Hence processor (in this

example processor with Hyper-Threading) is able to execute more instructions and even

finish more instructions in one moment because occurrence of so-called bubbles, –

places where are not used all resources. Reason for that is typically a data dependency.

It can be seen in the Picture 3.1.

8

Picture 3.1 – Ideal function of Hyper-Threading technology [5]

 According Intel there is 15 to 30% better performance and first chips had about 5%

more transistors to enable this technology. But of course 30% is probably only if there

are the ideal or almost the ideal conditions. Reason why is rarely achieved these

performances is that processor have some so-called bottleneck. This is place where is

not possible to do work simultaneously, in this case is advantage of Hyper-Threading

zero. From these statement is quite clear that the best results are achieved especially

when two thread use different processor´s resources. [6]

 Multiple hardware threads are also particular solution to the problem of memory

latency. When one thread has to wait for data returning from a slow memory (RAM

i.e.), the other thread can still make some progress. This can improve the utilization of

processor (or core) and improve performance. Hyper-Threading can be used as one of

the technique particularly solving the memory latency problem, such as for example

out-of-order execution and so on.

9

Picture 3.2 - Ideal function of Hyper-Threading technology [7]

 It may seem that Hyper-Threading has only advantages but that is not true. In some

cases if threads are using similar resources as big amount of cache memory,

performance could be worse. In some cases some operation systems use virtual CPU

(Central Processing Unit) completely the same as real CPU (single-core CPU with

Hyper-Threading as dual-core CPU). Hence if in system are two threads (two

programs), one with the critical importance with high or real-time priority and another

with the low importance with low or idle priority, the operation system can think that

there are enough resources to execute both threads it the same time. But the real

operation system has only single-core processor with Hyper-Threading technology,

hence the operation system may do more work in total, but the critical thread (program)

is slowed-down. This is probably the biggest disadvantage of Hyper-Threading. In the

ideal case there is let say 130% performance of single-core processor without Hyper-

Threading, but for the critical thread (program) is available only half of it: 65% which is

actually about 35% worse performance. In the worst case it is 100% performance with

comparison with processor without Hyper-Threading and for the critical thread

(program) only 50% of performance. This is shown in the practical part in next chapters.

That is operations system matter and in fact some of operation systems should be able to

10

handle it for example Solaris which typically uses SPARC architecture processor which

can have up to eight threads per core. [8] [9]

3.1.3 Multicore

The first multicore processor for personal computer was Intel Pentium eXtreme Edition

840 in 2005. This was actually the first time when personal computer could fully

execute two threads. In case of workstations or servers there were multiprocessors

systems long times ago. It is possible to have one processor which may be seem as two

(or more) and actually in practise there is not serious difference in performance.

 The first processor x86 architecture was released in 1978 and had 5MHz. Today´s

processors have about 3GHz what is only in the processor clock speed 600 times

increase. Today´s processors have about 3GHz quite long times, in compare with the

past. Hence the multicore is another technique how to increase performance on the same

frequency. Reason is that it has become harder and harder to improve serial

performance. It would be necessary use larger area of silicon to enable executes

instructions faster. Also there is problem with amount of power consumption and heat

generation.

11

Picture 3.3 – Single and multicore processors in compare without HeatSpreader [10]

 In most of the cases there are not any important differences between multiprocessor

and multicore system. In both of it we can execute two (or more) threads at the same

time. That provides us theoretically two times more performance. In operation system

multicore processor is may seem as multiprocessor system. It is possible to talk about

virtual CPU (Central Processing Unit).

 There are several differences between multiprocessor and multicore solution.

Multicore processors have more shared resources. Typically L2 cache memory (or

sometimes also L3 cache memory) transfer rate between processor and rest of the

system is the same doesn´t matter how much cores it has. These disadvantages are not

in common too critical and don´t slow-down system too much. The advantage is for

12

example faster communication between cores than between processors. Threads can be

synchronized more often without significance loss of performance. Hence it can be

profitable to paralyze programs which were not profitable before.

 Multicore processor needs almost two times bigger area of silicon which means

almost two times bigger price. Multicore is not the cheap way to enhance performance.

The biggest disadvantage is that if software is not optimized there is practically not any

more performance. Hence today is parallel programming much more important than in

the past. [11]

3.2 Using of Parallelism

The first of all it is necessary to define used terms. The first term is thread at which we

can think a software thread or a hardware thread. The software thread is some stream of

instructions that the processor executes. We can have two threads in one application or

in two different applications. The hardware thread is some resource. Operation system

has typically many of software threads and only few hardware threads.

 Every application has at least one process; every process has at least one thread.

Difference between process and thread is following. Main difference is that the process

has a state. The state is set of values, which processor has in memory. These values are

for example addresses of the currently executing instructions and translation lookaside

buffer (TLB). The state uniquely defines the process in time. It is possible to say that

multiple applications are just multiple processes. One process is totally independent

from other processes what is not true for threads. Each process can run multiple threads.

Threads have also some state as processes do, but threads state is just values in register

and data in stack.

 There are many reasons why programme multiplies threads. Today the main reason

is speed; an application with multiple threads could be multiple faster. Another reason

could be naturally decomposed, if there is an application executes different mutually

independent tasks, which can be divided into multiple threads. Sometimes it can be

good to have multiple threads if we want to keep programs staying responsive during

intensive computation. If in GUI (Graphical User Interface) starts some long calculation

in single threaded program, whole application is “freezed” until the end of the

13

calculation. If there are two threads one for GUI and another for calculation, program is

still responsible. It is not “free” but at the cost of a little slowed-down the calculation (in

case of single processor system). This is shown in practical parts in next chapters.

 Multiple processes have higher cost of sharing data between them; hence they are

typically used for another reason. Processes are mutually independent. This means that

each process request its own state, increasing the memory and computing cost. But

because processes are independent it is possible to build much more stable applications.

If one process dies, does not matter why, other processes can continue. In case of the

multiple-threaded application, if one thread fails, probably the entire application fails.

Good example for the multiple-processed program is recent change in web browser

design. Google´s Chrome browser has for each tab its own process. Hence if one tab

fails rest of the browser continues without problem, which is in comparison with other

browsers the interest advantage. Because of unconstrained and unpredictable nature of

the internet it seems as a good design decision. [9]

3.2.1 Algorithmic Complexity

First of all it is necessary to measure input data. After that it‟s needed to estimate time

complexity. That is number of steps in algorithm. It is not important to be accurate it is

fully sufficient rough measures. Steps are for example one operation as +, -, *, /,

condition evaluate and so on. It is possible to assume every step is the same despite that

every operation needs another time to execute and it is even different with different

processors, it is useless try to be accurate.

 n = 10 n = 100 n = 1000 n = 1 000 000

log n 3.3ns 6.7ns 10ns 20ns

n 3.2ns 10ns 31.6ns s

n 10ns 100ns s 1ms

n*log*n 33ns 664ns s 20ms

n2 100ns s 1ms 16.5 min

n3 s 1ms 1s 31 years

2n s 3*1014years 3*10286years 

n! 3ms 3*10142years  

Table 3.1 – Time complexity of different algorithm
with presumption 10

9
execute operations for second [12]

14

In the Table 3.1 - Time complexity of different algorithm with presumption 10
9
 execute

operations for second, it is possible to see how long it takes algorithm according to the

number of elements and time complexity. From this it can be seen constant is not too

important. Hence it is possible to commute for example multiplication and sum. In the

Table 3.1 it is clear that it does not matter if there is n
2
 or 5n

2
 or 30n

2
, there is no

difference. All of these will increase almost with the same speed. Hence if we have two

computers and one of them has twice performance it means that a certain algorithm

takes half of the time. It is quite clear but in case of polynomial complexity it can

happen that is not possible to compute even with one more input in the same time.

 Hence if it is necessary to compute algorithm with one more input at the same time,

sometimes it is quite easy. Sometimes it can help parallelism but sometimes we are not

able to do it with any optimization.[12]

3.2.2 Amdahl´s Law

Amdahl´s Law basically says that it is possible to divide algorithm into two parts. One

part which is possible parallelized and another part which is not possible parallelized. If

the part which is possible parallelized is very small, it is not possible to have a good

result with parallelism.

 The speed-up of algorithms with using of multiple threads (assuming we have it) is

limited by the time which is needed for a serial part. If the serial part takes 20% from

the total time and the parallel part 80%, then if it are used two threads, there is 20% +

80% / 2 = 60% of the not optimized time. In case of eight threads it is 20% + 80% / 8 =

30% of the not optimized time. If there is used really big amount of threads the result is

not so different because the serial part. In the example 1000 threads: 20 % + 80% / 1000

= 20.08% of the not optimized time. Hence we cannot speed-up under the serial time

which can be very significant.

15

Picture 3.4 – Scaling with different parallel portion according Amdahl´s Law [13]

 It is necessary to think over how many threads are suitable to use. If another thread

speed-up application insignificantly question is if it is suitable. Used resources in a

place where is not meaningful effect can cause that in other places could resources miss.

Amdahl´s Law also don´t count with synchronization costs and so on. Hence in reality

we can expect more likely the result as is in the Picture 3.5 - Scaling with different

parallel portion in real than in the Picture 3.4 – Scaling with different parallel portion

according Amdahl´s Law . [9]

16

Picture 3.5 - Scaling with different parallel portion in real [14]

3.2.3 Practical Use

There were mentioned a lot of things but what is important is influence into practice.

Sometimes it is better don´t do anything about optimization, sometime no optimizations

the best way. In some algorithms it does not matter if takes one second or few days.

Typically some programs which are used only once and time use with optimization is

useless because it is not important to have the result immediately. Good programmer

has to know what he wants from programs and according this to decide what it is the

best.

 On the other side we have applications which need infinite of performance.

Typically some models which are simplified because we do not have enough

performance. In this case parallel algorithms allow smaller simplified. Parallel

algorithms allow using programs on personal computers which were few years ago

needed on servers or workstations.

 If we use parallelism optimization is one of the key factors. If we ignore

optimization there is actually no reason for parallelism. Performance which we obtain

by using parallelism we lost because of no usage of optimization. Another thing is

efficiency, how it is possible to see in the Picture 3.5 - Scaling with different parallel

portion in real which is probably a little bit excessive. Every other processor adds less

17

and less performance. Hence in general with every another processor decreases

efficiency of usage of resources.

 Optimization has sense only with function which takes meaningful part of time. If it

is possible to easily optimize and even parallelize function which takes only 1% of

runtime of applications it is probably worthless. It should be optimized functions (and in

general such pieces of code) which take meaningful part of runtime. In that case

optimization and the parallelization will probably have good sense.

3.3 Parallel Programming

3.3.1 Parallel Algorithms Problems

Parallel algorithms are much more complicated than serial. It is obvious because what is

done in serial code that is necessary to do also in parallel code. Every mistake, problem,

optimization and so on remains. In addition there is more source code and more possible

problems. Problem is also with debugging such applications. Parallel applications don´t

have to behave deterministic.

 Every time they can behave different depending on which thread is quicker, which

thread acts first. This is why it is the problem debugs parallel applications. In serial

applications if there is any problem, programmer can run through critical part step by

step until he discovers the problem. In parallel application this is often not possible and

if it is, it is much more complicated and time consuming.

 For example following source code the Source 3.1 – C++ source code where can

occurs data race, can behave nondeterministic. If there are more threads and every use

this function and the “a” variable it is not clear what value will has the “a” variable at

the end. We cannot be sure if the variable changes properly. So it is actually not

possible to use this function in this way. Another problem is when two or more threads

change value of the “a” variable at the same time. It can happen that the “a” variable

changes only once. This problem is called data race.

void change(int *a)
{
 *a += 4;
}

Source 3.1 – C++ source code where can occurs data race

18

 Data races can be hard to find. Previous example is clear but in a complicated

program it is not obvious. The problem with finding these kinds of problems is that

what it does the parallel programming hard. This kind of error can even occur only

sometimes. Some software (for example Valgrind suite or Thread Analyzer in Oracle

Solaris Studio) is able to identify data races but unfortunately not all. Avoiding data

races is not too hard; it is just using synchronization lock around accesses to that

variables.

 There are lots of problems in the parallel programming. Some of these problems are

often and harder, some of them seldom and easier. What it is important is that there are

problems which we don´t find in the serial programming. Hence the parallel

programming is harder and more time consuming. This is why we often parallelize only

part of code which takes lots from runtime and rest of the application let to serial.

3.3.2 Low-Level Parallel Programming

The low-level parallel programming is most known technique. This technique can be

represented with for example POSIX (Portable Operating System Interface) thread,

Windows threading, but also with Java multithreading and with QThread class within

Qt framework. All these standards are shown in the practical part in next chapters.

Between the low-level parallelisms we can also place MPI (Message Passing Interface)

and many others.

 It is necessary to care about all problems which can happen in parallel

programming. It is needed to create and terminate every thread. It is necessary to care

about passing data between threads, synchronization, creating lock, sharing data and so

on. In opposite in the high-level parallel programming, the programmer don´t have to

care about all of these things.

 POSIX is specifications for Unix-like operating system. POSIX handles

programming interface and in general behave of operating system. Thanks to POSIX are

programs portable between the difference versions of Unix-like operating systems.

POSIX also ensures the way of the thread implementation. In every Unix-like system

should be threading the same if keeps the POSIX standard. POSIX provide all necessary

functions for multithreading. POSIX threads implementation exists also for another

operation systems for example Pthreads is implementation for windows. [15] [16]

19

 Windows threading is good alternative for POSIX in windows. In Windows API it

exists with lots of other functionalities and possibilities also possibility to work with

threads. Functionality is very similar with POSIX threads. Most of the functions have

above all different names. Between Windows threading and POSIX threads is not very

big difference.

 Java is very robust programming language. Java contains many features and

between them is supporting multithreading. The implementation is quite difference with

compare of Windows threading and POSIX threads but basic idea is the same. Creating,

terminating threads, using some lock for synchronization; the biggest different is that

thread is as almost everything in Java an object. But in practice this is not too important.

The main advantage is the same as advantage of Java, threading is also

multiplatform.[17]

 Qt is framework primary for programming GUI (Graphical User Interface) but it

provides much more functionality. One of this functionality is also support of threads.

Qt has actually two main classes for threads QThread and QtConcurrent. QThread

provide the low-level API (Application Programming Interface) for threads which is in

functionality similar as POSIX and windows threading. QtConcurrent in opposite

provide the high-level API which is completely different. Because Qt is multiplatform it

is possible to write code only once and run everywhere which is support way of

portability of C++. [18] [19]

 There are many different low-level threaded API, but most of them are quite

similar, because necessary functionality is in general the same. Of ´ course it is only in

the case of the same architecture (x86 in this case). For example MPI which is used in

massive parallel architecture is very different.

3.3.3 High-Level Parallel Programming

The ideal situation of high-level parallel programming is that a programmer creates the

serial application and compiler creates the multi-threaded application. This is actually

possible. The best-known is probably Intel Compiler. But of´ course it is not ideal. This

compiler is able to parallelize only something for example some kinds of loops. The

compiler has to be sure that it is “safe” - result serial and parallel computing is the same.

The programmer has to create loops in “safe” way or use another approaches. There is

20

probably doesn´t reach so good result but in the other side it is not necessary to care

about it. It only takes a little bit bigger amount of time to compile. [20]

 Intel has probably the best compiler for multithreading nowadays. Another way of

multithreading is Cilk which is programming language designed for the multithreaded

parallel computing. In this language programmer only define how should be his

program parallelized. [21]

 In the high-level approaches to parallelism it is not necessary to care about creating

or terminating threads and sharing data. These mechanisms are solved by the compiler.

For the practical part of this work was chosen OpenMP API (Application Programming

Interface) specification for the parallel programming. This API provides sets of tools for

defining how to create the parallel version of the serial code. It is much easier than the

low-level parallel programming because in most cases is enough just defined parallel

directives into the serial code. [22]

 Qt framework also provides some kind of the high-level API for multithreaded

through QtConcurrent namespace. It operates with help of functions which provide

parallel way of usual problems. In another way there is parallelize code with help

function and it is not necessary to care how it is done. With this it is similar as OpenMP.

[23]

 There are probably more approaches for the high-level parallel programming. Some

lesser used way of the programming are probably more suitable for parallelize for

example functional programming languages. But it is not possible to describe all of

them. There are no others possibilities than to restrict only on few of them.

21

4 Practical Usage, Meaning and Comparison

of Parallelism

In this part are shown two examples of the serial and the parallel programming and

comparison of them. The first is the matrix multiplication which is implemented in the

serial and many different styles of the parallel programming. After that it is compared.

The second part is complete chess application including AI (Artificial intelligence) and

GUI (Graphical User Interface). There is shown possibility of parallelism even for the

single-threaded processor and contribution of parallelism in such application.

4.1 Matrix Multiplication

4.1.1 Methodology

For all programs in C++ programming language was used Microsoft Visual Studio 2010

Professional software development tool. For POSIX thread was used Pthreads

implementation for MS Windows in version 2.8.0. [16] Qt framework was used under

MS Visual studio in version 4.8.0. For Java programs was used Java SE 7u3 and Eclipse

software development tool in version 3.7.2.

 For testing are used four different computers. First has processor Intel® Core™ i7-

2600 and uses MS Windows 7. This processor has four cores and support Hyper-

Threading technology which means eight virtual processors. The second one has

processor Intel® Core™2 Quad Processor Q9550 and uses MS Windows 7. This

processor has four cores. Third has Intel® Pentium Processor P6200 and uses MS

Windows 7. This processor has two cores. The last one has Intel® Pentium® 4

Processor 650 and uses MS Windows XP. This processor has only one core but supports

Hyper-Threading technology which means two virtual processors.[24]

 For performance test was used standard (trivial) multiplication algorithm. There are

quicker algorithms but there are not suitable for this works purposes it goal is not the

fastest program but comparison. Compared was time needed for compute matrix

1000*1000 with range <-100; 100>. This is executed 24 times and written into file. Two

22

best and worst values are discarded and from remaining 20 values is created an

arithmetic mean. Programs are run with real-time priority. For this is used “start

/realtime“ command.

 After this comparison of all values together knowing what way is the fastest. Then

there is proved the main disadvantage of Hyper-Threading technology, which is

explained in the chapter 3.1.2 Hyper-Threading.

4.1.2 Single-Threaded C++

First of all the matrix multiplication is shown in the serial way. From this

implementation see the Source 4.2 – Matrix multiplication C++ serial implementation

are derived other C++ implementations. It is very simple program. Vector is used

because matrix 1000*1000 has one million elements which mean 4MB (4 byte for

integer) and it is too much for stack. The “timeGetTime” is function for time measure

with accuracy about one millisecond in Windows 7. In Windows XP the accuracy is a

little bit less.

#include <iostream>
#include <fstream>
#include <Windows.h>
#include <vector>
#define SIZE 1000

int main() {

std::vector<std::vector<int> >MatrixA(SIZE, std::vector<int>(SIZE)),
 MatrixB(SIZE, std::vector<int>(SIZE)),

MatrixC(SIZE, std::vector<int>(SIZE));

//loop for more than one result
for(int x=0; x<24; x++)
{
 srand(timeGetTime()); // random number where seed = time

//Fill Matrix A and B with random number, result matrix C with 0
 for (int i=0; i<SIZE; i++)
 {
 for (int j=0; j<SIZE; j++)
 {
 MatrixA[i][j] = rand() % 201 - 100;
 MatrixB[i][j] = rand() % 201 - 100;
 MatrixC[i][j] = 0;
 }
 }

 unsigned long time = timeGetTime(); //start time measure

//Matrix multiplication compute

23

 for (int i=0; i<SIZE; i++)
 {
 for (int j=0; j<SIZE; j++)
 {
 for (int k=0; k<SIZE; k++)
 MatrixC[i][j] += MatrixA[i][k] * MatrixB[k][j];
 }
 }

 //write result into file
 std::ofstream fout("output", std::ios::app);
 fout << timeGetTime()-time << std::endl;
 fout.close();
}
return 0;
}

Source 4.2 – Matrix multiplication C++ serial implementation

 The matrixes are defined as vectors. Then it starts the loop which is repeated for

multiple results. Then are fulfilled matrixes with random values (result matrix with

zeros) computed and results are written into file. With time of the execution of this

implementation we will compare others parallel C++ programs. The time of execution

can be seen in the Table 4.2.

Processor Average time [ms]

Core i7-2600 6262

Core 2 Quad Q9550 7141

Pentium 4 650 12331

Pentium P6200 14804

Table 4.2 – C++ matrix multiplication time of execution in milliseconds

4.1.3 Multi-Threaded OpenMP

 The implementation with OpenMP – API (Application Programming Interface)

specification for the parallel programming is similar to the serial one. There is only the

OpenMP library included and defines the parallel directives which are only few more

lines and code is not too much more complicated, see the Source 4.3. There are two

possibilities of setting the number of threads. The first one is to let it on OpenMP which

creates the suitable number of threads (typically for all accessible virtual processors in

system) or set with the “num_threads” directive. How it is possible to see in the Table

4.3, both approaches are combined. Threads one, two, four and eight are set by the

author and automatically set by OpenMP.

24

#include <omp.h>
#include <iostream>
#include <fstream>
#include <Windows.h>
#include <vector>
#define THREADNUMBER 8 //number of threads
#define SIZE 1000

int main()
{
std::vector<std::vector<int> >MatrixA(SIZE, std::vector<int>(SIZE)),
 MatrixB(SIZE, std::vector<int>(SIZE)),
 MatrixC(SIZE, std::vector<int>(SIZE));

//loop for more than one result
for(int x=0; x<24; x++)
{
 srand(timeGetTime()); // random number where seed = time

//Fill Matrix A and B with random number, result matrix C with 0
 for (int i=0; i<SIZE; i++)
 {
 for (int j=0; j<SIZE; j++)
 {
 MatrixA[i][j] = rand() % 201 - 100;
 MatrixB[i][j] = rand() % 201 - 100;
 MatrixC[i][j] = 0;
 }
 }

 unsigned long time = timeGetTime(); //start time measure

 //start of parallel computing, definition of parallel work
 #pragma omp parallel shared(MatrixA, MatrixB, MatrixC)
/*num_threads(THREADNUMBER)*/
 {
 #pragma omp for schedule(dynamic)
 //Matrix multiplication compute
 for (int i=0; i<SIZE; i++)
 {
 for (int j=0; j<SIZE; j++)
 {
 for (int k=0; k<SIZE; k++)
 MatrixC[i][j] += MatrixA[i][k] * MatrixB[k][j];
 }
 }
 }
 //write result into file
 std::ofstream fout("output", std::ios::app);
 fout << timeGetTime()-time << std::endl;
 fout.close();
}
return 0;
}

Source 4.3 - Matrix multiplication C++ OpenMP implementation

25

 In the Table 4.3 are the results. The speed-up means how many times it is quicker.

If there is speed-up 120% it means it is 1.2 times quicker than the base value. The

results are quite good. For processor Pentium 4 its best result is 114.4% thanks to

Hyper-Threading technology. This is actually very good if it is supposed some cost for

the multi-threading implementation. This cost can be approximated by OpenMP with

set of one-thread which is 84.24%. If it is computed this (114.4% / 84.24% = 135.8%)

and it is gets 135.8%. Almost 136% is in the case of Hyper-Threading very good– the

question is about the real cost.

 For Pentium Processor P6200 the results are normal - 172.62%, for two cores it is

not the ideal value but it is still very good in the opposite of serial results. If is supposed

some cost for multi-threading as above the result is (172.62% / 83.12% = 207.67%)

207.67% - it would be more than the linear speed-up. But the cost is divided between

two cores and it is only theoretical so this result is not accurate.

 For Processor Core 2 Quad the results are very good - 361.75% it is not too far

from the ideal 400%. There is pretty good difference in the comparison with the serial

results. If it is supposed the cost for multithreading (361.75% / 91.10% = 397.11%) the

result 397.11% is almost the ideal, but it is only theoretical.

 The results for processor Core i7 are actually very surprising. The best results are

when there are set four threads and it is 407.42% which means more than the linear

speed-up. Another very surprising thing is that the best results are with four threads and

not with eight threads. Hyper-Threading here doesn´t show any advantage. It cannot be

explained but only guessed. More than the linear speed-up is because every core has its

own L1 cache and if every core does smaller part there is lower rate of L1 cache miss.

Another possible explanation is that the processor use Turbo Boost technology in some

strange way. Possible interpretation why is not the best result with eight threads is that

there is some bottle neck when eight threads are computed in the same time. To

determine exactly this result it is needed to do more tests. But this is not related to this

work.

26

Pentium P6200 C++ single C++ OpenMP

number of threads x 1 2 4 8 auto

average [ms] 14804 17810 8576 8722 8600 9035

speed-up 100.00% 83.12% 172.62% 169.73% 172.14% 163.85%

Pentium 4 650 C++ single C++ OpenMP

number of threads x 1 2 4 8 auto

average [ms] 12331 14638 10826 10779 11162 10825

speed-up 100.00% 84.24% 113.90% 114.40% 110.47% 113.91%

Core 2 Quad Q9550 C++ single C++ OpenMP

number of threads x 1 2 4 8 auto

average [ms] 7141 7839 3928 1974 1998 1976

speed-up 100.00% 91.10% 181.80% 361.75% 357.41% 361.39%

Core i7-2600 C++ single C++ OpenMP

number of threads x 1 2 4 8 auto

average [ms] 6262 5937 3003 1537 1560 1546

speed-up 100.00% 105.47% 208.52% 407.42% 401.41% 405.05%

Table 4.3 - Result of OpenMP matrix multiplication implementation

4.1.4 Multi-Threaded POSIX Thread

The implementation with POSIX Thread is the low-level parallel programming. The

base is the same as in the previous version but only the matrix multiplication how can

be seen in the Source 4.4. There is attempt to do parallelization simply. There is master

thread which doesn´t do any computing only creates and waits for terminate of child

threads. Child threads compute its part (the size of part is according number of threads)

and then terminate. There aren´t things which do parallel programming really hard as

passing data between thread, synchronization, creating lock and so on. But anyway it

can be seen that the source code is notable more complicated than the serial version.

27

#include <iostream>
#include <fstream>
#include <vector>
#include <windows.h>
#include <pthread.h>
#define THREADNUMBER 8 //number of threads
#define SIZE 1000

std::vector<std::vector<int> >MatrixA(SIZE, std::vector<int>(SIZE)),
 MatrixB(SIZE, std::vector<int>(SIZE)),
 MatrixC(SIZE, std::vector<int>(SIZE));
int numberCPU;

void* matrixCompute(void * param)
{
 int id = (int)param; //number of thread
 int from = (SIZE * id) / numberCPU; //place where thread should start
 int to = (SIZE * (id+1)) / numberCPU; //place where thread should end

 //chunk of matrix multiplication for thread
 for (int i=from; i<to; i++)
 {
 for (int j=0; j<SIZE; j++)
 {
 for (int k=0; k<SIZE; k++)
 MatrixC[i][j] += MatrixA[i][k] * MatrixB[k][j];
 }
 }
 return (void *)id;
}

int main()
{
//loop for more than one result
for(int x=0; x<24; x++)
{
 srand(timeGetTime()); // random number where seed = time

//Fill Matrix A and B with random number, result matrix C with 0
 for (int i=0; i<SIZE; i++)
 {
 for (int j=0; j<SIZE; j++)
 {
 MatrixA[i][j] = rand() % 201 - 100;
 MatrixB[i][j] = rand() % 201 - 100;
 MatrixC[i][j] = 0;
 }
 }
 unsigned long time=timeGetTime(); //start time measure

 SYSTEM_INFO sysinfo;
 GetSystemInfo(&sysinfo);
 numberCPU = sysinfo.dwNumberOfProcessors;
 //numberCPU = THREADNUMBER;

 std::vector<pthread_t>thread(numberCPU);
 std::vector<int> return_value(numberCPU);

28

 //creating threads
 for (int i=0; i<numberCPU; i++)
 {
 pthread_create(&thread[i], 0, &matrixCompute,(void*)i);
 }

 //ending threads
 for (int i=0; i<numberCPU; i++)
 {
 pthread_join(thread[i], (void**)&return_value[i]);
 }

 //write result into file
 std::ofstream fout("output",std::ios::app);
 fout << timeGetTime()-time << std::endl;
 fout.close();
}
return 0;
}

Source 4.4 -Matrix multiplication C++ POSIX Thread implementation.

 In the Table 4.4 are results from POSIX Thread implementation. For processor

Pentium 4 the result is very good 129.13% it is almost the ideal. Hyper-Threading in

this case works surprisingly good. For Pentium Processor P6200 the result is also quite

good 188.08%. It is not so far from the ideal.

 For Core 2 Quad processor results are very surprising. The best result is 448.27%

which is almost about 50% better than linear speed-up. The reason why does it happen

could be, as well as in case of OpenMP above, guessed. More than linear speed-up can

be because every core has its own L1 cache and if every core does smaller part there is

lower rate of L1 cache miss. But this is not important for this work. In one child case

the result is 113.30%. This can be because this thread has theoretically whole core for

itself. In case of single-threaded program it is different that thread needs only resources

for matrix multiplication, not for the whole program.

 The result for processor Core i7 is again strange. It seems as Hyper-Threading

doesn´t have any effect here. Not even 6% between four and eight threads this is not

significant. There can be the same reason as mentioned in the previous chapter 4.1.3

Multi-Threaded OpenMP.

29

Pentium P6200 C++ single C++ POSIX

number of threads x 1 2 4 8 auto

average [ms] 14804 16504 8131 8209 8291 7871

speed-up 100.00% 89.70% 182.07% 180.34% 178.56% 188.08%

Pentium 4 650 C++ single C++ POSIX

number of threads x 1 2 4 8 auto

average [ms] 12331 13156 9549 9571 9608 9571

speed-up 100.00% 93.73% 129.13% 128.84% 128.34% 128.84%

Core 2 Quad Q9550 C++ single C++ POSIX

number of threads x 1 2 4 8 auto

average [ms] 7141 6303 3161 1593 1601 1595

speed-up 100.00% 113.30% 225.91% 448.27% 446.03% 447.71%

Core i7-2600 C++ single C++ POSIX

number of threads x 1 2 4 8 auto

average [ms] 6262 6029 3051 1607 1585 1591

speed-up 100.00% 103.86% 205.24% 389.67% 395.08% 393.59%

Table 4.4 - Results of POSIX Thread matrix multiplication implementation

4.1.5 Multi-Threaded Windows Threading

Implementation of Windows threading is in the Source 4.5. It is very similar to rhea

previous chapter 4.1.4 Multi-Threaded POSIX Thread. It actually is possible to say

almost the same what was mentioned above.

#include <iostream>
#include <fstream>
#include <vector>
#include <windows.h>
#include <process.h>
#define THREADNUMBER 8 //number of threads
#define SIZE 1000

std::vector<std::vector<int> >MatrixA(SIZE, std::vector<int>(SIZE)),
 MatrixB(SIZE, std::vector<int>(SIZE)),
 MatrixC(SIZE, std::vector<int>(SIZE));
int numberCPU;

unsigned int__stdcall matrixCompute(void * param)
{
 int id = (int)param; //number of thread
 int from = (SIZE * id) / numberCPU; //place where thread should start
 int to =(SIZE * (id+1)) / numberCPU; //place where thread should end

 //chunk of matrix multiplication for thread
 for (int i=from; i<to; i++)
 {
 for (int j=0; j<SIZE; j++)
 {

30

 for (int k=0; k<SIZE; k++)
 MatrixC[i][j] += MatrixA[i][k] * MatrixB[k][j];
 }
 }
 return (unsigned int)id;
}

int main()
{
//loop for more than one result
for(int x=0;x<24;x++)
{
 srand(timeGetTime()); // random number where seed = time

//Fill Matrix A and B with random number, result matrix C with 0
 for (int i=0; i<SIZE; i++)
 {
 for (int j=0; j<SIZE; j++)
 {
 MatrixA[i][j] = rand() % 201 - 100;
 MatrixB[i][j] = rand() % 201 - 100;
 MatrixC[i][j] = 0;
 }
 }
 SYSTEM_INFO sysinfo;
 GetSystemInfo(&sysinfo);
 numberCPU = sysinfo.dwNumberOfProcessors;
 numberCPU = THREADNUMBER;

 unsigned long time=timeGetTime(); //start time measure
 std::vector<HANDLE>thread(numberCPU);

 //creating threads
 for (int i=0; i<numberCPU; i++)
 {
 thread[i] = (HANDLE)_beginthreadex(0, 0, matrixCompute, (void*)i ,
 0, 0);
 }

 //ending threads
 for (int i=0; i<numberCPU; i++)
 {
 WaitForSingleObject(thread[i], INFINITE);
 CloseHandle(thread[i]);
 }

 //write result into file
 std::ofstream fout("output",std::ios::app);
 fout << timeGetTime()-time << std::endl;
 fout.close();
}
return 0;
}

Source 4.5 - Matrix multiplication C++ Windows Threading implementation.

31

 The results, which are in the Table 4.5, are also almost the same as in the previous

chapter 4.1.4 Multi-Threaded POSIX Thread. There is not any difference needing

another explanation.

Pentium P6200 C++ single C++ Windows Threading

number of threads x 1 2 4 8 auto

average [ms] 14804 17711 8537 8540 8678 8600

speedup 100.00% 83.58% 173.41% 173.36% 170.59% 172.14%

Pentium 4 650 C++ single C++ Windows Threading

number of threads x 1 2 4 8 auto

average [ms] 12331 13147 9574 9559 9618 9571

speedup 100.00% 93.79% 128.80% 128.99% 128.21% 128.83%

Core 2 Quad Q9550 C++ single C++ Windows Threading

number of threads x 1 2 4 8 auto

average [ms] 7141 6296 3160 1597 1602 1595

speedup 100.00% 113.43% 226.01% 447.26% 445.74% 447.67%

Core i7-2600 C++ single C++ Windows Threading

number of threads x 1 2 4 8 auto

average [ms] 6262 6101 3052 1540 1584 1584

speedup 100.00% 102.65% 205.17% 406.61% 395.23% 395.28%

Table 4.5 – Result of Windows threading matrix multiplication implementation

4.1.6 Multi-Threaded Qt Framework

Implementation of Qt framework is in the Source 4.6. It is quite similar to the previous

chapters 4.1.4 Multi-Threaded POSIX Thread and 4.1.5 Multi-Threaded Windows

Threading. Information which is mentioned above is valid also for this implementation.

#include <qtconcurrentrun.h>
#include <QtCore/QCoreApplication>
#include <fstream>
#include <vector>
#include <windows.h>

#define THREADNUMBER 8 //number of threads
#define SIZE 1000
Using namespace QtConcurrent;

std::vector<std::vector<int> >MatrixA(SIZE, std::vector<int>(SIZE)),
 MatrixB(SIZE, std::vector<int>(SIZE)),
 MatrixC(SIZE, std::vector<int>(SIZE));
int numberCPU;

void matrixCompute(int id)
{
 int from = (SIZE * id) / numberCPU; //place where thread should start

32

 int to =(SIZE * (id+1)) / numberCPU; //place where thread should end

 //chunk of matrix multiplication for thread
 for (int i=from; i<to; i++)
 {
 for (int j=0; j<SIZE; j++)
 {
 for (int k=0; k<SIZE; k++)
 MatrixC[i][j] += MatrixA[i][k] * MatrixB[k][j];
 }
 }
}

int main(int argc, char **argv)
{
 //loop for more than one result
 for(int x=0; x<24; x++)
 {
 srand(timeGetTime()); // random number where seed = time

//Fill Matrix A and B with random number, result matrix C with 0
 for (int i=0; i<SIZE; i++)
 {
 for (int j=0; j<SIZE; j++)
 {
 MatrixA[i][j] = rand() % 201 - 100;
 MatrixB[i][j] = rand() % 201 - 100;
 MatrixC[i][j] = 0;
 }
 }
 unsigned long time=timeGetTime(); //start time measure

 //set number of threads
 numberCPU = QThread::idealThreadCount();
 //numberCPU = THREADNUMBER;

 std::vector<QFuture<void>>thread(numberCPU);
 //creating threads
 for (int i=0; i<numberCPU; i++)
 {
 thread[i] = run(matrixCompute, int(i));
 }

 //ending threads
 for (int i=0; i<numberCPU; i++)
 {
 thread[i].waitForFinished();
 }
 //write result into file
 std::ofstream fout("output",std::ios::app);
 fout << timeGetTime()-time << std::endl;
 fout.close();
 }
}

Source 4.6 - Matrix multiplication C++ Qt framework implementation

33

The results are very similar as in the previous chapters 4.1.4 Multi-Threaded

POSIX Thread and 4.1.5 Multi-Threaded Windows Threading. There is not any

important difference which isn´t explained above.

Pentium P6200 C++ single C++ Qt

number of threads x 1 2 4 8 auto

average [ms] 14804 15786 7737 8424 7953 8035

speedup 100.00% 93.78% 191.33% 175.73% 186.14% 184.23%

Pentium 4 650 C++ single C++ Qt

number of threads x 1 2 4 8 auto

average [ms] 12331 13104 9578 9584 9585 9590

speedup 100.00% 94.10% 128.74% 128.66% 128.65% 128.58%

Core 2 Quad Q9550 C++ single C++ Qt

number of threads x 1 2 4 8 auto

average [ms] 7141 6274 3148 1595 1591 1590

speedup 100.00% 113.82% 226.81% 447.64% 448.74% 449.09%

Core i7-2600 C++ single C++ Qt

number of threads x 1 2 4 8 auto

average [ms] 6262 6230 3117 1576 1593 1594

speedup 100.00% 100.52% 200.92% 397.45% 393.06% 392.81%

Table 4.6 - Result of QThread matrix multiplication implementation

4.1.7 Single-Threaded Java

Single-threaded Java implementation – the source code is in the Source 4.7 - Matrix

multiplication Java serial implementation Implementation is quite similar to C++

implementation. Variances between these two implementations are because of different

concepts of these languages. There is used the function “System.nanoTime()” for time

measure which is accurate in nanoseconds.

34

import java.util.Random;
import java.io.*;

public class MM {
 static final intSIZE = 1000;

 public static void main(String[] args)
 {
 int MatrixA[][] = new int[SIZE][SIZE];
 int MatrixB[][] = new int[SIZE][SIZE];
 int MatrixC[][] = new int[SIZE][SIZE];

 //loop for more than one result
 for(int x=0;x<24;x++)
 {
 //Fill Matrix A and B with random number, result matrix C with 0
 Random randomGenerator = new Random();
 for (int i=0; i<SIZE; i++)
 {
 for (int j=0; j<SIZE; j++)
 {
 MatrixA[i][j] = randomGenerator.nextInt(201) - 100;
 MatrixB[i][j] = randomGenerator.nextInt(201) - 100;
 MatrixC[i][j] = 0;
 }
 }
 //start time measure
 long startTime = System.nanoTime();

 //Matrix multiplication compute
 for (int i=0; i<SIZE; i++)
 {
 for (int j=0; j<SIZE; j++)
 {
 for (int k=0; k<SIZE; k++)
 MatrixC[i][j] += MatrixA[i][k] * MatrixB[k][j];
 }
 }
 //write result into file
 BufferedWriter out;
 try{
 FileWriter fstream = new FileWriter("output", true);
 out = new BufferedWriter(fstream);
 out.write(System.nanoTime() - startTime+"\n");
 out.close();
 }
 catch (Exception e)
 {//Catch exception if any
 System.err.println("Error: " + e.getMessage());
 }
 }
 }
}

Source 4.7 - Matrix multiplication Java serial implementation

35

In next part of the work is time comparison of runtime of this implementation with

parallel implementation. The time of execution is in the Table 4.7.

Processor Average time [ms]

Core i7-2600 6627

Core 2 Quad Q9550 10674

Pentium 4 650 18487

Pentium P6200 21223

Table 4.7 – Java matrix multiplication time of execution in milliseconds

4.1.8 Multi-Threaded Java

Parallel implementation in Java is the low-level way of parallel programming – shown

in the Source 4.8. The base of matrix multiplication is the same as in the serial

algorithm. There are master and child threads. The implementation is not special with

comparison with other implementation in C++.

import java.util.Random;
import java.io.*;

public cclass ExtendThread extends Thread {
 @Override
 Public void run()
 {
 int id = Integer.valueOf(Thread.currentThread().getName()); //number
of thread
 int from = (SIZE * id) / numberCPU; //place where thread should start
 int to =(SIZE * (id+1)) / numberCPU; //place where thread should end

 //chunk of matrix multiplication for thread
 for (int i=from; i<to; i++)
 {
 for (int j=0; j<SIZE; j++) {
 for (int k=0; k<SIZE; k++)
MatrixC[i][j] += MatrixA[i][k] * MatrixB[k][j];
 }
 }
 }
static final int SIZE = 1000;
static final int THREADNUMBER = 8;
static int numberCPU = THREADNUMBER;

static int MatrixA[][] = new int[SIZE][SIZE];
static int MatrixB[][] = new int[SIZE][SIZE];
static int MatrixC[][] = new int[SIZE][SIZE];

 public static void main(String[] args)
 {
 for(int x=0;x<24;x++)
 {

36

 //get number of available processors
 Runtime runtime = Runtime.getRuntime();
 numberCPU = runtime.availableProcessors();

 //Fill Matrix A and B with random number, result matrix C with 0
 Random randomGenerator = new Random();
 for (int i=0; i<SIZE; i++)
 {
 for (int j=0; j<SIZE; j++)
 {
 MatrixA[i][j] = randomGenerator.nextInt(201) - 100;
 MatrixB[i][j] = randomGenerator.nextInt(201) - 100;
 MatrixC[i][j] = 0;
 }
 }
 //start time measure
 long startTime = System.nanoTime();

 ExtendThread ThreadArray[] = new ExtendThread[numberCPU];
 //creating threads
 for (int i=0; i<numberCPU; i++)
 {
 ThreadArray[i] = new ExtendThread();
 ThreadArray[i].setName(Integer.toString(i));
 ThreadArray[i].start();
 }

 //ending threads
 for (int i=0; i<numberCPU; i++)
 {
 try
 {
 ThreadArray[i].join();
 } catch (InterruptedException e)
 {//Catch exception if any
 e.printStackTrace();
 }
 }
 //write result into file
 BufferedWriter out;
 try
 {
 FileWriter fstream= new FileWriter("output", true);
 out = new BufferedWriter(fstream);
 out.write(System.nanoTime() - startTime+"\n");
 out.close();
 }catch (Exception e)
 {//Catch exception if any
 System.err.println("Error: " + e.getMessage());
 }

 }
 }
}

Source 4.8 - Matrix multiplication Java multi-threaded implementation

37

 In the Table 4.8 are the results of Java multi-threaded implementation. The results

are very good. Even with one child thread there can be seen some speed-up. This can be

because this thread has theoretically whole core for itself. The thread has only resources

for matrix multiplication in case of using one core by single-threaded program. In case

of Core i7 can be seen that hyper-threading technology doesn‟t have expected effect

again.

Pentium P6200 Java single Java Multi-Threading

number of threads x 1 2 4 8 auto

average [ms] 21223 20241 9919 9783 9548 9713

speedup 100.00% 104.85% 213.96% 216.93% 222.28% 218.51%

Pentium 4 650 Java single Java Multi-Threading

number of threads x 1 2 4 8 auto

average [ms] 18487 17614 13134 13145 13164 13146

speedup 100.00% 104.96% 140.76% 140.64% 140.44% 140.63%

Core 2 Quad Q9550 Java single Java Multi-Threading

number of threads x 1 2 4 8 auto

average [ms] 10674 10038 5041 2684 2593 2669

speedup 100.00% 106.39% 211.75% 397.70% 411.61% 399.92%

Core i7-2600 Java single Java Multi-Threading

number of threads x 1 2 4 8 auto

average [ms] 6627 6258 3133 1659 1630 1623

speedup 100.00% 105.89% 211.54% 399.51% 406.65% 408.31%

Table 4.8 - Results of Java multi-threaded matrix multiplication implementation

4.1.9 Compare and Evaluation of Different Implementation

Firstly it is focused on implementation itself. It can actually split into two categories

the low-level and the high-level which is explained in the chapter 3.3 Parallel

Programming. Actually from this simple algorithm it is not possible to say in which

way it is easier or harder to programme. There are not used all of the possibilities of

parallel programming. Another thing is that author doesn´t have enough experiences

with each way of implementation. Some of them were easier to understand for the

author but this is not accurate evaluation and it is after all more about which is easier to

learn than which is easier to use. There are lots of ways of code evaluation: complexity,

maintenance and so on, but it is not too much significant especially for this case. Hence

38

in the high-level parallel programming in this case only OpenMP is easier to

programme than in the low-level - in this case all others.

 Another way of comparison is performance - in this case C++ and Java programs

are split-up. Because even small change of implementation has influence on

performance, hence the comparison is not significant. For example if C++ used instead

vector another store the performance it would be different. Also between processors are

different results. The results are shown in the Table 4.9 for each processor and

implementation is there only the best value for transparency.

Pentium P6200 C++ S OpenMP Posix Windows Qt Java-S Java-M

threads x 2 auto 2 2 x 8

average [ms] 14804 8576 7871 8537 7737 21223 9548

speedup 100.00% 172.62% 188.08% 173.41% 191.34% 100.00% 222.28%

Pentium 4 650 C++ S OpenMP Posix Windows Qt Java-S Java-M

threads x 4 2 4 2 x 2

average [ms] 12331 10779 9549 9559.4 9578 18487 13134

speedup 100.00% 114.40% 129.13% 128.99% 128.74% 100.00% 140.76%

Core 2 Quad C++ S OpenMP Posix Windows Qt Java-S Java-M

threads x 4 4 auto auto x 8

average [ms] 7141 1974 1593 1595 1590 10674 2593

speedup 100.00% 361.75% 448.27% 447.71% 449.12% 100.00% 411.65%

Core i7-2600 C++ S OpenMP Posix Windows Qt Java-S Java-M

threads x 4 8 4 4 x auto

average [ms] 6262 1537 1585 1540 1576 6627 1623

speedup 100.00% 407.42% 395.08% 406.62% 397.34% 100.00% 408.32%

Table 4.9 – Compare of results of different implementations

 For Pentium processor P6200 has OpenMP and Windows threading a little bit less

performance than POSIX thread and Qt framework. For Windows threading it is quite

strange. It is probably because for every processor are different the ideal instructions.

The error of measurement is not likely because two best and worst measurements are

discarded. Computer runs only Windows threading program with real-time priority. In

Java is strange that the best results are with eight child threads but speed-up is excellent.

 For Pentium 4 650 we it is possible to see that Hyper-Threading technology works

surprisingly fine except OpenMP which works rather on the average. But in total are the

results very good in benefit of Hyper-Threading.

39

 For Core 2 Quad processor are the results more surprising. The best result is

449.12% which is almost about 50% better than linear speed-up. How it is possible is

mentioned in the chapter 4.1.4 Multi-Threaded POSIX Thread. Again the worst result

come with OpenMP. For Java is the result also very good.

 For Core i7-2600 processor are the results quite strange. The expected speed-up

from Hyper-Threading just does not appear. Also as only one has the best result with

OpenMP and with comparison of other processors has much better results in Java. This

is probably newer generation of processor. It is better optimized for this kind of

executions. By comparing this processor with older Core 2 Quad the results are

significantly better only in single-threaded algorithm, OpenMP and Java. In single-

threaded and OpenMP it is matter of higher frequency (3.4GHz vs. 2.83GHz). In other

C++ multi-threaded programs it is practically the same through the higher frequency.

Only the Java is significantly better.

4.1.10 Disadvantage of Hyper-Threading

 Hyper-Threading technology is described in the chapter 3.1.2 Hyper-Threading. In

this chapter is proved its main disadvantage. Shortly in some cases low priority

processes can take processor time from high priority processes. For those there are

needed two programs – one with high priority, for these purposes are used the matrix

multiplication programs and another with low priority. As the low priority program was

created simple program which creates eight threads with infinite loop, as can be seen in

the Source 4.9.

40

#include <omp.h>
#define THREADNUMBER 8 //number of threads

int main()
{
 //start of parallel computing
 #pragma omp parallel num_threads(THREADNUMBER)
 {
 #pragma omp for
 //infinite loop
 for (int i=0; i<100; i++)
 {
 for (int j=0; j<100; j++)
 {
 j--;
 }
 }
 }
}

Source 4.9 – Infinite loop for fully workloaded processor

 In the Table 4.10 is listed comparison of the same processors – once time with

Hyper-Threading on and once time with Hyper-Threading off. For these purposes are

chosen the values where is disadvantage most significant. In Core i7 processor

disadvantage of Hyper-Threading sometimes does not appear in cases when author

expected.

Pentium 4 650* C++ S OpenMP Posix Windows Qt Java-S Java-M

threads x 1 1 1 1 x 1

average 14783 19984 17008 16927 16927 26727 25156

speedup 100.00% 73.97% 86.92% 87.33% 87.33% 100.00% 106,25%

Pentium 4 650** C++ S OpenMP Posix Windows Qt Java-S Java-M

threads x 1 1 1 1 x 1

average 12265 14468 13128 13208 13217 18248 17535

speedup 100.00% 84.77% 93.43% 92.86% 92.80% 100.00% 104,07%

Core i7-2600* C++ S OpenMP OpenMP OpenMP Java-S Java-M

threads x 1 2 4 x 1

average 6090 7055 3553 2348 9358 8930

speedup 100.00% 86.31% 171.39% 259.35% 100.00% 104.79%

Core i7-2600** C++ S OpenMP OpenMP OpenMP Java-S Java-M

threads x 1 2 4 x 1

average 6249 5948 2999 1514 6572 6245

speedup 100.00% 105.07% 208.40% 412.81% 100.00% 105.25%

*Hyper-Threading on **Hyper-Threading off -both with infinite loop

Table 4.10 - Disadvantage of HT, comparison with the same processor with HT off

41

 For Pentium 4 processor there is in every situation worst result. The best result is in

the case of single-threaded C++ (12265 / 14783 = 82.97%) which is only 82.97% of

performance – comparing to the same situation with Hyper-Threading off. The worst

result is in the case of single-threaded Java (18248 / 26727 = 68.28%) which is only

68.28% of performance with Hyper-Threading off. Disadvantage of Hyper-Threading is

in this case proved.

 The situation in case of processor Core i7 is not so clear. In some expected

situations its disadvantage of Hyper-Threading does not appear. But in cases which are

in the Table 4.10 is the disadvantage proved. This processor disadvantages were shown

less often and above all it cannot be entirely sure that it is because of Hyper-Threading.

In many cases when is expected to appear disadvantage of Hyper-Threading were the

results opposite. There are lots of others results therefore all of them are in supplements.

4.2 Chess Application

4.2.1 Methodology

The chess application is written in C++ programming language with Qt framework in

version 4.8.0. As software development tool is used Microsoft Visual Studio 2010

Professional. For testing is used processor Intel® Core™2 Quad Processor Q9550 in

MS Windows 7 environment.

 Author decided for GUI (Graphical User Interface) chess application with AI

(Artificial Intelligence) because he considers that as good example. Parallelism is good

solution to provide still responsible GUI. The chess application is good example of such

application which needs almost infinite performance (nowadays unavailable

for any computer). It doesn´t matter which algorithm is used. The application is only

demonstrative. Hence author will not try to do the best chess application, but

demonstrates some possibilities of parallelism.

 First of all is introduced the application in serial way. There are shown

disadvantages and possible solutions. With the help of multi-threading is edited the

application to stays responsible during intensive processing (with using Qt framework

way of parallelism). After that is used parallelism for AI (Artificial Intelligence) or

chess brain (with using OpenMP way of parallelism). This is compared with another

42

algorithm, which is also parallelized. In the next step are compared and evaluated all

solutions.

 To measure the time is used the mean of fifteen moves. Moves are the same for

every test. In some settings there are given first fifteen moves which are used in every

setting.

4.2.2 Single-threaded Chess Application Using Minimax

Minimax is one of the easiest algorithms which can be used for chess AI (Artificial

Intelligence) but it is also one of the weakest algorithms for chess AI. For demonstration

of chess brain it is more than satisfactory. Minimax algorithm is just searching in the

tree of moves into a given depth. Firstly it is needed to know how good is given

position. The basic evaluation of pieces in chess is quite easy – it is only needed to

count all the pieces. For better evaluation is necessary to compute positions of figures.

Every chess brain has some evaluation function.

 In average we have 35 moves from position [25] which means that minimax has to

search through 35
n
 position (and every of them evaluate) where n is the depth of

searching. When it searches into the depth of four (which are four half-moves or just

two moves) it is 35
4
 = 1 500 625 of evaluations of positions and every another half-

move 35-times more. How long it takes depend on implementation. That is why it is this

algorithm so weak because it is too slow.

43

int chessAI::minimax(int depth)
{
 int realRange, player, price;
 int best = -9990 - depth;
 int realMoveFrom[MOVESIZE];
 int realMoveTo[MOVESIZE];

 //choose which one play white/black
 player = playerChoose();

 //return evaluation of position
 if (depth <=0) return positionValue(player);

 //move generator
 realRange = possibleMovement(player, realMoveFrom, realMoveTo);

 if (doMove(1,1) == 2) return best; //check for checkMate
 if (doMove(1,1) == 3) return 0; //check for stateMate

 //try every move
 for (int i = 0; i < realRange; i++)
 {
 int doMoveReturn;
 doMoveReturn = doMove(realMoveFrom[i],realMoveTo[i]);
 if (doMoveReturn > 10) promotion(doMoveReturn, 5);
 price = -minimax(depth-1);
 lastMove--;

 if (price > best)
 {
 best = price;
 }
 }

return best;
}

Source 4.10 – Author´s implementation of minimax for chess artificial intelligence

In the Source 4.10 can be seen author´s implementation of minimax for the chess brain.

It is quite simple - only several lines of code. But much harder is to implement other

necessary functions like evaluation, move function and so on. The best variable has very

low initializing value. It is for the checkmate situation which has to have the very low or

very high evaluation. The “realRange” variable is index for the “realMoveFrom” and

the “realMoveTo” arrays. If the function “doMove” return more than 10 - it is position

of promotion. At this case it does return the queen for simplicity because the other

figures are used only very rarely. Then algorithm searches for the best evaluation of

position until it finds it and writes it into the “best” variable.

44

int chessAI::AIMovement(int *from, int *to, int depth)
{
 int realRange, bestInRange;
 int player, price;
 int best = -10000; //We can be sure, we find better
 int realMoveFrom[MOVESIZE];
 int realMoveTo[MOVESIZE];

 //resize vector
 if (lastMove > 44)
 {
 chessboard.push_back(std::vector<int>(120));
 chessboard.push_back(std::vector<int>(120));
 }

 //choose which one play white/black
 player = playerChoose();

 //move generator
 realRange = possibleMovement(player, realMoveFrom, realMoveTo);

 //try every move
 for (int i = 0; i < realRange; i++)
 {
 int doMoveReturn;
 doMoveReturn = doMove(realMoveFrom[i],realMoveTo[i]);
 if (doMoveReturn > 10) promotion(doMoveReturn, 5);
 price = -minimax(depth);
 lastMove--;

 if (price > best)
 {
 best = price;
 *from = realMoveFrom[i];
 *to = realMoveTo[i];
 }
 }
 return best;
}

Source 4.11 – Author´s implementation of chess artificial intelligence

In the Source 4.11 is the rest of the implementation of the chess artificial intelligence. It

is actually similar to the minimax function. It resizes a vector variable because in

constructor of class it is defined in size 50*120. 50 is number of moves. The vector

“lastMove” is resized when is bigger than 44 because the same vector is used for

computing function inside the minimax which computes few moves forward. 120 stands

for chessboard which is implemented as 10*12 as is possible to see in the Source 4.12.

This implementation is simpler because it is not necessary to take care about the

boundary of chessboard. The move forward is +10 instead +8 (and multiples as 16, 24,

45

32 and so on) which is better for readability. Rest of the function is almost the same.

Only when it finds better price it saves the move into “*from” and “*to” pointers.

// Chessboard representation 10*12

 //100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
 //100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
 //100, -4, -2, -3, -5, -6, -3, -2, -4, 100,
 //100, -1, -1, -1, -1, -1, -1, -1, -1, 100,
 //100, 0, 0, 0, 0, 0, 0, 0, 0, 100,
 //100, 0, 0, 0, 0, 0, 0, 0, 0, 100,
 //100, 0, 0, 0, 0, 0, 0, 0, 0, 100,
 //100, 0, 0, 0, 0, 0, 0, 0, 0, 100,
 //100, 1, 1, 1, 1, 1, 1, 1, 1, 100,
 //100, 4, 2, 3, 5, 6, 3, 2, 4, 100,
 //100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
 //100, 100, 100, 100, 100, 100, 100, 100, 100, 100

 //100 is square where is not possible to go
 //1 = pawn, 2 = knight, 3 = bishop, 4 = rook, 5 = queen, 6 = king
 //positive are white, negative are black

Source 4.12 – Implementation of chessboard 10*12

 Now it is shows how is called the “AIMovement” function (Source 4.11) from GUI

(Graphical User Interface) class. It is possible to see this in the Source 4.13. The

“movesWidget” is text field where are print-outs from the application. It prints-out are

the time how long the artificial intelligence takes the “thinking” and evaluation – which

is the “best” value. After the computation of the “best” value it uses the “doMove”

function to finish the move. From this function it gets the result which is printed out. If

the result is more than 10 it returns position of promotion and computer always

automatically promotes pawn onto queen (in case of user, it is possible to choose). After

that the pieces are moved into the present state. Then program continues in calling

function which finishes very quickly which means the continuation of event-loop.

46

void MainWindow::StartAI()
{
 int from, to, result;

 unsigned long time =timeGetTime(); //start time measure
 result = AI->AIMovement(&from, &to, depth);
 movesWidget->append("Thinking took me: "+QString::number(timeGetTime()-
 time)+"ms"); //write time

 movesWidget->append("Evaluation: "+QString::number(result));

 result = AI->doMove(from, to); //write move into array
 if (result == -1) movesWidget->append("White now!");
 if (result == 1) movesWidget->append("Black now!");
 if (result == 2) movesWidget->append("CheckMate!");
 if (result == 3) movesWidget->append("StateMate!");

 //automatic promotion onto queen
 if (result > 10)
 {
 movesWidget->append("Promotion!");
 AI->promotion(result,5);
 if (result > 50)
 movesWidget->append("White now!");
 else
 movesWidget->append("Black now!");
 }

 repaintFigures();
}

Source 4.13 – Call of the AIMovement function (Source 4.11) from GUI class

 From the implementation it is possible to see, that if the chess artificial intelligence

computes, the graphics user interface does not respond. This problem depends on how

quick artificial intelligence is. If it lasts longer than let say 200 milliseconds user can

probably notice it. When it lasts longer than one second it starts to be a problem. More

than five seconds is almost the critical error. The time of computing can be seen in the

Table 4.11. When the depth is equal to one, the average time is 81 milliseconds. When

the depth is equal to two, the situation is quite bad- it lasts 2.93 seconds. With depth

three and more is the situation critical.

depth: 1 2 3 4

time (ms): 81 2930 99964 around 35-times more

time (sec): 0.081 2.93 99.964 around 35-times more

time (min): 0.00135 0.0488 1.67 around 35-times more

Table 4.11 – Time of single-threaded minimax computing

In the Picture 4.6 is shown non responding program. It happens when program does not

respond for some time back to the operation system. The graphics user interface is even

47

so unresponsive that it does not repaint itself. It is overlaid as in the Picture 4.7. In the

case that user doesn‟t know that AI is computing the moves, he‟ll probably try to exit

the program by standard way then non-standard way. If user would know that the

program after computing behaved correctly, he would wait. But it is certainly not user-

friendly behaviour.

Picture 4.6 – Chess program is in “not responding” state

 There are two basic solutions for this kind of problem. The first is changing of

artificial intelligence algorithm. This algorithm interrupts the computing to check the

event loop. It is done in every few milliseconds. It is necessary to change the algorithm.

In this case it can be done but it is not really good solution because it reduces

reusability. There are also cases when is not possible to change the algorithm or it is

very time consuming.

 In most of cases it is better to have one more thread for the event loop. In this case

the graphical user interface is still responding and it is not needed to edit the artificial

intelligence algorithm. Even if we have only one processor (or one-core) system,

interface is still responsible. Switching between many threads is task of operation

48

system. This solution is shown in the next chapter 4.2.3 Multi-threaded Chess

Application Using Minimax.

Picture 4.7 - Chess program which is “not responding” and was partially overlaid

 How good aritificial intelligence as opponent is could be very interesting question.

If the depth of minimax is zero it is very weak opponent. In this case AI just takes the

best piece which it can - without taking care of player´s movement. Artificial

intelligence is able to sacrifice a queen for a pawn. Even the player who has just learned

chess rules probably wins. When the depth of one is set AI examines the player´s

response movements. This is enough difficulty for absolute beginners. With higher

depths the algorithm is stronger but there are two or three missing features which can do

the really strong chess brain - database of chess opening and database of chess ending

games or special algorithm for ending games. With these features and depths three or

four AI could be strong enough against the advanced players.

49

4.2.3 Multi-threaded Chess Application Using Minimax

In this chapter is shown how to solve the problem with “not responding“ GUI

(Graphical User Interface) during intensive processing. With using Qt framework it is

quite easy job how can be seen in the Source 4.14. It uses the same “StartAI“ function

which is in the Source 4.13 except the last call of the function “repaintFigures” which is

now included in the “multiAI” function. First of all it tests the flag “AICompute”. If it is

true the function cannot be executed again. If not, it executes the function. The first of

all the “AICompute“ flag is set. Then is called the “repaintFigures“ function (after

player´s move). After this starts parallelization process. It creates “thread“ which starts

with the function with non-return value (void). Save thread is necessary because it

accesses it on the next line. Function “run” (in QTConcurrent namespace) starts thread

in the function “StartAI()“ with parent “this“ pointer. The while-loop is running till the

end of the “StartAI()“ function. In the loop it calls the “sleep“ which is quite important.

If it doesn‟t call the loop it consumes all the performance of one processor (or core).

With attribute one which means one millisecond is the consumption of performance on

the test system insignificant. If it would be significant it can be set more than one

millisecond. The “qApp->processEvents()“ function processes all events which

occurred. After this it changes the “AICompute“ flag back and repaints the figures.

void MainWindow::multiAI()
{
 if (AICompute)
 {
 movesWidget->append("Sorry, I´m thinking wait.");
 return;
 }

 AICompute = true;
 repaintFigures();

 //compute on another thread!
 QFuture<void> thread = QtConcurrent::run(this, &MainWindow::StartAI();
 while (thread.isRunning())
 {
 Sleep(1);
 qApp->processEvents();
 }

 AICompute = false;
 repaintFigures();
}

Source 4.14 – Graphical user interface in another thread

50

 But this is not all what is needed to do. Functions as “back” or “forward” aren´t

probably implemented to work in multithread environment in another words functions

aren´t thread-safe. The simplest way is the same procedure as in the Source 4.14 – it uses

the flag. When the flag is on then the function prints-out the caution and stops the

processing. This way is not too much user-friendly but despite it much more user-

friendly than having a “not responding” program. There could be compared three

different implementations of the “moveBack” function as in the Source 4.15, Source 4.16

and Source 4.17. In the Source 4.15 is implementation from previous chapter 0 The

chess application is written in C++ programming language with Qt framework in

version 4.8.0. As software development tool is used Microsoft Visual Studio 2010

Professional. For testing is used processor Intel® Core™2 Quad Processor Q9550 in

MS Windows 7 environment.

 Author decided for GUI (Graphical User Interface) chess application with AI

(Artificial Intelligence) because he considers that as good example. Parallelism is good

solution to provide still responsible GUI. The chess application is good example of such

application which needs almost infinite performance (nowadays unavailable

for any computer). It doesn´t matter which algorithm is used. The application is only

demonstrative. Hence author will not try to do the best chess application, but

demonstrates some possibilities of parallelism.

 First of all is introduced the application in serial way. There are shown

disadvantages and possible solutions. With the help of multi-threading is edited the

application to stays responsible during intensive processing (with using Qt framework

way of parallelism). After that is used parallelism for AI (Artificial Intelligence) or

chess brain (with using OpenMP way of parallelism). This is compared with another

algorithm, which is also parallelized. In the next step are compared and evaluated all

solutions.

 To measure the time is used the mean of fifteen moves. Moves are the same for

every test. In some settings there are given first fifteen moves which are used in every

setting.

Single-threaded Chess Application Using Minimax. As is obvious, “AI” is instance of

the artificial intelligence class in program. In the Source 4.16 is the simplest

implementation of the thread-safe function which is used in author´s implementation. In

51

the Source 4.17 it is the ideal implementation. It stops computing and then shifts

movement in a safe way. The “stopCompute()” function could be also in the

“moveShift” function. But what is important in this way of implementation – it allows

the user to move back even if artificial intelligence computes – which can take few

minutes.

void MainWindow::moveBack()
{
 AI->moveShift(-1);
 repaintFigures();
}

Source 4.15 – The single-threaded “moveBack()” function from the chapter 0

void MainWindow::moveBack()
{
 if (AICompute)
 {
 movesWidget->append("Sorry, I´m thinking wait.");
 return;
 }
 AI->moveShift(-1);
 repaintFigures();
}

Source 4.16 – Multi-threaded implementation of the “moveBack()” function in this chapter

void MainWindow::moveBack()
{

if (AICompute)
 AI->stopCompute();

 AI->moveShift(-1);
 repaintFigures();
}

Source 4.17 – The ideal multi-threaded implementation of the “moveBack()” function

 In author´s program most of the non-threaded-safe functions are edited in the

Source 4.16 way for simplification. The program doesn´t have ambition to be the best

chess program or have the best graphical user interface. That is why is chosen the

simplest way, the program is only for demonstration.

52

Picture 4.8 - Chess program is responsible even during intensive processing.

 The program is strong just like single-threaded implementation. The time for

computation is a little bit different (with one-core little bit slower, with multi-core little

bit faster) but insignificantly. Because the program, when is under intensive processing,

is not in the “not responding” state, it can eventually use the minimax with depth three.

It waits for move 1.67 minutes (It is possible to see in the Table 4.11 – Time of single-

threaded minimax computing) is quite long time but it is still possible if program is

responding at least. Then the program is stronger than single-threaded because it is

usable with minimax depth three.

4.2.4 Multi-threaded AI Chess Application Using Minimax

In previous chapters was added one thread to allow the program to response during an

intensive processing. In this chapter it comes out with program from the previous

chapter. Here it paralyzes the minimax algorithm. This part uses most of the processor

time. Other parts it is not useful to paralyze because they take only insignificant amount

of time. It seems very simple and it is shown in the chapter 4.1 Matrix Multiplication

53

and there is very similar situation – again the for-loop which has to be paralyzed (see

the Source 4.11 – Author´s implementation of chess artificial). There is obvious how

important is the suitable design. If is known that this algorithm has to be parallelized (in

OpenMP way) it is done in a suitable way – debugged and then is easily added parallel

directive. Or it is programme in a parallel way from the start (in case of another parallel

way).

 In the Source 4.11 almost every function has to use some kind of global variable

(in this case member variable) because in these functions are missing arguments for the

proper work. In some cases the reason is because of bad programming habits. In some

cases it is proper way of programming. When in the most of functions is used the same

variable, the proper way is to create it as a member (in case of the class) or a global

variable. In case of the class is also the proper way to create the member variable if it

needs to store the value after the function finishes.

int chessAI::AIMovement(int *from, int *to, int depth)
{
 int realRange, bestInRange;
 int player, price;
 int best = -10000; //We can be sure, we find better
 int realMoveFrom[MOVESIZE];
 int realMoveTo[MOVESIZE];

 //resize vector
 if (lastMove > 44)
 {
 chessboard.push_back(std::vector<int>(120));
 chessboard.push_back(std::vector<int>(120));
 }

 //choose which one play white/black
 if ((lastMove % 2) == 0)
 player = 1;
 else
 player = -1;

 //move generator
 realRange = possibleMovement(player, realMoveFrom, realMoveTo);

//create parallel variables
 int lastMoveM = lastMove;
 std::vector<std::vector<int> >chessboardM(50, std::vector<int>(120));
 for(int i =44; i<lastMove; i++)
 chessboardM.push_back(std::vector<int>(120));

 chessboardM = chessboard;

#pragma omp parallel for firstprivate(realMoveFrom, realMoveTo, lastMoveM,\
chessboardM, depth, price) schedule(dynamic)

54

 for (int i = 0; i < realRange; i++)
 {
 int doMoveReturn;
 doMoveReturn = doMove(realMoveFrom[i], realMoveTo[i], &chessboardM,
 &lastMoveM);

 if (doMoveReturn > 10) promotion(doMoveReturn, 5, &chessboardM,
 lastMoveM);

 price = -minimax(depth, &lastMoveM, &chessboardM);
 lastMoveM--;

 #pragma omp critical
 {
 if (price > best)
 {
 best = price;
 *from = realMoveFrom[i];
 *to = realMoveTo[i];
 }
 }
 }
 return best;
}

Source 4.18 - Author´s implementation of chess multi-threads artificial intelligence

The parallel version in the Source 4.18 is similar to the serial version in the Source 4.11.

OpenMP API (Application Programming Interface) doesn´t allow to using member

variables in a parallel part as private variables. Because of this fact it is necessary to

transform member variables into local “parallel” variables. Then it is needed to change

every function which is called from the parallel part. Even functions which are called

from called function and so on. The missing argument has to be added (instead using

member variables use argument of functions) and functions have to be changed. Pointer

or references are used instead of member variables. It‟s important to create the parallel

variables “lastMoveM” and vector “chessboardM”. Sometimes “chessboardM” need to

be resized, before it is copied to it the original variable values.

 Then it starts the parallel part which begins with pragma directive which says to

compiler how to compile. The directive “for” is used for the next for-loop. After this

there are used directives “firstprivate” and “private”. It ensures that enumerated

variables are not shared. The “first” before “private” ensures that in the beginning

variables have the same value (in another case there will be undefined value). Then is

used the directive “schedule(dynamic)” which ensures that every thread does only one

iteration and asks master thread for the new job. This is a little bit slower than a static

55

way but in this case when it is used, it would be slower thanks the fact that not all

iterations take the same time. If we don´t want to one thread work and another finish

and don´t do anything we have to use the dynamic way. Because there will not be

finished thread without work it will be faster.

 For the loop it is almost the same – the same function only with another arguments

which were mentioned above, until it reaches the “critical” directive – next region can

execute only one thread at one moment. This is very important because without usage of

this directive it can happen that the one thread compares its „‟price‟‟ with the „‟best‟‟

variable. But before it is the “best” variable changed the next thread compares its

“price” with the “best” variable. In that case the first thread has the higher “best”

variable it causes an error in compute. It can make a movement which is not best.

 There is one more difference with the serial solution. The serial solution is

completely deterministic. In the same position it does every time the same move. There

is not any random factor. For user it is actually not advantage. He gets the same answer

every time. In the same position continues the same movement. But in parallel solution

it cannot be assured which will be chosen because if two moves have the same

evaluation it is not ensured which one of them is computed and executed first.

 In this example can be seen why parallel programming is so tricky. If the “price”

variable is defined as shared there is very low probability that something will happen,

error occurs. The program can be run many times and there don´t have to happen

anything wrong. Error can occur in one of thousands cases. When it happens there is no

possibility to replicate it. There can be lots of errors as this potential one and it is hard to

notice it even in a case of a very detailed testing. This is also reason why in

applications, where don´t have to be errors, is better to use the serial solution.

56

Single-thread Chess Application Using Minimax:

depth: 1 2 3 4

time (ms): 81 2930 99964 around 35-times more

time (sec): 0.081 2.93 99.964 around 35-times more

time (min): 0.00135 0.0488 1.67 around 35-times more

Multi-thread AI Chess Application Using Minimax:

depth: 1 2 3 4

time (ms): 28 805 24749 around 35-times more

time (sec): 0.028 0.805 24.749 around 35-times more

time (min): 0.0005 0.0134 0.412 around 35-times more

speed-up: 292.1% 364.10% 403.9% similar to depth 3

Table 4.12 – Speed-up between serial and parallel implementation of minimax

 In the Table 4.12 – Speed-up between serial and parallel implementation of

minimax is possible to see different depending on a time execution and speed-up. For

speed-up is valid the same what is above in the chapter 4.1.3 Multi-Threaded OpenMP;

if is speed-up 120% it means that parallel version is 1.2-times quicker and so on.

 Depth one is the smallest speed-up – 292.1%. With the minimax‟s depth three is the

biggest 403.9% which means more than the linear speed-up which is the very good

result. How is possible to achieve more than the linear speed-up is explained in the

previous chapter 4.1 Matrix Multiplication. The reason is that with depth one the time

of execution is only 28 respectively 81 milliseconds. Hence there is big influence on the

cost for parallelization. The most of costs are the same. It doesn´t matter if there is depth

one or higher. That is why with bigger depths come better results.

 At this case program with the minimax‟s depth three and more is a little bit more

user-friendly – user waits for move approximately less than 25 seconds and it is alright

in opposite of almost 100 seconds. But power of the artificial intelligence is the same –

it is not possible to calculate the higher depth than three in a reasonable time. In

expecting the more powerful it would be probably quite disappointing. But this result

was expected because algorithmic complexity is n
35

. It is clear from chapter 3.2.1

Algorithmic Complexity.

57

4.2.5 Multi-threaded Chess Application Using Alfabeta

In the previous chapter 4.2.4 Multi-threaded AI Chess Application Using Minimax is

parallelized the minimax algorithm. This chapter comes out with the program from the

previous chapter 4.2.3 Multi-threaded Chess Application Using Minimax. In this chapter

is used another algorithm: Alfabeta which cuts out the bad moves and doesn´t compute

the whole three as the minimax algorithm.

int chessAI::alfabeta(int depth, int alfa, int beta)
{
 int realRange, player, price;
 int best = -9990 - depth;
 int realMoveFrom[MOVESIZE];
 int realMoveTo[MOVESIZE];

 player = playerChoose();

//return evaluation of position
 if (depth <=0) return positionValue(player);

 realRange = possibleMovement(player, realMoveFrom, realMoveTo);

 if (doMove(1,1) == 2) return best; //check for checkMate
 if (doMove(1,1) == 3) return 0; // checkfor stateMate

 for (int i = 0; i < realRange; i++)
 {
 int doMoveReturn;
 doMoveReturn = doMove(realMoveFrom[i],realMoveTo[i]);
 if (doMoveReturn > 10) promotion(doMoveReturn, 5);
 price = -alfabeta(depth-1, -beta, -alfa);
 lastMove--;

 if (price > alfa)
 {
 alfa = price;
 if (price >= beta)
 {
 return beta;
 }
 }
 }

return alfa;
}

Source 4.19 - Author´s implementation of alfabeta for chess artificial intelligence

 In the Source 4.19 is author´s implementation of alfabeta algorithm for the chess

artificial intelligence. In comparing this implementation with the minimax

implementation (in the Source 4.10) it is almost the same. The main difference is in

inner condition “price >= beta” which actually cuts out all the bad moves.

58

int chessAI::AIMovement(int *from, int *to, int depth)
{
 int realRange, bestInRange;
 int player, price;
 int best = -10000; //We can be sure, we find better
 int realMoveFrom[MOVESIZE];
 int realMoveTo[MOVESIZE];

 //resize vector
 if (lastMove > 44)
 {
 chessboard.push_back(std::vector<int>(120));
 chessboard.push_back(std::vector<int>(120));
 }

 //choose which one play white/black
 player = playerChoose();

 //move generator
 realRange = possibleMovement(player, realMoveFrom, realMoveTo);

 //trying of movement
 for (int i = 0; i < realRange; i++)
 {
 int doMoveReturn, minimaxReturn;
 doMoveReturn = doMove(realMoveFrom[i],realMoveTo[i]);
 if (doMoveReturn > 10) promotion(doMoveReturn, 5);
 //price = -minimax(depth); for compare
 price = -alfabeta(depth, -10000, 10000);
 lastMove--;

 if (price > best)
 {
 best = price;
 *from = realMoveFrom[i];
 *to = realMoveTo[i];
 }
 }
 return best;
}

Source 4.20 - Author´s implementation of chess artificial intelligence with alfabeta

 In the Source 4.20 is author´s implementation of chess artificial intelligence with

alfabeta algorithm. In comparing this with implementation with minimax algorithm (in

the Source 4.11) there is only one difference. The alfabeta function is called instead of

the minimax function. The alfabeta values are rewritten. The changes are certainly

simpler than parallelized algorithm.

59

Single-thread Chess Application Using Minimax:

depth: 1 2 3 4

time (ms): 81 2930 99964 around 35-times more

time (sec): 0.081 2.93 99.964 around 35-times more

time (min): 0.00135 0.0488 1.67 around 35-times more

Multi-thread AI Chess Application Using Minimax:

depth: 1 2 3 4

time (ms): 28 805 24749 around 35-times more

time (sec): 0.028 0.805 24.749 around 35-times more

time (min): 0.0005 0.0134 0.412 around 35-times more

speed-up: 292.1% 364.1% 403.9% similar to depth 3

Multi-thread Chess Application Using Alfabeta:

depth: 1 2 3 4

time (ms): 79 1726 21608 around 12-times more*

time (sec): 0.079 1.726 21.608 around 12-times more*

time (min): 0.00132 0.0288 0.360 around 12-times more*

speed-up: 102.4% 169.7% 462.6% 1337.4%*

*Presumed values
Table 4.13 - Speed-up between minimax and alfabeta

 In the Table 4.13 is speed-up between alfabeta implementation and implementation

in previous chapters. The alfabeta algorithm is faster in higher depths comparing to the

minimax algorithm. With depth one the result is almost the same. Speed-up is only

102.4%. But in the depth three is result even better than in the paralyzed minimax

462.6%. This solution is better because time critical are bigger depths. The proposed

values are derived from the next chapter 4.2.6 Multi-threaded AI Chess Application

Using Alfabeta where is expected 4-times quicker execution.

4.2.6 Multi-threaded AI Chess Application Using Alfabeta

 This chapter compares parallel solution of alfabeta algorithm. The source code is

quite clear from the Source 4.18 - Author´s implementation of chess multi-threads

artificial and the Source 4.19 - Author´s implementation of alfabeta for chess artificial .

With these two previous solutions is this one very simple.

60

Single-thread Chess Application Using Minimax:

depth: 1 2 3 4

time (ms): 81 2930 99964 around 35-times more

time (sec): 0.081 2.93 99.964 around 35-times more

time (min): 0.00135 0.0488 1.67 around 35-times more

Multi-thread AI Chess Application Using Minimax:

depth: 1 2 3 4

time (ms): 28 805 24749 around 35-times more

time (sec): 0.028 0.805 24.749 around 35-times more

time (min): 0.0005 0.0134 0.412 around 35-times more

speed-up: 292.1% 364.1% 403.9% similar to depth 3

Multi-thread Chess Application Using Alfabeta:

depth: 1 2 3 4

time (ms): 79 1726 21608 around 12-times more*

time (sec): 0.079 1.726 21.608 around 12-times more*

time (min): 0.00132 0.0288 0.360 around 12-times more*

speed-up: 102.4% 169.7% 462.6% 1337.4%*

Multi-thread AI Chess Application Using Alfabeta:

depth: 1 2 3 4

time (ms): 27 484 5512 64771

time (sec): 0.027 0.484 5.512 64.771

time (min): 0.00045 0.00807 0.0919 1.080

speed-up: 297,80% 605.0% 1813.4% 5401.7%*

*Presumed values

Table 4.14 - Speed-up between minimax and alfabeta in serial and parallel version

 In the Table 4.14 is comparison of the minimax and the alfabeta algorithm in the

serial and the parallel version. Finally it is stronger algorithm because paralyzed

alfabeta algorithm is able to search in the depth four quicker than the serial minimax

into the depth three. The speed-up in the depth four 5401.7% is only proposed. It is

computed with presumption that minimax is 35-times slower in computations in the

depth four than in the depth three. The chess program is the most user-friendly (in time

of answer) from all showed.

 If we would want stronger artificial intelligence in similar amount of time we need

12-times more compute performance or better algorithm. If it uses any of today´s

personal computers it is not have 12-times more of compute performance so the only

solution is better algorithm. This solution it is possible to divide into two possibilities:

61

another quicker algorithm or another quicker implementation. The really strong chess

artificial intelligence combines both approaches.

4.2.7 Chess Application Conclusion

The chess application confirms few possibilities of parallel programming. The first is

responsibility during the intensive computing. If this feature is not in program and

program executes too many computing (is in “not responding” state) user will probably

try to end the program in non-standard ways. Previous chapters prove that parallelism

really helps with solving this problem.

 The design of applications is very important and in case of parallel applications

(especially when is used the low-level way of parallel programming) even more. In the

case of an improper design it is harder to add parallelism. Debugging of parallel

application is much harder than serial one. In parallel application can be hidden errors

which are not almost possible to reproduce.

 In case of the suitable algorithm is not problem to paralyze it. But it can happen that

few-times more performance is not significant because of the algorithmic complexity

(see 3.2.1 Algorithmic Complexity). Sometime it is better solution to use another

algorithm or combine both of these styles.

62

5 Conclusion

In this diploma thesis is defined what parallelism is. It explains a necessary theoretical

background. The first part of the background is about important hardware features

which allow parallelism in personal computers. Then are explained important parallel

theories for this work. After this are theoretically analysed ways of parallel

programming. It describes fundamental problems and divides the parallel programming

into the low-level and the high-level.

 The practical part of diploma thesis is divided into two parts. The first part deals

with a matrix multiplication and the second part deals with a GUI (Graphical User

Interface) chess application. The matrix multiplication is implemented in several

different ways. These ways are compared together. There is confirmed a possible linear

speed-up and also a disadvantage of Hyper-Threading technology which is not often

mentioned. In this part is also confirmed that high-level ways of parallelism are easier to

implement than low-level. But in the same way as low-level programming languages,

low-level parallel ways have their place.

 In the chess application author uses parallelism in two different ways. The first one

parallelism was used for a responsible interface during intensive computing and the

second one for the speed-up. Both usages of parallelism are shown on a real program.

Author explains the importance of a good design and harder situation of debugging

parallel application compared to the serial one. There is also confirmed that parallelism

is not only one of the ways of programming and sometimes other ways bring a better

solution.

 Author fulfilled all goals, explained, showed and confirmed all proposed possibility

of parallelism. The main contribution of work is a practical demonstration and the

contribution of parallelism with comparison of the serial way. These contributions are

supported with the necessary theoretical background.

63

6 Bibliography

[1] “Architecture of Intel 80286,” [Online]. Available:

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-

KANPUR/microcontrollers/micro/ui/Course_home4_32.htm. [Accessed 8 11

2011].

[2] “Intel 80386 - A 32-bit Microprocessor with Memory Paging Facility,” [Online].

Available: http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-

KANPUR/microcontrollers/micro/lecture33/lec33_1.htm. [Accessed 8 11 2011].

[3] “Intel® Pentium® 4 Processor supporting HT Technology 3.06 GHz, 512K

Cache, 533 MHz FSB,” [Online]. Available: http://ark.intel.com/products/27499.

[Accessed 10 11 2011].

[4] “SPARC international, Inc. - Technical Documents,” [Online]. Available:

http://www.sparc.org/specificationsDocuments.html. [Accessed 18 November

2011].

[5] “Intel,” [Online]. Available: http://software.intel.com/file/3914. [Accessed 15

November 2011].

[6] L. Chao, “Intel Technology Journal,” 14 February 2002. [Online]. Available:

http://www.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threa

ding_technology.pdf. [Accessed 10 11 2011].

[7] “Hyper-Threading detailně,” 22 November 2002. [Online]. Available:

http://www.pctuning.cz/ilustrace/HyperThreading/ideal%%20HT.gif. [Accessed

1521 January 2010].

[8] “Oracle Solaris,” [Online]. Available: http://www.oracle.com/us/products/servers-

storage/solaris/overview/index.html. [Accessed 25 November 2011].

[9] D. Gove, Multicore Application Programming, Crawfordsville: Pearson

Education, Inc., 2010.

[10] “Svět hardware,” [Online]. Available:

http://www.svethardware.cz/sh/media.nsf/v/F8E28DBA4EA6C1DCC1256FE600

64

6F88. [Accessed 30 11 2011].

[11] D. V., Architektura a programování paralelních systémů, Brno: VUTIUM, 2004.

[12] P. Jakub Černý, “Základní grafové algoritmy,” [Online]. Available:

http://kam.mff.cuni.cz/~kuba/ka/. [Accessed 2 12 2011].

[13] Daniel, 2 May 2009. [Online]. Available:

http://upload.wikimedia.org/wikipedia/commons/thumb/e/ea/AmdahlsLaw.svg/20

00px-AmdahlsLaw.svg.png. [Accessed 5 December 2011].

[14] D. Gove, “Multicore Application Programming: Identifying Opportunities for

Parallelism,” 9 November 2010. [Online]. Available:

http://www.informit.com/content/images/chap3_9780321711373/elementLinks/g

ove_3-12.jpg. [Accessed 5 December 2011].

[15] “POSIX.1, POSIX.1b and POSIX.1c,” LynuxWorks™, Inc., [Online]. Available:

http://www.lynuxworks.com/products/posix/posix2.php3. [Accessed 10

Decenmer 2011].

[16] R. Johnson, “POSIX Threads (pthreads) for win32,” [Online]. Available:

http://sourceware.org/pthreads-win32/. [Accessed 10 December 2011].

[17] “Class Thread,” [Online]. Available:

http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Thread.html. [Accessed 14

December 2011].

[18] http://qt-project.org/doc/qt-4.8/qthread.html, “QThread Class Reference,”

[Online]. Available: http://qt-project.org/doc/qt-4.8/qthread.html. [Accessed 14

December 2011].

[19] “Thread Support in Qt,” Qt Project Hosting, [Online]. Available: http://qt-

project.org/doc/qt-4.8/threads.html. [Accessed 14 December 2011].

[20] “Automatic Parallelization with Intel® Compilers,” [Online]. Available:

http://software.intel.com/file/39655. [Accessed 2011 December 21].

[21] J. Reinders, “Parallelism as a First Class Citizen in C and C++, the time has

come,” 9 August 2011. [Online]. Available: http://software.intel.com/en-

us/blogs/2011/08/09/parallelism-as-a-first-class-citizen-in-c-and-c-the-time-has-

come/. [Accessed 21 December 2011].

65

[22] B. Barney, “OpenMP,” [Online]. Available:

https://computing.llnl.gov/tutorials/openMP/. [Accessed 21 December 2011].

[23] “Concurrent Programming,” [Online]. Available: http://qt-project.org/doc/qt-

4.8/threads-qtconcurrent.html. [Accessed 21 December 2011].

[24] “Compare Intel® Products,” [Online]. Available:

http://ark.intel.com/compare/52213,33924,50176,27482. [Accessed 1 January

2012].

[25] L. V. Allis, Searching for Solutions in Games and Arti, University of Limburg in

Maastricht, 1994.

[26] “Qt library 4.8 | Documentation | Qt Developer Network,” [Online]. Available:

http://qt-project.org/doc/qt-4.8/. [Accessed 2012].

[27] J. Blanchette and M. Summerfield, C++ GUI Programming with Qt 4, Second

Edition, New Jersey: Prentice Hall, 2008.

[28] S. Prata, Mistrovství v C++, Praha: Computer Press, 2007.

[29] J. L. Bradley L. Jones, Naučte se C++ za 21 dní, Praha: Computer Press, 2007.

[30] H.-P. Messmer and K. Dembowski, Velká kniha hardware, Brno: CP Books,

2005.

66

7 Supplements

7.1 List of images

Picture 3.1 – Ideal function of Hyper-Threading technology [5] .. 8

Picture 3.2 - Ideal function of Hyper-Threading technology [7] ... 9

Picture 3.3 – Single and multicore processors in compare without HeatSpreader [10] 11

Picture 3.4 – Scaling with different parallel portion according Amdahl´s Law [13] 15

Picture 3.5 - Scaling with different parallel portion in real [14] .. 16

Picture 4.6 – Chess program is in “not responding” state ... 47

Picture 4.7 - Chess program which is “not responding” and was partially overlaid 48

Picture 4.8 - Chess program is responsible even during intensive processing. 52

7.2 List of tables

Table 3.1 – Time complexity of different algorithm with presumption 10
9

execute

operations for second [12] ... 13

Table 4.2 – C++ matrix multiplication time of execution in milliseconds 23

Table 4.3 - Result of OpenMP matrix multiplication implementation 26

Table 4.4 - Results of POSIX Thread matrix multiplication implementation 29

Table 4.5 – Result of Windows threading matrix multiplication implementation 31

Table 4.6 - Result of QThread matrix multiplication implementation 33

Table 4.7 – Java matrix multiplication time of execution in milliseconds 35

Table 4.8 - Results of Java multi-threaded matrix multiplication implementation 37

Table 4.9 – Compare of results of different implementations .. 38

Table 4.10 - Disadvantage of HT, comparison with the same processor with HT off 40

Table 4.11 – Time of single-threaded minimax computing ... 46

Table 4.12 – Speed-up between serial and parallel implementation of minimax 56

Table 4.13 - Speed-up between minimax and alfabeta .. 59

Table 4.14 - Speed-up between minimax and alfabeta in serial and parallel version 60

7.3 List of source codes

Source 3.1 – C++ source code where can occurs data race .. 17

Source 4.2 – Matrix multiplication C++ serial implementation ... 23

Source 4.3 - Matrix multiplication C++ OpenMP implementation .. 24

Source 4.4 -Matrix multiplication C++ POSIX Thread implementation. 28

67

Source 4.5 - Matrix multiplication C++ Windows Threading implementation. 30

Source 4.6 - Matrix multiplication C++ Qt framework implementation 32

Source 4.7 - Matrix multiplication Java serial implementation .. 34

Source 4.8 - Matrix multiplication Java multi-threaded implementation 36

Source 4.9 – Infinite loop for fully workloaded processor .. 40

Source 4.10 – Author´s implementation of minimax for chess artificial intelligence 43

Source 4.11 – Author´s implementation of chess artificial intelligence 44

Source 4.12 – Implementation of chessboard 10*12 ... 45

Source 4.13 – Call of the AIMovement function (Source 4.11) from GUI class 46

Source 4.14 – Graphical user interface in another thread .. 49

Source 4.15 – The single-threaded “moveBack()” function from the chapter 0 51

Source 4.16 – Multi-threaded implementation of the “moveBack()” function in this chapter .. 51

Source 4.17 – The ideal multi-threaded implementation of the “moveBack()” function ... 51

Source 4.18 - Author´s implementation of chess multi-threads artificial intelligence 54

Source 4.19 - Author´s implementation of alfabeta for chess artificial intelligence 57

Source 4.20 - Author´s implementation of chess artificial intelligence with alfabeta 58

7.4 Attached Files

In the “Chess” directory are all executable instances of the chess program with

necessary dynamic libraries. In the “MatrixMultiplication” directory are all executable

instances of matrix multiplication programs with the source code and necessary

libraries. In “MM_Compute_test_result” are raw output data.

68

7.5 Complete Results of Matrix Multiplication

Pentium 4 650 serial multi-threaded

 1 2 4 8 x

1) OpenMP average: 12265.6 14550.8 14455.5 14491.3 14485.85 14544.6

1) OpenMP speed-up: 100.00% 118.63% 117.85% 118.15% 118.10% 118.58%

1) POSIX average: 12265.6 13089.15 13096.85 13101.5 13098.55 13090.5

1) POSIX speed-up: 100.00% 106.71% 106.78% 106.81% 106.79% 106.73%

1) Qt average: 12265.6 13071.15 13038.25 13051.6 13057.25 13068.7

1) Qt speed-up: 100.00% 106.57% 106.30% 106.41% 106.45% 106.55%

1) Window average: 12265.6 13089.8 13092.9 13103.05 13103.85 13095.25

1) Window speed-up: 100.00% 106.72% 106.74% 106.83% 106.83% 106.76%

1) Java average: 18321.85 17530.9 17527.5 17511.25 17535.55 17540.7

1) Java speed-up: 100.00% 104.51% 104.53% 104.63% 104.48% 104.45%

2) OpenMP average: 12331.15 14637.5 10825.8 10779.05 11162.25 10824.95

2) OpenMP speed-up: 100.00% 118.70% 87.79% 87.41% 90.52% 87.79%

2) POSIX average: 12331.15 13156.3 9549.2 9571.15 9607.95 9571.05

2) POSIX speed-up: 100.00% 106.69% 77.44% 77.62% 77.92% 77.62%

2) Qt average: 12331.15 13104.05 9578 9584.15 9585.05 9589.8

2) Qt speed-up: 100.00% 106.27% 77.67% 77.72% 77.73% 77.77%

2) Window average: 12331.15 13146.8 9573.5 9559.4 9617.9 9571.25

2) Window speed-up: 100.00% 106.61% 77.64% 77.52% 78.00% 77.62%

2) Java average: 18487.15 17613.75 13133.65 13145.25 13164.15 13145.6

2) Java speed-up: 100.00% 104.96% 140.76% 140.64% 140.44% 140.63%

3) OpenMP average: 12264.85 14468.05 14392.85 14412.55 14421.9 14461.75

3) OpenMP speed-up: 100.00% 117.96% 117.35% 117.51% 117.59% 117.91%

3) POSIX average: 12264.85 13128 13353.05 13739.1 14025.7 13108.75

3) POSIX speed-up: 100.00% 107.04% 108.87% 112.02% 114.36% 106.88%

3) Qt average: 12264.85 13216.5 12961 12982.15 12986.6 13000

3) Qt speed-up: 100.00% 107.76% 105.68% 105.85% 105.88% 105.99%

3) Window average: 12264.85 13207.7 13360.15 13752.55 14087.3 13166.35

3) Window speed-up: 100.00% 107.69% 108.93% 112.13% 114.86% 107.35%

3) Java average: 18248.4 17535.35 17753.9 17899.75 18311.05 17594.55

3) Java speed-up: 100.00% 104.07% 102.79% 101.95% 99.66% 103.72%

4) OpenMP average: 14782.8 19983.75 10872.65 10752.9 11070.9 10815

4) OpenMP speed-up: 100.00% 135.18% 73.55% 72.74% 74.89% 73.16%

4) POSIX average: 14782.8 17007.9 9735.1 9897.7 9917.25 9596.85

4) POSIX speed-up: 100.00% 115.05% 65.85% 66.95% 67.09% 64.92%

4) Qt average: 14782.8 16927.45 9603.9 9644 9595.3 9598.35

4) Qt speed-up: 100.00% 114.51% 64.97% 65.24% 64.91% 64.93%

4) Window average: 14782.8 16926.65 9600.95 9946.15 9867.15 9617.2

4) Window speed-up: 100.00% 114.50% 64.95% 67.28% 66.75% 65.06%

4) Java average: 26727.15 25155.9 13178 13298.6 13585.05 13228.35

4) Java speed-up: 100.00% 106.25% 202.82% 200.98% 196.74% 202.04%

1) without Hyper-Threading (HT), 2) with HT, 3) infinite loop, 4) infinite loop with HT

69

Core i7-2600 serial multi-threaded

 1 2 4 8 x

1) OpenMP average: 6257.9 6014.4 3003.85 1507 1602.05 1498.65

1) OpenMP speed-up: 100.00% 96.11% 48.00% 24.08% 25.60% 23.95%

1) POSIX average: 6257.9 6181.9 3056.65 1516.75 1529.95 1528.65

1) POSIX speed-up: 100.00% 98.79% 48.84% 24.24% 24.45% 24.43%

1) Qt average: 6257.9 6239.9 3099.65 1563.55 1581.4 1564.65

1) Qt speed-up: 100.00% 99.71% 49.53% 24.99% 25.27% 25.00%

1) Window average: 6257.9 6105 3026.7 1519.75 1531.95 1531.15

1) Window speed-up: 100.00% 97.56% 48.37% 24.29% 24.48% 24.47%

1) Java average: 6602.35 6339.2 3134.95 1568.55 1567.55 1568.5

1) Java speed-up: 100.00% 104.15% 210.60% 420.92% 421.19% 420.93%

2) OpenMP average: 6261.5 5937.25 3003.2 1536.65 1559.65 1545.6

2) OpenMP speed-up: 100.00% 94.82% 47.96% 24.54% 24.91% 24.68%

2) POSIX average: 6261.5 6029.2 3051.45 1606.5 1585.2 1590.95

2) POSIX speed-up: 100.00% 96.29% 48.73% 25.66% 25.32% 25.41%

2) Qt average: 6261.5 6229.8 3116.6 1575.55 1593.15 1594.15

2) Qt speed-up: 100.00% 99.49% 49.77% 25.16% 25.44% 25.46%

2) Window average: 6261.5 6100.6 3052.15 1540.05 1584.4 1584.2

2) Window speed-up: 100.00% 97.43% 48.74% 24.60% 25.30% 25.30%

2) Java average: 100.00% 102.64% 205.15% 406.58% 395.20% 395.25%

2) Java speed-up: 105.84% 99.95% 50.03% 26.49% 26.03% 25.92%

3) OpenMP average: 6249.1 5947.6 2998.6 1513.8 1602.15 1512

3) OpenMP speed-up: 100.00% 95.18% 47.98% 24.22% 25.64% 24.20%

3) POSIX average: 6249.1 6097.55 3025.25 3131.95 2369.95 3107.25

3) POSIX speed-up: 100.00% 97.57% 48.41% 50.12% 37.92% 49.72%

3) Qt average: 6249.1 6228.1 3125.05 1564.45 1565.35 1584.35

3) Qt speed-up: 100.00% 99.66% 50.01% 25.03% 25.05% 25.35%

3) Window average: 6249.1 6096.2 3042.2 3311 3049.7 3109.2

3) Window speed-up: 100.00% 97.55% 48.68% 52.98% 48.80% 49.75%

3) Java average: 6572.45 6244.65 5172.35 4453 3891.35 3511.25

3) Java speed-up: 100.00% 105.25% 127.07% 147.60% 168.90% 187.18%

4) OpenMP average: 6089.7 7055.45 3553.15 2348.1 1570.6 1572.65

4) OpenMP speed-up: 100.00% 115.86% 58.35% 38.56% 25.79% 25.82%

4) POSIX average: 6089.7 6191.8 3142.8 2310.9 2272.2 2327.35

4) POSIX speed-up: 100.00% 101.68% 51.61% 37.95% 37.31% 38.22%

4) Qt average: 6089.7 6241 3162.95 1586.6 1624.05 1586.25

4) Qt speed-up: 100.00% 102.48% 51.94% 26.05% 26.67% 26.05%

4) Window average: 6089.7 6211.6 3102.1 2087.25 2353.25 2353.55

4) Window speed-up: 100.00% 102.00% 50.94% 34.28% 38.64% 38.65%

4) Java average: 9357.6 8930.05 4531.8 2748 3528.55 3456.05

4) Java speed-up: 100.00% 104.79% 206.49% 340.52% 265.20% 270.76%

1) without Hyper-Threading (HT), 2) with HT, 3) infinite loop, 4) infinite loop with HT

70

Pentium P6200 serial multi-threaded

 1 2 4 8 x

1) OpenMP average: 14803.95 17810.3 8576.35 8721.85 8599.8 9035.25

1) OpenMP speed-up: 100.00% 120.31% 57.93% 58.92% 58.09% 61.03%

1) POSIX average: 14803.95 16503.5 8130.85 8208.8 8291.25 7871.15

1) POSIX speed-up: 100.00% 111.48% 54.92% 55.45% 56.01% 53.17%

1) Qt average: 14803.95 15785.6 7737.35 8424.35 7953 8035.45

1) Qt speed-up: 100.00% 106.63% 52.27% 56.91% 53.72% 54.28%

1) Window average: 14803.95 17711.4 8537.05 8539.5 8678.1 8600.2

1) Window speed-up: 100.00% 119.64% 57.67% 57.68% 58.62% 58.09%

1) Java average: 21222.65 20241.4 9918.85 9783.1 9547.55 9712.65

1) Java speed-up: 100.00% 104.85% 213.96% 216.93% 222.28% 218.51%

2) OpenMP average: 16295.45 17830.4 9119.95 8819 9163.35 9056.8

2) OpenMP speed-up: 100.00% 109.42% 55.97% 54.12% 56.23% 55.58%

2) POSIX average: 16295.45 17066.6 8376.6 8513.65 8661.2 8425.4

2) POSIX speed-up: 100.00% 104.73% 51.40% 52.25% 53.15% 51.70%

2) Qt average: 16295.45 16232.4 8170.8 7833.5 8136.3 8090.35

2) Qt speed-up: 100.00% 99.61% 50.14% 48.07% 49.93% 49.65%

2) Window average: 16295.45 16807.1 8419.2 8661.5 8748.7 8814.7

2) Window speed-up: 100.00% 103.14% 51.67% 53.15% 53.69% 54.09%

2) Java average: 21109.05 20335.25 10161.05 11666.4 10604.55 10226.05

2) Java speed-up: 100.00% 103.81% 207.74% 180.94% 199.06% 206.42%

Core 2 Quad Q9550 serial multi-threaded

 1 2 4 8 x

1) OpenMP average: 7140.55 7838.6 3927.55 1974.25 1997.65 1976.2

1) OpenMP speed-up: 100.00% 109.78% 55.00% 27.65% 27.98% 27.68%

1) POSIX average: 7140.55 6303.25 3161.1 1593.05 1601 1594.95

1) POSIX speed-up: 100.00% 88.27% 44.27% 22.31% 22.42% 22.34%

1) Qt average: 7140.55 6273.8 3148.4 1595.25 1591.35 1590.1

1) Qt speed-up: 100.00% 87.86% 44.09% 22.34% 22.29% 22.27%

1) Window average: 7140.55 6295.55 3159.6 1596.6 1602.05 1595.15

1) Window speed-up: 100.00% 88.17% 44.25% 22.36% 22.44% 22.34%

1) Java average: 10674.15 10032.7 5040.9 2684 2593.25 2669.1

1) Java speed-up: 100.00% 106.39% 211.75% 397.70% 411.61% 399.92%

2) OpenMP average: 7156.15 7794.95 3953.05 2043.9 1991.75 2256.55

2) OpenMP speed-up: 100.00% 108.93% 55.24% 28.56% 27.83% 31.53%

2) POSIX average: 7156.15 6333.6 3203.1 3052.1 2401.85 3160.7

2) POSIX speed-up: 100.00% 88.51% 44.76% 42.65% 33.56% 44.17%

2) Qt average: 7156.15 6273.55 3175.35 1631.95 1710.1 1659.8

2) Qt speed-up: 100.00% 87.67% 44.37% 22.80% 23.90% 23.19%

2) Window average: 7156.15 6307.65 3214.2 3050.25 2501.4 2883.5

2) Window speed-up: 100.00% 88.14% 44.92% 42.62% 34.95% 40.29%

2) Java average: 10575.55 10030.35 5211.85 4769.9 4116.25 4965.45

2) Java speed-up: 100.00% 105.44% 202.91% 221.71% 256.92% 212.98%

1) standard setting, 2) with infinite loop

