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ABSTRACT
The thesis proposes an energy-efficient processor architecture for computing a Fast Fou-
rier Transform (FFT) using a Transport Triggered Architecture (TTA) template. The
architecture was specifically tailored to a custom instruction schedule using several cus-
tom functional units (FU). The instruction schedule for computing the algorithm was
developed in a way that most of the computation is done in a loop containing only
one instruction word. This word is stored into an instruction loop buffer which is more
power-efficient than a regular memory storage. Thus a power consumption is reduced.
Python programs for reference generation and automatic verification of the timed model
were developed to aid the design process. A timed model of the processor and the in-
struction schedule were developed, the approach was verified, and further improvements
are suggested.

KEYWORDS
Fast Fourier Transform, Transport-Triggered Architecture, TTA-Based Co-Design Envi-
ronment, Application-Specific Processor, Python, C, VHDL

ABSTRAKT
V této práci je navrhnut energeticky úsporný procesor typu TTA (Transport Triggered
Architecture) pro výpočet rychlé Fourierovy transformace (FFT). Návrh procesoru byl
vytvořen na míru použitému algoritmu pomocí speciálních funkčních jednotek. Algorit-
mus byl realizován jako posloupnost instrukcí tak, že většina výpočtu probíhá ve smyčce
obsahující pouze jedinou paralelní instrukci. Tato instrukce je umístěna do instrukčního
bufferu, odkud je potom volána místo instrukční paměti. Díky tomu je docíleno nižší
spotřeby, neboť čtení z instrukčního bufferu je efektivnější než čtení z běžné paměti.
Součástí práce jsou rovněž pomocné programy v Pythonu, které slouží ke generaci re-
ferenčních výsledků a automatické simulaci a porovnání výsledků simulace s referencí.
Program byl zkompilován na časovém modelu procesoru a časová simulace potvrdila
správnost návrhu.
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INTRODUCTION
In the current days of a massive integration of digital circuits into smaller and smaller
chips and growing demands on computation complexity, we face several important
decisions when designing a DSP (Digital Signal Processing) application. One of them
to choose the optimal platform.

On one end there are ASICs (Application Specific Integrated Circuits) which are
custom made chips finely tuned for the application. This approach offers the best
possible performance, energy-efficiency and area requirements. ASIC design requires
a lot of time and production of these circuits is expensive when done in smaller series.
Most often ASIC circuits are optimized for one single use and therefore are inflexible
- meaning that for another application we need another ASIC.

On the other side stand programmable solutions such as GPP (General Purpose
Processor). These offer very good flexibility and short design times. If our application
is very specific or demanding, though, they might suffer from limited performance
and too high power consumption.

A solution to the dilemma can be found in ASPs (ASPs). They are hardware-
optimized towards one application (i.e. computing FFT - Fast Fourier Transform)
or an application domain (a group of related applications). Their performance can
be brought closer to an optimized ASIC. However, they are still programmable and
thus have a certain level of flexibility. With the use of modern development tools
(such as TCE, see 2.2) it is possible to prototype and simulate architectures quickly
which allows for rapid development.

The processor architecture proposed to this work is a Transport-Triggered Ar-
chitecture (TTA). It resembles a traditional VLIW (Very Long Instruction Word)
architecture. Compared to VLIW it allows the designer to specify data transports
over the transportation network which allows more fine-tuned control over the pro-
gram flow while retaining the flexibility of a programmable processor. The TTA’s
internal structure also suggests strong use of parallelism where several instructions
can be executed at the same time. Hardware optimizations can be done by designing
special hardware functional units which are directly accessible from the instruction
set. This makes TTA suitable for demanding DSP applications.

The goal of this thesis is to design a TTA processor for computing FFT with a
programmable length. A processor architecture suggested in a dissertation of Teemu
Pitkänen [Pitkänen, 2014] has been used as a basis for the work. This thesis further
improves the functionality, most notably reducing the length of a main computation
loop to only one instruction.
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1 FOURIER TRANSFORMS
Discrete Fourier Transform (DFT) is arguably one of the most frequently used al-
gorithms in digital signal processing. It converts a finite sequence of equally spaced
samples of a signal into a sequence of equally spaced coefficients. These represent
amplitudes of complex sinusoids. We can write this relation as follows [Oppenheim
and Schafer, 1989]:

𝑋(𝑘) = 1
𝑁

𝑁−1∑︁
𝑛=0

𝑥(𝑛)𝑊 𝑘𝑛
𝑁 , (1.1)

where 𝑊𝑁 denotes a complex sinusoid:

𝑊𝑁 = 𝑒−𝑗2𝜋/𝑁 = cos (2𝜋/𝑁) − 𝑗 sin (2𝜋/𝑁) . (1.2)

The sequence 𝑋(𝑘) is the Fourier series and 𝑥(𝑛) is the input sampled signal. Both
𝑘 and 𝑛 are integers in the interval [0, 𝑁 − 1] where 𝑁 is the size of the Fourier
transform. 𝑗 is the imaginary unit.

A direct calculation of 1.1 would require 𝑁2 operations (complex multiplication
followed by a complex addition). It is possible to reduce the computation complexity
by decomposing the DFT into a series of smaller DFTs [Cooley and Turkey, 1965].
Sections 1.1 - 1.4 are dedicated to this problem.

By examining the coefficients 𝑊𝑁 = 𝑒−𝑗2𝜋/𝑁 it is possible to observe certain
periodicities and symmetries which can be exploited to reduce both a memory usage
and a computation complexity. This topic is further described in Sections 1.5 - 1.6.

1.1 Radix-𝑝 Algorithms
According to Cooley-Turkey principle [Cooley and Turkey, 1965], if we can divide
𝑁 = 𝑃𝑄, then 𝑁 -point DFT can be computed using 𝑃 -point and 𝑄-point DFTs.
If we can further decompose the DFT in a way that 𝑁 = 𝑝𝑞, we talk about radix-𝑝
FFT algorithm. In this work we concentrate only on radix-2 and radix-4 algorithms.

In general there are two approaches to the FFT computation. First one, Decimation-
in-time (DIT) is based on successively decomposing the input sequence 𝑥(𝑛) in
smaller subsequences. Inversely, Decimation-in-frequency (DIF) algorithm is based
on dividing the output sequence 𝑋(𝑘) [Oppenheim and Schafer, 1989]. Both ap-
proaches are equivalent in terms of an arithmetic complexity. The DIT algori-
thm, however, seems to show better SQNR (Signal-to-Quantization-Noise Ratio)
for radix-2 and radix-4 FFTs implemented with a finite word length arithmetic
[Chang and Nguyen, 2008]. Further implementation will consider this approach.
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1.2 Radix-2
If it is possible to decompose the DFT into a structure where only 2-point DFTs
are used, the algorithm is called radix-2. This means that the length of the sequence
must be 𝑁 = 2𝑞. We can divide the input sequence 𝑥(𝑛) into two subsequences of
even and odd numbered 𝑛-s. By substituting 𝑛 = 2𝑟 for 𝑛 even and 𝑛 = 2𝑟 + 1 for
𝑛 odd we obtain [Oppenheim and Schafer, 1989]

𝑋(𝑘) =
𝑁/2−1∑︁

𝑟=0
𝑥(2𝑟)𝑊 2𝑟𝑘

𝑁 +
𝑁/2−1∑︁

𝑟=0
𝑥(2𝑟 + 1)𝑊 (2𝑟+1)𝑘

𝑁

=
𝑁/2−1∑︁

𝑟=0
𝑥(2𝑟)(𝑊 2

𝑁)𝑟𝑘 + 𝑊 𝑘
𝑁

𝑁/2−1∑︁
𝑟=0

𝑥(2𝑟 + 1)(𝑊 2
𝑁)𝑟𝑘 .

(1.3)

With the knowledge of 𝑊 2
𝑁 = 𝑊𝑁/2 we can rewrite the previous equation in the

following form (substituting 𝑛 by 2𝑟 or 2𝑟 + 1):

𝑋(𝑘) =
𝑁/2−1∑︁

𝑟=0
𝑥(2𝑟)𝑊 𝑟𝑘

𝑁/2 + 𝑊 𝑘
𝑁

𝑁/2−1∑︁
𝑟=0

𝑥(2𝑟 + 1)𝑊 𝑟𝑘
𝑁/2

= 𝐺(𝑘) + 𝑊 𝑘
𝑁𝐻(𝑘) .

(1.4)

The coefficients 𝑊 𝑘
𝑁 are called twiddle factors. In the former equation, 𝐺(𝑘) and

𝐻(𝑘) are two 𝑁/2-point DFTs. Since 𝑁 = 2𝑞 we can apply the same principle by
dividing each of them into two parts again. Thus we would obtain 4 𝑁/4-point DFTs.
By repeating 𝑞-times we can proceed until the computation is reduced to only 2-point
DFTs. This elementary 2-point DFT is called a radix-2 butterfly and its dataflow is
illustrated in Fig. 1.1. Arrows denote a multiplication (when no operand is present,
1 is assumed - therefore just a straight transmission), additions are denoted by a
plus sign in a circle. Solid black dot denotes a signal junction.

𝑊 𝑟
𝑁 -1

𝑥0

𝑥1

𝑦0

𝑦1

Fig. 1.1: Radix-2 butterfly

For the radix-2 butterfly it is possible to write

𝑦0 = 𝑥0 + 𝑊 𝑟
𝑁𝑥1

𝑦1 = 𝑥0 − 𝑊 𝑟
𝑁𝑥1 .

(1.5)
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The resulting arithmetic complexity for one butterfly is two complex additions and
one complex multiplication. Each stage contains 𝑁/2 butterflies and the whole al-
gorithm has log2 𝑁 stages. For the whole 𝑁 -point FFT 𝑁 log2 𝑁 complex additions
and 𝑁/2 log2 𝑁 complex multiplications are needed.

1.3 Radix-4
If a sequence can be computed using only 4-point DFTs, the algorithm is called radix-
4. This implies that the size of the sequence has to be 𝑁 = 4𝑞. Radix-2 algorithm
divides the input sequence 𝑥(𝑛) into two subsequences according to 𝑛 being even or
odd ( mod 2). Radix-4 FFT divides the sequence into 4 𝑁/4 DFTs based on 𝑛 mod 4.
In the next stage we break each of the 𝑁/4 stage into 4 parts again and continue
until the computation is reduced to an elementary 4-point DFT - radix-4 butterfly.
The resulting sequence can be written as follows (with 𝑛 substituted by 4𝑟, 4𝑟 + 1,
4𝑟 + 2 or 4𝑟 + 3 and 𝑊 4

𝑁 = 𝑊𝑁/4):

𝑋(𝑘) = 1
𝑁

𝑁−1∑︁
𝑘=0

𝑥(𝑛)𝑊 𝑘𝑛
𝑁

=
𝑁/4−1∑︁

𝑟=0
𝑥(4𝑟)𝑊 𝑟𝑘

𝑁/4 + 𝑊 𝑘
𝑁

𝑁/4−1∑︁
𝑟=0

𝑥(4𝑟 + 1)𝑊 𝑟𝑘
𝑁/4

+ 𝑊 2𝑘
𝑁

𝑁/4−1∑︁
𝑟=0

𝑥(4𝑟 + 2)𝑊 𝑟𝑘
𝑁/4 + 𝑊 3𝑘

𝑁

𝑁/4−1∑︁
𝑟=0

𝑥(4𝑟 + 3)𝑊 𝑟𝑘
𝑁/4

(1.6)

The radix-4 butterfly structure is shown in Fig. 1.2 and its output can be written
according to the Equation 1.7.

𝑦0 = 𝑥0 + 𝑊 𝑘1
𝑁 𝑥1 + 𝑊 𝑘2

𝑁 𝑥2 + 𝑊 𝑘3
𝑁 𝑥3

𝑦1 = 𝑥0 − 𝑗𝑊 𝑘1
𝑁 𝑥1 − 𝑊 𝑘2

𝑁 𝑥2 + 𝑗𝑊 𝑘3
𝑁 𝑥3

𝑦2 = 𝑥0 − 𝑊 𝑘1
𝑁 𝑥1 + 𝑊 𝑘2

𝑁 𝑥2 − 𝑊 𝑘3
𝑁 𝑥3

𝑦3 = 𝑥0 + 𝑗𝑊 𝑘1
𝑁 𝑥1 − 𝑊 𝑘2

𝑁 𝑥2 − 𝑗𝑊 𝑘3
𝑁 𝑥3

(1.7)

One radix-4 butterfly has an arithmetic complexity of 6 complex additions and
3 complex multiplications as shown in Fig.1.2. Each stage contains 𝑁/4 butterflies
and the whole radix-4 FFT can be performed in log4 𝑁 stages. Therefore, the total
arithmetic cost is 3𝑁 log4 𝑁 complex additions and 3𝑁

4 log4 𝑁 complex multiplicati-
ons which is less than in radix-2 algorithm. Apart from that the number of stages
is halved compared to radix-2.
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Fig. 1.2: Radix-4 butterfly can be computed combining several radix-2 butterflies

Higher-than-four radices (i.e. 8) are also possible to reduce the arithmetic com-
plexity but they require more complex butterfly coefficients than trivial ±1 and
±𝑗.

The main limitation of radix-4 (and any higher) FFT is that it requires 𝑁 to be
a power of four which greatly reduces the possible FFT sizes. This limitation can
be overcome by using a mixed radix approach described in Section 1.4.

1.4 Mixed Radix
Mixed radix FFT is used in cases where we want the advantages of radix-4 FFT
but also need to support all FFT sizes 𝑁 = 2𝑞. The mixed radix FFT computes all
stages except the last one using radix-4 butterflies. If 𝑞 is an odd number the last
stage is computed with radix-2 butterflies, otherwise radix-4 is used even for the
last stage. This is the approach used in the thesis work.
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1.5 Twiddle Factors
A special attention needs to be paid to the FFT coefficients - twiddle factors. They
have the following form:

𝑊 𝑘
𝑁 = 𝑒−𝑗2𝜋𝑘/𝑁 = cos (2𝜋𝑘/𝑁) − 𝑗 sin (2𝜋𝑘/𝑁) . (1.8)

It can be observed that they are points on a complex unity circle, as shown in
Figure 1.3. The figure contains all twiddle factors needed for computing FFT of
size 64 (radix-4). Twiddle factors of sizes 32 (mixed radix) and 16 (radix-4) are
shown using different markers and it is possible to obtain them from the 64-FFT
coefficients.

In [Pitkänen, 2014], different methods of generating the twiddle factors are com-
pared. Generally speaking we want to avoid direct computation which can create an
unnecessary resource overhead. Instead, a method based on a Lookup Table (LUT)
is used. All the necessary twiddle factors are pre-computed and stored into a me-
mory for a future access. For relatively small FFT sizes (on which we focus) this
method is the fastest and more memory efficient than some iterative polynomial me-
thods. The LUTs require more memory (and therefore area) with increasing FFT
sizes. However, it is not necessary to store all the twiddle factors. Possible memory
optimization is described in Section 1.6.

1.6 Memory Optimization
According to Sections 1.2 and 1.3 the total number of radix-2 (radix-4) butterflies is
𝑁/2 log2 𝑁 (𝑁/4 log4 𝑁). Each butterfly contains 1 (3) multiplications with a non-
trivial (not equal to one) twiddle factor. If we assume 𝑁 = 64, the needed amount
of memory entries in the LUT would need to be 192 (144).

However, if we allow some additional logic before the LUT it is possible to reduce
the number of memory entries to the first 𝑁/8+1 coefficients [Pitkänen et al., 2007]
from the first octant (sector B0 in the Figure 1.3). FFT of a size 64, therefore, needs
only the first 9 values. Other values can be computed from the first octant by simple
operations such as inverting the real and imaginary parts and multiplying by −1.
In Figure 1.3, the relation needed to obtain the value in each sector is shown in the
sector. Asterisk sign * denotes a complex conjugate operation.
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Fig. 1.3: Twiddle factors of FFT size 64
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2 TRANSPORT TRIGGERED ARCHITECTURE
The proposed architecture for our FFT application is based on a Transport-Triggered
Architecture (TTA) template [Corporal, 1998]. The architecture resembles a VLIW
(Very Long Instruction Word) processor architecture ([Fisher, 1983], [Philips Semi-
conductors, 2011]). Its principle and advantages over VLIW are described in Section
2.1. A special tool for designing TTA processors, developed by Department of Per-
vasive Computing at TUT, is introduced in Section 2.2.

2.1 TTA Overview
Transport Triggered Architecture is a processor architecture where a designer has
a full control over the data transports, specifying both a source and a destination.
The instruction set has only one instruction: move. To perform an operation (e.g.
AND) we first move an operand data to an operand input of a FU (Functional Unit).
Operation itself is triggered by moving a data to a trigger input of the FU. After
the operation is performed we can collect the result from the output of the FU.

The data is transported using an interconnection network which consists of a
number of parallel buses connected to the inputs and outputs of FUs. The maximum
number of moves performed in one clock cycle is limited by the number of buses. One
bus can perform only one data transport per clock cycle (since it is just a wire). The
number of buses is customizable as well as which FU inputs/outputs are connected
to which buses. Furthermore, there is no limitation on the number of inputs and
outputs of FUs.

The key property of TTA is that we can move data between functional units
without the need to store them in Register Files (RF). FUs can distribute data
between each other and thus reducing the pressure put on RFs. We can have RFs
with a lower number of read and write ports and it is possible to implement them
as traditional functional units [Corporal, 1998].

Some FUs have an access to a data memory. These are called LSUs (Load-
Store Units). The program instructions are stored in an IM (Instruction Memory)
and executed by a GCU (General Control Unit) which decodes them into the data
transports.

An example architecture can be found in Fig. 2.1. The Interconnection Network
consists of 6 buses. To these buses inputs and outputs of FUs, GCU, RFs and LSU
are connected in a desired way. Connections to the buses are marked by a dot. Small
asterlisks near the inputs of FUs mark the trigger input. By writing data to this
port the desired operation will be triggered. Each FU can have multiple operations
which are distinguished by an opcode provided with a data in the trigger port (the
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opcode is generated automatically by the compiler). These operations can be generic
(ADD, MUL, SHIFT, etc.) or we have the possibility to design our own and connect
them via a standardized interface.

GCU FU1 FU2 RF1 RF2 LSU

Instruction memory Data memory

Interconnection Network

* **

Fig. 2.1: Example of a TTA processor configuration

2.2 TTA-Based Co-Design Environment
TTA-Based Co-Design Environment (TCE) [Esko et al., 2010] is a TTA design
toolset for a complete processor design and simulation from the high-level langu-
ages (C/C++) down to RTL (Register-Transfer Level) description (with support of
VHDL or Verilog).

The toolset consists of a group of programs more or less tied together, someti-
mes wrapped in a GUI (Graphical User Interface). Future paragraphs give a brief
overview of the ones used in this project. More info can be found in the toolset’s
documentation [CPC Group, 2017].

ProDe Processor Designer is a GUI program where the architecture is defined.
FUs and their operations, registers and memory interface units are defined connected
to the TTA interconnection network. The exact behaviour of the FU does not have
to be implemented in order to be able to set it in ProDe. The only mandatory
parameter is the operation’s latency. The units in ProDe are more like „shells“ for
the operations. The operations’ behaviour can be added or changed later. Prode can
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also produce implementation definition files which map RTL descriptions of FUs to
the FUs placed within the software. These files can later be used in ProGe.

tcecc (tceasm) Compiler for a software written in C/C++ (or parallel assembly)
for a TTA architecture. The compiler is retargetable which means that together with
the program source file (C/C++ or parallel assembly) it is necessary to specify also
the target architecture.

Proxim (ttasim) Proxim is a GUI version of ttasim - a processor simulator. It
loads an architecture from ProDe, program from tcecc and simulates the program
running on the architecture. It is possible to get various statistics such as a FUs’
usage or a cycle count. The program also allows stepping through the program by
one clock cycle, observing the instructions’ execution and contents of a data memory,
registers and FUs’ ports. For the simulation it is necessary that operations of FUs
have a defined behaviour in C/C++.

OSEd This program is a library and a manager of operations defined in C/C++
for the purpose of a simulation. It is possible to assign source files to particular ope-
rations and compile them. Also various operations’ properties are set there (number
of inputs/outputs, description, etc.). OSEd also contains a tester where it is possible
to test the operation before it is used in a program. Many basic operations (add, sub-
stract, bit operaitons, memory read/write, etc.) are already included. It is possible
to make a fully functional processor only with operations provided by TCE.

HDBEditor HDBEditor is responsible for mapping FUs to their RTL descripti-
ons. This is not needed for the simulation purposes but it is necessary if we want
to generate the RTL description of the processor. The tool creates a hardware da-
tabase where a user groups the desired descriptions together. It is possible to have
several variants of one FU and choose which one to use upon the processor gene-
ration. All the operations included in TCE by default are also implemented in a
HDL and added to the default databases. There is, however, a difference between
OSEd and HDBEditor in terms of what they describe. While OSEd describes ope-
rations separately, HDBEditor describes whole FUs. This means that for example
an ALU (Arithmetic Logic Unit) functional unit with operations „add“ and „shl“
and an ALU with operations „add“, „shl“ and „sub“ need to have two different
RTL implementations even though they share some operations. However, the FUs’
interface is standardized and thus creating new FUs from existing operations is a
matter of copy-pasting.
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ProGe Processor Generator produces a synthesizeable RTL description of the
whole processor. Its inputs are the processor architecture file and the implementation
definition file. There is also an option to generate testbenches for the processor
verification. ProGe also includes a platform integrator which can be used to interface
the processor with specific FPGA FPGA boards.

PIG Program Image Generator converts a compiled program (from tcecc or tce-
asm) into a binary image. This can be uploaded into a target machine’s memory
and executed as a program on an implemented machine. It is possible to apply a
compression to reduce an instruction memory size.
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3 UNTIMED REFERENCE MODEL
A Python program refftta [Žádník, 2017a] was developed as a high level mo-
del. The purpose of this model is to get familiar with the idea of the algorithm
and architecture and to generate reference results which will be used later in a ti-
med simulation and final RTL implementation. Section 3.1 gives an overview of the
program and its features. Section 3.2 is dedicated to the description of the FFT
algorithm used by refftta.

3.1 Program Overview
It follows the same dataflow as in the TTA processor. FUs are modelled as functions
and their results correspond to the significant computation steps in the algorithm.
However, as an untimed model it does not provide any details about an efficiency of
the program/architecture and makes some assumptions and shortcuts not present
in the lower levels of abstraction.

The program is written in a way which makes it possible and to retrieve data
(intermediate results, input addresses, etc.) from the algorithm. The retrieved data
can be used, e.g. for the evaluation in the terminal window or exported into a file as
reference data. All computations are done using a 64-bit floating point data format.
For the purpose of generating the reference files the data is converted to a fixed
point representation.

A Python package NumPy [Oliphant and Community, 2017] was used for the
numerical computing. It is a library optimized for computations with array objects
in a same fashion as MATLAB. Apart from the array objects it can be used as
a general numerical computing library since it contains many functions useful for
numerical computing. While NumPy provides the necessary functionality and speed
comparable to MATLAB, Python as a general purpose programming language is
well suited to conveniently handle the rest of the features (such as command line
options and file generation).

3.2 Detailed Description
The code in Figure 3.1 is the core part of the Python program. It has been modified
and shortened for a better readability for the purpose of this document. Therefore,
it should be treated more as a pseudo-code despite using a Python syntax.

A computation of one butterfly consists of several fundamental steps:
1. Generate input addresses for a butterfly and fetch the butterfly inputs.
2. Generate k-coefficients for twiddle factors.
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3. Based on the k, fetch a twiddle factors from an LUT.
4. Multiply the butterfly inputs with twiddle factors.
5. Perform the butterfly operation (complex adder).
6. Store the results back to the same addresses.
First the program generates a lookup table of twiddle factors of size 2049 (𝑁/8+1

for 𝑁 = 214). The information about the current FFT size is stored within the
𝑁𝑒𝑥𝑝 parameter: 𝑁 = 2𝑁𝑒𝑥𝑝. Then it iterates over the computation stages, each
time checking which radix to use. In every stage, linear index (lin_idx) is iterated
with a step of four. The algorithm computes one radix-4 butterfly or two radix-2
butterflies at the time. In the final implementation, the linear index iterates with a
step of one and the results are completed sequentially.

Based on the linear counter, four addresses of input operands are generated (ag).
The addresses are generated by taking two (one in case of 𝑁𝑒𝑥𝑝 being odd) LSBs
(Least Significant Bits) and placing them between the rest of the bits. The exact
position where to insert the LSBs is determined by stage (see Section 4.3.1). In the
last stage, the operands are accessed linearly.

Next the indices (𝑘) for twiddle factors (𝑊 𝑘
𝑁) are computed by gen_tf_k. The

indices computed are different for radix-4 and radix-2, therefore we need to specify
rdx2_flag in the input. From Figure 1.3 it is apparent that twiddle factors for
smaller FFTs can be derived from the larger sizes by taking only every 2nd, 4th,
8th, etc. twiddle factor. Therefore, after the generation of 𝑘-s the function gen_tf_k
also performs scaling according to the current FFT size. The scaling itself is just
bit-shifting 𝑘-s to the left as necessary. By using the 𝑘-scaling we do not need to
pre-compute a twiddle factor LUT for each FFT size separately since it is enough
to have only one for the largest supported 𝑁 .

After getting the necessary 𝑘-s we can feed them to the twiddle factor generator
and get four complex valued twiddle factors. The twiddle factor generator generates
the appropriate values using principles described in Section 1.5.

Now is the time to compute the butterfly itself. The butterfly input (X) are four
values selected from the input sequence (x) specified by the generated addresses
(addr). We multiply the butterfly input with twiddle factors and feed the products
(P) into a modified complex adder (cadd). This function either performs one radix-
4 butterfly according to 1.7 or two radix-2 butterflies according to 1.5 based on
rdx2_flag.

The result of the butterfly is stored into Y and these values are stored back to
x to the same addresses from where they were read to X. This technique is called
in-place computation. It is used to save memory by using only one vector x where
both inputs and outputs are stored. When the butterfly computation is completed,
its results rewrite the input values.
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1 # Generate lookup t a b l e o f t w i d d l e f a c t o r s
2 tf_lut = gen_tf_lookup(2∗∗14)
3
4 # Compute FFT ( inpu t sequence x )
5 for stage in range(total_stages(Nexp)):
6 # Whether to use the rad ix −2 s t a g e ( rad ix −4 i s d e f a u l t )
7 rdx2_flag = rdx2_stage(stage, Nexp);

8 # For every b u t t e r f l y (4 samples )
9 for lin_idx in range(0, Nexp, 4):

10 addr = ag(lin_idx, stage, Nexp)

11 k = gen_tf_k(lin_idx, stage, Nexp, rdx2_flag)

12 tf = tfg(k_sc, tf_lut, Nexp)

13 # B u t t e r f l y inpu t
14 for i in range(4):

15 X[i] = x[addr[i]]

16 P = multiply(tf, X)

17 # Compute b u t t e r f l y
18 Y = cadd(P, rdx2_flag)

19 # Assign the r e s u l t to t he o r i g i n a l memory
20 for i in range(4):

21 x[addr[i]] = Y[i]

22
23 # Rearrange r e s u l t
24 for i in range(0, Nexp):
25 idx = bit_reverse(i, Nexp)

26 y[i] = x[idx]

Fig. 3.1: Abbreviated Python script for computing FFT
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After performing all butterfly computations in a given stage, the algorithm pro-
ceeds to the next stage, checks whether this stage is radix-2 and radix-4 and repeats
the above procedure. After running through the whole computation the result is in
a permuted order and needs to be reordered. This is done by reversing bit pairs (in
case of 𝑁𝑒𝑥𝑝 being odd the LSB pair is not a bit pair but a single bit) of the indices
of the result’s samples.
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4 TIMED SIMULATION MODEL
In this chapter, a timed simulation model of both the suggested TTA architecture
and the FFT algorithm is provided. A simulation workflow in the TCE environment
is described in Section 4.1. In Section 4.2, the suggested TTA architecture is sugges-
ted. Custom FUs and their operations are discussed in Section 4.3. In Section 4.4,
the FFT computation program is described. It is written in the TTA assembly lan-
guage as a cycle-accurate succession of parallel instructions. Section 4.5 summarizes
the results of the timed simulation.

4.1 Simulation Workflow
The typical simulation workflow is illustrated in Fig. 4.1. In dark boxes, TCE pro-
grams are listed (their overview is in Section 2.2). The programs’ contents examples
are displayed in white boxes. Files are denoted by white ellipses. User’s input is mar-
ked by the light grey circle. Generally speaking, a simulator’s user needs to specify
the TTA architecture, then write and compile a program for it. The simulator then
simulates the compiled program on the specified architecture. The simulation itself
is performed by Proxim (GUI) or ttasim (CLI - Command Line Interface).

First, a user needs to decide which operations are necessary. The TCE toolset
already containing a wide selection of common operations. If some non-typical ope-
ration is needed, the user needs to specify the operation’s static behaviour in a form
of a C/C++ source file. This source file is then compiled by OSEd. OSEd also crea-
tes the operation’s entry in the operation database and specifies its parameters (i.e.
the number of input/output ports and their width). The operations parameters are
stored in the operation description file.

This file is a part of the operations database and is necessary for ProDe to reco-
gnize the operation and add it to the design. In ProDe a full processor architecture
design is done. Also operations’ latencies are defined there. Each operation needs
to have specified an estimated hardware latency (number of clock cycles needed to
perform the operation). This latency is used by the simulator to perform a clock
cycle-accurate simulation. This includes defining the FUs, adding operations to them
and connecting them to the IC network. Address spaces (i.e. data and instruction
memory) are defined. Data widths of transport buses as well as their number is also
customizable. Apart from these, many other options can be set up. ProDe generates
and architecture description file (in a XML format) as its output.

The second user’s contribution (this time mandatory) is the intended program. It
can be either written in C or the TTA parallel assembly language. In both cases, the
program is compiled (by tcecc or ttasim) into a program binary file. Both compilers
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require the architecture description file generated by ProDe as the second input. It
is therefore possible to compile the same program on more machines resulting in
different binary files. This way it is possible to test an architecture’s performance
for the program and tweak the architecture based on the simulation results. This is
most useful when compiling C programs. Programs written in the assembly language
have all the moves specified manually.

When the program is compiled it can be finally loaded into the simulator (toge-
ther with the architecture definition file). The simulator runs the program on the
architecture, monitoring all data transfers on all IC buses in every clock cycle. It
is possible to monitor the contents of data memories and registers and data on the
input and output ports of FUs. It is also possible to obtain statistics such as FU
and register usage percentage and total clock cycle count.

4.2 Proposed Architecture
The proposed TTA architecture schematic is on Fig. 4.2. The IC consists of ten 32-
bit buses (B0–B9) and one 1-bit but (bool). To these buses, FUs are connected. A
connection is denoted by a black dot. In the upper row, there are custom FUs created
for the purpose of this thesis. Their parameters are described in a section 4.3. In the
lower row are FUs and modules provided by TCE. From the left to the right they
are: adder, load/store unit (read only), load/store unit (write only), shifter, register
file and general control unit. Trigger ports are denoted by an asterisk. Apart from
FUs connected to the IC, there are also three types of memories: data memory
containing samples of the computed FFT sequence, instruction memory containing
the program encoded into instruction words and a LUT containing precomputed
twiddle factors for TFG.

The adder serves as a linear counter for the program. Shifter unit and the register
file are used in the setup stage of the program (section 4.4). General control unit
is responsible for decoding and executing instruction words from the instruction
memory. A part of the unit is also a loop buffer which allows caching one or more
instruction words for efficient repeated reading (section 4.4).

Two load/store units were used to fetch and store computed samples to/from a
data memory. During the computation, only one read and one write operation are
used simultaneously. Therefore, read-only and write-only units can be used. In the
timed model, the data memory consists of only one memory unit which differs from
an actual implementation.
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Fig. 4.1: Simulation workflow in TCE; White ellipses are files; Dark boxes are TCE
programs; White boxes are what the programs contain; Grey circle is a user’s input
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Fig. 4.2: Diagram of the proposed TTA architecture with an interconnection network

4.3 Functional Units
Before considering the hardware implementation of the FUs, their simulation beha-
viour needs to be defined (in C/C++) and the FUs need to be tested properly. In
this work, five custom FUs were defined: Address Generator (AG), Twiddle Factor
Generator (TFG), Complex Adder (CADD), Complex Multiplier (CMUL) and a de-
lay block (DLY). All of the FUs are implemented into the TCE operation database
and can be used in user programs.

Each of the custom FUs contains only one operation corresponding to the FU’s
title. These operations are described in following subsections. Each subsection con-
tains an operation’s overview table which summarizes its outputs, inputs (trigger
denoted as *) and estimated latency. The initial estimate of latency for each FU was
based on [Pitkänen and Takala, 2011].

4.3.1 Address Generator

Address Generator (Table 4.1) computes a memory address of an operand which
needs to be accessed. The necessary information about a current stage can be ob-
tained by separating N_exp (see below) LSBs from a linear counter. This counter is

30



not reset on each stage and counts from 0 to the value of 𝑁 · 𝑀 − 1 where 𝑀 is the
total number of stages.

The FFT length is not given as an absolute value. Instead it is passed as an
exponent (𝑞) of 2𝑞 using the N_exp input. base_addr is used to point the beginning
of the input sequence. Without this parameter we would always address operands
on memory addresses starting at 0.

In order to fit into the schedule, either AG needs to have a latency 3 or TFG
latency 5. I chose the pessimistic variant and estimated AG to have a latency 3.

AG
Inputs ∗lin_idx

N_exp

base_addr

Output addr

Latency 3

Table 4.1: Address Generator - ports

4.3.2 Twiddle Factor Generator

Twiddle Factor Generator (Table 4.2) uses the same concept of a linear counter an
FFT size exponent as an AG. Contrary to the Python script the generation of 𝑘 is
embedded inside the FU.

Apart from a twiddle factor, TFG also outputs a radix-2 flag which is fed into a
complex adder to control the desired operation.

TFG
Inputs ∗lin_idx

N_exp

Outputs tf

rx2

Latency 6

Table 4.2: Twiddle Factor Generator - ports
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Fig. 4.3: Schedule of a complex adder

4.3.3 Complex Adder

Complex Adder (Table 4.3) takes four operands and performs their summation ac-
cording to the opcode. The FU can calculate one 𝑦𝑖 from either Equation 1.7 or
Equation 1.5. The opcode specifies the desired radix and an output being compu-
ted, thus altering the behaviour of the adder. Complex addition is composed by a
several real additions (of 16 bit integers). To avoid an overflow the result of each
real addition is divided by two.

Operands are fed one by one. After four of them are loaded, CADD sequentially
produces the desired four outputs, one at a time. The CADD’s schedule is shown on
Fig. 4.3. The input rx2 determines whether to perform one radix-4 butterfly or two
radix-2 butterflies. This automatic scheduling was necessary for making the main
program kernel fit into one instruction.
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CADD
Inputs ∗t

rx2

Output res

Latency 1

Table 4.3: Complex adder - ports

4.3.4 Complex Multiplier

Complex Multiplier (Table 4.4) performs a complex multiplication of two complex
numbers according to the following principle:

Re(𝑟𝑒𝑠) = Re(𝑖𝑛1) · Re(𝑖𝑛2) − Im(𝑖𝑛1) · Im(𝑖𝑛2)
Im(𝑟𝑒𝑠) = Re(𝑖𝑛1) · Im(𝑖𝑛2) + Im(𝑖𝑛1) · Re(𝑖𝑛2)

(4.1)

Each of the internal multiplication needs to be bit-shifted left by 15 bits to avoid
an overflow.

CMUL
Inputs in1

∗in2
Output res

Latency 3

Table 4.4: Complex multiplier - ports

4.3.5 Rotating Register

The rotating register is used to delay an input data by a specified number of clock
cycles (10 in this case). Because of that, the unit is called DLY or DLY10 in the
design files and this document. It stores the result addresses from AG and provide
them in the end of the butterfly computation cycle to the LSUs’ store operation.
When using this unit it is no longer necessary to store the addresses in register files
and load them back when needed. Instead the latency of this unit is set that the
addresses pop out just at the time when they are necessary. This reduces the logic to
maintain the register files addresses manually and thus making it possible to shrink
the execution body into a single instruction.
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DLY10
Inputs ∗in1
Output out

Latency 10

Table 4.5: Rotating register - ports

4.4 Instruction Schedule
The program code consists of four parts. First a setup code configures the compu-
tation by setting a base memory address and FFT length. Number of iterations and
parameters for FUs are computed and fed in the non-trigger inputs. These parame-
ters are static and do not need to be computed again unless the FFT length changes.
The setup code can also vary depending on how we load the FFT length. Generally,
it can be read from a memory (slower) or fed in as an immediate number (faster).

After the initial setup the FFT computation starts. First let’s explain the idea
using only one butterfly (Fig. 4.4). Each numbered row corresponds to one in-
struction word where the number on the left is the instruction number. An in-
struction word consists of up to 11 instructions executed on buses „B1“ – „B10“
(32-bit) and „bool“ (1-bit). The bus names are shown in the bottom row and corre-
spond to the buses used of the architecture’s IC network. In each column, only one
instruction (data move) is repeated. On the top row the source and the destination
in each move is shown. A detailed description of the notation is in the Tab. 4.6. It
follows the TTA assembly syntax standard. The instructions do not change so in
each column only one instruction is repeated over and over. If a field is grey, the
instruction is executed. The white squares denote that no move was performed.

A linear counter is maintained by feeding the adder’s output into its trigger (’1’
was stored as its operand in the setup stage). The adder’s output is fed into an ad-
dress generator (AG) and a twiddle factor generator (TFG). The computed address
is fed into a load/store unit (LSU) to fetch an input sample. At the same time the
address is being delayed by 10 clock cycles using a rotating register (DLY10). When
an operand is fetched from the LSU, it is moved into a complex multiplier (CMUL)
together with a twiddle factor from (TFG). TFG also provides an information about
a current radix to the complex adder (CADD) using the „bool“ bus. The CMUL
multiplies the twiddle factor with the from the LSU input sample.

The important thing here is that the results from LSU and TFG need to arrive
in the same clock cycle. This constraint creates a requirement on the latencies (𝑙𝐹 𝑈)
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FU names
add Adder
ag Address generator
tfg Twiddle factor generator
lsu Load/store unit
dly10 Rotating register (10 clock cycles delay)
cmul Complex multiplier
cadd Complex adder

Port names
.o operand
.t trigger
.t.st trigger; executing a „store“ operation
.t.ld trigger; executing a „load“ operation
.rx2 input for a current radix information
.r result

Table 4.6: Instruction notation format

of AG, LSU and TFG:

𝑙𝐴𝐺 + 𝑙𝐿𝑆𝑈 = 𝑙𝑇 𝐹 𝐺 . (4.2)

If the LSU and TFG were not synchronized, it would be necessary to use additional
registers to store the intermediate result.

With this approach, intermediate register transfers can be avoided and the data
can be moved only between the FUs. The output from CMUL is moved into a
complex adder (CADD). After four operands are fed in, CADD starts outputting
four values from the butterfly operation, one in each clock cycle. The .rx2 input
of CADD configures the unit to use either one radix-4 butterfly or two radix-2
butterflies. The results from CADD need to be stored back to the memory in the
same position from which they were read. This is done by feeding the delay address
(from DLY10) and the value (from CADD) into both inputs of a LSU. One butterfly
computation takes 17 clock cycles and is based on estimated latencies of the hardware
FUs.

The computation is performed on complex numbers. They are 32 bits long, 16
bits for the real (LSB) and 16 bits for the imaginary part (MSB). The representation
of both real and imaginary part is fixed point, Q15.

The instruction schedule was specifically designed to support software pipelining.
We do not need to wait until one butterfly is computed before starting a new one.

36



Instead, the butterfly pattern can be repeated every 4 clock cycles. On Fig. 4.5
(middle) the software pipelining is demonstrated on a computation of a 16-point
FFT. The computation is computed in two stages using 8 butterflies and takes 45
clock cycles to complete.

The computation can be divided into three parts: prologue (0–12), kernel (13–31)
and epilogue (32–44). In both prologue and epilogue, the instructions keep changing
every few clock cycles. However, during the kernel the instruction word is the same
for the whole time. This is more noticeable in larger FFT sizes. Both prologue and
epilogue keep the same length (13 clock cycles) and only the kernel grows. Obviously,
in large FFTs the majority of the execution time is spent in the kernel part.

With only one instruction word repeating in the kernel it is possible to reduce
the instruction schedule to only 27 instructions (Fig. 4.5 (right)). The instruction 13
is repeated a predefined number of times (the exact number is computed during the
setup and is based on the FFT size). In order to avoid repeated reading (and thus
consuming power) the same instructions from the instruction memory, a loop buffer
is used to store the kernel instruction word and repeat it. Using a loop buffer has
the advantage that it does not consume as much power as reading the instructions
from a memory [Guzma et al., 2010]. Thus a more compact code and better power
efficiency can be achieved.

4.5 Summary
The table 4.7 summarizes how many clock cycles are spent inside the kernel com-
pared to the total number of cycles. The total number of cycles for a computation
of FFT of size 𝑁 can be computed as

𝑡𝑜𝑡𝑎𝑙 = 𝑁 * 𝑛𝑠𝑡𝑎𝑔𝑒𝑠 + 𝑠𝑒𝑡𝑢𝑝 + 𝑒𝑝𝑖𝑙𝑜𝑔𝑢𝑒 = 𝑁 * 𝑛𝑠𝑡𝑎𝑔𝑒𝑠 + 6 + 13 (4.3)

where 𝑛𝑠𝑡𝑎𝑔𝑒𝑠 is the required number of stages for the current 𝑁 . Epilogue and
setup are clock cycles spent in those stages. The number of clock cycles of the kernel
phase can be computed as the total number of clock cycles without the clock cycles
spent in setup, prologue and epilogue phases:

𝑘𝑒𝑟𝑛𝑒𝑙 = 𝑡𝑜𝑡𝑎𝑙 − 𝑠𝑒𝑡𝑢𝑝 − 𝑝𝑟𝑜𝑙𝑜𝑔𝑢𝑒 − 𝑒𝑝𝑖𝑙𝑜𝑔𝑢𝑒 = 𝑡𝑜𝑡𝑎𝑙 − 6 − 13 − 13 . (4.4)

The last column of table 4.7 shows a ratio kernel/total as a percentage. It is
apparent that the majority of the computation is spent inside the kernel. In case of
larger FFTs almost all the computation is done in the kernel. The kernel consists
of one instruction repeated in an instruction loop buffer. The power cost of reading
from the buffer is comparable to reading from a register file which can be assumed to
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Fig. 4.5: Instruction schedule and reservation table of FFT of size 16.
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be lower than reading from a memory [Guzma et al., 2010]. Therefore, a significant
improvement in terms of a power efficiency is expected compared to the instruction
memory approach.

FFT size kernel total % of total
32 83 115 72.17
64 179 211 84.83

128 499 531 93.97
256 1011 1043 96.93
512 2547 2579 98.76

1024 5107 5139 99.38
2048 12275 12307 99.74
4096 24563 24595 99.87
8192 57331 57363 99.94

16384 114675 114707 99.97

Table 4.7: Number of required clock cycles for all supported FFT sizes.

The simulation currently performs with relatively low precision due to the com-
plex multiplier. The error in a real or imaginary part of the result ranges between
10−5 and 10−3. It is due to the fact that the model of a complex multiplier does
not perform any rounding and overflows are avoided just by truncating the LSBs.
This concern is addressed in the hardware implementation where a proper rounding
and truncating is specified as necessary. Despite the precision loss, the simulation
showed that the concept is feasible for a hardware implementation.
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5 HARDWARE IMPLEMENTATION APPRO-
ACH

The processor is going to be synthesized on an ASIC technology in order to evaluate
its power efficiency. However, the processor’s description is universal and allows an
implementation on an FPGA, too. The two implementations will differ only in details
and a types of memories used. Before considering the ASIC synthesis, FUs need to
be described and verified first. An FPGA device (ZYNQ XC7Z020-1CLG400C on a
PYNQ-Z1 board) was used as a synthesis target for evaluating the FUs. At the time
of writing this document, all custom FUs are described in a VHDL language and
their verification is in the process. Because of that, this chapter gives an approach
to the hardware design rather than definitive solutions.

Section 5.1 describes the process of designing a TTA processor with the aid
of TCE. In section 5.2, designs of custom FUs are presented. Section 5.3 briefly
describes memory types used and an access to them.

5.1 Design Workflow
The processor implementation workflow is depicted in Fig. 5.1. First step is to de-
scribe all the necessary FUs in a hardware definition language. The basic ones are
already provided by TCE. Using HDB Editor, a hardware database file is created.
This file is a library of all the possible HDL implementations for the required FUs.
It maps the HDL description and parameters to the FUs used in the architecture
description (ProDe). One FU can contain multiple HDL descriptions in the library
(i.e. different latencies) so it is easy to switch between different implementations. All
HDL descriptions use the same standardized interface which allows for a convenient
mapping to the FUs ports.

An architecture definition file is also needed for the generation. It is obtained from
ProDe during the timed simulation phase (section 4). Both the hardware database
and the architecture definition are used as inputs to ProGe - Processor Generator.
ProGe’s GUI can also be accessed from ProDe. In the GUI, it is possible to specify a
desired HDL implementation for each FU and register file as well as other parameters
of the processor. The configuration can be saved into an implementation definition
file to save time selecting the parameters in the future. ProGe generates a full HDL
description of the processor, optionally a testbench and a compilation and simulation
scripts (for GHDL and ModelSim).

In order to be able to simulate a program on the architecture, the program’s
instruction memory image has to be generated. This can be done in PIG (Program
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Fig. 5.1: Processor implementation workflow in TCE

Image Generator). It needs the program binary, also generated during the timed
simulation phase. The program creates the instruction memory image which is then
used by the processor instruction decoder (part of the gcu FU) to decode the in-
structions and execute them on the processor.

The generated processor can be then simulated and synthesized using third-party
tools (such as GHDL, ModelSim, Xilinx Vivado, etc.).

5.2 Functional Units
In this section, a description of the hardware implementation of each custom FU
is given. Some FUs contain multiple possible implementations (differing i.e. in the
latency) as it is easy to swap them in the processor generation process. The latencies
suggested in the timed simulation (chapter 4) are based on [Pitkänen, 2014] and serve
as a starting point. However, they might be a subject of change depending on the
final requirements and restrictions. The final FU’s latency is a trade-off between
speed on one side and a resource usage, power efficiency on the other. For example
the complex multiplier can be implemented with a lower latency than 3 but it would
require using four multipliers instead of only two (see 5.2.4).

The FUs also have a lock and reset mechanism but they are left out from the
block diagrams for clarity. Generally, a unit accepts operands and computes values
only when its trigger input port is triggered. In case of units with a delayed output
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(such as the rotating register), the unit will keep outputting values every clock cycle
even without triggering. The reset signal resets all registers and states to zeros.

The standardized FU interface ensures that all inputs are registered. Thus a
minimal latency of a FU is one clock cycle (in case of a purely combinatorial FU).

5.2.1 Address Generator

The address generator (Fig. 5.2) is used to compute the address of an input/output
sample for the in-place computation. First, a linear counter (lin_idx) is separa-
ted into two signals containing the information about the current stage (MSBs of
lin_idx) and a sample index within the current stage (LSBs of lin_idx). The number
of bits where lin_idx is separated into stage and idx is determined by nexp where
nexp is the current FFT size as a power of two: 𝑁 = 2𝑛𝑒𝑥𝑝.

The address generation itself is computed by splitting idx into left and right
parts and inserting two LSBs of idx between them (shifting the right part two bits
to the right). The position (pos) where to insert the lsbs is computed by shifting
stage by one bit to the left and subtracting it from nexp. The address computation
is finished by concatenating left, lsbs and right together (from MSB to LSB).

The final address is then multiplied by four (shift left by two positions). This is
architecture-specific and given by the current bus width and a Minimum Addressable
Unit (MAU). The proposed architecture’s MAU is 8 bits but the numbers are stored
as 32-bit words, therefore one number consists of four MAUs.

The base_addr input signal adds a static offset to the computed memory address.

5.2.2 Twiddle Factor Generator

Twiddle factor generator (Fig. 5.3) is probably the most complicated FU used. In
general, first, a twiddle factor coefficient k is computed. It is converted into an
address of a twiddle factor in an LUT (see 1.6). The twiddle factor is then fetched
from the LUT and manipulated in order to get the correct value.

As in the address generator, the input linear index is separated into stage and
idx. The base of k is generated as modulo 4 (in case of radix-4 being computed)
or modulo 2 (in case of radix-2) of idx. The current radix is determined by the rx2
signal which is computed by evaluating the nexp and stage. When the computation
is in the last stage and the nexp is odd, radix-2 computation is being used and the
rx2 flag is set to one. The base of k is then multiplied by a weight (w) generated
by reversing bit pairs of idx (in a total length of nexp). The multiplication is not
using an actual multiplier. Instead, a constant multiplication principle is used since
the base k can be only either 0, 1, 2, or 3. The weighted k is then scaled by shifting
left according to the current computation stage and maximum allowed FFT size
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(currently 214). This scaling is necessary because an LUT of a maximum size (2049)
is used which is the native for FFT of size 214. When computing smaller FFT, some
coefficients of larger FFTs are not used and the k needs to be scaled in order to
access the right values.

The scaled k is then converted into a read address for the LUT. As described
in 1.6, only 𝑁/8 + 1 twiddle factors are stored in the LUT. The scaled k, however,
spans a larger range and needs to be converted to the LUT address. The maximum
allowed ranges for a scaled k and addr are in the „convert“ box in the block diagram.
The converting unit also produces an opcode (opc) to specify a manipulation of the
twiddle factor retrieved from the LUT. The manipulation consists of a combination
of the following operations (imaginary part in the diagram on Fig. 5.3 is denoted by
a dotted line):

1. Negate the real part
2. Negate the imaginary part
3. Swap real and imaginary parts
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5.2.3 Complex Adder

The complex adder performs the butterfly operation with four operands (a, b, c and
d). The unit consists of two parts: a sequential register and a combinatorial logic
part (Fig. 5.4). The sequential part basically serves as a serial/parallel converter
for a four-input combinatory complex adder. The sequential part behaves like a
state machine of four states. The state is generated as a 2-bit linear counter. It is
incremented only when a new value is loaded into the t port (every new load is
indicated by the load input signal).

Let’s assume an input sequence of four numbers a, b, c and d, loaded after each
other in the t input port, each time triggering the load port. The state machine’s
behaviour can be described according to the value of the counter (cnt) as follows:

• 0 : Store a and rx2 into registers
• 1 : Store b into a register
• 2 : Store c into a register
• 3 : Load all register contents into the combinatory part (d is directly transferred

- it is not registered)
The combinatory part computes four results in a sequence with the same operands
(a, b, c and d). After four clock cycles a new set of four operands is loaded.

On a diagram in a Fig. 5.4, dotted lines represent imaginary parts of the input
numbers. Solid lines are the real parts. An rx2 input signal provides the information
about the current radix and together with cnt they provide an opcode (opc) for
the combinatory part. The opcode selects inputs of multiplexors, the negation of
multiplexors’ outputs and an add/subtract mode of the adders.

5.2.4 Complex Multiplier

Complex multiplier performs a multiplication of two complex numbers. A pipelined
version is shown on a block diagram on Fig. 5.5. The operation corresponds to the
behaviour described by equation 4.1. However, the number of multipliers has been
reduced to only two and the computation takes two clock cycles.

The unit’s inputs are a and b. First, the real part of the result is computed and
after rounding and truncating it is delayed by a register. In the next clock cycle,
a select (sel, one bit) signal is inverted and an imaginary part is computed. The
delayed real part and the immediate imaginary part are concatenated into a result
(p).
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5.2.5 Rotating Register

This FU serves as a delay unit, delaying an input by 10 clock cycles. The rotating
register was chosen instead of a shift register because of a lower power consumption.
In a shift register, all values in all registers are replaced with the next values. This
constant replacing is inefficient. In our case (length of 10), it would mean writing
10 values simultaneously every clock cycle. Rotating register keeps values in their
addresses. An address counter is determining where a new value will be stored and
from where an output value will be read in the current clock cycle. Thus only one
write and one read operations are performed per clock cycle. Compared to a shift
register there is the overhead of the modulo 10 counter. However, when working
with 32-bit numbers its influence on a power consumption is smaller than switching
ten 32-bit values every clock cycle.

The unit’s block diagram is on Fig. 5.6. The address counter computes the write
address. The read address is one clock cycle before the write address. This means
that the read address pointer will be on the position of the current write address
pointer 10 clock cycles later.

5.3 Memories
There are three kinds of memories in the proposed architecture (Fig. 4.2):

1. Instruction memory
2. Data memory
3. Twiddle factor lookup table

47



1

counter 0 1 2 3 4 5 6 7 8 90..9 re
g

clk in

out

rd

wr
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Their implementation can vary depending on the target platform and it is up to
the user to specify them. TCE can generate the data and instruction memories
for a testbench as synchronous SRAM (Static Random-Access Memory) memories.
Otherwise, TCE can provide the data and instruction memory contents in several
formats. It can be in a form raw data to be put into a user’s memory module, or as
a premade VHDL array package. The data and instruction memory were not in a
consideration so far since the focus is, at the time of writing this, on implementing
and verifying the custom FUs. The twiddle factor LUT is a ROM (Read Only
Memory). At the time of the writing, it is implemented as a synchronous ROM using
two FPGA’s BRAM (Block RAM). However, this will be changed into a distributed
LUT implementation for a better power efficiency and future ASIC implementation.

During the kernel of the instruction schedule, two parallel memory accesses are
performed each clock cycle (one read and one write). Therefore, two load/store units
need to be used. [Pitkänen et al., 2009] suggests using a parallel dual-port memory
as the memory organization for the twiddle factor LUT. It was compared to a
single dual-port memory and showed a smaller area and power consumption while
maintaining the same performance. Since the memory is divided into two separate
memory modules acting like single-port memories, an address assigning mechanism
needs to be used. Therefore, an additional permutation logic needs to be inserted
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between the load/store units and memory modules. This logic was provided by TUT
and will be used in the ASIC synthesis.
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6 CONCLUSION
This work introduces an efficient FFT processor based on a TTA architecture tem-
plate. As a basis of this work, a dissertation project of Teemu Pitkänen [Pitkänen,
2014] was used. Several modifications were made compared to the previous imple-
mentation. Mainly, some of the FUs were modified to support the new instruction
schedule and the usage of registers has been reduced to only one rotating register.

These modifications allow for a more optimized instruction schedule. While the
kernel of the previous project consists of 16 instruction words, the kernel proposed
in this thesis consists of only one instruction word. This instruction word is then
placed in an instruction loop buffer and executed from there. It has been shown that
majority of the computation is spent in the kernel loop. Since reading from the loop
buffer consumes less power than reading from an instruction memory, power savings
are expected compared to the Pitkänen’s approach.

A timed model for the architecture was developed and simulated using a TCE
toolset with an addition of a several custom FUs. The work on a hardware imple-
mentation has begun by describing the custom FUs and verifying them. However,
the final implementation of the processor has not been completed yet. At the time
of writing the thesis, the work on this project is being continued under as a con-
tract job at TUT with the aim to complete the synthesis of the processor on an
ASIC technology to compare the results against the Pitkänen’s results. The results
from the simulation also suggest to use rounding and truncating techniques when
computing arithmetic operations.

As side products of the thesis project, two Python programs were developed.
Namely refftta [Žádník, 2017a] - for a generation of reference values and reftest
[Žádník, 2017b] - for automatic compilation and simulation of TTA programs and
their evaluation against the reference values. All the project files and programs
were version controlled using Git and placed online for a public access (with the
exception of the loop buffer which is a property of the CPC research group at TUT).
The repositories were grouped together under a „FFT on TTA“ group available at
https://gitlab.com/fft-on-tta.
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