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Abstract 

Tropical rain forests are considered to play an important role in the global climate 

change mitigation, acting as a potential carbon sink. However, to assess their true 

contribution and develop appropriate management strategies an accurate information 

about forest biomass stocks and distribution is necessary. The forest aboveground 

biomass in Mount Cameroon National Park, a biodiversity hotspot hosting one of the 

remaining West African populations of African forest elephant (Loxodonta cyclotis 

Matschie, 1900), was estimated using generalized linear mixed effect modelling based 

on combination of field sampled data from permanent study plots, remotely sensed 

data from Landsat 8 OLI and Sentinel-1 satellites, and kernel home ranges derived 

from telemetric monitoring of four forest elephant individuals. The probability of 

forest elephant presence was found to be positively related to the forest aboveground 

biomass density and significantly improved the biomass prediction, suggesting the 

importance of local disturbance regime for forest aboveground biomass estimation, 

and implying the necessity of further research for understanding the complex 

relationship between forest elephants and aboveground biomass, which could be 

beneficial for the conservation of African forest elephants as well as for the accurate 

aboveground biomass estimation in Afrotropical forests.  

keywords: forest aboveground biomass, Loxodonta cyclotis, remote sensing, tropical 

montane forest, Mount Cameroon 
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1. Introduction 

The deforestation and degradation of tropical forests is considered to significantly 

contribute to the increase of CO2 emissions (van der Werf et al. 2009), however, it is 

hard to quantify due to uncertainties in estimation of both the forest biomass and its 

loss (Houghton 2005). According to the latest Global Forest Resources Assessment 

the rate of global forest area loss has slowed down since 1990 – in contrary the net 

forest loss in Africa is still increasing (FAO 2020), despite the fact that most of the 

tropical African countries have joined the Reducing Emissions from Deforestation and 

Forest Degradation (REDD+) program of United Nations Framework Convention on 

Climate Change (UNFCCC, 2020). One of possible reasons could be a fact that for 

successful implementation of REDD+ accurate estimation of forest biomass within 

country is necessary (Pelletier et al. 2011). This could be challenging especially in case 

of tropical mountain forests due to their high variability between individual mountains 

as well as within the range of one mountain slope (Proctor et al. 2007). The primary 

tropical forests covering south-western slope of Mount Cameroon are not an exception 

(Hořák et al. 2019). The area is generally considered as a biodiversity hotspot hosting 

various endemic species including one of the remaining populations of African forest 

elephants (Loxodonta cyclotis Matschie, 1900) and was declared a national park in 

2009 (MFW 2014). The role of African forest elephants in tropical rainforests is not 

completely understood yet – they have been reported to positively affect carbon stocks 

in lowland primary forests of central Africa (Berzaghi et al. 2019), however, their 

impact on mountain tropical forests have not been fully described so far. 

2. The aim of the thesis 

The aim of this thesis is to estimate forest aboveground biomass (AGB) of Mount 

Cameroon National Park based on a combination of field and remotely sensed data. 

Further, to examine the variation of forest AGB along the altitudinal gradient with 

different browsing pressure from African forest elephant population. Specifically, the 

following questions are addressed: (a) How forest AGB of Mount Cameroon vary 

along the altitudinal gradients? (b) What is the impact of African forest elephants on 

forest AGB distribution? (c) Can forest AGB of Mount Cameroon be accurately 

predicted using remote sensing and advanced modelling?  
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3. Review 

3. 1. Forest biomass estimation 

Estimation of biomass in forest ecosystems is usually based on a field census data 

(Chave et al. 2014) with the biomass of an individual tree as a basic unit which is 

further extrapolated on larger spatial scale (Chave et al. 2004). The tree aboveground 

biomass can be determined by process of harvesting, drying and weighting of the tree, 

however, this approach is cost and labour demanding beside the fact that it leads to a 

destruction of the measured tree (Imani et al. 2017). To overcome these discrepancies, 

allometric models for biomass estimation are being developed from the destructively 

sampled datasets (eg. Brown et al 1989, Overman et al. 1994, Chave et al. 2005, Segura 

and Kanninen 2005, Chave et al. 2014). These models are based on the relationship 

between biomass of a tree and its individual measures. While the most important tree 

aboveground biomass predictor is diameter, tree height can significantly improve the 

allometric model performance (Chave et al. 2005, Feldpausch et al. 2011, Feldpausch 

et al., 2012). However, both these variables are suspect to measurement errors, 

especially in difficult conditions of tropical forests - accurate diameter measurement 

can be complicated by steep terrain slope or high tree buttresses (Chave et al. 2004) 

and height measurements are restrained due to tall and dense canopies (Larjavaara and 

Muller-Landau 2013). Where the height information is not available, it can be 

predicted based on the diameter-height relationship – in that case usage of site-specific 

height models is recommended due to variability of this relationship under different 

environmental conditions (Feldpausch et al. 2011, Chave et al. 2014, Imani et al. 

2017). The inaccuracies related to diameter and height measurements could be avoided 

by utilising ground or airborne Light Detection and Ranging (LiDAR) data to obtain 

individual tree volume (Hildebrandt and Iost 2012). This approach is able to provide a 

good aboveground biomass estimates (Chave et al. 2014), however, its successful 

implementation is conditioned by availability of accurate species-specific wood 

density information in order to convert the tree volume to biomass (Sagang et al. 2018). 

Although the tree diameter and height measurement errors are contributing to the total 

error in forest biomass estimation, larger proportion of uncertainty is related to the 

choice of appropriate allometric model, mainly due to insufficient destructive sample 

sizes used for their calibration (Chave et al. 2004, Feldpausch et al. 2012). This is the 

reason why local allometric models are often overperformed by global pantropical 
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models (Chave 2014). These global pantropical models are not species-specific 

therefore they usually incorporate species-specific wood density in order to account 

for inter species variance (Chave et al. 2004, Chave et al. 2005). Obtaining a correct 

wood density information through field sampling can be challenging since it is varying 

also between different parts of an individual tree (Sagang et al. 2018), however, Flores 

and Coomes (2011) proved that the large size of Global wood density database (Zanne 

et al. 2009) makes it an useful source of information for accurate wood density 

estimation. Another great source of uncertainties in forest aboveground biomass 

estimation, linked with size of used sampling plots and their representativeness of the 

mapped area (Chave et al. 2004), could be partially overcome with inclusion of 

additional remote sensing data in the process of plot level aboveground biomass 

extrapolation (Lu et al. 2016).  

3. 2. Remote sensing in forest biomass mapping 

With the expand of technology and data availability remote sensing becomes a useful 

tool for ecological monitoring including forest aboveground biomass mapping (Lu et 

al. 2016, Young et al. 2017). Various models are being constructed linking the field 

census information to a remotely sensed data allowing for biomass predictions over 

large areas (eg. Blackard et al. 2008, Mitchard et al. 2011). Role of the field census 

data is crucial for calibration and evaluation of these models (Lu et al. 2016). On the 

other hand, there are many indices which can be derived from the remote sensing data 

(Lu et al. 2016) - the most recent based on LiDAR metrics (eg. Dubayah et al. 2010, 

García et al. 2010), however, due to data availability optical and radar (Radio 

Detection and Ranging) based datasets still prevail in large scale forest biomass 

mapping (Avitabile et al. 2012, Lu et al. 2012, Lu et al. 2016).  

3. 2. 1. Optical sensors 

Optical sensors are detecting the amount of solar radiation reflected from a specific 

surface (Patenoude et al. 2005, Lu et al. 2016). Depending on their construction, they 

are able to capture information about incoming radiation in one to ten (multispectral 

sensors) or tens to hundreds (hyperspectral sensors) of spectral bands, each 

characterized by a certain wavelength range within the visible, near and middle 

infrared part of the electromagnetic spectrum (Patenoude et al. 2005). The amount of 

radiation reflected within each band is related to physical properties of the studied 
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surface and based on the examination of this spectral profile different types of surfaces 

can be distinguished (Patenoude et al. 2005, Lu et al. 2016). In forest aboveground 

biomass mapping, data from multispectral sensors are usually utilized (Avitabile et al. 

2012, Lu et al. 2012, Lu et al. 2016), even though the application of optical remote 

sensing data in forest biomass mapping could be challenging, especially in tropics, due 

to signal saturation in case of complex forest stands (Lu et al. 2012) and frequent cloud 

cover (Asner 2001). Nevertheless, the most commonly used remote sensing dataset for 

forest aboveground biomass estimation consists of multispectral images from Landsat 

program – one reason is the large temporal and global spatial coverage and data 

continuity (Williams et al., 2006, Avitabile et al. 2012, Lu et al. 2012, Young et al. 

2017), however, important factor was also the decision to provide data under open-

access policy (Woodcock et al. 2008). 

3. 2. 2. Radar sensors 

In contrary to optical sensors, radar is considered to be a tool of so called active remote 

sensing (Patenaude et al. 2005). Synthetic aperture radar (SAR) sensors are emitting 

their own signal with specified wavelength within microwave part of the 

electromagnetic spectrum and recording the signal features (ie. amplitude, 

polarization, and phase) after reflection from studied surface (Patenaude et al. 2005). 

Based on these features the physical structure and properties of surface can be 

determined (Lu et al. 2016). The major advantage of radar above optical sensors in 

forest aboveground biomass mapping is independency on weather conditions thanks 

to own source of signal with ability to penetrate clouds (Patenaude et al. 2005). Radar 

signal is also able to penetrate forest canopies which helps to reduce the signal 

saturation in case of dense canopy cover, however, this ability differs between 

individual bands (Kasischke et al. 1997, Patenaude et al. 2005). Civilian radars are 

operating with several bands (eg. C, L, P), while each band have a different wavelength 

and therefore also different properties concerning surface penetration – longer 

wavelengths can penetrate deeper into the canopy (Patenaude et al. 2005, Lu et al. 

2016). Even though the long-waved L and P bands are considered better aboveground 

biomass predictors in case of forests with complex stand structure (Imhoff 1995, 

Kasischke et al. 1997), open-access C-band data from Sentinel-1 satellites are also 

being used for tropical forest biomass mapping (Berninger et al. 2018, Debastiani et 
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al. 2019, Nuthammachot et al. 2020) thanks to their high spatial resolution (20x20 m) 

and revisit frequency (Filipponi 2019). 

3. 2. 3. Combination of multiple sensors 

All types of remote sensing data have pros and cons related to the spectral, spatial, and 

temporal resolution and those should be considered when assessing usefulness of 

certain dataset in relation to studied problematic (Patenaude et al. 2005). To overcome 

disadvantages of individual types of remote sensing data, information from different 

sensors can be combined (Kellndorfer et al. 2010). In tropical forest aboveground 

biomass mapping has been proved that the importance of spectral response in 

comparison to information about structural characteristics vary with complexity of 

mapped forest stand - in case of relatively simple structural composition the spectral 

response predominates as an aboveground biomass predictor, while with more 

complex stand structure the importance of structural characteristics grows, and best 

results are obtained when both types of information are used together (Lu 2005).     

3. 3. Elephants and their role in Afrotropical forests 

According to the IUCN Red List of Threatened Species, African savanna elephant 

(Loxodonta africana Blumenbach, 1797) and African forest elephant (Loxodonta 

cyclotis Matschie, 1900) are treated as one species classified as vulnerable (Blanc 

2008), however, there are studies suggesting that they should be rather considered as 

separate species based on differences in genetics end ecological behaviour (Roca et al. 

2001, Roca et al. 2015, Berzaghi et al. 2019). Despite the conservation efforts overall 

elephant population in Africa is still decreasing, mainly due to poaching and habitat 

loss, with even more rapid decline observed in African forest elephant population 

(Maisels et al. 2013, Wittemeyer et al. 2014). The Mount Cameroon African forest 

elephant population is one of the small West African fragments usually located in 

isolated areas surrounded by agricultural land (MFW 2014, Breuer et al. 2016, 

Thouless et al. 2016). Nevertheless, the African forest elephants are still understudied 

in comparison with African savanna elephants (Poulsen et al. 2017, Berzaghi et al. 

2019). It has been discovered that large portion of African forest elephant’s diet 

consists of fruits (Short 1981, Morgan and Lee 2007), which in combination with their 

ability to move across long distances makes them one of the most important animal 

seed dispersers of Afrotropical forest tree species (Theuerkauf et al. 2000, Blake et al. 
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2009, Campos-Arceiz and Blake 2011). Some of these species are exclusively 

dispersed by elephants (Cochrane 2003, Beaune et al. 2013) and are showing 

adaptations to elephant dispersal such as large size, inconspicuous colour (eg. green, 

yellow, or brown) and distinctive odour (Short 1981), reflecting elephant’s 

dichromatic vision and well-developed sense of smell (Cochrane 2003, Yokoyama et 

al. 2005, Campos-Arceiz and Blake 2011). African forest elephants also browse on 

young trees contributing to stand structural diversity by maintaining forest gaps (Short 

1981), which also serves as place for social interactions (Fishlock and Lee 2013). 

Effects of this browsing can be similar to forest stand thinning – reduction of stem 

density allows the surviving trees to reach larger dimensions resulting in rise of total 

aboveground biomass stocks (Berzaghi et al. 2019). Whereas Afrotropical forests are 

reported to have higher aboveground biomass density but lower tree density and 

diversity per hectare in comparison to Neotropical forests, some studies are suggesting 

that the presence of African forest elephants could be the main distinctive factor 

(Lewis et al. 2013, Terborgh et al. 2015, Berzaghi et al. 2019). 

4. Materials and methods 

4. 1. Study area 

Mount Cameroon is an active Hawaiian type volcano without a central caldera (Payton 

1993, Proctor et al. 2007) located in the Gulf of Guinea. Reaching 4 095 m above sea 

level (a. s. l.), it is considered to be the highest peak in West Africa (Proctor et al. 2007, 

Hořák et al. 2019) with significant influence on local rainfall pattern (Payton 1993, 

Proctor et al. 2007). The mean annual rainfall along its south-western coastal hillside 

decreases with altitude from approximately 5 000 mm near sea level to 4 000 mm at 

1 000 m a. s. l. and 3 000 mm above 2 000 m a. s. l., while the north-eastern hillside 

lies in a rain shadow (Payton 1993, Proctor et al. 2007). The mean monthly air 

temperature at sea level varies from 27 °C to 35 °C with the hottest period from March 

to April and declines with rate of ~0.6 °C for each 100 m increase in altitude (Payton 

1993, Proctor et al. 2007). Dry season occurs between December and February 

however, humidity remains at 75 to 80 % thanks to a sustaining mist and cloud cover 

(Payton 1993, Proctor et al. 2007). Despite the amount of water input there are no 

permanent streams due to extremely permeable Andosol soils (Payton 1993, Proctor 

et al. 2007). In contrary to relatively similar soil conditions (Payton 1993), different 
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types of vegetation cover can be found along the altitudinal gradient, starting with 

tropical lowland rain forest (300 – 900 m a. s. l.) and spanning to montane cloud forest 

(above 1 600 m a. s. l.) (see Figure 1) and montane grassland (above 2 250 m a. s. l.), 

with a structurally different mixture of closed and open canopy areas in the mid-

altitude (900 – 1 600 m a. s. l.) (see Figure 2) where the local population of African 

forest elephants occurs (Payton 1993, Hořák et al. 2019). The transition between 

montane cloud forest and montane grassland appears to be controlled by volcanic 

activity and fire (Payton 1993, Proctor et al. 2007).   

 

Figure 1. Montane cloud forest Closed canopy stand at ~2 000 m a. s. l. without signs of elephant presence. 
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Figure 2. Open canopy patch Forest canopy gap in area with presence of elephants. 

4. 2. Data collection 

4. 2. 1. Permanent study plots 

In total 96 circular plots with 40 m in diameter (~0.1256 ha) were established along 

the altitudinal gradient on the south-western hillside of the Mount Cameroon during 

the dry season (November - December) in years 2011, 2012 and 2013 (Hořák et al. 
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2019). The forested area of the hillside was divided into six altitudinal belts (350, 650, 

1 100, 1 500, 1 850 and 2 200 m a. s. l.) with 16 plots located within each belt (see 

Figure 3) (Hořák et al. 2019). All trees with diameter at breast height (DBH, at 1.3 m) 

> 10 cm were tagged on each plot and their status (alive or dead), species, DBH and 

height were recorded (Hořák et al. 2019).  

 

Figure 3. Study site Location of the Republic of Cameroon (a), Mount Cameroon National Park (b), and 96 

permanent study plots on south-western hillside of Mount Cameroon (c), where each cluster of 16 plots is 

represented by one point. The digital elevation model was obtained from SRTM DEM (USGS 2014), the national 

park boundaries from The World Database on Protected Areas (UNEP-WCMC and IUCN 2020), and country 

boundaries from ArcGIS Online (drono_gSpace 2019). 

4. 2. 2. Remote sensing data   

The Landsat program was chosen as a source of multispectral satellite images due to 

the spatial and temporal coverage of the study area and spatial resolution which is close 

to the area of one sample plot (Fassnacht et al. 2014). Landsat 8 Operational Land 

Imager (OLI) Level-1 image from 10 January 2015 was selected being the closest 

image to the field sampling period with the lowest proportion of cloud cover in study 

area (Landsat 7 ETM+ images were excluded from examination because of the Scan 

Line Corrector failure, USGS 2003) and obtained through United States Geological 

Survey (USGS) Earth Explorer (USGS 2020) on 26 February 2020.  
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The synthetic-aperture radar (SAR) data were accessed via Copernicus Open Access 

Hub (ESA 2020) on 6 February 2020. A Sentinel-1 Level-1 Ground Range Detected 

dual polarisation (VV + VH) image acquired under Interferometric Wide swath mode 

on 12 April 2015 was chosen as an image of the study area with the closest sensing 

date in relation to the previously downloaded Landsat 8 OLI image.  

4. 2. 3. Elephant population data 

The information about African forest elephants on Mount Cameroon was obtained 

through ArcGIS Online from Map Package called Elephant Density Study, uploaded 

by Mark Macallister on 10 October 2012, and accessed via ArcGIS Desktop (ESRI 

2019). The Map Package contains raster layers of kernel home ranges indicating the 

probability of an elephant presence in particular area (Dr. Michael Loomis, personal 

communication), based on data from satellite telemetric collars attached to 4 African 

forest elephant individuals, each one from a different herd (ARGOS 2020). These 

layers were exported, resampled to 30x30 m raster cell resolution using nearest 

neighbour algorithm and merged together summing the values in case of overlaps. 

Where no data were available, no elephant presence was assumed, represented by 0 

probability value. 

4. 3. Data processing 

4. 3. 1. Plot level aboveground biomass calculation 

The calculation of forest aboveground biomass on plot level was performed utilizing 

functions from BIOMASS R package (Rejou et al. 2017) using dataset of all measured 

living trees. In case of missing tree height record (56 from 5 223 trees), the height was 

estimated by ‘retrieveH’ function (Rejou et al. 2017) using Weibull height model 

(Bailey 1980, Feldpaush et al. 2012) based on the rest of the dataset. Taxonomy was 

cross-checked based on the information provided in The Plant List (The Plant List 

2013) to match the taxonomy of the Global wood density database (Zanne et al. 2009) 

and checked for typos using ‘correctTaxo’ function (Rejou et al. 2017). Where it was 

possible, taxonomic information about family was retrieved with ‘getTaxonomy’ 

function (Rejout et al. 2017), in other cases the recorded family was used. Wood 

density was obtained with ‘getWoodDensity’ function (Rejou et al. 2017) averaging 

on species, genus or family level, depending on the available taxonomic information, 

and using data from the whole Global wood density database (Zanne 2009) according 
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to Flores and Coomes (2011). The utilization of Global wood density database (Zanne 

et al. 2009) should reduce the bias in individual tree aboveground biomass since the 

same dataset was also used for calibration of applied allometric model (Sagang et al. 

2018). Since no local allometric model exist for the montane forests of Mount 

Cameroon (Loubota Panzou et al. 2016, Fayolle et al. 2018), the aboveground biomass 

on tree level was computed based on pantropical model developed by Chave et al. 

(2014): 

𝐴𝐺𝐵 = 0.0673 × (𝜌𝐷2𝐻)0.976 

where D is diameter in cm, H is height in m and ρ is wood density in g cm-3, 

implemented in ‘AGBmonteCarlo’ function (Rejou et al. 2017), which allows for the 

propagation of allometric model error. Additionally, errors of wood density estimation 

were included to the propagation represented by standard deviations from 

‘getWoodDensity’ function (Rejou et al. 2017). The forest aboveground biomass on 

plot level was calculated as mean of 1000 iterations of ‘AGBmonteCarlo’ function 

(Rejou et al. 2017) divided by plotsize (0.1256 ha) in order to obtain aboveground 

biomass density in t ha-1.  

4. 3. 2. Landsat data transformation 

The linear tasselled cap transformation (TCT) was used to compress the spectral 

information contained in Landsat 8 OLI bands into a few decorrelated variables (Baig 

et al. 2014). At first cloud mask based on Cloud and High Cloud Shadow Confidence 

layers of Quality Assessment band was created using QA Toolbox 1.3 (USGS 2017) 

in ArcGIS Desktop (ESRI 2019) and applied to individual spectral bands in order to 

exclude cloud-influenced pixels. In the next step spectral signal was converted from 

digital numbers (DN) to Top of Atmosphere Reflectance (TOA) according to Landsat 

8 Data Users Handbook (USGS 2019) and transformed using coefficients from Baig 

et al. (2014) (see Table 1). The first three components of TCT (Brightness, Greenness 

and Wetness) are related to physical properties of the surface (Baig et al. 2014) and 

were chosen for further analysis as being reported to have a good correlation with 

tropical forest aboveground biomass (Lu et al. 2004). 
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Table 1. Tasselled cap coefficients for Landsat 8 OLI TOA reflectance Overtaken from Baig et al. (2014). 

Landsat 8 Band 2 

(Blue) 

Band 3 

(Green) 

Band 4 

(Red) 

Band 5 

(NIR) 

Band 6 

(SWIR1) 

Band7 

(SWIR2) TCT 

Brightness 0.3029 0.2786 0.4733 0.5599 0.5080 0.1872 

Greenness -0.2941 -0.2430 -0.5424 0.7276 0.0713 -0.1608 

Wetness 0.1511 0.1973 0.3283 0.3407 -0.7117 -0.4559 

 

4. 3. 3. Sentinel data pre-processing 

The Sentinel-1 image was pre-processed in SNAP software (ESA 2018) according to 

a workflow described by Filipponi (2019). The orbit file was applied to improve the 

information about satellite position and velocity, thermal and border noise were 

removed, and backscatter was radiometrically calibrated to sigma nought values. 

Speckle noise was reduced by Refined Lee filtering and Range Doppler Terrain 

Correction was applied based on a SRTM 1Sec HGT DEM, in order to correct 

geometric distortions and project the image into Universal Transverse Mercator 

(UTM) coordinate system. During the projection cubic convolution resampling was 

used to obtain 30x30 m raster cell resolution to match the Landsat 8 OLI data. The 

corrected backscatter coefficient was converted to dB using a logarithmic 

transformation: 

𝑦 = 10 × log10|𝑥| 

where x is the unitless backscatter coefficient and y is the value in dB. Cross-polarized 

VH backscatter was used in further analysis since it is reported to be the most sensitive 

in terms of forest aboveground biomass detection (Kasischke et al. 1997). 

4. 4. Aboveground biomass modelling 

Generalized linear mixed effect model (GLMM) was used to predict aboveground 

biomass density while accounting for spatial autocorrelation inherent in the sampling 

design. Full GLMM was fitted by ‘glmer’ function from lme4 R package (Bates et al. 

2015), using TCT components (Brightness, Greenness, Wetness), cross-polarized 

(VH) SAR backscatter, and elephant occurrence probability as fixed effect predictors, 

independent intercept for each plot cluster as random effect, and assuming normal 
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distribution of errors with logarithmic link function. Predictors for each plot were 

extracted from previously prepared raster layers (see Materials and methods – 

Elephant population data; Landsat data transformation; and Sentinel data pre-

processing) based on plot coordinates with 20 m radius buffer to account for plot size, 

averaging values of all cells which centre falls within the buffer range. Thirteen plots, 

mostly from the highest altitudinal belt, had to be excluded from the analysis as 

spectral information was not available for them due to cloud cover. Additional one plot 

was identified as outlier based on Cook’s distance. Excluding the observation 

considerably improved the model performance increasing conditional coefficient of 

determination (Nakagawa and Schielzeth 2013, Johnson 2014, Nakagawa et al. 2017) 

calculated by ‘r.squaredGLMM’ function from MuMIn R package (Bartón 2020) from 

~0.21 to ~0.30. Therefore, it was decided to leave this plot out of the analysis, resulting 

in total number of 82 plots used for the final model calibration. Residuals of the 

GLMM were checked for presence of spatial autocorrelation using correlograms and 

no significant autocorrelation was observed. 

4. 5. Aboveground biomass predicting 

The final GLMM was used to predict the aboveground biomass of Mount Cameroon 

National Park based on previously prepared raster layers of remote sensed variables 

and elephant kernel home ranges (see Materials and methods – Elephant population 

data; Landsat data transformation; and Sentinel data pre-processing). To evaluate the 

results, predicted map was compared to Aboveground live woody biomass density map 

obtained from Global Forest Watch (WHRC unpublished data). This map contains the 

woody aboveground biomass densities (t ha-1) of global forests in year 2000 at ~30 m 

spatial resolution and was created based on the methodology described in Baccini et 

al. (2012), using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) top-of-

atmosphere reflectance, tree canopy cover from the Global Forest Change version 1.2 

dataset (Hansen et al. 2013), 1 arc-second SRTM V3 (Farr et al. 2007) and GTOPO30 

(USGS 1996) altitude, and WorldClim climate data (Hijmans et al. 2005) as 

aboveground biomass predictors in random forest models calibrated on aboveground 

biomass densities estimated by allometric equations from a dataset of Geoscience 

Laser Altimeter System (GLAS) lidar-derived canopy metrics (WHRC unpublished 

data). The map was projected to Universal Transverse Mercator (UTM) coordinate 

system using nearest neighbour algorithm and soil mask based on Normalized 
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Difference Moisture Index (NDMI) (Kimes et al. 1981) calculated from Landsat 8 OLI 

Surface Reflectance product (Vermote et al. 2016) was applied during the comparison 

to exclude non-forested areas. The mask threshold was estimated by two-classes 

Natural Breaks (Jenks) classification algorithm in ArcGIS Desktop (ESRI 2019).  

All calculations and data manipulations were performed in R 3.6.3 software (R Core Team 2020), unless stated 

otherwise, using packages rgdal (Bivand et al. 2019) and raster (Hijmans 2020) for spatial and raster operations. 

5. Results 

5. 1. Plot level aboveground biomass 

The estimated forest aboveground biomass on plot level ranged from ~24 to ~1267 t 

ha-1 with mean value of ~418 t ha-1, and varied across the altitudinal gradient with the 

lowest and the highest values present in 1500 and 1800 m a. s. l. altitudinal belts, 

respectively (see Figure 4).   

 

Figure 4. Aboveground biomass variation Plot level forest aboveground biomass values (t ha-1) for 96 permanent 

sample plots are displayed according to plot location within altitudinal belt. Central line corresponds to median, 

lower, and upper hinges to first and third quartiles (25th and 75th percentiles), and whiskers extends from hinges to 

the smallest or largest value no further than 1.5 times the distance between first and third quartiles. Dashed line 

indicates the overall mean plot level forest aboveground biomass value. 

When looking on the general trends in plot level structural data, estimated forest 

aboveground biomass showed increase with increasing altitude, same as the basal area 

(m2 ha-1), in contrary to tree density (number of trees per ha) which decreased with 

increasing altitude (see Figure 5). 
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Figure 5. General trend in aboveground biomass, basal area, and tree stem density across the altitudinal 

gradient Linear regression fitted between altitude and scaled values of forest aboveground biomass (AGB), basal 

area (BA) and tree density (nTrees) on plot level. Values are displayed within 95 % confidence interval.  

Concerning the species composition, contribution of individual genera to the total 

forest aboveground biomass differed between altitudinal belts with Crudia 

contributing the most in lower and Schefflera in upper altitudes (see Figure 6). 

 

Figure 6. Aboveground biomass contribution Ten species contributing the most to the total forest aboveground 

biomass (AGB) of all measured plots are displayed according to their relative contribution to the total forest 

aboveground biomass (AGB) in individual altitude belts. 
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5. 2. Aboveground biomass model 

The final GLMM had indicated significant positive effect of elephant presence on 

estimated aboveground biomass and significant negative relationship between forest 

aboveground biomass and Brightness tasselled cap component (see Table 2). 

Table 2. Fixed effects evaluation Estimated coefficients of fixed effect predictors (VH – cross-polarized SAR 

backscatter, BR – Brightness, GR – Greenness, WT – Wetness, E – elephant occurrence probability). Significant 

estimations are marked with * (α ≤0.05) or ** (α ≤0.001), respectively. 

Estimated coefficients 

VH BR GR WT E 

-0.0084 ± 0.03 -6.7023 ± 3.17 * 10.6618 ± 5.91 -5.3771 ± 6.98 0.0399 ± 0.01 ** 

5. 3. Aboveground biomass prediction  

The forest aboveground biomass densities predicted from GLMM have wider 

distribution in comparison to data obtained from Aboveground live woody biomass 

density map (WHRC unpublished data) (see Figure 7), and are shifted towards higher 

aboveground biomass density values, with mean of 484 t ha-1 and median of 429 t ha-

1 compared to 241 t ha-1 and 235 t ha-1, respectively.        

 

Figure 7. Aboveground biomass estimates comparison Mt Cameroon NP forest aboveground biomass density 

estimates (t ha-1) in relation to area covered (ha). Data from Aboveground live woody biomass density map obtained 

from Global Forest Watch (WHRC unpublished data) are compared to aboveground biomass density values 

predicted from GLMM. Dashed line indicates the 95th percentile of predicted data (797.1109). 
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When comparing the aboveground biomass estimates with data from the 82 permanent 

study plots used to fit the GLMM, values obtained from Aboveground live woody 

biomass density map (WHRC unpublished data) seems to underestimate the plot level 

forest aboveground biomass with root mean square error (RMSE) of 305 t ha-1 and 

Pearson’s r2 of 0.24, while GLMM predictions appears to be more accurate with 

RMSE of 274 t ha-1 and Pearson’s r2 of 0.39 (see Figure 8).  

 

Figure 8. Aboveground biomass estimation Densities of forest aboveground biomass (t ha-1) obtained from 

Aboveground live woody biomass density map (WHRC unpublished data) and predicted by GLMM are compared 

to observed aboveground biomass values (t ha-1) from the 82 permanent study plots used for GLMM calibration.  

Looking at the spatial distribution of aboveground biomass both datasets predict the 

highest values in an altitudinal range from approximately 1 400 to 2 200 m a. s. l. (see 

Figure 9), however, the GLMM tends to overestimate the aboveground biomass 

density in case of high probability of elephant presence, with maximal values ranging 

to ~16 530 t ha-1. 
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Figure 9. Aboveground biomass spatial distribution Estimation of Mt Cameroon NP forest aboveground 

biomass density (t ha-1) based on Aboveground live woody biomass density map obtained from Global Forest 

Watch (WHRC unpublished data) and data predicted from GLMM. Red colour indicates values above the 95th 

percentile (797.1109), white missing satellite data due to cloud cover. Contains modified data from Copernicus 

Sentinel, Landsat, and The World Database on Protected Areas (UNEP-WCMC and IUCN 2020). 

6. Discussion 

6. 1. Altitudinal pattern of aboveground biomass 

The increase of forest aboveground biomass on plot level with rising altitude is in 

contrary to majority of previous findings on forest aboveground biomass distribution 

across altitudinal gradients in tropical montane forests (Aiba and Kitayama 1999, 

Kitayama and Aiba 2002, Leuschner et al. 2007, Girardin et al. 2014, but see Alves et 

al. 2010). The generally observed lower forest aboveground biomass densities in 

higher altitudes of tropical mountains are being explained by reduction of tree growth 

driven by decreasing temperature, limiting amount of available soil nutrients, 

particularly N and P, or oxygen deficiency related to soil waterlogging (Tanner et al. 

1998, Aiba and Kitayama 1999, Kitayama and Aiba 2002, Leuschner et al. 2007). 

While the effect of temperature was not tested in this thesis due to the lack of data with 

necessary spatial resolution, the volcanic soils on Mount Cameroon are well permeable 

and no limits in nutrients were found with the increasing altitude (Payton 1993, Proctor 

2007), suggesting that different factors could influence the forest structure and 



25 

 

aboveground biomass distribution. It is possible that the lower forest aboveground 

biomass densities in the first altitudinal belt (350 m a. s. l.) are result of human 

disturbance (Alves et al. 2010), since the Mount Cameroon National Park is 

surrounded by about forty villages (MFW 2014), however, after increase in 650 m a. 

s. l. altitudinal belt the forest aboveground biomass density decreases again until a 

dramatic shift between the 1 500 and 1 800 m a. s. l. altitudinal belts (see Figure 4). 

When looking at the trend of basal area (m2 ha-1) and number of stems per hectare it 

also seems to be reverse than usual (Aiba and Kitayama 1999, Leuschner et al, 2007, 

Slik et al. 2010, Girardin et al. 2014) with larger basal area and lower stem density in 

higher altitudes indicating increase in tree size (see Figure 5). This change of forest 

structure is in agreement with findings of Payton (1993) and Proctor et al. (2007) and 

it is related to the forest aboveground biomass distribution through the important 

contribution of large trees in aboveground biomass stocks (Alves et al. 2010, Silk et 

al. 2010, Slik et al. 2013). One possible explanation of these reverse trends could be 

the occurrence of Schefflera abyssinica (Hochst. ex A.Rich.) Harms and Schefflera 

mannii (Hook.f.) Harms species, which were found on plots from 1 500 to 2 200 m a. 

s. l. altitudinal belt. These strangler species are able to grow up to large diameter 

dimensions and substantially influence the aboveground biomass in higher altitudinal 

belts (see Figure 6). The fact that the host of this strangler can be destroyed leaving a 

hollow in the centre of its diameter, combined with relatively small plotsize (~0.1256 

ha), can lead to overestimation of forest aboveground biomass density on plots with 

high Schefflera spp. occurrence (Payton 1993, Chave et al. 2004). Exclusion of the 

Schefflera spp. from the plot level forest aboveground biomass estimation led to a 

decrease in total amounts of forest aboveground biomass densities, however, the 

overall pattern of forest aboveground biomass distribution along the altitudinal 

gradient remained the same, with the lowest and highest values in 1 500 and 1 800 m 

a. s. l., respectively, suggesting the general presence of larger trees in higher altitudes 

(data not shown). As majority of the studies describing opposite forest aboveground 

biomass, basal area, and tree stem density trends was conducted in Neotropical or 

Asian rainforests (Tanner et al. 1998, Aiba and Kitayama 1999, Kitayama and Aiba 

2002, Leuschner et al. 2007, Slik et al. 2010, Girardin et al. 2014), the general 

difference in tropical forest structure between those continents, with Afrotropical 

forests having lower tree densities and higher basal area (Lewis et al. 2013, Slik et al. 
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2013, Treborgh et al. 2015), can be another explanation, possibly related to the 

presence of African forest elephants (Berzaghi et al. 2019). 

6. 2. Effects of elephant population 

When looking at the results shown by the final GLMM, the significant negative 

relationship between forest aboveground biomass and the Brightness tasselled cap 

component is in agreement with general interpretation of this component as 

representing the soil surface without vegetation cover (Baig et al. 2014). More 

interesting is the positive relationship found between forest aboveground biomass 

density and probability of African forest elephant presence, however, the model tends 

to overestimate the aboveground biomass in case of high elephant presence 

probability. This overestimation can be explained by extrapolating over the calibration 

values, since the probability of elephant presence on sampled study plots ranges from 

0 to ~25 % , while the whole dataset range is from 0 to ~85 %, and suggests a non-

linear relationship of elephant population presence and forest aboveground biomass. 

This relationship together with the positive impact of lower to moderate probability of 

elephant presence would be in agreement with findings from lowland Afrotropical 

forests, where moderate density of elephant population can promote the aboveground 

biomass through thinning effect while high elephant population densities leads to its 

decrease (Berzaghi et al. 2019). The positive relationship between elephant presence 

probability and forest aboveground biomass could be also interpreted in an opposite 

way, suggesting that forest elephants might seek areas with higher forest aboveground 

biomass, however, the habitat preferences may vary between individual elephants 

(Beirne et al. 2020), therefore larger dataset containing more individuals would be 

needed to test for this hypothesis. The African forest elephant presence probability has 

also been determined as more important aboveground biomass predictor in case of 

Mount Cameroon forests in comparison to common remote sensing variables, 

however, this can be partially due to the difficulties related with obtaining a good 

quality satellite data, resulting in a 2 to 4 years interval between the field sampling and 

satellite image acquisition. Despite the importance of African forest elephant presence 

as a forest aboveground biomass predictor, it can not fully explain the variability 

between the lowest and highest values in neighbouring 1 500 and 1 800 m a. s. l. 

altitudinal belts, since the mean probability of elephant presence on plots in those belts 

is quite similar – 14.3 and 14.1 %, respectively. Payton (1993) and Proctor et al. (2007) 
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suggested that the forest patchiness above the altitude of 1 100 m a. s. l. is a result of 

airfall deposits of volcanic ash and cinders, which overlays the present vegetation and 

fertile soil with layers of varying thickness influenced also by the local topography, 

creating random pattern of areas with hindered tree growth resulting in a mosaic of 

closed and open canopy forest with trees surviving the fall growing in large dimensions 

thanks to reduced competition. These forest canopy gaps can be further maintained by 

browsing of African forest elephants (Short 1981, Campbell 1991), who also use them 

as places for social interaction (Fishlock and Lee 2013), while the utilization of the 

closed canopy forest driven by their largely frugivorous diet (Short 1981, Theuerkauf 

et al. 2000) could reduce the tree stem density and promote growth of the large trees 

in the same time. This combined effect of African forest elephants and volcanic 

activity would be in agreement with results of model from Berzaghi et al. (2019), 

which supports the positive effect of forest elephants on aboveground biomass in 

closed canopy forest and suggests that the elephants can create large forest gaps on 

their own only under the highest population densities. 

6. 3. Results of aboveground biomass mapping 

Beside the overpredicted values, the overall higher forest aboveground biomass 

densities appears to be more adequate estimation than the data obtained from 

Aboveground live woody biomass density map (WHRC unpublished data) when 

compared with the range of forest aboveground biomass on plot level based on field 

sampling. This may be partly due to the fact that the year of resolution of the 

Aboveground live woody biomass density map is 2000 (WHRC unpublished data), 

therefore more than 10 years before the field sampling. While the Mount Cameroon 

was declared a national park in 2009 (MWF 2014), a positive trend in increase of forest 

aboveground biomass would be expected. Another possible explanation could be that 

despite the effort to select a site specific allometric equations and train continent 

specific predictive models during the process of development of the Aboveground live 

woody biomass density map (WHRC unpublished data), these were not able to capture 

the specific forest aboveground biomass distribution patterns on Mount Cameroon, 

while the usage of LiDAR-based aboveground biomass densities for calibration of 

models could also play a role in this case, providing less accurate estimates than 

ground-based measurements. This diversity of natural conditions implies the 

importance of local data-based mapping where high accuracy of forest aboveground 
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biomass estimation is necessary. Despite the fact that the predicted aboveground 

biomass densities seems to better reflect the permanent study plots estimates, the 

uncertainties connected with overestimation in case of high probability of elephant 

presence promotes the necessity of further research in order to improve the prediction 

accuracy. The results of the final GLMM indicates that the structural variability of 

Mount Cameroon forests (in this case represented by probability of elephant presence) 

is more important for aboveground biomass prediction than the spectral information, 

suggesting that incorporation of high-resolution structural measures – eg. airborne or 

unmanned aerial vehicle (UAV) LiDAR data – as a predictor in aboveground biomass 

modelling could result in more precise estimations. 

7. Conclusion 

The forest aboveground biomass distribution across the altitudinal gradient of Mount 

Cameroon was found to be atypical in comparison with other tropical mountains in 

terms of no clear relationship between the aboveground biomass and altitude. One of 

the possible factors influencing this distribution pattern could be the local population 

of African forest elephants, supported by results of the final GLMM which indicated 

a positive relationship between forest aboveground biomass and low to moderate 

probability of elephant presence, however, based on the available data it was not 

possible to decouple the effect of elephant population from influence of Mount 

Cameroon volcanic activity and further research is therefore needed in order to clarify 

the relationship between elephants and forest biomass. Understanding this relationship 

could on one hand improve our ecological knowledge about this vulnerable species 

and possibly help with the conservation of African forest elephant population, on the 

other hand it could be beneficial for the estimation of carbon storage in Afrotropical 

forests as it seems likely that inclusion of information about local disturbance regime 

could improve the prediction of forest aboveground biomass density and its spatial 

distribution. 
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