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Abstract
The development in the recent few years in the field of machine translation showed us that
modern neural machine translation systems are capable of providing results of outstanding
quality. However, in order to obtain such a system, one requires an abundant amount
of parallel training data, which is not available for most languages. One of the ways to
improve the quality of machine translation of low-resource languages is data augmentation.
This work investigates the task of Bilingual dictionary-based neural machine translation
(BDBNMT), the basis of which is the use of the augmentation technique that allows the
generation of noised data based on bilingual dictionaries. My aim was to explore the
capabilities of BDBNMT systems on different language pairs and under different initial
conditions and then compare the obtained results with those of traditional neural machine
translation systems.

Abstrakt
Vývoj v oblasti strojového překladu v posledních několika letech ukázal, že moderní neu-
ronové systémy strojového překladu jsou schopny poskytovat výsledky vynikající kvality.
Pro získání takového systému je však zapotřebí velké množství paralelních trénovacích dat,
která nejsou pro většinu jazyků k dispozici. Jedním ze způsobů zlepšení kvality strojového
překladu pro low-resource jazyky je augmentace dat. Tato práce zkoumá úlohu neuronového
strojového překladu založeného na bilingválních slovnících, jejíž základem je použití aug-
mentační techniky umožňující generování zašuměných dat na základě bilingválních slovníků.
Mým cílem bylo prozkoumat možnosti systémů založených na této metodě na různých
jazykových párech a za různých výchozích podmínek a následně porovnat získané výsledky
s výsledky tradičních neuronových systémů strojového překladu.
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Rozšířený abstrakt
Moderní neuronové modely strojového překladu jsou schopny poskytovat výsledky srov-
natelné s výsledky profesionálních lidských překladatelů. K vytvoření takového modelu je
však zapotřebí obrovské množství paralelních dat (desítky milionů paralelních vět), aby
na nich mohl být model natrénován. Pro většinu jazykových párů však takové množství
paralelních dat neexistuje. Jedna z metod pro zlepšení výkonnosti modelů, které nesplňují
tyto podmínky je použití augmentačních technik.

Tato práce zkoumá použitelnost augmentačních metod založených na použití bilingvál-
ních slovníků v kontextu neuronového strojového překladu (NMT) pro různé scénáře.

Jednou z metod využití bilingválního slovníku, která je pokrytá v této práci je generování
pseudoparalelních dat na základě slovníku. Tato práce se zabývá analyzou následujících
případů použití této metody za předpokladu omezeného množství paralelních dat (130 tisíc
vět) a různého množství dodatkových monolignválních dat: trénování MT modelu od nuly
na malém množství dodatkových dat, trénování MT modelu od nuly na velkém množství
dodatkových dat a adaptace veřejně dostupného jazykového modelu (XLM-R) na malém
množství dodatkových dat.

Jinou zkoumanou metodou je trénování pomocí kombinací Anchored training (AT) a
Anchored Cross-lingual Training (ACP). Tyto metody byly představeny v článku Duan
et al. [1] a tamtéž byly prozkoumány pro případ přítomnosti rozsáhlých monolingválních
korpusů. Tato práce zkoumá přínosnost trénování pomocí zmíněných metod na malém
množství neparalelních dat.

Další průzkum, který byl v této práci proveden, se týká použitelnosti předtrénování
modelu s výše zmíněnou kombinací metod ACP a AT s následnou adaptací pro úlohou MT
na paralelních datech. Výsledky tohoto způsobu trénování jsou pak porovnány s tradičními
metodami předtrénování, které předpokládají jazykové modelování jako předtréninkový
krok.
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Chapter 1

Introduction

Since the beginning of humanity’s written history people were separated by the so-called
curse of Babel. People of different cultures and ethnics group speaking different languages
were incapable of communicating with each other on a somewhat decent level without a
translator. With the invention of computing machines came the idea of delegating this
work, or at least part of it, to machines. So Machine translation was born.

The quality of translation produced by MT systems was substantially improving over
the last decades. Firstly, with the introduction of Statistical machine translation systems [2]
which, unlike the preceding rule-based approach, were able to generate translations based on
statistical models whose parameters are derived from the analysis of bilingual text corpora.
The second improvement came with the introduction of end-to-end neural encoder-decoder
MT systems in 2013, which marked the dawn of neural machine translation (NMT).

Modern-day NMT systems show a translation quality that is comparable to that pro-
vided by professional translators. But, to achieve such results NMT system should be
trained on huge parallel corpora (also known as bitexts). Not meeting this condition re-
sults in subpar performance, comparable to, or even inferior to, the performance of SMT
systems.

Data augmentation is one of the most commonly employed methods for enhancing
the performance of MT systems. Augmentation techniques such as Back-translation [3],
and synthetic data generation have been shown to effectively increase the amount and
diversity of training data, leading to improvements in translation quality. In addition to
data augmentation, other strategies such as the fine-tuning of pre-trained language models,
and incorporating domain-specific knowledge [4] have also been explored to enhance the
performance of MT systems.

The novel NMT approach – Bilingual dictionary based neural machine translation
(BDBNMT) [1] – utilizes a synthetic data generation technique that leverages the bilin-
gual dictionary. This approach considers the absence of parallel corpora, while it is possible
to utilize large-scale monolingual corpora and ground-truth bilingual dictionary to close the
gap between two languages by establishing the anchoring points via using the mappings
provided by the dictionary.

This work investigates the capabilities of the following bilingual dictionary based tech-
niques: Anchored Cross-lingual pretraining (ACP) and Anchored training (AT) described
in [1], and the training of language model on pseudo-parallel data generated by the substi-
tutions provided by a bilingual dictionary.
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The main goal of this work was to examine the capabilities of these methods to pro-
vide performance improvement for models for different language pairs under various initial
conditions:

i. Training the models from scratch with various amounts of additional monolingual
data.

ii. Training the models from scratch with a limited amount of monolingual data.

iii. Fine-tuning the pre-trained XLM 17 language model with a limited amount of both
parallel and non-parallel data.

4



Chapter 2

Machine translation background

This chapter focuses on providing the reader with information concerning machine transla-
tion, its history of development, recent Neural machine translation developments and the
translation quality evaluation metrics that are usually utilized.

2.1 Pioneers of machine translation
Machine translation is a task of natural language processing that involves the automatic
translation of text from one language to another using computer algorithms. The history of
machine translation is traced from the early systems of the 1950s when the first experiments
were carried out. One of these experiments, the Georgetown–IBM experiment, despite the
facts that this experiment was of demonstrative nature and the product of it had almost
no real practical application (the system had only 6 grammar rules and a very restricted
vocabulary of 250 words to translate sentences in Russian that were prepared in advance
into English), the demonstration had great success. This, along with excessively optimistic
estimations that automatic translation would be a solved problem within a decade, resulted
in a significant increase in funding and garnered substantial attention from the press and
scientific community.

However, in the next few years, these first-generation MT systems had very limited
success. They consisted of a large bilingual dictionary where the entry for each word in
the source language was provided with equivalents in other languages and syntactic rules
that were used to place the output words in the right order. After years of research, it
became evident that systems of this kind are not capable of doing a high-quality translation.
Mainly because the solution was not systematic: syntactic rules and a bilingual dictionary
just weren’t enough to make the system solve the problem consistently in various domains
because of languages’ semantic ambiguity and overly complex rules.

In 1960 Yehoshua Bar-Hillel, a linguist and a pioneer in the field of MT, argued that
MT systems back then were not capable of fully automatic high-quality translation [5]. He
stated that in different kinds of documents, there could be sentences "whose ambiguity is
resolvable only on the basis of extra-linguistic knowledge", those sentences, in opposite to
scientific documents or reports, are more prone to misinterpretation by MT systems without
aforementioned knowledge. His statements turned out to be right when six years after the
Automatic Language Processing Advisory Committee (ALPAC), following the examination
of the current state and prospects of MT, concluded in its report that the products of
research in the MT field are disappointing and that "there is no immediate or predictable
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prospect of useful machine translation". This report justified a reduction in government
funding for MT research and it was abandoned for years to come.

2.2 Years of quiet
Despite the impact that the ALPAC report had in the US, active research in the MT field
continued in Europe and Canada to satisfy the needs of local governments and companies.
For the next 20 years, there was a development of the Rule-based machine translation
(RBMT) approach. RBMT systems are based on linguistic information of source and
target languages provided by dictionaries and grammars covering syntactic, morphological
and semantic aspects of languages. Although there was progress in translation quality,
coverage of different languages and introduction of new techniques – Transfer based machine
translation, Interlingual machine translation – systems still had crucial shortcomings: to
create one, a whole staff of linguists was required in order to build new rules and dictionaries.
Also, they still were lacking the ability to generalize across different domains and were
mainly geared up towards the translation of scientific papers and reports.

Some of the many successful systems of the time:

• SYSTRAN Russian-to-English MT system made for the United States Air Force,
was also used as assistance in the translation of scientific documents written in Rus-
sian.

• METEO MT system designed for the translation of weather forecasts between En-
glish and French languages issued by the Department of environmental policies of
Canada.

2.3 Statistical machine translation
The introduction of the groundbreaking Statistical Machine Translation (SMT) approach
in 1990 [2] marked a significant turning point, leading to rapid changes in the MT field.
The proliferation of the Internet and the accumulation of parallel corpora, i.e. collections of
aligned sentences in two languages (also known as bitext), in previous years, created condi-
tions that enabled MT systems to move beyond predefined rules and bilingual dictionaries
but instead to be created in a process of training on large parallel corpora. It was at this
point that the approach to MT began to leverage machine learning methods.

In practice, this meant that although the objective of translating a sequence of tokens
(sentence) from a source language 𝐿𝑠𝑟𝑐 with vocabulary 𝑉𝐿𝑠𝑟𝑐 to the most semantically
similar sequence of tokens in the target language 𝐿𝑡𝑔𝑡 with vocabulary 𝑉𝐿𝑡𝑔𝑡 remained the
same, the method for achieving it shifted from the application of rules that constitute an
MT model to a different approach. Now, instead of the manual creation of these rules, they
are extracted from large parallel corpora via training.

SMT model’s translation of a sequence from the source language to the target one is
determined by the estimation of the probability that some sequence in the target language
is an accurate translation of this source sequence. The search for the best translation is
based on Bayes’ rule:

𝑎𝑟𝑔𝑚𝑎𝑥
𝑦

𝑃 (𝑦|𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦

𝑃 (𝑥|𝑦)𝑃 (𝑦)

𝑃 (𝑥)
= 𝑎𝑟𝑔𝑚𝑎𝑥

𝑦
𝑃 (𝑥|𝑦)𝑃 (𝑦), (2.1)
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where

𝑃 (𝑦|𝑥) is a probability, that sequence 𝑦 is a translation of sequence 𝑥.

𝑃 (𝑥|𝑦) is a the probability of how often we see a 𝑥 given that 𝑦 is seen. It is defined by
the translation model.

𝑃 (𝑥) and 𝑃 (𝑦) are the probabilities of some sentences in source/target languages defined
by language models.

The parameters of these models are estimated during the training. Model training itself
can be described as a process of improving the performance of a model for a specific task
(such as MT) by leveraging the training data. In the case of SMT, one of the most widely
used training procedures was the Minimum error rate training [6].

2.4 Neural machine translation
The Neural machine translation (NMT) approach was explored and evaluated back in the
1990s [7, 8] and despite the fact that the approach was very similar to the methods that
we use today, its results were unsatisfactory and neural method was considered subpar and
ineffective compared to SMT, that was dominant in those years. From today’s perspective,
fail of early NMT systems seems predestined: none of these models was trained on corpora
of size large enough.

The modern incarnation of NMT started taking effect in 2007 with the integration of
neural language models into SMT systems [9] and, after some time, the major breakthrough
for MT came with the introduction of pure NMT with a sequence-to-sequence model in 2014
[10, 11] which, after some additions – attention mechanism [12] and byte pair encodings
[13], was able to outperform its SMT competitors at shared task for MT at WMT16. NMT
continued its development and the most recent architectural development emerged in 2017
with the introduction of the Transformer in the "Attention is all you need" paper by Vaswani
et al. [14].

2.4.1 Natural language representation

Before we move on to NMT architectures, I would like to review the modern techniques
that are being used to facilitate the machine’s understanding of natural language.

Byte pair encoding Before we feed the input text to the model, it should be tokenized.
One of the most efficient and most popular methods (used in BERT [15], GPT [16] and
many other systems) to tokenize the input text is byte pair encoding (BPE) [17]. With
this subword-based method, we obtain the vocabulary which consists of tokens during the
training. A token can either be a full word or a subword from a training corpus. To indicate
the end of the word, the algorithm adds the special token (e.g. "</w>") to the end of the
token.

Having some limitations regarding vocabulary size, the BPE algorithm ensures that
only the most frequent words and subwords extracted from rare words are present in the
vocabulary. For example, the morphologically complex German word Sonnensystem ("Solar
system") may be split into separate subwords Sonn, en and system</w> which can be used
for the tokenization of other words that are compound of at least one of these subwords.
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This is a far better approach than, for example, word-based tokenization because it
allows us to reduce the size of the vocabulary and the number of OOV (out-of-vocabulary)
word encounters in test data. Moreover, the nature of the BPE algorithm, that it tries to
catch the most frequent patterns from the training corpus, implies that it will capture the
semantically relevant language units (prefixes, suffixes, root words, etc.).

Word Embeddings Word embeddings is a fundamental concept in NMT. They are con-
tinuous vector representations of words in a high-dimensional space, where each dimension
of a vector corresponds to a specific feature or attribute of the word. The main idea behind
word embeddings is to capture the semantic and syntactic relationships between words in
a way that natural language processing systems (NMT systems in particular) can easily
process.
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Figure 2.1: Illustration of different word representations.

Since semantics and syntax are concepts that are hardly understandable by the com-
puter, embedding algorithms adopt the approach that is best described by the famous quote
of J.R. Firth [18]:

You shall know a word by the company it keeps.

And thus, to install the aforementioned word dependencies, we define the meaning of a
word by the context in which it occurs. Words that occur in similar contexts (e.g. words
"fox" and "wolf") will have similar embedding representations.
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2.4.2 Sequence-to-sequence models

At a high level, the sequence-to-sequence (Seq2Seq) model is an end-to-end model which
consists of two components: an encoder and a decoder. Both components traditionally
utilise the RNN architecture (being stacked layers of either long short-term memory cells
(LSTM) or gated recurrent unit cells (GRU)) and, unlike all non-neural translation systems
before, are trained jointly, so they can learn the same context vectors to maximize the
translation performance.

The flesh is weak .

Embed

Encoder Softmax

Decoder

Haragia ahula da . <EOS>

<BOS>

C

Figure 2.2: Example of Seq2Seq model translating from English to Basque. Illustration is
inspired by [19].

Encoder The purpose of an encoder is to read the variable-length input sentence and
to produce a fixed-length representation called the context vector. To do so, the encoder
first of all maps words in a sentence to vectors of ones and zeros (one-hot representation).
Then, using the embedding layer, the encoder maps each one-hot encoded input token to
a dense vector representation – embedding. Once the input tokens are transformed into
dense vector representations, the context vector c can be computed step by step for each
input token using the deep RNN (LSTM or GRU models)

h𝑖 = 𝑓(Wℎ𝑥x𝑖 + Wℎℎh𝑖−1 + bℎ), (2.2)

where

h𝑖 is the hidden state of RNN at timestep 𝑖. The hidden state of the last RNN layer is
the context vector.

x𝑖 is the input embedding vector at timestep 𝑖.

Wℎ𝑥 is a learnt weight matrix, that integrates an input vector.

Wℎℎ is a learnt weight matrix, that integrates a vector from the previous timestep.

bℎ is a bias term.

Decoder Decoder, having the same architecture as an encoder, has a different task: it
is responsible for generating the output sentence based on the context vector provided by
an encoder. Its first layer’s hidden state is being initialised with context vector c provided
by the encoder. Then decoder at each timestep, given the context vector c and all the
previously predicted words (at the first step decoder only has the <BOS> token), runs
all layers of LSTM/GRU and applies the softmax function after that to generate the next
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word. If a newly generated word is <EOS> (end of sequence) token generation ends. It is
important to note that due to the way that output is being generated there is no relation
between the length of the input sequence and the length of the output sequence.

Revealed problems Although the new Seq2Seq approach has shown promising results,
after analysing the NMT systems’ performance, Cho et al. [20] discovered several draw-
backs. They found that, while being on par with traditional SMT systems under favouring
conditions, the Seq2Seq systems’ performance degrades rapidly: first, with the increase of
the number of unknown words, and second, with the increased length of source sentences
(see Figure 2.3).
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Figure 2.3: The BLEU scores achieved by the RNN Encoder–Decoder [11] (a) and by the
Gated recursive convolutional neural network (b) depending on the length of the sentence
obtained in the study of [20]. Degradation of performance with sentence length increase is
evident.

And while the first problem may be potentially solved by increasing the size of vocabu-
laries used by NMT systems, the second one, caused by the fact that the fixed-length vector
representation does not have enough capacity to encode a long sentence with complicated
structure and meaning, required the redesign of the system’s architecture itself.

2.4.3 Sequence-to-Sequence models with attention mechanism

To address the described problem of deteriorating performance for longer sentences, [12]
proposed an extension to the encoder-decoder model which learns to align and translate
jointly.

Encoder Encoder, unlike the one in the vanilla encoder-decoder architecture, now utilises
a bidirectional recurrent neural network (BiRNN), which consists of forward and backward
RNNs: the former one reads the input sequence as it is ordered (from 𝑥1 to 𝑥𝑁 ) and
computes a sequence of forward hidden states (−→ℎ1, ..., −→ℎ𝑁 ) for every input word, the latter
one does the same computation except it reads the input sequence in reverse order and
thus provides the backward hidden states (←−ℎ1, ..., ←−ℎ𝑁 ). Then we obtain word representation

ℎ𝑖 for each word 𝑥𝑖 by concatenating 𝑖-th forward and backward hidden states ℎ𝑖 =

[︃−→
ℎ𝑖←−
ℎ𝑖

]︃
.
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Figure 2.4: Illustration of RNN encoder-decoder with the attention mechanism.

This way each word representation ℎ𝑖 will contain information about both the preceding
and the following words with a strong emphasis on the 𝑖-th word. And thereby encoder
is now able to capture dependencies between the 𝑖-th token and the tokens that are from
both sides of it.

Decoder In the proposed architecture a decoder is almost identical to the one from
the original Seq2Seq model’s architecture, except now for each step 𝑖, in addition to the
previously predicted target words (𝑦1, ..., 𝑦𝑖−1) and the previous hidden state 𝑠𝑖−1, it should
also take in account the attention. That is, the probability of the target word is:

𝑝(𝑦𝑖|𝑦1, ..., 𝑦𝑖−1,x) = 𝑔(𝑦𝑖−1, 𝑠𝑖, 𝑐𝑖) with 𝑠𝑖 = 𝑓(𝑠𝑖−1, 𝑦𝑖−1, 𝑐𝑖) (2.3)

The attention has the same role as context vectors and is also denoted as 𝑐𝑖 for each step 𝑖.
But now, instead of providing a single representation for the entire sentence for every step
of the output generation, we, having a single vector of word representations, are evaluating
it differently depending on the current target position 𝑖 with the help of distinct weights.
In essence, the attention is a weighted sum of word representations h:

𝑐𝑖 =

𝑁∑︁
𝑗=1

𝛼𝑖𝑗ℎ𝑗 (2.4)

where 𝛼𝑖𝑗 is a specific weight that represents the probability that target word 𝑦𝑖 is aligned
with source word 𝑥𝑗 . It is a product of softmax function over all other alignments:

𝛼𝑖𝑗 =
exp 𝑒𝑖𝑗∑︀𝑁
𝑘=1 exp 𝑒𝑖𝑘

with 𝑒𝑖𝑗 = 𝑎(𝑠𝑖−1, ℎ𝑗) (2.5)

where 𝑒𝑖𝑗 is an alignment model which estimates how well the inputs around the 𝑗-th
position match the 𝑖-th output word.

This approach removed the need to encode the entire source sentence into a single
context vector by allowing the decoder to look through all the encoder states and evaluate

11



the importance of each source word for a current step. As a result, the model achieved
superior performance when translating longer sentences, thereby solving the problem that
motivated the creation of extension in the first place, and improving the overall translation
quality establishing the Seq2Seq approach (and thus NMT as a whole) as the dominant
paradigm.

2.4.4 Transformer

The next breakthrough in NMT came along with the introduction of a novel model archi-
tecture in the famous "Attention Is All You Need" paper from Google Research in 2017
[14]. This architecture, the Transformer, in order to overcome the constraint of sequential
computation was designed purely around the attention mechanism which is used to extract
dependencies between input and output. This new method permits parallel computing,
which drastically speeds up the model’s training since GPUs that are used for its training
are specifically designed for parallel processing.

Figure 2.5: The Transformer model architecture. Taken from the original paper [14].

Transformer’s architecture follows the general idea of encoder-decoder structure: it con-
sists of two same "macro" blocks – an encoder and a decoder, the former one maps the input
words (𝑥1, ..., 𝑥𝑛) to their continuous representations (𝑧1, ..., 𝑧𝑛). The latter one generates
an output sequence (𝑦1, ..., 𝑦𝑚) based on these representations and previously predicted
words. Both of these blocks consist of 𝑁 (𝑁 = 6 in the original paper) encoder/decoder
layers.

Encoder layers Each encoder’s layer consists of two sublayers – multi-head self-attention
mechanism and position-wise fully connected feed-forward neural network (FFNN). The first
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one relates different positions of a sentence to compute a representation of it. The second
one applies non-linear transformations to its input features.

In addition to this, encoder layers also include residual connections around both sub-
layers followed by layer normalization. Residual connections allow the model to learn more
complex functions by adding the input to the layer’s output, and layer normalization helps
stabilize the training process. That is, each sublayer has the output

y = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(x + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(x)) (2.6)

where 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟() is the sublayer’s function.

Decoder layers Decoder layers are structured in the same way as the encoder layers
– they also utilize residual connections and the normalization step after each sublayer.
However, the decoder layers also contain another sublayer that is placed between the two
sublayers that are included in the encoder layer – the Encoder-Decoder attention sublayer –
which performs multi-head attention over the output of the encoder stack. Additionally, the
self-attention sublayer is masked which restricts the decoder from attending to the positions
that were not yet generated during the training.

Attention The Transformer’s attention can be described as a function with 3 arguments,
all of them being vectors: query q, key k and value v of dimensions 𝑑𝑘, 𝑑𝑘, 𝑑𝑣, respectively;
the output of this function is computed as a weighted sum of values v, where the weight
assigned to each element in it is computed by a compatibility function of the query with
the corresponding key.

The attention used in the original Transformer is called "Scaled Dot-Product Atten-
tion", it is computed with the above-described query, key and value as arguments, with the
difference that in practice these are the matrices of queries/keys/values packed together:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q,K,V) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
QK𝑇

√
𝑑𝑘

)V with 𝑑𝑘 = 𝑑𝑣 =
𝑑𝑚𝑜𝑑𝑒𝑙

ℎ
(2.7)

In addition to that, the attention used in the Transformer is multi-headed, which provides
the attention with different representation subspaces at different positions:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(Q,K,V) = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)W𝑂, (2.8)

with
ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(QW𝑄

𝑖 ,KW𝐾
𝑖 ,VW𝑉

𝑖 ) (2.9)

where ℎ is the number of heads (ℎ = 8 in the original Transformer), W𝑄
𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,

W𝐾
𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 and W𝑉

𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 are the projection matrices for queries, keys
and values, which are used to project the input embeddings into a different representation
subspace; the W𝑂 ∈ Rℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 is a weight matrix that is used to condense concatenated
attention heads into a single matrix. All three matrices are learnt jointly during the training.

Position-wise feed-forward neural network Each layer in both the encoder and de-
coder also contains a feed-forward neural network which is applied to each position sepa-
rately. It consists of two linear transformations with a ReLU activation function in between.
It transforms the output of the self-attention layer and produces the final output of the en-
coder layer.
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𝐹𝐹𝑁𝑁(𝑥) = 𝑅𝑒𝐿𝑈(0,xW1 + b1)W2 + b2 (2.10)

Positional Encoding Positional encodings (PE) are used to provide the model with
information about the relative or absolute positions of the words in the sentence. PE
have the same dimensionality as the embeddings so that both can be summed. They are
added to the input embeddings before they are passed to the encoder/decoder stack of the
Transformer. The positional encodings are obtained from an encoding function that should
be periodic, thus, the position of the token can be correctly represented, despite the length
of the sentence. In the original Transformer Vaswani et al. utilized two sinusoidal functions
of different frequencies:

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = cos(𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin(𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)

(2.11)

where 𝑝𝑜𝑠 is the position of given token and 𝑖 is the embeddings dimension.
The positional encodings along with the attention-centric nature of the Transformer

itself have changed the way in which the input is being processed. Now instead of presenting
input sequentially, we are able to pass all tokens at once and get the information about
their position from the embeddings.

2.5 Evaluation metrics
The purpose of automatic evaluation metrics for MT is to provide a quantitative measure
of how accurate are the translations provided by an MT system without any assessment
from a human translator. These metrics usually involve comparing the output generated
by the MT system (hypothesis or candidate translation) to a reference translation. Two
metrics that will be used for automatic evaluation in this work are BLEU and chrF.

2.5.1 BLEU score

The BLEU score [21] is a commonly used metric for evaluating the quality of the machine-
generated text, particularly in the context of machine translation. The BLEU score com-
pares a generated candidate translation to one or more reference translations.

The cornerstone of the BLEU metric is the precision measure, which is the proportion of
n-grams (contiguous sequences of 𝑛 words), that appear in both the candidate translation
and the reference translation to n-grams that appear in candidate translation. The more
n-grams that are shared between the candidate and reference translations, the higher the
BLEU score.

𝑝𝑛 =

∑︀
n-gram∈𝐶𝑑𝑡∩𝑅𝑒𝑓 𝑐𝑜𝑢𝑛𝑡(n-gram)∑︀

n-gram∈𝐶𝑑𝑡 𝑐𝑜𝑢𝑛𝑡(n-gram)
(2.12)

It is computed as the geometric mean of the n-gram precision scores, where the n-gram
precision for a given 𝑛 is the 𝑐𝑜𝑢𝑛𝑡 of n-grams in candidate translation that also appear
in reference translation, divided by the total number of n-grams in candidate translation.
Finally, the BLEU score is brevity-penalized (𝐵𝑃 ) if the candidate translation 𝑐 is shorter
than the reference translation 𝑟 that has the closest length to 𝑐.
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Bleu = BP · (
𝑁∏︁

𝑛=1

𝑝𝑛)
1
𝑁 with BP =

⎧⎨⎩exp(1− 𝑟/𝑐), if 𝑐 < 𝑟

1, otherwise
(2.13)

2.5.2 ChrF score

The chrF score proposed by M. Popović [22] is another commonly used MT evaluation
metric. This metric was created to offset the problems identified during the period of using
the BLEU metric. One of which is that the BLEU score measures the translation quality
from a word-level perspective which makes it less accurate when it comes to the translation
quality evaluation of morphologically rich languages.

The chrF metric is an F-score-based metric. To address the described issue the chrF
compares hypothesis and reference on a character level instead.

chrF𝛽 = (1 + 𝛽2)
chrP · chrR

𝛽2 · chrP + chrR (2.14)

where

chrP is a character n-gram precision, the percentage of character n-grams in the hypoth-
esis translation that are also present in the reference.

chrR is a character n-gram recall, the percentage of character n-grams in the reference
which are also present in the hypothesis translation.

𝛽 is a parameter that assigns 𝛽 times more importance to recall than to precission.

In recent years, the chrF metric, along with its subsequent iterations – as chrF+(+) –
has demonstrated a strong correlation with human translation quality estimation, particu-
larly in the evaluation of translation quality for morphologically rich languages. To better
illustrate this, let’s consider the following example:

Source en Tired student was preparing for the exam.
Reference cs Unavený student se připravoval na zkoušku.
Hypothesis 1 cs Unavená studentka se připravovala na zkoušku.
Hypothesis 2 cs Unavený student se připravoval na zkoušku.

With no additional context provided both hypotheses listed above can be considered correct
translations of the source sentence, the difference between them is that the first one contains
the feminine forms of words and the second one - the masculine ones. Despite the fact that
both translations are correct, the first one will reach a comparatively low BLEU score of
26.27 whereas the second one will reach a BLEU score of 100. ChrF metric offsets this
problem by comparing the reference and hypothesis from a character-level perspective,
the chrF score with 𝛽 = 3 will be 0.74 and 1.0 for the first and the second hypotheses
respectively.
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Chapter 3

Approaches for low-resource neural
MT

In this chapter, I will cover the contemporary techniques employed in NMT that are used
when it comes to low-resource Machine translation.

3.1 Back-translation
Back-translation (BT) is the unsupervised training technique first proposed for SMT and
then rediscovered for NMT by Sennrich et al. [3]. The idea behind this technique is that
we can leverage the model’s decoding ability and monolingual corpus during its training in
a way of iteratively, for each observed training entry, first providing the perhaps incorrect
translation of the source sentence by decoding and then learning to reconstruct the original
sentence from this translated sentence. The inconsistency between these two sentences
provides the error signal to train the model in the target-to-source direction.

3.2 Cross-lingual Language Model Pretraining
Cross-lingual language modelling (XLM) is a task of training language models that can pre-
dict tokens in multiple languages: language models trained with Masked language modelling
or Translation language modelling (MLM and TLM) are able to predict the masked token
at any position given the surrounding tokens (context), CLM – Causal language model –
on the other hand, is able to predict a sequence of tokens after the preceding words. XLM
is particularly useful in situations when the parallel data for a specific language pair is
limited, or when the model’s application involves the use of many languages.

Lample et al. [23] surveyed the capabilities of cross-lingual modelling to improve models’
performance for various tasks – Cross-lingual classification, Cross-lingual language inference
and Machine translation. In particular, to leverage XLM for MT, the Transformer’s encoder
is pre-trained using a causal, translation, or masked language modelling objective prior to
being fine-tuned with the Machine translation (for parallel data) or Back-translation (for
un-parallel data) objectives.
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3.2.1 Language modelling

Language modelling is the NLP task that involves the modelling sequences of tokens in
a given language. More specifically, the task involves training a model that predicts the
probability distribution of the next word given the context of the preceding words. For
models of this kind, the input will be the sequence of words and the output will be the
probability distribution over the model’s vocabulary for the next word. For example, for
the English sentence

He was sitting in front of the ___

as the input, the output may be the distribution {..., "computer": 0.3, ..., "window": 0.4,
..., "charger": 0.0, ...} which signifies that the most probable next word is "window".

3.2.2 Masked language modelling

Masked language modelling (MLM) that was introduced in the BERT paper by Devlin et
al. [15] is a type of language modelling that, unlike the previously described approach, has
the ability to predict the word at any position. As it can be seen in Figure 3.1, training
of the masked language model consists of randomly masking a few tokens in the input
sentence (15% of tokens in the original paper) and then predicting the word that was in
the original unmasked sentence based on surrounding tokens. The masking itself is simply
a replacement of a chosen word with [𝑀𝐴𝑆𝐾] token 80% of the time, a random token from
the vocabulary 10% of the time and an unchanged token 10% of the time.

Masked  
Language  
Modelling

Transformer

take [/s] drink now

[/s] [MASK] a seat [MASK] have a [MASK] [/s] [MASK] relax and

0 1 2 3 4 5 6 7 8 9 10 11

en en en en en en en en en en en en

Token embeddings

Position embeddings

Language embeddings

+ + + + + + + + + + + +

+ + + + + + + + + + + +

Figure 3.1: XLM variant of MLM training, [∖𝑠] tokens denotes the boundaries of text
streams. Replicates the scheme from [23].

Lample et al. modified the original training algorithm by using the input streams of an
arbitrary number of sentences instead of pairs of sentences. Also, in order to counter
the imbalance between rare and common tokens they discarded the frequent words in the
training set with the probability given by the formula

𝑃 (𝑤𝑖) = 1−

√︃
𝑡

𝑓(𝑤𝑖)
(3.1)

where 𝑓(𝑤𝑖) is the frequency of the word 𝑤𝑖 and 𝑡 is a threshold parameter.
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3.2.3 Translation language modelling

In order to further improve the cross-lingual pretraining Lample et al. proposed a novel lan-
guage modelling objective called Translation language modelling. TLM, being an extension
of MLM, tries to leverage parallel data.

Translation 
Language  
Modelling

Transformer

curtains blue urdinak [/s]

[/s] the [MASK] were [MASK] [/s] [/s] gortinak [MASK] ziren [MASK]

0 1 2 3 4 5 0 1 2 3 4

en en en en en en eu eu eu eu eu

Token embeddings

Position embeddings

Language embeddings

+ + + + + + + + + + +

+ + + + + + + + + + +

Figure 3.2: Training the English-Basque LM with translation language modelling objective.

As this can be seen in Figure 3.2, the training with such an objective consists of a concate-
nation of parallel sentences, masking random tokens (with no regard to tokens’ language)
in the new concatenated text and then predicting the original tokens that were masked
based on tokens surrounding masked tokens in both source and target languages. It is also
worth mentioning that the positions of tokens in the target sentences are reset. Training
model this way encourages it to learn the alignments between the representations of parallel
sentences.

The TLM pretraining proved to be useful for the Cross-lingual classification task, the
aforementioned research shows that leveraging data through the TLM+MLM objective
provides a boost in performance of 3.6% accuracy.

3.3 Leveraging bilingual dictionaries for cross-lingual pre-
training

"The unsupervised training techniques, based on a bilingual dictionary, as presented by
Duan et al. in [1], rely on the use of unparallel corpora in at least two languages, along
with a bilingual dictionary that provides word mappings. In this section, I will describe
these training methods.

3.3.1 Bilingual dictionaries

Bilingual dictionaries (or lexicons) are collections of pairs of mutual translations of expres-
sions (single words or phrases) in two languages. The main benefit that bilingual dictionaries
bring is that they may provide multiple ground-truth translations of a single expression that
could not usually appear in datasets. However, bilingual dictionaries often provide trans-
lations without any additional information regarding the translation pair: word class (part
of speech) and the case- or tense-related information may be omitted. Another downside
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is that we can’t extract the context in which a given word is usually used neither on the
source nor the target side.

3.3.2 Anchored training

Target view Anchored training To bridge the gap between semantic spaces of lan-
guages Duan et al, considering the fact that the cross-lingual language model is being trained
on monolingual corpora and that word embeddings are highly dependent on a word’s sur-
rounding context, proposed a method called Anchored training (AT) which leverages the
bilingual dictionary by injecting anchors on the monolingual corpora.

Rapides brown renard jumps

Sauts rapides de renard brun

Rapides brown renard jumps

Decoding

Sentence
pair used for

training 

Sauts rapides de renard brun

Rapides brown renard jumps

Sauts rapides de renard brun

Source-to-target Target-to-source

Figure 3.3: Example of Back-translation used for AT made in both directions for the same
sentence pair, anchor words are written in bold.

As it is evident from Figure 3.3, the essence of the AT method is that we, having a mono-
lingual corpus and bilingual lexicon, replace the words covered by this lexicon with anchors
– translations of these words provided by the lexicon. Through these anchors, words with
similar meanings in different languages will share the same word embeddings. The training
process consists of the back-translation steps in both – source-to-target (s2t) and target-
to-source (t2s) – directions:

1. The anchored source sentence is translated via s2t NMT decoding into the target
sentence and then two of them are used as a pair for t2s translation training.

2. The target sentence is translated into the anchored source sentence via t2s decoding
and then both sentences are used to train the s2t translation model.

During the inference, the source sentence is also in advanced translated into the anchored
sentence by looking up the dictionary and only then the s2t decoding is used.

Bi-view Anchored training The modification to AT, the Bi-view AT, extends the way
the model looks at the sentence pair by adding the source language view to the target
language view that was described previously. This extension provides two additions: first,
we add steps similar to those previously described for AT, with the exception that now
substitutions are applied to target sentences; second, usage of a dictionary in a bidirectional
manner allows us to generate additional anchored sentences from true denoised sentences
produced by decoding in either of 2 directions, which will be also utilized during the training.

3.3.3 Anchored Cross-lingual pretraining

Another method presented in this article is Anchored Cross-lingual pretraining (ACP). It
assumes the absence of parallel corpora. ACP involves the same noising step that was

19



previously described for AT – we first generate the pseudo-parallel sentence based on the
source sentence by substitutions of words covered by a bilingual dictionary.

Masked  
Language  
Modelling

Transformer

hartzeko [/s] edan now

[/s] [MASK] a seat [MASK] have a [MASK] [/s] [MASK] relax eta

0 1 2 3 4 5 6 7 8 9 10 11

en en en en en en en en en en en en

Original data

Position  
embeddings

Language  
embeddings

+ + + + + + + + + + + +

+ + + + + + + + + + + +

hartzeko

[/s] take a seat [/s] have a drink [/s] now relax and

Apply substitutions

[/s] seata have[/s] edana now[/s] etarelax

Token  
embeddings 

Noised data 

Figure 3.4: Anchored Cross-lingual Pretraining – leveraging noisy data through MLM ob-
jective.

As can be seen in Figure 3.4, the source words are replaced with their target language
counterparts, and the resulting noised sentence, treated as if it was in the source language,
is leveraged through the Masked language modelling objective.

3.4 XLM with pseudo-parallel data
Another method that is covered in this work includes the use of pseudo-parallel data. As
can be seen in the scheme from Figure 3.5, we, having only the monolingual data in one
language are generating the noisy version of it. Then we are, treating the true source corpus
and the noisy version of it as the source data and the target data respectively, leverage them
through the language modelling objective (either TLM or MLM).
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Language  
Modelling

Transformer

[/s] the [MASK] were [MASK] [MASK]

0 1 2 3 4 5

eu eu eu eu eu eu

Noised data 

Position  
embeddings

Language  
embeddings

+ + + + + +

+ + + + + +

the

Apply substitutions

[/s] weregortinak [/s]urdina

Token  
embeddings 

Original data 

[/s] the [MASK] were [MASK] [/s]

0 1 2 3 4 5

en en en en en en

+ + + + + +

+ + + + + +

the[/s] werecurtains [/s]blue

urdina [/s]gortinakbluecurtains

Figure 3.5: XLM on pseudo-parallel data with TLM objective.
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Chapter 4

Implementation

The XLM framework1 provides training options for MLM and TLM pretraining as well as
training options for Machine translation and Back-translation training out-of-the-box.

However, the ACP and AT techniques are not directly embedded in the XLM framework.
In order to leverage the data the way these methods expect to, we have to modify the data
used during the training in the following manner for each of the methods and then leverage
them through corresponding training objectives:

ACP assumes the unsupervised training on non-parallel corpora, where the source side
corpus is noised with anchoring points and the target side corpus remained clean.
Data are leveraged through the MLM objective.

AT assumes the unsupervised training through the BT objective in both directions (source-
to-target and target-to-source) on monolingual corpora with only the source side
corpus noised by placing the anchors provided by the bilingual lexicon.

XLM on pseudo-parallel data assumes that the target language data is generated by
the BD-based substitutions applied to true source data. The data will be leveraged
through MLM or TLM objectives as it is depicted in Figure 3.5.

The script that applies the substitutions is named sub_by_dict.py, the substitution
algorithm itself is described in Appendix A.1. All the training arguments used for all the
experiments described further are listed in Appendix C.

1https://github.com/facebookresearch/XLM
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Chapter 5

Experiments

In this chapter, I will cover the subjects closely related to the experiments conducted for this
work: used data, data preprocessing pipeline and rationalization of the choice of languages.

Later parts of this chapter analyse the effectiveness of the application of described
bilingual dictionary based techniques under different conditions. This work investigates the
settings that are not covered by the research of [1] – first, I surveyed the situations which
involve the use of a small amount of parallel data and various amounts of non-parallel
data; second, a case somewhat similar to the one discussed in the above-mentioned study,
with the exception that there will only be a limited amount of monolingual data for both
languages.

5.1 Data overview
In this section, I would like to list and briefly describe all data sources that were used
to conduct the experiments. In subsections 5.1.1 and 5.1.2 I will review in terms of data
quality, domain and size the corpora that were used as training, validation and testing sets
during the models’ training and evaluation. In subsection 5.1.3 used bilingual dictionaries
are covered. Unless otherwise specified, all listed corpora were downloaded from OPUS
[24].

5.1.1 Training datasets

CCMatrix [25] is the giant corpus containing parallel sentences in 90 languages. The
content of it was extracted by data mining from web crawls obtained from the entire
web. The implication of that is the fact that the content may contain many noisy
entities: hyperlinks, random punctuation, markup elements, and misalignments.

Europarl [26] is a parallel corpus containing 21 European languages. It consists of tran-
scripts of European Parlament sessions translated into these languages by professional
translators.

NewsCommentary is a parallel corpus that was created by WMT. It consists of news
commentaries and is available in 15 languages.

Wikimedia is a large collection of parallel sentences in 322 languages. It includes the
dumps of articles from various Wikimedia projects (Wikipedia, Wiktionary and oth-
ers).
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Size of datasets (in sentences) Domain
en-fr en-cs en-vi en-eu

CCMatrix - - - 7.8M Various
Europarl 2.1M 647K - - Politics
NewsCommentary - 212K - - News
Wikipedia 818K - 58K - Wiki articles
Wikimedia 1.0M - - - Wiki articles
OpenSubtitles - - 350K - Movie subtitles
ElhWebCorp - - - 12M Various
EhuHac - - - 585K Various
TED2020 - - 326K - Various
NeuLab_TedTalks - - 183K - Various
EUBookshop 10.8M - - - Legal
QED - - 338K - Various
flores-200_dev 997 997 997 997 Various
flores-200_devtest 1012 1012 1012 1012 Various
Tatoeba 268K 31K 5694 2066 Various

Table 5.1: Overview of all datasets that are used in this work.

OpenSubtitles is a parallel corpus of translated movie subtitles from OpenSubtitles web
site1 it is available in 62 languages.

ElhWebCorp (Elhuyar Basque Web Corpus) is a product of Igor Leturia’s Ph.D. thesis
[27]. It was collected using both search engines and crawling. It is a large monolingual
Basque general corpus containing around 186M raw tokens. As well as the CCMatrix
corpus, ElhWebCorp includes a lot of noisy elements.

EhuHac is a dataset created by Basque Country University. The corpus is built on
translations of 171 books, it provides parallel data with Basque on one side and
French/English/Spanish on the other.

TEDTalks NeuLab-TedTalks2 and TED2020 are both corpora that are based on tran-
scripts of TED Talks presentations. TED2020 was made by Reimers and Gurevych
[28], it is based on translated subtitles of 4000 TED talks in 100 languages. NeuLab-
TedTalks is based on translated subtitles that were made by volunteers, the dataset
is available in 59 languages.

EUBookshop is a parallel corpus that was created by crawling the EU Bookshop, the
archive of various publications from EU institutions. The dataset is available in 48
languages.

QED (QCRI Educational Domain Corpus) is a parallel corpus that consists of translated
subtitles of educational videos and lectures developed by Qatar Computing Research
Institute [29]. The corpus supports 225 languages.

1http://www.opensubtitles.org/
2https://github.com/UKPLab/sentence-transformers/blob/master/docs/datasets/TED2020.md
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5.1.2 Validation and test datasets

Flores-200 [30] is a high-quality parallel multilingual benchmark for low-resource and
multilingual machine translation. Flores-200 consists of translations of 842 distinct
web articles for 200 languages made by professional translators, the dataset is divided
into two splits: dev and devtest that were used as validation and test sets respectively
for each language pair in this research. Flores-200 benchmark can be downloaded
from the flores200 GitHub repository3.

Tatoeba [31] is a large corpus that is based on the Association Tatoeba database of sen-
tences and their translations that are being contributed by the community. The main
product of the project is the toolkit that provides the examples of usage of given
words. And thus the parallel corpus consists mostly of simple "example sentences"
in different languages. Tatoeba is available in 380 languages. Tatoeba corpora were
used for model testing for all declared language pairs.

5.1.3 Bilingual dictionaries

MUSE dictionaries are the high-quality bilingual dictionaries for 110 languages that
were presented alongside a state-of-the-art approach for unsupervised MT in the work
of Conneau et al. [32]. Authors took into account the problem of words’ polysemy
and instead of using some online translation tools to generate expressions’ translations
they used an internal translation tool designed specifically for the task of lexicon
induction. In this work, Vietnamese-, French-, and Czech-English MUSE dictionaries
are utilized. Bilingual lexicons are publicly available as part of the MUSE library4.

ELRC English-Basque dictionary is an automatically created dictionary that was in-
ferred during the training of an unsupervised MT system as a part of MT4ALL
project5.

Apertium [33] is an open-source platform for rule-based non-neural machine translation.
One of the modules of this system, namely, lexical transfer, relies heavily on a bilingual
dictionary for looking up lexical forms in them. Unlike other bilingual lexicons, the
ones used in Apertium systems provide additional information like the word’s part of
speech, case, and tense to further improve the language translation. However, in this
research dictionaries will be only used for word mapping. English-Basque bilingual
lexicon from the research of O’Regan and Forcada [34] is utilized in this work.

It is worth noting that the resulting English-Basque lexicon has lower quality compared
to the ones provided by the MUSE library, it includes many entries with translation of
phrases which may substantially reduce the dictionary coverage of the dataset. Also, the
vocabulary was pre-processed by cleaning from noisy elements (redundant punctuation,
unrelated symbols).

3https://github.com/facebookresearch/flores/blob/main/flores200/README.md#download
4https://github.com/facebookresearch/MUSE
5https://ixa2.si.ehu.eus/mt4all/project.html
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5.2 Languages
In order to better explore the capabilities of bilingual dictionary based techniques it was
decided to train the MT models for several language pairs. All of them consider English
as the source language. The choice of target languages is based on their morphological
richness and linguistic distance from English.

Here is the list of these target languages and some of their linguistic features that are
relevant to this research:

French is a Romance language that is very closely related to English. French and English
share about 30% of words that are either derived from Latin or borrowed by one
language from another. Just like English, French has the SVO word order. French
was chosen as a language with a small linguistic distance from English and as a
language of a comparably simple morphology.

Vietnamese is an isolating language, which means that words are made up of morphemes
that cannot be further divided into meaningful smaller units. Similar to English, it
has an SVO word order. Vietnamese can be characterized as a language with low
morphological complexity: it lacks any direct modifications of words. Instead, to
indicate any grammatical inflection, additional words are added before or after the
word we want to inflect. Because of the combination of all these properties, it is
expected that the performance boost provided by BDBNMT for English-Vietnamese
MT will be the highest among all considered language pairs.

Original English Data

Vietnamese translation*

Generated sentence

Translation of gen. sentence*

There are schools but there is no paper.

Có trường nhưng không có giây.

There đang trường nhưng kia quan không trát.

There's school, but there's no warrant.

As one can see in this example, the translation generated by substitution is not very
accurate: it is verbose and English-centric due to the word mapping in the English-to-
Vietnamese direction. However, it allows the model to learn better representations of
Vietnamese words during the pretraining phase: in the case of this sentence, having
the vocabulary entry {"paper": ["trát", "giây"]} with two Vietnamese translations, we,
using the substitution algorithm, get trát ("warrant") as a translation, which is not
accurate in this situation but these two words have a somewhat close meaning and
thus it is desirable that they are located close to each other in the embedding space.

Basque is an under-resourced language which is considered a language isolate (there are
no other languages related to Basque). Basque is known for its complex morphology
and agglutinative nature. It has a relatively flexible word order, which means that
words in a sentence can be rearranged for emphasis or stylistic purposes without really
changing the meaning of the sentences. However, the existing rules imply that the
basic word order in Basque is SOV (subject-object-verb). To better understand the

∗Translation generated by Google Translate
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morphological richness and agglutinative nature of the Basque language let’s consider
the example∗: the verb dakartzat ("I bring them") is formed as follows: da indicates
present tense, kar is a root word of infinitive ekkari ("to bring"), tza indicates plural
and t indicates subject ("I"). Such high morphological complexity causes doubts about
the applicability of bilingual dictionary based word substitutions: lexicons simply
can’t provide mappings to all the forms that are inflected from the word. However,
considering the fact that Basque is an under-resourced language, BD-based can still
be effective for improving the model’s performance by the provision of ground-truth
expressions’ translations.

Czech is a fusional language which implies that the meaning of a word is often changed
by adding suffixes, prefixes, or inflections to the base word. Czech nouns, adjectives,
pronouns, and verbs are inflected to reflect their grammatical role in a sentence, as
well as their gender, number, and case. Even though Czech, like many other Slavic
languages, has a relatively free word order, in general, it follows the SVO word order.

5.3 Data preprocessing
The preprocessing of corpora in general follows the same steps that are shown as the example
in the XLM GitHub repository:

1. Tokenize the data using the rule-based tokenizer which will split words into subwords
and separate the interruption.

2. Learn BPE codes from both source and target tokenized data.

3. Apply the learned BPE codes on tokenized data.

4. Extract the vocabulary from BPE tokenized data.

5. Divide the data into parallel and non-parallel subsets if we expect to train the model
with TLM objective and there are non-parallel segments.

6. Binarize the data.

5.4 Tools
Preprocessing To perform data preprocessing described in Section 5.3 the following tools
were used:

Moses tokenizer6 is used for subword tokenization of raw data.

fastBPE7 is used for all BPE-related operations (BPE codes learning, vocabulary extrac-
tion, BPE codes application)

Training XLM8 framework was used for model training with both Language modelling
and Machine translation objectives.

∗Taken from Wikipedia
6https://github.com/moses-smt/mosesdecoder
7https://github.com/glample/fastBPE
8https://github.com/facebookresearch/XLM
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Evaluation In order to perform models’ performance evaluation during both validation
and testing the following tools were used:

Since the XLM framework provides no option for the training with the chrF metric, the
evaluation module was modified by adding a chrF score implementation provided by
nltk [35] and a corresponding option for a training script.

SacreBLEU implementation of chrF and BLEU scores is used for the evaluation of con-
verged MT models, sacreBLEU was introduced by M. Post [36].

5.5 Basic sets: parallel data for training MT systems
In order to provide some parallel data for MT training, subsets of 130k sentences dubbed ba-
sic sets were extracted from the following corpora: Europarl, NeuLab-TedTalks, Europarl,
CCMatrix for English-French, -Vietnamese, -Basque and -Czech language pairs respec-
tively. Basic sets are the only parallel datasets used in this research. They are used in all
experiments that assume the use of parallel data.

5.6 Notation
Throughout the following experiments’ descriptions and discussions, some specific abbrevi-
ations and terms will be used. The list is as follows:

Training objectives (MLM, TLM, MT, ACP, AT) will be denoted as an abbreviation
with a subscript indicating the number of training sentences from both source and
target sides, the prime sign will mean that data used for training are pseudo-parallel,
stages of training are separated by a comma. E.g. TLM100+MLM130′,MT130 means
that the model was first pre-trained: with TLM objective on first 100k sentences and
MLM objective on the next 130k pseudo-parallel sentences; next, the model was MT
fine-tuned leveraging only 130k sentences.

MT Machine Translation.

BD Bilingual Dictionary.

T-/M-LM Translation/Masked Language Modelling.

ACP Anchored Cross-lingual Pretraining.

AT Anchored training.

5.7 Training models from scratch with a small amount of
additional data

This set of experiments emulates the situation where one doesn’t possess the large-scale cor-
pora to train an NMT model. The training was conducted for all 4 language pairs that were
listed previously. These experiments should explore the efficiency of models’ pretraining
applicability of the BD-based approach to languages of different morphological complexity.
It is expected that the performance boost may be less evident for more morphologically
rich languages.
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5.7.1 Determining the optimal hyperparameters

Since it is expected that the performance of MT models will be subpar because of data
scarcity, it was decided to find the embedding dimensionality that will be optimal for these
models. Related experiments are described in Appendix B.

5.7.2 Baseline

The baseline case considers the absence of additional monolingual data, so baseline models
are leveraging only the basic sets for training. Experiments conducted will also serve as a
showcase of how efficient both TLM and MLM pretraining with following MT fine-tuning
are compared to the pure MT approach and to one another.
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Figure 5.1: Comparison of performance of models trained without pretraining and models
trained with different pretraining objectives.

First, in order to better understand the significance of LM pretraining it was decided to
train models with the MT objective without any pretraining to provide a point of reference.
As it is apparent from both graphs from Figure 5.1, MLM pretraining provides a notable
performance boost in the BLEU score (30%) and in the chrF3 score (10%) on average
among all the test sets.

Second, to explore the expediency of leveraging parallel data through the TLM objec-
tive was trained the MT model that was pre-trained with TLM. Graphs from Figure 5.1
demonstrate that MT models that were first TLM pre-trained outperform models that had
MLM pretraining for each language pair. To enhance the performance of future models, it
was decided to always consider the basic set suitable for the TLM objective.

Test sets’ complexity

From the graphs in Figure 5.1 it is evident that the Tatoeba set is different from flores200
dev/devtest sets in terms of complexity – as mentioned before, Tatoeba set consists of
simple short example sentence whereas flores200 is based on web articles and consists of
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sentences that are more complex, so it is worth considering that results for flores200 sets
are in general more representative. For all subsequent experiments, graphs will only depict
the average performance for a particular model over all datasets. The summary of the
performance of every model trained during this research for each dataset can be found in
Appendix D.

5.7.3 XLM with the use of pseudo-parallel data

In order to provide a set of English monolingual data to be used for BD-based substitutions
to generate the pseudo-parallel data, 100k sentences were extracted from the corpora listed
in Table 5.2.

Language pair Corpora BD entries BD coverage
English-French

English-French Europarl and Wikipedia
113286 54.6%

English-Vietnamese 76364 49.8%
English-Basque 29282 35.5%
English-Czech English-Czech Europral and NewsCommentary 64211 54.7%

Table 5.2: Information about corpora that were utilized as additional data as well as the
percentage of words covered by bilingual dictionary.

After the application of BD-based substitutions on monolingual corpora we obtain 100k
pseudo-parallel sentences. After the merge with the true parallel basic set, we obtain a
parallel corpus of 230k sentences. At the pretraining stage, the first 130k will be utilized
for the TLM objective, the remaining 100k will be utilized for the MLM objective, and then
the model will be fine-tuned with the MT objective on the true parallel part.

5.7.4 Topline

To train models that suppose to provide better (topline) results compared to models that
were trained on pseudo-parallel data, this time non-synthetic data were utilized as the
target language data and were labelled as non-parallel.

The additional data for the target side of training sets for each language were taken from
the following corpora (50k sentences from each listed corpus): English-French – Europarl,
Wikipedia; English-Vietnameses – NeuLab-TedTalks, OpenSubtitles, English-Basque – El-
hWebCorp, EhuHac, English-Czech – Europral, NewsCommentary.

5.7.5 Results analysis

From the performance graphs in Figure 5.2 it can be clearly seen that the addition of pseudo-
parallel data leads to the substantial improvement of models’ performance for language pairs
with a high BD data coverage of around 50% (English-Frech, -Vietnamese, -Czech). Models
that were pre-trained using XLM with the use of pseudo-parallel data demonstrate either
a similar or superior performance compared to the models marked as Topline which were
leveraging the true monolingual additional data for pretraining.

Another observation is the fact that for the English-Basque model, the lower BD data
coverage and lower quality of BD lead to limited improvement in the resulting MT model’s
performance.
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In conclusion, it can be said that the use of pseudo-parallel data generated by a large
BD for language modelling can be extremely beneficial for the resulting MT models’ perfor-
mance under the described setting – up to the point that models pre-trained on this kind
of data outperform the ones that were trained on true non-parallel data.
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Figure 5.2: Performance comparison of Baseline/XLM with pseudo-parallel data/Topline
models.

5.8 Training models from scratch on a small amount of mono-
lingual data

Unsupervised methods of training such as the BT require an enormously big amount of
unparallel data, usually several millions of sentences on source and target sides. BD-based
methods – ACP and AT – proposed by Duan et al. [1] demonstrated their efficiency in the
setting of an abundance of monolingual data.

This series of experiments suppose to examine the effectiveness of the proposed training
method in the setting of a scarce amount of monolingual data.

5.8.1 Baseline

Since it is expected that the performance of the resulting model trained with ACP+AT
training steps will be extremely low. The translation made by the application of a bilin-
gual dictionary will be considered a Baseline performance (basically, the noised versions of
original corpora are used as the hypothesis translations).

5.8.2 Anchored training

For the ACP+AT training were used small-scale non-parallel corpora of 230k sentences.
The source language corpus consists of pseudo sentences generated from the true source
language data.
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5.8.3 Results analysis

As one can see from the resulting performance depicted in the graph from Figure 5.3,
ACP+AT training on a small-scale monolingual corpora shows translation quality that is
inferior to the one provided by the word mappings from bilingual dictionaries.
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Figure 5.3: Transaltion quality comparison of translations provided by bilingual dictionary
and by the ACP+AT trained model.

The deteriorating performance of the trained model can be explained by the fact that
unsupervised methods of training require large amounts of data, ACP and AT methods
proved to be efficient exclusively under the setting of the abundance of non-parallel data.

5.9 Fine-tuning the ACP+AT pre-trained model
Since all other experiments for model pretraining only consider the tuning of the Trans-
former’s encoder, it was decided to test the performance of the MT fine-tuned model the
pretraining of which includes the training of a decoder. Models described in Section 5.8
trained solely on monolingual corpora suit this setting since they had a stage of AT training,
which includes the optimization of parameters of a decoder.

5.9.1 Baseline

Since this series of experiments consider the usage of parallel data for MT fine-tuning, we
can utilize results provided by MT-tuned models from previous experiments for translation
quality comparison. As the Baseline model will be considered the model that was MLM
pre-trained on the same data as the model described in Section 5.8 and then fine-tuned on
a basic set.
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5.9.2 MT fine-tuning

Since the preceding ACP and AT training procedures were done on source data noised with
BD-based substitutions, it is not obvious whether the models should be fine-tuned with the
MT objective on data with the noised or the clean source side.
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Figure 5.4: Comparison of performance of models which were fine-tuned with MT objective
on noised source data (yellow) and clean source data (orange).

Performance graph from Figure 5.4 shows that the models that were MT fine-tuned on
parallel data with clean source side outperform ones that considered noised corpus as a
source language data. The possible explanation for such degrading performance may lie in
the fact that the substitutions that were observed during the training didn’t appear in the
test data.

5.9.3 Topline

The performance of TLM pre-trained Topline models described in 5.7 will be considered a
Topline performance.

5.9.4 Results analysis

From the testing results depicted in Figure 5.5 it can be seen that the ACP+AT pre-training
yields results that are either similar or superior to the ones delivered by the systems which
were first pre-trained with MLM objective.

It can be said that tuning the Transformer’s decoder parameters during the pre-training
via ACP+AT training may be beneficial in some cases – there is a significant improvement
for the model for the English-French language pair, however, the improvement yielded by
such pre-training is not persistent for different language pairs, so this method of pre-training
cannot be considered superior to the MLM.
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Figure 5.5: Performance comparison of Baseline/ACP+AT pre-trained/Topline models.

5.10 Training models from scratch with a large amount of
additional data

This series of experiments suppose to investigate the applicability of the BD-based methods
to the situation where we add a large amount of monolingual data for the model to leverage
in addition to previously described parallel basic sets.

Models will be trained for two language pairs with comparatively low morphological
complexity: English-French – suppose to show how efficient pretraining on pseudo-parallel
data is for linguistically close languages, English-Vietnamese – suppose to show how efficient
it is efficient for distant languages.

Since the amount of training data was increased, the size of embedding vectors utilized
by models trained for this series was increased to 512 to enhance the models’ capacity to
represent the language’s features.

5.10.1 Baseline

The Baseline case considers the presence of large-scale monolingual corpus only for the
source side. This way the model will have a lot of data to generalize on which may lead
to the emergence of bias towards the source language. However, due to the fact that the
additional data are provided for the source side, it may not be as noticeable since the model
will have a good ability to represent the source language sentences and thus the ability to
translate them to sentences in the target language.

5.10.2 XLM with the use of pseudo-parallel data

Having the same initial conditions as the ones described for the Baseline, we now extend
the training corpus by generating the noisy data that will serve as target language data.
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Number of words Number of substitutions Coverage
English-French 24713580 13408303 54.2 %
English-Vietnamese 18869018 9472170 50.2 %

Table 5.3: Dictionary coverage for each language pair.

5.10.3 Topline

The Topline case resembles a situation somewhat close to the one investigated by Duan et
al. in [1]. This case assumes the presence of large-scale non-parallel corpora – 1M sentences
for each language, so the language modelling training is done on true data.

5.10.4 Results analysis
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Figure 5.6: Performance comparison of Baseline/XLM with pseudo-parallel data/Topline
models. Scores marked with an asterisk correspond to the performance of models from
Section 5.11 that are best for a particular language pair.

From the performance evaluation depicted in graphs from Figure 5.6 it is evident that XLM
models trained with the use of pseudo-parallel data yield a significant boost in performance
compared to the models that were utilizing solely additional source data.

The initial assumption that the performance of the improvement provided by the ad-
dition of (pseudo-)parallel additional data models will depend on the linguistic distance
proved to be wrong: the difference between the improvement yielded by Topline models is
not significant between two language pairs – 10.7% and 7.76% BLEU score improvements
for English-French and English-Vietnamese respectively. What is observable, however, is
the fact that the boost provided by the inclusion of additional pseudo-parallel sentences is
more significant for the English-Vietnamese language pair than for the English-French lan-
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guage pair which may indicate that the target language’s morphological complexity plays a
significant role in whether this method will be useful for a particular language pair or not.

In conclusion, it can be stated that XLM with the use of pseudo-parallel data is a viable
approach for enhancing the models’ performance in this setting. However, unlike for the
experiments with a small amount of additional monolingual data (Section 5.7), it cannot
be stated that this method provides results that are similar to ones obtained from training
on true monolingual data since there is a noticeable performance gap.

5.11 Applicability of TLM pretraining on pseudo-parallel data
As previously mentioned, when it comes to the utilization of parallel corpus through some
language modelling objective for further MT fine-tuning the TLM yields better results than
the MLM. However, it is debatable whether we should consider the pseudo-parallel data
generated by the BD-based substitutions parallel or not.

For the experiments described in Sections 5.7 and 5.10, there were two groups of models
that were trained with the use of additional pseudo-parallel data. Models dubbed TLMcat
were considering pseudo-parallel data as parallel and thus were leveraging them through the
TLM training objective. Models dubbed TLMsep, on the contrary, treated pseudo-parallel
data as available exclusively for the MLM training objective.

Displayed in the graph in Figure 5.7 (b), the evaluation of the performance of models
described in Section 5.10 shows that the LMcat models outperform the LMsep models
for the English-French language pair. At the same time, the former ones show inferior
performance for the English-Vietnamese language pair.

The same, even though not as clear, can be said for the chrF3 score evaluation of LMcat
models described in Section 5.7 for English-French and -Czech language pairs: they slightly
outperform their counterparts. The opposite observation is also valid for the evaluation of
the models for English-Vietnamese and -Basque pairs: LMsep models provide better results
for each test set.

Both sets of experiments with different sizes of training sets, share the same properties
that are relevant to this research: the coverage of words by bilingual dictionaries and
the domain of data remained unchanged. The only difference was the amount of pseudo-
parallel data. The increase in the size of which emphasized the tendency which was only
barely observable with the models trained on small datasets: it appears that leveraging
pseudo-parallel data with TLM objective is beneficial only for the target languages that
are linguistically close to the source language (French, Czech) and harmful when the target
language is distant from the source one (Vietnamese, Basque).
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(a) Models trained on a limited amount of additional monolingual data
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(b) Models trained on a large amount of additional monolingual data

Figure 5.7: Performance comparison of models that were treating the pseudo-parallel data
differently: yellow – leveraging it through MLM objective (will be referred to as LMsep),
orange – leveraging it through the TLM objective (will be referred to as LMcat).

5.12 Fine-tuning the XLM-R model
The last series of experiments and, perhaps, the one that is the closest to the real situation
when it comes to training an MT model for low-resource language pair, resembles the case
where there exists a large publicly available pre-trained model which is supposed to be
fine-tuned for a concrete language pair for the MT task.
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In order to fine-tune the XLM-R model, it is required to download the model itself, codes
and vocabulary listed in the XLM repository and train the model in the way described before
on data processed using downloaded codes and vocabulary.

5.12.1 XLM 17

For this set of experiments, XLM 17 [37] is utilized as such a pre-trained model. XLM
17 is a multilingual model that was pre-trained with the MLM objective on corpora in 17
languages (en, fr, es, de, it, pt, nl, sv, pl, ru, ar, tr, zh, ja, ko, hi, vi). The model has 16
layers and 16 attention heads, it utilizes embedding vectors of size 1280 and a vocabulary
size of 200k tokens.

5.12.2 Fine-tuning with MT objective

XLM 17 models fine-tuned with the MT objective suppose to serve as a Baseline. Tuning
the model like this is the traditional way of adapting a language model for the MT task.

5.12.3 Two-stage fine-tuning

Two-stage fine-tuning of XLM 17 consists of first fine-tuning the model with TLM+MLM
objectives on set that consists of the basic set and pseudo-parallel data and, second, of
again fine-tuning it but with MT objective instead. It is expected that the performance
of models for language pairs which have the target language covered during the XLM 17
training (French, Vietnamese) will be similar to the one of previously described MT fine-
tuned models. It is so because the model will fail to optimize on provided data since the
data was either already observed (true data from basic sets) or the data will have less
quality (pseudo-parallel data) compared to the data provided for the initial XLM 17 LM
training.

5.12.4 Results analysis

As is apparent from the performance graph from Figure 5.8, there is no visible improvement
provided by the two-stage fine-tuning.

Like it was expected, the performance of MT-tuned models for language pairs with the
target language covered by the initial XLM 17 training does differ from the performance
provided by the models that were two-stage fine-tuned.

In addition to that 2-stage fine-tuned models also failed to provide performance im-
provement for 2 other language pairs. For the English-Czech language pair, it may be
explained by the fact that the linguistic features that can be extracted from the provided
corpora could have been already learned from the languages with similar linguistic features
– XLM 17 was trained, among other languages, on Polish data. For English-Basque there
are two possible explanations of such behaviour: first, similar to English-Czech, the lin-
guistic features could have been learned from another agglutinative language with SOV
(subject-object-verb) word order – XLM 17 was trained on Turkish data; second, shared
sub-word vocabulary that is provided along with XLM 17 model is not optimized for the
BPE encoding of the Basque language data and thus it is hard to learn the features specific
to the Basque through the language modelling.
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Figure 5.8: Performance comparison of MT fine-tuning/2-stage fine-tuning.

5.13 Findings
I will provide a brief overview of the findings of the BDBNMT derived from the conducted
experiments.

• The higher bilingual dictionary coverage the bigger the yield the bilingual dictionary
methods bring to the models’ performance.

• Target languages with weak inflection (e.g. Vietnamese) get a bigger performance
boost from the utilization of pseudo-parallel data.

• Leveraging the pseudo-parallel data through the TLM objective is justified only when
the languages that make up a language pair are linguistically close (e.g. English-
French).
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Chapter 6

Future work

Even though the experiments conducted for this work demonstrate that the BDBNMT
approach is applicable to many of the investigated cases, there exist a few additions to this
approach that may positively affect the results which were not implemented and tested.

6.1 Lemmatization
It is obvious that the extension of bilingual dictionaries should increase the coverage of
data and thus will be beneficial for the performance of models that adopt this approach.
However, the induction of a ground-truth bilingual lexicon is not an easy task. Another
way to improve the data coverage without any additions of ground-truth entries to the
original dictionary is to lemmatize both the tokens in a monolingual corpus that were not
covered by the initial dictionary and the keys of the bilingual dictionary itself. Consider
the initial English-Czech dictionary {"fox": "liška", "lazy": "liný", "jumped": "přeskočil"}
and the following pair of clean and noised versions of the same sentence:

Brown fox jumps over the lazy dog. → Brown liška jumps over the liný dog.

by the lemmatization of the initial dictionary we will obtain the following extension: {"jump":
["přeskočil", "přeskočit"]}, and after its application on the initial sentence we will obtain
the sentence with the increased quantity of words translated by a bilingual dictionary:

Brown fox jump over the lazy dog. → Brown liška přeskočit over the liný dog.

Even though the form of the target word may not be correct, the greater bilingual dictionary
coverage of the source monolingual dataset forces the model to drive the embeddings of
similar words in different languages even closer during the pretraining.

6.2 Synonyms utilization
Another improvement that is even more reliant on a bilingual dictionary is that can be
added in addition to previously described pseudo-parallel data generation and may be
useful for extremely low-resource language pairs. This technique includes the usage of
bilingual dictionaries in both directions: in opposition to the previously described process
of generation of pseudo-parallel data we, instead of sampling the random ground-truth
translation, now apply all of them by the creation of new target pseudo sentences for each
available word translation. In addition to that we apply word mappings in the opposite
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direction thus also enriching the source language data. Consider the following vocabulary
{"country": ["země", "stát"], "land": "země", "ground": "země", "earth": "země",}. Since the
word "has "country" has two corresponding words in the target language, by the application
of substitutions we will generate two new target language pseudo sentences, then with the
application of a dictionary in the opposite direction three new source sentences will be
created that will cover the words in the source language that, perhaps, are not present in
corpus. This way we will make the embedding vector representation of words involved in
substitutions extremely close to each other (up to the point where embeddings of these
words can be the same), which may be harmful to the performance of a model trained on
a sufficient amount of data – even though the covered words may have the similar meaning
they may be used in different contexts. However, as stated before, this technique may be
useful for extremely low-resource languages, the corpus of which may not even include the
words covered by a dictionary.
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Chapter 7

Conclusion

The goal of this work was to investigate how NMT models’ performance can be improved
by the application of bilingual dictionary based methods. In this work were considered two
methods of bilingual dictionary utilization that can be applied in certain situations.

The first one assumes the usage of Anchored cross-lingual pretraining (ACP) in conjunc-
tion with Anchored training (AT). Both methods expect the usage of non-parallel corpora
for training. This research surveyed the setting that was not covered by the work which
introduced these methods – the case when there are small-scale monolingual corpora. The
research shows that there is no improvement that can ACP+AT training provide in this
setting even when compared to the translations based solely on word mappings provided
by the bilingual lexicon.

The second method – Cross-lingual language modelling (XLM) with pseudo-parallel data
– assumes that there is a little amount of true parallel data available for Machine translation
(MT) training and some amount of monolingual data available only in one of two languages.
This technique consists of first generating the pseudo-parallel data based on a monolingual
corpus and bilingual dictionary, and then leveraging this data through the language mod-
elling objective. Conducted experiments proved that the addition of pseudo-parallel data
to true parallel data is an effective method of boosting the model’s performance: with the
inclusion of a relatively small amount of extra monolingual data (100k source language
sentences) it yielded improvement comparable to this achieved by the addition of true non-
parallel data for both languages; with the bigger amount of additional monolingual data
(1M source language sentences) it also led to performance improvement, however, it was
more modest.

In addition to this survey, there was conducted the experiment that considers models
that were trained with the ACP and AT stages as models for further fine-tuning with the
MT objective. Pre-training with such objectives allows the model to also tune a decoder
during the pre-training. The resulting performance of such models is comparable to this of
the MT models pre-trained with the MLM objective on the same non-parallel data.

Another survey that was conducted for the method of XLM with the pseudo-parallel
data was examining whether it is beneficial to leverage the pseudo-parallel data through the
TLM objective. For the models trained in different settings, results show that it is advan-
tageous to leverage the pseudo-parallel data this way when the linguistic distance between
the source and target languages is relatively small – the improvement was observable for
the models for English-French and English-Czech language pairs.
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Appendix A

Code segments

A.1 Dictionary utilization

import pyonmttok
import random

tokenizer = pyonmttok.Tokenizer(mode=’aggressive’)
with open(src_path, ’r’) as src, open(tgt_path, ’w’) as tgt:

sentences = []
for line in src:

tokens = tokenizer.tokenize(line)
for idx, token in enumerate(tokens):

if token in vocab:
replaced += 1
total += 1

elif token.isalpha():
total += 1

if sample:
token = random.sample(vocab.get(token, [token]), 1)[0]

else:
token = vocab.get(token, [token])[0]

if replaced/float(total) >= 0.1:
sentences.append(’ ’.join(tokens))

else:
sentences.append(line)

tgt.write(’\n’.join(sentences))

Algorithm A.1: Program segment responsible for the application of substitutions based on
bilingual dictionary. First, it tokenizes the source sentence using the OpenNMT tokenizer’s
Python bindings1, then apply the mappings provided by vocab. Each entry of vocab
dictionary contains a list of translations read from the vocabulary file. Full algorithm
that performs the reading of dictionary file and application of substitutions is provided by
sub_by_dict.py script.

1https://github.com/OpenNMT/Tokenizer/tree/master/bindings/python
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Appendix B

Determining the optimal
embedding size

Given the fact that a huge parallel corpus (>1M sentences) is needed to train an NMT
model and that the model will have only minimal data to use in the case of the first set
of experiments described in Section 5.7; it was decided to optimise model performance by
finding the optimal embedding size in advance for both pure MT training and MLM+MT
training and then use the resulting optimal embedding size in subsequent experiments.

In order to do this, I tested the performance of models that were trained with 128, 256
and 512 embeddings sizes (other parameters remained unchanged for all 3 cases).
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(b) Pre-trained MT models

Figure B.1: As it can be seen in graph (a) there is no definite superiority of models with
some specific embedding size across language pairs. However, the case depicted in (b) –
MT models that were first pre-trained with MLM objective – demonstrates that for both
benchmarks and for all language pairs models that utilize embeddings of size 256 show a
slight improvement in performance compared to those utilizing other embedding sizes.
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Appendix C

Training arguments

In this appendix, I want to provide the reader with all the information needed to replicate
the training experiments that were conducted during my research. Here will be listed 3
execution templates (for TLM/MLM pre-training, for BT training and MT training/fine-
tuning) and tables corresponding to each of these templates, which will list the values of
arguments to insert instead of corresponding placeholders.
python XLM/train.py \

--lgs en-<tgt> --mlm_steps <MLM steps> --emb_dim <embedding size> \
--n_layers <number of layers> --n_heads <number of heads> \
--dropout <dropout> --attention_dropout <attention dropout> \
--gelu_activation true --batch_size <batch size> \
--optimizer adam,lr=<learning rate>,weight_decay=<weight decay> \
--epoch_size <size of training set> --max_epoch 1000 \
--validation_metrics _valid_mlm_ppl --stopping_criterion _valid_mlm_ppl,10

Algorithm C.1: Template for the execution of LM training.

python XLM/train.py \
--reload_model <model path> --lgs en-<tgt> --bt_steps en-<tgt>-en,<tgt>-en-<tgt> \
--ae_steps en,<tgt> --lambda_ae 0:1,100000:0.1,300000:0 --encoder_only false \
--word_dropout 0.1 --word_blank 0.1 --emb_dim <embedding size> \
--n_layers <number of layers> --n_heads <number of heads> \
--dropout <dropout> --attention_dropout <attention dropout> \
--epoch_size <size of training set> --max_epoch 1000 \
--gelu_activation true --batch_size <batch size> \
--optimizer adam,lr=<learning rate>,weight_decay=<weight decay> \
--eval_bleu true --eval_chrf true \
--stopping_criterion valid_<language pair>_mt_chrf,10

Algorithm C.2: Template for the execution of BT training.

python XLM/train.py \
--reload_model <model path> --lgs en-<tgt> --mt_steps en-<tgt> \
--encoder_only false --emb_dim <embedding size> --n_layers <number of layers> \
--n_heads <number of heads> --dropout <dropout> --attention_dropout <attention dropout> \
--epoch_size <size of training set> --max_epoch 1000 \
--gelu_activation true --batch_size <batch size> \
--optimizer adam,lr=<learning rate>,weight_decay=<weight decay> \
--eval_bleu true --eval_chrf true \
--stopping_criterion valid_<language pair>_mt_chrf,10

Algorithm C.3: Template for the execution of MT training.
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Hyperparameters enclosed within "<" and ">" that are listed in training execution
templates are described in tables each corresponding to some experiment. If some parameter
should be excluded, it is denoted as "-". The model path column corresponds to the path to
the previously pre-trained model listed in the same group from one of the previous tables.

# Model type Model Path MLM steps E. size N. of layers N. of heads Dropout A. dropout B. size L. rate W. decay Codes

Models trained with a small amount of additional monolingual data.
1

MLM
-

en,<tgt>
128

6 8 0.1 0.1 64 0.0001 0.1 5k
2 - 256
3 - 512
4 TLM - en,<tgt>,en-<tgt> 256

Models pre-trained on a small amount of non-parallel data
1 ACP - en,<tgt> 256 6 8 0.1 0.1 64 0.0001 0.1 5k

Models trained with a big amount of additional monolingual data.
1 TLM - en,<tgt>,en-<tgt> 512 6 8 0.1 0.1 64 0.0001 0.1 7k

Fine-tuning the XLM 17 model.
1 TLM XLM17 en,<tgt>,en-<tgt> 1280 16 16 0.3 0.0 16 0.00001 0 175k

Table C.1: Arguments for LM training

# Model type Model path E. size N. of layers N. of heads Dropout A. dropout B. size L. rate W. decay Codes

Models pre-trained on a small amount of non-parallel data
1 ACP+AT #1,#1 256 6 8 0.1 0.1 64 0.0001 0.1 5k

Table C.2: Arguments for BT (AT) training

# Model type Model path E. size N. of layers N. of heads Dropout A. dropout B. size L. rate W. decay Codes

Models trained with a small amount of additional monolingual data
1

Pure MT -
128

6 8 0.1 0.1 64 0.0001 0.1 5k

2 256
3 512
4

MT FT

#1,#1 128
5 #2,#2 256
6 #3,#3 512
7 #4,#4 256

Models pre-trained on a small amount of non-parallel data
1 ACP+AT,MT #1,#1 256 6 8 0.1 0.1 64 0.0001 0.1 5k

Models trained with a big amount of additional monolingual data.
1 MT FT #1,#1 512 6 8 0.1 0.1 64 0.0001 0.1 7k

Fine-tuning the XLM 17 model.
1 MT FT XLM17,XLM17

1280 16 16 0.3 0.0 16 0.00001 0 175k
2 2-stage-FT #1,#1

Table C.3: Arguments for MT training
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Appendix D

Models’ performance overview

This appendix provides a table overview of the performance of all the models trained for
this research on all test sets. Test sets denoted as dev and test correspond to flores200 dev
and devtest sets respectively. BLEU and chrF3 scores are separated with a comma.

Model
en-fr en-vi en-eu en-cs

dev test Tatoeba dev test Tatoeba dev test Tatoeba dev test Tatoeba

Models trained with a small amount of additional monolingual data.

MT
Emb128 12.58, 12.87, 15.24, 16.00, 14.95, 24.48, 4.06, 3.84, 17.9, 7.48, 7.12, 8.5,
Emb256 12.16,39.4 11.86,39.42 13.25,36.27 16.54,36.41 16.29,35.56 22.94,40.6 4.8,37.69 4.68,37.14 16.24,45.59 8.5,34.25 8.79,34.62 8.64,29.7
Emb512 11.9, 11.63, 13.45, 16.65, 16.25, 23.16, 4.96, 4.58, 16.3, 8.17, 8.5, 9.24,

MLM,MT
Emb128 12.74, 12.58, 14.52, 20.85, 20.22, 26.74, 5.91, 5.63, 20.19, 8.84, 9.15, 9.64,
Emb256 16.96,43.96 16.87,44.39 17.87,40.71 21.39,41.22 21.43,41.06 25.5,43.53 6.42,40.33 6.28,39.93 18.45,48.24 10.99,37.72 10.88,38.06 12.43,33.01
Emb512 16.33, 16.76, 16.98, 20.69, 19.97, 25.65, 6.12, 5.9, 17.73, 10.39, 10.31, 11.37,

TLM,MT

Baseline 18.67,46.15 18.19,46.24 19.89,42.71 22.44,42.18 22.39,42.07 26.71,44.56 6.79,41.17 6.9,41.01 19.85,49.56 11.44,38.7 11.17,38.45 11.48,32.84
BDBsep 18.96,46.23 19.22,46.69 20.82,43.66 23.54,43.31 23.34,43.41 27.23,45.31 7.55,42.33 7.34,42.35 18.67,49.00 12.00,39.16 12.1,39.14 12.33,33.82
BDBcat 19.3,47.04 18.91,47.03 19.53,43.17 22.24,42.34 22.99,42.83 26.77,44.84 7.05,41.92 6.81,41.73 18.71,49.07 11.74,39.39 11.73,39.71 12.08,34.18
Topline 19.75,47.56 19.13,47.4 20.44,43.96 23.28,43.36 23.6,43.37 26.93,45.04 7.66,42.58 7.33,42.51 20.33,50.33 11.94,39.28 11.31,38.77 12.37,34.42

Models pre-trained on a small amount of non-parallel data.
MLM,MT Baseline 17.12,44.17 17.11,44.49 18.44,40.94 22.18,42.38 22.49,42.28 26.43,44.43 6.65,40.55 6.58,40.45 19.08,48.51 11.63,38.52 11.62,38.57 12.49,33.34
ACP,AT 2.70,25.77 2.50,25.51 2.37,19.20 3.21,18.10 2.95,17.68 2.45,14.08 1.67,21.34 1.63,21.26 1.28,17.3 3.27,22.05 3.18,21.93 1.39,13.48

ACP,AT,MT
Clean 19.90,47.18 19.18,47.20 19.69,42.17 22.67,42.4 22.32,42.21 25.79,43.64 7.42,41.80 6.99,41.89 18.34,48.30 11.6,38.60 11.08,38.83 11.73,32.88
Noisy 7.36,33.25 7.25,33.46 6.34,26.39 12.12,32.12 12.08,31.81 11.04,29.13 4.25,33.41 4.08,33.28 10.33,35.03 3.80,25.49 3.80,25.42 3.50,17.58

Models trained with a big amount of additional monolingual data.

TLM,MT

Baseline 18.66,46.25 19.49,47.31 20.23,44.43 22.94,43.06 23.15,43.02 26.99,45.49
Topline 20.46,48.32 20.87,48.90 23.34,46.48 24.96,44.82 25.07,44.85 28.72,46.85
TLMsep 18.97,46.34 18.92,46.74 21.76,44.59 24.77,44.62 24.58,44.55 28.13,46.13
TLMcat 20.07,47.81 20.48,48.21 21.6,45.65 23.53,43.66 23.33,43.23 27.35,45.57

Fine-tuning the XLM 17 model.
MT Baseline 24.85,52.14 24.85,53.19 28.58,51.75 28.56,48.41 28.76,48.33 31.85,49.69 9.73,47.70 9.83,48.27 22.48,53.55 14.64,42.53 14.32,42.51 18.04,41.19

TLM,MT TLMsep 24.05,51.73 25.08,52.56 28.85,52.11 28.63,48.37 28.83,48.45 31.6,49.85 10.00,47.48 9.50,47.69 22.72,53.92 14.30,42.16 14.57,42.69 17.98,41.96
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