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Abstract 
The development i n the recent few years i n the field of machine translat ion showed us that 
modern neural machine translat ion systems are capable of providing results of outstanding 
quality. However, in order to obtain such a system, one requires an abundant amount 
of parallel t ra ining data, which is not available for most languages. One of the ways to 
improve the quali ty of machine translat ion of low-resource languages is data augmentation. 
This work investigates the task of B i l ingua l dictionary-based neural machine translation 
( B D B N M T ) , the basis of which is the use of the augmentation technique that allows the 
generation of noised data based on bi l ingual dictionaries. M y a i m was to explore the 
capabilities of B D B N M T systems on different language pairs and under different in i t i a l 
conditions and then compare the obtained results w i th those of t radi t ional neural machine 
translat ion systems. 

Abstrakt 
Vývoj v oblasti s t ro jového p ř e k l a d u v pos ledn ích někol ika letech ukáza l , že m o d e r n í neu
ronové s y s t é m y s t ro jového p ř e k l a d u jsou schopny poskytovat výs ledky vynikaj íc í kvality. 
P r o z ískání t a k o v é h o s y s t é m u je však z a p o t ř e b í velké m n o ž s t v í pa ra le ln ích t rénovac ích dat, 
k t e r á nejsou pro vě t š inu j a z y k ů k dispozici . J e d n í m ze z p ů s o b ů zlepšení kval i ty s t ro jového 
p ř e k l a d u pro low-resource j azyky je augmentace dat. Tato p r á c e z k o u m á ú lohu neu ronového 
s t ro jového p ř e k l a d u za loženého na bi l ingválních slovnících, jejíž z á k l a d e m je použ i t í aug-
m e n t a č n í techniky umožňuj íc í generování z a š u m ě n ý c h dat na zák l adě bi l ingválních s lovníků. 
M ý m cí lem bylo prozkoumat možnos t i s y s t é m ů založených na t é t o m e t o d ě na různých 
j azykových p á r e c h a za různých výchozích p o d m í n e k a nás l edně porovnat z í skané výs ledky 
s výs ledky t r ad i čn í ch neu ronových s y s t é m ů s t ro jového p ř ek l adu . 
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Rozšířený abstrakt 
M o d e r n í neu ronové modely s t ro jového p ř e k l a d u jsou schopny poskytovat výs ledky srov
n a t e l n é s výs ledky profes ionálních l idských p ř e k l a d a t e l ů . K v y t v o ř e n í t akového modelu je 
však z a p o t ř e b í obrovské m n o ž s t v í para le ln ích dat (des í tky mi l ionů para le ln ích v ě t ) , aby 
na nich mohl bý t model n a t r é n o v á n . P r o vě t š inu j azykových p á r ů však t akové m n o ž s t v í 
para le ln ích dat neexistuje. Jedna z metod pro z lepšení výkonnos t i m o d e l ů , k t e r é nesplňuj í 
tyto p o d m í n k y je použ i t í a u g m e n t a č n í c h technik. 

Tato p r á c e z k o u m á použ i t e lnos t a u g m e n t a č n í c h metod založených na použ i t í bi l ingvál-
ních s lovníků v kontextu neu ronového s t ro jového p ř e k l a d u ( N M T ) pro r ů z n é scénáře . 

Jednou z metod využ i t í b i l ingváln ího s lovníku, k t e r á je p o k r y t á v t é t o prác i je generování 
p seudopara l e ln í ch dat na zák ladě s lovníku. Tato p r á c e se zabývá a n a l ý z o u následuj íc ích 
p ř í p a d ů použ i t í t é t o metody za p ř e d p o k l a d u o m e z e n é h o m n o ž s t v í para le ln ích dat (130 tisíc 
vě t ) a r ů z n é h o m n o ž s t v í d o d a t k o v ý c h monol ignvá ln ích dat: t r énován í M T modelu od nuly 
na m a l é m m n o ž s t v í d o d a t k o v ý c h dat, t r énován í M T modelu od nuly na velkém m n o ž s t v í 
d o d a t k o v ý c h dat a adaptace veřejně d o s t u p n é h o j azykového modelu ( X L M - R ) na m a l é m 
m n o ž s t v í d o d a t k o v ý c h dat. 

J inou zkoumanou metodou je t r é n o v á n í p o m o c í kombinac í Anchored training ( A T ) a 
Anchored Cross-lingual Training ( A C P ) . T y t o metody byly p ř e d s t a v e n y v č l ánku D u a n 
et a l . [1] a t a m t é ž byly p r o z k o u m á n y pro p ř í p a d p ř í t o m n o s t i rozsáh lých monol ingvá ln ích 
ko rpusů . Tato p r á c e z k o u m á p ř ínosnos t t r énován í p o m o c í zmíněných metod na m a l é m 
m n o ž s t v í nepa ra l e ln í ch dat. 

Dalš í p r ů z k u m , k t e r ý by l v t é t o p rác i proveden, se t ý k á použ i t e lnos t i p ř e d t r é n o v á n í 
modelu s výše z m í n ě n o u kombinac í metod A C P a A T s n á s l e d n o u a d a p t a c í pro ú lohou M T 
na para le ln ích datech. Výs ledky tohoto z p ů s o b u t r énován í jsou pak p o r o v n á n y s t r a d i č n í m i 
metodami p řed t r énován í , k t e r é p ř e d p o k l á d a j í j azykové mode lován í jako p ř e d t r é n i n k o v ý 
krok. 



Bilingual Dictionary Based Neural Machine Trans
lation 

Declaration 
I hereby declare that this Bachelor's thesis was prepared as an original work by the author 
under the supervision of M r . Santosh Kesiraju, P h . D . I have listed a l l the l i terary sources, 
publications and other sources, which were used during the preparation of this thesis. 

M a k s i m Tikhonov 
M a y 9, 2023 

Acknowledgements 
I would like to thank my supervisor Santosh Kesira ju , P h . D . for his advice and patience 
throughout this year. 
I also want to thank the Speech@FIT research group and prof. D r . Ing. Jan "Honza" 
Cernocky personally for providing the access to computing cluster for the purpose of con
ducting experiments. 
Final ly , I would like to thank my parents for their financial and moral support. 



Contents 

1 Introduction 3 

2 Machine translation background 5 
2.1 Pioneers of machine translat ion 5 
2.2 Years of quiet 6 
2.3 Stat is t ical machine translat ion 6 
2.4 Neura l machine translat ion 7 
2.5 Evaluat ion metrics 14 

3 Approaches for low-resource neural M T 16 
3.1 Back-translat ion 16 
3.2 Cross-l ingual Language M o d e l Pre t ra in ing 16 
3.3 Leveraging bi l ingual dictionaries for cross-lingual pretraining 18 
3.4 X L M w i t h pseudo-parallel data 20 

4 Implementation 22 

5 Experiments 23 
5.1 D a t a overview 23 
5.2 Languages 26 
5.3 D a t a preprocessing 27 
5.4 Tools 27 
5.5 Basic sets: parallel data for t ra ining M T systems 28 
5.6 Nota t ion 28 
5.7 Tra in ing models from scratch w i t h a smal l amount of addi t ional data . . . . 28 
5.8 Tra in ing models from scratch on a small amount of monolingual data . . . . 31 
5.9 Fine- tuning the A C P + A T pre-trained model 32 
5.10 Training models from scratch w i t h a large amount of addi t ional data . . . . 34 
5.11 App l i cab i l i t y of T L M pretraining on pseudo-parallel data 36 
5.12 Fine- tuning the X L M - R model 37 
5.13 Findings 39 

6 Future work 40 
6.1 Lemmat iza t ion 40 

6.2 Synonyms ut i l iza t ion 40 

7 Conclusion 42 

Bibl iography 43 

1 



A C o d e segments 4 7 

A . l Dic t ionary ut i l iza t ion 47 

B Determining the optimal embedding size 48 

C Training arguments 49 

D Models ' performance overview 51 

2 



Chapter 1 

Introduction 

Since the beginning of humanity 's wri t ten history people were separated by the so-called 
curse of Babe l . People of different cultures and ethnics group speaking different languages 
were incapable of communicat ing wi th each other on a somewhat decent level without a 
translator. W i t h the invention of computing machines came the idea of delegating this 
work, or at least part of it , to machines. So Machine translation was born. 

The quali ty of t ranslat ion produced by M T systems was substantially improving over 
the last decades. Firs t ly , w i th the introduct ion of Stat is t ical machine translation systems [2] 
which, unlike the preceding rule-based approach, were able to generate translations based on 
statistical models whose parameters are derived from the analysis of bi l ingual text corpora. 
The second improvement came wi th the introduct ion of end-to-end neural encoder-decoder 
M T systems i n 2013, which marked the dawn of neural machine translat ion ( N M T ) . 

Modern-day N M T systems show a translat ion quali ty that is comparable to that pro
vided by professional translators. Bu t , to achieve such results N M T system should be 
trained on huge parallel corpora (also known as bitexts). Not meeting this condi t ion re
sults in subpar performance, comparable to, or even inferior to, the performance of S M T 
systems. 

D a t a augmentation is one of the most commonly employed methods for enhancing 
the performance of M T systems. Augmenta t ion techniques such as Back-translat ion [3], 
and synthetic data generation have been shown to effectively increase the amount and 
diversity of t ra ining data, leading to improvements i n translat ion quality. In addi t ion to 
data augmentation, other strategies such as the fine-tuning of pre-trained language models, 
and incorporat ing domain-specific knowledge [4] have also been explored to enhance the 
performance of M T systems. 

The novel N M T approach - B i l ingua l dict ionary based neural machine translation 
( B D B N M T ) [1] - utilizes a synthetic data generation technique that leverages the b i l in 
gual dictionary. This approach considers the absence of parallel corpora, while it is possible 
to uti l ize large-scale monolingual corpora and ground-truth bi l ingual dict ionary to close the 
gap between two languages by establishing the anchoring points v i a using the mappings 
provided by the dictionary. 

This work investigates the capabilities of the following bi l ingual dict ionary based tech
niques: Anchored Cross-lingual pretraining ( A C P ) and Anchored training (AT) described 
in [1], and the t ra ining of language model on pseudo-parallel data generated by the substi
tutions provided by a bi l ingual dictionary. 
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The main goal of this work was to examine the capabilities of these methods to pro
vide performance improvement for models for different language pairs under various in i t i a l 
conditions: 

i . Tra in ing the models from scratch wi th various amounts of addi t ional monolingual 
data. 

i i . Tra in ing the models from scratch wi th a l imi ted amount of monolingual data. 

i i i . F ine- tuning the pre-trained XLM 17 language model w i th a l imi ted amount of both 
parallel and non-parallel data. 
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Chapter 2 

Machine translation background 

This chapter focuses on providing the reader w i t h information concerning machine transla
t ion, its history of development, recent Neura l machine translat ion developments and the 
translat ion quali ty evaluation metrics that are usually ut i l ized. 

2.1 Pioneers of machine translation 

Machine translation is a task of natural language processing that involves the automatic 
translat ion of text from one language to another using computer algorithms. The history of 
machine translation is traced from the early systems of the 1950s when the first experiments 
were carried out. One of these experiments, the G e o r g e t o w n - I B M experiment, despite the 
facts that this experiment was of demonstrative nature and the product of it had almost 
no real pract ical appl icat ion (the system had only 6 grammar rules and a very restricted 
vocabulary of 250 words to translate sentences i n Russian that were prepared in advance 
into Engl ish) , the demonstration had great success. This , along wi th excessively optimist ic 
estimations that automatic translat ion would be a solved problem wi th in a decade, resulted 
in a significant increase in funding and garnered substantial attention from the press and 
scientific community. 

However, i n the next few years, these first-generation M T systems had very l imited 
success. They consisted of a large bi l ingual dict ionary where the entry for each word in 
the source language was provided w i t h equivalents i n other languages and syntactic rules 
that were used to place the output words i n the right order. After years of research, it 
became evident that systems of this k ind are not capable of doing a high-quality translation. 
M a i n l y because the solution was not systematic: syntactic rules and a bi l ingual dict ionary 
just weren't enough to make the system solve the problem consistently i n various domains 
because of languages' semantic ambiguity and overly complex rules. 

In 1960 Yehoshua B a r - H i l l e l , a linguist and a pioneer i n the field of M T , argued that 
M T systems back then were not capable of fully automatic high-quality translation [5]. He 
stated that i n different kinds of documents, there could be sentences "whose ambiguity is 
resolvable only on the basis of extra-linguistic knowledge", those sentences, in opposite to 
scientific documents or reports, are more prone to misinterpretation by M T systems without 
aforementioned knowledge. His statements turned out to be right when six years after the 
Automat ic Language Processing Adviso ry Commit tee ( A L P A C ) , following the examination 
of the current state and prospects of M T , concluded i n its report that the products of 
research i n the M T field are disappointing and that "there is no immediate or predictable 
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prospect of useful machine translation". Th is report justified a reduction in government 
funding for M T research and it was abandoned for years to come. 

2.2 Years of quiet 

Despite the impact that the A L P A C report had in the U S , active research in the M T field 
continued in Europe and Canada to satisfy the needs of local governments and companies. 
For the next 20 years, there was a development of the Rule-based machine translat ion 
( R B M T ) approach. R B M T systems are based on linguistic information of source and 
target languages provided by dictionaries and grammars covering syntactic, morphological 
and semantic aspects of languages. A l though there was progress i n translat ion quality, 
coverage of different languages and introduct ion of new techniques - Transfer based machine 
translation, Interlingual machine translation - systems s t i l l had crucial shortcomings: to 
create one, a whole staff of linguists was required in order to bu i ld new rules and dictionaries. 
Also , they s t i l l were lacking the abi l i ty to generalize across different domains and were 
mainly geared up towards the translat ion of scientific papers and reports. 

Some of the many successful systems of the time: 

• S Y S T R A N Russian-to-English M T system made for the Uni ted States A i r Force, 
was also used as assistance i n the translat ion of scientific documents wri t ten in Rus
sian. 

• M E T E O M T system designed for the translat ion of weather forecasts between E n 
glish and French languages issued by the Department of environmental policies of 
Canada. 

2.3 Statistical machine translation 

The introduct ion of the groundbreaking Stat is t ical Machine Translat ion ( S M T ) approach 
in 1990 [2] marked a significant turning point, leading to rapid changes i n the M T field. 
The proliferation of the Internet and the accumulation of parallel corpora, i.e. collections of 
aligned sentences in two languages (also known as bitext) , in previous years, created condi
tions that enabled M T systems to move beyond predefined rules and bi l ingual dictionaries 
but instead to be created i n a process of t ra ining on large parallel corpora. It was at this 
point that the approach to M T began to leverage machine learning methods. 

In practice, this meant that al though the objective of translating a sequence of tokens 
(sentence) from a source language L S R C w i th vocabulary VLSTC to the most semantically 
similar sequence of tokens in the target language Ltgt w i th vocabulary Vi,tgt remained the 
same, the method for achieving it shifted from the applicat ion of rules that constitute an 
M T model to a different approach. Now, instead of the manual creation of these rules, they 
are extracted from large parallel corpora v i a t raining. 

S M T model's translation of a sequence from the source language to the target one is 
determined by the estimation of the probabil i ty that some sequence i n the target language 
is an accurate translat ion of this source sequence. The search for the best translat ion is 
based on Bayes' rule: 

argmax P(y\x) = argmax 
y y 

argmax P(x\y)P(y) 
y 

(2.1) 
P(x) 
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where 

P(y\x) is a probability, that sequence y is a translat ion of sequence x. 

P(x\y) is a the probabil i ty of how often we see a x given that y is seen. It is defined by 
the translat ion model. 

P(x) and P(y) are the probabilit ies of some sentences i n source/target languages defined 
by language models. 

The parameters of these models are estimated during the t raining. M o d e l t ra ining itself 
can be described as a process of improving the performance of a model for a specific task 
(such as M T ) by leveraging the t ra ining data. In the case of S M T , one of the most widely 
used t ra ining procedures was the M i n i m u m error rate t ra ining [6]. 

2.4 Neural machine translation 

The Neura l machine translation ( N M T ) approach was explored and evaluated back i n the 
1990s [7, 8] and despite the fact that the approach was very similar to the methods that 
we use today, its results were unsatisfactory and neural method was considered subpar and 
ineffective compared to S M T , that was dominant i n those years. F r o m today's perspective, 
fail of early N M T systems seems predestined: none of these models was trained on corpora 
of size large enough. 

The modern incarnation of N M T started taking effect in 2007 wi th the integration of 
neural language models into S M T systems [9] and, after some time, the major breakthrough 
for M T came wi th the introduct ion of pure N M T wi th a sequence-to-sequence model i n 2014 
[10, 11] which, after some additions - attention mechanism [12] and byte pair encodings 
[13], was able to outperform its S M T competitors at shared task for M T at W M T 1 6 . N M T 
continued its development and the most recent architectural development emerged i n 2017 
wi th the introduct ion of the Transformer in the "Attention is a l l you need" paper by Vaswani 
et a l . [14]. 

2.4.1 N a t u r a l language representat ion 

Before we move on to N M T architectures, I would like to review the modern techniques 
that are being used to facilitate the machine's understanding of natural language. 

Byte pair encoding Before we feed the input text to the model, it should be tokenized. 
One of the most efficient and most popular methods (used i n B E R T [15], G P T [16] and 
many other systems) to tokenize the input text is byte pair encoding ( B P E ) [17]. W i t h 
this subword-based method, we obtain the vocabulary which consists of tokens during the 
t raining. A token can either be a full word or a subword from a t ra ining corpus. To indicate 
the end of the word, the a lgori thm adds the special token (e.g. " < / « / > " ) to the end of the 
token. 

Having some l imitat ions regarding vocabulary size, the B P E algori thm ensures that 
only the most frequent words and subwords extracted from rare words are present i n the 
vocabulary. For example, the morphologically complex German word Sonnensystem ("Solar 
system") may be split into separate subwords Sonn, en and system</w> which can be used 
for the tokenization of other words that are compound of at least one of these subwords. 
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This is a far better approach than, for example, word-based tokenization because it 
allows us to reduce the size of the vocabulary and the number of O O V (out-of-vocabulary) 
word encounters i n test data. Moreover, the nature of the B P E algori thm, that it tries to 
catch the most frequent patterns from the t ra ining corpus, implies that it w i l l capture the 
semantically relevant language units (prefixes, suffixes, root words, etc.). 

W o r d Embeddings Word embeddings is a fundamental concept in N M T . They are con
tinuous vector representations of words i n a high-dimensional space, where each dimension 
of a vector corresponds to a specific feature or at tr ibute of the word. The main idea behind 
word embeddings is to capture the semantic and syntactic relationships between words in 
a way that natural language processing systems ( N M T systems i n particular) can easily 
process. 

Quic k brown fox j u m p s 

0 0 0 1 

0 0 0 0 

0 0 1 0 

1 0 0 0 

0 0 0 0 

0 1 0 0 

0 0 0 0 

(a) One-hot word vector representations. 
The dimensionality of word vectors is equal 
to the size of the vocabulary. Vectors are 
extremely sparse, each has a value of 1 at 
the index of the corresponding word and 0 
at other positions. Vectors bear no seman
tic information. 

Q uick brown fox j u m p s 

0.12 -0.68 -0.69 -1.30 

-1.02 -0.48 0.96 0.87 

2.67 -1.39 1.54 1.40 

0.00 1.30 -0.43 -1.04 

-1.55 -0.26 -1.36 0.59 

-0.46 -0.25 0.30 -1.73 

-0.91 0.67 1.99 1.25 

(b) Word embedding vectors. This type of 
word representation offers us a drastic re
duction in word vector dimensionality and 
a contextual similarity between word vec
tors. 

Figure 2.1: I l lustrat ion of different word representations. 

Since semantics and syntax are concepts that are hardly understandable by the com
puter, embedding algorithms adopt the approach that is best described by the famous quote 
of J . R . F i r t h [18]: 

You shall know a word by the company it keeps. 

A n d thus, to instal l the aforementioned word dependencies, we define the meaning of a 
word by the context i n which it occurs. Words that occur i n s imilar contexts (e.g. words 
"fox" and "wolf") w i l l have similar embedding representations. 
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2.4.2 Sequence-to-sequence models 

A t a high level, the sequence-to-sequence (Seq2Seq) model is an end-to-end model which 
consists of two components: an encoder and a decoder. B o t h components t radi t ional ly 
utilise the R N N architecture (being stacked layers of either long short-term memory cells 
( L S T M ) or gated recurrent unit cells ( G R U ) ) and, unlike a l l non-neural translation systems 
before, are trained jointly, so they can learn the same context vectors to maximize the 
translat ion performance. 

f i tn tn tn 
Haragia 

A 

Encoder 

Embed 

The flesh is weak <BOS> 

ahula 

A 
da 

A 
<EOS> 

• 1 -
Softmax 

Decoder 

Figure 2.2: Example of Seq2Seq model translat ing from Engl i sh to Basque. I l lustrat ion is 
inspired by [19]. 

Encoder The purpose of an encoder is to read the variable-length input sentence and 
to produce a fixed-length representation called the context vector. To do so, the encoder 
first of a l l maps words in a sentence to vectors of ones and zeros (one-hot representation). 
Then , using the embedding layer, the encoder maps each one-hot encoded input token to 
a dense vector representation - embedding. Once the input tokens are transformed into 
dense vector representations, the context vector c can be computed step by step for each 
input token using the deep R N N ( L S T M or G R U models) 

hi = f(WhxXi + W h h h i - i + b h ) , (2.2) 

where 

hj is the hidden state of R N N at timestep i. The hidden state of the last R N N layer is 
the context vector. 

Xj is the input embedding vector at timestep i. 

is a learnt weight matr ix , that integrates an input vector. 

W/j/j is a learnt weight matr ix , that integrates a vector from the previous timestep. 

hh is a bias term. 

Decoder Decoder, having the same architecture as an encoder, has a different task: it 
is responsible for generating the output sentence based on the context vector provided by 
an encoder. Its first layer's hidden state is being init ial ised wi th context vector c provided 
by the encoder. Then decoder at each timestep, given the context vector c and a l l the 
previously predicted words (at the first step decoder only has the < B O S > token), runs 
al l layers of L S T M / G R U and applies the softmax function after that to generate the next 
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word. If a newly generated word is < E O S > (end of sequence) token generation ends. It is 
important to note that due to the way that output is being generated there is no relation 
between the length of the input sequence and the length of the output sequence. 

Revealed problems A l though the new Seq2Seq approach has shown promising results, 
after analysing the N M T systems' performance, Cho et a l . [20] discovered several draw
backs. They found that, while being on par w i th t radi t ional S M T systems under favouring 
conditions, the Seq2Seq systems' performance degrades rapidly: first, w i t h the increase of 
the number of unknown words, and second, w i th the increased length of source sentences 
(see Figure 2.3). 

Sentence length Sentence length 

(a) RNNenc (b) grConv 

Figure 2.3: T h e B L E U scores achieved by the R N N Encoder-Decoder [11] (a) and by the 
Gated recursive convolutional neural network (b) depending on the length of the sentence 
obtained in the study of [20]. Degradation of performance wi th sentence length increase is 
evident. 

A n d while the first problem may be potential ly solved by increasing the size of vocabu
laries used by N M T systems, the second one, caused by the fact that the fixed-length vector 
representation does not have enough capacity to encode a long sentence wi th complicated 
structure and meaning, required the redesign of the system's architecture itself. 

2.4.3 Sequence-to-Sequence models w i t h a t tent ion m e c h a n i s m 

To address the described problem of deteriorating performance for longer sentences, [12] 
proposed an extension to the encoder-decoder model which learns to align and translate 
jointly. 

Encoder Encoder, unlike the one i n the vani l la encoder-decoder architecture, now utilises 
a bidirect ional recurrent neural network ( B i R N N ) , which consists of forward and backward 
R N N s : the former one reads the input sequence as it is ordered (from x\ to XN) and 
computes a sequence of forward hidden states (hi, hjy) for every input word, the latter 
one does the same computat ion except it reads the input sequence in reverse order and 
thus provides the backward hidden states ( ^ i , h~N). Then we obtain word representation 

hi for each word Xi by concatenating i - th forward and backward hidden states hi = 
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In U U U I 
Haragic < 

Embed 

The flesh is weak 
Word representations 

Figure 2.4: I l lustrat ion of R N N encoder-decoder wi th the attention mechanism. 

This way each word representation hi w i l l contain information about both the preceding 
and the following words wi th a strong emphasis on the i - th word. A n d thereby encoder 
is now able to capture dependencies between the i - th token and the tokens that are from 
both sides of it. 

D e c o d e r In the proposed architecture a decoder is almost identical to the one from 
the original Seq2Seq model's architecture, except now for each step i , i n addi t ion to the 
previously predicted target words ( y i , yi-i) and the previous hidden state S j _ i , it should 
also take i n account the attention. Tha t is, the probabi l i ty of the target word is: 

v{Vi\yu . . . , y i - i , x ) = g(yi-i,Si,Ci) w i th Si = / ( s j _ i , y i - i , q ) (2.3) 

The attention has the same role as context vectors and is also denoted as Cj for each step i. 
B u t now, instead of providing a single representation for the entire sentence for every step 
of the output generation, we, having a single vector of word representations, are evaluating 
it differently depending on the current target posit ion i w i th the help of distinct weights. 
In essence, the attention is a weighted sum of word representations h: 

N 

Cj = y]ajjhj (2.4) 
i = i 

where aij is a specific weight that represents the probabil i ty that target word yi is aligned 
wi th source word Xj. It is a product of softmax function over a l l other alignments: 

Uij = ^ x p e^ w i th eij = a(si-i,hj) (2.5) 
Lfc= l e x P eik 

where is an alignment model which estimates how well the inputs around the j - t h 
posit ion match the i - th output word. 

This approach removed the need to encode the entire source sentence into a single 
context vector by allowing the decoder to look through a l l the encoder states and evaluate 
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the importance of each source word for a current step. A s a result, the model achieved 
superior performance when translating longer sentences, thereby solving the problem that 
motivated the creation of extension i n the first place, and improving the overall translation 
quali ty establishing the Seq2Seq approach (and thus N M T as a whole) as the dominant 
paradigm. 

2.4.4 T r a n s f o r m e r 

The next breakthrough in N M T came along wi th the introduct ion of a novel model archi
tecture i n the famous "Attention Is A l l Y o u Need" paper from Google Research i n 2017 
[14]. Th is architecture, the Transformer, i n order to overcome the constraint of sequential 
computat ion was designed purely around the attention mechanism which is used to extract 
dependencies between input and output. This new method permits parallel computing, 
which drast ically speeds up the model's t raining since G P U s that are used for its t ra ining 
are specifically designed for parallel processing. 

Output 
Probabilit ies 

J L 
I Softmax 1 

T 

Nx 

Add & Norm 

Feed 
Forward 

Add & Norm 

Multi-Head 
Attention 

Posit ional 
Encod ing &4 

\ 
Inputs 

Add & Norm 

Feed 
Forward 

Add & Norm <->, 

Multi-Head 
Attention 

Add & NormT« -N 

Masked 
Multi-Head 
Attention 

Nx 

Positional 
Encod ing 

Input Output 
Embedding Embedding 

Outputs 
(shifted right) 

Figure 2.5: The Transformer model architecture. Taken from the original paper [14]. 

Transformer's architecture follows the general idea of encoder-decoder structure: it con
sists of two same "macro" blocks - an encoder and a decoder, the former one maps the input 
words (xi, xn) to their continuous representations (zi, zn). The latter one generates 
an output sequence ( y i , ym) based on these representations and previously predicted 
words. B o t h of these blocks consist of iV (N = 6 i n the original paper) encoder/decoder 
layers. 

Encoder layers Each encoder's layer consists of two sublayers - multi-head self-attention 
mechanism and position-wise fully connected feed-forward neural network ( F F N N ) . The first 
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one relates different positions of a sentence to compute a representation of i t . The second 
one applies non-linear transformations to its input features. 

In addi t ion to this, encoder layers also include residual connections around both sub
layers followed by layer normalization. Res idual connections allow the model to learn more 
complex functions by adding the input to the layer's output, and layer normalizat ion helps 
stabilize the t ra ining process. Tha t is, each sublayer has the output 

y = Layer'iVor,m(x + Sublayer^)) (2-6) 

where SubLayer() is the sublayer's function. 

Decoder layers Decoder layers are structured in the same way as the encoder layers 
- they also uti l ize residual connections and the normalizat ion step after each sublayer. 
However, the decoder layers also contain another sublayer that is placed between the two 
sublayers that are included i n the encoder layer - the Encoder-Decoder attention sublayer -
which performs multi-head attention over the output of the encoder stack. Addi t ional ly , the 
self-attention sublayer is masked which restricts the decoder from attending to the positions 
that were not yet generated during the training. 

Attent ion The Transformer's attention can be described as a function wi th 3 arguments, 
a l l of them being vectors: query q, key k and value v of dimensions dk, dk, dv, respectively: 
the output of this function is computed as a weighted sum of values v, where the weight 
assigned to each element in it is computed by a compat ibi l i ty function of the query wi th 
the corresponding key. 

The attention used i n the original Transformer is called "Scaled Dot -Produc t At ten
tion", it is computed wi th the above-described query, key and value as arguments, w i th the 
difference that in practice these are the matrices of queries/keys/values packed together: 

Attention(Q, K , V ) = softmax^— ) V wi th dk = dv = m ° d e l (2.7) 
V<4 h 

In addi t ion to that, the attention used in the Transformer is multi-headed, which provides 
the attention wi th different representation subspaces at different positions: 

MultiHead(Q, K , V ) = concat(head1}headh)W°, (2.8) 

w i t h 
headi = Attention(QWf, K W f , V W f ) (2.9) 

where h is the number of heads (h = 8 in the original Transformer), £ M>dmodelXdk, 
W f G jidmodeixdk a n c j yyV e T$dmoddxdv a r e projection matrices for queries, keys 

and values, which are used to project the input embeddings into a different representation 
subspace; the W ° G ^hdvXdmodei j g a w e j g ^ mat r ix that is used to condense concatenated 
attention heads into a single matr ix . A l l three matrices are learnt jo in t ly during the training. 

Position-wise feed-forward neural network E a c h layer i n both the encoder and de
coder also contains a feed-forward neural network which is applied to each posit ion sepa
rately. It consists of two linear transformations wi th a R e L U activation function i n between. 
It transforms the output of the self-attention layer and produces the final output of the en
coder layer. 
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FFNN(x) = ReLU(0, x W i + b i ) W 2 + b 2 (2.10) 

Positional Encoding Posi t ional encodings ( P E ) are used to provide the model w i th 
information about the relative or absolute positions of the words i n the sentence. P E 
have the same dimensionality as the embeddings so that bo th can be summed. They are 
added to the input embeddings before they are passed to the encoder/decoder stack of the 
Transformer. The posit ional encodings are obtained from an encoding function that should 
be periodic, thus, the posit ion of the token can be correctly represented, despite the length 
of the sentence. In the original Transformer Vaswani et a l . ut i l ized two sinusoidal functions 
of different frequencies: 

PE(poS2i) = cos(pos/10000 2 */ d ™° d e 0 
(2.11) 

PE(poSj2i) = s i n ( p o s / 1 0 0 0 0 2 i / d ™ ° d e ! ) 

where pos is the posit ion of given token and i is the embeddings dimension. 
The posi t ional encodings along wi th the attention-centric nature of the Transformer 

itself have changed the way i n which the input is being processed. N o w instead of presenting 
input sequentially, we are able to pass a l l tokens at once and get the information about 
their posit ion from the embeddings. 

2.5 Evaluation metrics 

The purpose of automatic evaluation metrics for M T is to provide a quantitative measure 
of how accurate are the translations provided by an M T system without any assessment 
from a human translator. These metrics usually involve comparing the output generated 
by the M T system (hypothesis or candidate translation) to a reference t ranslation. Two 
metrics that w i l l be used for automatic evaluation in this work are BLEU and chrF. 

2.5.1 B L E U score 

The B L E U score [21] is a commonly used metric for evaluating the quali ty of the machine-
generated text, par t icular ly i n the context of machine translation. The B L E U score com
pares a generated candidate translat ion to one or more reference translations. 

The cornerstone of the B L E U metric is the precision measure, which is the proport ion of 
n-grams (contiguous sequences of n words), that appear i n both the candidate translation 
and the reference translation to n-grams that appear in candidate translation. The more 
n-grams that are shared between the candidate and reference translations, the higher the 
B L E U score. 

= T,n-grameCdtnRef count(n-gram)  
P n J2n-grameCdtcount(n-9ram) 

It is computed as the geometric mean of the n-gram precision scores, where the n-gram 
precision for a given n is the count of n-grams in candidate translation that also appear 
i n reference translation, d ivided by the total number of n-grams i n candidate translation. 
Final ly , the B L E U score is brevity-penalized (BP) if the candidate translat ion c is shorter 
than the reference translat ion r that has the closest length to c. 
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N 
í - e x p ( l — r/c), i f c < r 

B l e u = B P • ( | | p n ) i v w i th B P = < (2.13) 
n=i I 1, otherwise 

2.5.2 C h r F score 

The chrF score proposed by M . Popovic [22] is another commonly used M T evaluation 
metric. This metric was created to offset the problems identified during the period of using 
the B L E U metric. One of which is that the B L E U score measures the translat ion quali ty 
from a word-level perspective which makes it less accurate when it comes to the translat ion 
quali ty evaluation of morphologically r ich languages. 

The chrF metric is an F-score-based metric. To address the described issue the chrF 
compares hypothesis and reference on a character level instead. 

„ „ . C H R P • C H R R , . 
C H R F ^ = (1 + j32 - 5 ^ ; r (2.14) 

H V H ' j32 • C H R P + C H R R V ' 
where 

C H R P is a character n-gram precision, the percentage of character n-grams in the hypoth
esis translat ion that are also present i n the reference. 

C H R R is a character n-gram recall, the percentage of character n-grams i n the reference 
which are also present in the hypothesis translation. 

(3 is a parameter that assigns (3 times more importance to recall than to precission. 

In recent years, the chrF metric, along wi th its subsequent iterations - as chrF+(+) -
has demonstrated a strong correlation wi th human translat ion quali ty estimation, part icu
larly i n the evaluation of translat ion quali ty for morphologically r ich languages. To better 
illustrate this, let's consider the following example: 

Source en T i r e d student was preparing for the exam. 

Reference cs U n a v e n ý student se p ř ip ravova l na zkoušku . 

Hypothesis 1 cs U n a v e n á studentka se p ř ip ravova la na zkoušku . 

Hypothesis 2 cs U n a v e n ý student se p ř ip ravova l na zkoušku . 

W i t h no addi t ional context provided both hypotheses listed above can be considered correct 
translations of the source sentence, the difference between them is that the first one contains 
the feminine forms of words and the second one - the masculine ones. Despite the fact that 
both translations are correct, the first one w i l l reach a comparatively low B L E U score of 
26.27 whereas the second one w i l l reach a B L E U score of 100. C h r F metric offsets this 
problem by comparing the reference and hypothesis from a character-level perspective, 
the chrF score wi th (3 = 3 w i l l be 0.74 and 1.0 for the first and the second hypotheses 
respectively. 
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Chapter 3 

Approaches for low-resource neural 
M T 

In this chapter, I w i l l cover the contemporary techniques employed i n N M T that are used 
when it comes to low-resource Machine translation. 

3.1 Back-translation 

Back-translation ( B T ) is the unsupervised t raining technique first proposed for S M T and 
then rediscovered for N M T by Sennrich et a l . [3]. The idea behind this technique is that 
we can leverage the model's decoding abi l i ty and monolingual corpus dur ing its t ra ining in 
a way of iteratively, for each observed t ra ining entry, first providing the perhaps incorrect 
translat ion of the source sentence by decoding and then learning to reconstruct the original 
sentence from this translated sentence. The inconsistency between these two sentences 
provides the error signal to t ra in the model i n the target-to-source direction. 

3.2 Cross-lingual Language Model Pretraining 

Cross-lingual language modelling ( X L M ) is a task of t ra ining language models that can pre
dict tokens i n mult iple languages: language models trained wi th Masked language modell ing 
or Translat ion language modell ing ( M L M and T L M ) are able to predict the masked token 
at any posit ion given the surrounding tokens (context), C L M - Causa l language model -
on the other hand, is able to predict a sequence of tokens after the preceding words. X L M 
is par t icular ly useful in situations when the parallel data for a specific language pair is 
l imi ted, or when the model's applicat ion involves the use of many languages. 

Lample et a l . [23] surveyed the capabilities of cross-lingual modell ing to improve models' 
performance for various tasks - Cross-l ingual classification, Cross-l ingual language inference 
and Machine translation. In particular, to leverage X L M for M T , the Transformer's encoder 
is pre-trained using a causal, translation, or masked language modell ing objective prior to 
being fine-tuned wi th the Machine translat ion (for parallel data) or Back-translat ion (for 
un-parallel data) objectives. 
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3.2.1 L a n g u a g e m o d e l l i n g 

Language modelling is the N L P task that involves the model l ing sequences of tokens in 
a given language. More specifically, the task involves t ra ining a model that predicts the 
probabil i ty dis t r ibut ion of the next word given the context of the preceding words. For 
models of this k ind , the input w i l l be the sequence of words and the output w i l l be the 
probabil i ty dis t r ibut ion over the model's vocabulary for the next word. For example, for 
the Engl i sh sentence 

He was sitting in front of the 

as the input, the output may be the dis t r ibut ion {..., "computer": 0.3, "window": 0.4, 
"charger": 0.0, ...} which signifies that the most probable next word is "window". 

3.2.2 M a s k e d language m o d e l l i n g 

Masked language modelling ( M L M ) that was introduced in the B E R T paper by Dev l in et 
al . [15] is a type of language modell ing that, unlike the previously described approach, has 
the abi l i ty to predict the word at any posit ion. A s it can be seen in Figure 3.1, t raining 
of the masked language model consists of randomly masking a few tokens i n the input 
sentence (15% of tokens in the original paper) and then predict ing the word that was in 
the original unmasked sentence based on surrounding tokens. The masking itself is s imply 
a replacement of a chosen word wi th [ M ^ l S i ^ ] token 80% of the time, a random token from 
the vocabulary 10% of the t ime and an unchanged token 10% of the time. 

Masked 
Language 
Modelling 

Token embeddlngs [Is] [MASK] 

[IS] 

Transformer 

[MASK] [MASK] [IS] [MASK] 

Position embeddlngs 

Language embeddlngs en 

Figure 3.1: X L M variant of M L M training, [\s] tokens denotes the boundaries of text 
streams. Replicates the scheme from [23]. 

Lample et a l . modified the original t ra ining algori thm by using the input streams of an 
arbitrary number of sentences instead of pairs of sentences. A l so , i n order to counter 
the imbalance between rare and common tokens they discarded the frequent words i n the 
t ra ining set w i th the probabi l i ty given by the formula 

P(Wi 
f(Wi 

(3.1) 

where f{wi) is the frequency of the word Wi and t is a threshold parameter. 
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3.2.3 T r a n s l a t i o n language m o d e l l i n g 

In order to further improve the cross-lingual pretraining Lample et a l . proposed a novel lan
guage modell ing objective called Translation language modelling. T L M , being an extension 
of M L M , tries to leverage parallel data. 

Translation 
Language 
Modelling 

Token embeddings [Is] 

curtains blue urdinak 

Transformer 

[MASK] [MASK] [Is] [IS] gortinak [MASK] 

[Is] 

[MASK] 

Position embeddings 

Language embeddings 

Figure 3.2: Tra in ing the English-Basque L M wi th translat ion language modell ing objective. 

A s this can be seen in Figure 3.2, the t ra ining wi th such an objective consists of a concate
nation of parallel sentences, masking random tokens (with no regard to tokens' language) 
in the new concatenated text and then predict ing the original tokens that were masked 
based on tokens surrounding masked tokens i n both source and target languages. It is also 
worth mentioning that the positions of tokens in the target sentences are reset. Tra in ing 
model this way encourages it to learn the alignments between the representations of parallel 
sentences. 

The T L M pretraining proved to be useful for the Cross-l ingual classification task, the 
aforementioned research shows that leveraging data through the T L M + M L M objective 
provides a boost i n performance of 3.6% accuracy. 

3.3 Leveraging bilingual dictionaries for cross-lingual pre
training 

"The unsupervised t ra ining techniques, based on a bi l ingual dictionary, as presented by 
D u a n et a l . in [1], rely on the use of unparal lel corpora i n at least two languages, along 
wi th a bi l ingual dict ionary that provides word mappings. In this section, I w i l l describe 
these t ra ining methods. 

3.3.1 B i l i n g u a l d ict ionaries 

Bi l ingua l dictionaries (or lexicons) are collections of pairs of mutua l translations of expres
sions (single words or phrases) i n two languages. The main benefit that bi l ingual dictionaries 
bring is that they may provide mult iple ground-truth translations of a single expression that 
could not usually appear i n datasets. However, b i l ingual dictionaries often provide trans
lations without any addi t ional information regarding the translat ion pair: word class (part 
of speech) and the case- or tense-related information may be omit ted. Another downside 
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is that we can't extract the context i n which a given word is usually used neither on the 
source nor the target side. 

3.3.2 A n c h o r e d t r a i n i n g 

Target view Anchored training To bridge the gap between semantic spaces of lan
guages D u a n et al , considering the fact that the cross-lingual language model is being trained 
on monolingual corpora and that word embeddings are highly dependent on a word's sur
rounding context, proposed a method called Anchored t ra ining ( A T ) which leverages the 
bi l ingual dict ionary by injecting anchors on the monolingual corpora. 

Decoding 

Sentence 
pair used for 

training 

Source-to-target 

Rapides brown renard jumps 

Sauts rapides de renard brun 

Rapides brown renard jumps 

Target-to-source 

Sauts rapides de renard brun 

I. 
Rapides brown renard jumps 

Sauts rapides de renard brun 

Figure 3.3: Example of Back-translat ion used for A T made i n both directions for the same 
sentence pair, anchor words are wri t ten i n bold. 

A s it is evident from Figure 3.3, the essence of the A T method is that we, having a mono
lingual corpus and bi l ingual lexicon, replace the words covered by this lexicon wi th anchors 
- translations of these words provided by the lexicon. Through these anchors, words w i th 
similar meanings in different languages w i l l share the same word embeddings. The t raining 
process consists of the back-translation steps i n both - source-to-target (s2t) and target-
to-source (t2s) - directions: 

1. The anchored source sentence is translated v i a s2t N M T decoding into the target 
sentence and then two of them are used as a pair for t2s translation training. 

2. The target sentence is translated into the anchored source sentence v i a t2s decoding 
and then both sentences are used to t ra in the s2t translat ion model. 

Dur ing the inference, the source sentence is also i n advanced translated into the anchored 
sentence by looking up the dict ionary and only then the s2t decoding is used. 

Bi-view Anchored training The modification to A T , the Bi -v iew A T , extends the way 
the model looks at the sentence pair by adding the source language view to the target 
language view that was described previously. This extension provides two additions: first, 
we add steps similar to those previously described for A T , w i th the exception that now 
substitutions are applied to target sentences; second, usage of a dict ionary i n a bidirectional 
manner allows us to generate addi t ional anchored sentences from true denoised sentences 
produced by decoding in either of 2 directions, which w i l l be also ut i l ized during the training. 

3.3.3 A n c h o r e d C r o s s - l i n g u a l p r e t r a i n i n g 

Another method presented i n this article is Anchored Cross-lingual pretraining ( A C P ) . It 
assumes the absence of parallel corpora. A C P involves the same noising step that was 
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previously described for A T - we first generate the pseudo-parallel sentence based on the 
source sentence by substitutions of words covered by a bi l ingual dictionary. 

Masked 
Language 
Modelling 

Token 
embeddlngs 

[Is] [MASK] 

[Is] edan 

Transformer 

[MASK] [MASK] [Is] [MASK] 

Position 
embeddlngs 

Language 
embeddlngs 

Noised data 

Original data [Is] 

[Is] wtzeko [Is] edan 

Apply substitutions 

[Is] 

[Is] 

[Is] 

relax eta 

Figure 3.4: Anchored Cross-l ingual Pre t ra in ing - leveraging noisy data through M L M ob
jective. 

A s can be seen in Figure 3.4, the source words are replaced wi th their target language 
counterparts, and the resulting noised sentence, treated as i f it was i n the source language, 
is leveraged through the Masked language modell ing objective. 

3.4 X L M with pseudo-parallel data 

Another method that is covered i n this work includes the use of pseudo-parallel data. A s 
can be seen i n the scheme from Figure 3.5, we, having only the monolingual data i n one 
language are generating the noisy version of i t . T h e n we are, treating the true source corpus 
and the noisy version of it as the source data and the target data respectively, leverage them 
through the language model l ing objective (either T L M or M L M ) . 
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+ 
0 
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Transformer 
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+ + + 
en en en 

[Is] [Is] the [MASK] [MASK] [MASK] 

+ + + + 

2 3 4 5 

+ + + + 
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Original data [Is] the curtains were blue [Is] j] [Is] the gortinak were urdina [Is] Noised data 

Apply substitutions 

Figure 3.5: X L M on pseudo-parallel data wi th T L M objective. 
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Chapter 4 

Implementation 

The X L M framework provides t ra ining options for M L M and T L M pretraining as well as 
t ra ining options for Machine translat ion and Back-translat ion t ra ining out-of-the-box. 

However, the A C P and A T techniques are not directly embedded in the X L M framework. 
In order to leverage the data the way these methods expect to, we have to modify the data 
used during the t ra ining in the following manner for each of the methods and then leverage 
them through corresponding t ra ining objectives: 

A C P assumes the unsupervised t ra ining on non-parallel corpora, where the source side 
corpus is noised wi th anchoring points and the target side corpus remained clean. 
D a t a are leveraged through the M L M objective. 

A T assumes the unsupervised t raining through the B T objective i n both directions (source-
to-target and target-to-source) on monolingual corpora wi th only the source side 
corpus noised by placing the anchors provided by the bi l ingual lexicon. 

X L M on pseudo-parallel data assumes that the target language data is generated by 
the BD-based substitutions applied to true source data. The data w i l l be leveraged 
through M L M or T L M objectives as it is depicted i n Figure 3.5. 

The script that applies the substitutions is named s u b _ b y _ d i c t .py, the substi tut ion 
algori thm itself is described i n Append ix A . l . A l l the t ra ining arguments used for a l l the 
experiments described further are listed i n Append ix C. 

xhttps: / / github.com/facebookresearch/XLM 
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Chapter 5 

Experiments 

In this chapter, I w i l l cover the subjects closely related to the experiments conducted for this 
work: used data, data preprocessing pipeline and rat ionalizat ion of the choice of languages. 

Later parts of this chapter analyse the effectiveness of the applicat ion of described 
bi l ingual dict ionary based techniques under different conditions. This work investigates the 
settings that are not covered by the research of [1] - first, I surveyed the situations which 
involve the use of a smal l amount of parallel data and various amounts of non-parallel 
data; second, a case somewhat similar to the one discussed in the above-mentioned study, 
w i th the exception that there w i l l only be a l imi ted amount of monolingual data for both 
languages. 

5.1 Data overview 

In this section, I would like to list and briefly describe a l l data sources that were used 
to conduct the experiments. In subsections 5.1.1 and 5.1.2 I w i l l review i n terms of data 
quality, domain and size the corpora that were used as t raining, val idat ion and testing sets 
during the models' t ra ining and evaluation. In subsection 5.1.3 used bi l ingual dictionaries 
are covered. Unless otherwise specified, a l l listed corpora were downloaded from O P U S 
[24]. 

5.1.1 T r a i n i n g datasets 

C C M a t r i x [25] is the giant corpus containing parallel sentences in 90 languages. The 
content of it was extracted by data mining from web crawls obtained from the entire 
web. The impl ica t ion of that is the fact that the content may contain many noisy 
entities: hyperlinks, random punctuation, markup elements, and misalignments. 

E u r o p a r l [26] is a parallel corpus containing 21 European languages. It consists of tran
scripts of European Parlament sessions translated into these languages by professional 
translators. 

NewsCommentary is a parallel corpus that was created by W M T . It consists of news 
commentaries and is available i n 15 languages. 

W i k i m e d i a is a large collection of parallel sentences in 322 languages. It includes the 
dumps of articles from various W i k i m e d i a projects (Wikiped ia , W i k t i o n a r y and oth
ers). 
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Size of datasets (in sentences) 
D o m a i n 

en-fr en-cs en-vi en-eu 
D o m a i n 

C C M a t r i x - - - 7 .8M Various 

Europa r l 2 . 1 M 647K - - Pol i t ics 

NewsCommentary - 212K - - News 

W i k i p e d i a 818K - 58K - W i k i articles 

W i k i m e d i a 1.0M - - - W i k i articles 

OpenSubti t les - - 350K - Movie subtitles 

E l h W e b C o r p - - - 1 2 M Various 

E h u H a c - - - 585K Various 

T E D 2 0 2 0 - - 326K - Various 

N e u L a b _ T e d T a l k s - - 183K - Various 

E U B o o k s h o p 10.8M - - - Legal 

Q E D - - 338K - Various 

flores-200_dev 997 997 997 997 Various 

flores-200_devtest 1012 1012 1012 1012 Various 

Tatoeba 268K 31K 5694 2066 Various 

Table 5.1: Overview of a l l datasets that are used i n this work. 

OpenSubtit les is a parallel corpus of translated movie subtitles from OpenSubti t les web 
si te 1 it is available in 62 languages. 

E l h W e b C o r p (Elhuyar Basque Web Corpus) is a product of Igor Letur ia 's P h . D . thesis 
[27]. It was collected using both search engines and crawling. It is a large monolingual 
Basque general corpus containing around 186M raw tokens. A s well as the C C M a t r i x 
corpus, E lhWebCorp includes a lot of noisy elements. 

E h u H a c is a dataset created by Basque Count ry University. The corpus is buil t on 
translations of 171 books, it provides parallel data w i th Basque on one side and 
French /Engl i sh /Span ish on the other. 

T E D T a l k s NeuLab-TedTa lks 2 and T E D 2 0 2 0 are both corpora that are based on tran
scripts of T E D Talks presentations. T E D 2 0 2 0 was made by Reimers and Gurevych 
[28], it is based on translated subtitles of 4000 T E D talks in 100 languages. NeuLab-
TedTalks is based on translated subtitles that were made by volunteers, the dataset 
is available i n 59 languages. 

E U B o o k s h o p is a parallel corpus that was created by crawling the E U Bookshop, the 
archive of various publications from E U insti tutions. The dataset is available in 48 
languages. 

Q E D ( Q C R I Educa t iona l Doma in Corpus) is a parallel corpus that consists of translated 
subtitles of educational videos and lectures developed by Qatar Comput ing Research 
Institute [29]. The corpus supports 225 languages. 

xhttp: / / www.opensubtitles.org/ 
2 https: / / github. com / UKPLab / sentence-transformers/blob/master/docs/datasets / TED2020 .md 
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5.1.2 V a l i d a t i o n a n d test datasets 

Flores-200 [30] is a high-quality parallel mul t i l ingual benchmark for low-resource and 
mul t i l ingual machine translation. Flores-200 consists of translations of 842 distinct 
web articles for 200 languages made by professional translators, the dataset is divided 
into two splits: dev and devtest that were used as val idat ion and test sets respectively 
for each language pair in this research. Flores-200 benchmark can be downloaded 
from the flores200 G i t H u b reposi tory 3 . 

Tatoeba [31] is a large corpus that is based on the Associat ion Tatoeba database of sen
tences and their translations that are being contributed by the community. The main 
product of the project is the toolki t that provides the examples of usage of given 
words. A n d thus the parallel corpus consists mostly of simple "example sentences" 
in different languages. Tatoeba is available i n 380 languages. Tatoeba corpora were 
used for model testing for a l l declared language pairs. 

5.1.3 B i l i n g u a l d ict ionaries 

M U S E dictionaries are the high-quality bi l ingual dictionaries for 110 languages that 
were presented alongside a state-of-the-art approach for unsupervised M T i n the work 
of Conneau et a l . [32]. Authors took into account the problem of words' polysemy 
and instead of using some online translat ion tools to generate expressions' translations 
they used an internal translat ion tool designed specifically for the task of lexicon 
induction. In this work, Vietnamese-, French-, and Czech-Engl ish M U S E dictionaries 
are ut i l ized. B i l ingua l lexicons are publ ic ly available as part of the M U S E l ib ra ry 4 . 

E L R C English-Basque dictionary is an automatical ly created dict ionary that was in
ferred during the t ra ining of an unsupervised M T system as a part of M T 4 A L L 
project . 

A p e r t i u m [33] is an open-source platform for rule-based non-neural machine translation. 
One of the modules of this system, namely, lexical transfer, relies heavily on a bi l ingual 
dictionary for looking up lexical forms i n them. Unl ike other bi l ingual lexicons, the 
ones used i n A p e r t i u m systems provide addi t ional information like the word's part of 
speech, case, and tense to further improve the language translation. However, in this 
research dictionaries w i l l be only used for word mapping. English-Basque bi l ingual 
lexicon from the research of O 'Regan and Forcada [34] is ut i l ized in this work. 

It is worth noting that the resulting English-Basque lexicon has lower quali ty compared 
to the ones provided by the M U S E library, it includes many entries w i th translat ion of 
phrases which may substantially reduce the dict ionary coverage of the dataset. Also , the 
vocabulary was pre-processed by cleaning from noisy elements (redundant punctuation, 
unrelated symbols). 

3https: //github.com/facebookresearch/flores/blob/main/flores200/README.md#download 
4https: / / github.com/facebookresearch/MUSE  
5 https: / / ixa2. si. ehu.eus / mt4all / project. html 
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5.2 Languages 

In order to better explore the capabilities of bi l ingual dict ionary based techniques it was 
decided to t ra in the M T models for several language pairs. A l l of them consider Engl i sh 
as the source language. The choice of target languages is based on their morphological 
richness and l inguistic distance from Engl i sh . 

Here is the list of these target languages and some of their l inguistic features that are 
relevant to this research: 

French is a Romance language that is very closely related to Engl i sh . French and Engl i sh 
share about 30% of words that are either derived from L a t i n or borrowed by one 
language from another. Just like Engl ish , French has the S V O word order. French 
was chosen as a language wi th a smal l l inguistic distance from Engl i sh and as a 
language of a comparably simple morphology. 

Vietnamese is an isolating language, which means that words are made up of morphemes 
that cannot be further divided into meaningful smaller units. S imi lar to Engl ish , it 
has an S V O word order. Vietnamese can be characterized as a language wi th low 
morphological complexity: it lacks any direct modifications of words. Instead, to 
indicate any grammatical inflection, addi t ional words are added before or after the 
word we want to inflect. Because of the combinat ion of a l l these properties, it is 
expected that the performance boost provided by B D B N M T for English-Vietnamese 
M T w i l l be the highest among a l l considered language pairs. 

Original English Data There are schoo ls but there is no paper. 

Vietnamese translation* C o t r i rong n h y n g khong co giay. 

Generated sentence There dang t r i rong nhirng kia quan khong trat. 

Translation of gen. sentence* There 's schoo l , but there's no warrant. 

A s one can see in this example, the translat ion generated by substi tut ion is not very 
accurate: it is verbose and English-centric due to the word mapping in the English-to-
Vietnamese direction. However, it allows the model to learn better representations of 
Vietnamese words during the pretraining phase: i n the case of this sentence, having 
the vocabulary entry {"paper": ["trat", "giay"]} wi th two Vietnamese translations, we, 
using the substi tut ion algori thm, get trat ("warrant") as a translation, which is not 
accurate i n this si tuation but these two words have a somewhat close meaning and 
thus it is desirable that they are located close to each other i n the embedding space. 

Basque is an under-resourced language which is considered a language isolate (there are 
no other languages related to Basque). Basque is known for its complex morphology 
and agglutinative nature. It has a relatively flexible word order, which means that 
words i n a sentence can be rearranged for emphasis or stylistic purposes without really 
changing the meaning of the sentences. However, the existing rules imp ly that the 
basic word order in Basque is S O V (subject-object-verb). To better understand the 

"Translation generated by Google Translate 
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morphological richness and agglutinative nature of the Basque language let's consider 
the example*: the verb dakartzat ("I br ing them") is formed as follows: da indicates 
present tense, kar is a root word of infinitive ekkari ("to bring"), tza indicates p lura l 
and t indicates subject ("I"). Such high morphological complexity causes doubts about 
the appl icabi l i ty of bi l ingual dict ionary based word substitutions: lexicons s imply 
can't provide mappings to a l l the forms that are inflected from the word. However, 
considering the fact that Basque is an under-resourced language, BD-based can s t i l l 
be effective for improving the model's performance by the provision of ground-truth 
expressions' translations. 

Czech is a fusional language which implies that the meaning of a word is often changed 
by adding suffixes, prefixes, or inflections to the base word. Czech nouns, adjectives, 
pronouns, and verbs are inflected to reflect their grammatical role i n a sentence, as 
well as their gender, number, and case. Even though Czech, like many other Slavic 
languages, has a relatively free word order, i n general, it follows the S V O word order. 

5.3 Data preprocessing 

The preprocessing of corpora in general follows the same steps that are shown as the example 
in the X L M G i t H u b repository: 

1. Tokenize the data using the rule-based tokenizer which w i l l split words into subwords 
and separate the interruption. 

2. Learn B P E codes from both source and target tokenized data. 

3. A p p l y the learned B P E codes on tokenized data. 

4. Ex t rac t the vocabulary from B P E tokenized data. 

5. Div ide the data into parallel and non-parallel subsets i f we expect to t ra in the model 
w i th T L M objective and there are non-parallel segments. 

6. Binar ize the data. 

5.4 Tools 

Preprocessing To perform data preprocessing described i n Section 5.3 the following tools 
were used: 

Moses tokenizer 6 is used for subword tokenization of raw data. 

f a s t B P E ' is used for a l l B P E - r e l a t e d operations ( B P E codes learning, vocabulary extrac
t ion, B P E codes application) 

Training X L M 8 framework was used for model t ra ining wi th both Language modell ing 
and Machine translat ion objectives. 

* Taken from Wikipedia 
6https: / / github.com / moses-smt / mosesdecoder 
7https: / / github.com / glample / fastBPE 
8https: / / github.com/facebookresearch/XLM 
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Evaluation In order to perform models' performance evaluation during both validat ion 
and testing the following tools were used: 

Since the X L M framework provides no option for the t ra ining wi th the chrF metric, the 
evaluation module was modified by adding a chrF score implementat ion provided by 
nltk [35] and a corresponding option for a t ra ining script. 

S a c r e B L E U implementat ion of chrF and B L E U scores is used for the evaluation of con
verged M T models, s a c r e B L E U was introduced by M . Post [36]. 

5.5 Basic sets: parallel data for training M T systems 

In order to provide some parallel data for M T training, subsets of 130k sentences dubbed ba
sic sets were extracted from the following corpora: Europar l , NeuLab-TedTalks , Europar l , 
C C M a t r i x for English-French, -Vietnamese, -Basque and -Czech language pairs respec
tively. Basic sets are the only parallel datasets used i n this research. They are used in a l l 
experiments that assume the use of parallel data. 

5.6 Notation 

Throughout the following experiments' descriptions and discussions, some specific abbrevi
ations and terms w i l l be used. The list is as follows: 

Training objectives ( M L M , T L M , M T , A C P , A T ) w i l l be denoted as an abbreviation 
w i t h a subscript indicat ing the number of t raining sentences from both source and 
target sides, the prime sign w i l l mean that data used for t raining are pseudo-parallel, 
stages of t ra ining are separated by a comma. E . g . T L M 1 0 0 + M L M 1 3 0 ' , M T 1 3 0 means 
that the model was first pre-trained: w i th T L M objective on first 100k sentences and 
M L M objective on the next 130k pseudo-parallel sentences; next, the model was M T 
fine-tuned leveraging only 130k sentences. 

M T Machine Translat ion. 

B D B i l i ngua l Dict ionary. 

T - / M - L M Trans la t ion /Masked Language Model l ing . 

A C P Anchored Cross-l ingual Pret ra ining. 

A T Anchored training. 

5.7 Training models from scratch with a small amount of 
additional data 

This set of experiments emulates the si tuation where one doesn't possess the large-scale cor
pora to t ra in an N M T model. The t ra ining was conducted for a l l 4 language pairs that were 
listed previously. These experiments should explore the efficiency of models' pretraining 
applicabi l i ty of the BD-based approach to languages of different morphological complexity. 
It is expected that the performance boost may be less evident for more morphologically 
rich languages. 
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5.7.1 D e t e r m i n i n g the o p t i m a l h y p e r p a r a m e t e r s 

Since it is expected that the performance of M T models w i l l be subpar because of data 
scarcity, it was decided to find the embedding dimensionality that w i l l be op t imal for these 
models. Related experiments are described in Append ix B . 

5.7.2 Base l ine 

The baseline case considers the absence of addi t ional monolingual data, so baseline models 
are leveraging only the basic sets for t raining. Experiments conducted w i l l also serve as a 
showcase of how efficient both T L M and M L M pretraining wi th following M T fine-tuning 
are compared to the pure M T approach and to one another. 

MT130 MLM130+MT130 • TLM130+MT130 MT130 MLM130+MT130 • TLM130+MT130 
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Figure 5.1: Compar ison of performance of models trained without pretraining and models 
trained wi th different pretraining objectives. 

Firs t , i n order to better understand the significance of L M pretraining it was decided to 
t ra in models w i th the M T objective without any pretraining to provide a point of reference. 
A s it is apparent from bo th graphs from Figure 5.1, M L M pretraining provides a notable 
performance boost i n the B L E U score (30%) and in the chrF3 score (10%) on average 
among a l l the test sets. 

Second, to explore the expediency of leveraging parallel data through the T L M objec
tive was trained the M T model that was pre-trained wi th T L M . Graphs from Figure 5.1 
demonstrate that M T models that were first T L M pre-trained outperform models that had 
M L M pretraining for each language pair. To enhance the performance of future models, it 
was decided to always consider the basic set suitable for the T L M objective. 

Test sets' complexity 

From the graphs in Figure 5.1 it is evident that the Tatoeba set is different from flores200 
dev/devtest sets in terms of complexity - as mentioned before, Tatoeba set consists of 
simple short example sentence whereas flores200 is based on web articles and consists of 
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sentences that are more complex, so it is worth considering that results for flores200 sets 
are in general more representative. For a l l subsequent experiments, graphs w i l l only depict 
the average performance for a part icular model over a l l datasets. The summary of the 
performance of every model trained during this research for each dataset can be found in 
Append ix D . 

5.7.3 X L M w i t h the use of pseudo-para l le l d a t a 

In order to provide a set of Engl i sh monolingual data to be used for BD-based substitutions 
to generate the pseudo-parallel data, 100k sentences were extracted from the corpora listed 
in Table 5.2. 

Language pair Corpora B D entries B D coverage 

English- French 

English-French Europarl and Wikipedia 
113286 54.6% 

English- Viet namese English-French Europarl and Wikipedia 76364 49.8% 

English-Basque 

English-French Europarl and Wikipedia 

29282 35.5% 

English-Czech English-Czech Europral and NewsCommentary 64211 54.7% 

Table 5.2: Information about corpora that were ut i l ized as addi t ional data as well as the 
percentage of words covered by bi l ingual dictionary. 

After the applicat ion of BD-based substitutions on monolingual corpora we obtain 100k 
pseudo-parallel sentences. After the merge wi th the true parallel basic set, we obtain a 
parallel corpus of 230k sentences. A t the pretraining stage, the first 130k w i l l be ut i l ized 
for the T L M objective, the remaining 100k w i l l be ut i l ized for the M L M objective, and then 
the model w i l l be fine-tuned wi th the M T objective on the true parallel part. 

5.7.4 T o p l i n e 

To t ra in models that suppose to provide better (topline) results compared to models that 
were trained on pseudo-parallel data, this t ime non-synthetic data were ut i l ized as the 
target language data and were labelled as non-parallel. 

The addi t ional data for the target side of t ra ining sets for each language were taken from 
the following corpora (50k sentences from each listed corpus): English-French - Europar l , 
Wik iped ia ; English-Vietnameses - NeuLab-TedTalks , OpenSubti t les, English-Basque - E l -
hWebCorp, EhuHac , Engl ish-Czech - Europra l , NewsCommentary. 

5.7.5 Resu l t s analysis 

From the performance graphs i n Figure 5.2 it can be clearly seen that the addi t ion of pseudo-
parallel data leads to the substantial improvement of models' performance for language pairs 
w i th a high B D data coverage of around 50% (English-Freeh, -Vietnamese, -Czech). Models 
that were pre-trained using X L M w i t h the use of pseudo-parallel data demonstrate either 
a similar or superior performance compared to the models marked as Topline which were 
leveraging the true monolingual addi t ional data for pretraining. 

Another observation is the fact that for the English-Basque model, the lower B D data 
coverage and lower quali ty of B D lead to l imi ted improvement i n the resulting M T model's 
performance. 
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In conclusion, it can be said that the use of pseudo-parallel data generated by a large 
B D for language modell ing can be extremely beneficial for the resulting M T models' perfor
mance under the described setting - up to the point that models pre-trained on this k ind 
of data outperform the ones that were trained on true non-parallel data. 

Figure 5.2: Performance comparison of B a s e l i n e / X L M wi th pseudo-parallel da ta /Topl ine 
models. 

5.8 Training models from scratch on a small amount of mono
lingual data 

Unsupervised methods of t raining such as the B T require an enormously big amount of 
unparallel data, usually several mill ions of sentences on source and target sides. BD-based 
methods - A C P and A T - proposed by D u a n et a l . [1] demonstrated their efficiency i n the 
setting of an abundance of monolingual data. 

This series of experiments suppose to examine the effectiveness of the proposed training 
method i n the setting of a scarce amount of monolingual data. 

5.8.1 Base l ine 

Since it is expected that the performance of the resulting model trained w i t h A C P + A T 
t ra ining steps w i l l be extremely low. The translation made by the applicat ion of a b i l in 
gual dict ionary w i l l be considered a Baseline performance (basically, the noised versions of 
original corpora are used as the hypothesis translations). 

5.8.2 A n c h o r e d t r a i n i n g 

For the A C P + A T t ra ining were used small-scale non-parallel corpora of 230k sentences. 
The source language corpus consists of pseudo sentences generated from the true source 
language data. 
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5.8.3 Resu l t s analysis 

A s one can see from the resulting performance depicted i n the graph from Figure 5.3, 
A C P + A T tra ining on a small-scale monolingual corpora shows translation quali ty that is 
inferior to the one provided by the word mappings from bi l ingual dictionaries. 

BD-based translation ACP230.AT230 BD-based translation ACP230.AT230 

Figure 5.3: Transal t ion quali ty comparison of translations provided by bi l ingual dict ionary 
and by the A C P + A T trained model. 

The deteriorating performance of the trained model can be explained by the fact that 
unsupervised methods of t ra ining require large amounts of data, A C P and A T methods 
proved to be efficient exclusively under the setting of the abundance of non-parallel data. 

5.9 Fine-tuning the A C P + A T pre-trained model 

Since a l l other experiments for model pretraining only consider the tuning of the Trans
former's encoder, it was decided to test the performance of the M T fine-tuned model the 
pretraining of which includes the t ra ining of a decoder. Models described in Section 5.8 
trained solely on monolingual corpora suit this setting since they had a stage of A T training, 
which includes the opt imizat ion of parameters of a decoder. 

5.9.1 Base l ine 

Since this series of experiments consider the usage of parallel data for M T fine-tuning, we 
can uti l ize results provided by M T - t u n e d models from previous experiments for translat ion 
quali ty comparison. A s the Baseline model w i l l be considered the model that was M L M 
pre-trained on the same data as the model described i n Section 5.8 and then fine-tuned on 
a basic set. 
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5.9.2 M T fine-tuning 

Since the preceding A C P and A T tra ining procedures were done on source data noised wi th 
BD-based substitutions, it is not obvious whether the models should be fine-tuned wi th the 
M T objective on data w i th the noised or the clean source side. 

ACP230,AT230,MT130 ACP230,AT230,MT130 ACP230,AT230,MT130 ACP230,AT230,MT130 

Figure 5.4: Compar ison of performance of models which were fine-tuned wi th M T objective 
on noised source data (yellow) and clean source data (orange). 

Performance graph from Figure 5.4 shows that the models that were M T fine-tuned on 
parallel data w i th clean source side outperform ones that considered noised corpus as a 
source language data. The possible explanation for such degrading performance may lie in 
the fact that the substitutions that were observed during the t ra ining didn ' t appear in the 
test data. 

5.9.3 T o p l i n e 

The performance of T L M pre-trained Topline models described i n 5.7 w i l l be considered a 
Topline performance. 

5.9.4 Resu l t s analysis 

From the testing results depicted i n Figure 5.5 it can be seen that the A C P + A T pre-training 
yields results that are either similar or superior to the ones delivered by the systems which 
were first pre-trained wi th M L M objective. 

It can be said that tuning the Transformer's decoder parameters during the pre-training 
v i a A C P + A T tra ining may be beneficial in some cases - there is a significant improvement 
for the model for the English-French language pair, however, the improvement yielded by 
such pre-training is not persistent for different language pairs, so this method of pre-training 
cannot be considered superior to the M L M . 
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MLM230.MT130 ACP230,AT230,MT130 
• TLM130+MLM100.MT130 

MLM230.MT130 ACP230,AT230,MT130 
• TLM130+MLM100.MT130 

Figure 5.5: Performance comparison of B a s e l i n e / A C P + A T pre-trained/Topline models. 

5.10 Training models from scratch with a large amount of 
additional data 

This series of experiments suppose to investigate the appl icabi l i ty of the BD-based methods 
to the si tuation where we add a large amount of monolingual data for the model to leverage 
i n addi t ion to previously described parallel basic sets. 

Models w i l l be trained for two language pairs w i th comparatively low morphological 
complexity: English-French - suppose to show how efficient pretraining on pseudo-parallel 
data is for l inguist ical ly close languages, English-Vietnamese - suppose to show how efficient 
it is efficient for distant languages. 

Since the amount of t ra ining data was increased, the size of embedding vectors ut i l ized 
by models trained for this series was increased to 512 to enhance the models' capacity to 
represent the language's features. 

5.10.1 Base l ine 

The Baseline case considers the presence of large-scale monolingual corpus only for the 
source side. Th is way the model w i l l have a lot of data to generalize on which may lead 
to the emergence of bias towards the source language. However, due to the fact that the 
addit ional data are provided for the source side, it may not be as noticeable since the model 
w i l l have a good abi l i ty to represent the source language sentences and thus the abi l i ty to 
translate them to sentences i n the target language. 

5.10.2 X L M w i t h the use of pseudo-para l le l d a t a 

Having the same in i t i a l conditions as the ones described for the Baseline, we now extend 
the t ra ining corpus by generating the noisy data that w i l l serve as target language data. 
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Number of words Number of substitutions Coverage 

English-French 

English-Vietnamese 

24713580 

18869018 

13408303 

9472170 

54.2 % 

50.2 % 

Table 5.3: Dic t ionary coverage for each language pair. 

5.10.3 T o p l i n e 

The Topline case resembles a si tuation somewhat close to the one investigated by D u a n et 
al . i n [1]. Th is case assumes the presence of large-scale non-parallel corpora - 1 M sentences 
for each language, so the language modell ing t ra ining is done on true data. 

5.10.4 Resu l t s analysis 

TLM130+MLM1000.MT130 XLM with PP data* TLM130+MLM1000.MT130 XLM with PP data* 
• TLM130+MLM1000.MT130 • TLM130+MLM1000.MT13C 

Figure 5.6: Performance comparison of B a s e l i n e / X L M wi th pseudo-parallel da ta /Topl ine 
models. Scores marked wi th an asterisk correspond to the performance of models from 
Section 5.11 that are best for a part icular language pair. 

F rom the performance evaluation depicted in graphs from Figure 5.6 it is evident that X L M 
models trained wi th the use of pseudo-parallel data yie ld a significant boost i n performance 
compared to the models that were u t i l iz ing solely addi t ional source data. 

The in i t i a l assumption that the performance of the improvement provided by the ad
di t ion of (pseudo-)parallel addi t ional data models w i l l depend on the linguistic distance 
proved to be wrong: the difference between the improvement yielded by Topline models is 
not significant between two language pairs - 10.7% and 7.76% B L E U score improvements 
for English-French and English-Vietnamese respectively. W h a t is observable, however, is 
the fact that the boost provided by the inclusion of addi t ional pseudo-parallel sentences is 
more significant for the English-Vietnamese language pair than for the English-French lan-
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guage pair which may indicate that the target language's morphological complexity plays a 
significant role i n whether this method w i l l be useful for a part icular language pair or not. 

In conclusion, it can be stated that X L M wi th the use of pseudo-parallel data is a viable 
approach for enhancing the models' performance in this setting. However, unlike for the 
experiments w i t h a smal l amount of addi t ional monolingual data (Section 5.7), it cannot 
be stated that this method provides results that are similar to ones obtained from training 
on true monolingual data since there is a noticeable performance gap. 

5.11 Applicabil i ty of T L M pretraining on pseudo-parallel data 

A s previously mentioned, when it comes to the ut i l iza t ion of parallel corpus through some 
language modell ing objective for further M T fine-tuning the T L M yields better results than 
the M L M . However, it is debatable whether we should consider the pseudo-parallel data 
generated by the BD-based substitutions parallel or not. 

For the experiments described in Sections 5.7 and 5.10, there were two groups of models 
that were trained wi th the use of addi t ional pseudo-parallel data. Models dubbed TLMcat 
were considering pseudo-parallel data as parallel and thus were leveraging them through the 
T L M tra ining objective. Models dubbed TLMsep, on the contrary, treated pseudo-parallel 
data as available exclusively for the M L M tra ining objective. 

Displayed i n the graph in Figure 5.7 (b), the evaluation of the performance of models 
described in Section 5.10 shows that the L M c a t models outperform the L M s e p models 
for the English-French language pair. A t the same time, the former ones show inferior 
performance for the English-Vietnamese language pair. 

The same, even though not as clear, can be said for the chrF3 score evaluation of L M c a t 
models described in Section 5.7 for English-French and -Czech language pairs: they slightly 
outperform their counterparts. The opposite observation is also val id for the evaluation of 
the models for English-Vietnamese and -Basque pairs: L M s e p models provide better results 
for each test set. 

B o t h sets of experiments w i th different sizes of t ra ining sets, share the same properties 
that are relevant to this research: the coverage of words by bi l ingual dictionaries and 
the domain of data remained unchanged. The only difference was the amount of pseudo-
parallel data. The increase i n the size of which emphasized the tendency which was only 
barely observable wi th the models trained on smal l datasets: it appears that leveraging 
pseudo-parallel data w i th T L M objective is beneficial only for the target languages that 
are l inguist ical ly close to the source language (French, Czech) and harmful when the target 
language is distant from the source one (Vietnamese, Basque). 
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TLM130+MLM100',MT130 TLM130+TLM100',MT130 TLM130+MLM100',MT130 TLM130+TLM100',MT130 

(b) Models trained on a large amount of additional monolingual data 

Figure 5.7: Performance comparison of models that were treating the pseudo-parallel data 
differently: yellow - leveraging it through M L M objective (wil l be referred to as LMsep), 
orange - leveraging it through the T L M objective (wi l l be referred to as LMcat). 

5.12 Fine-tuning the X L M - R model 

The last series of experiments and, perhaps, the one that is the closest to the real si tuation 
when it comes to t ra ining an M T model for low-resource language pair, resembles the case 
where there exists a large publ ic ly available pre-trained model which is supposed to be 
fine-tuned for a concrete language pair for the M T task. 
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In order to fine-tune the X L M - R model, it is required to download the model itself, codes 
and vocabulary listed in the X L M repository and t ra in the model in the way described before 
on data processed using downloaded codes and vocabulary. 

5.12.1 X L M 17 

For this set of experiments, XLM 17 [37] is ut i l ized as such a pre-trained model . X L M 
17 is a mul t i l ingual model that was pre-trained wi th the M L M objective on corpora i n 17 
languages (en, fr, es, de, i t , pt, n l , sv, p i , ru, ar, tr, zh, ja , ko, h i , v i ) . The model has 16 
layers and 16 attention heads, it utilizes embedding vectors of size 1280 and a vocabulary 
size of 200k tokens. 

5.12.2 F i n e - t u n i n g w i t h M T object ive 

X L M 17 models fine-tuned wi th the M T objective suppose to serve as a Baseline. Tuning 
the model like this is the t radi t ional way of adapting a language model for the M T task. 

5.12.3 Two-stage fine-tuning 

Two-stage fine-tuning of X L M 17 consists of first fine-tuning the model w i th T L M + M L M 
objectives on set that consists of the basic set and pseudo-parallel data and, second, of 
again fine-tuning it but wi th M T objective instead. It is expected that the performance 
of models for language pairs which have the target language covered during the X L M 17 
training (French, Vietnamese) w i l l be similar to the one of previously described M T fine-
tuned models. It is so because the model w i l l fail to optimize on provided data since the 
data was either already observed (true data from basic sets) or the data w i l l have less 
quali ty (pseudo-parallel data) compared to the data provided for the in i t i a l X L M 17 L M 
training. 

5.12.4 Resu l t s analysis 

A s is apparent from the performance graph from Figure 5.8, there is no visible improvement 
provided by the two-stage fine-tuning. 

Like it was expected, the performance of M T - t u n e d models for language pairs w i t h the 
target language covered by the in i t i a l X L M 17 tra ining does differ from the performance 
provided by the models that were two-stage fine-tuned. 

In addi t ion to that 2-stage fine-tuned models also failed to provide performance im
provement for 2 other language pairs. For the Engl ish-Czech language pair, it may be 
explained by the fact that the linguistic features that can be extracted from the provided 
corpora could have been already learned from the languages wi th s imilar l inguistic features 
- X L M 17 was trained, among other languages, on Pol i sh data. For English-Basque there 
are two possible explanations of such behaviour: first, s imilar to Engl ish-Czech, the l in 
guistic features could have been learned from another agglutinative language w i t h S O V 
(subject-object-verb) word order - X L M 17 was trained on Turk ish data; second, shared 
sub-word vocabulary that is provided along wi th X L M 17 model is not opt imized for the 
B P E encoding of the Basque language data and thus it is hard to learn the features specific 
to the Basque through the language modell ing. 
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MT130 TLM130+TLM100',MT130 MT130 • TLM130+TLM100',MT130 

Figure 5.8: Performance comparison of M T fine-tuning/2-stage fine-tuning. 

5.13 Findings 

I w i l l provide a brief overview of the findings of the B D B N M T derived from the conducted 
experiments. 

• The higher bi l ingual dict ionary coverage the bigger the yie ld the bi l ingual dict ionary 
methods br ing to the models' performance. 

• Target languages wi th weak inflection (e.g. Vietnamese) get a bigger performance 
boost from the ut i l iza t ion of pseudo-parallel data. 

• Leveraging the pseudo-parallel data through the T L M objective is justified only when 
the languages that make up a language pair are l inguist ical ly close (e.g. Engl ish-
French) . 
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Chapter 6 

Future work 

Even though the experiments conducted for this work demonstrate that the B D B N M T 
approach is applicable to many of the investigated cases, there exist a few additions to this 
approach that may positively affect the results which were not implemented and tested. 

6.1 Lemmat izat ion 

It is obvious that the extension of bi l ingual dictionaries should increase the coverage of 
data and thus w i l l be beneficial for the performance of models that adopt this approach. 
However, the induct ion of a ground-truth bi l ingual lexicon is not an easy task. Another 
way to improve the data coverage without any additions of ground-truth entries to the 
original dict ionary is to lemmatize both the tokens in a monolingual corpus that were not 
covered by the in i t i a l dict ionary and the keys of the bi l ingual dict ionary itself. Consider 
the in i t i a l Engl ish-Czech dict ionary {"fox": "liška", "lazy": "liny", "jumped": "přeskočil"} 
and the following pair of clean and noised versions of the same sentence: 

B r o w n fox jumps over the lazy dog. —> B r o w n liška jumps over the liný dog. 

by the lemmatizat ion of the in i t i a l dict ionary we w i l l obtain the following extension: {"jump": 
["přeskočil", "přeskoči t"]} , and after its applicat ion on the in i t i a l sentence we w i l l obtain 
the sentence wi th the increased quanti ty of words translated by a bi l ingual dictionary: 

B r o w n fox j ump over the lazy dog. —> B r o w n liška přeskoč i t over the liný dog. 

Even though the form of the target word may not be correct, the greater bi l ingual dict ionary 
coverage of the source monolingual dataset forces the model to drive the embeddings of 
similar words in different languages even closer during the pretraining. 

6.2 Synonyms utilization 

Another improvement that is even more reliant on a bi l ingual dict ionary is that can be 
added i n addi t ion to previously described pseudo-parallel data generation and may be 
useful for extremely low-resource language pairs. Th is technique includes the usage of 
bi l ingual dictionaries i n both directions: in opposition to the previously described process 
of generation of pseudo-parallel data we, instead of sampling the random ground-truth 
translation, now apply a l l of them by the creation of new target pseudo sentences for each 
available word translation. In addi t ion to that we apply word mappings in the opposite 
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direction thus also enriching the source language data. Consider the following vocabulary 
{"country": ["zeme", "stat"], "land": "zeme", "ground": "zeme", "earth": "zeme",}. Since the 
word "has "country" has two corresponding words i n the target language, by the applicat ion 
of substitutions we w i l l generate two new target language pseudo sentences, then wi th the 
application of a dict ionary i n the opposite direction three new source sentences w i l l be 
created that w i l l cover the words in the source language that, perhaps, are not present in 
corpus. Th is way we w i l l make the embedding vector representation of words involved in 
substitutions extremely close to each other (up to the point where embeddings of these 
words can be the same), which may be harmful to the performance of a model trained on 
a sufficient amount of data - even though the covered words may have the similar meaning 
they may be used i n different contexts. However, as stated before, this technique may be 
useful for extremely low-resource languages, the corpus of which may not even include the 
words covered by a dictionary. 
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Chapter 7 

Conclusion 

The goal of this work was to investigate how N M T models' performance can be improved 
by the appl icat ion of bi l ingual dict ionary based methods. In this work were considered two 
methods of bi l ingual dict ionary ut i l iza t ion that can be applied i n certain situations. 

The first one assumes the usage of Anchored cross-lingual pretraining ( A C P ) in conjunc
t ion wi th Anchored training ( A T ) . B o t h methods expect the usage of non-parallel corpora 
for t raining. This research surveyed the setting that was not covered by the work which 
introduced these methods - the case when there are small-scale monolingual corpora. The 
research shows that there is no improvement that can A C P + A T tra ining provide i n this 
setting even when compared to the translations based solely on word mappings provided 
by the bi l ingual lexicon. 

The second method - Cross-lingual language modelling (XLM) with pseudo-parallel data 
- assumes that there is a l i t t le amount of true parallel data available for Machine translation 
( M T ) t ra ining and some amount of monolingual data available only i n one of two languages. 
This technique consists of first generating the pseudo-parallel data based on a monolingual 
corpus and bi l ingual dictionary, and then leveraging this data through the language mod
elling objective. Conducted experiments proved that the addi t ion of pseudo-parallel data 
to true parallel data is an effective method of boosting the model's performance: w i th the 
inclusion of a relatively smal l amount of extra monolingual data (100k source language 
sentences) it yielded improvement comparable to this achieved by the addi t ion of true non-
parallel data for both languages; w i t h the bigger amount of addi t ional monolingual data 
( 1 M source language sentences) it also led to performance improvement, however, it was 
more modest. 

In addi t ion to this survey, there was conducted the experiment that considers models 
that were trained wi th the A C P and A T stages as models for further fine-tuning wi th the 
M T objective. Pre- t ra ining w i t h such objectives allows the model to also tune a decoder 
during the pre-training. The resulting performance of such models is comparable to this of 
the M T models pre-trained wi th the M L M objective on the same non-parallel data. 

Another survey that was conducted for the method of X L M wi th the pseudo-parallel 
data was examining whether it is beneficial to leverage the pseudo-parallel data through the 
T L M objective. For the models trained i n different settings, results show that it is advan
tageous to leverage the pseudo-parallel data this way when the l inguistic distance between 
the source and target languages is relatively smal l - the improvement was observable for 
the models for English-French and Engl ish-Czech language pairs. 
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Appendix A 

Code segments 

A . l Dictionary utilization 

import pyonmttok 
import random 

tokenizer = pyonmttok.Tokenizer(mode='aggressive') 
with. open(src_path, 'r') as src, open(tgt_path, 'w') as t g t : 

sentences = [] 
for l i n e i n src: 

tokens = tokenizer.tokenize(line) 
f o r idx, token i n enumerate(tokens): 

i f token i n vocab: 
replaced += 1 
t o t a l += 1 

e l i f token. i s a l p h a O : 
t o t a l += 1 

i f sample: 
token = random, sample (vocab .get (token, [token]), 1) [0] 

else: 
token = vocab.get(token, [token]) [0] 

i f r e p l a c e d / f l o a t ( t o t a l ) >= 0.1: 
sentences.append(' '.join(tokens)) 

else: 
sentences.append(line) 

tgt.write('\n'.join(sentences)) 

A l g o r i t h m A . l : P rogram segment responsible for the applicat ion of substitutions based on 
bi l ingual dictionary. Fi rs t , it tokenizes the source sentence using the O p e n N M T tokenizer's 
P y t h o n b indings 1 , then apply the mappings provided by vocab. E a c h entry of vocab 
dictionary contains a list of translations read from the vocabulary file. F u l l a lgori thm 
that performs the reading of dict ionary file and applicat ion of substitutions is provided by 
sub_by_dict .py script. 

1https: / / github.com / OpenNMT/Tokenizer / tree / master/bindings / python 
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Appendix B 

Determining the optimal 
embedding size 

Given the fact that a huge parallel corpus ( > 1 M sentences) is needed to t ra in an N M T 
model and that the model w i l l have only min ima l data to use in the case of the first set 
of experiments described in Section 5.7; it was decided to optimise model performance by 
finding the opt imal embedding size i n advance for both pure M T training and M L M + M T 
tra ining and then use the resulting opt imal embedding size in subsequent experiments. 

In order to do this, I tested the performance of models that were trained wi th 128, 256 
and 512 embeddings sizes (other parameters remained unchanged for a l l 3 cases). 

MT128 MT256 • MT512 MLM+MT128 MLM+MT256 • MLM+MT512 

11 
z> 
—1 
m 

(a) Pure M T models (b) Pre-trained M T models 

Figure B . l : A s it can be seen in graph (a) there is no definite superiority of models w i th 
some specific embedding size across language pairs. However, the case depicted i n (b) -
M T models that were first pre-trained wi th M L M objective - demonstrates that for both 
benchmarks and for a l l language pairs models that util ize embeddings of size 256 show a 
slight improvement i n performance compared to those u t i l iz ing other embedding sizes. 
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Appendix C 

Training arguments 

In this appendix, I want to provide the reader wi th a l l the information needed to replicate 
the t ra ining experiments that were conducted dur ing my research. Here w i l l be listed 3 
execution templates (for T L M / M L M pre-training, for B T training and M T training/fine-
tuning) and tables corresponding to each of these templates, which w i l l list the values of 
arguments to insert instead of corresponding placeholders. 

python XLM/train.py \ 
— l g s en-<tgt> —mlm_steps <MLM steps> —emb_dim <embedding size> \ 
— n _ l a y e r s <number of layers> —n_heads <number of heads> \ 
—dropout <dropout> —attention_dropout <attention dropout> \ 
— g e l u _ a c t i v a t i o n true — b a t c h _ s i z e <batch size> \ 
— o p t i m i z e r adam,lr=<learning rate>,weight_decay=<weight decay> \ 
—e p o c h _ s i z e <size of t r a i n i n g set> —max_epoch 1000 \ 
— v a l i d a t i o n _ m e t r i c s _valid_mlm_ppl — s t o p p i n g _ c r i t e r i o n _valid_mlm_ppl,10 

A l g o r i t h m C . l : Template for the execution of L M training. 

python XLM/train.py \ 
—reload_model <model path> — l g s en-<tgt> — b t _ s t e p s en-<tgt>-en,<tgt>-en-<tgt> \ 
— a e _ s t e p s en,<tgt> —lambda_ae 0:1,100000:0.1,300000:0 —encoder_only f a l s e \ 
—word_dropout 0.1 —word_blank 0.1 —emb_dim <embedding size> \ 
— n _ l a y e r s <number of layers> —n_heads <number of heads> \ 
—dropout <dropout> —attention_dropout <attention dropout> \ 
— e p o c h _ s i z e <size of t r a i n i n g set> —max_epoch 1000 \ 
— g e l u _ a c t i v a t i o n true — b a t c h _ s i z e <batch size> \ 
— o p t i m i z e r adam,lr=<learning rate>,weight_decay=<weight decay> \ 
— e v a l _ b l e u true — e v a l _ c h r f true \ 
— s t o p p i n g _ c r i t e r i o n valid_<language pair>_mt_chrf,10 

A l g o r i t h m C.2 : Template for the execution of B T training. 

python XLM/train.py \ 
—reload_model <model path> — l g s en-<tgt> —mt_steps en-<tgt> \ 
—encoder_only f a l s e —emb_dim <embedding size> — n _ l a y e r s <number of layers> \ 
—n_heads <number of heads> —dropout <dropout> —attention_dropout <attention dropout> \ 
— e p o c h _ s i z e <size of t r a i n i n g set> —max_epoch 1000 \ 
— g e l u _ a c t i v a t i o n true — b a t c h _ s i z e <batch size> \ 
— o p t i m i z e r adam,lr=<learning rate>,weight_decay=<weight decay> \ 
— e v a l _ b l e u true — e v a l _ c h r f true \ 
— s t o p p i n g _ c r i t e r i o n valid_<language pair>_mt_chrf,10 

A l g o r i t h m C.3 : Template for the execution of M T training. 
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Hyperparameters enclosed wi th in "<" and ">" that are listed i n t ra ining execution 
templates are described i n tables each corresponding to some experiment. If some parameter 
should be excluded, it is denoted as The model path column corresponds to the path to 
the previously pre-trained model listed i n the same group from one of the previous tables. 

# Model type Model Path M L M steps E. size N. of layers N. of heads Dropout A. dropout B. size L. rate W. decay Codes 

Models trained with a small amount of additional monolingual data. 

1 

2 

3 

M L M 

-

en,<tgt> 
128 
256 
512 

6 8 0.1 0.1 64 0.0001 0.1 5k 

4 T L M 
-

en,<tgt>,en-<tgt> 256 

6 8 0.1 0.1 64 0.0001 0.1 5k 

Models pre-trained on a small amount of non-parallel data 

1 ACP - en,<tgt> 256 6 8 0.1 0.1 64 0.0001 0.1 5k 

Models trained with a big amount of additional monolingual data. 

1 T L M - en,<tgt>,en-<tgt> 512 6 8 0.1 0.1 64 0.0001 0.1 7k 

Fine-tuning the X L M 17 model. 

1 T L M XLM17 en,<tgt>,en-<tgt> 1280 16 16 0.3 0.0 16 0.00001 0 175k 

Table C . l : Arguments for L M training 

# Model type Model path E. size N. of layers N. of heads Dropout A. dropout B. size L. rate W. decay Codes 

Models pre-trained on a small amount of non-parallel data 
1 ACP+AT 256 6 8 0.1 0.1 64 0.0001 0.1 5k 

Table C.2 : Arguments for B T ( A T ) training 

# Model type Model path E. size N. of layers N. of heads Dropout A. dropout B. size L. rate W. decay Codes 

Models trained with a small amount of additional monolingual data 

1 

2 

3 

Pure MT -

128 
256 
512 

6 8 0.1 0.1 64 0.0001 0.1 5k 4 

5 
6 
7 

MT FT 

128 6 8 0.1 0.1 64 0.0001 0.1 5k 4 

5 
6 
7 

MT FT 
#2,#2 256 

6 8 0.1 0.1 64 0.0001 0.1 5k 4 

5 
6 
7 

MT FT 
#3,#3 512 

6 8 0.1 0.1 64 0.0001 0.1 5k 4 

5 
6 
7 

MT FT 

#4,#4 256 

6 8 0.1 0.1 64 0.0001 0.1 5k 

Models pre-trained on a small amount of non-parallel data 

1 ACP+AT,MT 256 6 8 0.1 0.1 64 0.0001 0.1 5k 

Models trained with a big amount of additional monolingual data. 

1 MT FT 512 6 8 0.1 0.1 64 0.0001 0.1 7k 

Fine-tuning the X L M 17 model. 

1 MT FT XLM17,XLM17 
1280 16 16 0.3 0.0 16 0.00001 0 175k 

2 2-stage-FT #!,#! 
1280 16 16 0.3 0.0 16 0.00001 0 175k 

Table C .3 : Arguments for M T training 

50 



Appendix D 

Models' performance overview 

This appendix provides a table overview of the performance of a l l the models trained for 
this research on a l l test sets. Test sets denoted as dev and test correspond to flores200 dev 
and devtest sets respectively. B L E U and chrF3 scores are separated wi th a comma. 

Model 
en-fr en-vi en-eu en-cs 

Model 
dev test Tatoeba dev test Tatoeba dev test Tatoeba dev test Tatoeba 

Models trained with a small amount of additional monolingual data. 

MT 
Embl28 
Emb256 
Emb512 

12.58, 12.87, 15.24, 
12.16,39.4 11.86,39.42 13.25,36.27 

11.9, 11.63, 13.45, 

16.00, 14.95, 24.48, 
16.54,36.41 16.29,35.56 22.94,40.6 

16.65, 16.25, 23.16, 

4.06, 3.84, 17.9, 
4.8,37.69 4.68,37.14 16.24,45.59 

4.96, 4.58, 16.3, 

7.48, 7.12, 8.5, 
8.5,34.25 8.79,34.62 8.64,29.7 

8.17, 8.5, 9.24, 

M L M . M T 
Embl28 
Emb256 
Emb512 

12.74, 12.58, 14.52, 
16.96,43.96 16.87,44.39 17.87,40.71 

16.33, 16.76, 16.98, 

20.85, 20.22, 26.74, 
21.39,41.22 21.43,41.06 25.5,43.53 

20.69, 19.97, 25.65, 

5.91, 5.63, 20.19, 
6.42,40.33 6.28,39.93 18.45,48.24 

6.12, 5.9, 17.73, 

8.84, 9.15, 9.64, 
10.99,37.72 10.88,38.06 12.43,33.01 

10.39, 10.31, 11.37, 

TLM.MT 

Baseline 
BDBscp 
BDBcat 
Toplinc 

18.67,46.15 18.19,46.24 19.89,42.71 
18.96,46.23 19.22,46.69 20.82,43.66 
19.3,47.04 18.91,47.03 19.53,43.17 
19.75,47.56 19.13,47.4 20.44,43.96 

22.44,42.18 22.39,42.07 26.71,44.56 
23.54,43.31 23.34,43.41 27.23,45.31 
22.24,42.34 22.99,42.83 26.77,44.84 
23.28,43.36 23.6,43.37 26.93,45.04 

6.79,41.17 6.9,41.01 19.85,49.56 
7.55,42.33 7.34,42.35 18.67,49.00 
7.05,41.92 6.81,41.73 18.71,49.07 
7.66,42.58 7.33,42.51 20.33,50.33 

11.44,38.7 11.17,38.45 11.48,32.84 
12.00,39.16 12.1,39.14 12.33,33.82 
11.74,39.39 11.73,39.71 12.08,34.18 
11.94,39.28 11.31,38.77 12.37,34.42 

Models pre-trained on a small amount of non-parallel data. 
M L M . M T Baseline 17.12,44.17 17.11,44.49 18.44,40.94 22.18,42.38 22.49,42.28 26.43,44.43 6.65,40.55 6.58,40.45 19.08,48.51 11.63,38.52 11.62,38.57 12.49,33.34 

ACP.AT 2.70,25.77 2.50,25.51 2.37,19.20 3.21,18.10 2.95,17.68 2.45,14.08 1.67,21.34 1.63,21.26 1.28,17.3 3.27,22.05 3.18,21.93 1.39,13.48 

ACP.AT.MT 
Clean 
Noisy 

19.90,47.18 19.18,47.20 19.69,42.17 
7.36,33.25 7.25,33.46 6.34,26.39 

22.67,42.4 22.32,42.21 25.79,43.64 
12.12,32.12 12.08,31.81 11.04,29.13 

7.42,41.80 6.99,41.89 18.34,48.30 
4.25,33.41 4.08,33.28 10.33,35.03 

11.6,38.60 11.08,38.83 11.73,32.88 
3.80,25.49 3.80,25.42 3.50,17.58 

Models trained with a big amount of additional monolingual data. 

TLM.MT 

Baseline 
Topline 
TLMscp 
TLMcat 

18.66,46.25 19.49,47.31 20.23,44.43 
20.46,48.32 20.87,48.90 23.34,46.48 
18.97,46.34 18.92,46.74 21.76,44.59 
20.07,47.81 20.48,48.21 21.6,45.65 

22.94,43.06 23.15,43.02 26.99,45.49 
24.96,44.82 25.07,44.85 28.72,46.85 
24.77,44.62 24.58,44.55 28.13,46.13 
23.53,43.66 23.33,43.23 27.35,45.57 

Fine-tuning the X L M 17 model. 
MT Baseline 24.85,52.14 24.85,53.19 28.58,51.75 28.56,48.41 28.76,48.33 31.85,49.69 9.73,47.70 9.83,48.27 22.48,53.55 14.64,42.53 14.32,42.51 18.04,41.19 

TLM.MT TLMscp 24.05,51.73 25.08,52.56 28.85,52.11 28.63,48.37 28.83,48.45 31.6,49.85 10.00,47.48 9.50,47.69 22.72,53.92 14.30,42.16 14.57,42.69 17.98,41.96 
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