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Abstract 

This dissertation elaborates on problems of structural interpretation of QSAR models. 

Development of the validation framework of interpretation methods was performed in the 

first place. The framework consists of specifically designed data sets. They are purposed 

for systematic evaluation of the ability of interpretation approaches to retrieve patterns 

important for activity studied. We applied the framework to study the behavior of most 

used machine learning (ML) algorithms, molecular descriptors and an interpretation 

approach: Universal approach for interpretation of QSAR models (UIA) (1, 2). 

We implemented a new Extension of UIA to improve global (data set level) interpretation 

by this approach. Results produced by UIA in the form of fragment contributions show 

certain variability. This variability can be caused by different chemical contexts of those 

fragments and is observed for the majority of biological end-points.  The Extension 

identifies groups of compounds (clusters) comprising the same structural pattern, where 

the pattern has substantially different influence on the studied property, and retrieves 

chemical contexts within these clusters. Retrospective analysis of toxicity to Tetrahymena 

pyriformis showed that the clustering technique explains distribution of contributions of 

particular molecular groups/fragments and enhances explanatory power of the UIA. 

To address practical aspects of model interpretation we applied UIA and the Extension 

developed to real case data sets. First, we studied aquatic toxicity. The results made it 

possible to rank contributions of molecular patterns (fragments) to toxicity against three 

different aquatic organisms. The study confirmed known toxicophore features and 

proposed new fragments stably influencing all three studied endpoints, thus proving the 

approach useful. The Extension was also applied to modeling of anticancer activity 

(toxicity of small molecules against cancer cell lines). Important patterns have been 

retrieved which information can be used in compound optimization. 

All the methodology developed was implemented as open-source software. The 

benchmarking framework is available at https://github.com/ci-lab-cz/ibenchmark. The 

Extension to SPCI software was implemented in the open-source R package 
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(https://github.com/DrrDom/rspci). In addition, multiple undersampling technique was 

added to SPCI software. This improved modelling results for unbalanced classification 

data sets. Interpretation based on  such models also proved feasible.  An open-source 

interpretation tool for graph neural networks using UIA was proposed and implemented 

within DeepChem project. 

Keywords: QSAR explainability, QSAR interpretation, Gaussian Mixture Modelling, 

QSAR interpretability benchmark, synthetic data set. 
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Dentistry, Palacký University and University Hospital in Olomouc 
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Pages: 115 

  



9 

 

Anotace 

Disertační práce se zabývá problematikou strukturální interpretace modelů QSAR. 

Nejprve byl proveden vývoj validačního frameworku pro  interpretační metody. 

Framework se skládá ze speciálně navržených datových souboru. Jsou určeny pro 

hodnocení schopnosti interpretačních přístupů vytěžovat data důležitá pro studovanou 

aktivitu malých molekul. Aplikovali jsme framework ke studiu nejpoužívanějších 

algoritmů strojového učení (ML), molekulárních deskriptorů a interpretačního přístupu: 

Univerzálního přístupu pro interpretaci modelů QSAR (UIA) (1, 2).  

Implementovali jsme nové rozšíření UIA, abychom  zlepšili globální interpretaci pomoci  

tohoto přístupu. Výsledky produkované UIA ve formě příspěvků molekulárních 

fragmentu vykazují určitou variabilitu. Tato variabilita může být způsobena různými 

chemickými kontexty těchto fragmentů a je pozorována u většiny biologických aktivit. 

Rozšíření identifikuje skupiny sloučenin (shluky) obsahující stejný strukturní vzorec, kde 

vzorec má podstatně odlišný vliv na studovanou vlastnost, a vyhledá chemické 

souvislosti v rámci těchto shluků. Retrospektivní analýza toxicity pro Tetrahymena 

pyriformis ukázala, že technika shlukování vysvětluje distribuci příspěvků jednotlivých 

molekulárních skupin / fragmentů a zvyšuje vysvětlovací schopnost UIA.  

K řešení praktických aspektů interpretace modelu jsme aplikovali UIA a vyvinuté 

rozšíření na  reálné datové soubory. Nejprve, jsme studovali vodní toxicitu. Výsledky 

umožnily seřadit příspěvky molekulárních vzorů (fragmentů) k toxicitě vůči třem různým 

vodním organismům. Studie potvrdila známé toxikofory a navrhla nové fragmenty 

stabilně ovlivňující všechny tři studované aktivity, čímž se prokázala užitečnost tohoto 

přístupu. Rozšíření bylo také aplikováno na modelování protirakovinné aktivity (toxicita 

malých molekul proti rakovinným buněčným liniím). Byly získány nové potenciálně 

důležité vzorce, které lze použít při optimalizaci sloučenin. Veškerá vyvinutá metodika 

byla implementována jako open-source software. Validační framework  je dostupný na 

https://github.com/ci-lab-cz/ibenchmark. Rozšíření pro SPCI bylo implementováno v 

open-source R balíčku (https://github.com/DrrDom/rspci). V rámci projektu DeepChem 

byl navržen a implementován open-source interpretační nástroj pro grafové neuronové 

sítě využívající UIA.  
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1. Introduction to quantitative structure–activity relationship 

Quantitative structure–activity relationship (QSAR)  modelling was born more than 100 

years ago. In early XX century Meyer and Overton suggested that the narcotic action of a 

group of organic compounds was related to their olive oil/water partition coefficients (1). 

This relationship demonstrated the central axiom of structure-activity modeling –  the 

activity of substances is governed by their properties, which in turn are determined by 

their chemical structure. Therefore, there are relationships between structure and 

properties and activity.  

QSAR models are regression or classification models used in the chemical and biological 

sciences and engineering. 

QSAR regression models relate a set of "predictor" variables (X) to the potency of the 

response variable (Y), while classification QSAR models relate the predictor variables to 

a categorical value of the response variable. A model can be represented as the mapping 

function f  :  

𝑦 = 𝑓(𝑥), (1-1)  

Where y  is the value for Y predicted by the model, i.e. approximation of the response-

variable; f typically is a complex machine learning model; it doesn’t need to have an 

analytical form; X are the predictors consisting of physicochemical properties or 

theoretical molecular descriptors of chemicals (2). 

As an example, biological activity can be expressed quantitatively as the concentration of 

a substance required to give a certain biological response. The mathematical expression, 

if carefully validated can then be used to predict the modeled response of other chemical 

structures (3). 

At present, QSAR modeling is one of the basic tools of modern drug design and 

environmental sciences. Models have developed into robust and reliable systems, at the 

same time, they became highly complex and non-interpretable: so-called “black boxes”. 

Present dissertation is dedicated to “opening the black box”, that is model interpretability 

problem. The importance of interpretability  aspect is justified in Section 2.  
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1.1.  Molecular descriptors 

Molecular graphs (Figure 1.1) are naturally used for the representation of chemical 

structures, if necessary, supplemented with information on the three-dimensional 

coordinates of atoms, as well as atomic and bond attributes (properties).  

 

Figure 1.1 Example of chemical compound  graph representation 

To build successful models it is important to capture relevant aspects of structures. For 

instance, for membrane permeability of compounds the key role may belong to 

lipophilicity and size. 

Until recent time, graphs themselves were not used for modelling, mainly due to the 

requirement to pass a set of variables – feature vector as input. We will describe here 

traditional molecular descriptors; graph-based methods are mentioned in 6.2.2. 

Molecular descriptors represent structures as a set of variables used to build models, also 

called feature vector. There are different types of such features capturing various aspects 

of molecules. 

Fragment descriptors (4),(5) exist in two main variants - binary and count-based. Binary 

fragment descriptors (Figure 1.2) indicate whether a given fragment (substructure) is 

contained in a structural formula (that is, whether a given subgraph is contained in a 

molecular graph describing a given chemical compound), while count-based fragment 

descriptors indicate how many times a given fragment (substructure) is contained in a 

structural formula (that is, how many times a given subgraph is contained in a molecular 

graph describing a given chemical compound).  



13 

 

 

Figure 1.2  Visualization of the basic algorithm to generate hashed binary Morgan 

fingerprint. Layer with radius of 2 bonds is shown 

Topological indexes are invariants of a molecular graph, expressed as numerical values 

that characterize the structure of a molecule as a whole. Usually, topological indices do 

not reflect the multiplicity of chemical bonds and types of atoms (C, N, O, etc.), 

hydrogen atoms are not taken into account. The most famous topological indices include 

the Hosoi index, the Wiener index, the Randic index, the Balaban index, and others (5).  

 Physicochemical descriptors are numerical characteristics obtained as a result of 

modeling the physicochemical properties of chemical compounds, or quantities that have 

a clear physicochemical interpretation. The most commonly used descriptors are: 

lipophilicity (LogP), molar refraction (MR), molecular weight (MW), hydrogen bond 

descriptors, molecular volume and surface area. 

 Quantum-chemical descriptors (6) are numerical values obtained as a result of quantum-

chemical calculations. The most frequently used descriptors are: energies of boundary 

molecular orbitals (HOMO and LUMO), partial charges on atoms and partial bond 

orders, energies of cationic, anionic and radical localization, dipole and higher multipole 

moments of the electrostatic potential distribution. 
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Pharmacophore descriptors show whether the simplest pharmacophores, consisting of 

pairs or triplets of pharmacophore centers with a specified distance between them, can be 

contained within the molecule analyzed (7). 

Molecular descriptors are most fully described in the monograph (8), which can be 

considered an encyclopedia of molecular descriptors. 

1.2.  QSAR modelling methods 

QSAR studies largely rely on machine learning (ML) algorithms. Machine learning can 

be most generally and informally defined as pattern recognition.  It relies on large 

datasets (big data) to retrieve common patterns, trends, regularities etc. In bioactivity 

modelling it can, for example, use small molecule screening database to learn structural 

features of molecules related to their activity. This information can be used to optimize 

potential drug candidates, understand mechanisms of action, or screen out inactive or 

toxic compounds. Among the most popular and universal ML methods used in QSAR are 

Random Forest (RF), Support Vector Machines (SVM), Gradient Boosting (GBM) and 

Neural Networks (NN). 

Decision Trees and Random Forest 

 Decision trees (DT) is an example of intuitive, natural method of machine intelligence, 

serving as a base for more complex methods. DTs are the building blocks of the RF 

model. Let’s consider an example of a  dataset consisting of the molecules at the top of 

the Figure 1.3. There are two classes – actives (red) and inactives (green) and the task is 

to separate the classes using their features:  molecular weight (MW) and lipophilicity 

(logP).  
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Figure 1.3 Decision tree example for chemistry-related classification  task. Explained in 

text 

We can use the question, “Is molecular weight greater than 75?” to split the first node. 

The Yes branch (the greens) is all inactives, but the No branch can still be split further. 

Now we can use the second feature and ask, “Is logP greater than 0?” to make a second 

split. The tree is built, since no further split is needed. In real applications like bioactivity 

modelling the data is much higher-dimensional (dimensionality corresponds to the 

number of features) and the decision trees are complex and hard-to-visualize. At each 

step the feature and the value of that feature is chosen to perform the next split. Most 

widely accepted criteria  for this choice are   Gini impurity (9) and information entropy 

(10). The idea  behind both is to achieve efficient separation of classes. 
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While being simple and intuitive, DTs suffer from high variance of resulting models: DTs 

are unstable. In our example, if we used different initial data, we could get a totally 

different branching pattern, that is, a different model. In bioactivity modelling, two 

different models can predict the same compound as belonging to two different classes: 

active and inactive.  The result depends heavily on training dataset used to create the 

model, making the system unreliable.  

Random forest is an ensemble method based on DTs proposed by Leo Breiman in 1991 

(11). The method produces much more robust models than DTs owing to two powerful 

ideas: bootstrap aggregating („bagging“) and random feature subspaces.  Large number 

of trees is built at the first step (Figure 1.4), each of which uses independent identically 

drawn data sample – i.e. bootstrap sample. Predictor variables are randomly subsampled 

at  each split. Typically, square root of overall number of features defines the sample 

size. Trees are grown until perfect (or nearly perfect) classification accuracy or regression 

approximation is achieved, which requires them to be deep. After all trees are built the 

final model output is produced as an average of predictions of individual trees (in 

regression case) or using majority vote (in classification case). The results are stable.  

Speaking simplistically, this is achieved by mutual cancellation of errors of all individual 

trees. 

 

Figure 1.4 Random Forest example for chemistry-related classification  task. Explained in 

text 
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Gradient boosting 

Gradient boosting machine (GBM) is a powerful tree-based learning method, but unlike 

RF it is based on sequential (as opposed to parallel) tree building and the trees are 

shallow (as opposed to deep) (12, 13). The technique called boosting employs gradual 

improvement of model robustness by starting with a simple model. Initial model is stable 

(has low variance), but produces biased result: the predictions are shifted towards some 

value (e.g. mean). At the next step another model is built to correct errors of the first 

model, and the two are added up. The process continues until the result achieves desired 

accuracy. An example of a regression model is given in Figure 1.5.   Each next model 

realizes a small step in the direction of (negative) gradient (hence gradient boosting) of 

loss function in model space. Classification setting is analogous; the main difference lies 

in a loss function choice. 

 

 

Figure 1.5 Gradient boosting model example for regression task 

 

Support vector machines 

SVM was developed by Vapnik and colleagues   (14-16) in 1990s, though the  idea was 

published  as early  as 1964 by Vapnik in his doctoral dissertation. As already discussed, 
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some methods of ML suffer from unstable results. According to Vapnik-Chervonenkis 

theory, stable result (lower variance) can be achieved if data points are separated with 

maximum margin. Let’s continue with  molecules from Figure 1.3, representing them  

this time in 2D coordinates of their features, Figure 1.6a. The two classes can be 

separated by a grey solid line, providing a model with perfect accuracy: greens on the 

left- and reds on the right-hand side. However, there are possibly many lines, providing 

such solution (e.g. dashed line). The line with maximum margin is the one, that provides 

the longest distance (brown arrow) between molecules of different classes; marginal 

molecules are called support vectors (i.e. butanol and pentadiene). Such a task can be 

uniquely solved in the course of constrained minimization, which minimizes the norm of 

the vector of coefficients W in equation of the line (1-2, while support vectors are not 

allowed to cross the “borders”. Such a method can be extended to non-linear problems, 

i.e. when the data cannot be separated by a line (or hyperplane in higher-dimensional 

feature spaces). Kernel trick Figure 1.6b allows to separate the data via transforming it to 

higher-dimensional space, using a kernel function. The trick is that the transformation 

doesn’t need to be done explicitly, thanks to special property of kernel functions. The 

computational cost is greatly reduced relatively to explicit mapping. After kernel is 

applied, the inverse transformation is done, again, implicitly.  

XTW + b = 0, 

 

(1-2) 

 

where X is a vector of features, representing the data, and W and b are coefficients 

and bias. 
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Figure 1.6  A:  SVM example for chemistry-related classification  task. B:  kernel trick 

illustration. Explained in text. 

 

Neural networks and deep learning 

Artificial neural networks  (NN)  represent the most popular ML method nowadays, 

owing to their algorithmic (architectural) flexibility and universality. NNs find 

applications in nearly every field of science and technology: from language processing 

(machine translation) and self-driving cars to drug discovery and development.  

NNs borrow the idea from human brain functioning, hence the name. The idea of 

mimicking the brain to perform computations originated in  1943 (17), however modern 

deep NN became possible only thanks to works of LeCun, Bengio, Hinton et al.  (18), 

(19, 20).  Using a regression example, let’s illustrate how NN would solve the task,  

Figure 1.7.The basic unit of NN is a neuron: a unit that takes input values and passes 

them to the next neuron, after a (non-linear) transformation.  Neurons are combined into a 

net, connecting them by weights. The data (e.g. molecular features X and activities Y) are 

fed to the net and the final output produced is then compared to original activities. The 

weights are adjusted by gradient descent method until the result is close enough to 

original data. This is done via backpropagation procedure (21). NN are universal function 
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approximators, but they are prone to high variance. Different techniques are applied to 

reduce the variance, e.g. dropout(20), batch normalization(22), layer normalization etc.  

Deep learning refers to NNs with large number of layers, including recurrent NNs, 

transformers, convolutional NNs, deep belief NNs, graph convolutional NNs, etc. 

 

Figure 1.7 Artificial  neural networks: main ideas 

 Graph neural networks in cheminformatics 

Molecules can be naturally represented as graphs (Figure 1.8). This allows to apply 

graph-based NNs to directly model structure-activity relationships without calculating 

descriptors. Nodes of a graph, which are connected, exchange messages via message 

function. Messages are aggregated using aggregation function. These message passing-

aggregation steps can be repeated arbitrary number of times (e.g. 3 on Figure 1.8), and 

then values at each node  are globally aggregated using a readout function, for instance, 

sum. These message-passings can be viewed as graph convolution operation.  

Pioneer examples of graph-based NN used in chemistry are (23, 24); (25) is an example 

of self-attention graph NN (explained in detail  in 0). 
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Figure 1.8 The idea of graph  convolution  for molecules. Red carbon atom is chosen as 

an example of a center on which convolution starts. All atoms are used iteratively. 

2. Introduction to interpretability of QSAR models  

Mechanistic interpretation of QSAR models allows to understand complex nature 

of biological or physicochemical processes under study. Interpretation can produce 

results in the form of molecular patterns important for compounds’ activity (Figure 2.1). 

The methods providing such results allow for the calculation of the contributions of 

individual atoms (26), arbitrary fragments (27), or predicted activity changes 

corresponding to given molecular transformations (28). This information can be applied 

to drug and product development to optimize the structures of studied compounds by 

increasing efficacy and reducing harmful effects. Interpretation can also serve as a means 

to confirm the validity of the model, i.e. that the model has captured relevant and 

meaningful relationships between activity and structure (29). It is also important for 

regulatory application, for example, the fifth of the OECD Principles for the Validation of 

QSARs requires, where possible, mechanistic interpretation on QSAR models (30). 

Whilst this principle is optional it is considered helpful to get round the long held belief 

that QSAR models were “black boxes” and interpretation was not always possible.  

2.1. Classification of methods 

Interpretation methods can be divided into two major groups: global and local (also 

called instance-based).  Global methods provide insights into general trends captured by 

the model, while local methods explain decisions on individual instances. Interpretation 

methods can be categorized into model-specific and model-agnostic ones. In QSAR 

modelling context interpretation can be either structural or feature-based. The former 
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explains models decisions by picking important substructures (e.g. atoms), as opposed to 

important features (descriptors) in the latter. Also, we can distinguish groups of 

approaches by their methodology: perturbation-based, gradient-based, surrogate and 

others (discussed below). Table 2.1 refers existing methods to categories/groups. Note, 

that some methods fall simultaneously into several groups. For instance, if we apply 

gradient-based methods to graph-based architectures, we can obtain atom-level 

attribution, that is, structural; at the same time, applying it to descriptor based models will 

result in feature-based attribution. The classification we suggest is not uniquely correct, 

other possible versions are proposed in (31), (32), (29). 

Table 2.1 Methods of QSAR model interpretation 

METHODS Model-agnostic Model-specific 

Local 

(instance-

based)  

Feature-

based 

 LIME (33) 

 Shapley sampling 

values (34) 

 Partial derivatives with 

numeric 

differentiation(35)  

 Gradient-based: sensitivity 

analysis (36), 

,Gradient*Input, CAM (37), 

Grad-CAM (38), integrated 

gradients (39), smooth-grad 

(40) 

 Layer-wise relevance 

propagation (41) 

 Attention-based NN (42) 

 

structural  Perturbation-based: 

SPCI (43), Similarity 

maps (26), 

computational matched 

molecular pairs/series 

(44) 

 LIME (33)* 

 

 Gradient-based: 

Gradient*Input*, CAM*, 

Grad-CAM*, integrated 

gradients *, smooth-grad 

(40)* 

 Layer-wise relevance 

propagation* 

 Attention-based NN* 

 Subgraph methods: 
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*When features are 

substructures 

GNNExplainer (45) 

 

*When applied to graph models 

(39, 46, 47) 

Global Feature-

based 

 Perturbation-based: 

feature importance by 

permutation  

 

 

 Rule extraction methods 

 Gradient-based: Regression 

coefficients (in linear 

models) 

 

structural  Perturbation-based: 

SPCI (aggregating 

individual results for 

fragment-based mode 

only; for atom-based 

mode aggregating 

makes no sense) 

 

Not reported 

 

 

Figure 2.1 Structural interpretation of QSAR models: main idea 
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2.2.  Model-specific interpretation methods 

These approaches are applicable only to limited number of models. For instance, 

gradient-based methods find derivatives of model’s response with respect to input 

features, thus allowing to evaluate the influence of those features on the output.  

Gradient-based methods 

These methods judge about the importance of input features by the magnitude of their 

derivatives (gradients) with respect to the output. In the case when automatic 

differentiation is used, it requires knowing the model’s structure and a differentiable 

model (typically NN).   However, utilizing numeric differentiation can turn methods into 

model-agnostic (see 2.3). 

 The simplest example of such an approach is interpreting regression coefficients in linear 

models as partial derivatives with respect to input features. Popular gradient-based 

methods include sensitivity analysis, Integrated Gradients  (39) et al.  They typically 

provide feature-based interpretation, i.e.  the results indicate important descriptors, not 

substructures. However, when applied to graph-based NN they can find gradient with 

respect to input nodes – that is atoms – producing direct structural interpretation 

(examples are given below)(48).  

Sensitivity analysis. In QSAR domain Aoyama and Ichikawa in their early work (49) 

proposed calculating partial derivatives for NN models that can be done in the analytical 

form.  At present, for deep NN,  gradients  are calculated using automatic differentiation, 

e.g. (36). This methodology is referred to as sensitivity analysis. However, there is an 

ambiguity, since sensitivity analysis can also be defined as the study of “how the 

uncertainty in the output of model can be divided and allocated to different sources of 

uncertainty in its inputs” (50). Therefore, perturbation-based methods discussed below 

also fall under this category, as does partial derivatives method (35) employing model-

agnostic numeric differentiation (as opposed to automatic differentiation). 

. 
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Some methods were developed initially for convolutional NN (CNN).We will consider 

two examples: CAM  and Grad-CAM (38). Unlike sensitivity analysis/partial derivatives, 

they focus not on the input layer of NN, but last convolutional layer. It is well-known that 

such last-layer features tend to be more semantically meaningful as opposed to input 

space (e.g., faces instead of edges in the case of image-related tasks). CAM multiplies 

weights of final fully connected layer by outputs of last convolutional layer. It requires 

global average pooling to be placed between the two layers. Grad-CAM improves on 

CAM by using gradient of final fully connected layer w.r.t. last convolutional layer. The 

difference is that it allows to use any number of differentiable layers after convolution 

instead of a single global average pooling. In principle, Grad-CAM can be applied to any 

intermediate convolutional layer, or used in layer-average version. Final equations for 

Grad-CAM are (2-1),(2-2). For CAM wk 
(c) is given by the weight of last fully connected 

layer. CAM and Grad-CAM can be adapted to graph-based NN  (48)(2-3)(2-4). Example 

architectures of CNN and graph CNN are shown on Figure 2.2, where top variant can be 

used with CAM and bottom variant  with Grad-CAM. 

  L(c)
Grad−CAM (i, j) = ReLU (∑k wk 

(c)· F 
k(i, j)) 

 

(2-1) 

where F 
k(i, j) is the activation of k-th feature map in the target layer of the model for 

input  location (i,j), and Y(c)  is the model output score for class c (before softmax).  

L(c)
Grad−CAM (l, n) = ReLU (∑k wk 

(c)· F l
n,k(X, A)) 

 

(2-3) 

wk 
(c) = 1/N ·∑n · ∂Y(c) / ∂ (F l

n,k), 

 

(2-4) 

where F l
n,k(X,A) is the activation of feature k in the target layer l of the model at a node 

n, and Y(c)  is the model output score for class c (before softmax). X, A – feature matrix 

and adjacency matrix of a given input molecule. 

wk 
(c) = 1/Z ·∑i ∑j· ∂Y(c) / ∂ (F 

k(i,j)), 

 

(2-2) 
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CAM and Grad-CAM have been applied to chemical graph-based tasks on a number of  

classification problems and  a  single regression problem: Crippen logP (39, 46, 47). 

CAM performed better across various graph-based model architectures. It remained, 

however, unexplained by the authors of (47) why Grad-CAM performed poorly (both in 

“last-layer version” and “layer-averaged version”). That clarification is needed, as CAM 

and Grad-CAM are equivalent in graph CNN context when applied to last layer provided  

that same architecture is used (48). 

 

Figure 2.2. Example architectures compatible with CAM and GRAD-CAM in the context 

of  CNN (top)  and graph-based NN (bottom).  Explained in text. 

Integrated Gradients (IG) is another method based on derivatives. It can be also viewed 

as a model-agnostic method, since it can be applied to any model differentiable w.r.t. its 
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input at any point of interest. The method requires the choice of a baseline point; the 

difference between model output at a current input and that baseline point is distributed 

among input variables.   The higher portion of this difference is conferred to a variable, 

the more important it is. The method utilizes path-integration: straight path connecting 

two points is parametrized by value α between 0 and 1. Along this path each input point 

(vector of coordinates in input space, x) is defined by g(α) = α·x.   To obtain the 

attribution for i-th variable, we then integrate the gradient of model output along the path 

with respect to gi(α) as follows: 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠𝑖 (𝑥) =  ∫
𝜕𝐹𝑔(𝛼))

𝜕𝑔𝑖 (𝛼)
 

1

0
∙
𝜕𝑔𝑖 (𝛼)

𝜕𝛼
𝑑𝛼 

 

(2-5) 

Since g(α) = α∙x and given the baseline is all-zeros: 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠𝑖 (𝑥) =  𝑥𝑖  ∙ ∫
𝜕𝐹(𝛼∙𝑥))

𝜕(𝛼∙𝑥𝑖)
 

1

0
∙𝑑𝛼 

 

(2-6) 

Attributions can be interpreted as “projections” of total “delta F” onto respective planes; 

however, this holds only if each variable’s derivative is independent from all other 

variables (Figure 2.3), e.g. linear, paraboloid etc. Important properties of the method is 

completeness (“summation to delta”), which means: 

∑ 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑠𝑖 (𝑥) =  𝛥𝐹 
𝑖

 

 

(2-7) 

 

Figure 2.3. Geometric interpretation of IG attribution for a simple case: here linear.  

Riemann approximation can be applied to compute the integral in practice (39): 
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IntegratedGrads i 
approx. (x) :: =( xi – x i’  ) · ∑ (∂F(x’   + ( x – x’  ) · k/m)/∂x i)  ·1/m 𝑚

𝑘=1 , (2-8) 

where x’ is a baseline-point, F –function modelled. 

IG have been applied to chemistry-related tasks (39, 46, 47). In all works, authors used a 

molecule with all features equal to zero as the baseline point. In (46)  and (47) to ensure 

the baseline would be predicted with 50% probability active (in classification) they added 

20% of such molecules to training data labeling half  them as “active”  and half as 

“inactive”. The authors of  (39, 46, 47) performed comparison of attribution methods 

across several classification and regression  tasks and various graph-based model 

architectures. They used artificial (synthetic) datasets of molecular graphs with pre-

defined vertex labels, therefore, comparing these labels with experimental results they 

could evaluate attribution accuracy, which appeared the highest for CAM and IG.  

It is important to choose “the right” baseline-point, since local behavior of F fully 

determines the “true” contributions of variables, and the baseline should represent this 

local behavior. As shown in Figure 2.4, wrong choice of the baseline can lead to 

inadequate integration result, e.g. zero, in the case when the function has extremum in 

given  neighborhood, while correct choice allows to attribute the difference to the 

variables more reasonably. 

 

Figure 2.4. Geometric illustration of “wrong” and  “right”   baseline point for IG 

attribution. 

 Layer-wise relevance propagation (LRP)  (41) is a method based on decomposition of 

model’s output  into relevances (R) of input features via redistribution of signal in NN 

from the final layer though all layers down to the first (Figure 2.5).  Importantly, the 

“relevance conservation” rule must hold, i.e.  for all layers: 
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f(x) =… =  ∑R (l+1) = ∑R (l) =… =  ∑R (1) 

 

(2-9) 

 

Figure 2.5 Layer-wise relevance propagation. Left: forward flow of signal in NN, right: 

reverse flow of signal during LRP.  Figure reproduced from (41) 

Relevance at current layer  l can be defined in compliance with conservation law as 

follows (41): 

Rj
(l)   = ∑k  Rk

(l+1)
 (ajwjk / ∑hahwhk) , 

 

(2-10) 

Where Rk
(l+1)

 is relevance of k-th neuron at previous layer (l+1) (in backwards direction),   

aj  is activation of current neuron at l, wjk   is weight between current neuron and k-th 

neuron at previous layer, ah  is h-th neuron activation at l. 

 LRP has been applied to chemistry datasets (51). The authors used transformer 

architecture (52), trained on SMILES strings, and used output trained representations 

(embeddings) to build predictive models for a set of benchmark tasks. LRP allowed to 

identify input tokens important for activity of molecules. They supported this conclusion 

by showing 2 examples, which confirmed known  functional groups relevant  for  

aqueous solubility, and also known mutagenic groups (for Ames test model). 

Subgraph methods 

One example of methods operating directly  on graphs is GNNExplainer (45). The main 

principle of the method is reducing redundant information in a graph which does not 

directly impact model’s decisions. For instance, if a subgraph is important, the prediction 

should be altered largely by removing or replacing it with another one. If removing or 

altering a feature does not affect the prediction outcome, the feature is considered not 
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essential and thus should not be included in the explanation for a graph. GNNExplainer is 

formulated as an optimization problem, where a mutual information objective between 

the prediction of a graph neural network and the distribution of feasible subgraphs is 

maximized. Mathematically, the goal is to identify a subgraph GS⊆G with associated 

features XS =  set(xj | vj ∈ GS ) that are relevant in explaining a target prediction  ŷ ∈ Y via 

a mutual information measure MI: 

max GS MI(Y,( GS, XS)) =H(Y)−H(Y|G= GS,X= XS) (2-11) 

Besides, there is a secondary objective: the graph needs to be minimal. The paper 

addresses it by adding a loss (penalty term) for the number of edges. The authors tested 

their method on Ames mutagenicity classification dataset, and concluded that 

“GnnExplainer correctly identifies carbon ring as well as chemical groups NH2 and NO2, 

which are known to be mutagenic”. However, they didn’t show any example molecules. 

Currently, the method is applicable only to classification.  

Models, interpretable by design 

All the above methods are so-called post-hoc, i.e. they can be applied to model upon it 

has been created, however, there are also models interpretable by design. Simplest 

examples are linear regression, which is inherently explainable due to its simplicity 

(provided interpretable descriptors) and decision trees, provided they are not too deep. 

Far more complex, but interpretable method is attention neural networks. They 

implement a special  architecture, allowing the model to learn only from those input 

features that are the most relevant. This is achieved via a special attention layer. The 

weights learned at this layer can be interpreted directly as importance scores of 

corresponding features. Attention can be applied to graphs too; examples of 1D-CNN 

(top) and graph CNN  with global attention pooling (bottom) are shown on Figure 2.6. 

Unlike attention pooling, graph attention networks place attention between nodes (42), 

enabling learnable  aggregation operation (Figure 2.7). In QSAR graph attention was 

applied to explain models on HIV, lipophilicity, Tox21 and FreeSolv datasets (53).  Tang  

et al.  utilized weights of a self-attention graph NN as explanations for lipophilicity and 
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water solubility (25, 54). Zankov et al. applied attention to identify biologically-relevant 

conformations relying on attention-based multi-instance learning models (55). 

 

Figure 2.6.Illustration of  attention mechanism in the context of 1D-CNN and  graph 

CNN with attention pooling 
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Figure 2.7 Illustration of  graph attention networks. For each atom features are generated 

and the directed weight between an atom and its neighbor is determined as follows. 

Concatenated vector of features of the two  is multiplied by learnable w  and the result is 

passed to softmax together with results of all  other neighbors. The output is final 

attention weight used then in node aggregation. 

2.3.  Model-agnostic interpretation methods 

A number of methods can be applied to QSAR models universally. They become  

essential, when we employ multiple ML algorithms for which different interpretation 

methods are applicable, such as RF, GBM, SVM or NN (ML is discussed in 1.2). 

Moreover,  structural methods  compatible with any descriptors, even uninterpretable  

(e.g. topological indexes, discussed in  1.1) can be particularly convenient. The majority 

of such approaches are based on the following idea. The input is perturbed and the 

difference in results returned by model is measured. If the difference is large, then the 

feature is important.  Examples are: universal approach for structural interpretation  

(UIA) (27), similarity maps (26), computational matched molecular pairs/series (44). All 

these methods can produce structural interpretation.  

UIA implemented in SPCI software (56), (43),  (27) removes any atom or  fragment from 

the original molecule of interest, and  then finds the contribution of that fragment as the 
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difference between model’s outputs as shown on  Figure 2.8. In general the contributions 

of atoms (fragments) don’t add up to molecules activity, i.e. method doesn’t possess 

completeness property, that is expected because the majority of end-points are non-

additive. The method is capable of capturing local behavior of the function, which is 

confirmed by experimental results (57). For instance, the same fragment in different local 

environment receives different contribution to overall activity, Figure 2.9. Carbonyl 

fragment in this example has high contribution to molecules activity when being 

conjugated with double bond or halogen, while having low contribution in other contexts 

(the activity studied in  (57) was aquatic toxicity). 

 

Figure 2.8. Schematic of UIA  

 

Figure 2.9 Illustration of the influence of molecular context on fragment’s contribution 

within UIA framework. The fragment becomes activated when carbonyl appears in alpha 

position to chlorine or conjugated with a double bond. 

Examples of feature-based model-agnostic methods include partial derivatives, feature 

importance by permutation, Shapley sampling values, LIME.  

LIME by Ribeiro  et al. (33) is a so-called surrogate method, because it finds an additive 

approximation of the function modelled in some local neighborhood of the point of 

interest. Coefficients in that equation are considered as contributions of features, which in 

turn should be interpretable. The approximation is done via sampling from neighborhood 
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of given instance and subsequent fitting of regression line using LARS (58)  method. 

Sampling here means perturbing original instance and using these new data points as 

input to the new linear classifier model, Figure 2.10. The loss function can be any, e.g. 

quadratic, with terms being weighed by their similarity with the original point (e.g. using  

exponential kernel for weighing). In chemistry context, we can use 

substructures/fingerprints as features, thus obtaining structural interpretation. LIME is 

applicable for both classification and regression. 

 

Figure 2.10. Toy example to present intuition for LIME. The black-box model's complex 

decision function f (unknown to LIME) is represented by the blue/pink background, 

which cannot be approximated well by a linear model. The bold red cross is the instance 

being explained. LIME samples instances, gets predictions using f, and weighs them by 

the proximity to the instance being explained (represented here by size). The dashed line 

is the learned explanation that is locally (but not globally) faithful. Figure reproduced 

from (33). 

Downsides of the method are as follows: 

 It requires interpretable descriptors, and these must be specifically chosen for 

each task. For some tasks it is not possible at all. 

 Linear approximation can be too simple for particularly complex cases 

3. Challenges in model interpretation and solutions proposed herein 

Despite the fact that multiple interpretation approaches have been developed and new 

ones constantly appear, there are no suitable benchmarks to evaluate their applicability to 

interpretation of QSAR models. Often authors demonstrate applicability of their 

interpretation approaches on well-studied end-points like lipophilicity, solubility or 
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toxicity where relevant patterns are well known (30). Interpretation is usually performed 

for pre-defined motifs or on a limited number of considered examples (19, 30, 31). For 

example, authors visually inspect a subset of molecules and compare calculated 

contributions with expert knowledge. Such non-systematic evaluation can be biased by a 

human expert and molecules chosen for analysis. Real data sets may have hidden biases 

which are difficult to control/reveal, some properties may depend on multiple factors or 

the response can be caused by different mechanisms of action. All these issues 

complicate proper validation of interpretation approaches based on real-world examples.  

We propose creating synthetic data sets to overcome these issues. They can be designed 

in such a way that end-point values are pre-defined according to some logic, e.g. presence 

or absence of chemical patterns combined by Boolean operators determining compounds’ 

activity (classification case). In regression case, the activity can be calculated as the sum 

of pre-defined atomic/fragment contributions. These data sets will be suitable to 

investigate the ability of models to capture the logic and the ability of interpretation 

approaches to retrieve it. Probing the data sets by creating a set of different models with 

different descriptors and then interpreting them serves as the “sanity check”.  

A distinct sub-task in this development was implementation of UIA for graph 

convolutional neural network (GC) models. GC models represent an important end-to-

end modelling approach which doesn’t need descriptors. Including these models into the 

study was necessary to complete the picture. Therefore, an adaptation of the approach 

was required. 

Another major limitation of global structural interpretation approaches is that none of 

them take into account the molecular context of atoms or fragments considered. Context 

stands for neighboring and/or distant atoms which may affect properties of a given atom 

(fragment). They may significantly influence the fragment's behavior, e. g. transforming a 

“safe” non-toxic moiety into a reactive group. It has been demonstrated that consideration 

of the molecular environment may improve the outcome of the MMP analysis (59). 

Therefore, we expect that capturing molecular context will improve interpretation of 

QSAR models and explain variability of calculated contributions for identical fragments. 
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Herein we propose to combine UIA with Gaussian mixture modelling (GMM) which 

gives the ability to capture molecular environment for more correct interpretation.  

 Practical aspect of model interpretation was addressed by applying UIA and GMM-

based extension developed here to real-world data sets: aquatic toxicity and anticancer 

activity (against cancer cell lines), with the aim of retrieving task-relevant patterns causal 

for specific biological response. 

 

4. Aims of the dissertation 

This dissertation addresses three main goals: 

1. Development of the validation framework for QSAR model interpretation. In the 

framework we elaborate on designing  synthetic benchmark data sets representing 

tasks of different complexity and develop metrics to evaluate interpretation 

accuracy. Using these benchmarks researchers will be able to quantitatively test 

interpretation methods using the data sets with predefined ground truth  and 

reduced risk of bias. 

We will explore applicability of designed benchmarks using UIA. Additionally, 

we will study interpretability of widely used QSAR models. This will also allow 

to validate this interpretation approach more rigorously. 

2. Development and real-case validation of an extension to UIA enabling context-

aware interpretation. The Extension is based on Gaussian Mixture Modelling: 

clustering technique that helps to determine identical fragments occurring in 

different contexts. Those contexts correspond to neighboring (or more distant) 

atoms. The technique enables revealing not only important atoms/fragments but 

taking into account their environment.   

3. Application of the developed and validated methodology to retrieve knowledge 

from QSAR models for selected biological activities. The results will show 

favorable/unfavorable fragments having influence on studied endpoints which 

will be further verified. 



37 

 

5. Materials and methods 

 

The section describes the methodology used in our published works (57, 60). We do not 

describe here new methodology developed in this work as we present it in Results and 

Discussion Section ( 6 ). 

5.1. The choice of endpoints for modelling and interpretation 

QSAR becomes an  important tool when the molecular target associated with activity is 

unknown or there is no single target at all. Such a situation can occur in  lead 

optimization of ADME properties or prediction of toxicity end-points, in particular 

environmental toxicity or cytotoxicity where phenotypic screening is more widely used 

than biochemical assays. Below we describe biological  endpoints chosen for  modelling 

and interpretation in this dissertation. 

Aquatic toxicity. Modeling of acute aquatic toxicity has a long history and is based on the 

premise that toxicity is governed by the ability of a chemical to reach the active site (e. g. 

pass through the cellular membrane) and its ability to interact there (61, 62). Many QSAR 

models for acute aquatic toxicity have been developed on a mechanistic basis (61, 62). 

However, despite extensive studies and numerous approaches proposed to allocate 

compounds to mechanisms of action, e. g. the Verhaar scheme (63), the schemes 

available are still limited in their applicability. Interpretation of QSAR models can 

augment knowledgebase of relevant toxicophores. 

Anticancer activity. On early stages of anticancer research cell-based screening is used to 

identify promising active compounds. In our institute we collected and manage a large in-

house database of outputs of cell-based anticancer assays. QSAR modeling of this data 

and subsequent interpretation of those models may reveal favorable patterns to design 

new active compounds and suggest possible mechanisms of action. 

 

5.2. Data sets 
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Aquatic toxicity data sets 

All data sets were obtained from the Toxicity Estimation Software Tool (T.E.S.T.), 

version 4.2, provided by the U.S. Environmental Protection Agency (64). All compounds 

were standardized according to the protocols proposed by Fourches and colleagues (65)  . 

Briefly mixtures, inorganics, counterions, metals, and organometallic chemicals were 

removed. Moreover, specific chemotypes such as aromatic rings and nitro groups were 

normalized. In addition, we excluded duplicates as follows: (i) if duplicates had different 

biological activity, both compounds were excluded; and (ii) if the reported outcomes for 

the duplicates were the same, one chemical was retained in the dataset and the other 

excluded. To estimate the prediction ability of the models, we divided all data sets into 

training and test sets. For this purpose, the entire set of compounds was arranged in order 

of increasing toxicity, every fifth compound was placed in the test set, and the remainder 

in the training set. Training/test set distribution after removing duplicates is given in. The 

modeled endpoint for Fathead minnow and Daphnia magna was Log10(LC50 mol/L). 

The modeled endpoint for Tetrahymena pyriformis was – Log10(IGC50 mol/L). All 

datasets are given in the Supplementary material  to our publication (60) (Tables 1S-3S).  

 

Table 5.1  Aquatic toxicity data sets 
Toxicity endpoints Brief description Number of 

compounds in the 

training/test set 

Fathead minnow, 

LC50, 96 h 

concentration of the test chemical in water in 

mg/L that causes 50 % of Fathead minnow to 

die after 96 h 

642/161 

Daphnia magna, 

LC50,48 h 

concentration of the test chemical in water in 

mg/L that causes 50 % of Daphnia magna to die 

after 48 h 

268/67 

Tetrahymena 

pyriformis, IGC50, 

48 h 

concentration of the test chemical in water in 

mg/L that causes 50 % growth inhibition of 

Tetrahymena pyriformis after 48 h 

1424/356 

 

T. pyriformis dataset for validation of Extension, developed in 6.4. 

https://onlinelibrary.wiley.com/doi/full/10.1002/minf.202000209#minf202000209-tbl-0001
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The data set was for the growth inhibition of the ciliated protozoan Tetrahymena 

pyriformis represented as lg(1/IGC50) (IGC50 in mol/l). Toxicity data were taken from 

the study of Ruusmann and Maran (66). Standardizer was used for structure 

standardisation and tautomerisation, in addition structures were checked for errors (67) 

and duplicates were removed. The data set curation workflow is available from the public 

repository – https://bitbucket.imtm.cz/projects/STD/repos/std/browse. The curated data 

set comprised 1984 compounds whose structures and activity values are provided in 

Supplementary materials to our publication (57). All modelling steps including descriptor 

calculation, model development and validation, molecule fragmentation and calculation 

of fragment contributions were performed with the open-source spci software (68). 

Anticancer activity 

All datasets were compiled from IMTM proprietary database. We used MTT assay data 

on cytotoxicity of compounds against six cell-lines: HCT116: colon carcinoma; HCT116-

p53-/-: same, but with knocked out p53 gene (p53 null); K562: chronic myeloid  

leukemia; K562-TAX: same, but with acquired taxol-resistance; CCRF-CEM: acute 

lymphoblastic leukemia; and CEM-DNR: same, but with aquired daunorubicin-

resistance. Curation protocol was the same as for T. pyriformis dataset for validation of 

Extension. Curated datasets comprised around 3800 compounds:  

• HCT116 – 3841 

• HCT116-p53-/-  – 3849 

• K562 – 3858 

• K562-TAX – 3852 

• CCRF-CEM - 3878 

• CEM-DNR - 3845 molecules. 

Most of them (3763) were the same for all data sets. Minor difference was due to 

incomplete activity data. For the ease of modelling and to reduce heterogeneity of data 

we labelled compounds with IC50 <= 10 µM as actives and the rest – as inactives. Thus, 
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we switched from regression to  classification task . All data sets had unbalanced classes: 

number of actives was substantially smaller relative to the number of inactives. This 

usually causes difficulties for modeling. Therefore, we applied the special multiple 

undesampling technique prior to modelling (see 5.4) which should solve this issue.  

5.3.Descriptors 

For modelling of benchmark data sets we employed the following descriptors: atom-pair 

fingerprints which enumerate pairs of particular atoms at a topological distance from 1 to 

30 (AP), Morgan fingerprints representing atom-centered substructures of radius 2 

(MG2), RDK fingerprints enumerating all possible substructures with atom count from 2 

to 4 (RDK) and topological torsion fingerprints enumerating all possible linear four-

atomic substructures (TT). AP, MG2 and RDK fingerprints were also used in their binary 

(bit vector) form of length 2048 (denoted bAP, bMG2, and bRDK). All fingerprints were 

calculated using RDKit (69). 

For aquatic toxicity modelling we used counts of fragments having 2-4 heavy atoms as 

the descriptor set. Fragments with either all atoms connected or containing two 

disconnected parts were enumerated. Atoms were labelled according to their partial 

charge, lipophilicity, refractivity and ability to form H-bonds calculated using Chemaxon 

cxcalc utility (67). Descriptors were calculated by the sirms software (70).  

For anticancer activity modelling Morgan fingerprints representing atom-centered 

substructures of radius 2 (MG2) were applied. Experiments with other descriptors didn’t 

result in any benefit in terms of model quality. 

5.4. QSAR modelling 

For all machine learning tasks models were built using Random Forest (RF), Partial Least 

Squares (PLS), Gradient Boosting Machine (GBM) and Support Vector machine with 

Gaussian kernel (SVM) from Scikit-learn Python package (71). Hyper parameters were 

optimized by the grid search in the course of five-fold cross-validation. A consensus 

model (obtained by averaging predictions of individual models which had appropriate Q2 

and RMSE) was used for interpretation in the case of all aquatic toxicity data sets.  We 



41 

 

used SPCI software which automates overall modeling workflow and interpretation (43). 

In the case of unbalanced data sets (cancer cytotoxicity end points) multiple 

undersampling technique (62) was applied.  Consensus models were obtained based on 

models  built for each subsample.  In the modelling of benchmark datasets we 

additionally trained graph convolutional neural network models (GC) using DeepChem 

(72). This approach does not require fingerprints and learn internal representation of 

molecules in the course of modeling. We used the default architecture with 2 graph 

convolutional layers, each of size 64 and a GraphPool layer after each convolution 

(GraphPool performs max pooling on each atom’s neighborhood). Output from the 

GraphPool layer was fed to “atom-level dense layer” (size 128) and global sum pooling 

(GraphGather) followed by linear or logistic regression layer depending on the task 

(regression, classification), Figure 5.1. We didn’t apply batch normalization. GC models 

can be considered as models trained on “learnable” Morgan fingerprints of radius 2. For 

training of GC models validation subsets (15%) were separated from training sets to tune 

model hyper parameters. 1-nearest neighbor (1-NN) models as baseline models to 

examine data set modelability (73). Poor performance of 1-NN models would indicate 

that compounds are not easily distinguished within chosen descriptor space, indirectly 

indicating that data sets don’t have an obvious bias. 

 

Figure 5.1 The architecture of GC model employed (72) 

5.4.1. Models’ performance metrics. 

Predictive performance of models was assessed using cross-validation and, for 

benchmarking tasks, test sets. Q2 and RMSE values were calculated for regression tasks 

and sensitivity, specificity and balanced accuracy were calculated for classifications tasks 

(5-1) - (5-5). Q2 ranges from 0 to 1 (note, in principle, it can take negative values), with 1 

indicating the best performance. RMSE ranges from 0 to infinity, with 0 being the best 
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result. Sensitivity, specificity and balanced accuracy take values from 0 to 1, with 1 

indicating perfect model. 

𝑄2 = 1 −  
∑ (𝑦𝑖,𝑝𝑟𝑒𝑑 −  𝑦𝑖,𝑜𝑏𝑠)2 𝑖

∑ (𝑦𝑖,𝑝𝑟𝑒𝑑 − �̅�𝑜𝑏𝑠)2 𝑖
 

(5-1) 

 

  𝑅𝑀𝑆𝐸 = √ 
∑ (𝑦𝑖,𝑝𝑟𝑒𝑑 −  𝑦𝑖,𝑜𝑏𝑠)2 𝑖

𝑁
 

(5-2) 

specificity  

= 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

(5-3) 

sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5-4) 

 

balanced accuracy = 
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 (5-5) 

Where for regression: 

y(i,pred) is predicted activity 

y(i,obs) is observed activity 

N is the number of molecules in the dataset 

For classification: 

TN – true negative count, number of correctly predicted inactive molecules 

TP – true positive count, number of correctly predicted active molecules 

FN – false negative count, number of incorrectly predicted active molecules 

FP –  false positive count, number of incorrectly predicted inactive molecules 

5.5.Model Interpretation: Calculation of Fragment Contributions 

In this dissertation the UIA for interpretation was applied; this utilizes the concept of 

matched molecular pairs. The approach can be summarized as follows. For a compound 
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A consisting of two fragments B and C the contribution of fragment C can be calculated 

as the difference between predicted activity values for the initial compound A and the 

counter-fragment B (obtained by removal of the fragment C from the molecule A) Figure 

5.2. In this way the overall contribution of the fragment C in the units of a studied activity 

was calculated. In the case of classification, the difference is taken in terms of class 

probabilities. This is local (instance-based) interpretation which gives information about 

the contribution of a fragment in individual compounds. Aggregating and averaging of 

contributions of identical fragments allows for the ranking of different fragments and 

reveals general trends in structure-activity relationships (global interpretation). In this 

dissertation we improved on the global interpretation by means of using GMM-based 

clustering (see below, 6.4).  

This interpretation approach is applicable not only to individual models but also to 

consensus models comprising multiple individual models. This property was extremely 

useful in the case on interpretation of models obtained by multiple undersampling 

technique to predict anticancer activity. 

 

Figure 5.2 Scheme for the structural interpretation of QSAR models. 

Fragmentation of Molecules 

For the purpose of model interpretation, we used two schemes of fragmentation: atom-

based and fragment-based. In the former case every individual atom was removed for 

calculation of a contribution. This scheme was used for benchmark data sets only. In the 

latter case larger fragments were removed. They were enumerated by means of RDKit. 

Bonds to be cleaved during fragmentation were determined by a SMARTS pattern 

[!#1]!@!=!#[!#1]. All possible fragments having at most three attachment points were 
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generated from the training set compounds. This scheme was applied to aquatic toxicity 

and anticancer activity tasks.   

In T. pyriformis study contributions were calculated only for those fragments whose 

counter-fragments had at least two atoms since only such structures can be properly 

encoded by the descriptors used. In benchmark study contributions were calculated only 

for those fragments whose size was not more than 40% of molecule’s size in terms of 

heavy atoms. 

To virtually remove atoms we used the scheme similar to that used by Sheridan in his 

study (74)We replaced removed atoms with dummy atoms (with atomic number 0) and 

calculated descriptors. This resulted in appearance of new descriptors encoding dummy 

atoms, but these descriptors did not occur in the training sets, so the models ignored them 

during prediction. Thus, these atoms disappeared for models and prediction was made 

based on descriptors of the remaining part of the molecule. This scheme was 

implemented in spci software for RDKit-based fingerprints. 

5.6.Molecular docking 

For docking we used Autodock Vina 1.1.2(75). Both protein and ligands were prepared 

using Autodock Tools Software, which included water removal from protein, addition of 

hydrogens and manual check of aromatic atoms and torsions for ligand. All ligands were 

docked into a rigid binding site with grid size of 20 × 20 × 20 points with default step 1 Å 

and the top scored poses were saved. 
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6. Results and discussion 

6.1. Development of the validation framework for QSAR model interpretation  

This section describes the  benchmark datasets and methodology developed by Matveieva 

and Polishchuk (76).  

6.1.1. Design of synthetic datasets 

Synthetic data sets with pre-defined patterns allow for systematic evaluation of QSAR 

interpretation approaches, because calculated contributions of atoms (fragments) can be 

compared with true values. These values are defined by the incorporated logic (“ground 

truth”). This logic can be, for example, presence or absence of chemical patterns 

combined by Boolean operators that determine compounds’ activity (in the case of  

classification). In regression case, the activity can be calculated as the sum of pre-defined 

atomic / fragment contributions.  

We created six data sets by selecting compounds from the ChEMBL23 database (Table 

6.1), which was used as a source of chemically relevant structures. Structures of all 

compounds were standardized; duplicates were removed, as were compounds with a MW 

> 500. For all retained compounds we assigned contributions to atoms or groups of atoms 

according to the rules described below, and then calculated “activities” of compounds. To 

design regression data sets, we randomly selected compounds from the pool, with 

distributions close to normal (Figure 6.1). To design balanced classification data sets, we 

randomly selected equal number of compounds belonging to each class. 
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Figure 6.1 A)  Distributions of modelled property in the  datasets; B) Class-wise 

distributions of hydrogen bond donors and acceptors for the pharmacophore dataset 

Three data sets represented simple additive properties. Patterns were defined as 

occurrence of certain atoms. The end-point of the first dataset (N data set) was the sum of 

nitrogen atoms. Thus, the expected contributions of nitrogen atoms were 1, and all other 

atoms - 0. The end-point of the second data set (N-O data set) was the sum of nitrogen 

atoms minus the sum of oxygen atoms. Thus, oxygen represented a negatively 

contributing pattern. Expected contribution of any nitrogen was 1, any oxygen -1, and all 

others 0. These first two datasets resemble simple additive properties like molecular 

weight, lipophilicity. The end-point of the third dataset (N+O dataset) was the sum of 

nitrogen and oxygen atoms divided by two, given that the number of nitrogens and 

oxygens in a molecule was strictly equal. Thus, two positively contributing patterns were 

co-occurring and both contributed equally to the endpoint. This represents a specific case 

to verify how a model treats correlated patterns and how this affects interpretation output. 

Modeling algorithm can treat nitrogens and oxygens equally or select only one of them as 

important feature. Both these cases will result in correct predictions. However, different 

interpretation output may result from rebuilding the model if it randomly prioritizes one 

of correlated features. The same may happen if correlated features are removed before 

model building and during analysis of interpretation outcomes the discarded features are 

not considered. Depending on which scenario will be realized, the interpretation output 

may be incomplete and/or misleading. 
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We calculated the correlation of selected atomic patterns with other elements to ensure 

that there is no explicit bias in data sets (see Appendix, Table 0.1). However, this does 

not guarantee that there are no correlations with more complex patterns. 

Two other data sets represent additive end-points depending on local chemical context: 

this again resembles the case of additive properties like lipophilicity, but considering 

groups is more realistic than considering atoms alone. They were collected independently 

and consisted of different compounds. The end-point of the first one was the number of 

amide groups encoded with SMARTS NC=O. Thus, this was a regression task. The 

second one was a classification task, where compounds were considered active if they 

had at least one amide pattern and inactive otherwise. The expected contribution of any 

amide atom for both data sets was 1, because by removing such an atom the whole 

pattern disappears. This should result in decrease of predicted property value by 1 (or 

switch compound’s class), except for the following case. If a compound contains multiple 

amide groups, classification issue may occur, because there is no single group which 

determines the activity (we discuss results for this case in  6.2 ). 

The last data set was designed based on a pharmacophore hypothesis and represents 

property depending on whole-molecule context. Compounds were labeled as active if at 

least one of their conformers had a pair of an H-bond donor and an H-bond acceptor 9-10 

Å apart. If the pattern occurred in more than one conformer of a molecule, this had to be 

the same pair of atoms. Therefore, actives contained exactly one pharmacophore pair 

consistent across all conformers. If this pattern was absent in all conformers a compound 

was labeled inactive. Compounds with multiple pharmacophore pairs were excluded to 

avoid ambiguity in subsequent interpretation. We generated up to 25 conformers for each 

compound using RDKit. H-bond donors and acceptors were labeled using pmapper 

software (77). We ensured that distributions of H-bond donors and acceptors in active 

and inactive classes were similar (Figure 6.1). Atoms which were true pharmacophore 

centers had expected contribution 1; all other atoms - 0. This example is closest to a real 

case scenario. However, we used a two-point pharmacophore to ease modeling and 

interpretation. Using more complex pharmacophores with more features might require 3D 

descriptors, however we used 2D representation.  
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We verified that all data sets are representative of the source database and distributed 

similarly to it (Figure 6.2). For this purpose, we embedded molecules in binned t-sne plot 

(74) generated from ChEMBL23 database using implementation (75). Original input 

feature space was chosen to be 2048-dimensional MHFP6 fingerprints (76). Upon 

mapping the database to t-sne plot we binned it to 50×50 cells and visualized each of our  

datasets on it (blue dots). As can be seen, datasets cover major portion of ChEMBL 

without apparent bias. To create training and primary test sets all data sets were randomly 

split in 70/30 ratio. All datasets are provided in the repository https://github.com/ci-lab-

cz/ibenchmark. 

https://github.com/ci-lab-cz/ibenchmark
https://github.com/ci-lab-cz/ibenchmark


49 

 

 

Figure 6.2  All 6 datasets (dark-blue points designate molecules) embedded in binned t-

sne plot (78) generated from ChEMBL23 database using implementation (79). Original 
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feature space for t-sne: 2048-dimensional MHFP6 fingerprints (80); perplexity: 50. 

Number of bins: 50×50.  

Table 6.1. Synthetic data sets to benchmark interpretation of QSAR models (76). 

Dataset Property type End-point 
Train/test 

set size 

Expected atom 

contribution 

N 

Regression; atom-

level additive 

property 

sum(N) 6995/2999 

 Nitrogen 

atoms:1; 

others: 0 

N-O 

Regression; atom-

level additive 

property 

sum(N) - sum(O) 6893/2969 

Nitrogen atoms: 

1; 

Oxygen atoms: -

1; 

others: 0 

N+O 

Regression; atom-

level additive 

property with hidden 

correlation 

(sum(N) + 

sum(O)) / 2, 

where sum(N) = 

sum(O) 

7000/3000 

Nitrogen and 

Oxygen atoms: 

0.5; 

others: 0  

Amide_r

eg 

Regression; group-

level additive 

property 

sum(NC=O) 7000/3001 

any atom of 

amide groups: 1;  

others: 0 

Amide_c

lass 

Classification; 

property determined 

at group level 

active: if 

sum(NC=O) > 0 

inactive: if 

sum(NC=O) = 0 

6998/3000 

any atom of 

amide groups: 1; 

others: 0 

Pharmac

ophore 

Classification; 

property determined 

active: at least 

one conformer 

with exactly one 

7000/3000 

atoms which are 

HBA or HBD of 

the pharmacophore: 
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at whole-molecule 

level 

pharmacophore 

match (same two 

atoms in all 

conformers); 

inactive: no 

pharmacophore 

matches for all 

conformers; 

pharmacophore 

match: HBD and 

HBA 9-10 Å 

apart 

1;  

others: 0. 

 

6.1.2. Extended test sets 

We created an additional extended test set for each task. Thus we could reveal possible 

weaknesses in data sets and challenge the generalization ability of trained models. 

Structures from primary test sets were subject to small perturbations. This was performed 

by applying the mutate operation from the CReM tool (81). We used the previously 

generated fragment database based on compounds from ChEMBL22 having maximum 

synthetic complexity score 2.5 (81, 82). This database contains fragments and their 

contexts of a given radius from corresponding attachment points. Fragments occurring in 

the same context are interchangeable and result in chemically valid structures. We chose 

context radius 3 and made all possible replacements of groups of up to three atoms with 

other groups of up to three atoms from the database. For each primary test set we 

generated about  300 000 new analogues and assigned end-point values to each 

compound using the same rules as for the corresponding data set (Table 6.1). The 

extended test sets provided more diverse examples of chemical space represented by 

primary test sets. The performance on these datasets is reported in Appendix, Figure 0.1. 
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6.1.3. Interpretation quality metrics 

For benchmarking purposes, it is desired to have standard means/metrics to quantify 

interpretation quality. Within benchmarking we propose three metrics: ROC-AUC, top-n-

score, RMSE.  

We considered each molecule individually and analyzed the ability of interpretation 

methods to rank atoms in proper order, i.e. atoms with greater expected contributions 

should be ranked higher. (This is so-called local or instance-based interpretation.) 

Metrics (where applicable) were computed separately for positively contributing atoms 

(hereafter positive atoms) and for negatively contributing atoms (hereafter negative 

atoms). Positive atoms increase aсtivity in regression case or favor positive class 

prediction in classification case. Conversely, negative atoms decrease activity or favor 

negative class prediction. 

ROC AUC 

ROC AUC is an integral metric which demonstrates how well relevant atoms are ranked 

over others within a particular molecule. To get the final score we averaged AUC values 

for all considered molecules. In QSAR interpretation context this metric was first used by 

McCloskey et al (46). To calculate AUC for positive patterns (AUC+) we set all negative 

atoms’ labels to 0. Thus, AUC+ characterized how highly positive patterns were ranked. 

To calculate AUC for negative patterns (AUC-) we set negative atoms’ labels to 1 and all 

others to 0. It worth noting that AUC cannot be calculated for molecules having no 

patterns pre-defined for a given dataset (expected contributions of all atoms are 0). 

Therefore, these molecules were not considered for the calculation of average AUC for 

individual data sets. 

The weakness of ROC-AUC is that it is an integral measure and accounts for both 

relevant and irrelevant patterns. In practice it is more reasonable to find relevant features. 

To address this, we propose top-n score. 

Top-n score 

Top-n score is calculated as follows and should be more stringent: 
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top-n score =  
∑ 𝑚𝑖 𝑖

∑ 𝑛𝑖  𝑖
,  

 

(6-1) 

 

Where ni is the total number of positive (negative) atoms in the i-th molecule, mi is the 

number of positive (negative)  atoms in ni top ranked atoms according to their calculated 

contributions.  

For instance, if a molecule has two true patterns with expected contributions +1 and 

interpretation retrieved only one of them among top two contributing patterns, the 

molecule will contribute n = 2 and m = 1 to the equation above. Top-n is an integral 

characteristic of a data set and varies from 0 to 1 (perfect interpretation). Analogously we 

calculated bottom-n score to estimate the ability to retrieve negative patterns. 

RMSE 

Additionally, we calculated root mean square error (RMSE) of predicted contributions for 

each molecule and averaged them across molecules in a data set to estimate deviation of 

calculated contributions from the expected values. This is less important metric, because 

proper ranking is more practically valuable than exact estimation of contributions which 

are generally unknown in real cases. But RMSE should be helpful for benchmarking 

purposes because it allows to investigate decision making of models and interpretation 

methods from another point of view and may reveal weaknesses or advantages not 

captured by other metrics. 

The metrics described were implemented in the open-source repository to facilitate 

calculation of interpretation performance – https://github.com/ci-lab-cz/ibenchmark. 

6.1.4. Chapter summary 

In this chapter we elaborated on development of synthetic data sets for 

validation/benchmarking of interpretation methods. We designed them in a way that 

assigns labels to all atoms of molecules from a given set, so that interpretation can be 

quantitatively evaluated. This is achieved via comparison of results against those pre-

assigned labels, and subsequent computation of metrics, which are proposed herein. (Any 

https://github.com/ci-lab-cz/ibenchmark
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other metrics can be used as well.) Also, synthetic data set design allows to control the 

distribution of molecule-level labels (i.e. outcome variable; not to be confused with atom 

labels), which is expected to aid high quality modelling and interpretation, given robust 

and suitable methods.  

6.2. Applying the framework to study QSAR model interpretability  

This section summarizes the results of applying the framework developed in 6.1.  to study 

the quality of interpretation produced by UIA (76). Present study is limited to a single 

interpretation approach; however, the framework applies to any fragment/atom-based 

method. Additionally, we analyzed the behavior of various fingerprints and ML methods 

in terms of their influence on interpretation results.  

6.2.2. Implementation of UIA for graph convolutional neural networks.  

In this work we used descriptor-based Scikit-learn models along with Deepchem GC 

models. The latter is the end-to-end model which doesn’t require descriptors and directly 

uses molecular graph to learn molecular representation. Therefore, to enable estimating  

atom contributions the procedure described in 5.5 (Fragmentation of molecules) was 

modified  as follows. 

Deepchem GC models convert each molecule into two input matrices at the preliminary 

featurization step: 1) atom basic features and 2) connectivity information. To virtually 

remove an atom, we remove the corresponding row from the first matrix and adjust the 

connectivity table (the second matrix) respectively, Figure 6.3. These modified matrices 

are supplied as input for a GC model which makes prediction. The contribution is 

calculated by subtracting the predicted end-point value for a compound with a virtually 

removed atom from the value predicted for the whole structure. This feature was 

integrated into Deepchem, version 2.3. Examples can be found in the project’s 

documentation:  Tutorial # 28. Atomic contributions for molecules (83).  
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Figure 6.3 Scheme of removing of atoms when interpreting GC models  

 

 

6.2.3. Results: interpretation performance 

The quality of interpretation of models built on synthetic data sets was analyzed. We 

carried it out by evaluating three quality metrics described in 5.4.1. Throughout we 

tracked the dependence between model performance and interpretation quality, and paid 

attention to  features (outliers, unusual behavior etc.) appearing in each data set. Models 

performance is discussed in more detail in Appendix, Figure 0.1.  

N data set 

High average AUC+ values observed in the majority of cases indicate that atoms were 

ranked correctly (Figure 6.4a). For models having test set R2 > 0.81 average AUC+ was 

greater than 0.9 (Figure 6.4b). There is a clear correspondence between model 

predictivity and the ability to rank atoms. However, there were few outliers, namely SVM 

and PLS models trained on binary RDK fingerprints. AP, bAP and RDK fingerprints 

resulted in the highest average AUC+ irrespective of machine learning method.  

Top-n score characterizes the ability to rank true atoms on top. This metric was more 

sensitive to  changes of R2 than AUC+ (Figure 6.4c-d). The most predictive models had 

high top-n scores. These were PLS, RF and GBM models trained on AP and bAP 

fingerprints and RF and GBM models trained on count-based Morgan fingerprints (top-n 

= 0.92-1.0). GC model had somewhat lower score (0.89) followed by models trained on 
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count-based RDK fingerprints (top-n = 0.65-0.81). RMSE values varied in a wide range 

but followed the same trend as top-n (Figure 6.4e-f). Therefore, we did not analyze them 

in detail. It is worth noting, that models trained on binary atom pairs had similar 

interpretation performance to those trained on count-based atom pairs, whereas the 

former had poorer predictive ability. For other pairs count-based fingerprints always 

outperformed the corresponding binary ones. 

 

Figure 6.4. Interpretation performance of models trained on the N data set. Figure 

reproduced from (76) 

 

N-O data set 

This data set contained positive and negative atoms: nitrogen and oxygen, respectively. 

We found that overall ranking abilities for positive and negative patterns measured by 

AUC+/AUC- were similar (Figure 6.5a,c). The same agreement was observed for top-n 

and bottom-n scores (Figure 6.5e,g). Thus, models were able to detect positive and 

negative patterns with comparable accuracy. The only outlier was PLS models trained on 
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binary Morgan (AUC+ = 0.77, AUC-=0.64, top-n = 0.35, bottom-n = 0.2) and RDK 

fingerprints (AUC+ = 0.74, AUC-=0.87, top-n = 0.29, bottom-n = 0.47). Because of high 

correspondence in positive and negative pattern detection we will discuss only positive 

patterns. 

The relationship between model predictive ability and interpretation accuracy was less 

stringent then in the case of the N data set, but still remained. Models trained on AP and 

bAP fingerprints resulted in stably high interpretation performance (AUC+ = 0.91-1.0, 

top-n = 0.61-1.0). RMSE was in agreement with other metrics. 

 

Figure 6.5. Interpretation performance of models trained on the N-O data set. Figure 

reproduced from (76) 
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Interpretation of the GC model showed decreased interpretation accuracy. For instance, 

top-n score was 0.62 for the GC model, whereas corresponding values for PLS and GBM 

models trained on AP descriptors were 1.0 and 0.95. However, all these models had 

comparable predictive performance (Figure 6.5c,d). We randomly chose subset of 100 

molecules to inspect the behavior of the GC model. Atoms proximate to true 

positive/negative ones were often misrecognized; for instance, carbon atoms in carbonyl 

the lowest (pink). Atoms attached to nitrogen were ranked the highest  (green) (Figure 

6.6a-f). Some nitrogens in nitro groups were misinterpreted as negative (Figure 6.6a). 

Aromatic carbons were also falsely recognized as positive  a number of times (Figure 

6.6c,e). 

 

a 

 

b 

 

c 

 

d 
 

e 

 

f 

Figure 6.6. Top-scored (green) and bottom-scored (pink) atoms by the GC model for the 

N-O data set. The number of top and bottom highlighted atoms is equal to the total 

number of positive (nitrogen) and negative (oxygen) atoms in corresponding molecules. 

Figure reproduced from ((76) 
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Regression amide data set 

The overall ranking ability was very similar to the N data set (Figure 6.7). SVM model 

trained on binary RDK fingerprints had very low interpretation accuracy (AUC+ = 0.62) 

close to random ranking (0.5) and this was the main outlier from the trend. The 

relationship between top-n score and model predictive ability was quite stringent with 

two outliers: SVM models trained on binary and count-based RDK fingerprints (Figure 

6.7c-d). While the former had relatively low score (0.38) the latter had the higher score 

(0.93) than other models with comparable predictive ability. It should be noted that 

models built on count-based RDK fingerprints were among the strongest in terms of 

interpretation accuracy. For example, SVM model trained on count-based RDK 

fingerprints had R2
test = 0.85, AUC+ = 0.97 and top-n = 0.93, while RF model trained on 

count-based Morgan fingerprints had much higher predictive ability (R2
test = 0.97), but 

comparable interpretation accuracy (AUC+ = 0.99, top-n = 0.94). The GC model had 

slightly lower interpretation performance than models of comparable predictive ability, 

similarly to the case of the N-O data set. 
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Figure 6.7. Interpretation performance of regression models trained on amide data set. 

Figure reproduced from (76) 

 

Classification amide data set 

This data set was simple for modeling and all models achieved high balanced accuracy (≥ 

0.93). However, overall ranking ability for atoms of amide groups varied in a wide range 

(AUC+ = 0.82-0.98) (Figure 6.8 a-b). There was no dependence between predictive 

ability and interpretation accuracy. This is a consequence of the interpretation approach 

which virtually removed an atom and calculated the contribution of the removed part as 

the difference between predicted active class probabilities. If the property depends on the 

presence or absence of a particular pattern, but there are multiple such patterns in a 

molecule, then removing one of them will keep the remaining structure active and the 

calculated difference will be small or even zero.  

This effect was most  pronounced in the case of top-n score which was below 0.5 for high 

quality models (Figure 6.8 c-d), meaning that only half of true atoms were ranked on top.  
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To confirm the issue of interpretation approach we investigated interpretation accuracy 

for subsets of molecules having different number of true patterns using three models 

(Table 6.2). In the case of GBM model trained on MG2 descriptors average AUC+  slowly 

decreased with increasing the number of amide groups. Top-n score was more sensitive 

and substantially dropped for molecules having two amide groups (from 0.98 to 0.69). In 

the case of GBM model trained on AP descriptors all interpretation metrics were more 

sensitive to the number of true patterns. For example, for molecules having two amide 

patterns AUC+ decreased from 0.96 to 0.77, and top-n score dropped from 0.89 to 0.58. 

Similar trend was observed for the GC model (Table 6.2). 

 

Figure 6.8 Interpretation performance of classification models trained on  classification  

amide data set. Figure reproduced from (76) 
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Table 6.2 Interpretation performance of selected models calculated for subsets of 

molecules having different number of amide groups. Table reproduced from (76) 

count 

of 

amide 

group

s 

GBM / MG2 GBM / AP GC 

mean 

AUC+ 
top-n 

mean 

RMSE 

mean 

AUC+ 
top-n 

mean 

RMSE 

mean 

AUC+ 
top-n 

mean 

RMS

E 

all 0.98 0.81 0.12 0.90 0.73 0.14 0.92 0.75 0.14 

0 - - 0.03 - - 0.02 - - 0.02 

1 1 0.98 0.12 0.96 0.89 0.17 1 0.98 0.2 

2 0.94 0.69 0.4 0.77 0.58 0.42 0.81 0.56 0.36 

3 0.9 0.65 0.51 0.75 0.6 0.53 0.66 0.44 0.52 

4 0.87 0.62 0.57 0.6 0.45 0.57 0.53 0.39 0.57 

5 0.8 0.44 0.58 0.57 0.47 0.58 0.54 0.33 0.57 

6 0.66 0.55 0.67 0.49 0.39 0.67 0.61 0.48 0.67 

 

Pharmacophore data set 

The pharmacophore dataset was the most difficult task and models achieved moderate 

balanced accuracy. Therefore, it was expected that interpretation accuracy would be 

relatively low (Figure 6.9). For this data set the correlation between model quality and 

interpretation accuracy was the most pronounced, and predictive ability of conventional 

models mostly depended on descriptors type. Both types of AP fingerprints produced the 

most accurate models. All models built on APs demonstrated reasonably high ranking 

ability (AUC+ = 0.84-0.89). This observation can be explained by the nature of the end-

point – two specific atoms at a distance of 10-11A. Atom pairs were the only descriptors 

which could capture such a long distance (covering to 30 bonds). RF and GBM models 

trained on count-based Morgan fingerprints and the GC model had moderate overall 

raking ability (AUC+ = 0.7=0.79). Despite moderate predictive ability (balanced accuracy 

test ≥ 0.71), for large portion of models AUC+ was close to 0.5. This raises a warning that 

high predictivity doesn’t guarantee correct interpretation. 

AUC metric may not be suitable in this case due to the fact that each molecule of the 

active class has only two true pharmacophore centers being ranked against all remaining 

atoms. This could result in inadequately high AUC values if both true atoms were ranked 
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not exactly on top. We expect top-n to be a more reasonable and stringent metric in this 

case. Models with the highest AUC+ had low to moderate top-n scores: 0.30-0.57 (Figure 

6.9c). This means that on average they identified only 30-57% of true pharmacophore 

centers within top 2 scored atoms. Most of other models had even lower scores. Seeking 

improvement of scores we calculated the average percentage of true centers in top 3 and 

top 5 atoms (Table 6.3).This is a common metric frequently used to measure accuracy of 

prediction of true active centers, for example sites of metabolism (84). The results 

demonstrated that probability to find true pharmacophore center substantially increased 

with considering more atoms. For the best model GBM/AP top 5 score reached 77%. For 

the GC model the increase was  only to 50% (Table 6.3). 

 

Figure 6.9. Interpretation performance of models trained on pharmacophore data set. 

Figure reproduced from (76) 
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Table 6.3. Average percentage of identified true pharmacophore centers in top scored 

atoms for the pharmacophore data set  

Model top-2 top-3 top-5 

GBM / AP 54 % 63 % 77 % 

RF / AP 43 % 54 % 67 % 

SVM / AP 30 % 41 % 63 % 

GC 33 % 39 % 50 % 

 

Another way to improve results was applying fragment-based interpretation performance 

as opposed to atom-based. The motivation was to check whether selection of larger 

fragments would help to better locate true centers (though with less spatial resolution). 

We fragmented training set molecules as described in Model Interpretation: Calculation 

of Fragment Contributions. From resulting fragments, we kept only those of the size up to 

7 heavy atoms and covering at most 40% of the total number of heavy atoms in a 

molecule. Effectively, since we did not break rings, this allowed us to estimate 

contributions of six-membered rings with one attached atom. To evaluate performance of 

fragment-based interpretation we chose top-2 metric calculated similarly to top-n metric 

for atoms. Top 2 scored fragments were chosen for each molecule and if both true centers 

were captured by these fragments the score was 1, if only one –0.5, if none –0. The scores 

were averaged among all molecules to get the final value. The metric top-2 for fragments 

was equivalent to top-n for atoms because each compound had exactly two true centers. 

Therefore, we compared them with each other (Figure 6.10). For models which 

demonstrated high performance in atom-based case, performance of fragment-based 

interpretation was not much better. However, models with relatively poor performance 

demonstrated substantial improvement. For example, GBM model trained on RDK 

descriptors could identify only 15% of true centers within top 2 scored atoms and 44% 

true centers within top 2 scored fragments. 

RMSE has a little sense for classification models but we observed a clear relationship that 

RMSE values gradually increased with decrease of model predictive ability (Figure 6.9f). 
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The only outlier was the GC model. This could be explained by the fact that sigmoid 

activation function used on the output layer resulted in predicted probabilities tending to 

be either 0 or 1. Therefore, calculated contributions were also biased toward 0 or 1 that 

results in larger RMSE if contributions were not predicted correctly. 

 

Figure 6.10. Top-2 score for atom- and fragment-based interpretation of models trained 

on the pharmacophore data set. Figure reproduced from (76) 

 

N+O dataset 

This data set is specifically constructed to investigate how interpretation approach and 

underlying model assign contributions to correlated patterns. In this case models can 

assign equal or similar contributions to both correlated patterns or prioritize one over the 

other. PLS and SVM models mainly resulted in comparable contributions for nitrogen 

and oxygen (Figure 6.11). RF and GBM models tended to prioritize one of them. Models 

trained on binary fingerprints resulted in more balanced contributions than models trained 

on count-based descriptors. The most striking example was GBM and RF models trained 

on MG2, where oxygen received much higher contributions than nitrogen. 
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Figure 6.11. Contributions of nitrogen, oxygen and other atoms for models trained on the 

N+O data set. Figure reproduced from (76) 

 

Consider our three metrics, defining both N and O atoms as true patterns first. The overall 

interpretation performance is high for models trained on AP and bAP, GBM and RF 

models trained on MG2, and GC model (Figure 6.12). However, not all of these models 

had high predictive performance. For example, SVM models trained on AP, bAP and 

MG2 had relative low R2
test - 0.75-0.81. We also calculated AUC and top-n scores 

separately for cases where only O or N atoms were (mutually exclusively) considered 

true patterns. The closer the points in Figure 6.13 to the diagonal, the more balanced 

assigned contributions. It should be noted that overall interpretation performance does not 

correlate with interpretation performance calculated when only one of two patterns was 

considered true. For example, GBM/MG2 model showed perfect performance to retrieve 

O (AUCO
+ = 1.0, top-nO = 1.0) but low performance retrieving N (AUCN

+ = 0.87, top-nN 

= 0.0). At the same time overall interpretation performance when both patterns were 

considered true was very high (AUC+ = 1.0, top-n = 0.98). This can be easily explained if 

one looks at contributions. Oxygen atoms received consistently higher contributions than 

N atoms, which have greater contributions than other atoms (Figure 6.11). Thus, O atoms 
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were always on top and statistics was perfect. Considering both patterns as positive 

resulted in high performance because both were well separated from the rest.  

 

Figure 6.12. Interpretation performance of models trained on N+O data set. Both N and O 

atoms were considered as positive patterns. Figure reproduced from (76) 

 

 

Figure 6.13. Interpretation performance for the N+O data set, where N or O atoms 

mutually exlusively were considered true patterns. Figure reproduced from (76) 
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6.2.4. Chapter summary 

In this chapter we applied the benchmarking framework to test different modelling 

algorithms and descriptors, and a single interpretation method: UIA (it was a “pilot” 

study).  

We pursued two aims: first, to test benchmarking datasets themselves, and second, to 

explore applicability of UIA. The latter has been previously applied to some particular 

real-case data, but no systematic evaluation has been performed so far (43). Additional 

purpose was to gain insights about which descriptor/model combinations are more 

suitable for interpretation. 

The results showed the adequacy of the benchmark, since the dependencies between 

model quality and interpretation quality were established and consistent with previous 

understanding, first of all, Sheridan (74). Similarly, we claim that only highly predictive 

models may reach high interpretation accuracy. The UIA also proved valid, showing 

expected behavior.  

We recommend to treat the benchmarking results as follows. High performance achieved 

on these data sets would support positive conclusion about the method’s validity, and low 

performance would allow to screen out invalid methods. The latter can be claimed with 

higher confidence: if the method doesn’t work on simple synthetic datasets it is not 

expected to work on more complex ones. We anticipate that this work will stimulate 

investigation of decision making of models, in particular neural networks, since synthetic 

data sets provide a more controlled environment. 

6.3. Applying UIA to aquatic toxicity data sets  

This section summarizes the results reported by Tinkov and colleagues (60). The article is 

dedicated to practical aim of model interpretation:  finding relevant common toxicophore 

patterns.  UIA  as a structural method can help reveal substructures that govern biological 

activity/toxicity. In present application structural alerts of toxicity towards Fathead 

minnow, Daphnia magna and Tetrahymena pyriformis were retrieved. 
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All regression  aquatic toxicity models showed satisfactory statistical performance and 

were comparable with existing QSAR models developed for the datasets studied (Table 

6.4) (85).  

Table 6.4 Predictive performance of the QSAR models developed using SIRMS 

Model 

Training set 

5-fold CV 

Test set 

All compounds Inside AD-only 

R2
cv RMSEcv R2

test RMSEtest 
Data coverage 

[%]a 
R2

AD RMSEAD 

Fathead minnow 

GBM 
0.65 0.86 0.59 0.95 

34 

0.49 0.93 

RF 
0.66 0.84 0.56 0.97 

0.56 0.87 

Consensus model 
0.68 0.83 0.60 0.94 

0.54 0.88 

Daphnia magna 

GBM 
0.52 1.18 0.70 0.93 

40 

0.52 0.99 

RF 
0.50 1.21 0.70 0.93 

0.53 0.98 

Consensus model 
0.53 1.17 0.71 0.91 

0.53 0.97 

Tetrahymena pyriformis 

GBM 
0.77 0.51 0.77 0.50 

53 

0.76 0.51 

RF 
0.75 0.52 0.76 0.52 

0.73 0.55 

Consensus model 
0.78 0.50 0.78 0.49 

0.76 0.52 

a 
Calculated as the ratio of the number of compounds inside applicability domain (AD) and the total number of compounds 

of the given dataset. 

The set of molecular fragments to study was formed from common functional groups, 

well-known toxicophores (43), and molecular fragments generated during automatic 

fragmentation of training set compounds.  

Analysis of the results of automatic fragmentation (as opposed to common functional 

groups) involved only those molecular fragments that were found in at least 3 compounds 

of the training or test set, which allowed to increase confidence by reducing the influence 

of random factors (e.g. errors in experimental data or predicted toxicity values and 

fragment contributions). 
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The results are presented in Figure 6.14, Figure 6.15, Figure 6.16. It is possible to rank 

the contributions of fragments to various types of toxicity, which can be used to optimize 

target compounds.  Comparing three datasets, it is possible to derive common 

toxicophores.   Identification of such common structural alerts is important, since when a 

chemical enters water, it can affect various aquatic organisms.  
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Figure 6.14 Contributions of different molecular fragments to toxicity towards Fathead 

minnow. Numbers in brackets: M is the number of compounds containing a fragment, 

and N is the number of fragments across the whole data set (some compounds have 

several identical fragments, and their contributions were estimated separately) 
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Figure 6.15 Contributions of different molecular fragments to toxicity toward 

Daphnia magna. Definitions of M and N were given in the Figure 6.14 caption. 
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The analysis confirmed traditional toxicophores  – shown in blue – they have large 

contributions (86), (87), (88), (89). The main toxicophores for aquatic organisms are 

described in publications (63, 90),(91), (92) and included as “structural alerts” (Endpoint 

“Acute Aquatic Toxicity”) in the expert system OCHEM (93).  

In red, there are shown new  fragments which were not recognized before. We identified 

fragments that have higher contribution to toxicity than known toxicophore phosphate 

Figure 6.16 Contributions of different molecular fragments to toxicity toward 

Tetrahymena pyriformis. Definitions of M and N were given in the Figure 6.14 caption 
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and occur simultaneously in three data sets. They are 4-nitrobenzene and 4-

chlorobenzene.  Thereby, we defined more accurately the toxicophores 

“Mononitroaromatics” and “Aryl halide” used in the OCHEM. They were added to  

OCHEM ToxAlerts database (Alert ID: TA11520 and TA11521). Based on mechanism 

of toxic action described  in  (90, 92), it can be assumed that  new alerts may participate 

in nucleophilic substitution reactions with biological nucleophiles, such as cysteine 

and/or lysine. 

Table 6.5 Molecular fragments which simultaneously increase three acute aquatic toxicity 

endpoints 

Fragment SMARTS Representative structures 

4-chlorobenzene 

 

Clc1ccc([*:1])cc

1 

` 

 

Daphnia magna,-lg(LC50)=5.7 

 

Fathead minnow,-lg(LC50)=5.0 

 

T. pyriformis,-lg(IGC50)=4.5 
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4-nitrobenzene 

 

[O-

][N+](=O)c1cc([

*:1])c([*:1])cc1 

 

 

Daphnia magna,-lg(LC50)=4.0 

T. pyriformis,-lg(IGC50)=3.6 

 

Fathead minnow,-lg(LC50)=4.7 

 

6.4. Development of GMM-based Extension of UIA and its retrospective validation 

on T. pyriformis data set. 

This section summarizes results published by Matveieva and Polishchuk (57). The goal 

was to develop and validate an extension of UIA . This was aimed at overcoming the 

downside of  global averaging of contributions as pattern-mining method. As can be seen 

from the previous chapter (6.3), contributions can have very broad ranges (Figure 6.14), 

and thus mean value is not very informative and even misleading. As discussed in (3) and 

shown in Figure 2.9, the influence of fragments on target property strongly depends on 

the context it appears in.  

Analysis of distributions of fragment’s contributions was proposed to identify groups of 

compounds (clusters) comprising the same fragment, where these fragments had 

substantially different contributions to the studied property. The workflow was 

implemented as follows. 
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6.4.2. Implementation of Extension 

We employed GMM from the mclust R package (94) to develop an extension to UIA . 

This was implemented in the rspi R package (68). Examples can be found in package 

documentation (68). The new functionality added to rspci offers GMM model building 

and visualization steps.  

The contributions of fragments were calculated for all molecules where they occurred. 

Distributions of contributions were analyzed for each fragment separately. The 

distribution can be modelled by single or multiple Gaussians (Figure 6.17). GMM utilizes 

the EM-algorithm for finding the optimal parameter values (mean and variance) by 

maximizing data log-likelihood function for a fixed number of Gaussian components. 

The number of components in our implementation by default is chosen using integrated 

completed data likelihood criterion. Variance of each component by default is variable. 

 Cases where the distribution of fragment contributions is represented by multiple 

Gaussians can be due to the different molecular context of that fragment in different 

molecules.  

We applied SMARTSminer (95) to find patterns discriminating compounds 

corresponding to different Gaussians (clusters). SMARTSminer takes as its input two sets 

of molecules and searches for discriminative patterns (SMARTS) which appear more 

often in one set (“positive”) than in the other (“negative”). In the case of two clusters we 

submitted compounds corresponding to the cluster with lower contributions as “negative” 

and compounds corresponding to the cluster with higher contributions as “positive” and 

vice versa in order to find patterns discriminating both clusters from each other. In cases 

where more than two clusters were identified one cluster could be chosen as a “positive” 

set and the remaining ones could be combined into the “negative” set. Patterns detected 

were ranked according to the calculated σ-score (metric returned by SMARTSMiner). 

Additionally, the user can specify desired levels of positive and negative support. In 

T.pyriformis study (see below) minimum positive support was set to 0.7 (at least 70 % of 

molecules in the “positive” set must contain a pattern) and maximum negative support 

0.3 (at most 30 % of molecules in the “negative” set may contain the same pattern). The 
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top scored patterns output by SMARTSminer were analysed to find those that may 

influence or cause changes in toxicity.  

An important note is that we used only training set for evaluation of interpretation 

performance. This should give more accurate results than test set because prediction error 

for a training set is smaller.  

 

 

Figure 6.17  The idea of distribution analysis by  GMM-based Clustering Extension. 

Distributions are fed to GMM algorithm, which automatically detects clusters, and if 

there are two or more – analysis can be performed manually or by SMARTSMiner. In the 

course of the analysis contexts that are important for activation of fragments are revealed 

and thereby structure-activity patterns can be mined. 

6.4.3. Validation of the Extension on T. pyriformis data set 

We validated the method by applying it to well-annotated T. pyriformis data set. If cluster 

analysis of distributions reveals known toxic alerts and doesn’t produce obviously false 

alerts, we will consider our retrospective validation successful. 

Predictive performance of SVM, RF and GBM models was reasonable (Table 6.6). 

Therefore, consensus prediction was obtained by averaging of predictions of SVM, RF 
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and GBM models. We analyzed fragment contributions calculated from individual 

models and the consensus and found out that they were in close agreement. Therefore, we 

used the consensus model in further analysis because this helps avoid biases introduced 

by individual models. 

Table 6.6. Predictive performance of QSAR models of toxicity on Tetrahymena 

Pyriformis estimated by 5-cold cross-validation. 

 

Model Q2 RMSE 

RF 0.76 0.51 

SVM 0.73 0.55 

GBM 0.77 0.50 

PLS 0.35 0.85 

Consensus (RF, SVM, GBM) 0.75 0.52 

 

All compounds were fragmented and fragment contributions were calculated. For 

many fragments GMM detected only one cluster and these were excluded from further 

consideration. The procedure is shown in  Figure 6.18. 
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Figure 6.18 Decision tree illustrating the workflow for the analysis of fragments. Green 

boxes contain fragments to be analyzed. The upper green box contains the fragments of 

main interest to this study since clusters were found in their distributions. The lower 

green box contains fragments having narrow distributions with no clusters (sd<=0.25, sd 

– standard deviation)  

 Reactive chemical species 

We will discuss a series of fragments jointly, because they represent a common 

cause of aquatic toxicity: chemical reactivity. Distributions of contributions were 

frequently modeled by two Guassians. One had small variance and low average 

contributions whereas the other had a high average contribution and large variance. As 

was detected by SMARTSMiner (and visually), the second cluster was populated with 

compounds in which the fragment studied was “activated” by its context, becoming 

reactive. These fragments were: halogens, acetyl, carbamoyl, ester moiety, shown on  

Contributions for halogen atoms had a wide distribution of values. For chlorine, 

bromine and iodine the distributions were similar. They had a large peak and a relatively 

long right-sided tail (Figure 6.19A). The major part of all observations for chlorine fell 

into one cluster (96% coverage of data) with mean contribution of 0.47. The long and 

small right-sided tail formed the second cluster (4%) with mean contribution of 1.16. One 

of the top-scored patterns was A[CD3H0](CCl)=[OX1-0]. It matches α-chloroketones, 

esters or amides present in the cluster. In the first cluster among the highest scored 
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patterns we found SMARTS matching aromatic compounds. Regarding bromine 13% of 

observations fell into the second cluster (the right tail of the distribution) with mean 

contribution of 1.68. The highest scored SMARTS patterns match α-bromoketones and 

esters similarly to chlorine, but also bromoalkenes. There was a small number of 

compounds containing iodine atoms and only few compounds belonged to second cluster 

with high contribution values (mean contribution is 2.72); they were α-iodoketones and 

esters. 
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Figure 6.19. Distributions of contributions of  reactive species: halogens, acetyl, 

carbamoyl, and ester group. Reactive patterns (combination of a fragment and its context) 

are shown in red. Arrows are color-coded according to Gaussians (clusters). 

The right side tail of acetyl  (methylcarbonyl) distribution covered by the second 

Gaussian contained fragments with higher contributions (Figure 6.19). Two patterns: 

C[CD3H0]([CD1H3])=[OX1-0] and C([CD1H3])[CX3]=[C,O] were found to be the 

most discriminative in the second cluster. However, the former matches acetyl itself 

connected to aliphatic carbon which appears to be not a toxicophore. The latter is also 

non-informative to our knowledge. Visual inspection of compounds from the second 

cluster revealed that the carbonyl group of the fragment studied is conjugated with a 
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double bond in the corresponding compounds which can be potential Michael acceptors. 

The corresponding pattern [CD3H0]([CX3]=[CX3])=[OX1-0] was not found by the  

SMARTSminer. 

The cluster with higher contributions  of ester group (Figure 6.19) corresponds to 

esters of α,β-unsaturated acids (mainly acrylic and 2-butynoic acid) and α-halogen 

carboxylic acids that was found by visual inspection. These compounds can participate in 

Michael addition or nucleophilic substitution reactions. SMARTSminer didn’t retrieve 

them, because each of these two patterns has positive support (about 50%) which is lower 

than the chosen threshold (70%) and because the algorithm implemented in 

SMARTSminer doesn’t use generalized bond patterns, e.g. “double or triple bond”. These 

findings are “complementary” to the finding for halogens and acetyl, as the same reactive 

species were discovered. 

No patterns were found by SMARTSminer for carbamoyl group. The contributions 

of carbamoyl groups were high only in four cases forming the second cluster, Figure 

6.19. Those compounds feature halogens in α-position to carbamoyl moiety and can 

participate in nucleophilic substitution reactions as electrophiles. Thus, this is the 

“complementary” case to halogens discussed above, as the same reactive species were 

discovered. 

Saturated linear C8 and C9 alkylene moieties 

Two clusters with large difference between average contribution values were detected by 

GMM (  6.20). According to SMARTS patterns found, compounds containing aliphatic 

carboxylic group appeared predominantly in the first cluster. Whereas 

C([C,O][C,O][CD1H3])[CD2H2][CD2H2][CD2H2][CD2H2][CD2H2][CD2H2][C,O] 

pattern encoding long linear alkyl chain was found discriminative for the second cluster. 

However, visual inspection showed that dicarboxylic acids were mainly present in the 

first cluster while the second one is more populated with monocarboxylic acids. This 

couldn’t be captured by SMARTSminer because it cannot detect disjoint patterns and the 

length of alkyl chain between two carboxylic groups is variable. 
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Monocarboxylic acids have higher lipophilicity relatively to dicarboxylic ones and 

since lipophilicity is recognized as one of the major factors of environmental toxicity (96) 

this can explain substantially different contributions of alkylene chains in those 

compounds. 

 
  6.20. Distributions of contributions of C8 and C9 linear alkylene groups. 

Hydroxyl and carboxyl groups 

There was only one cluster found by GMM in both cases. Therefore, 

SMARTSminer could not be applied. However, the left shoulder on the distribution of 

carboxyl group was observed that suggested the hidden mixed distributions of hydroxyl 

groups in different chemical contexts. We checked whether these observations are related 

to context-dependence or these are artifacts. We used for fragmentation SMARTS 

patterns which explicitly match aliphatic and aromatic carboxyl and hydroxyl groups, 

Figure 6.21. Distributions of contributions of both these groups in the case of aliphatic 

and aromatic derivatives were significantly different according to the Kolmogorov-

Smirnov two-sided test. Aliphatic hydroxyl groups (e.g. in aliphatic alcohols) have lower 

contributions to the toxicity in comparison to aromatic OH groups (in phenols). On 

smoothed densities of aromatic and aliphatic hydroxyl and carboxyl group contributions 

are shown in orange and pink. A carboxylic group showed lower toxicity in aromatic 
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compounds than in aliphatic ones. This example demonstrates that GMM models cannot 

always separate contributions of fragments when distributions are substantially 

intersected. Therefore, visual inspection of contribution distributions would be required 

to detect such cases. 

 

Figure 6.21 Distributions of contributions of carboxyl (right) and hydroxyl (left) groups 

with smoothed densities (black dashed line) and subpopulations of fragments in aliphatic 

and aromatic context matched explicitly (solid colored lines). 

Physico-chemical interpretation of fragment contributions 

Since we used descriptors encoding different physico-chemical properties we could 

estimate contribution of different physico-chemical terms to the studied toxicity, Figure 

6.22. Polarizability of halogen atoms and carbamoyl groups having high contributions 

(the second clusters in all cases) had the largest impact on their toxicity. This can be due 

to reactivity of the detected patterns. The major contribution factor for high toxicity of 

alkylene chains was lipophilicity that is also supported by experimental findings (96). 

Thus, physico-chemical interpretation can provide more detailed knowledge about 

fragment contributions and help shed light on mechanisms of action as well. 



85 

 

 

Figure 6.22. Median physico-chemical contributions of fragments to their toxicity on 

Tetrahymena pyriformis (M denotes the number of compounds and N – the number of 

fragments). 

Applying SMARTSminer directly to the whole dataset 

We applied SMARTSminer directly to the modeled dataset in order to find possible 

toxicophoric patterns and compare such a straightforward approach to ours. Patterns 

found match mostly aromatic and some heteroaromatic substructures which were not very 

informative (Figure 6.23).  



86 

 

 

Figure 6.23. Top-ranked discriminative patterns found by SMARTSminer and examples 

of matched compounds from the „positive“ set (“negative” set consisted of 500 

compounds with pEC50 <= 2.5; and “positive” set of 406 compounds with  pEC50 >= 5). 

Patterns identified by our approach could not be found because all of them had low 

positive support values (<0.1). Poor performance of SMARTSminer might be explained 

by high structural diversity of compounds in the data set and different or mixed 

mechanisms of their action. Thus, our method is advantageous over direct mining of 

patterns from the dataset, justifying application of GMM-based clustering. 

6.4.4. Chapter summary 

We developed an extension to UIA based on GMM and implemented it in R (rspci 

package). We demonstrated that this new functionality in combination with 

SMARTSminer allowed for the detection of the influence of different molecular contexts 

on the fragments having high contributions to the studied property. Patterns indicating 

different mechanisms of action were identified. In general, the results obtained were 

consistent and corresponded to expert knowledge about environment toxicophores. This 

confirmed the validity of the workflow developed. However, it has some limitations. If 

contributions of fragments in different contexts were numerically close, GMM could not 

separate them into clusters to perform further analysis, e.g. as observed for aliphatic and 

aromatic hydroxyl and carboxyl groups.  

Overall, SMARTSminer helped automate the search for the molecular context of 

fragments. However, due to SMARTS inherent limitations, SMARTSminer could not 
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retrieve results in some cases and manual inspection was required to retrieve reasonable 

patterns.  

6.5. Identification of fragments relevant for anticancer activity of small molecules 

Retrieving known structural patterns important for toxicity in present work confirmed 

interpretation to be practically useful.  However, finding new features and applying this 

in discovery and optimization of potential drug candidates would be more lucrative. 

Our interest in anticancer drug design motivated us to apply computational tools for 

mining structural patterns from structure-activity data. We employed our in-house 

database, which is as large as >4000 small molecules tested in MTT-assay, so manual 

SAR analysis would be tedious. Therefore, we built QSAR models and applied GMM 

clustering methodology to them. We used six different endpoints of cytoxicity against 

cancer cell lines. High accuracy of QSAR models is an important premise for success of 

mining of relevant patterns. 

We focused on 3 pairs of cancer cell lines: HCT116 and HCT116-p53-/-; K562 and 

K562-TAX (taxol resistant); and CCRF-CEM and CEM-DNR (daunorubicin resistant). 

The  choice is motivated by the possibility to find patterns, that can overcome difficult-to-

treat drug resistance or genetic variants.  

The application of GMM-based clustering allowed for automated pattern mining. Upon 

analysis, in a number of cases we rediscovered known scaffolds and mechanisms of 

action; however, the majority of cases shown below represents novel patterns. For these 

patterns we performed literature-based analysis of potential mechanisms of action and 

docking to different protein targets. Based on results, we can speculate about exact 

molecular targets related to patterns found. This research is an initial step and 

experimental studies are yet to be performed.   

The study workflow was  similar to  6.4.3. The scheme of analysis is analogous to Figure 

6.18 . The difference mainly lies in applying more filters to reduce the final number of 

fragments. The aim was to focus on fragments with the most stable high influence on 

given property and strong statistical support (number of occurrences, cluster population). 
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We did not  use SMARTSMiner, but visual inspection, thereby making our search more 

flexible  to include disjoint whole-molecule features (difficult-to-find by 

SMARTSMiner). 

 

Figure 6.24  Decision tree illustrating the workflow for the analysis of fragments. Green 

boxes contain fragments to be analyzed. The lower-right green box contains the 

fragments of main interest: at least two clusters were found in their distributions; 

population of clusters was sufficient (>=5); mean contribution was high (>=0.2). The 

upper-left green box contains fragments having narrow distributions  (IQR: interquartile 

range <=0.1) with high median and small size (the size matters because large fragments 

tend to have artificially high contribution). 

6.5.2. Models’ performance 

We tested four types of fingerprints: AP, TT, RDK and MG2 and found their 

performance very similar with little advantage of MG2; so we proceeded only with 

models on these descriptors. Models had sufficiently high performance; predictions of all 

models were in strong agreement, so for final analysis we used consensus predictions for 

each data set. 
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Table 6.7  Test set predictive performance of QSAR models trained on 6 anticancer 

endpoints using MG2 fingerprints. 

Dataset Model Balanced 

accuracy 

Sensitivity Specificity Kappa 

HCT116 gbm 0.83 0.84 0.82 0.5 

HCT116 Rf 0.84 0.83 0.85 0.56 

HCT116 svm 0.81 0.78 0.85 0.52 

HCT116-p53-/- svm 0.81 0.78 0.84 0.51 

HCT116-p53-/- gbm 0.82 0.83 0.82 0.5 

HCT116-p53-/- Rf 0.84 0.83 0.85 0.54 

K562 gbm 0.81 0.83 0.79 0.46 

K562 svm 0.8 0.79 0.8 0.46 

K562 Rf 0.82 0.83 0.81 0.5 

K562-TAX svm 0.77 0.73 0.8 0.42 

K562-TAX gbm 0.79 0.8 0.77 0.42 

K562-TAX Rf 0.79 0.78 0.8 0.45 

CCRF-CEM svm 0.78 0.73 0.83 0.51 

CCRF-CEM gbm 0.8 0.79 0.81 0.52 

CCRF-CEM Rf 0.8 0.79 0.82 0.54 

CEM-DNR svm 0.75 0.71 0.79 0.36 

CEM-DNR gbm 0.77 0.77 0.76 0.36 

CEM-DNR Rf 0.78 0.77 0.78 0.3 
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6.5.3. Interpretation results 

Purine fragment 

For purine GMM-based clustering detected a specific environment, in which its 

contributions to cytotoxicity became high: Figure 6.25. This was found primarily for 

HCT116p53-/-. For this cell line purine fragment is highlighted in blue and the context – 

in orange. This context was 6-benzylamino group attached in position (2) of purine. This 

combination of features represents known cyclin-dependent kinase (CDK) inhibitor 

scaffold. For the rest of cell lines compounds with this scaffold were not recognized as a 

distinct cluster, but they had high contributions (designated with  orange circle  for K562 

in Figure 6.25). 

Thus, GMM-based clustering rediscovered the pattern “purine + 6-benzylamino group”, 

representing known scaffold of CDK inhibitors.  

 

Figure 6.25. CDK inhibitor pattern revealed by GMM-based clustering for purine 

fragment. Top: examples of compounds with purine highlighted in blue, and 6-

benzylamino group determining CDK inhibition - in orange. Bottom: visualization of 

clustering results for two example cell lines. For HCT116p53-/- orange cluster contains 
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CDK inhibitors. For K562 those compounds are located in the left most part, designated 

by orange circle.   
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Thiophene-2-thiol + pyrrolopyrimidine group 

 

 

Figure 6.26.  Thiophene-2-thiol + pyrrolopyrimidine fragment 

Compounds bearing this scaffold (Figure 6.26) are structural analogues of nucleotides. 

Such agents realize their anticancer activity  typically via purine metabolism disruption. 

Interestingly, for these compounds GMM-based clustering found, that introduction of a 

sugar moiety leads to activity loss. This is non-typical for antimetabolites. Thus, these 

molecules may act via a distinct mechanism, which was attempted to be studied by 

docking. We chose ABL and c-KIT kinases as possible targets, because compounds were 

active mostly against K562 cell line derived from chronic myeloid leukemia (CML), 

where these proteins are key  For other cell lines sugar also led to activity loss, Figure 

6.27. These compounds were published (97); the paper doesn’t provide mechanism of 

action though. The majority compounds were non-toxic to BJ/MRC5 (97). 

We performed docking of both nucleobases and nucleosides to human ABL kinase 

(protein data bank code 2HYY) and c-KIT kinase (protein data bank code 1T46).  

Additionally, we checked PIM and JAK2, because of some structural similarity to known 

ligands thereof.  Results showed, that nucleobases had better (more negative) scores for 

2HYY and 1T46 than nucleosides. The scores are shown in Table 6.8. In the case of  

ABL the difference is the most striking. If we compare scores with measured IC50 we will 

find out that glycosides are inactive (pIC50<-4.3), while nucleobases are active in the 

range -4.73…-5.37 in log units: (97) Thus ABL  (and less likely C-KIT) is  supported as  

targets by docking.  For PIM and JAK2 no evidence was contributed by docking.  
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Figure 6.27 Pattern found by clustering for the fragment  “thiophene-2-thiol + 

pyrrolopyrimidine”. Top-left: structures  are glycosides with fragment highlighted in 

blue and  context highlighted in pink. Top-right – nucleobases with fragment in blue.  

Pink arrows point to location of glycosides Orange arrows – to location of nucleobases. 

Bottom:   for K562 and CCRF-CEM there are two clusters. For HCT116 glycosides are 

located in the leftmost part and nucleobases – in the rightmost, designated by pink and 

orange circle.   

 

Table 6.8 Mean  docking scores for Thiophene-2-thiol-substituted   pyrrolopyrimidine 

nucleobases (2nd cluster) and nucleosides (1st cluster). Tested targets are ABL and C-KIT 

kinase. 

PDB code 1T46 2HYY 

kinase C-KIT ABL 

Mean score  

1st cluster (nucleosides) -6.24 -4.67 

2nd cluster (nucleobases) -6.83 -6.19 

imatinib -13.8 -11.8 
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Table 6.9 Docking scores and experimental activities of  thiophene-2-thiol-substituted  

pyrrolopyrimidine nucleobases vs. nucleosides 

Structure 

(nucleobase) 

Vina  docking score for 

ABL kinase 

pIC50 for  

K562 

 

Nucleobase nucleoside Nucleobase nucleoside 

 

-5.7 -3.8 -5.29  <-4.3 

 

-5,9 -2.8 -5.37 <-4.3 

 

-6,9 -5.2 -4.85 <-4.3 

 

-6,5 -5.5 -4.73 -4.6 

 

-5.7 -6.0 -5.35 -- 

 

-5.4 -4.0 -5.41 -- 

 

-5.8 -5.4 -4.30 <-4.3 

 

 

Quaternary amine-containing moiety  

The fragment is shown in Figure 6.28. Clustering detected, that molecules featuring 

quaternary amine group at a distance of 4 single bonds away from (para-iodo)benzene 

ring were active against K562  and CCRF-CEM  (Figure 6.29). These compounds  are 

known from the literature as choline transport visualization agents (98). (Paper reports 
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compounds with a shorter/longer linker as well.) However, neither literature search nor 

substructure search of REAXYS database detected any data about anticancer activity of 

those (or similar) molecules.  

 

Figure 6.28. Quaternary amine-containing fragment 

We investigated potential mechanism of action. One possible target is Bcr-Abl – key 

protein in pathology of CML. Another target important in CML is C-KIT kinase. We 

performed docking of all compounds shown in Figure 6.29 to human  ABL kinase 

(protein data bank code 2HYY) and C-KIT kinase (protein data bank code 1T46).  

The results show, that compounds with 4 bond-pattern (2nd cluster) have a little better 

scores than those with longer/shorter one, However, the two groups of compounds are 

significantly different in mean heavy atom count (HAC): 16 and 21, respectively. Scoring 

function used here favors  a greater number of protein-ligand contacts and hence, larger 

molecule size (75). Therefore, we normalized scores by HAC and the difference vanished 

(Table 6.10.  Mean docking scores for quaternary amine derivatives with and without 

“four-bond-distance” pattern (explained in text). Tested targets are ABL and C-KIT 

kinase., last 2 columns). The ligand from the pdb-complex – imatinib -  has roughly the 

same scoring per heavy atom, Table 6.10. Thus, unlike previous example, this target is 

not supported by docking, though not ruled out.  
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Table 6.10.  Mean docking scores for quaternary amine derivatives with and without 

“four-bond-distance” pattern (explained in text). Tested targets are ABL and C-KIT 

kinase. 

PDB code 1T46 2HYY 1T46 2HYY 

kinase C-KIT ABL C-KIT ABL 

score Score / HAC 

1st cluster mean -6.5 -6.6 -0.4 -0.41 

2nd cluster mean -7.35 -7.15 -0.35 -0.34 

imatinib -13.8 -11.8 -0.37 -0.31 

 

We also docked our compounds to m- and n-cholinoreceptors (pdb codes: 5AFM, 6OL9), 

as they are choline derivatives. However, this also didn’t result any significant difference 

in scores between the two groups. Thus, all studied targets receive no support from 

docking and further studies are required.  



97 

 

 

Figure 6.29  Pattern found by clustering for quaternary amine-containing moiety. The 

pattern highlighted in structures on the right in orange is three single bonds-distant 

nitrogen and aromatic ring. Blue and orange arrows point at clusters, where these 

structures belong (blue cluster for K562 and orange for CCRF-CEM). Pink and orange-

pink arrows point at clusters where structures without the pattern belong. 

 

 

Phenylhydrazine derivatives 

The fragment shown on Figure 6.30  attracted our attention, since it had high 

contributions to all the endpoints, especially in two  environments shown in orange 

Figure 6.30, Figure 6.31. Thus, highly-toxicophoric pattern can be generalized as(o-

hydroxy)phenylhydrazine + fused heteroaromatic system. 

Phenylhydrazine  is a known cell poison (99); it causes heamolysis, single-strand DNA 

damage, and other severe harmful effects. This explains high contributions of this 
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fragment. However, in molecular environment that we detected, it had extremely high 

contributions.  Therefore, we attempted to explore possible mechanism of action of the 

fragment in that environment. We searched the REAXYS database and retrieved several 

similar scaffolds annotated with bioactivity, listed Table 6.11 

We performed docking to dihydrofolate reductase (DHFR) and dihydroorotate 

dehydrogenase (DHODH). The results suggest that there’s no difference between 

compounds, bearing the pattern and the rest (examples are given in Figure 6.31), as per 

scores (Table 6.12  Mean docking scores for  phenyl hydrazine  (explained in text). ). All 

compounds scored high, so, although both these targets could be relevant for them,  only 

experiment can confirm or disprove it.  

 

 

Figure 6.30. A: Phenylhydrazine fragment; B,C: two molecular contexts (in orange) 

“activating” the fragment. 
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Figure 6.31 Pattern found by clustering for phenylhydrazine derivatives. Phenylhydrazine 

is shown in blue and the “activating” context– in orange.  

Table 6.11 Possible targets for phenylhydrazine derivatives based on REAXYS database 

search.  

Example Target, mechanism 

 

Inhibition of DHODH 

 

SOD inhibition: 

oxidative stress 
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DHFR inhibition: 

antimetabolite 

 

Table 6.12  Mean docking scores for  phenyl hydrazine  (explained in text).  

PDB code 3f91 1d3g 3f91 1d3g 

kinase DHFR DHODH DHFR DHODH 

Score  Score / HAC 

1st cluster mean -9.39 -10.6 -0.32 -0.35 

2nd cluster mean -9.1 -10.5 -0.42 -0.48 

Native ligand from 

complex 

-8.4 -13.2 -0.33 -0.48 

 

6.5.4. Chapter summary 

As a result of applying GMM-based clustering we have discovered a number of novel 

potential anticancer patterns, which we attempted to validate by docking and literature-

based analysis. For quaternary amine-derivatives an anti-cancer pattern (against  K562) 

was suggested by clustering:  aromatic ring three-single-bond distant from charged 

center (highlighted in red on Figure 6.29). It has not been reported in literature before, 

though compounds were published as choline transport visualizing agents. For thiophene-

2-thiol-substituted purine compounds (pattern shown on Figure 6.27) clustering  

suggested that activity against all cancer cell lines is greatly reduced by glycosylation. 

This observation has been published earlier, but no mechanism has been established. We 

performed docking to different protein targets and it strongly suggested Abl and C-KIT 
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kinases: nucleobase compounds were scored higher than respective glycosides. For 

hydrazine-containing fragment we found a pattern with consistently high contributions 

and literature search and docking suggested several possible targets. Overall, the method 

developed in 6.4 showed to be helpful in search of anticancer patterns in large diverse 

datasets, though any results will require experimental validation. 

6.6. Software  

Benchmarking framework for interpretation methods of QSAR models 

GitHub repository https://github.com/ci-lab-cz/ibenchmark hosts a  collection of data 

sets, python script and examples (Jupyter notebook) to evaluate any method of interest. 

The input should be supplied as a text file containing interpretation results. The result is 

returned as a text file with performance metrics per-data set, and, if specified, per-

molecule.  

The GMM-based Extension to SPCI 

 Software is implemented as an open-source R package rspci 

(https://github.com/DrrDom/rspci). The input data should contain contributions of 

fragments obtained by SPCI software (or any other fragment-based  method, provided in 

the same format). Functionality of the package includes: 

 Building GMM models for the data supplied (for all or selected fragments)  

 Drawing the results: a histogram of the original data, kernel density estimate and 

Gaussians obtained. (See figures from chapters 6.4, 6.5 with fragments 

distributions) 

 Saving plots to a specified file. 

SPCI 

UIA has been already implemented as a standalone application: SPCI. During the 

course of this work, we added more features to it: 

https://github.com/ci-lab-cz/ibenchmark
https://github.com/DrrDom/rspci
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 The list of available descriptors was extended and now includes binary and 

count-based fingerprints from RDKit (Atom-pair, Morgan2, RDK, 

Topological torsion) 

 Building classification models for unbalanced data sets using the 

underdamping approach was implemented. 

 We developed a web-based version of the tool but with limited functionality: 

https://spci.imtm.cz, Figure 6.32 

 

Figure 6.32 SPCI web application 

UIA adaptation for GC models 

Since SPCI software is designed to work only with descriptor-based models, we decided 

to add UIA functionality to some ML library for graph-based learning. We chose 

DeepChem because of its convenience in building graph-based models for chemistry. The 

feature is available for version >= 2.3.  

To perform interpretation on a given data set, the user needs to build a  GraphConvModel  

(https://deepchem.readthedocs.io/en/latest/api_reference/models.html), and then apply 

ConvMolFeaturizer in “fragmentation mode” 

(https://deepchem.readthedocs.io/en/latest/api_reference/featurizers.html#convmolfeaturi

zer) to the data set. Then the difference in predictions between molecules and fragments 

is taken and the final results will be atomic contributions. These steps are already 

https://spci.imtm.cz/
https://deepchem.readthedocs.io/en/latest/api_reference/featurizers.html#convmolfeaturizer
https://deepchem.readthedocs.io/en/latest/api_reference/featurizers.html#convmolfeaturizer
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programmed; examples are given in the tutorial. So the user does not need coding 

(Tutorial # 28. Atomic contributions for molecules (83)).  
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Conclusions 

1. The benchmarks developed for evaluation of interpretation approaches of QSAR 

models demonstrated their applicability on a wide range of models. It was clearly 

demonstrated that interpretation accuracy depends on predictive accuracy of models and, 

thus, interpretation of only predictive models makes sense. We established that some 

machine learning methods (e.g. gradient boosting) and descriptors (e.g. atom pairs) more 

often result in higher interpretation quality. 

2. We demonstrated that end-to-end modeling methods, like graph convolution models, 

can be interpretable using the adapted universal interpretation approach. This confirms 

that the approach is applicable to any kind of models. 

3. Extension implemented for the universal interpretation approach was able to identify 

different molecular contexts of fragments and explain observed variability of fragment 

contributions. Fragments occurring in certain environment were more chemically reactive 

explaining the toxicity of corresponding molecules. 

4. Practical application of interpretation allowed to retrieve structure-activity 

relationships captured by models for a number of ecotoxicilogical end-points. We 

observed a good correspondence between fragments retrieved and known toxicophores, 

and also defined more precisely some of them. 

5. Practical application of the Extension developed allowed to retrieve important 

structural motifs from the large diverse in-house database of anticancer compounds. 

Together with molecular docking this allowed to suggest possible mechanisms of 

cytotoxicity for particular cancer cell lines. For instance, we found out that for a series of  

pyrrolopyrimidine  derivatives anticancer activity can be associated with C-KIT and ABL 

kinase. 
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Appendix 

Statistical performance of models built for  benchmarking data sets (6.2)  

For all regression datasets baseline 1-NN models demonstrated poor results irrespective 

of descriptors and machine learning method used (Figure 0.1). In almost all cases R2 was 

less than 0.3 for both test sets. In all cases performance of 1-NN models was significantly 

poorer than performance of other models. This indicates that these data sets do not have 

easily distinguishable patterns in chosen descriptor space and are not biased in that way. 

Performance of models under study on regression data sets varied for both primary and 

extended test sets and depended on the combination of descriptors and machine learning 

method. However, there were at least several models with almost perfect predictions for 

each data set. GBM models trained on count-based Morgan fingerprints achieved 

consistently high performance on all regression tasks (R2 = 0.95-1.0, Figure 0.1 a-h). 

Models trained on binary Morgan fingerprints followed by binary RDK fingerprints 

achieved the lowest performance across all data sets irrespective of the machine learning 

method used. Expectedly, binary fingerprints resulted in less predictive models than 

corresponding count-based fingerprints. SVM demonstrated lower accuracy on all 

regression data sets that could be explained by RBF kernel chosen whereas studied 

activities were additive and could be captured by simpler linear models. Performance of 

models on extended test sets was lower than on primary tests, but for highly predictive 

models this difference was absent or minimal. These models recognized correct patterns 

and challenging them by structural perturbations did not compromise their predictive 

performance. Therefore, we concluded that regression data sets do not have a hidden bias. 

Lower performance of weak models on extended test sets suggests rather model fault than 

a data set bias. 

Moderate performance of 1-NN models achieved for classification amide data set was 

expected, because an amide group is essentially distinguishable by fingerprints used. 

Performance of GBM, RF, SVM and GC models was much higher. Balanced accuracy 
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was greater than 0.9 for both primary and extended test sets (Figure 0.1 i-j) suggesting 

that in all cases models were able to capture relevant patterns. The second classification 

task, the pharmacophore data set, was much harder because the models trained on 2D 

descriptors should capture the 3D pattern. The best baseline 1-NN model trained on AP 

descriptors had balanced accuracy 0.66. Models under study demonstrated moderate 

performance, but higher than that of corresponding 1-NN models (Figure 0.1 k-l). GBM, 

RF and SVM models trained on count-based and binary AP descriptors had the highest 

balanced accuracy (> 0.8) on the primary test set. There was a slight difference between 

performance on primary and extended test sets. Models which had higher performance on 

the primary test set had higher performance on the extended test set similarly to 

regression models. 

GC models were among the best ones across all data sets confirming this modeling 

approach to be competitive to conventional ones in terms of predictive ability. 
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Figure 0.1 Performance of models on primary and extended test sets for regression and 

classification data sets.  
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Table 0.1 Correlations between count of patterns of interest for molecules of each 

regression data set and counts of the most common chemical elements. 

Dataset Pattern 1 

(SMARTS) 

Pattern 2 (SMARTS) 

[C,c] [O,o] [S,s] [N,n] Cl Br 

N [N,n] 0.09 -0.13 0.07 1 -0.02 -0.04 

N-O [N,n] 0.09 0.02 0.02 1 -0.04 -0.07 

[O,o] 0.06 1 0.07 0.02 -0.1 -0.04 

N+O [N,n]  0.23 1 0.1 1 -0.11 0.0 

Amide NC=O 0.09 0.3 0.11 0.25 0.04 0.02 
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Abbreviations 

ADME – Absorption, Distribution, Metabolism and Excretion (of drugs, xenobiotics) 

AP – Atom pairs (fingerprints) 

BBB – blood-brain barrier 

 CDK – Cyclin-dependent kinase 

CML – Chronic myeloid leukemia 

GMM – Gaussian Mixture Modelling 

DHFR – Dihydrofolate reductase 

DHODH – Dihydroorotate dehydrogenase 

HTS – High-throughput screening 

MDR – Multidrug resistance proteins 

MG2  – Morgan fingerprints of diameter 2 bonds 

MTT - 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; dye used in cell 

viability assay (MTT-assay). 

RDK  – RDKit fingerprints 

(Q)SAR – (quantitative) structure-activity relationship 

SOD – Superoxid dismutase 

TT – Topological torsions (fingerprints) 
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