
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

SELF-SUPERVISED LEARNING FOR RECOGNITION
OF SPORTS POSES IN IMAGE
POUŽITÍ SELF-SUPERVISED LEARNING PRO ROZPOZNÁNÍ SPORTOVNÍCH POZIC V OBRAZE

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. DANIEL KONEČNÝ
AUTOR PRÁCE

SUPERVISOR prof. Ing. ADAM HEROUT, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2021/2022

 Master's Thesis Specification

Student: Konečný Daniel, Bc.
Programme: Information Technology and Artificial Intelligence
Specialization: Machine Learning
Title: Self-Supervised Learning for Recognition of Sports Poses in Image
Category: Image Processing
Assignment:

1. Study the field of machine learning for computer vision and recognition of sports poses in
image and video.

2. Obtain and/or collect a data set (sets) of images of sports poses.
3. Experiment with methods of self-supervised learning on the collected data set (sets).
4. Demonstrate the usability of the developed techniques for recognition of sports poses.
5. Iteratively improve the developed techniques and the data set towards maximal usability.
6. Discuss the achieved results and propose possibilities for future work on the project; create

a poster and a short video for presenting the results of the project.
Recommended literature:

Goodfellow, Bengio, Courville: Deep Learning, MIT Press, 2016
Bharath Ramsundar, Reza Bosagh Zadeh: TensorFlow for Deep Learning: From Linear
Regression to Reinforcement Learning, O'Reily Media, 2018
Gary Bradski, Adrian Kaehler: Learning OpenCV; Computer Vision with the OpenCV Library,
O'Reilly Media, 2008
Richard Szeliski: Computer Vision: Algorithms and Applications, Springer, 2011
Grill J-B et al.: Bootstrap your own latent: A new approach to self-supervised Learning,
NeurIPS 2020, https://arxiv.org/abs/2006.07733
Caron M et al.: Emerging Properties in Self-Supervised Vision Transformers,
https://arxiv.org/abs/2104.14294
Sermanet et al.: Time-Contrastive Networks: Self-Supervised Learning from Video, ICRA
2018, https://arxiv.org/abs/1704.06888
Asano et al.: Self-labelling via simultaneous clustering and representation learning, ICLR
2020, https://arxiv.org/abs/1911.05371
L. Jing, Y. Tian, Self-supervised visual feature learning with deep neural networks: A survey,
IEEE PAMI, 2020

Requirements for the semestral defence:
Items 1 and 2, considerable development on items 3 through 5.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Herout Adam, prof. Ing., Ph.D.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: July 29, 2022
Approval date: November 1, 2021

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/24543/2021/xkonec75 Page 1/1

Abstract
The goal of this thesis is to recognize sports poses in image data with a self-supervised
learning approach to achieve high classification accuracy even with a low number of anno-
tated samples. Self-supervision is obtained by using images of the same scene from multiple
viewpoints at identical and different times. A convolutional neural network trained with
triplet loss learns embedding vectors of sports poses and a dense neural network classi-
fies them. The proposed self-supervised model achieves classification accuracy higher by
30–40 % than a supervised model when there are only tens or ones of annotated training
samples from each class. The main contributions of this thesis are a set of semi-automatic
tools to prepare a dataset for the specific training process, two datasets with sets of la-
bels for classification, and implemented models for specific self-supervised learning. The
results show that self-supervised learning is a meaningful approach for solving classification
problems with very few labeled samples.

Abstrakt
Cílem této práce je rozpoznání sportovních pozic v obrazových datech za pomocí přís-
tupu self-supervised learning pro docílení vyšší úspěšnosti klasifikace s použitím malého
množství anotovaných vzorků. Učení za pomocí self-supervision je docíleno snímky stejné
scény z různých úhlů ve stejných a různých časech. Konvoluční neuronová síť naučená s po-
mocí funkce triplet loss zakóduje sportovní pozice do latentních vektorů a plně propojená
neuronová síť tyto vektory klasifikuje. Model natrénovaný pomocí self-supervised learning
dosahuje o 30–40 % vyšší úspěšnosti než supervised model, když je trénovaný pouze na
desítkách či jednotkách označených snímků z každé třídy. Hlavními přínosy této práce jsou
nástroje pro přípravu datové sady pro tento specifický typ učení, dvě datové sady s více
anotacemi a implementované modely využívající self-supervised learning. Výsledky ukazují,
že učení za pomocí self-supervision je vhodný přístup pro řešení klasifikace za použití velmi
malého množství označených snímků.

Keywords
machine learning, computer vision, recognition, convolutional neural network, image, self-
supervised learning, time-contrastive learning, sports pose

Klíčová slova
strojové učení, počítačové vidění, rozpoznání, konvoluční neuronová síť, obraz, self-supervised
learning, time-contrastive learning, sportovní pozice

Reference
KONEČNÝ, Daniel. Self-Supervised Learning for Recognition of Sports Poses in Image.
Brno, 2022. Master’s thesis. Brno University of Technology, Faculty of Information Tech-
nology. Supervisor prof. Ing. Adam Herout, Ph.D.

Rozšířený abstrakt
Práce se zabývá rozpoznáváním sportovních pozic v obrazových datech. Pro naučení mod-
elu, který rozpoznání provádí, je použita metoda self-supervised learning, ve které se využívá
nějaké informace, která je v trénovacích datech už obsažena a není třeba ji doplnit do-
datečně. Trénovací data pak sama slouží modelu jako supervizor a ten se díky tomu naučí
data smysluplně reprezentovat v latentním prostoru. Kvalitní reprezentace pak obsahují
informace hodnotné k dalšímu využití a ignorují informace, které v originálních datech ne-
nesly žádnou hodnotu. Sportovní pozice zakódovaná v latentním vektoru je pak jednodušeji
klasifikovatelná a je tedy potřeba méně trénovacích snímků.

V této práci je self-supervised learning docílen metodou time-contrastive learning, která
využívá nahrávek jedné scény z více různých úhlů. Sportovní pozice v jednom konkrétním
čase, ačkoliv je zachycená z různých úhlů, je stále stejná. Zatímco pozice zachycená ze
stejného místa, ale po tom, co se odehrál v obraze nějaký pohyb, je jiná. Tato nápo-
mocná informace je ve videích obsažena automaticky, pokud jsou synchronizovaná v čase,
a není tedy třeba jakéhokoliv dalšího označování snímků pro naučení dobré reprezentace
sportovních pozic.

Pro co nejjednodušší přípravu takových dat je představena sada nástrojů, která videa
přepracuje do snímků vhodných přímo k tréninku. Nástroje pracují téměř automaticky,
vyžadují pouze minimum interakce s uživatelem. V první řadě uživatel určí začátek a konec
jednoho z nahraných videí, aby na začátku a konci nebyly nežádoucí záběry. Jedno video je
dostatečné, neboť synchronizační nástroj, který bude představen později, se postará o zkrá-
cení těch ostatních. Následně uživatel vybere ve videu ohraničující obdélník pro oříznutí
na oblast zájmu. Ořezávací nástroj se postará o to, aby výsledné snímky měly správné
rozlišení pro vstupní vrstvu neuronové sítě. Poté jsou videa plně automaticky synchroni-
zována pomocí dense optical flow, kdy je nalezen překryv videí s největší korelací směru
pohybu ve videích a následně jsou videa patřičně zkrácena. Nakonec je použit detektor
pohybu pro rozpoznání, zda se v obrazu udál dostatek změn, aby mohly být snímky brány
jako rozdílné a uloženy pro trénink jako obrázky. Detektor využívá sparse optical flow
a následné zpracování vektorů pohybu, aby co nejpřesněji detekoval snímky s rozdílnými
sportovními pozicemi.

Dále jsou prezentovány 2 datové sady, které byly použity při vývoji a následném testování
nástrojů a modelů v této práci. První z nich obsahuje pohyby ruky natočené od před-
loktí níže k prstům s tím, že se ruka pohybuje převážně v zápěstí a v prstech. Tato
datová sada byla použita pro vývoj a testování nástrojů pro přípravu datové sady pro time-
contrastive learning. Druhá datová sada je tvořena nahrávkami člověka převážně od kolen
výše, ve kterých provádí různé sportovní pózy pomocí pohybů pažemi. Ve videích se nijak
nemění pozice těla ani hlavy, pouze se ohýbají paže v ramenech a loktech. Videa jsou
natáčena ve dvou prostředích a osoba na nich zachycená má různé oblečení pro dosažení
větší různorodosti. Tato datová sada byla připravena pomocí zmíněných nástrojů a následně
použita pro vývoj a vyhodnocení modelu trénovaného pomocí self-supervised learning.

Model pro klasifikaci sportovních pozic se skládá ze dvou částí: enkodér a klasifikátor.
Enkodér je konvoluční neuronová síť a má za úkol nalézt co nejhodnotnější reprezentace
sportovních pozic. Jeho architektura je založena na síti ResNet-50 s upraveným výstupem
a je učený za pomocí funkce triplet loss. Klasifikátor přijímá na vstup latentní vektory
v předem určené dimenzionalitě a jeho výstupem jsou pravděpodobnosti příslušnosti tohoto
vektoru k jednotlivým třídám. Jedná se také o neuronovou síť, ale pouze s jednou skrytou
plně propojenou vrstvou s nelineární aktivační funkcí, neboť řešený úkol už je jednoduchý
a nemusí být poskytnuto mnoho trénovacích dat. Nakonec je také implementován model

konvoluční neuronové sítě s téměř ekvivalentní architekturou, pouze učený se supervizí.
Tato síť slouží k porovnání úspěšnosti přístupů self-supervised a supervised learning na
různě velkých datových sadách.

Implementované modely jsou vyhodnoceny pomocí různých metrik a následně je disku-
tována jejich úspěšnost v řešení úkolů, ke kterým byly určeny. Nejprve je provedena vizuální
analýza latentního prostoru se zakódovanými pozicemi po tom, co je redukována dimen-
zionalita pomocí t-distributed stochastic neighbor embedding. Z této vizualizace vyplývá,
že se enkodér zvládne naučit reprezentace sportovních pozic i s jejich příslušnými vlastnos-
tmi, avšak na dané datové sadě nedokáže kvalitně generalizovat mezi jednotlivými scénami
a osobami. Dále je provedeno vyhodnocení zakódovaných pozic na prostorech o různých
dimenzích, ze kterého vyplývá, že danou datovou sadu je nejvhodnější reprezentovat v 64 di-
menzích. Nakonec je porovnán model trénovaný pomocí self-supervised learning s modelem
trénovaným pomocí supervised learning na různě velkých datových sadách. Z experimentu
vyplývá, že při použití pouhých desítek či jednotek označených snímků v jednotlivých
třídách má self-supervised model o 30–40 % vyšší úspěšnost rozpoznání sportovní pozice.
Při použití vyššího množství trénovacích dat je self-supervised model lepší než supervised
model, či alespoň dosahuje stejných výsledků.

Self-Supervised Learning for Recognition
of Sports Poses in Image

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of prof. Ing. Adam Herout, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Daniel Konečný

July 23, 2022

Acknowledgements
I would like to express my sincere gratitude to my supervisor prof. Ing. Adam Herout,
Ph.D. for his valuable advice, professional guidance, and important feedback. I would also
like to thank Mgr. Lada Konečná for helpful consultations of mathematical topics.

Contents

1 Introduction 2

2 Neural Networks in Computer Vision 3
2.1 Machine Learning . 3
2.2 Convolutional Neural Networks . 7
2.3 Recognition as a Supervised Learning Task 10
2.4 Self-Supervised Learning for Computer Vision 11

3 Obtaining Datasets for Self-Supervised Learning 15
3.1 Creating Dataset for Time-Contrastive Learning 16
3.2 Dataset of Sports Pose Images . 22

4 Recognition of Sports Poses from Images 27
4.1 Representing Sports Poses in Latent Space 27
4.2 Sports Pose Classification from Embeddings 29
4.3 Classifier Trained with Supervision . 30
4.4 Additional Usage of Sports Pose Encodings 31

5 Evaluation of Models Trained with Self-Supervision 32
5.1 Visual Analysis of Latent Space . 32
5.2 Evaluation of Encoder on Validation Dataset 35
5.3 Comparison of Self-Supervised and Supervised-Trained Models 36

6 Conclusion 40

Bibliography 42

1

Chapter 1

Introduction

Learning algorithms of many models used for recognition are nowadays relying on large
datasets and also high computational power. Whereas the computational power of com-
puters is still expected to increase, the creation of larger and more accurate annotated
datasets is a task much harder. Labeling usually requires some sort of manual work that
cannot be automated unless the required task was previously solved. This problem can be
minimized by using unlabeled data to learn their representations and then needing only
a smaller amount of labeled samples to provide good classification results. This method is
referred to as self-supervised learning.

The introduction to machine learning and convolutional neural networks is covered
at the beginning of Chapter 2. Then, important features of convolutional neural networks
that are used in this thesis are described. After that, current advances in sports pose
recognition are presented. The following section introduces self-supervised learning and
its advantages and disadvantages in deep learning. Finally, various loss functions for self-
supervised learning are discussed.

This thesis discusses self-supervision achieved with a time-contrastive approach when
one scene is filmed from multiple viewpoints and the difference in time and camera position
is used as supervision that needs no labeling. The recorded video footage has to be normal-
ized to the network’s input, synchronized, and then motion detection is needed to produce
individual training images. This whole process is specified in detail in Chapter 3. A set
of tools for semi-automatic preparation of such dataset is proposed. Finally, 2 different
datasets with multiple sets of labels are presented. The datasets were recorded for this
thesis and were prepared with the introduced tools.

The classifier model can be divided into 2 parts: the first one encodes the image into
an embedding and the second one recognizes the sports pose from the embedding. Chapter 4
describes both of these models and their specific parameters. Inputs of the first model are
images with sports poses and outputs are their representations – embeddings in a form of
latent vectors. The first model is a convolutional neural network trained with triplet loss
function, the second model is a simple neural network with densely connected layers, which
classifies the embeddings into given categories.

Evaluation of the performance of all described models is provided in Chapter 5. At first,
class distribution is visually analyzed with t-distributed stochastic neighbor embedding to
better understand the embedding space. Afterward, the models are evaluated on vali-
dation data and their different settings are compared to each other. Finally, the overall
performance of the self-supervised model on sports poses is measured and compared to the
supervised model. All evaluations are discussed and their key takeaways are emphasized.

2

Chapter 2

Neural Networks in Computer
Vision

Machine learning (ML) is playing a great role in solving many tasks proposed by the field
of computer vision (CV) [19]. Analyzing objects from images is a task widely considered as
not definable by a set of conditions and therefore, some sort of artificial intelligence (AI)
has to be used, as is further discussed in Section 2.1. When problems got more complicated,
ML models had to be increased in depth, which led to the introduction of the term deep
learning (DL).

Neural networks (NNs) became a very powerful computing architecture in machine
learning. Section 2.2 informs how the introduction of convolutional layers to neural networks
further increased their efficiency in image processing. Various other operations were also
implemented into convolutional neural networks (CNNs) to fit the needs of specific CV
challenges.

Deep learning has untangled many problems which were not solvable with other meth-
ods. Recognition, being one of these problems, requires a large amount of training data
when the model is using supervised learning. This matter is further described in Section 2.3.
The quality of annotated data available for the training process has a great influence on the
model performance and as such became a challenge in the further development of recogni-
tion models.

Therefore, learning algorithms that do not require large datasets are being developed.
One of these approaches is self-supervised learning introduced in Section 2.4. It extensively
uses a large amount of data without any labels as these are easier to obtain. A model trained
in this manner needs a smaller amount of annotated data to generalize. Such an attribute
is very valuable since labeling can often be done only by hand and is very time-consuming.

2.1 Machine Learning
Computers are very good at solving problems that can be specified with a set of conditions
and states, such as a game of chess. The computational power that it possesses allows it
to analyze the game many steps ahead. Whereas the human mind finds these tasks very
complicated. It is, therefore, no surprise that computers managed to defeat the best chess
players in the world. That is why one of the ways to create an artificial intelligence (AI)
is focused on the knowledge base approach. The main hypothesis was that every problem

3

can be described in a formal language. After designing a set of logical inference rules, the
problem would be solved with just a simple inference.

Unfortunately, when it comes to solving real-world problems, this approach cannot
be applied. Humans have immense knowledge about the world and applying it is very
subjective and intuitive. It cannot be formalized in any way. The knowledge base AI
often did not understand the problem correctly and provided misleading results. Another
disadvantage is that the formalization itself was an unwieldy process requiring a large
amount of human staff [5].

Different approaches had to be chosen to solve real-world tasks. Instead of modeling
the real world with conditions and rules, probabilistic models with a set of parameters were
chosen. Most parameters are to be set automatically based on the data provided to learn the
problem’s nature. Logistic regression is one of these basic models that provide subjective
reasoning based on the information that it learned from previous real-world examples.
It finds a correlation between inputs and various outcomes. The computation involves
a weighted sum of the inputs and a non-linear transformation of this sum, illustrated in
Figure 2.1. Parameters that are adjusted are the weights of each input and a bias, a single
number that is added to the sum, which can be also seen as a weight to a constant input
of +1.

+1

𝑥1

𝑥2

𝑥3

Σ

𝑏

𝑤1

𝑤2

𝑤3

𝜎 ℎ

Figure 2.1: Logistic regression as an elementary model in machine learning. 𝑥𝑘, 𝑘 ∈ {1, 2, 3}
are the inputs and ℎ is the resulting output that equals the determined probability of the
input.

Inputs of these models are called features of the data and the performance of the model
heavily depends on their representation. If the features correlate with the different out-
comes, the model is expected to provide good results. If we wanted to recognize a sports
pose and the data provided would be positions of all joints and both eyes in a human body,
the task would be fairly easy. After normalizing the scene to always have the same scale
and point straight to the eyes, the task gets even simpler. Inputs of such model would
be coordinates of mentioned objects and outputs probabilities of each sports pose. This
solution introduces another lot more complicated challenge – the coordinates are hard to
obtain without any special tools. What we would like to have is a model that can work on
simple image data since obtaining those is affordable.

Images can be described with pixel values and provided to the input but individual
pixels have no direct correlation to sports poses, therefore, the predictions would be useless.
There is a number of examples of why this is true but perhaps the easiest one is translational
dependence. Having the sports pose moved just a few pixels in any direction from where
it is expected to be, makes the results incorrect. Additional problems would be caused by
shadows, different clothes that the person is wearing, etc.

4

This obstacle can be overcome by having the ML model discovering not only the mapping
of features to outputs but also finding the useful features in the raw data on its own. This
makes the model not only work on raw data but also generalizes it to different tasks. For
example, not only recognizing sports poses but also vehicles with the same model only
trained on different data. Logistic regression is not capable of doing such predictions,
some more complex solution has to be found. In computer science, the concept of building
complex structures from simple modules is well known and can be used in machine learning
as well. By combining many logistic regressions into a structure, a neural network (NN) is
created [5].

These networks consist of neurons – logistic regressions. Its non-linear function can
be adjusted to fit the needs of a specific task and it is often referred to as an activation
function. The capability to solve complex problems arises from the structuring of simple
neurons into groups called layers. The key is not doing the mapping of abstract features
in one task but dividing it into multiple simple mappings. The input layer, also called
the visible layer because its data can be easily observed, provides data to the following
layer. The first simple mapping is done by the second layer and each following layer uses
the mappings of its predecessor to obtain more complex information from the data. These
following layers are also called hidden because their values are not given in the data, they
have to be determined by the model. Finally, the last layer provides outputs in a format
specified by its activation function.

With tasks becoming more complicated, the number of layers is growing bigger. As
there was an increase in the depth of the graph, such networks were called deep neural
networks, and their usage was referred to as deep learning (DL).

Neural network for classification can be seen as function 𝑦𝑦𝑦 = 𝑓(𝑥𝑥𝑥|𝜃𝜃𝜃) that maps input
vector 𝑥𝑥𝑥 to a category 𝑦𝑦𝑦 with parameters of the network given by 𝜃𝜃𝜃. It is also possible to
decompose the neural network function 𝑓 to multiple functions, each one representing one
layer, applied in the correct order. NN with two hidden layers 𝑓 (1), 𝑓 (2) and one output
layer 𝑓 (3) is representing function:

𝑦𝑦𝑦 = 𝑓(𝑥𝑥𝑥) = 𝑓 (3)(𝑓 (2)(𝑓 (1)(𝑥𝑥𝑥))). (2.1)

Network parameters 𝜃𝜃𝜃 are basically weights and biases of each neuron and they are un-
known when the model is constructed. The ideal values of parameters cannot be computed
in a simple way because of the non-linearity of neural networks that causes most of the loss
functions to become non-convex. Loss functions are going to be further explained later in
this section. NN parameters have to be somehow initialized and iteratively improved to
provide better results. This iterative process is called learning or training and its goal is to
approximate some function 𝑓* that provides accurate results for a given problem. That is
achieved by finding parameters 𝜃𝜃𝜃 that result in such approximation [5].

Non-linear results of neural networks are achieved with activation functions. There are
lots of various functions with different use cases, but two of them are very common. One is
a sigmoid function with Equation 2.2, which maps any real number to a number between
0 and 1. It is often used to represent probability. The other activation function is rectified
linear unit (ReLU) (Equation 2.3) that is linear for any positive number and 0 otherwise.
ReLU is very often used in later discussed convolutional neural networks.

𝜎(𝑥) =
1

1 + 𝑒−𝑥
(2.2)

5

𝑓(𝑥) = max(0, 𝑥) (2.3)

The learning algorithm consists of multiple stages that repeat until the model is produc-
ing satisfactory results. These stages are explained in detail in the following paragraphs.

1. Forward propagating data – inference.

2. Computing gradients with back-propagation algorithm.

3. Calculating learning rate.

4. Performing learning step of the model with the optimization algorithm.

Evaluation 𝑦𝑦𝑦 of samples 𝑥𝑥𝑥 is computed by forward propagating the samples through the
network. That means evaluating all layers in the correct order as illustrated in Equation 2.1.
Correct values 𝑦𝑦𝑦* = 𝑓*(𝑥𝑥𝑥) are known because the training data are annotated with them.
The loss (or cost) function can be used to compute how good the approximation 𝑓 of 𝑓* is.
Loss functions are designed to fit specific tasks and data distribution. When it is necessary
to compute some sort of distance on data that probably come from Gaussian distribution,
the Mean Squared Error function is often used.

For classification problems, the typical choice is a measure called cross-entropy. It is
based on the Kullback–Leibler divergence, which measures the difference between two prob-
ability distributions. Cross-entropy computes the expected number of bits needed to repre-
sent data coming from the distribution 𝑝 while using the distribution 𝑞 and it is calculated
as follows [11]:

H(𝑝, 𝑞) , −
∑︁
𝑦

𝑝(𝑦) log 𝑞(𝑦). (2.4)

Gradients can be computed in many different ways but the most common one for models
that are working on large datasets is stochastic gradient descent (SGD). Therefore, this is
the only one discussed in this thesis. Generally, a gradient is a vector pointing in the
direction of the steepest ascent. By following such a vector, the local maximum can be
reached. In machine learning, the thought is often reversed – the goal is to reach the local
minimum, but the main idea remains the same. For the number of samples 𝑚 and loss
function 𝐿, gradient 𝑔𝑔𝑔 is computed with this equation:

𝑔𝑔𝑔 =
1

𝑚

𝑚∑︁
𝑖=1

∇𝜃𝜃𝜃𝐿(𝑓(𝑥𝑥𝑥(𝑖)|𝜃𝜃𝜃), 𝑦*(𝑖)). (2.5)

The direction of the next step is computed but another variable called the learning rate
is still unknown. It represents the size of the step and it has a vast impact on the training
performance. One possible solution is to keep the learning rate fixed for the whole training
but better results can be achieved with more advanced algorithms. The first improvement
can be achieved by computing a specific learning rate for each parameter of the network.
The second way to achieve better results is by changing the learning rate throughout the
training process.

The update of parameters is done with an optimization algorithm. It uses previously
computed gradient 𝑔𝑔𝑔 and other algorithm-specific parameters to update the network’s pa-
rameters. It usually incorporates the calculation of the learning rate. Very common is

6

the use of the Adam optimization algorithm which also uses the previously mentioned im-
provements for a more useful learning rate. The algorithm uses the mean and uncentered
variance of parameters to adapt the learning rates. The computation goes as follows [9].

𝑠𝑠𝑠 = 𝜌1𝑠𝑠𝑠 + (1 − 𝜌1)𝑔𝑔𝑔 (2.6)

𝑟𝑟𝑟 = 𝜌2𝑟𝑟𝑟 + (1 − 𝜌2)𝑔𝑔𝑔 ⊙ 𝑔𝑔𝑔 (2.7)

𝑠𝑠𝑠 =
𝑠𝑠𝑠

1 − 𝜌1
(2.8)

𝑟𝑟𝑟 =
𝑟𝑟𝑟

1 − 𝜌2
(2.9)

∆𝜃𝜃𝜃 = −𝜖
𝑠𝑠𝑠√
𝑟𝑟𝑟 + 𝛿

(2.10)

𝜃𝜃𝜃 = 𝜃𝜃𝜃 + ∆𝜃𝜃𝜃 (2.11)

Where:
𝜌1, 𝜌2 are exponential decay rates for moment estimates (mean and variance, usually

initialized to 0.9 and 0.999 respectively),
⊙ is an element-wise product,
𝑠𝑠𝑠 is an updated biased first-moment estimate,
𝑟𝑟𝑟 is an updated biased second-moment estimate,
𝑠𝑠𝑠 is a correct bias in the first moment,
𝑟𝑟𝑟 is a correct bias in the second moment,
𝜖 is a step size (usually initialized to 0.001) and
𝛿 is a small constant used for numerical stabilization (usually initialized to 10−8).

Another important part of the training process is how the data samples are handled.
It is possible to update the network’s parameters after each sample but also with the
whole dataset. The ideal solution is to divide the dataset into minibatches of size ranging
from lower tens to higher hundreds of samples. Parameters are then updated with each
minibatch. After all minibatches of the dataset have been used for training, the process
can start again on the previously minibatches. It is also important to shuffle the data in
the dataset and in the minibatches. If the same order of samples was used, the network
might have problems with not generalizing enough.

Every time the whole dataset has been handled, one epoch has passed. Training can
consist of many epochs, depending on the problem difficulty, network size, and dataset.
It is important to measure the network’s performance on data it has never seen during the
training. Once the model’s accuracy is not improving and/or loss is approaching nearly
zero values, the training will no longer provide better results. Therefore, the dataset should
be divided into training and validation data.

2.2 Convolutional Neural Networks
Convolutional neural networks are a special kind of NNs including at least one layer that is
computing convolution. These networks are used for processing data with grid-like topolo-
gies, such as sequences and images. This thesis focuses on image data and therefore, only

7

those will be discussed further on, even though the computation can be generalized to other
input types.

At first, convolution is discussed as an operation on image data with its important
properties. Its usage as a layer in a neural network is explained in detail. Then, other
operations important for CNNs are introduced and explained. Once most of the important
principles of convolutional neural networks have been mentioned, a specific convolutional
neural network architecture is presented.

2.2.1 Convolution on Image Data

Convolution is a mathematical operation of two functions that produces a third function
that describes how one modifies the other in shape. This is a very general definition that
is not necessary for image processing and can be made more specific. It is only necessary
to consider discrete values of inputs, continuous functions are not used in CNNs. Images
usually consist of multiple channels (typically red, green, and blue), but for convolutional
neural networks, channels are handled separately. For that reason, images will be discussed
as 2-dimensional arrays of numbers only.

Convolution computes a weighted sum of values across a fixed-size area of the image. It
takes a 2-D image input and a 2-D array of weights called a kernel. Images can be extended
on the edges with padding, which are basically pixels with a value of zero. Since convolution
changes the size of the input image, padding is often used to equalize the sizes [4]. The
resulting 2-D array is often referred to as a feature map and it is computed by multiplying
the input value with the corresponding kernel value for all of the overlapping elements and
then summed together. After that, the kernel moves one step further on the input and the
next value of the feature map is calculated the same way until the whole input is processed.
Figure 2.2 illustrates one step of the computation.

Σ

× × ×
× × ×

× × ×

Figure 2.2: Example of 2-dimensional convolution with input size 4 (blue), kernel size 3 (red)
and padding size 1 (white). The feature map (dark purple) has the same size as the input
because of the padding.

The operation of convolution is often denoted with an asterisk * and for input 𝐼 of size
𝑚× 𝑛 and kernel 𝐾, feature map 𝐹𝑀 is calculated as:

𝐹𝑀(𝑖, 𝑗) = (𝐼 *𝐾)(𝑖, 𝑗) =
∑︁
𝑚

∑︁
𝑛

𝐼(𝑚,𝑛)𝐾(𝑖−𝑚, 𝑗 − 𝑛). (2.12)

Layers that perform convolution are not that different from normal dense layers men-
tioned in the previous section. The input image is the layer’s input, weights are the kernel
values and the output of the layer is the feature map. When training is performed, the goal
is to find kernel values that produce the best results. Kernels are usually called filters in

8

the CNN context, therefore, this terminology will be used from now on. Each convolutional
layer often includes more filters and produces an equal number of feature maps, one feature
map from each filter applied to the input. That means 2-D input data are transformed
into 3-D data, as there are multiple 2-D feature maps of the same size. The following
convolutional layer applies filters to each input and sums the results over each filter. Color
images on the input are handled the same way as if each channel was a feature map from
a previous convolutional layer, there is no difference between them.

Convolution is a very important operation for image processing because it holds many
essential properties. Since it is computed over multiple neighboring values, the context
of pixel values is taken into account, not just the single values. That enables pattern
recognition in images. Simple patterns such as shadow information and edges are layer by
layer combined into more complex patterns until an object detection can be done. Another
important property is equivariance, which means that the position of objects in the image
plays no role in detection. Finally, convolution has low memory requirements that are not
dependent on the input size, only values that are stored are 2-D filter arrays [5].

2.2.2 Additional Important Parts of Convolutional Neural Networks

Convolutional layers are usually followed by pooling layers in CNN architecture. Pooling
is a function that for each value of the input grid computes a summary statistic of its
nearby values. The most common statistics are maximum and average. For example, the
max pooling layer with 2× 2 pool size takes a maximum of every 2× 2 region in the image
and creates a new image constructed out of the maximum values. A simplified version of
this operation is in Figure 2.3. In this case, the output size will be smaller than the input
size. To keep the size uniform, padding must be added the same way it was added during
convolution.

12 20 30 0

8 12 2 0
2×2 Max Pool−−−−−−−−−→

20 30

34 70 37 4 75 37

75 13 25 12

Figure 2.3: Max pooling of 4× 4 grid into a 2× 2 grid with pool size also 2× 2. From every
region, the maximal value is taken to the output.

Pooling layers make the model invariant to small translations. Even when the input has
moved a few pixels in some direction, pooled outputs should not change much. Pooling can
be also easily used for downsampling of images when the stride is set to 2 or more. Another
use case of pooling is handling images of varying sizes because classifiers are accepting only
images with fixed size [5].

Residual blocks made a vast impact on the development of convolutional neural networks.
While the recognition problems got more complicated and datasets enormous, the need to
make CNNs deeper arose. Unfortunately, the performance of the networks did not improve
by just adding more layers. Gradients could not be back-propagated all the way to initial
layers.

The solution to this problem came with residual blocks that introduced a simple con-
nection that bypassed blocks with convolution and pooling, as shown in Figure 2.4. This

9

connection symbolizes a simple identity function, it takes the input and outputs it un-
changed. When such an identity connection bypasses every convolutional block, the neural
network can basically work as an identity function. The same principle can be applied
when gradients are computed, therefore, larger gradients are back-propagated to the initial
layers [6].

𝑥 Conv 𝑐 𝑐(𝑥) Pool 𝑝 𝑝(𝑐(𝑥)) + 𝑝(𝑐(𝑥)) + 𝑥

Figure 2.4: Residual block with bypassed convolutional and pooling layers. Rectangular
nodes symbolize data and ellipsoidal nodes are operations.

Dropout layer is used to deactivate some neurons during the training process and by
that, it is trying to simulate different models. For each mini-batch of data, some percentage
of neurons have their activation function set to zero. The training step is done as usual:
inference, back-propagation, and weight update. Then, for the next mini-batch, different
neurons are chosen to produce output with a value of zero. Dropout is a computationally
inexpensive way to regularize models [5].

2.3 Recognition as a Supervised Learning Task
Recognition is one of many computer vision tasks and it can be further divided into multiple
more specific categories. The most common one is classification – the recognized image is
supposed to be assigned a class from a previously known set. This thesis focuses specifically
on sports poses classification, however, the other recognition varieties are worth mentioning
as well. Detection and segmentation challenges are trying to localize objects in images with
a bounding box or pixel-wise, respectively. A very specialized task is a pose estimation
where the model is trying to assign a specific structure of connected joints to a human
body.

Supervised learning is one of the most general training methods. The main prerequisite
is generally a dataset with annotated samples. For the classification task, each data point
has to have a class assignment. During the training procedure, the model is trying to assign
the correct class to each sample in a mini-batch and compare it to ground truth – the real
class of the sample saved in the dataset. If the model is not successful, the information is
back-propagated through the network to improve on the next mini-batch inference.

Nowadays, models are trained on datasets of millions or even billions of data points.
Networks with a number of layers well over 100 have enough parameters to be able to
classify very complicated images into a large number of categories (even tens of thousands
of hierarchically divided ones). An important property of each classifier is its ability to
generalize – to classify correctly images it has never seen. Generalization is achieved with
training on immense datasets with a large variety of images.

2.3.1 ResNet Architecture of Convolutional Neural Networks

This thesis implements residual network ResNet-50 from [6] as a backbone, a structure
of convolutions, pooling, and other operations to obtain information from images. This

10

network was chosen because of its well-known architecture which still provides good results.
It can be easily compared to other results since it is widely used across the whole computer
vision field. Its depth and number of parameters are not as high as the newer architectures
have and therefore, might be easier to train on data. As an alternative, a MobileNet-V2
architecture was also tested [13]. Although it learned faster, its results did not achieve the
ResNet’s accuracy. It is easily possible to use other CNN architecture as a backbone, the
only difference might be the input size that has to be adjusted.

The network uses a well-known structure of convolutional layers followed by pooling
layers, where the number of convolutional filters corresponds to the size of the stride and
the number of filters in the previous layer. When the stride size is 1, the input and outputs
of convolution have also the same size and therefore, the number of filters stays the same.
If the image size is decreased with stride size equal to 2, the number of filters doubles.
In the beginning, convolution with filter size 7 × 7 is used but afterward, standard 3 × 3
convolutions are implemented.

The head of the network has a densely connected layer with a softmax activation func-
tion. This network introduces residual blocks further explained together with the other
mentioned concepts in Section 2.2. This allows the network to have higher tens or even
lower hundreds of layers and still be able to learn well. The network also uses batch nor-
malization after each convolution but before the activation. With the exception of the
network’s output, Rectified Linear Unit is used as an activation function. An example of
the architecture in a simplified form is in Table 2.1.

2.3.2 Current Advances in Sports Pose Recognition

Most of the current research focuses on sports pose estimation which is a different task than
sports pose classification done in this thesis. Researchers also tried yoga pose recognition
from body contours but the variety of poses did not draw near to all possible options [2].
However, with the publishing of the Yoga-82 dataset, results of different supervised-trained
models were also analyzed [20]. Summarized in Table 2.2 are the results of classifying
images from the Yoga-82 dataset with various CNN models.

The Yoga-82 dataset contains 82 third-level classes of yoga poses grouped into 20 second-
level classes that are further merged into 6 first-level classes. The poses are grouped ac-
cording to the posture and pose look. Of course, not all poses can be easily assigned to one
of the 82 third-level classes, some variation has to be taken into account. The hierarchy
of classes can be used to improve the classification or to estimate a pose type with higher
accuracy – reported first, second, and third-level accuracy is 89.81 %, 84.59 %, and 79.08 %,
respectively, for top-1 accuracy on DenseNet-201.

Yoga as a sport includes an extensive amount of poses with a variety that stands out
amongst other sports. The poses can be also sorted into groups and thus create a hierarchy
that can be further used for classification as can be seen in [20].

2.4 Self-Supervised Learning for Computer Vision
Self-supervised learning is a method of training a model first to learn data representations
on unannotated data and then to use annotated data to train another model for classification
of the representations. The first model learns patterns in the data and how to represent
the needed information in it with a latent vector. There is no need for any labels since the
data itself is used for supervision. Means of obtaining the supervision differ upon the task

11

Repeated Layer Settings
1× Input Size: (224, 224,3)

1× Conv2D
Filter count: 64
Kernel size: (7, 7)
Stride size: (2, 2)

6× Conv2D
Filter count: 64
Kernel size: (3, 3)
Stride size: (1, 1)

1× Conv2D
Filter count: 128
Kernel size: (3, 3)
Stride size: (2, 2)

7× Conv2D
Filter count: 128
Kernel size: (3, 3)
Stride size: (1, 1)

1× Conv2D
Filter count: 256
Kernel size: (3, 3)
Stride size: (2, 2)

11× Conv2D
Filter count: 256
Kernel size: (3, 3)
Stride size: (1, 1)

1× Conv2D
Filter count: 512
Kernel size: (3, 3)
Stride size: (2, 2)

5× Conv2D
Filter count: 512
Kernel size: (3, 3)
Stride size: (1, 1)

1× Dense Units: 1000
Activation: Softmax

Table 2.1: ResNet-34 architecture with only the main layers mentioned together with their
settings. Some layers are repeatedly used after each other, the number of repetitions is in
the first column. Residual connections are over every 2 convolutional layers except the first
one.

and data available. The second model needs to use an annotated dataset to assign classes
to latent vector output by the first model. Classification is made easier with the data being
represented efficiently and there is no need for large annotated datasets to achieve good
generalization properties of the model.

There are various ways to use the image data itself as supervision. For instance,
it is possible to use a small distortion on the original data and expect it to not change
its meaning. With this, different images that are bound together are created automatically.
Self-supervision can also be used for colorization tasks, the original color images are easily
converted into grayscale images and the model’s goal is to colorize it to match the original
sample. Another common challenge is generating missing image data, which is done with
context encoders. Some part of the image is cropped out and the encoder is trying to fill
it in to its previous form.

This thesis uses models called time-contrastive networks (TCNs) introduced in [15]. Self-
supervision is achieved by using multiple cameras to film a scene from different viewpoints.
After the videos are synchronized, frames with the same timestamp but from different
cameras should still produce latent vectors fairly close to each other. When the timestamps
are different (and the scene changed), latent vectors should be further from each other even
when filmed from an identical viewpoint.

12

Architecture Depth Parameters Top-1 Accuracy Top-5 Accuracy
ResNet-101 101 42.72 M 65.84 84.21
DenseNet-169 169 12.60 M 74.73 91.44
DenseNet-201 201 18.25 M 74.91 91.30
MobileNet-V2 88 2.33 M 71.11 88.50
ResNeXt-50 50 23.15 M 68.45 86.42

Table 2.2: Performance of widely-known CNN architectures on Yoga-82 dataset using third-
level classes from [20].

Self-supervised models use different loss functions that suit their specific approach
to solving the problem. As described in the previous paragraphs, self-supervised learn-
ing has many different forms and, therefore, architectures vary in many ways. The time-
contrastive network has to learn to represent the object in the image independently of the
viewpoint. Images from the same viewpoint can differ just a little in time but their im-
age embeddings should be different if the observed object changed. Whereas images from
different viewpoints at the same time can be entirely different, only the observed object is
constant. Therefore, their embeddings should be reasonably similar. Such a challenge can
be solved with a loss function called the triplet loss.

2.4.1 Triplet Loss Function

The triplet loss function pushes embeddings of similar data closer together and pulls em-
beddings of diverse data further apart. Its main goal is learning data representation in
a 𝑑-dimensional Euclidean space. Inputs of the function are 3 data embeddings: anchor,
positive, and negative. Anchor and positive should be closer to each other than anchor
and negative. It can be thought of as anchor and positive belonging to the same class and
negative to a different one [14].

Data point 𝑥 has an embedding 𝑓(𝑥) ∈ R𝑑 which is additionally constrained to live
on a unit hypersphere – ||𝑓(𝑥)||2 = 1. Triplet 𝑖 consists of anchor image 𝑥𝑎𝑖 , positive image
𝑥𝑝𝑖 and negative image 𝑥𝑛𝑖 . The goal of the network is for inequality 2.13 to held true with
condition 2.14.

||𝑓(𝑥𝑎𝑖) − 𝑓(𝑥𝑝𝑖)||
2
2 + 𝛼 < ||𝑓(𝑥𝑎𝑖) − 𝑓(𝑥𝑛𝑖)||22 (2.13)

∀(𝑓(𝑥𝑎𝑖), 𝑓(𝑥𝑝𝑖), 𝑓(𝑥𝑛𝑖)) ∈ 𝒯 (2.14)

Where 𝛼 is a margin that is enforced between positive and negative pairs and 𝒯 is the set
of all possible triplets, |𝒯 | = 𝑁 .

The triplet loss to be minimized is then:

𝐿 =
𝑁∑︁
𝑖

[︁
||𝑓(𝑥𝑎𝑖) − 𝑓(𝑥𝑝𝑖)||

2
2 − ||𝑓(𝑥𝑎𝑖) − 𝑓(𝑥𝑛𝑖)||22 + 𝛼

]︁
+
. (2.15)

And more often it is used as:

𝐿 =

𝑁∑︁
𝑖

max (0, ||𝑓(𝑥𝑎𝑖) − 𝑓(𝑥𝑝𝑖)||
2
2 − ||𝑓(𝑥𝑎𝑖) − 𝑓(𝑥𝑛𝑖)||22 + 𝛼). (2.16)

13

The triplet selection is an important part of the whole training process. When the
constraint 2.14 is easily met, the triplet has not improved the model at all and therefore,
it will converge slower. The ideal triplets (hard positive and hard negative, respectively)
are satisfying these two conditions [14]:

𝑥𝑝ℎ𝑎𝑟𝑑 = argmax
𝑥𝑝
𝑖

||𝑓(𝑥𝑎𝑖) − 𝑓(𝑥𝑝𝑖)||
2
2, (2.17)

𝑥𝑛ℎ𝑎𝑟𝑑 = argmin
𝑥𝑛
𝑖

||𝑓(𝑥𝑎𝑖) − 𝑓(𝑥𝑛𝑖)||22. (2.18)

In this thesis, with the time-contrastive learning method, hard triplets cannot be com-
puted in any way. Hard positive pair is enforced by making the viewpoints of the images as
different as possible. Since anchor and positive images are taken from different viewpoints,
the background of the scene and light conditions can vary. Also, just by filming the scene
from different angles, the object can look completely different. The hard negative pair
condition can be fulfilled by choosing an image from the same viewpoint as for the anchor
image but with a slightly different timestamp. How much should the timestamp differ, de-
pends on the scene itself. If it is very dynamic, the images can be just a few frames apart,
if it stays the same for a longer time, a different approach has to be chosen. One possibility
to choose a hard negative pair from a video is by computing optical flow from the video
and using it to detect movement. This procedure is thoroughly discussed in Section 3.1.3.

2.4.2 Other Metric Learning Loss Functions

Triplet loss is not the only possible loss function that can be used to construct an embedding
space with a neural network. There are several other functions for metric learning that can
be applied to the same task that is being solved in this thesis. These alternative functions
are proposed as a possibility for future work on the project and are not implemented.

Lifted Structure Loss is a good candidate for an alternative to the triplet loss function
[18]. It uses a similar format to the triplet loss’s training data: anchor, positive, and negative
samples. The difference is that it utilizes multiple negative samples at once and thus
provides faster convergence. It is fairly easy to provide a higher number of negative samples
since frames before and after the timestamp of anchor-positive pairs from all viewpoints
are candidates for negatives.

Multi-Class N-Pair Loss is very similar to lifted structure loss in the sense that it uses
multiple negative samples but it differs in what it tries to optimize [17]. It computes cosine
similarity between features of the data points and tends to be scale-invariant.

While triplet and lifted structure losses both use relative distance as a metric, angular
loss accounts for the angle at the negative edge of the triplet triangle [21]. It drags negative
data points away from the anchor-positive pair. The pair is on the other hand pushed closer
together. This metric also benefits from scale invariance. The advantage over triplet loss
is an easier setting of margin as a hyperparameter. The margin for triplet loss depends on
the intra-class variance of data while the margin angle for angular loss is invariant of such
property.

14

Chapter 3

Obtaining Datasets for
Self-Supervised Learning

Datasets for self-supervised learning, in general, can be very different from each other, their
form depends on the task that is being solved and the way of achieving the self-supervision.
Although, all of them have one thing in common – they mainly consist of unannotated data
and in the end, they need a smaller amount of annotated data to be able to classify from
learned embeddings.

As is mentioned in Section 2.4, this thesis focuses on Time-Contrastive Learning (TCL),
which means that it achieves supervision with multiple viewpoints of the same scene con-
currently as is displayed in Figure 3.1. While the filmed object may look very different
when filmed from different angles, it is still the same object if the timestamps are identical.
It is also possible to use moving cameras for the filming of the scene, although this might
introduce some inaccuracy to movement detection. On the other hand, even when the
viewpoint is equivalent, the object can be altered only after a short time has passed. This
characteristic holds supervision when TCL is used and because no extra work (e.g. labeling)
has to be done, the data is supervised by itself – self-supervised. The only restriction is the
need to have multiple videos of the same scene synchronized in time.

Scene

Camera 2

Camera 1

C
am

er
a

3

Figure 3.1: Example of a scene filmed from different viewpoints with 3 cameras. The higher
number of viewpoints ensures greater variability in the dataset for time-contrastive learning.

It is necessary to have the process of dataset creation as automated as possible. Other-
wise it would have been easier to just label the data and simply use a supervised learning
approach. Therefore, I propose a set of tools in Section 3.1 that creates a dataset ready for

15

TCL with just a small amount of user interaction. After that, a simple tool for labeling
images is presented in Section 3.1.5, because at least a small number of images with an
assigned class is always necessary.

At the end of this chapter, in Section 3.2, a basic dataset of sports poses is presented.
It contains scenes with a solid background and sports pose with variance only in arm
movement and it was captured and prepared especially for this thesis. The basic sports pose
dataset was demonstratively prepared only with the tools described below. Finally, possible
directions of the development of the dataset with advanced sports poses are discussed.

3.1 Creating Dataset for Time-Contrastive Learning
Dataset for Time-Contrastive Learning (TCL) is created from synchronized videos of the
same scene filmed from different angles. I propose a tool for semi-automatic preparation
of such a dataset, illustrated in Figure 3.2. It offers a few simple editing features such as
cropping and trimming. A very important feature it provides is the automatic synchro-
nization of multiple videos. The second necessary component is a movement detector that
estimates how much movement happened between frames of the video. This information is
essential to achieve the time contrast that TCL relies on. Finally, the tool exports chosen
video frames with their timestamps to simplify the creation of triplets for model training.

Raw
Video 1

Raw
Video 2

Raw
Video 3

Trim Crop

Crop

Crop

Synchronize

Synced
Video 1

Synced
Video 2

Synced
Video 3

Detect
Motion Dataset

Figure 3.2: Tools for construction of dataset presented in the order of their usage. White
boxes represent data and colored boxes the tools. The red color symbolizes tools that need
some user interaction whereas blue-colored tools are fully automatic. The tool for cropping
needs a user to select a specific area but then it automatically adjusts the selection to fit
all needs.

Cross-platform video conversion solution FFmpeg is used to handle all video modifica-
tions effectively. Videos can be either processed directly with FFmpeg or a script is created
that does the identical operations but can be launched later. The individual parts of the
editing tool are presented in the following subsections in the order of their execution.

3.1.1 Preparing Videos Filmed with Various Cameras

The first step in dataset preparation is to trim the start and the end of the video. It is almost
certain that the video contains a little bit of inapplicable footage at the beginning and at
the end. Therefore, a simple tool that allows users to select the trim range with sliders is
developed for the purpose of this thesis. Because of how the synchronization tool works,
a user only needs to trim one of the videos, the others will be trimmed automatically when
being synchronized. This is further described in Section 3.1.2.

In most cases, the video’s resolution does not match the input of the model and has
to be scaled down, and is often also cropped to the correct ratio. The tool allows users to

16

select a bounding box around the scene which will always be included in the cropped video
and non-important parts of the scene will mostly be deleted. Correct crop coordinates
are automatically computed to match the input of the network and all other constraints.
The computation consists of operations shown in Figure 3.3 and described in detail in the
following enumerated list, their order is important.

1. A view of the video as a single image is constructed from 10 merged frames taken out
of the whole video in order to provide the user with enough information about the
range of motion.

2. User selects the part of the scene that has to be included in the cropped video with
a bounding box, these are the initial crop coordinates.

3. Crop coordinates are adjusted to match the ℎ𝑒𝑖𝑔ℎ𝑡×𝑤𝑖𝑑𝑡ℎ ratio of the model input.

4. If crop selection has a lower resolution than the network input, the selection is equally
extended.

5. If crop selection exceeds the frame size, it is decreased to the closest possible value.

6. If crop selection is positioned out of the frame, it is moved to the closest correct
position.

7. Video is cropped to the computed crop selection.

Crop coordinates are correctly computed to match the model input ℎ𝑒𝑖𝑔ℎ𝑡×𝑤𝑖𝑑𝑡ℎ ratio
but the resolution will most likely not match. Therefore, the video has to be scaled down
or (in the case of a video having lower resolution than model input) scaled up. Lastly, the
framerate of all of the videos has to be unified to a previously chosen fixed value to ensure
the correct run of synchronization and motion detection algorithms.

3.1.2 Synchronizing Videos by using Dense Optical Flow

The main requirement for TCL to work is the synchronization of all used videos. It is very
likely that not all used videos are perfectly synchronized and manual synchronization would
not be very precise nor effortless. Therefore, I present an automatic tool that determines
the correct synchronization and trims all videos at the beginning and at the end so that all
are the same length and synchronized.

The synchronization is done by optical flow, which is information about the movement
of each pixel between video frames [8]. Dense version of optical flow from OpenCV library
is used [1]. Visualization of dense optical flow is shown in Figure 3.4. The assumption
behind using dense optical flow for synchronization is that videos of the same scene have
a correlative amount of movement in similar directions at the same time. The precise
movement of each pixel cannot be easily computed, it is only possible to approximate it.
However, the precise values are not necessary for synchronization purposes, rough values
are accurate enough.

Movement vector of each pixel is from two reasons too specific for this task. First reason
is that each video displays the scene from different angle and their optical flows will most
likely be different. It is more useful to have general information about movement in the
whole frame than to have it pixel-wise to eliminate small discrepancies. The second reason
to aggregate information over the whole frame is growing computational complexity. If the

17

...

0 1 2

37

5

6

Figure 3.3: Process of cropping a video with the semi-automatic tool. The user selects
an area of interest with a bounding box and the tool performs cropping and resizing to
a given resolution. The numbering of individual steps refers to the previously mentioned
description of the tool. Blue arrows symbolize automatic steps and a red arrow manual
steps. Steps 5 and 6 are only needed for some specific cases displayed in the figure, step 4
is not shown.

information is accumulated over all pixels into a fixed number of values, the computational
complexity stays constant, whereas it grows when pixel motion values are used individually.

Since all pixels can move in two dimensions, it would make sense to gather information
about the horizontal and vertical movement by simply summing up all the values. The
problem with this approach is that when some pixels move to the right and some to the left,
their movement vectors subtract from each other in that dimension and a lot of information
is lost. For that reason, I propose to sum separately positive and negative values in each
dimension and obtain information about the amount of motion in 4 directions: up, down,
left, and right. Each frame (except the first one) of each video is assigned these 4 values
describing the optical flow from the previous frame to the current one.

After that, Pearson correlation of the aggregated optical flows of video pairs has to be
done. These are not computed for all pair combinations, all flows are only compared to
the shortest one to perform a smaller number of computations but still guarantee to get

18

(a) (b) (c) (d)

Figure 3.4: Dense Optical Flow visualized on multiple frames from the same video where
a person is moving his arms. Visualization 3.4a shows both arms moving up while 3.4b
captures both arms moving down. As can be deduced, visualization 3.4c is a combination
of the previous two: one arm is moving up and the other one down. Graphics 3.4d displays
only forearms moving closer to each other while the elbows stay in place. All other parts
of the frames stay steady.

the best possible synchronization. Each flow pair is compared to get an overlap with the
highest correlation, which means the correlation for each possible overlap is computed. The
only restriction is that the overlap has to be at least a certain number of frames long to
eliminate corner cases where for example only one frame has the best correlation (the first
frame from one video and the last one from another). This minimal overlap length can be
a little lower than what the expected length of synchronized videos is to optimize for the
lowest number of correlations that has to be done. By default, it is set to 1,000 frames.

Each overlap is assigned a specific index that will be used to describe it in the following
text. The problem is that the overlap index with the highest correlation might not be the
correct one that synchronizes the videos because of some inaccuracy. To eliminate this
problem, one additional property can be used – if the correlations are computed accurately,
the highest ones will be of overlap indices from a similar range, just a few frames apart.
To use this property, overlap indices are sorted descending by correlation, and the top 10 are
taken. The standard deviation of these samples is computed and if it exceeds 10, it means
that there is at least one overlap index among them that does not fit the majority. All these
indices are checked and if they are further than one standard deviation from the mean, they
are removed from this list. This operation is repeated until the standard deviation of the
whole list is lower than 10. After that, the index with the highest correlation that is still on
the list is the best one for synchronization. Real data example of this algorithm is provided
in Table 3.1.

When the best overlap indices for the flow pairs are computed, flows are shortened
to the same length where all of them overlapped. Their respective videos are trimmed at

19

State Best overlap indices
(descending by correlation)

Standard
deviation (SD) Allowed range

Initial 2882, 1410, 1543, 1692, 1691,
1693, 1690, 1694, 1388, 1695 398.7 > 10 (1339, 2137)

1st epoch 1410, 1543, 1692, 1691, 1693,
1690, 1694, 1388, 1695 122.3 > 10 (1488, 1733)

2nd epoch 1543, 1692, 1691, 1693, 1690,
1694, 1695 52.3 > 10 (1618, 1724)

3rd epoch 1692, 1691, 1693, 1690, 1694,
1695 1.7 >| 10

Any – SD
condition satisfied

Table 3.1: Example of real data from the algorithm that tries to find the correct overlap
index of two flows to have them correlated as much as possible. The algorithm needed
3 epochs to remove indices that had no other surrounding ones and, therefore, were detected
as false findings. These indices are out of the allowed range, while the other were close to
each other and in the allowed range. Index 1692 had the best correlation and was chosen
as the best overlap index.

the beginning and at the end to have the same length as well and are thus synchronized
because of the correct trim times.

3.1.3 Detecting Movement with Sparse Optical Flow

After videos of a scene are synchronized, the last step in creating the dataset is choosing
the correct frames to be used for training a neural network model. These frames have to
satisfy one property – there has to be enough movement between them for a model to be
able to recognize the difference. The less movement is between the frames, the harder it
will be for the model to learn embeddings of the filmed object but also the more precise
the embeddings might be. It is necessary to set the movement threshold to a correct value
since the dataset quality is crucial for the model’s performance.

The first chosen approach was taking every 𝑘-th frame where 𝑘 was manually set by
the amount of movement in the video. Since the amount of movement varies in different
timestamps of each video, this approach did not produce good enough frames for training.
The next chosen tactic was using Dense Optical Flow for motion detection but this algorithm
tracks every pixel in the video and the necessary information about the movement of the
followed object is lost in the amount of unnecessary data.

Therefore, I decided to use Sparse Optical Flow to fulfill the movement detection task.
Unlike the Dense Optical Flow, the sparse variant chooses only some pixels with the Shi-
Tomasi corner detector and those are being tracked [16]. This is a specific implementation
of the sparse optical flow from OpenCV library [1]. The amount of movement has to be
ideally aggregated into a single number and summed frame after frame until it exceeds
a certain threshold. Then, enough motion has been detected and the given frame is selected
and motion detection continues again from zero to detect another frame. This procedure
dynamically chooses the gap between chosen frames, which is essential for sports pose
recognition. It is possible that at some times, a few seconds of no movement are followed
by a lot of motion in just one second.

20

The challenging task is aggregating the information from sparse optical flow to a valuable
metric. Since each scene can be different, the number of tracked pixels can also vary.
Therefore, the distances cannot be easily summed but rather averaged. Another problem is
introduced when the background of the scene is not solid and some of the tracked pixels are
in the background. Those do not move and they should not influence the average distance
of pixel movement. This is solved by calculating the average of only those pixels, whose
movement is above a certain threshold.

One more problem that was encountered during the development of the motion detection
algorithm was the vanishing of monitored pixels. After a higher amount of movement, the
pixels detected to be followed might get lost and there are not enough pixels left to precisely
detect motion. When this happens, the Shi-Tomasi corner detector has to be run again to
detect new pixels for the sparse optical flow.

The last feature that the motion detector uses to provide more accurate results is ac-
counting only for unique moves. If all pixels move the same way, that means the scene
has changed but the sports pose probably did not change at all. This problem also has
to be addressed. The motion detector does so by computing a cosine similarity between
all motion vectors produced by sparse optical flow and ignores those vectors that are too
similar.

Detected frames from the video are saved as images and will be used for self-supervised
learning of a neural network. The motion detection has to be run prior to the learning
procedure to enable for shuffling of training data and also to make the loading of the
dataset less computationally demanding.

3.1.4 Building Triplets from Video Frames

The neural network used in this thesis is trained with triplet loss function and, therefore,
it has to be provided with 2 data samples of the same pose from a different viewpoint and
1 sample of a different pose from the same viewpoint as one of the previous two. The goal
is to provide the network with batches of such triplets.

At first, file paths to the correct images are formed into triplets and then into batches.
After that, file paths are replaced with images that they were pointing at. Dataset of
batches of triplets is then shuffled and split into training and validation subsets. Before
each epoch, the training subset is always shuffled again to provide for higher variability.

3.1.5 Tool for Labeling Sports Poses in Dataset

Even though the main advantage of self-supervision is that very few annotated training
samples are needed, there is still a need for some of them. That is why I decided to also
develop a tool for very fast and easy labeling of training samples. This labeling tool takes
a directory with unsorted images as input and moves them to their respective directories
named after their labels.

If launched for the first time, new classes have to be assigned to specific keyboard keys
and then with just a single press of the key, the displayed image is assigned to its class.
This procedure makes image labeling as minimalistic as possible. Key-class pairs are saved
as a dictionary to a file that can be loaded at any time to continue annotating of images.

21

3.2 Dataset of Sports Pose Images
Multiple sets of videos were recorded for developing tools for a dataset suitable for time-
contrastive learning and then for the sports pose recognition itself. At first, the goal was to
obtain a dataset consisting of a simple scene that presents an easy challenge for both the
dataset preparing tools and for recognition models. Afterward, a more difficult task can
be presented to the dataset tools and encoding and classifying models, e.g. a dataset with
sports poses recorded in multiple environments. Sports poses from yoga are proposed for
future development as one of the most challenging tasks possible in this field.

3.2.1 Hand Poses as a Simple Testing Data

One hand in different poses is a real-world situation with pretty low variability, especially
if the background is solid. Therefore, it is a good candidate for testing data for the dataset
preparation tools and can be used for the testing of a self-supervised trained model during
its development. The original videos are cropped so that only the forearm and hand with
fingers are in the frame to make them as elementary as possible. This dataset will be
referred to as the Hand Dataset. Examples of its images are shown in Figure 3.5.

Figure 3.5: Hand Dataset images from different scenes. Some images have a fairly solid
background while the others have a very heterogenous one to simulate various possible
situations for the dataset preparation tools.

Trimming and cropping of the video are done completely manually and basically are not
dependent on the dataset, the first real challenge comes with the automatic synchronization
of videos from multiple viewpoints. The task was easily fulfilled on videos with a solid
background and not so different viewpoints but once these two conditions were disrupted,
an incorrect synchronization could be found. Therefore, an algorithm that searched for
the top 10 best synchronization timestamps, not only the best one, was developed. This
algorithm is fully described in the previous section.

The following challenge was to obtain specific frames from the video used for training.
Videos without a solid background showed the importance of only taking into account
the moving pixels because the Shi-Tomasi corner detector used in Sparse Optical Flow

22

computation selects also pixels from the background, not only those related to the followed
object. Another task that this dataset exposed was the vanishing of the followed pixels.
The last and most difficult challenge to solve was the detection of translation where the
pose actually does not change. Movement without any pose adjustment is a phenomenon
normally present in this dataset. Another instance of the same problem is when the camera
is moving and the pose stays in the same position.

3.2.2 Sports Poses with Upper Body Movement

The Hand Dataset served its purpose in the making of the dataset preparation tools and
the next task is the development of the self-supervised model. I recorded and prepared
a dataset of simplified sports poses that are less complicated than what would for example
yoga poses look like but still have the character of sports poses. An example of poses can be
seen in Figure 3.6. All of the recorded poses hold these conditions. The person is recorded
from knees up and moving only his arms, while any bending of shoulders, elbows, wrists,
and fingers is allowed (and advised).

The dataset videos include one person in two scenes with different backgrounds. There
are 5 recordings of each scene with the person wearing various clothing in each of them to
increase variability in the dataset. That means 10 recordings in total. Performed poses are
chosen randomly. Each scene was filmed with 3 cameras with different lenses. The camera
angles were chosen so that one is facing straight from the front side and one is on each side
at approximately 45 degrees angle from the front one. The total number of images in the
dataset is 3,804 but each of those is one of 1,268 potentially different poses captured with
3 cameras. Distribution of the poses count across all ten recordings is following: 34, 49, 67,
99, 96, 51, 204, 128, 295, 245.

3.2.3 Sorting Upper Body Dataset into Classes

The recorded dataset of arm movement is prepared for self-supervised training of an encoder
model but for real recognition, some amount of labeled samples is also necessary. There are
many different ways to sort all the poses into classes. I decided to assign two sets of labels
to all the samples to have enough data for experiments, one with a lower number of classes
that presents an easier recognition task and the other with a higher number of classes to
demonstrate the model’s performance.

At first, I divided the data into 4 classes to create an easier task. Since arms are the
only moving entities in the image, only those are taken into account and the rest of the
body is ignored. Each arm can be either in an upward or downward direction but when
various elbow bendings are taken into account, resolving whether the arm is pointing up or
down is ambiguous. Therefore, a strict criterion has to be set. I decided to use the height of
the wrist and shoulder to be the determining factor. If a wrist is above shoulder height, the
arm is in the upward position. Finally, each arm is dealt with separately and that means
4 classes emerge: both arms down (down-down – 1,146 samples), left arm down and right
arm up (down-up – 813 samples), left arm up and right arm down (up-down – 795 samples)
and both arms up (up-up – 1,050 samples). Dataset with basic sports poses divided into
these 4 classes will be from now on referred to as Directions Dataset.

For a more complex and convincing evaluation of developed models, I prepared one
more set of labels with finer separation. The main thought is the same as for the Directions
Dataset – each arm is either pointing up or down, but one more feature was added. Each
arm can be either bent in the elbow or not – if the elbow angle is smaller than 135 degrees,

23

Figure 3.6: Samples from the dataset with upper body poses. Recordings come from
2 places, each with 5 videos with different clothing. The scenes are recorded with 3 cameras
from different viewpoints.

the arm is considered bent. All of the Directions Dataset classes have 2 possible options
which create 16 classes in total. A higher number of classes not only allows for more valuable
testing of the model but also brings the option of evaluating not only top-1 accuracy but
also top-3 accuracy. When the correct class of a certain pose is not the one with the highest
probability according to the classifier but still is the second or third, the model shows some
ability to recognize poses too. Counts of samples for each class of the Bent Dataset are
presented in Table 3.2. Class names are derived from the Directions Dataset, the only
change is that when an arm in the given direction is bent, the letter ‘b’ is placed in front
of the direction.

Both of the presented datasets cannot be perfectly divided into classes without any
discrepancy. Followed features are in some cases right in between the available classes. The
arm can be almost perfectly horizontal with its wrist at the same height as the shoulder.

24

Class Sample
count Class Sample

count Class Sample
count Class Sample

count
down-down 1,005 bdown-down 63 down-bdown 48 bdown-bdown 63

down-up 399 bdown-up 21 down-bup 285 bdown-bup 102

up-down 399 bup-down 282 up-bdown 33 bup-bdown 90

up-up 495 bup-up 135 up-bup 99 bup-bup 285

Table 3.2: Distribution of sports pose images between all classes of the Bent Dataset. The
first word shows the direction that the left arm is heading, and the second word represents
the right arm. If the arm is bent, the letter ‘b’ precedes the direction.

Correspondingly, the elbow angle can be precisely 45 degrees or very close to it and it is
not possible to distinguish this difference from a single image. Therefore, some error rate
is almost inevitable and has to be taken into account during the model evaluation.

Directions Dataset has fairly equally distributed images between classes whereas Bent
Dataset has significant disproportions in the counts. This presents another challenge for the
classifier that is trying to learn from the data. In general, self-supervised models should have
better performance on such data because they first learn the data embeddings without any
labels and then solve the fairly simple task of classifying those. In contrast to a supervised
classifier that is solving the difficult task directly on the labeled data and might not update
its weights enough because other classes in the batch are more significant.

3.2.4 Yoga Sports Poses for Future Development

Yoga sports poses are one the most complex among all sports poses, there are hundreds
of possible poses and their variants. They can be also sorted into different sets according to
their similarities. All these attributes make them the perfect candidate for a very difficult
sports pose recognition task and, therefore, I propose yoga poses as a benchmark for future
development in this field.

Verma et al. in [20] present a new dataset Yoga-82 for human pose classification that
is based on yoga poses. It contains over 28 400 annotated samples of 82 different yoga
poses. The classes are sorted into a 3-level hierarchy where each of the 82 poses is assigned
a second and first-level class as well. This structure can be further used for the recognition
of poses that are projected into an embedding space since embeddings of poses from the
same higher-level class can have similarities in the space.

The dataset is available to download in form of URL links to each image sorted into
files according to their classes. The images are under different creative commons licenses.
There is no script for downloading of the images as a part of the publication. Since the
images are from various sources on the internet, their availability is out of reach of the
dataset authors. At the time of publishing this thesis, there are already hundreds of images
not available.

The images differ in resolution and aspect ratio, therefore, some sort of preprocessing is
necessary. Their variability is very high, they are captured both indoors and outdoors and
with very different backgrounds. The displayed people differ in their gender, skin color,
clothing, and other visible characteristics. Some images even contain multiple people, text
added over the pose in postproduction or the images are just a simple illustration of the pose,
not a real photo. These additional features might not serve well for better generalization
of the trained model, but rather for confusion because of the unrealism.

25

These images could be used for the classification of the poses from embeddings but
the more complicated task is learning the sports pose embeddings with a time-contrastive
network. This process requires synchronized videos or at least images of the same scene from
different viewpoints. I have not found such a dataset online and therefore, I suspect it has to
be recorded specifically for this task. One possible solution for making the dataset creation
more feasible would be to partner with some yoga video producers. There is a chance they
are filming their videos from multiple angles and could offer their raw recordings for such
a project. The variability of all recordings has to be taken into account. If they are from
the same environment (e.g. indoor gym), the model will probably not generalize well to
other surroundings (for example outdoors).

26

Chapter 4

Recognition of Sports Poses from
Images

Recognition or classification is a task of assigning a class from a defined set of classes
to an image according to what is displayed in it. When a video is on the input, it is often
divided into single frames that are handled and classified individually. The most common
approach to processing image data is with convolutional neural networks that are explained
in depth in Section 2.2. Models in this thesis also use an architecture that relies on such
networks and they were implemented in TensorFlow 2 library [12].

Whereas supervised learning is done in most cases with a single model that has an im-
age on the input and outputs probabilities of the image belonging to available classes.
Self-supervised learning usually requires two models that are trained separately and are
working together after they are fitted to the data. Therefore, the input and output of the
self-supervised model are the same as for the supervised trained model once it is fitted. The
first of two models that form the described architecture is usually called the encoder and
its goal is to find the most valuable representation of the input in an embedding space. Im-
plementation of this model is described in depth in Section 4.1. The embeddings produced
by the encoder are used as an input to the second model, the classifier. Its objective is to
find the most probable class the embedding is representing. A thorough description of the
second model can be found in Section 4.2.

Another model for sports pose recognition but trained with supervision was also imple-
mented to provide a comparison in evaluation. This network is introduced in Section 4.3 in
contrast to the models proposed before. Finally, Section 4.4 discusses how the sport pose
embeddings could be used in future research on this topic.

4.1 Representing Sports Poses in Latent Space
An encoder is the crucial part of a model that is trained with self-supervision. It uses some
information that is naturally contained in the dataset as a supervisor during the learning
process. In the case of this thesis, the supervision is provided with multiple synchronized
videos of the same scene. Its target is to find the most efficient yet the most descriptive
embedding of the input. If the goal is to recognize sports poses, the best embedding
describes the whole body in the correct position but ignores all the specifics of the person
and the environment around.

27

On the input of the model is an image with a specific resolution and channels in the
correct format. On the output is an embedding vector describing the input image in the
set dimensionality. Section 4.1.1 specifies the model’s architecture into detail.

4.1.1 Architecture of the Encoder

The input is always a single image that needs no preprocessing because all the necessary
operations were already done with the dataset preparation tool from the previous chapter.
In case of a smaller dataset size, to gain more generalization, data augmentation is also
implemented. It is not recommended to use any rotation or horizontal/vertical flipping
augmentation because of the model’s dependence on positions of body parts and distin-
guishing between left and right-hand sides. Augmentations that alter colors, brightness,
and contrast are a favorable option used in this thesis.

To obtain embeddings of the images, a convolutional neural network is used. This thesis
uses a ResNet-50 architecture from [6] with weights trained on ImageNet dataset [3]. The
head of the network is replaced to provide embeddings as vectors in 𝑑-dimensional latent
space. This is done with a single dense layer after the data from the last convolution are
processed by average pooling and flattening layers. The number of units of the dense layer
and the dimensionality of the embedding space is equal.

The embedding vectors are sometimes restricted by the condition to sit on a unit hy-
persphere. That means that squared values in all dimensions of the vector have to sum up
to 1. This is done to provide normalization of the individual values in all dimensions. This
restriction can be fulfilled with L2 normalization used as the last layer after the previously
mentioned dense layer. This is the output layer of the whole model.

The model was trained with Adam optimizer. Underlying concepts and the calcula-
tion of Adam are presented in Section 2.1. Parameters were configured to typical values:
learning rate = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−7.

The network is trained on triplet loss in the self-supervised manner [14]. This loss
function is described in Section 2.4.1 and Section 2.4.2 proposes possible improvements in
this direction that were not implemented. Since the triplet loss uses Euclidean distance
to compare embeddings, its effective calculation is crucial to the good performance of the
model. The function is implemented to compute loss over the whole batch of triplets.
It uses simple subtraction and squaring in each dimension and then a sum to reduce all the
dimensions into a single number. The loss is only influenced by the triplets that do not have
the positive sample closer to the anchor than the negative sample by a set margin. Value
of the loss is a sum of their differences in positive-anchor and negative-anchor distances.
When computing accuracy, the margin is not taken into account.

The training of the model can be divided into two parts: fitting and fine-tuning. When
the encoder is fitted, only the head of the network, and weights of the last dense layer,
are adjusted. The ResNet-50 backbone has its weights locked to the ImageNet-pre-trained
values. After that, a fine-tuning process can be turned on as well. Fine-tuning starts with
unfreezing all the weights of the backbone except the ones used for batch normalization.
Then, a learning rate is changed from 10−3 to 10−5 to prevent large changes and possible
loss of information already acquired from fitting and pre-training. After that, the model’s
weights from the epoch that provided the best results on the validation dataset during
fitting are restored and fine-tuning is launched as a casual fitting. From the experiments
done, it seems the encoder can provide very good results just with fitting and fine-tuning
provides almost no improvement in the model’s accuracy.

28

Fitting of the model is done in epochs with the dataset divided into mini-batches (further
only as batches). Each batch contains a fixed number of anchor-positive-negative triplets,
only the last batch of the epoch can be smaller. The batch size can be set according
to the memory constraints of the training machine, in most cases between 32 and 256.
Since the network is designed to only accept one image as an input, the triplets have to
be merged together into a “merged” batch. Its size is correspondingly 3× as large. After
all the individual images are encoded into embeddings, they can be split into the original
triplets again. The merging and splitting algorithms have to be deterministic and mutually
reversed to ensure all triplets stay the same. Only after that, the loss of the whole batch can
be computed. Finally, gradients are computed from the loss and applied to the network’s
weights.

The model reports loss and accuracy on training and validation datasets in a such format
that can be further analyzed with TensorBoard. It also saves the model’s weights after each
epoch to allow for restoring the best-performing model. The implementation also allows
for restoring weights and continuing fitting and with that divide the training process into
multiple sessions.

4.2 Sports Pose Classification from Embeddings
After the sports poses are encoded into a 𝑑-dimensional embedding vectors, various op-
erations can be done with them. This thesis only implements classification, the other
possibilities are discussed in Section 4.4. The main advantage of a classifier that has vector
embeddings on the input instead of images is that the important information is already
extracted and, therefore, the classifying is a lot easier task.

The classifier in this thesis is a simple neural network with one hidden dense layer.
The input layer has an identical size to the dimensionality of the embedding space and the
output layer corresponds to the number of classes the sports pose can be classified to.

The size of the dense layer (number of units) is a hyperparameter that can be tuned
according to the difficulty of the task that is being solved. Since all the needed information
is already effectively encoded into the embedding, it is not advised to use a dense layer
with more units than the input layer has. Likely, no other information will be gathered
from the data and, therefore, there is no need to represent it with more values. After the
experiments were done, one dense layer performed on par with networks with two or three
hidden dense layers. Thus, I chose a single dense layer with 64 units for the classifier model
implemented in this thesis. To introduce some non-linearity to the model, a Leaky ReLU
with 𝛼 = 0.01 is used as an activation function of this layer.

The output of the classifier uses the softmax activation function to output the proba-
bilities of each class that sum up to one. The training is optimized with Adam optimizer
with parameters set to learning rate = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−7 and as a loss
function is used categorical cross-entropy which corresponds to classifying tasks with more
than two possible outcomes.

29

4.3 Classifier Trained with Supervision
To evaluate the effectiveness of self-supervision, a supervised-trained model is implemented
as a comparison. The main condition is to make both models as identical as possible to not
distort the experiments with model dissimilarities. The model is presented in comparison
to the self-supervised model that was introduced earlier.

The main parts of both networks are completely the same, they both have ResNet-50
as a backbone. This means that the inputs of the networks are also identical. They only
differ in the network heads – self-supervised model needs more dense layers to account
for the embeddings. The architecture comparison can be seen in Table 4.1. The model’s
optimizer is Adam with the same parameters as for both of the self-supervised model:
learning rate = 0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−7. The loss function is identical to the
classifier from the self-supervised model – categorical cross-entropy.

Self-Supervised Model Supervised Model
Description Layer – Shape Layer – Shape Description

Image Input – (224, 224, 3) Input – (224, 224, 3) Image

Backbone
ResNet50

Padding – (230, 230, 3)
...

Pooling – (2048)

Padding – (230, 230, 3)
...

Pooling – (2048)

Backbone
ResNet50

Dense – (64)

Dense – (4) LabelEmbedding L2 Normalize – (64)
Dense – (64)

Label Dense – (4)

Table 4.1: Comparison of architectures of self-supervised and supervised models. Their
input, backbone, and output are identical, only the top of the self-supervised model is
adjusted for the self-supervised training.

Although the models trained with supervision and self-supervision have almost the same
architecture, the training process vastly differs. With a different approach to learning of the
data structure, the number of parameters that have to be fitted is also different. Table 4.2
illustrates the contrast between them.

Model Self-Supervised
Encoder (fit)

Self-Supervised
Encoder (fine-tune)

Self-Supervised
Classifier Supervised

Trained
Parameters 131,136 23,665,728 4,420 23,542,788

Table 4.2: Different training procedures require a different number of model parameters to
be trained. This table compares them. The self-supervised model encodes the input into
a 64-dimensional embedding space and the number of classes on the output is 4, which
also affects the parameter count. The self-supervised model mostly trains parameters of
the encoder with fitting (fine-tuning did not bring significantly better results) and then
parameters of the classifier. Their sum is the best comparison to the supervised model’s
number of parameters: 135,556 and 23,542,788.

30

In this chapter, only static data were shown. The performance of each model on the
validation dataset is presented and discussed in the following Chapter 5. Both models
perform very differently when only a lower number of training samples is introduced to
them. The results of these experiments are shown in Section 5.3.

4.4 Additional Usage of Sports Pose Encodings
This thesis only discusses the classification of sports poses from their embedding vectors
but this is not the only possible usage of such information. In this section, I propose several
other possibilities for how the information could be processed.

While classification assigns a class to an embedding vector, other information could be
assigned as well. A very common task in this field is the pose estimation, which can include
several different information about a human pose such as joint position and orientation of
different body parts. Obtaining this information just from an embedding could be very
useful since labeling the pose estimation dataset is even more time-consuming than the
labeling of a simple classification dataset.

There might be also a possibility to perform operations on embedding vectors such as
addition or subtraction to obtain embeddings of poses that are not captured. This could
be practically used to classify poses that are not even part of the training data and the
model has not seen them or at least it could help lower even more the required number of
training samples.

Generally, the implemented tools could also be used for another classification problem
that includes an object that changes poses or a similar challenge. It could not only capture
humans but also animals, robots, or machines.

31

Chapter 5

Evaluation of Models Trained with
Self-Supervision

Models trained with self-supervision can be evaluated at two stages. Obviously, the accuracy
of the classification of a given input is one way to do so. The other way is to evaluate
embeddings either with loss function used for training of the encoder or visually after
dimensionality reduction. All of these approaches are discussed in this chapter.

At first, the sports pose embeddings are visually analyzed in Section 5.1. Then, Sec-
tion 5.2 presents the encoder’s accuracy on the validation dataset and how it is affected
by the number of dimensions of the embedding space. Finally, the accuracy of the classi-
fication itself on the validation dataset is compared to a supervised model with the same
architecture in Section 5.3. The results of each evaluation are discussed in their respective
sections. Experiments were done fairly and no results were cherry-picked.

5.1 Visual Analysis of Latent Space
The latent space has well over 3 dimensions and therefore cannot be easily visualized.
Typically, embeddings of more complex information such as sports pose can range from
64 to 512 dimensions. Vectors representing them usually satisfy the constraint of living
on a unit hypersphere. Analyzing data visually can help understand patterns in them and
detect emerging problems. When the dimensionality is decreased to only 2 dimensions, a lot
of information can be lost. Therefore, the challenging task for the projecting algorithm is
to drop the non-necessary information and preserve the patterns in the data.

The elemental method for dimension reduction is Principal Component Analysis (PCA).
It computes a new basis of the vector space to maximize the data variance. After projecting
the data into the new basis, only 2 or 3 dimensions with the highest variance can be taken
into account and the rest is ignored. Finally, such data can be plotted and reviewed.
Another possible projection is Linear Discriminant Analysis (LDA) which also takes into
account the label of each data point and is trying to find a basis that allows for the best
linear separation of classes.

Whereas the previously mentioned algorithms allowed for computing the precise results,
more complex methods for dimension reduction are based on iterative approaches to find
the best approximation of the ideal state since it cannot be computed directly. A widely
used algorithm for this task is t-distributed Stochastic Neighbor Embedding (t-SNE). It
puts data points into pairs and tries to attract those that are similar and repel the dissim-

32

ilar ones. Another iterative method is Uniform Manifold Approximation and Projection
(UMAP) which also non-linearly projects data into 2D or 3D. I chose to use t-SNE as
the dimensionality reduction algorithm because it was able to find patterns in the data
embeddings better than the other algorithms.

5.1.1 Dimensionality Reduction with t-distributed Stochastic Neighbor
Embedding

t-distributed Stochastic Neighbor Embedding (t-SNE) is a non-linear dimensionality reduc-
tion method suited for displaying embedding vectors in two or three-dimensional space [10].
It is based on Stochastic Neighbor Embedding (SNE) but it uses also t-distribution instead
of only Gaussian distribution [7]. t-distribution has heavier tails in comparison to Gaussian
distribution and therefore, it solves one of the problems of SNE, which was centering the
data points into one place in the low dimensions and not preserving the gaps between them.

The t-SNE algorithm starts with random initialization of projected data points in the
targeted 2 or 3-dimensional space. It places them fairly close to each other to allow for
patterns to emerge on a higher scale. Then two similarity distributions are constructed:
one from points in the source high-dimensional space, the other from points in the desti-
nation low-dimensional space. Both distributions are constructed from distances between
all pairs of data points in their respective spaces. Then, Kullback-Leibler divergence of
joint distribution P in the high-dimensional space and Q in the low-dimensional space is
minimized:

𝐶 = 𝐾𝐿(𝑃 ||𝑄) =
∑︁
𝑖

∑︁
𝑗

𝑝𝑖𝑗 log
𝑝𝑖𝑗
𝑞𝑖𝑗

. (5.1)

Distances of data points from themselves 𝑝𝑖𝑖 and 𝑞𝑖𝑖 are set to zero. 𝑝𝑖𝑗 and 𝑝𝑗𝑖 are aver-
aged in order to preserve symmetry 𝑝𝑖𝑗 = 𝑝𝑗𝑖. Each data point pair is assigned a probability
from Gaussian distribution with mean set to coordinates of point 𝑖 and variance computed
from the density of other points around it. The distance of point 𝑗 from 𝑖 is projected to
the Gaussian distribution and 𝑝𝑖𝑗 equals the given probability, calculated as:

𝑝𝑖𝑗 =
𝑒−||𝑦𝑖−𝑦𝑗 ||2∑︀

𝑘 ̸=𝑙

𝑒−||𝑦𝑘−𝑦𝑙||2
. (5.2)

Probabilities 𝑞𝑖𝑗 are obtained from Student’s t-distribution with one degree of freedom with
a similar approach to the 𝑝𝑖𝑗 . The formula is as follows:

𝑞𝑖𝑗 =
(1 + ||𝑦𝑖 − 𝑦𝑗 ||2)−1∑︀

𝑘 ̸=𝑙

(1 + ||𝑦𝑖 − 𝑦𝑗 ||2)−1
. (5.3)

Finally, a gradient of the Kullback-Leibler divergence between P and Q is computed with:

𝜕𝐶

𝜕𝑦𝑖
= 4

∑︁
𝑗

(𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝑦𝑖 − 𝑦𝑗)(1 + ||𝑦𝑖 − 𝑦𝑗 ||2)−1. (5.4)

33

5.1.2 Analysis of Embeddings with t-distributed Stochastic Neighbor
Embedding

The encoder presented in Section 4.1 transforms image of sports pose into 64-dimensional
vector embedding. The goal is to have this embedding describe only the sports pose and
ignore the background of the scene and the look of the person doing the pose. Sports poses
similar to each other should be closer to each other in the embedding space than poses
that are completely different. If only one arm moved from one image frame to another,
their embeddings should be very similar. The same pose performed by another person in
a different place and even photographed from a different angle should have the same or at
least very similar embedding.

The whole Directions Dataset introduced in Section 3.2.3 includes 3,804 divided into
4 classes according to arm positions of the person – each arm is either pointing down or
up and therefore, the corresponding classes are named: down-down, down-up, up-down or
up-up. Positions, where both arms are in a downward direction, should be relatively far
from each other while the other 2 classes can be placed somewhere in between the edge
cases. The dataset consists of 10 scenes, each filmed from 3 angles. Projected embedding
are displayed in Figure 5.1.

−40 −30 −20 −10 0 10 20 30 40

−30

−20

−10

0

10

20

30

40

x

y

Embeddings of sports poses after t-SNE projection

down-down
down-up
up-down

up-up

Figure 5.1: Embeddings of all 3,804 samples from the Directions Dataset projected from
64 dimensions to 2D with the t-SNE algorithm. Data points are colored according to their
class. Parameters of the t-SNE were 600 iterations, perplexity 32, learning rate 10 and the
algorithm ran without any supervision based on sample labels.

The projection clearly shows a number of clusters of different sizes, each consisting
of data points from all 4 classes. Each cluster is probably a representative of a single

34

viewpoint of a scene with some of them being closer to each other or even almost merged
together. This shows that the encoder model is not capable of generalizing over different
scenes or viewpoints. One possible explanation for such behavior is not using a diverse
enough dataset.

When focusing on each cluster individually, the data point distribution holds relations
for similar sports poses. Classes down-down and up-up are usually far apart from each other
within the cluster and while the down-up and up-down are between them. Some images
of poses contain arms pointing almost perfectly horizontally and their classification cannot
be precise. These cases have to be taken into account.

5.2 Evaluation of Encoder on Validation Dataset
The encoder itself is just a single component in the whole model that performs the classi-
fication. Its performance cannot be easily measured like a normal classifier – by counting
how many of the validation data were correctly assigned their class. There are no ground
truths to the inputs, no image of a sports pose has a correct nor false embedding. The
only way to measure the encoder’s performance is by comparing one embedding to another.
If the objective is to have similar sports poses close to each other in the embedding space,
the distances of embeddings can be compared.

The encoder is trained with a triplet loss function whose aim is to have two embeddings
of different images of the same sports pose closer to each other than two embeddings of
a distinct pose. The distance between correct and false pairs should also be greater than
some fixed value called margin. Therefore, the same function can be also used to evaluate
the encoder. The only difference is that the margin is set to 0, whereas during the learning
process, the value is above 0.

The objective of this experiment was to evaluate the performance of the encoder model
on different dimensionalities of the embedding space. The numbers of dimensions used
for testing were 16, 32, 64, 128, 256, and 512. The margin of the triplet loss was set to
0.1. The model was trained for 50 epochs on the same training data and evaluated on the
validation subset after each epoch. The dataset used for this experiment is Upper Body
Dataset from Section 3.2.2. Dataset was split so that 90 % of it was used for training
and 10 % for validation. Each model was trained 5× on the same dataset but shuffled
with a distinct seed. To provide consistency of training data between different embedding
space dimensionalities, the seed had the same value from 0 to 4 in the 5 runs. The best
validation accuracy of all epochs was taken as the model’s accuracy. The obtained results
are presented in form of boxplots in Figure 5.2. The format of the boxplots is from the
bottom: minimum, first quartile, median, third quartile, and maximum.

The highest median accuracy on the validation dataset achieved a model that encoded
the sports pose images into 64-dimensional vectors. Embedding spaces with 32 and 16
dimensions might achieve comparable accuracy in some runs but their variance is very high.
This suggests that the model is not always capable of finding efficient enough encoding to
store all the information about the pose, even though it might be possible. Models producing
encodings with 64 and more dimensions show less variance in accuracy which advocates for
their ability to save all the necessary information in the embedding. Their median accuracy
declines with rising dimensionality. That is a corresponding incident since encoding pose
into a higher-dimensional space is a more difficult task and with rising complexity, the
accuracy drops. From these assumptions, an embedding space with 64 dimensions provides
the best results on Upper Body Dataset.

35

16 32 64 128 256 512
0.95

0.96

0.97

0.975

0.98

0.99

1

Embedding dimensionality

A
cc

ur
ac

y
on

va
lid

at
io

n
da

ta
se

t

Comparison of validation accuracy on different embedding dimensionalities

Figure 5.2: When an image of a sports pose is encoded into a vector in embedding space,
its dimensionality can play a role in the performance of the model. The encoder model
was tested on a number of dimensions between 16 and 512. The best median accuracy
on validation data had an embedding space with 64 dimensions.

Dataset with very high diversity in sports poses requires more information to be stored
and therefore an embedding space with more dimensions. The correctly chosen size of the
embedding space can influence the performance of the model and the time it requires for
fitting on the dataset. Therefore, it is advised to tune this hyperparameter to match the
dataset complexity.

5.3 Comparison of Self-Supervised and Supervised-Trained
Models

The main advantage of models trained in a self-supervised manner is their ability to perform
well with datasets containing a smaller number of labeled data than what would supervised
training needed. This advantage is shown in the evaluation done on different-sized datasets
in the following experiments.

The encoder and classifier models described in sections 4.1 and 4.2 is used as the self-
supervised learning benchmark. For the supervised learning representative, the most similar
network is chosen. This model and its comparison to the self-supervised one is in Section 4.3.

Since each model is trained in a different way, it is not trivial to set the borderline
for the number of epochs used for training. For that reason, each model was trained for
a sufficient number of epochs after which it no longer improved on validation data. The
self-supervised model consists of two parts – the encoder which creates the embedding from
an image and the recognizer which classifies the pose from the embedding. The encoder was
trained for 30 epochs and the recognizer for 20 epochs. The encoder was trained once and
stayed the same for the whole experiment while the recognizer was fitted for every dataset
sample. The supervised model was trained for 50 epochs on each dataset sample.

36

Dataset used for these experiments is thoroughly described in Section 3.2 – Upper Body
Dataset. It contains 3,804 images of 1,268 poses, each captured from 3 different angles.
The poses are not necessarily unique but the images differ in background and clothes of
the person. Overall, there are 10 different scenes with 2 possible backgrounds and different
clothing of the person in each of the scenes. The poses represent possible movements of
a person’s arms in all directions and joints’ bendings, other parts of the body such as the
torso, head, or legs are not moving.

The first experiment is done on the Directions Dataset which contains 4 classes that
differ in the position of arms – left or right arm is pointing either down or up. Since some
positions may be questionable, the rule of thumb during the labeling of data was whether
the wrist is above or below the corresponding shoulder. The second experiment was done on
Bent Dataset with 16 classes that extended the Directions Dataset with one more attribute
– whether the arms are bent or not.

While the first experiment only evaluates the accuracy of choosing the correct class
(top-1 accuracy), the second one evaluates also the accuracy of whether the correct class is
within 3 of the most probable outcomes (top-3 accuracy). The decision to provide results
in this format was made based on the number of classes in used datasets.

Both of tested models were fitted on datasets of different sizes and then their accuracy
on never-seen validation data was evaluated. Before each training, the whole dataset was
shuffled and then divided into training and validation subsets. The portion of data used
for training was the changing variable and it ranged from 0.9 to 0.025. The rest of the data
were always used for validation. This approach decreases variance in the training dataset
and concurrently increases it in the validation dataset. Because of this, the model’s ability
to generalize well is displayed.

To keep the experiment fair, the dataset for each experiment was shuffled with the same
seed for both models and, therefore, they had the same data for training and evaluation.
For each dataset split portion, 10 runs of fitting and evaluating were done, each one with
a different seed. Seeds were chosen deterministically as integers from 0 to 9. Accuracy on
validation data was then averaged over all 10 runs to get the final accuracy of the model
for a given fraction of training data.

The results of the experiment on the Directions Dataset are shown in Figure 5.3a.
For training dataset portions down to 15 % (which equals 570 of the 3,804 images used for
training), the performances of self-supervised and supervised models are on a par. When
the training dataset portion decreases to 12.5 % (475 of 3,804 images) the supervised model
starts to degrade and with just 2.5 % images it approaches accuracy 25 % which is for
4 classes basically a random guess. While the self-supervised model keeps its accuracy
above 60 % even when trained on 2.5 % data which equals to 95 images for training and
3,709 for validation.

Experiment number 2 with training and evaluation done on Bent Dataset provides not
only top-1 but also top-3 accuracy. The results are presented in Figure 5.3b. While the
previous experiment included only 4 classes, the Bent Dataset consists of 16 classes and this
difference made an impact on the results. The accuracy of both models dropped down by
approximately 0.2 overall. The self-supervised model performed better than the supervised
model in all provided dataset splits. This is a display of one of the advantages of self-
supervised learning, it adapts better to a higher number of classes since it already learned
the key features on unlabeled data. When the amount of training samples approaches less
than 10 for each class overall (the portion of 0.025), the accuracy of the supervised model
drops significantly while the self-supervised model’s accuracy stabilizes.

37

The top-3 accuracy reveals important information about the supervised model when
trained on 10 % of the Bent Dataset – part of the plot with the dashed line. The predicted
results degrade in a way that the top-3 accuracy equals 1.0 for more and more of the
experiment runs and the top-3 accuracy suddenly rises. Since the top-1 accuracy declines,
the model is not performing better, rather it found some workaround that produces these
improbable results. The model is also not trained to maximize the top-3 accuracy, it is
trying to minimize the loss function. Self-supervised learning clearly provides results with
higher or equal accuracy for all experiments and shows its advantages mainly on datasets
with a low number of training samples.

38

0 0.1 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Portion of the dataset used for training

A
cc

ur
ac

y
on

va
lid

at
io

n
da

ta
se

t

Comparison of self-supervised and supervised models’ accuracy
on Directions Dataset with 4 classes

Self-Supervised
Supervised

(a) Self-supervised model displays better accuracy for small training datasets. With the dataset size
getting larger, both models perform similarly.

0 0.1 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Portion of the dataset used for training

A
cc

ur
ac

y
on

va
lid

at
io

n
da

ta
se

t

Comparison of self-supervised and supervised models’ accuracy
on Bent Dataset with 16 classes

Self-Supervised (Top-1)
Self-Supervised (Top-3)

Supervised (Top-1)
Supervised (Top-3)

(b) Self-supervised model performs better overall for all dataset splits in top-1 and top-3 accuracy,
especially when the number of training samples approaches an average of fewer than 10 samples for
a class with a portion equal to 0.025. For the training portion of less than 0.1, the top-3 accuracy
is degraded. This section of the plot is marked with a dashed line.

Figure 5.3: Performance of self-supervised and supervised models on validation dataset
based on what fraction of the whole dataset was used for training. The rest of the dataset
was used for validation. Each data point is an average of 10 runs.

39

Chapter 6

Conclusion

The goal of this thesis was to develop a model that can classify sports poses from images
and uses self-supervised learning to achieve better results on datasets with a small amount
of annotated samples. Time-contrastive learning was chosen as the approach to achieve self-
supervision of the data. For that, a set of tools for video preparation had to be implemented
and tested on various scenes. After collecting and preparing a dataset of sports poses, a self-
supervised model consisting of an encoder and classifier was developed. The self-supervised
model was evaluated in comparison to the model trained with supervision and results were
presented and discussed.

A set of tools for dataset preparation was developed and it is effectively working on
any number of videos of different scenes. The tools can trim and crop videos easily with
the least amount of manual work. The synchronization tool can automatically adjust the
video start times and lengths to align any number of videos. A useful dataset of images
for time-contrastive learning is then detected by using sparse optical flow and exported for
future use. A simple tool for labeling images is also implemented.

Two datasets were recorded and prepared with the mentioned tools. The first one
contains hand gestures with different backgrounds and was mainly used for testing the
dataset preparation tools. The second one contains recordings of the upper body with
diverse arm movements. This dataset was used to train and evaluate the self-supervised
model. It contains 3804 images of sports pose with two sets of annotations of 4 and 16
classes.

Two models constructing the self-supervision architecture were developed: encoder and
classifier. The encoder uses ResNet-50 architecture together with a triplet loss function
to provide embeddings of sports poses. The classifier is a simple dense neural network that
takes embedding vectors and classifies them. Another model doing the same task but with
supervision was also developed to have a comparison between the two architectures.

The embedding space of the encoding is visually analyzed with t-distributed stochastic
neighbor embedding and the resulting visualization shows the upsides and downsides of
the encodings. Possible settings of encoding dimensionality are evaluated on the validation
dataset and the results are compared according to the median accuracy and the variance
of results. Finally, a self-supervised model is compared to a model trained with supervi-
sion. Datasets with different amounts of annotated samples were used for training and the
validation accuracy of both models was compared. The self-supervised model performs sim-
ilarly on dataset with hundreds of samples from each class but when the amount of samples
drops to lower tens or even under 10 per class, the self-supervised model outperforms the
supervised one by tens of percent on the validation accuracy.

40

Future work on the project was proposed in various directions. To increase the vari-
ability in sports poses, yoga poses are recommended together with possible sources of data
and related work in this direction. Numerous other loss functions that can be used for
self-supervision are presented together with their advantages. The obtained embeddings
can not only be used for classification but also for other computer vision challenges. These
possibilities such as pose estimation or embedding vector operations are discussed. Lastly,
the implemented work could also be used for other object classification, not only for sports
poses.

41

Bibliography

[1] Bradski, G. and Kaehler, A. Learning OpenCV: Computer Vision in C++ with
the OpenCV Library. 2nd ed. O’Reilly Media, Inc., 2013. ISBN 1449314651.

[2] Chen, H.-T., He, Y.-Z., Hsu, C.-C., Chou, C.-L., Lee, S.-Y. et al. Yoga Posture
Recognition for Self-training. In: Gurrin, C., Hopfgartner, F., Hurst, W.,
Johansen, H., Lee, H. et al., ed. MultiMedia Modeling. Cham: Springer
International Publishing, 2014, p. 496–505. ISBN 978-3-319-04114-8.

[3] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. et al. ImageNet: A Large-Scale
Hierarchical Image Database. In: 2009 IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2009.

[4] Dumoulin, V. and Visin, F. A guide to convolution arithmetic for deep learning.
2016. Available at: https://arxiv.org/abs/1603.07285.

[5] Goodfellow, I., Bengio, Y. and Courville, A. Deep Learning. 1st ed. MIT
Press, 2016. ISBN 0262035618. http://www.deeplearningbook.org.

[6] He, K., Zhang, X., Ren, S. and Sun, J. Deep Residual Learning for Image
Recognition. 2015. Available at: https://arxiv.org/abs/1512.03385.

[7] Hinton, G. E. and Roweis, S. Stochastic Neighbor Embedding. In: Becker, S.,
Thrun, S. and Obermayer, K., ed. Advances in Neural Information Processing
Systems. MIT Press, 2003, vol. 15. ISBN 0-262-02550-7. Available at:
https://proceedings.neurips.cc/paper/2002/file/
6150ccc6069bea6b5716254057a194ef-Paper.pdf.

[8] Horn, B. K. and Schunck, B. G. Determining optical flow. Artificial Intelligence.
1981, vol. 17, no. 1, p. 185–203. DOI: https://doi.org/10.1016/0004-3702(81)90024-2.
ISSN 0004-3702. Available at:
https://www.sciencedirect.com/science/article/pii/0004370281900242.

[9] Kingma, D. P. and Ba, J. Adam: A Method for Stochastic Optimization. 2017.
Available at: https://arxiv.org/abs/1412.6980.

[10] Maaten, L. van der and Hinton, G. Visualizing Data using t-SNE. Journal of
Machine Learning Research. 1st ed. 2008, vol. 9, no. 86, p. 2579–2605. Available at:
http://jmlr.org/papers/v9/vandermaaten08a.html.

[11] Murphy, K. P. Probabilistic Machine Learning: An introduction. 1st ed. MIT Press,
2022. ISBN 0262046822. Available at:
https://probml.github.io/pml-book/book1.html.

42

https://arxiv.org/abs/1603.07285
http://www.deeplearningbook.org
https://arxiv.org/abs/1512.03385
https://proceedings.neurips.cc/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://proceedings.neurips.cc/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://www.sciencedirect.com/science/article/pii/0004370281900242
https://arxiv.org/abs/1412.6980
http://jmlr.org/papers/v9/vandermaaten08a.html
https://probml.github.io/pml-book/book1.html

[12] Ramsundar, B. and Zadeh, R. B. TensorFlow for Deep Learning: From Linear
Regression to Reinforcement Learning. 1st ed. O’Reilly Media, Inc., 2018. ISBN
1491980451.

[13] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.-C.
MobileNetV2: Inverted Residuals and Linear Bottlenecks. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2018, p. 4510–4520. DOI:
10.1109/CVPR.2018.00474.

[14] Schroff, F., Kalenichenko, D. and Philbin, J. FaceNet: A unified embedding
for face recognition and clustering. In: Google Inc. 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2015, p. 815–823. DOI:
10.1109/CVPR.2015.7298682. ISSN 1063-6919. Available at:
http://dx.doi.org/10.1109/CVPR.2015.7298682.

[15] Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E. et al.
Time-Contrastive Networks: Self-Supervised Learning imafrom Video. 2018.
Available at: https://arxiv.org/abs/1704.06888.

[16] Shi, J. and Tomasi. Good features to track. In: 1994 Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition. 1994, p. 593–600. DOI:
10.1109/CVPR.1994.323794. Available at:
https://ieeexplore.ieee.org/document/323794.

[17] Sohn, K. Improved Deep Metric Learning with Multi-class N-pair Loss Objective.
In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I. and Garnett, R.,
ed. Advances in Neural Information Processing Systems. Curran Associates, Inc.,
2016, vol. 29. Available at: https://proceedings.neurips.cc/paper/2016/file/
6b180037abbebea991d8b1232f8a8ca9-Paper.pdf.

[18] Song, H. O., Xiang, Y., Jegelka, S. and Savarese, S. Deep Metric Learning via
Lifted Structured Feature Embedding. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2016, p. 4004–4012. DOI:
10.1109/CVPR.2016.434. Available at:
https://ieeexplore.ieee.org/document/7780803.

[19] Szeliski, R. Computer Vision: Algorithms and Applications. 1st ed. Berlin,
Heidelberg: Springer-Verlag, 2010. ISBN 1848829345.

[20] Verma, M., Kumawat, S., Nakashima, Y. and Raman, S. Yoga-82: A New
Dataset for Fine-grained Classification of Human Poses. 2020. Available at:
https://arxiv.org/abs/2004.10362.

[21] Wang, J., Zhou, F., Wen, S., Liu, X. and Lin, Y. Deep Metric Learning with
Angular Loss. In: 2017 IEEE International Conference on Computer Vision (ICCV).
2017, p. 2612–2620. DOI: 10.1109/ICCV.2017.283. Available at:
https://ieeexplore.ieee.org/document/8237545.

43

http://dx.doi.org/10.1109/CVPR.2015.7298682
https://arxiv.org/abs/1704.06888
https://ieeexplore.ieee.org/document/323794
https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://ieeexplore.ieee.org/document/7780803
https://arxiv.org/abs/2004.10362
https://ieeexplore.ieee.org/document/8237545

	Introduction
	Neural Networks in Computer Vision
	Machine Learning
	Convolutional Neural Networks
	Recognition as a Supervised Learning Task
	Self-Supervised Learning for Computer Vision

	Obtaining Datasets for Self-Supervised Learning
	Creating Dataset for Time-Contrastive Learning
	Dataset of Sports Pose Images

	Recognition of Sports Poses from Images
	Representing Sports Poses in Latent Space
	Sports Pose Classification from Embeddings
	Classifier Trained with Supervision
	Additional Usage of Sports Pose Encodings

	Evaluation of Models Trained with Self-Supervision
	Visual Analysis of Latent Space
	Evaluation of Encoder on Validation Dataset
	Comparison of Self-Supervised and Supervised-Trained Models

	Conclusion
	Bibliography

