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Abstract 
The goal of this thesis is to recognize sports poses in image data wi th a self-supervised 
learning approach to achieve high classification accuracy even wi th a low number of anno­
tated samples. Self-supervision is obtained by using images of the same scene from multiple 
viewpoints at identical and different times. A convolutional neural network trained wi th 
triplet loss learns embedding vectors of sports poses and a dense neural network classi­
fies them. The proposed self-supervised model achieves classification accuracy higher by 
30-40 % than a supervised model when there are only tens or ones of annotated training 
samples from each class. The main contributions of this thesis are a set of semi-automatic 
tools to prepare a dataset for the specific t ra ining process, two datasets wi th sets of la­
bels for classification, and implemented models for specific self-supervised learning. The 
results show that self-supervised learning is a meaningful approach for solving classification 
problems wi th very few labeled samples. 

Abstrakt 
Cílem t é t o p r á c e je r o z p o z n á n í spo r tovn í ch pozic v ob razových datech za p o m o c í př ís­
tupu self-supervised learning pro docí lení vyšší ú spěšnos t i klasifikace s p o u ž i t í m m a l é h o 
m n o ž s t v í a n o t o v a n ý c h vzorků . Učení za p o m o c í self-supervision je docí leno s n í m k y s te jné 
scény z r ů z n ý c h ú h l ů ve s te jných a různých časech. Konvolučn í neu ronová síť n a u č e n á s po­
moc í funkce triplet loss zakódu je s p o r t o v n í pozice do l a t en tn í ch v e k t o r ů a p lně p r o p o j e n á 
neu ronová síť tyto vektory klasifikuje. M o d e l n a t r é n o v a n ý p o m o c í self-supervised learning 
dosahuje o 30-40% vyšší ú spěšnos t i než supervised model, když je t r é n o v a n ý pouze na 
des í tkách či j e d n o t k á c h označených s n í m k ů z k a ž d é t ř ídy . H lavn ími p ř ínosy t é t o p r á c e jsou 
nás t ro j e pro p ř í p r a v u da tové sady pro tento specifický typ učení , dvě d a to v é sady s více 
anotacemi a i m p l e m e n t o v a n é modely využívaj ící self-supervised learning. Výs ledky ukazuj í , 
že učení za p o m o c í self-supervision je v h o d n ý p ř í s t u p pro řešení klasifikace za použ i t í velmi 
m a l é h o m n o ž s t v í označených sn ímků . 
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Rozšířený abstrakt 
P r á c e se zabývá r o z p o z n á v á n í m spo r tovn í ch pozic v ob razových datech. P r o n a u č e n í mod­
elu, k t e r ý r o z p o z n á n í provádí , je p o u ž i t a metoda self-supervised learning, ve k t e r é se využ ívá 
nějaké informace, k t e r á je v t rénovac ích datech už o b s a ž e n a a nen í t ř e b a j i doplnit do­
d a t e č n ě . Trénovací data pak sama slouží modelu jako superv ízo r a ten se d íky tomu n a u č í 
data smys lup lně reprezentovat v l a t e n t n í m prostoru. Kval i tn í reprezentace pak obsahuj í 
informace h o d n o t n é k da l š ímu využ i t í a ignoruj í informace, k t e r é v or ig inálních datech ne­
nesly ž á d n o u hodnotu. S p o r t o v n í pozice z a k ó d o v a n á v l a t e n t n í m vektoru je pak j ednoduše j i 
klasif ikovatelná a je tedy p o t ř e b a m é n ě t rénovac ích sn ímků . 

V t é t o p rác i je self-supervised learning docí len metodou time-contrastive learning, k t e r á 
využ ívá n a h r á v e k j e d n é scény z více různých úh lů . S p o r t o v n í pozice v jednom k o n k r é t n í m 
čase, ačkoliv je zachycená z různých úh lů , je s tá le s te jná . Z a t í m c o pozice zachycená ze 
s te jného m í s t a , ale po tom, co se o d e h r á l v obraze ně jaký pohyb, je j iná . Tato n á p o ­
m o c n á informace je ve videích o b s a ž e n a automaticky, pokud jsou synchron izovaná v čase, 
a nen í tedy t ř e b a jakéhokol iv da lš ího označován í s n í m k ů pro n a u č e n í d o b r é reprezentace 
spo r tovn ích pozic. 

P ro co ne j j ednodušš í p ř í p r a v u t a k o v ý c h dat je p ř e d s t a v e n a sada ná s t ro jů , k t e r á videa 
p řep racu je do s n í m k ů v h o d n ý c h p ř í m o k t r é n i n k u . N á s t r o j e p racu j í t é m ě ř automaticky, 
vyžadu j í pouze m i n i m u m interakce s už iva te lem. V p r v n í ř a d ě už iva te l urč í z a č á t e k a konec 
jednoho z n a h r a n ý c h videí , aby na z a č á t k u a konci nebyly nežádouc í záběry . Jedno video je 
d o s t a t e č n é , neboť synchron izačn í n á s t r o j , k t e r ý bude p ř e d s t a v e n pozděj i , se p o s t a r á o zkrá­
cení t ěch o s t a t n í c h . N á s l e d n ě už iva te l vybere ve videu ohraničuj íc í obdé ln ík pro oř íznu t í 
na oblast zá jmu . Ořezávac í n á s t r o j se p o s t a r á o to, aby výs ledné s n í m k y mě ly sp rávné 
rozlišení pro v s t u p n í vrs tvu neu ronové s í tě . P o t é jsou videa p lně automaticky synchroni­
zována p o m o c í dense opt ical flow, kdy je nalezen p ř e k r y v videí s největš í korelací s m ě r u 
pohybu ve videích a n á s l e d n ě jsou videa p a t ř i č n ě zk rácena . Nakonec je p o u ž i t detektor 
pohybu pro rozpoznán í , zda se v obrazu u d á l dostatek z m ě n , aby mohly bý t s n í m k y b r á n y 
jako rozdí lné a u loženy pro t r é n i n k jako obrázky . Detektor využ ívá sparse opt ical flow 
a nás l edné zp racován í v e k t o r ů pohybu, aby co nejpřesněj i detekoval s n í m k y s rozd í lnými 
s p o r t o v n í m i pozicemi. 

Dá le jsou p rezen továny 2 da tové sady, k t e r é byly p o u ž i t y př i vývoj i a n á s l e d n é m tes tován í 
n á s t r o j ů a m o d e l ů v t é t o p rác i . P r v n í z nich obsahuje pohyby ruky n a t o č e n é od před­
lokt í níže k p r s t ů m s t í m , že se ruka pohybuje p řevážně v zápěs t í a v prstech. Tato 
d a t o v á sada byla p o u ž i t a pro vývoj a t e s tován í n á s t r o j ů pro p ř í p r a v u d a to v é sady pro time-
contrastive learning. D r u h á d a t o v á sada je t v o ř e n a n a h r á v k a m i člověka p řevážně od kolen 
výše , ve k t e rých p rovád í r ů z n é s p o r t o v n í p ó z y p o m o c í p o h y b ů pažemi . Ve videích se nijak 
n e m ě n í pozice tě la ani hlavy, pouze se ohýba j í paže v ramenech a loktech. V i d e a jsou 
n a t á č e n a ve dvou p ros t ř ed í ch a osoba na nich zachycená m á r ů z n é oblečení pro dosažení 
vě tš í r ů z n o r o d o s t i . Tato d a t o v á sada byla p ř i p r a v e n a p o m o c í zmíněných n á s t r o j ů a nás l edně 
p o u ž i t a pro vývoj a v y h o d n o c e n í modelu t r é n o v a n é h o p o m o c í self-supervised learning. 

M o d e l pro klasifikaci spo r tovn ích pozic se sk l ádá ze dvou čás t í : e n k o d é r a klasif ikátor . 
E n k o d é r je konvoluční neu ronová síť a m á za úkol na léz t co nej h o d n o t n ě j š í reprezentace 
spo r tovn ích pozic. Jeho architektura je za ložena na síti ResNet-50 s u p r a v e n ý m v ý s t u p e m 
a je učený za p o m o c í funkce triplet loss. Klas i f ikátor p ř i j ímá na vstup l a t e n t n í vektory 
v p ř e d e m u r č e n é d imenz iona l i t ě a jeho v ý s t u p e m jsou p r a v d ě p o d o b n o s t i p ř í s lušnos t i tohoto 
vektoru k j e d n o t l i v ý m t ř í d á m . J e d n á se t a k é o neuronovou síť, ale pouze s jednou skrytou 
p lně propojenou vrstvou s ne l ineá rn í ak t ivačn í funkcí, neboť řešený úkol už je j e d n o d u c h ý 
a n e m u s í bý t poskytnuto mnoho t rénovac ích dat. Nakonec je t a k é i m p l e m e n t o v á n model 



konvoluční neu ronové s í tě s t é m ě ř ekv iva len tn í architekturou, pouze učený se superviz í . 
Tato síť slouží k p o r o v n á n í ú spěšnos t i p ř í s t u p ů self-supervised a supervised learning na 
r ů z n ě velkých d a t o v ý c h sadách . 

I m p l e m e n t o v a n é modely jsou vyhodnoceny p o m o c í různých metr ik a nás l edně je disku­
t o v á n a jejich ú spěšnos t v řešení úkolů, ke k t e r ý m byly určeny. Nejprve je provedena v izuá ln í 
a n a l ý z a l a t e n t n í h o prostoru se zakódovanými pozicemi po tom, co je r e d u k o v á n a dimen-
zionali ta p o m o c í t -distr ibuted stochastic neighbor embedding. Z t é t o vizualizace vyplývá , 
že se enkodé r zv l ádne n a u č i t reprezentace spo r tovn ích pozic i s jejich p ř í s lušnými vlastnos­
tmi , avšak na d a n é d a t o v é s adě ned o k áže kva l i tně general izovať mezi j e d n o t l i v ý m i s cénami 
a osobami. Dá le je provedeno v y h o d n o c e n í zakódovaných pozic na prostorech o různých 
d imenzích , ze k t e r é h o vyplývá , že danou datovou sadu je ne jvhodně jš í reprezentovat v 64 d i ­
menzích . Nakonec je p o r o v n á n model t r é n o v a n ý p o m o c í self-supervised learning s modelem 
t r é n o v a n ý m p o m o c í supervised learning na r ů z n ě velkých d a t o v ý c h s adách . Z experimentu 
vyplývá , že př i použ i t í p o u h ý c h des í tek či jednotek označených s n í m k ů v j edno t l i vých 
t ř í d á c h m á self-supervised model o 30-40% vyšší ú spěšnos t r o z p o z n á n í s p o r t o v n í pozice. 
P ř i použ i t í vyšš ího m n o ž s t v í t rénovac ích dat je self-supervised model lepší než supervised 
model, či a l e spoň dosahuje s te jných výs ledků . 
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Chapter 1 

Introduction 

Learning algorithms of many models used for recognition are nowadays relying on large 
datasets and also high computat ional power. Whereas the computat ional power of com­
puters is s t i l l expected to increase, the creation of larger and more accurate annotated 
datasets is a task much harder. Label ing usually requires some sort of manual work that 
cannot be automated unless the required task was previously solved. This problem can be 
minimized by using unlabeled data to learn their representations and then needing only 
a smaller amount of labeled samples to provide good classification results. This method is 
referred to as self-supervised learning. 

The introduct ion to machine learning and convolutional neural networks is covered 
at the beginning of Chapter 2. Then, important features of convolutional neural networks 
that are used i n this thesis are described. After that, current advances i n sports pose 
recognition are presented. The following section introduces self-supervised learning and 
its advantages and disadvantages i n deep learning. F ina l ly , various loss functions for self-
supervised learning are discussed. 

This thesis discusses self-supervision achieved wi th a time-contrastive approach when 
one scene is filmed from mult iple viewpoints and the difference in t ime and camera posit ion 
is used as supervision that needs no labeling. The recorded video footage has to be normal­
ized to the network's input, synchronized, and then motion detection is needed to produce 
ind iv idua l t ra ining images. This whole process is specified i n detai l i n Chapter 3. A set 
of tools for semi-automatic preparation of such dataset is proposed. F ina l ly , 2 different 
datasets w i th mult iple sets of labels are presented. The datasets were recorded for this 
thesis and were prepared wi th the introduced tools. 

The classifier model can be divided into 2 parts: the first one encodes the image into 
an embedding and the second one recognizes the sports pose from the embedding. Chapter 4 
describes both of these models and their specific parameters. Inputs of the first model are 
images wi th sports poses and outputs are their representations - embeddings i n a form of 
latent vectors. The first model is a convolutional neural network trained w i t h triplet loss 
function, the second model is a simple neural network wi th densely connected layers, which 
classifies the embeddings into given categories. 

Evaluat ion of the performance of a l l described models is provided i n Chapter 5. A t first, 
class dis t r ibut ion is visual ly analyzed wi th t-distr ibuted stochastic neighbor embedding to 
better understand the embedding space. Afterward, the models are evaluated on vali­
dation data and their different settings are compared to each other. F ina l ly , the overall 
performance of the self-supervised model on sports poses is measured and compared to the 
supervised model . A l l evaluations are discussed and their key takeaways are emphasized. 
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Chapter 2 

Neural 
Vision 

Networks in Computer 

Machine learning ( M L ) is playing a great role in solving many tasks proposed by the field 
of computer vision ( C V ) [19]. A n a l y z i n g objects from images is a task widely considered as 
not definable by a set of conditions and therefore, some sort of artificial intelligence (AI) 
has to be used, as is further discussed i n Section 2.1. W h e n problems got more complicated, 
M L models had to be increased i n depth, which led to the introduct ion of the term deep 
learning ( D L ) . 

Neura l networks (NNs) became a very powerful computing architecture i n machine 
learning. Section 2.2 informs how the introduct ion of convolutional layers to neural networks 
further increased their efficiency i n image processing. Various other operations were also 
implemented into convolutional neural networks ( C N N s ) to fit the needs of specific C V 
challenges. 

Deep learning has untangled many problems which were not solvable w i th other meth­
ods. Recognit ion, being one of these problems, requires a large amount of t ra ining data 
when the model is using supervised learning. This matter is further described in Section 2.3. 
The quali ty of annotated data available for the t ra ining process has a great influence on the 
model performance and as such became a challenge i n the further development of recogni­
t ion models. 

Therefore, learning algorithms that do not require large datasets are being developed. 
One of these approaches is self-supervised learning introduced in Section 2.4. It extensively 
uses a large amount of data without any labels as these are easier to obtain. A model trained 
in this manner needs a smaller amount of annotated data to generalize. Such an attribute 
is very valuable since labeling can often be done only by hand and is very time-consuming. 

2.1 Machine Learning 

Computers are very good at solving problems that can be specified wi th a set of conditions 
and states, such as a game of chess. The computat ional power that it possesses allows it 
to analyze the game many steps ahead. Whereas the human m i n d finds these tasks very 
complicated. It is, therefore, no surprise that computers managed to defeat the best chess 
players i n the world . Tha t is why one of the ways to create an art if icial intelligence (AI) 
is focused on the knowledge base approach. The main hypothesis was that every problem 

3 



can be described i n a formal language. After designing a set of logical inference rules, the 
problem would be solved wi th just a simple inference. 

Unfortunately, when it comes to solving real-world problems, this approach cannot 
be applied. Humans have immense knowledge about the world and applying it is very 
subjective and intuit ive. It cannot be formalized i n any way. The knowledge base A I 
often d id not understand the problem correctly and provided misleading results. Another 
disadvantage is that the formalization itself was an unwieldy process requiring a large 
amount of human staff [5]. 

Different approaches had to be chosen to solve real-world tasks. Instead of modeling 
the real world w i th conditions and rules, probabil ist ic models w i t h a set of parameters were 
chosen. Most parameters are to be set automatical ly based on the data provided to learn the 
problem's nature. Logist ic regression is one of these basic models that provide subjective 
reasoning based on the information that it learned from previous real-world examples. 
It finds a correlation between inputs and various outcomes. The computat ion involves 
a weighted sum of the inputs and a non-linear transformation of this sum, i l lustrated in 
Figure 2.1. Parameters that are adjusted are the weights of each input and a bias, a single 
number that is added to the sum, which can be also seen as a weight to a constant input 
o f + 1 . 

x 3 

Figure 2.1: Logist ic regression as an elementary model i n machine learning. Xk, k £ {1,2 ,3} 
are the inputs and h is the resulting output that equals the determined probabil i ty of the 
input. 

Inputs of these models are called features of the data and the performance of the model 
heavily depends on their representation. If the features correlate w i th the different out­
comes, the model is expected to provide good results. If we wanted to recognize a sports 
pose and the data provided would be positions of a l l joints and both eyes i n a human body, 
the task would be fairly easy. After normal iz ing the scene to always have the same scale 
and point straight to the eyes, the task gets even simpler. Inputs of such model would 
be coordinates of mentioned objects and outputs probabilities of each sports pose. Th is 
solution introduces another lot more complicated challenge - the coordinates are hard to 
obtain without any special tools. W h a t we would like to have is a model that can work on 
simple image data since obtaining those is affordable. 

Images can be described wi th pixel values and provided to the input but ind iv idua l 
pixels have no direct correlation to sports poses, therefore, the predictions would be useless. 
There is a number of examples of why this is true but perhaps the easiest one is translational 
dependence. Hav ing the sports pose moved just a few pixels i n any direction from where 
it is expected to be, makes the results incorrect. A d d i t i o n a l problems would be caused by 
shadows, different clothes that the person is wearing, etc. 

4 



This obstacle can be overcome by having the M L model discovering not only the mapping 
of features to outputs but also finding the useful features i n the raw data on its own. This 
makes the model not only work on raw data but also generalizes it to different tasks. For 
example, not only recognizing sports poses but also vehicles w i t h the same model only 
trained on different data. Logist ic regression is not capable of doing such predictions, 
some more complex solution has to be found. In computer science, the concept of bui lding 
complex structures from simple modules is well known and can be used i n machine learning 
as well . B y combining many logistic regressions into a structure, a neural network (NN) is 
created [5]. 

These networks consist of neurons - logistic regressions. Its non-linear function can 
be adjusted to fit the needs of a specific task and it is often referred to as an activation 
function. The capabil i ty to solve complex problems arises from the structuring of simple 
neurons into groups called layers. The key is not doing the mapping of abstract features 
in one task but d iv id ing it into mult iple simple mappings. The input layer, also called 
the visible layer because its data can be easily observed, provides data to the following 
layer. The first simple mapping is done by the second layer and each following layer uses 
the mappings of its predecessor to obtain more complex information from the data. These 
following layers are also called hidden because their values are not given i n the data, they 
have to be determined by the model . F ina l ly , the last layer provides outputs i n a format 
specified by its activation function. 

W i t h tasks becoming more complicated, the number of layers is growing bigger. A s 
there was an increase i n the depth of the graph, such networks were called deep neural 
networks, and their usage was referred to as deep learning ( D L ) . 

Neura l network for classification can be seen as function y = f(x\0) that maps input 
vector i to a category y w i th parameters of the network given by 6. It is also possible to 
decompose the neural network function / to mult iple functions, each one representing one 
layer, applied in the correct order. N N wi th two hidden layers and one output 
layer is representing function: 

Network parameters 6 are basically weights and biases of each neuron and they are un­
known when the model is constructed. The ideal values of parameters cannot be computed 
i n a simple way because of the non-linearity of neural networks that causes most of the loss 
functions to become non-convex. Loss functions are going to be further explained later in 
this section. N N parameters have to be somehow ini t ia l ized and iteratively improved to 
provide better results. Th is iterative process is called learning or t ra ining and its goal is to 
approximate some function / * that provides accurate results for a given problem. Tha t is 
achieved by finding parameters 6 that result in such approximat ion [5]. 

Non-linear results of neural networks are achieved wi th activation functions. There are 
lots of various functions wi th different use cases, but two of them are very common. One is 
a sigmoid function wi th Equa t ion 2.2, which maps any real number to a number between 
0 and 1. It is often used to represent probabili ty. The other activation function is rectified 
linear unit ( R e L U ) (Equat ion 2.3) that is linear for any positive number and 0 otherwise. 
R e L U is very often used i n later discussed convolutional neural networks. 

1 
(2.2) 

1 + e —X 
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f{x) = max(0, x) (2.3) 

The learning algori thm consists of mult iple stages that repeat un t i l the model is produc­
ing satisfactory results. These stages are explained in detail in the following paragraphs. 

1. Forward propagating data - inference. 

2. Comput ing gradients w i th back-propagation algori thm. 

3. Calcula t ing learning rate. 

4. Performing learning step of the model w i th the opt imizat ion algori thm. 

Evaluat ion y of samples x is computed by forward propagating the samples through the 
network. Tha t means evaluating a l l layers i n the correct order as i l lustrated i n Equa t ion 2.1. 
Correct values y* = f*{x) are known because the t ra ining data are annotated wi th them. 
The loss (or cost) function can be used to compute how good the approximation / of / * is. 
Loss functions are designed to fit specific tasks and data dis tr ibut ion. W h e n it is necessary 
to compute some sort of distance on data that probably come from Gaussian dis t r ibut ion, 
the M e a n Squared Er ro r function is often used. 

For classification problems, the typica l choice is a measure called cross-entropy. It is 
based on the K u l l b a c k - L e i b l e r divergence, which measures the difference between two prob­
abil i ty distributions. Cross-entropy computes the expected number of bits needed to repre­
sent data coming from the dis t r ibut ion p while using the dis t r ibut ion q and it is calculated 
as follows [11]: 

M(p,q)±-J2p(y)tegq(y). (2.4) 
y 

Gradients can be computed in many different ways but the most common one for models 
that are working on large datasets is stochastic gradient descent ( S G D ) . Therefore, this is 
the only one discussed i n this thesis. Generally, a gradient is a vector point ing i n the 
direction of the steepest ascent. B y following such a vector, the local m a x i m u m can be 
reached. In machine learning, the thought is often reversed - the goal is to reach the local 
min imum, but the main idea remains the same. For the number of samples m and loss 
function L , gradient g is computed w i t h this equation: 

1 m 
9 = -Y,VoL(f(x^\d),y*(% (2.5) 

i=i 

The direction of the next step is computed but another variable called the learning rate 
is s t i l l unknown. It represents the size of the step and it has a vast impact on the t raining 
performance. One possible solution is to keep the learning rate fixed for the whole t raining 
but better results can be achieved wi th more advanced algorithms. The first improvement 
can be achieved by computing a specific learning rate for each parameter of the network. 
The second way to achieve better results is by changing the learning rate throughout the 
t ra ining process. 

The update of parameters is done w i t h an opt imizat ion algori thm. It uses previously 
computed gradient g and other algorithm-specific parameters to update the network's pa­
rameters. It usually incorporates the calculat ion of the learning rate. Very common is 
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the use of the A d a m opt imizat ion algori thm which also uses the previously mentioned im­
provements for a more useful learning rate. The algori thm uses the mean and uncentered 
variance of parameters to adapt the learning rates. The computat ion goes as follows [9]. 

s = pis + (1 - pi)g (2.6) 

r = P2V + (l - P2)g®g (2.7) 

s 
(2.8) s 

I-Pi 

r 
(2.9) r 

1 - Pi 

A6 
s 

(2.10) —e 

6 d + Ad (2.11) 

Where: 
Pi,P2 are exponential decay rates for moment estimates (mean and variance, usually 

ini t ia l ized to 0.9 and 0.999 respectively), 
0 is an element-wise product, 
s is an updated biased first-moment estimate, 
r is an updated biased second-moment estimate, 
s is a correct bias i n the first moment, 
f is a correct bias i n the second moment, 
e is a step size (usually ini t ia l ized to 0.001) and 
5 is a smal l constant used for numerical s tabil izat ion (usually ini t ia l ized to 1 0 - 8 ) . 

Another important part of the t ra ining process is how the data samples are handled. 
It is possible to update the network's parameters after each sample but also wi th the 
whole dataset. The ideal solution is to divide the dataset into minibatches of size ranging 
from lower tens to higher hundreds of samples. Parameters are then updated wi th each 
minibatch. After a l l minibatches of the dataset have been used for t raining, the process 
can start again on the previously minibatches. It is also important to shuffle the data in 
the dataset and in the minibatches. If the same order of samples was used, the network 
might have problems wi th not generalizing enough. 

Every t ime the whole dataset has been handled, one epoch has passed. Tra in ing can 
consist of many epochs, depending on the problem difficulty, network size, and dataset. 
It is important to measure the network's performance on data it has never seen during the 
t raining. Once the model's accuracy is not improving and/or loss is approaching nearly 
zero values, the t ra ining w i l l no longer provide better results. Therefore, the dataset should 
be divided into t ra ining and val idat ion data. 

2.2 Convolutional Neural Networks 

Convolut ional neural networks are a special k ind of N N s including at least one layer that is 
computing convolution. These networks are used for processing data w i th grid-like topolo­
gies, such as sequences and images. Th is thesis focuses on image data and therefore, only 
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those w i l l be discussed further on, even though the computat ion can be generalized to other 
input types. 

A t first, convolution is discussed as an operation on image data w i th its important 
properties. Its usage as a layer i n a neural network is explained in detail . Then , other 
operations important for C N N s are introduced and explained. Once most of the important 
principles of convolutional neural networks have been mentioned, a specific convolutional 
neural network architecture is presented. 

2.2.1 C o n v o l u t i o n o n Image D a t a 

Convolut ion is a mathematical operation of two functions that produces a th i rd function 
that describes how one modifies the other i n shape. This is a very general definition that 
is not necessary for image processing and can be made more specific. It is only necessary 
to consider discrete values of inputs, continuous functions are not used i n C N N s . Images 
usually consist of mult iple channels ( typically red, green, and blue), but for convolutional 
neural networks, channels are handled separately. For that reason, images w i l l be discussed 
as 2-dimensional arrays of numbers only. 

Convolut ion computes a weighted sum of values across a fixed-size area of the image. It 
takes a 2-D image input and a 2-D array of weights called a kernel. Images can be extended 
on the edges wi th padding, which are basically pixels w i th a value of zero. Since convolution 
changes the size of the input image, padding is often used to equalize the sizes [4]. The 
resulting 2-D array is often referred to as a feature map and it is computed by mul t ip ly ing 
the input value wi th the corresponding kernel value for a l l of the overlapping elements and 
then summed together. After that, the kernel moves one step further on the input and the 
next value of the feature map is calculated the same way un t i l the whole input is processed. 
Figure 2.2 illustrates one step of the computat ion. 

Figure 2.2: Example of 2-dimensional convolution wi th input size 4 (blue), kernel size 3 (red) 
and padding size 1 (white). The feature map (dark purple) has the same size as the input 
because of the padding. 

The operation of convolution is often denoted wi th an asterisk * and for input / of size 
m x n and kernel K, feature map FM is calculated as: 

FM(i,j) = (I*K)(i,j) = ] T ] T / ( m , n ) K ( i - m , j - n ) . (2.12) 
m n 

Layers that perform convolution are not that different from normal dense layers men­
tioned in the previous section. The input image is the layer's input, weights are the kernel 
values and the output of the layer is the feature map. W h e n t ra ining is performed, the goal 
is to find kernel values that produce the best results. Kernels are usually called filters in 
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the C N N context, therefore, this terminology w i l l be used from now on. E a c h convolutional 
layer often includes more filters and produces an equal number of feature maps, one feature 
map from each filter applied to the input . That means 2-D input data are transformed 
into 3-D data, as there are mult iple 2-D feature maps of the same size. The following 
convolutional layer applies filters to each input and sums the results over each filter. Color 
images on the input are handled the same way as i f each channel was a feature map from 
a previous convolutional layer, there is no difference between them. 

Convolut ion is a very important operation for image processing because it holds many 
essential properties. Since it is computed over mult iple neighboring values, the context 
of p ixe l values is taken into account, not just the single values. Tha t enables pattern 
recognition i n images. Simple patterns such as shadow information and edges are layer by 
layer combined into more complex patterns unt i l an object detection can be done. Another 
important property is equivariance, which means that the posit ion of objects in the image 
plays no role in detection. Final ly , convolution has low memory requirements that are not 
dependent on the input size, only values that are stored are 2-D filter arrays [5]. 

2.2.2 Additional Important Parts of Convolutional Neural Networks 

Convolut ional layers are usually followed by pooling layers i n C N N architecture. Pool ing 
is a function that for each value of the input gr id computes a summary statistic of its 
nearby values. The most common statistics are m a x i m u m and average. For example, the 
max pool ing layer w i th 2 x 2 pool size takes a m a x i m u m of every 2 x 2 region i n the image 
and creates a new image constructed out of the m a x i m u m values. A simplified version of 
this operation is in Figure 2.3. In this case, the output size w i l l be smaller than the input 
size. To keep the size uniform, padding must be added the same way it was added during 
convolution. 

12 20 30 0 

8 12 2 0 

34 70 37 4 

75 13 25 12 

Figure 2.3: M a x pooling of 4 x 4 gr id into a 2 x 2 gr id w i th pool size also 2 x 2 . F r o m every 
region, the max ima l value is taken to the output. 

Pool ing layers make the model invariant to smal l translations. Even when the input has 
moved a few pixels in some direction, pooled outputs should not change much. Pool ing can 
be also easily used for downsampling of images when the stride is set to 2 or more. Another 
use case of pool ing is handling images of varying sizes because classifiers are accepting only 
images w i t h fixed size [5]. 

Residual blocks made a vast impact on the development of convolutional neural networks. 
W h i l e the recognition problems got more complicated and datasets enormous, the need to 
make C N N s deeper arose. Unfortunately, the performance of the networks d id not improve 
by just adding more layers. Gradients could not be back-propagated a l l the way to in i t i a l 
layers. 

The solution to this problem came w i t h residual blocks that introduced a simple con­
nection that bypassed blocks w i t h convolution and pooling, as shown i n Figure 2.4. Th is 

2x2 Max Pool 
> 

20 30 

75 37 
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connection symbolizes a simple identity function, it takes the input and outputs it un­
changed. W h e n such an identity connection bypasses every convolutional block, the neural 
network can basically work as an identity function. The same principle can be applied 
when gradients are computed, therefore, larger gradients are back-propagated to the in i t i a l 
layers [6]. 

Figure 2.4: Residual block w i t h bypassed convolutional and pool ing layers. Rectangular 
nodes symbolize data and ell ipsoidal nodes are operations. 

Dropout layer is used to deactivate some neurons dur ing the t ra ining process and by 
that, it is t ry ing to simulate different models. For each mini-batch of data, some percentage 
of neurons have their activation function set to zero. The t ra ining step is done as usual: 
inference, back-propagation, and weight update. Then, for the next mini-batch, different 
neurons are chosen to produce output w i th a value of zero. Dropout is a computat ional ly 
inexpensive way to regularize models [5]. 

2.3 Recognition as a Supervised Learning Task 

Recognit ion is one of many computer vision tasks and it can be further divided into multiple 
more specific categories. The most common one is classification - the recognized image is 
supposed to be assigned a class from a previously known set. Th is thesis focuses specifically 
on sports poses classification, however, the other recognition varieties are worth mentioning 
as well . Detect ion and segmentation challenges are t ry ing to localize objects i n images wi th 
a bounding box or pixel-wise, respectively. A very specialized task is a pose estimation 
where the model is t ry ing to assign a specific structure of connected joints to a human 
body. 

Supervised learning is one of the most general t ra ining methods. The main prerequisite 
is generally a dataset w i th annotated samples. For the classification task, each data point 
has to have a class assignment. Dur ing the t ra ining procedure, the model is t ry ing to assign 
the correct class to each sample i n a mini-batch and compare it to ground t ru th - the real 
class of the sample saved i n the dataset. If the model is not successful, the information is 
back-propagated through the network to improve on the next mini-batch inference. 

Nowadays, models are trained on datasets of mil l ions or even bill ions of data points. 
Networks w i t h a number of layers well over 100 have enough parameters to be able to 
classify very complicated images into a large number of categories (even tens of thousands 
of hierarchically divided ones). A n important property of each classifier is its abi l i ty to 
generalize - to classify correctly images it has never seen. Generalizat ion is achieved wi th 
t ra ining on immense datasets w i th a large variety of images. 

2.3.1 ResNet Architecture of Convolutional Neural Networks 

This thesis implements residual network ResNet-50 from [6] as a backbone, a structure 
of convolutions, pooling, and other operations to obtain information from images. Th is 
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network was chosen because of its well-known architecture which s t i l l provides good results. 
It can be easily compared to other results since it is widely used across the whole computer 
vision field. Its depth and number of parameters are not as high as the newer architectures 
have and therefore, might be easier to t ra in on data. A s an alternative, a M o b i l e N e t - V 2 
architecture was also tested [13]. A l though it learned faster, its results d id not achieve the 
ResNet 's accuracy. It is easily possible to use other C N N architecture as a backbone, the 
only difference might be the input size that has to be adjusted. 

The network uses a well-known structure of convolutional layers followed by pooling 
layers, where the number of convolutional filters corresponds to the size of the stride and 
the number of filters in the previous layer. W h e n the stride size is 1, the input and outputs 
of convolution have also the same size and therefore, the number of filters stays the same. 
If the image size is decreased wi th stride size equal to 2, the number of filters doubles. 
In the beginning, convolution wi th filter size 7 x 7 is used but afterward, standard 3 x 3 
convolutions are implemented. 

The head of the network has a densely connected layer w i t h a softmax activation func­
t ion. Th i s network introduces residual blocks further explained together w i th the other 
mentioned concepts i n Section 2.2. Th is allows the network to have higher tens or even 
lower hundreds of layers and s t i l l be able to learn well . The network also uses batch nor­
malizat ion after each convolution but before the activation. W i t h the exception of the 
network's output, Rectified Linear U n i t is used as an activation function. A n example of 
the architecture in a simplified form is i n Table 2.1. 

2.3.2 Current Advances in Sports Pose Recognition 

Most of the current research focuses on sports pose estimation which is a different task than 
sports pose classification done i n this thesis. Researchers also t r ied yoga pose recognition 
from body contours but the variety of poses d id not draw near to a l l possible options [2]. 
However, w i t h the publishing of the Yoga-82 dataset, results of different supervised-trained 
models were also analyzed [20]. Summarized in Table 2.2 are the results of classifying 
images from the Yoga-82 dataset w i th various C N N models. 

The Yoga-82 dataset contains 82 third-level classes of yoga poses grouped into 20 second-
level classes that are further merged into 6 first-level classes. The poses are grouped ac­
cording to the posture and pose look. O f course, not a l l poses can be easily assigned to one 
of the 82 third-level classes, some variat ion has to be taken into account. The hierarchy 
of classes can be used to improve the classification or to estimate a pose type wi th higher 
accuracy - reported first, second, and third-level accuracy is 89.81 %, 84.59%, and 79.08%, 
respectively, for top-1 accuracy on DenseNet-201. 

Yoga as a sport includes an extensive amount of poses w i t h a variety that stands out 
amongst other sports. The poses can be also sorted into groups and thus create a hierarchy 
that can be further used for classification as can be seen i n [20]. 

2.4 Self-Supervised Learning for Computer Vis ion 

Self-supervised learning is a method of t ra ining a model first to learn data representations 
on unannotated data and then to use annotated data to t ra in another model for classification 
of the representations. The first model learns patterns in the data and how to represent 
the needed information i n it w i th a latent vector. There is no need for any labels since the 
data itself is used for supervision. Means of obtaining the supervision differ upon the task 
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Repeated Layer Settings 

l x Input Size: (224, 224,3) 
Filter count: 64 

l x Conv2D Kernel size: (7, 7) 
Stride size: (2, 2) 
Filter count: 64 

6x Conv2D Kernel size: (3, 3) 
Stride size: (1, 1) 
Filter count: 128 

l x Conv2D Kernel size: (3, 3) 
Stride size: (2, 2) 
Filter count: 128 

7x Conv2D Kernel size: (3, 3) 
Stride size: (1, 1) 
Filter count: 256 

l x Conv2D Kernel size: (3, 3) 
Stride size: (2, 2) 
Filter count: 256 

l l x Conv2D Kernel size: (3, 3) 
Stride size: (1, 1) 
Filter count: 512 

l x Conv2D Kernel size: (3, 3) 
Stride size: (2, 2) 
Filter count: 512 

5x Conv2D Kernel size: (3, 3) 
Stride size: (1, 1) 

l x Dense 
Units: 1000 l x Dense 
Activation: Softmax 

Table 2.1: ResNet-34 architecture wi th only the main layers mentioned together w i t h their 
settings. Some layers are repeatedly used after each other, the number of repetitions is in 
the first column. Residual connections are over every 2 convolutional layers except the first 
one. 

and data available. The second model needs to use an annotated dataset to assign classes 
to latent vector output by the first model . Classification is made easier w i th the data being 
represented efficiently and there is no need for large annotated datasets to achieve good 
generalization properties of the model. 

There are various ways to use the image data itself as supervision. For instance, 
it is possible to use a smal l distort ion on the original data and expect it to not change 
its meaning. W i t h this, different images that are bound together are created automatically. 
Self-supervision can also be used for colorization tasks, the original color images are easily 
converted into grayscale images and the model's goal is to colorize it to match the original 
sample. Another common challenge is generating missing image data, which is done wi th 
context encoders. Some part of the image is cropped out and the encoder is t ry ing to fil l 
it in to its previous form. 

This thesis uses models called time-contrastive networks ( T C N s ) introduced i n [15]. Self-
supervision is achieved by using mult iple cameras to f i lm a scene from different viewpoints. 
After the videos are synchronized, frames wi th the same t imestamp but from different 
cameras should s t i l l produce latent vectors fairly close to each other. W h e n the timestamps 
are different (and the scene changed), latent vectors should be further from each other even 
when filmed from an identical viewpoint. 
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Architecture Dep th Parameters Top-1 Accuracy Top-5 Accuracy 
ResNet-101 101 42.72 M 65.84 84.21 

169 12.60 M 74.73 91.44 
201 18.25 M 74.91 91.30 

88 2.33 M 71.11 88.50 
50 23.15 M 68.45 86.42 

DenseNet-169 
DenseNet-201 
M o b i l e N e t - V 2 
ResNeXt-50 

Table 2.2: Performance of widely-known C N N architectures on Yoga-82 dataset using third-
level classes from [20]. 

Self-supervised models use different loss functions that suit their specific approach 
to solving the problem. A s described i n the previous paragraphs, self-supervised learn­
ing has many different forms and, therefore, architectures vary i n many ways. The time-
contrastive network has to learn to represent the object i n the image independently of the 
viewpoint. Images from the same viewpoint can differ just a l i t t le i n t ime but their im­
age embeddings should be different if the observed object changed. Whereas images from 
different viewpoints at the same time can be entirely different, only the observed object is 
constant. Therefore, their embeddings should be reasonably similar. Such a challenge can 
be solved w i t h a loss function called the triplet loss. 

2.4.1 Triplet Loss Function 

The triplet loss function pushes embeddings of similar data closer together and pulls em­
beddings of diverse data further apart. Its main goal is learning data representation in 
a d-dimensional Eucl idean space. Inputs of the function are 3 data embeddings: anchor, 
positive, and negative. Anchor and positive should be closer to each other than anchor 
and negative. It can be thought of as anchor and positive belonging to the same class and 
negative to a different one [14]. 

D a t a point x has an embedding f(x) £ M r f which is addi t ional ly constrained to live 
on a unit hypersphere - | | / ( a0 | | 2 = 1. Triplet i consists of anchor image xf, positive image 
x\ and negative image xf. The goal of the network is for inequality 2.13 to held true wi th 
condit ion 2.14. 

Where a is a margin that is enforced between positive and negative pairs and T is the set 
of a l l possible triplets, | T | = N. 

The triplet loss to be minimized is then: 

l l / « ) - / ( ^ ) l g + « < l l / « ) - / « ) l l 2 (2.13) 

V(/(x?),/(x?),/(x?))€T (2.14) 

N 

(2.15) 

A n d more often it is used as: 

N 

(2.16) 
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The triplet selection is an important part of the whole t ra ining process. W h e n the 
constraint 2.14 is easily met, the triplet has not improved the model at a l l and therefore, 
it w i l l converge slower. The ideal triplets (hard positive and hard negative, respectively) 
are satisfying these two conditions [14]: 

^ a r d = a r g m a x | | / « ) - / « ) | g , (2.17) 

z ^ = a r g m i n | | / ( < ) - / ( * ™ ) | | 2 . (2.18) 

In this thesis, w i t h the time-contrastive learning method, hard triplets cannot be com­
puted i n any way. H a r d positive pair is enforced by making the viewpoints of the images as 
different as possible. Since anchor and positive images are taken from different viewpoints, 
the background of the scene and light conditions can vary. A l so , just by filming the scene 
from different angles, the object can look completely different. The hard negative pair 
condit ion can be fulfilled by choosing an image from the same viewpoint as for the anchor 
image but w i th a slightly different t imestamp. How much should the t imestamp differ, de­
pends on the scene itself. If it is very dynamic, the images can be just a few frames apart, 
if it stays the same for a longer time, a different approach has to be chosen. One possibil i ty 
to choose a hard negative pair from a video is by computing opt ical flow from the video 
and using it to detect movement. Th is procedure is thoroughly discussed i n Section 3.1.3. 

2.4.2 Other Metric Learning Loss Functions 

Triplet loss is not the only possible loss function that can be used to construct an embedding 
space wi th a neural network. There are several other functions for metric learning that can 
be applied to the same task that is being solved i n this thesis. These alternative functions 
are proposed as a possibil i ty for future work on the project and are not implemented. 

Lif ted Structure Loss is a good candidate for an alternative to the triplet loss function 
[18]. It uses a similar format to the triplet loss's t ra ining data: anchor, positive, and negative 
samples. The difference is that it utilizes mult iple negative samples at once and thus 
provides faster convergence. It is fairly easy to provide a higher number of negative samples 
since frames before and after the t imestamp of anchor-positive pairs from a l l viewpoints 
are candidates for negatives. 

Mul t i -C las s N - P a i r Loss is very similar to lifted structure loss in the sense that it uses 
mult iple negative samples but it differs i n what it tries to optimize [17]. It computes cosine 
similar i ty between features of the data points and tends to be scale-invariant. 

W h i l e triplet and lifted structure losses both use relative distance as a metric, angular 
loss accounts for the angle at the negative edge of the triplet triangle [21]. It drags negative 
data points away from the anchor-positive pair. The pair is on the other hand pushed closer 
together. Th i s metric also benefits from scale invariance. The advantage over triplet loss 
is an easier setting of margin as a hyperparameter. The margin for triplet loss depends on 
the intra-class variance of data while the margin angle for angular loss is invariant of such 
property. 
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Chapter 3 

Obtaining Datasets for 
Self-Supervised Learning 

Datasets for self-supervised learning, in general, can be very different from each other, their 
form depends on the task that is being solved and the way of achieving the self-supervision. 
Al though , a l l of them have one th ing i n common - they main ly consist of unannotated data 
and in the end, they need a smaller amount of annotated data to be able to classify from 
learned embeddings. 

A s is mentioned i n Section 2.4, this thesis focuses on Time-Contrast ive Learning ( T C L ) , 
which means that it achieves supervision wi th mult iple viewpoints of the same scene con­
currently as is displayed in Figure 3.1. W h i l e the filmed object may look very different 
when filmed from different angles, it is s t i l l the same object if the timestamps are identical. 
It is also possible to use moving cameras for the fi lming of the scene, al though this might 
introduce some inaccuracy to movement detection. O n the other hand, even when the 
viewpoint is equivalent, the object can be altered only after a short t ime has passed. This 
characteristic holds supervision when T C L is used and because no extra work (e.g. labeling) 
has to be done, the data is supervised by itself - self-supervised. The only restriction is the 
need to have mult iple videos of the same scene synchronized i n time. 

CO 
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Figure 3.1: Example of a scene filmed from different viewpoints w i th 3 cameras. The higher 
number of viewpoints ensures greater variabil i ty i n the dataset for time-contrastive learning. 

It is necessary to have the process of dataset creation as automated as possible. Other­
wise it would have been easier to just label the data and s imply use a supervised learning 
approach. Therefore, I propose a set of tools i n Section 3.1 that creates a dataset ready for 

15 



T C L wi th just a smal l amount of user interaction. After that, a simple tool for labeling 
images is presented i n Section 3.1.5, because at least a smal l number of images wi th an 
assigned class is always necessary. 

A t the end of this chapter, in Section 3.2, a basic dataset of sports poses is presented. 
It contains scenes w i t h a solid background and sports pose wi th variance only i n a rm 
movement and it was captured and prepared especially for this thesis. The basic sports pose 
dataset was demonstratively prepared only wi th the tools described below. Final ly , possible 
directions of the development of the dataset w i t h advanced sports poses are discussed. 

3.1 Creating Dataset for Time-Contrastive Learning 
Dataset for Time-Contrast ive Learning ( T C L ) is created from synchronized videos of the 
same scene filmed from different angles. I propose a tool for semi-automatic preparation 
of such a dataset, i l lustrated i n Figure 3.2. It offers a few simple edit ing features such as 
cropping and t r imming . A very important feature it provides is the automatic synchro­
nizat ion of mult iple videos. The second necessary component is a movement detector that 
estimates how much movement happened between frames of the video. Th is information is 
essential to achieve the t ime contrast that T C L relies on. F ina l ly , the tool exports chosen 
video frames w i t h their timestamps to simplify the creation of triplets for model t raining. 

Raw 
Trim Crop 

Video 1 
Trim Crop Synced 

Video 1 

Raw Crop Synchronize Synced Detect 
Dataset Video 2 

Crop Synchronize 
Video 2 Motion Dataset 

Raw Crop 
Video 3 

Crop Synced 
Video 3 

Figure 3.2: Tools for construction of dataset presented in the order of their usage. Whi t e 
boxes represent data and colored boxes the tools. The red color symbolizes tools that need 
some user interaction whereas blue-colored tools are fully automatic. The tool for cropping 
needs a user to select a specific area but then it automatical ly adjusts the selection to fit 
al l needs. 

Cross-platform video conversion solution FFmpeg is used to handle a l l video modifica­
tions effectively. Videos can be either processed direct ly w i th FFmpeg or a script is created 
that does the identical operations but can be launched later. The ind iv idua l parts of the 
editing tool are presented i n the following subsections i n the order of their execution. 

3.1.1 Preparing Videos Filmed with Various Cameras 

The first step i n dataset preparation is to t r i m the start and the end of the video. It is almost 
certain that the video contains a l i t t le bit of inapplicable footage at the beginning and at 
the end. Therefore, a simple tool that allows users to select the t r i m range wi th sliders is 
developed for the purpose of this thesis. Because of how the synchronization tool works, 
a user only needs to t r i m one of the videos, the others w i l l be t r immed automatical ly when 
being synchronized. This is further described i n Section 3.1.2. 

In most cases, the video's resolution does not match the input of the model and has 
to be scaled down, and is often also cropped to the correct ratio. The tool allows users to 
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select a bounding box around the scene which w i l l always be included i n the cropped video 
and non-important parts of the scene w i l l mostly be deleted. Correct crop coordinates 
are automatical ly computed to match the input of the network and a l l other constraints. 
The computat ion consists of operations shown i n Figure 3.3 and described i n detail i n the 
following enumerated list, their order is important . 

1. A view of the video as a single image is constructed from 10 merged frames taken out 
of the whole video in order to provide the user w i th enough information about the 
range of motion. 

2. User selects the part of the scene that has to be included in the cropped video wi th 
a bounding box, these are the in i t i a l crop coordinates. 

3. C rop coordinates are adjusted to match the height x width ratio of the model input. 

4. If crop selection has a lower resolution than the network input, the selection is equally 
extended. 

5. If crop selection exceeds the frame size, it is decreased to the closest possible value. 

6. If crop selection is positioned out of the frame, it is moved to the closest correct 
position. 

7. Video is cropped to the computed crop selection. 

Crop coordinates are correctly computed to match the model input height x width ratio 
but the resolution w i l l most l ikely not match. Therefore, the video has to be scaled down 
or (in the case of a video having lower resolution than model input) scaled up. Lastly, the 
framerate of a l l of the videos has to be unified to a previously chosen fixed value to ensure 
the correct run of synchronization and mot ion detection algorithms. 

3.1.2 Synchronizing Videos by using Dense Optical Flow 

The ma in requirement for T C L to work is the synchronization of a l l used videos. It is very 
likely that not a l l used videos are perfectly synchronized and manual synchronization would 
not be very precise nor effortless. Therefore, I present an automatic tool that determines 
the correct synchronization and tr ims a l l videos at the beginning and at the end so that a l l 
are the same length and synchronized. 

The synchronization is done by opt ical flow, which is information about the movement 
of each pixel between video frames [8]. Dense version of opt ical flow from OpenCV l ibrary 
is used [1]. Visua l iza t ion of dense opt ical flow is shown in Figure 3.4. The assumption 
behind using dense opt ical flow for synchronization is that videos of the same scene have 
a correlative amount of movement i n similar directions at the same time. The precise 
movement of each pixel cannot be easily computed, it is only possible to approximate i t . 
However, the precise values are not necessary for synchronization purposes, rough values 
are accurate enough. 

Movement vector of each pixel is from two reasons too specific for this task. F i rs t reason 
is that each video displays the scene from different angle and their opt ical flows w i l l most 
l ikely be different. It is more useful to have general information about movement i n the 
whole frame than to have it pixel-wise to eliminate smal l discrepancies. The second reason 
to aggregate information over the whole frame is growing computat ional complexity. If the 
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Figure 3.3: Process of cropping a video w i t h the semi-automatic tool . The user selects 
an area of interest w i th a bounding box and the tool performs cropping and resizing to 
a given resolution. The numbering of ind iv idua l steps refers to the previously mentioned 
description of the tool . Blue arrows symbolize automatic steps and a red arrow manual 
steps. Steps 5 and 6 are only needed for some specific cases displayed in the figure, step 4 
is not shown. 

information is accumulated over a l l pixels into a fixed number of values, the computat ional 
complexity stays constant, whereas it grows when pixel mot ion values are used individual ly. 

Since a l l pixels can move i n two dimensions, it would make sense to gather information 
about the horizontal and vert ical movement by s imply summing up a l l the values. The 
problem wi th this approach is that when some pixels move to the right and some to the left, 
their movement vectors subtract from each other in that dimension and a lot of information 
is lost. For that reason, I propose to sum separately positive and negative values in each 
dimension and obtain information about the amount of mot ion i n 4 directions: up, down, 
left, and right. E a c h frame (except the first one) of each video is assigned these 4 values 
describing the opt ical flow from the previous frame to the current one. 

After that, Pearson correlation of the aggregated opt ical flows of video pairs has to be 
done. These are not computed for a l l pair combinations, a l l flows are only compared to 
the shortest one to perform a smaller number of computations but s t i l l guarantee to get 
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(a) (b) (c) (d) 

Figure 3.4: Dense Op t i ca l F l o w visualized on mult iple frames from the same video where 
a person is moving his arms. Visua l iza t ion 3.4a shows both arms moving up while 3.4b 
captures both arms moving down. A s can be deduced, visual izat ion 3.4c is a combination 
of the previous two: one a rm is moving up and the other one down. Graphics 3.4d displays 
only forearms moving closer to each other while the elbows stay i n place. A l l other parts 
of the frames stay steady. 

the best possible synchronization. E a c h flow pair is compared to get an overlap w i t h the 
highest correlation, which means the correlation for each possible overlap is computed. The 
only restrict ion is that the overlap has to be at least a certain number of frames long to 
eliminate corner cases where for example only one frame has the best correlation (the first 
frame from one video and the last one from another). Th is min ima l overlap length can be 
a l i t t le lower than what the expected length of synchronized videos is to optimize for the 
lowest number of correlations that has to be done. B y default, it is set to 1,000 frames. 

Each overlap is assigned a specific index that w i l l be used to describe it in the following 
text. The problem is that the overlap index wi th the highest correlation might not be the 
correct one that synchronizes the videos because of some inaccuracy. To eliminate this 
problem, one addi t ional property can be used - if the correlations are computed accurately, 
the highest ones w i l l be of overlap indices from a similar range, just a few frames apart. 
To use this property, overlap indices are sorted descending by correlation, and the top 10 are 
taken. The standard deviat ion of these samples is computed and i f it exceeds 10, it means 
that there is at least one overlap index among them that does not fit the majority. A l l these 
indices are checked and if they are further than one standard deviation from the mean, they 
are removed from this list. This operation is repeated un t i l the standard deviation of the 
whole list is lower than 10. After that, the index wi th the highest correlation that is s t i l l on 
the list is the best one for synchronization. Rea l data example of this a lgori thm is provided 
in Table 3.1. 

W h e n the best overlap indices for the flow pairs are computed, flows are shortened 
to the same length where a l l of them overlapped. Thei r respective videos are t r immed at 
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State 
Best overlap indices 

(descending by correlation) 
Standard 

deviat ion (SD) 
Al lowed range 

Ini t ia l 
2882, 1410, 1543, 1692, 1691, 
1693, 1690, 1694, 1388, 1695 

398.7 > 10 (1339,2137) 

1st epoch 
1410, 1543, 1692, 1691, 1693, 

1690, 1694, 1388, 1695 
122.3 > 10 (1488,1733) 

2nd epoch 
1543, 1692, 1691, 1693, 1690, 

1694, 1695 
52.3 > 10 (1618,1724) 

3rd epoch 
1692, 1691, 1693, 1690, 1694, 

1695 
1.7 $ 10 

A n y - S D 
condit ion satisfied 

Table 3.1: Example of real data from the algori thm that tries to find the correct overlap 
index of two flows to have them correlated as much as possible. The algori thm needed 
3 epochs to remove indices that had no other surrounding ones and, therefore, were detected 
as false findings. These indices are out of the allowed range, while the other were close to 
each other and i n the allowed range. Index 1692 had the best correlation and was chosen 
as the best overlap index. 

the beginning and at the end to have the same length as well and are thus synchronized 
because of the correct t r i m times. 

3.1.3 Detecting Movement with Sparse Optical Flow 

After videos of a scene are synchronized, the last step in creating the dataset is choosing 
the correct frames to be used for t ra ining a neural network model . These frames have to 
satisfy one property - there has to be enough movement between them for a model to be 
able to recognize the difference. The less movement is between the frames, the harder it 
w i l l be for the model to learn embeddings of the filmed object but also the more precise 
the embeddings might be. It is necessary to set the movement threshold to a correct value 
since the dataset quali ty is crucial for the model's performance. 

The first chosen approach was taking every k-th frame where k was manual ly set by 
the amount of movement in the video. Since the amount of movement varies i n different 
timestamps of each video, this approach d id not produce good enough frames for t raining. 
The next chosen tactic was using Dense Op t i ca l F l o w for motion detection but this a lgori thm 
tracks every pixel i n the video and the necessary information about the movement of the 
followed object is lost i n the amount of unnecessary data. 

Therefore, I decided to use Sparse Op t i ca l F low to fulfill the movement detection task. 
Unl ike the Dense Op t i ca l F low, the sparse variant chooses only some pixels w i th the Shi-
Tomasi corner detector and those are being tracked [16]. Th is is a specific implementat ion 
of the sparse opt ical flow from OpenCV l ibrary [1]. The amount of movement has to be 
ideally aggregated into a single number and summed frame after frame unt i l it exceeds 
a certain threshold. Then , enough mot ion has been detected and the given frame is selected 
and mot ion detection continues again from zero to detect another frame. This procedure 
dynamical ly chooses the gap between chosen frames, which is essential for sports pose 
recognition. It is possible that at some times, a few seconds of no movement are followed 
by a lot of mot ion i n just one second. 
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The challenging task is aggregating the information from sparse opt ical flow to a valuable 
metric. Since each scene can be different, the number of tracked pixels can also vary. 
Therefore, the distances cannot be easily summed but rather averaged. Another problem is 
introduced when the background of the scene is not solid and some of the tracked pixels are 
in the background. Those do not move and they should not influence the average distance 
of p ixel movement. Th is is solved by calculat ing the average of only those pixels, whose 
movement is above a certain threshold. 

One more problem that was encountered during the development of the mot ion detection 
algori thm was the vanishing of monitored pixels. After a higher amount of movement, the 
pixels detected to be followed might get lost and there are not enough pixels left to precisely 
detect motion. W h e n this happens, the Shi-Tomasi corner detector has to be run again to 
detect new pixels for the sparse opt ical flow. 

The last feature that the mot ion detector uses to provide more accurate results is ac­
counting only for unique moves. If a l l pixels move the same way, that means the scene 
has changed but the sports pose probably d id not change at a l l . This problem also has 
to be addressed. The mot ion detector does so by computing a cosine s imilar i ty between 
al l mot ion vectors produced by sparse opt ical flow and ignores those vectors that are too 
similar. 

Detected frames from the video are saved as images and w i l l be used for self-supervised 
learning of a neural network. The mot ion detection has to be run prior to the learning 
procedure to enable for shuffling of t ra ining data and also to make the loading of the 
dataset less computat ional ly demanding. 

3.1.4 Building Triplets from Video Frames 

The neural network used i n this thesis is trained w i t h tr iplet loss function and, therefore, 
it has to be provided wi th 2 data samples of the same pose from a different viewpoint and 
1 sample of a different pose from the same viewpoint as one of the previous two. The goal 
is to provide the network wi th batches of such triplets. 

A t first, file paths to the correct images are formed into triplets and then into batches. 
After that, file paths are replaced wi th images that they were point ing at. Dataset of 
batches of triplets is then shuffled and split into t ra ining and validat ion subsets. Before 
each epoch, the t ra ining subset is always shuffled again to provide for higher variability. 

3.1.5 Tool for Labeling Sports Poses in Dataset 

Even though the ma in advantage of self-supervision is that very few annotated t raining 
samples are needed, there is s t i l l a need for some of them. Tha t is why I decided to also 
develop a tool for very fast and easy labeling of t ra ining samples. This labeling tool takes 
a directory w i t h unsorted images as input and moves them to their respective directories 
named after their labels. 

If launched for the first t ime, new classes have to be assigned to specific keyboard keys 
and then w i t h just a single press of the key, the displayed image is assigned to its class. 
Th is procedure makes image labeling as minimal is t ic as possible. Key-class pairs are saved 
as a dict ionary to a file that can be loaded at any t ime to continue annotating of images. 
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3.2 Dataset of Sports Pose Images 
M u l t i p l e sets of videos were recorded for developing tools for a dataset suitable for time-
contrastive learning and then for the sports pose recognition itself. A t first, the goal was to 
obtain a dataset consisting of a simple scene that presents an easy challenge for both the 
dataset preparing tools and for recognition models. Afterward, a more difficult task can 
be presented to the dataset tools and encoding and classifying models, e.g. a dataset w i th 
sports poses recorded i n mult iple environments. Sports poses from yoga are proposed for 
future development as one of the most challenging tasks possible in this field. 

3.2.1 Hand Poses as a Simple Testing Data 

One hand i n different poses is a real-world si tuation wi th pretty low variability, especially 
if the background is solid. Therefore, it is a good candidate for testing data for the dataset 
preparation tools and can be used for the testing of a self-supervised trained model during 
its development. The original videos are cropped so that only the forearm and hand wi th 
fingers are i n the frame to make them as elementary as possible. This dataset w i l l be 
referred to as the H a n d Dataset. Examples of its images are shown i n Figure 3.5. 

Figure 3.5: H a n d Dataset images from different scenes. Some images have a fairly solid 
background while the others have a very heterogenous one to simulate various possible 
situations for the dataset preparation tools. 

T r imming and cropping of the video are done completely manually and basically are not 
dependent on the dataset, the first real challenge comes wi th the automatic synchronization 
of videos from mult iple viewpoints. The task was easily fulfilled on videos w i t h a solid 
background and not so different viewpoints but once these two conditions were disrupted, 
an incorrect synchronization could be found. Therefore, an algori thm that searched for 
the top 10 best synchronization timestamps, not only the best one, was developed. This 
algori thm is fully described i n the previous section. 

The following challenge was to obtain specific frames from the video used for t raining. 
Videos without a solid background showed the importance of only taking into account 
the moving pixels because the Shi-Tomasi corner detector used i n Sparse Op t i ca l F low 

22 



computat ion selects also pixels from the background, not only those related to the followed 
object. Another task that this dataset exposed was the vanishing of the followed pixels. 
The last and most difficult challenge to solve was the detection of translat ion where the 
pose actually does not change. Movement without any pose adjustment is a phenomenon 
normally present i n this dataset. Another instance of the same problem is when the camera 
is moving and the pose stays i n the same posit ion. 

3.2.2 Sports Poses with Upper Body Movement 

The H a n d Dataset served its purpose in the making of the dataset preparation tools and 
the next task is the development of the self-supervised model . I recorded and prepared 
a dataset of simplified sports poses that are less complicated than what would for example 
yoga poses look like but s t i l l have the character of sports poses. A n example of poses can be 
seen i n Figure 3.6. A l l of the recorded poses hold these conditions. The person is recorded 
from knees up and moving only his arms, while any bending of shoulders, elbows, wrists, 
and fingers is allowed (and advised). 

The dataset videos include one person in two scenes wi th different backgrounds. There 
are 5 recordings of each scene wi th the person wearing various clothing i n each of them to 
increase variabi l i ty in the dataset. Tha t means 10 recordings i n total . Performed poses are 
chosen randomly. E a c h scene was filmed wi th 3 cameras wi th different lenses. The camera 
angles were chosen so that one is facing straight from the front side and one is on each side 
at approximately 45 degrees angle from the front one. The to ta l number of images i n the 
dataset is 3,804 but each of those is one of 1,268 potential ly different poses captured wi th 
3 cameras. Dis t r ibu t ion of the poses count across a l l ten recordings is following: 34, 49, 67, 
99, 96, 51, 204, 128, 295, 245. 

3.2.3 Sorting Upper Body Dataset into Classes 

The recorded dataset of a rm movement is prepared for self-supervised t ra ining of an encoder 
model but for real recognition, some amount of labeled samples is also necessary. There are 
many different ways to sort a l l the poses into classes. I decided to assign two sets of labels 
to a l l the samples to have enough data for experiments, one wi th a lower number of classes 
that presents an easier recognition task and the other w i th a higher number of classes to 
demonstrate the model's performance. 

A t first, I d ivided the data into 4 classes to create an easier task. Since arms are the 
only moving entities in the image, only those are taken into account and the rest of the 
body is ignored. E a c h a rm can be either i n an upward or downward direction but when 
various elbow bendings are taken into account, resolving whether the a rm is point ing up or 
down is ambiguous. Therefore, a strict cri terion has to be set. I decided to use the height of 
the wrist and shoulder to be the determining factor. If a wrist is above shoulder height, the 
a rm is i n the upward posit ion. Final ly , each a rm is dealt w i th separately and that means 
4 classes emerge: both arms down (down-down - 1,146 samples), left a rm down and right 
a rm up (down-up - 813 samples), left a rm up and right a rm down (up-down - 795 samples) 
and both arms up (up-up - 1,050 samples). Dataset w i th basic sports poses divided into 
these 4 classes w i l l be from now on referred to as Directions Dataset. 

For a more complex and convincing evaluation of developed models, I prepared one 
more set of labels w i th finer separation. The main thought is the same as for the Directions 
Dataset - each a rm is either point ing up or down, but one more feature was added. Each 
a rm can be either bent i n the elbow or not - if the elbow angle is smaller than 135 degrees, 
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Figure 3.6: Samples from the dataset w i th upper body poses. Recordings come from 
2 places, each wi th 5 videos wi th different clothing. The scenes are recorded wi th 3 cameras 
from different viewpoints. 

the a rm is considered bent. A l l of the Directions Dataset classes have 2 possible options 
which create 16 classes i n total . A higher number of classes not only allows for more valuable 
testing of the model but also brings the option of evaluating not only top-1 accuracy but 
also top-3 accuracy. W h e n the correct class of a certain pose is not the one wi th the highest 
probabil i ty according to the classifier but s t i l l is the second or th i rd , the model shows some 
abil i ty to recognize poses too. Counts of samples for each class of the Bent Dataset are 
presented i n Table 3.2. Class names are derived from the Directions Dataset, the only 
change is that when an a rm i n the given direction is bent, the letter 'b ' is placed i n front 
of the direction. 

B o t h of the presented datasets cannot be perfectly divided into classes without any 
discrepancy. Followed features are i n some cases right in between the available classes. The 
a rm can be almost perfectly horizontal w i th its wrist at the same height as the shoulder. 
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Class 
Sample 
count 

Class 
Sample 
count 

Class 
Sample 
count 

Class 
Sample 
count 

down-down 1,005 bdown-down 63 down-bdown 48 bdown-bdown 63 
down-up 399 bdown-up 21 down-bup 285 bdown-bup 102 
up-down 399 bup-down 282 up-bdown 33 bup-bdown 90 

up-up 495 bup-up 135 up-bup 99 bup-bup 285 

Table 3.2: Dis t r ibu t ion of sports pose images between a l l classes of the Bent Dataset. The 
first word shows the direction that the left a rm is heading, and the second word represents 
the right a rm. If the a rm is bent, the letter 'b ' precedes the direction. 

Correspondingly, the elbow angle can be precisely 45 degrees or very close to it and it is 
not possible to distinguish this difference from a single image. Therefore, some error rate 
is almost inevitable and has to be taken into account during the model evaluation. 

Directions Dataset has fairly equally distr ibuted images between classes whereas Bent 
Dataset has significant disproportions i n the counts. Th is presents another challenge for the 
classifier that is t ry ing to learn from the data. In general, self-supervised models should have 
better performance on such data because they first learn the data embeddings without any 
labels and then solve the fairly simple task of classifying those. In contrast to a supervised 
classifier that is solving the difficult task directly on the labeled data and might not update 
its weights enough because other classes i n the batch are more significant. 

3.2.4 Yoga Sports Poses for Future Development 

Yoga sports poses are one the most complex among a l l sports poses, there are hundreds 
of possible poses and their variants. They can be also sorted into different sets according to 
their similarities. A l l these attributes make them the perfect candidate for a very difficult 
sports pose recognition task and, therefore, I propose yoga poses as a benchmark for future 
development in this field. 

Verma et a l . i n [20] present a new dataset Yoga-82 for human pose classification that 
is based on yoga poses. It contains over 28 400 annotated samples of 82 different yoga 
poses. The classes are sorted into a 3-level hierarchy where each of the 82 poses is assigned 
a second and first-level class as well . Th is structure can be further used for the recognition 
of poses that are projected into an embedding space since embeddings of poses from the 
same higher-level class can have similarities i n the space. 

The dataset is available to download i n form of U R L links to each image sorted into 
files according to their classes. The images are under different creative commons licenses. 
There is no script for downloading of the images as a part of the publicat ion. Since the 
images are from various sources on the internet, their availabil i ty is out of reach of the 
dataset authors. A t the t ime of publishing this thesis, there are already hundreds of images 
not available. 

The images differ i n resolution and aspect ratio, therefore, some sort of preprocessing is 
necessary. The i r variabi l i ty is very high, they are captured both indoors and outdoors and 
wi th very different backgrounds. The displayed people differ in their gender, skin color, 
clothing, and other visible characteristics. Some images even contain mult iple people, text 
added over the pose in postproduction or the images are just a simple i l lustrat ion of the pose, 
not a real photo. These addi t ional features might not serve well for better generalization 
of the trained model, but rather for confusion because of the unrealism. 
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These images could be used for the classification of the poses from embeddings but 
the more complicated task is learning the sports pose embeddings wi th a time-contrastive 
network. This process requires synchronized videos or at least images of the same scene from 
different viewpoints. I have not found such a dataset online and therefore, I suspect it has to 
be recorded specifically for this task. One possible solution for making the dataset creation 
more feasible would be to partner w i t h some yoga video producers. There is a chance they 
are fi lming their videos from mult iple angles and could offer their raw recordings for such 
a project. The variabi l i ty of a l l recordings has to be taken into account. If they are from 
the same environment (e.g. indoor gym), the model w i l l probably not generalize well to 
other surroundings (for example outdoors). 
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Chapter 4 

Recognition of Sports Poses from 
Images 

Recognit ion or classification is a task of assigning a class from a defined set of classes 
to an image according to what is displayed i n i t . W h e n a video is on the input, it is often 
divided into single frames that are handled and classified individual ly . The most common 
approach to processing image data is w i th convolutional neural networks that are explained 
in depth in Section 2.2. Models i n this thesis also use an architecture that relies on such 
networks and they were implemented i n TensorFlow 2 l ibrary [12]. 

Whereas supervised learning is done in most cases wi th a single model that has an im­
age on the input and outputs probabilit ies of the image belonging to available classes. 
Self-supervised learning usually requires two models that are trained separately and are 
working together after they are fitted to the data. Therefore, the input and output of the 
self-supervised model are the same as for the supervised trained model once it is fitted. The 
first of two models that form the described architecture is usually called the encoder and 
its goal is to find the most valuable representation of the input i n an embedding space. Im­
plementation of this model is described i n depth i n Section 4.1. The embeddings produced 
by the encoder are used as an input to the second model , the classifier. Its objective is to 
find the most probable class the embedding is representing. A thorough description of the 
second model can be found i n Section 4.2. 

Another model for sports pose recognition but trained wi th supervision was also imple­
mented to provide a comparison i n evaluation. This network is introduced in Section 4.3 in 
contrast to the models proposed before. F ina l ly , Section 4.4 discusses how the sport pose 
embeddings could be used i n future research on this topic. 

4.1 Representing Sports Poses in Latent Space 

A n encoder is the crucial part of a model that is trained wi th self-supervision. It uses some 
information that is natural ly contained i n the dataset as a supervisor during the learning 
process. In the case of this thesis, the supervision is provided wi th mult iple synchronized 
videos of the same scene. Its target is to find the most efficient yet the most descriptive 
embedding of the input . If the goal is to recognize sports poses, the best embedding 
describes the whole body in the correct posit ion but ignores a l l the specifics of the person 
and the environment around. 
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O n the input of the model is an image wi th a specific resolution and channels i n the 
correct format. O n the output is an embedding vector describing the input image i n the 
set dimensionality. Section 4.1.1 specifies the model's architecture into detail . 

4.1.1 Architecture of the Encoder 

The input is always a single image that needs no preprocessing because a l l the necessary 
operations were already done wi th the dataset preparation tool from the previous chapter. 
In case of a smaller dataset size, to gain more generalization, data augmentation is also 
implemented. It is not recommended to use any rotat ion or hor izontal /ver t ical flipping 
augmentation because of the model's dependence on positions of body parts and dist in­
guishing between left and right-hand sides. Augmentations that alter colors, brightness, 
and contrast are a favorable option used i n this thesis. 

To obtain embeddings of the images, a convolutional neural network is used. Th is thesis 
uses a ResNet-50 architecture from [6] w i th weights trained on ImageNet dataset [3]. The 
head of the network is replaced to provide embeddings as vectors in d-dimensional latent 
space. Th is is done wi th a single dense layer after the data from the last convolution are 
processed by average pool ing and flattening layers. The number of units of the dense layer 
and the dimensionality of the embedding space is equal. 

The embedding vectors are sometimes restricted by the condit ion to sit on a unit hy-
persphere. Tha t means that squared values i n a l l dimensions of the vector have to sum up 
to 1. Th is is done to provide normalizat ion of the ind iv idua l values in a l l dimensions. This 
restriction can be fulfilled w i th L 2 normalizat ion used as the last layer after the previously 
mentioned dense layer. Th is is the output layer of the whole model. 

The model was trained wi th A d a m optimizer. Under ly ing concepts and the calcula­
t ion of A d a m are presented i n Section 2.1. Parameters were configured to typica l values: 
learning rate = 0.001,01 = 0.9, f32 = 0.999, e = 1 0 " 7 . 

The network is trained on triplet loss i n the self-supervised manner [14]. This loss 
function is described in Section 2.4.1 and Section 2.4.2 proposes possible improvements in 
this direction that were not implemented. Since the triplet loss uses Eucl idean distance 
to compare embeddings, its effective calculation is crucial to the good performance of the 
model. The function is implemented to compute loss over the whole batch of triplets. 
It uses simple subtraction and squaring i n each dimension and then a sum to reduce a l l the 
dimensions into a single number. The loss is only influenced by the triplets that do not have 
the positive sample closer to the anchor than the negative sample by a set margin. Value 
of the loss is a sum of their differences in positive-anchor and negative-anchor distances. 
W h e n computing accuracy, the margin is not taken into account. 

The t ra ining of the model can be divided into two parts: fitting and fine-tuning. W h e n 
the encoder is fitted, only the head of the network, and weights of the last dense layer, 
are adjusted. The ResNet-50 backbone has its weights locked to the ImageNet-pre-trained 
values. After that, a fine-tuning process can be turned on as well . F ine- tuning starts w i th 
unfreezing a l l the weights of the backbone except the ones used for batch normalizat ion. 
Then , a learning rate is changed from 1 0 - 3 to 1 0 - 5 to prevent large changes and possible 
loss of information already acquired from fitting and pre-training. After that, the model's 
weights from the epoch that provided the best results on the validat ion dataset during 
fitting are restored and fine-tuning is launched as a casual fitting. F r o m the experiments 
done, it seems the encoder can provide very good results just w i th fitting and fine-tuning 
provides almost no improvement i n the model's accuracy. 
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F i t t i n g of the model is done i n epochs wi th the dataset divided into mini-batches (further 
only as batches). Each batch contains a fixed number of anchor-positive-negative triplets, 
only the last batch of the epoch can be smaller. The batch size can be set according 
to the memory constraints of the t ra ining machine, i n most cases between 32 and 256. 
Since the network is designed to only accept one image as an input, the triplets have to 
be merged together into a "merged,, batch. Its size is correspondingly 3 x as large. After 
a l l the ind iv idua l images are encoded into embeddings, they can be split into the original 
triplets again. The merging and spl i t t ing algorithms have to be deterministic and mutual ly 
reversed to ensure a l l triplets stay the same. O n l y after that, the loss of the whole batch can 
be computed. F ina l ly , gradients are computed from the loss and applied to the network's 
weights. 

The model reports loss and accuracy on training and validat ion datasets i n a such format 
that can be further analyzed wi th TensorBoard. It also saves the model's weights after each 
epoch to allow for restoring the best-performing model . The implementat ion also allows 
for restoring weights and continuing fitt ing and wi th that divide the t ra ining process into 
mult iple sessions. 

4.2 Sports Pose Classification from Embeddings 

After the sports poses are encoded into a <i-dimensional embedding vectors, various op­
erations can be done wi th them. This thesis only implements classification, the other 
possibilities are discussed i n Section 4.4. The ma in advantage of a classifier that has vector 
embeddings on the input instead of images is that the important information is already 
extracted and, therefore, the classifying is a lot easier task. 

The classifier i n this thesis is a simple neural network wi th one hidden dense layer. 
The input layer has an identical size to the dimensionality of the embedding space and the 
output layer corresponds to the number of classes the sports pose can be classified to. 

The size of the dense layer (number of units) is a hyperparameter that can be tuned 
according to the difficulty of the task that is being solved. Since a l l the needed information 
is already effectively encoded into the embedding, it is not advised to use a dense layer 
wi th more units than the input layer has. Likely, no other information w i l l be gathered 
from the data and, therefore, there is no need to represent it w i th more values. After the 
experiments were done, one dense layer performed on par w i th networks wi th two or three 
hidden dense layers. Thus, I chose a single dense layer w i th 64 units for the classifier model 
implemented i n this thesis. To introduce some non-linearity to the model, a Leaky R e L U 
wi th a = 0.01 is used as an activation function of this layer. 

The output of the classifier uses the softmax activation function to output the proba­
bilities of each class that sum up to one. The t ra ining is opt imized wi th A d a m optimizer 
w i th parameters set to learning rate = 0.001, f3\ = 0.9, = 0.999, e = 10~ 7 and as a loss 
function is used categorical cross-entropy which corresponds to classifying tasks wi th more 
than two possible outcomes. 
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4.3 Classifier Trained with Supervision 
To evaluate the effectiveness of self-supervision, a supervised-trained model is implemented 
as a comparison. The ma in condit ion is to make both models as identical as possible to not 
distort the experiments w i th model dissimilarities. The model is presented i n comparison 
to the self-supervised model that was introduced earlier. 

The main parts of both networks are completely the same, they both have ResNet-50 
as a backbone. Th is means that the inputs of the networks are also identical . They only 
differ i n the network heads - self-supervised model needs more dense layers to account 
for the embeddings. The architecture comparison can be seen in Table 4.1. The model's 
optimizer is A d a m wi th the same parameters as for bo th of the self-supervised model: 
learning rate = 0.001, (3\ = 0.9, /?2 = 0.999, e = 10~ 7 . The loss function is identical to the 
classifier from the self-supervised model - categorical cross-entropy. 

Self-Supervised M o d e l Supervised M o d e l 

Descr ipt ion Layer - Shape Layer - Shape Descript ion 

Image Input - (224, 224, 3) Input - (224, 224, 3) Image 

Backbone 
Padd ing - (230, 230, 3) Padd ing - (230, 230, 3) 

Backbone 
ResNet50 

Pool ing - (2048) Pool ing - (2048) 
ResNet50 

Dense - (64) 
Embedding L 2 Normal ize - (64) 

Dense - (4) L a b e l 
Dense - (64) 

Dense - (4) L a b e l 

L a b e l Dense - (4) 

Table 4.1: Compar ison of architectures of self-supervised and supervised models. Thei r 
input, backbone, and output are identical, only the top of the self-supervised model is 
adjusted for the self-supervised training. 

A l though the models trained w i t h supervision and self-supervision have almost the same 
architecture, the t ra ining process vastly differs. W i t h a different approach to learning of the 
data structure, the number of parameters that have to be fitted is also different. Table 4.2 
illustrates the contrast between them. 

M o d e l 
Self-Supervised 

Encoder (fit) 
Self-Supervised 

Encoder (fine-tune) 
Self-Supervised 

Classifier 
Supervised 

Trained 
Parameters 

131,136 23,665,728 4,420 23,542,788 

Table 4.2: Different t ra ining procedures require a different number of model parameters to 
be trained. Th is table compares them. The self-supervised model encodes the input into 
a 64-dimensional embedding space and the number of classes on the output is 4, which 
also affects the parameter count. The self-supervised model mostly trains parameters of 
the encoder w i th fitt ing (fine-tuning d id not br ing significantly better results) and then 
parameters of the classifier. Thei r sum is the best comparison to the supervised model's 
number of parameters: 135,556 and 23,542,788. 
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In this chapter, only static data were shown. The performance of each model on the 
validat ion dataset is presented and discussed i n the following Chapter 5. B o t h models 
perform very differently when only a lower number of t ra ining samples is introduced to 
them. The results of these experiments are shown i n Section 5.3. 

4.4 Addit ional Usage of Sports Pose Encodings 

This thesis only discusses the classification of sports poses from their embedding vectors 
but this is not the only possible usage of such information. In this section, I propose several 
other possibilities for how the information could be processed. 

W h i l e classification assigns a class to an embedding vector, other information could be 
assigned as well . A very common task in this field is the pose estimation, which can include 
several different information about a human pose such as joint posit ion and orientation of 
different body parts. Obta in ing this information just from an embedding could be very 
useful since labeling the pose estimation dataset is even more t ime-consuming than the 
labeling of a simple classification dataset. 

There might be also a possibil i ty to perform operations on embedding vectors such as 
addi t ion or subtraction to obtain embeddings of poses that are not captured. This could 
be pract ical ly used to classify poses that are not even part of the t ra ining data and the 
model has not seen them or at least it could help lower even more the required number of 
t ra ining samples. 

Generally, the implemented tools could also be used for another classification problem 
that includes an object that changes poses or a similar challenge. It could not only capture 
humans but also animals, robots, or machines. 
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Chapter 5 

Evaluation of Models Trained with 
Self-Supervision 

Models trained wi th self-supervision can be evaluated at two stages. Obviously, the accuracy 
of the classification of a given input is one way to do so. The other way is to evaluate 
embeddings either w i th loss function used for t ra ining of the encoder or visual ly after 
dimensionality reduction. A l l of these approaches are discussed in this chapter. 

A t first, the sports pose embeddings are visual ly analyzed in Section 5.1. Then , Sec­
t ion 5.2 presents the encoder's accuracy on the validat ion dataset and how it is affected 
by the number of dimensions of the embedding space. F ina l ly , the accuracy of the classi­
fication itself on the validat ion dataset is compared to a supervised model w i th the same 
architecture i n Section 5.3. The results of each evaluation are discussed i n their respective 
sections. Experiments were done fairly and no results were cherry-picked. 

5.1 Visual Analysis of Latent Space 

The latent space has well over 3 dimensions and therefore cannot be easily visualized. 
Typical ly , embeddings of more complex information such as sports pose can range from 
64 to 512 dimensions. Vectors representing them usually satisfy the constraint of l iv ing 
on a unit hypersphere. A n a l y z i n g data visually can help understand patterns i n them and 
detect emerging problems. W h e n the dimensionality is decreased to only 2 dimensions, a lot 
of information can be lost. Therefore, the challenging task for the projecting algori thm is 
to drop the non-necessary information and preserve the patterns i n the data. 

The elemental method for dimension reduction is P r inc ipa l Component Analys is ( P C A ) . 
It computes a new basis of the vector space to maximize the data variance. After projecting 
the data into the new basis, only 2 or 3 dimensions wi th the highest variance can be taken 
into account and the rest is ignored. F ina l ly , such data can be plotted and reviewed. 
Another possible projection is Linear Discr iminant Analys is ( L D A ) which also takes into 
account the label of each data point and is t ry ing to find a basis that allows for the best 
linear separation of classes. 

Whereas the previously mentioned algorithms allowed for computing the precise results, 
more complex methods for dimension reduction are based on iterative approaches to find 
the best approximation of the ideal state since it cannot be computed directly. A widely 
used algori thm for this task is t-distr ibuted Stochastic Neighbor Embedding ( t - S N E ) . It 
puts data points into pairs and tries to attract those that are similar and repel the dissim-
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i lar ones. Another iterative method is Uni form Mani fo ld Approx ima t ion and Project ion 
( U M A P ) which also non-linearly projects data into 2D or 3D. I chose to use t - S N E as 
the dimensionality reduction algori thm because it was able to find patterns i n the data 
embeddings better than the other algorithms. 

5.1.1 Dimensionality Reduction with t-distributed Stochastic Neighbor 
Embedding 

t -distr ibuted Stochastic Neighbor Embedding ( t -SNE) is a non-linear dimensionality reduc­
t ion method suited for displaying embedding vectors i n two or three-dimensional space [10]. 
It is based on Stochastic Neighbor Embedd ing ( S N E ) but it uses also t -dis tr ibut ion instead 
of only Gaussian dis t r ibut ion [7]. t -dis tr ibut ion has heavier tails in comparison to Gaussian 
dis tr ibut ion and therefore, it solves one of the problems of S N E , which was centering the 
data points into one place in the low dimensions and not preserving the gaps between them. 

The t - S N E algori thm starts w i t h random ini t ia l iza t ion of projected data points i n the 
targeted 2 or 3-dimensional space. It places them fairly close to each other to allow for 
patterns to emerge on a higher scale. T h e n two similar i ty distributions are constructed: 
one from points in the source high-dimensional space, the other from points i n the desti­
nation low-dimensional space. B o t h distributions are constructed from distances between 
al l pairs of data points i n their respective spaces. Then, Kul lback-Le ib le r divergence of 
joint dis t r ibut ion P i n the high-dimensional space and Q in the low-dimensional space is 
minimized: 

C = KL{P\\Q) =J2J2Pvl°Z—-
i j 

Distances of data points from themselves pa and qu are set to zero, pij and pji are aver­
aged i n order to preserve symmetry = pji. E a c h data point pair is assigned a probabi l i ty 
from Gaussian dis t r ibut ion wi th mean set to coordinates of point i and variance computed 
from the density of other points around i t . The distance of point j from i is projected to 
the Gaussian dis t r ibut ion and p^ equals the given probability, calculated as: 

e-\\vi-yj\\2 

P i j = J2 e-\\y*-y\\2' ( 5 ' 2 ) 

Probabil i t ies qij are obtained from Student's t -dis tr ibut ion wi th one degree of freedom wi th 
a similar approach to the p^. The formula is as follows: 

% 3 ~Ea + iiw-wii2)-1" ( ] 

k+l 

Final ly , a gradient of the Kul lback-Le ib le r divergence between P and Q is computed wi th : 

dC 
q - = ^^(Pij - qij)(yi - 2/j)(l + \\yi ~ VjW2)'1 • (5-4) 
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5.1.2 Analysis of Embeddings with t-distributed Stochastic Neighbor 
Embedding 

The encoder presented i n Section 4.1 transforms image of sports pose into 64-dimensional 
vector embedding. The goal is to have this embedding describe only the sports pose and 
ignore the background of the scene and the look of the person doing the pose. Sports poses 
similar to each other should be closer to each other in the embedding space than poses 
that are completely different. If only one a rm moved from one image frame to another, 
their embeddings should be very similar. The same pose performed by another person in 
a different place and even photographed from a different angle should have the same or at 
least very similar embedding. 

The whole Directions Dataset introduced in Section 3.2.3 includes 3,804 divided into 
4 classes according to a rm positions of the person - each a rm is either point ing down or 
up and therefore, the corresponding classes are named: down-down, down-up, up-down or 
up-up. Positions, where both arms are i n a downward direction, should be relatively far 
from each other while the other 2 classes can be placed somewhere i n between the edge 
cases. The dataset consists of 10 scenes, each filmed from 3 angles. Projected embedding 
are displayed i n Figure 5.1. 

Embeddings of sports poses after t - S N E projection 

down-down 
down-up 
up-down 

up-up 

- 4 0 - 3 0 - 2 0 - 1 0 0 10 20 30 40 
x 

Figure 5.1: Embeddings of a l l 3,804 samples from the Directions Dataset projected from 
64 dimensions to 2D wi th the t - S N E algori thm. D a t a points are colored according to their 
class. Parameters of the t - S N E were 600 iterations, perplexity 32, learning rate 10 and the 
algori thm ran without any supervision based on sample labels. 

The projection clearly shows a number of clusters of different sizes, each consisting 
of data points from a l l 4 classes. E a c h cluster is probably a representative of a single 
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viewpoint of a scene wi th some of them being closer to each other or even almost merged 
together. Th is shows that the encoder model is not capable of generalizing over different 
scenes or viewpoints. One possible explanation for such behavior is not using a diverse 
enough dataset. 

W h e n focusing on each cluster individual ly, the data point dis t r ibut ion holds relations 
for s imilar sports poses. Classes down-down and up-up are usually far apart from each other 
wi th in the cluster and while the down-up and up-down are between them. Some images 
of poses contain arms point ing almost perfectly horizontally and their classification cannot 
be precise. These cases have to be taken into account. 

5.2 Evaluation of Encoder on Validation Dataset 

The encoder itself is just a single component i n the whole model that performs the classi­
fication. Its performance cannot be easily measured like a normal classifier - by counting 
how many of the validat ion data were correctly assigned their class. There are no ground 
truths to the inputs, no image of a sports pose has a correct nor false embedding. The 
only way to measure the encoder's performance is by comparing one embedding to another. 
If the objective is to have similar sports poses close to each other i n the embedding space, 
the distances of embeddings can be compared. 

The encoder is trained wi th a triplet loss function whose a i m is to have two embeddings 
of different images of the same sports pose closer to each other than two embeddings of 
a distinct pose. The distance between correct and false pairs should also be greater than 
some fixed value called margin. Therefore, the same function can be also used to evaluate 
the encoder. The only difference is that the margin is set to 0, whereas dur ing the learning 
process, the value is above 0. 

The objective of this experiment was to evaluate the performance of the encoder model 
on different dimensionalities of the embedding space. The numbers of dimensions used 
for testing were 16, 32, 64, 128, 256, and 512. The margin of the triplet loss was set to 
0.1. The model was trained for 50 epochs on the same t ra ining data and evaluated on the 
validat ion subset after each epoch. The dataset used for this experiment is Upper B o d y 
Dataset from Section 3.2.2. Dataset was split so that 9 0 % of it was used for t raining 
and 10% for validation. E a c h model was trained 5 x on the same dataset but shuffled 
wi th a distinct seed. To provide consistency of t ra ining data between different embedding 
space dimensionalities, the seed had the same value from 0 to 4 in the 5 runs. The best 
val idat ion accuracy of a l l epochs was taken as the model's accuracy. The obtained results 
are presented i n form of boxplots i n Figure 5.2. The format of the boxplots is from the 
bot tom: min imum, first quartile, median, th i rd quartile, and max imum. 

The highest median accuracy on the validat ion dataset achieved a model that encoded 
the sports pose images into 64-dimensional vectors. Embedding spaces wi th 32 and 16 
dimensions might achieve comparable accuracy i n some runs but their variance is very high. 
Th is suggests that the model is not always capable of finding efficient enough encoding to 
store a l l the information about the pose, even though it might be possible. Models producing 
encodings wi th 64 and more dimensions show less variance i n accuracy which advocates for 
their abi l i ty to save a l l the necessary information i n the embedding. Thei r median accuracy 
declines wi th r ising dimensionality. Tha t is a corresponding incident since encoding pose 
into a higher-dimensional space is a more difficult task and wi th rising complexity, the 
accuracy drops. F r o m these assumptions, an embedding space wi th 64 dimensions provides 
the best results on Upper B o d y Dataset. 
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Comparison of val idat ion accuracy on different embedding dimensionalities 
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Figure 5.2: W h e n an image of a sports pose is encoded into a vector i n embedding space, 
its dimensionality can play a role i n the performance of the model . The encoder model 
was tested on a number of dimensions between 16 and 512. The best median accuracy 
on val idat ion data had an embedding space wi th 64 dimensions. 

Dataset w i th very high diversity i n sports poses requires more information to be stored 
and therefore an embedding space wi th more dimensions. The correctly chosen size of the 
embedding space can influence the performance of the model and the t ime it requires for 
fitt ing on the dataset. Therefore, it is advised to tune this hyperparameter to match the 
dataset complexity. 

5.3 Comparison of Self-Supervised and Supervised-Trained 
Models 

The main advantage of models trained in a self-supervised manner is their abi l i ty to perform 
well w i th datasets containing a smaller number of labeled data than what would supervised 
t ra ining needed. This advantage is shown i n the evaluation done on different-sized datasets 
in the following experiments. 

The encoder and classifier models described in sections 4.1 and 4.2 is used as the self-
supervised learning benchmark. For the supervised learning representative, the most similar 
network is chosen. Th is model and its comparison to the self-supervised one is i n Section 4.3. 

Since each model is t rained i n a different way, it is not t r iv i a l to set the borderline 
for the number of epochs used for t raining. For that reason, each model was trained for 
a sufficient number of epochs after which it no longer improved on validat ion data. The 
self-supervised model consists of two parts - the encoder which creates the embedding from 
an image and the recognizer which classifies the pose from the embedding. The encoder was 
trained for 30 epochs and the recognizer for 20 epochs. The encoder was trained once and 
stayed the same for the whole experiment while the recognizer was fitted for every dataset 
sample. The supervised model was trained for 50 epochs on each dataset sample. 
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Dataset used for these experiments is thoroughly described i n Section 3.2 - Upper B o d y 
Dataset. It contains 3,804 images of 1,268 poses, each captured from 3 different angles. 
The poses are not necessarily unique but the images differ i n background and clothes of 
the person. Overal l , there are 10 different scenes wi th 2 possible backgrounds and different 
clothing of the person i n each of the scenes. The poses represent possible movements of 
a person's arms i n a l l directions and joints ' bendings, other parts of the body such as the 
torso, head, or legs are not moving. 

The first experiment is done on the Directions Dataset which contains 4 classes that 
differ in the posit ion of arms - left or right a rm is point ing either down or up. Since some 
positions may be questionable, the rule of thumb during the labeling of data was whether 
the wrist is above or below the corresponding shoulder. The second experiment was done on 
Bent Dataset w i th 16 classes that extended the Directions Dataset w i th one more attribute 
- whether the arms are bent or not. 

W h i l e the first experiment only evaluates the accuracy of choosing the correct class 
(top-1 accuracy), the second one evaluates also the accuracy of whether the correct class is 
wi th in 3 of the most probable outcomes (top-3 accuracy). The decision to provide results 
i n this format was made based on the number of classes in used datasets. 

B o t h of tested models were fitted on datasets of different sizes and then their accuracy 
on never-seen val idat ion data was evaluated. Before each training, the whole dataset was 
shuffled and then divided into t ra ining and val idat ion subsets. The por t ion of data used 
for t ra ining was the changing variable and it ranged from 0.9 to 0.025. The rest of the data 
were always used for val idat ion. Th is approach decreases variance i n the t ra ining dataset 
and concurrently increases it i n the validat ion dataset. Because of this, the model's abi l i ty 
to generalize well is displayed. 

To keep the experiment fair, the dataset for each experiment was shuffled wi th the same 
seed for both models and, therefore, they had the same data for t ra ining and evaluation. 
For each dataset split port ion, 10 runs of fitt ing and evaluating were done, each one wi th 
a different seed. Seeds were chosen deterministically as integers from 0 to 9. Accuracy on 
validat ion data was then averaged over a l l 10 runs to get the final accuracy of the model 
for a given fraction of t ra ining data. 

The results of the experiment on the Directions Dataset are shown i n Figure 5.3a. 
For t ra ining dataset portions down to 15 % (which equals 570 of the 3,804 images used for 
training), the performances of self-supervised and supervised models are on a par. W h e n 
the t ra ining dataset por t ion decreases to 12.5 % (475 of 3,804 images) the supervised model 
starts to degrade and wi th just 2 .5% images it approaches accuracy 2 5 % which is for 
4 classes basically a random guess. W h i l e the self-supervised model keeps its accuracy 
above 6 0 % even when trained on 2 .5% data which equals to 95 images for t ra ining and 
3,709 for validation. 

Experiment number 2 wi th t ra ining and evaluation done on Bent Dataset provides not 
only top-1 but also top-3 accuracy. The results are presented in Figure 5.3b. W h i l e the 
previous experiment included only 4 classes, the Bent Dataset consists of 16 classes and this 
difference made an impact on the results. The accuracy of both models dropped down by 
approximately 0.2 overall. The self-supervised model performed better than the supervised 
model i n a l l provided dataset splits. Th is is a display of one of the advantages of self-
supervised learning, it adapts better to a higher number of classes since it already learned 
the key features on unlabeled data. W h e n the amount of t ra ining samples approaches less 
than 10 for each class overall (the por t ion of 0.025), the accuracy of the supervised model 
drops significantly while the self-supervised model's accuracy stabilizes. 
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The top-3 accuracy reveals important information about the supervised model when 
trained on 10 % of the Bent Dataset - part of the plot w i th the dashed line. The predicted 
results degrade in a way that the top-3 accuracy equals 1.0 for more and more of the 
experiment runs and the top-3 accuracy suddenly rises. Since the top-1 accuracy declines, 
the model is not performing better, rather it found some workaround that produces these 
improbable results. The model is also not trained to maximize the top-3 accuracy, it is 
t ry ing to minimize the loss function. Self-supervised learning clearly provides results w i th 
higher or equal accuracy for a l l experiments and shows its advantages mainly on datasets 
wi th a low number of t ra ining samples. 
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Comparison of self-supervised and supervised models' accuracy 
on Directions Dataset w i th 4 classes 
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(a) Self-supervised model displays better accuracy for small training datasets. Wi th the dataset size 
getting larger, both models perform similarly. 

Comparison of self-supervised and supervised models' accuracy 
on Bent Dataset w i th 16 classes 
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(b) Self-supervised model performs better overall for all dataset splits in top-1 and top-3 accuracy, 
especially when the number of training samples approaches an average of fewer than 10 samples for 
a class with a portion equal to 0.025. For the training portion of less than 0.1, the top-3 accuracy 
is degraded. This section of the plot is marked with a dashed line. 

Figure 5.3: Performance of self-supervised and supervised models on validat ion dataset 
based on what fraction of the whole dataset was used for t raining. The rest of the dataset 
was used for validation. E a c h data point is an average of 10 runs. 
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Chapter 6 

Conclusion 

The goal of this thesis was to develop a model that can classify sports poses from images 
and uses self-supervised learning to achieve better results on datasets w i th a smal l amount 
of annotated samples. Time-contrastive learning was chosen as the approach to achieve self-
supervision of the data. For that, a set of tools for video preparation had to be implemented 
and tested on various scenes. After collecting and preparing a dataset of sports poses, a self-
supervised model consisting of an encoder and classifier was developed. The self-supervised 
model was evaluated i n comparison to the model trained wi th supervision and results were 
presented and discussed. 

A set of tools for dataset preparation was developed and it is effectively working on 
any number of videos of different scenes. The tools can t r i m and crop videos easily w i th 
the least amount of manual work. The synchronization too l can automatical ly adjust the 
video start times and lengths to al ign any number of videos. A useful dataset of images 
for time-contrastive learning is then detected by using sparse opt ical flow and exported for 
future use. A simple tool for labeling images is also implemented. 

Two datasets were recorded and prepared wi th the mentioned tools. The first one 
contains hand gestures wi th different backgrounds and was mainly used for testing the 
dataset preparation tools. The second one contains recordings of the upper body wi th 
diverse a rm movements. This dataset was used to t ra in and evaluate the self-supervised 
model. It contains 3804 images of sports pose wi th two sets of annotations of 4 and 16 
classes. 

Two models constructing the self-supervision architecture were developed: encoder and 
classifier. The encoder uses ResNet-50 architecture together w i th a triplet loss function 
to provide embeddings of sports poses. The classifier is a simple dense neural network that 
takes embedding vectors and classifies them. Another model doing the same task but w i th 
supervision was also developed to have a comparison between the two architectures. 

The embedding space of the encoding is visual ly analyzed wi th t-distr ibuted stochastic 
neighbor embedding and the resulting visualizat ion shows the upsides and downsides of 
the encodings. Possible settings of encoding dimensionality are evaluated on the validat ion 
dataset and the results are compared according to the median accuracy and the variance 
of results. F inal ly , a self-supervised model is compared to a model trained wi th supervi­
sion. Datasets w i t h different amounts of annotated samples were used for t ra ining and the 
validat ion accuracy of both models was compared. The self-supervised model performs sim­
i lar ly on dataset w i th hundreds of samples from each class but when the amount of samples 
drops to lower tens or even under 10 per class, the self-supervised model outperforms the 
supervised one by tens of percent on the validat ion accuracy. 
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Future work on the project was proposed i n various directions. To increase the vari­
abi l i ty in sports poses, yoga poses are recommended together w i th possible sources of data 
and related work i n this direction. Numerous other loss functions that can be used for 
self-supervision are presented together w i th their advantages. The obtained embeddings 
can not only be used for classification but also for other computer vision challenges. These 
possibilities such as pose estimation or embedding vector operations are discussed. Last ly, 
the implemented work could also be used for other object classification, not only for sports 
poses. 
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