
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ U Č E N Í TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA I N F O R M A Č N Í C H T E C H N O L O G I Í

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A M U L T I M É D I Í

SELF-SUPERVISED LEARNING FOR RECOGNITION
OF SPORTS POSES IN IMAGE
POUŽITÍ SELF-SUPERVISED LEARNING PRO ROZPOZNÁNÍ SPORTOVNÍCH POZIC V OBRAZE

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. DANIEL KONEČNÝ
AUTOR PRÁCE

SUPERVISOR prof. Ing. ADAM HEROUT, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

Department of Computer Graphics and Multimedia (DCGM) Academic year 2021/2022

Master's Thesis Specification |||||||||||||||||||||||||
2 4 5 4 3

Student: Konečný Daniel, Be.
Programme: Information Technology and Artificial Intelligence
Specialization: Machine Learning
Title: Self-Supervised Learning for Recognition of Sports Poses in Image
Category: Image Processing
Assignment:

1. Study the field of machine learning for computer vision and recognition of sports poses in
image and video.

2. Obtain and/or collect a data set (sets) of images of sports poses.
3. Experiment with methods of self-supervised learning on the collected data set (sets).
4. Demonstrate the usability of the developed techniques for recognition of sports poses.
5. Iteratively improve the developed techniques and the data set towards maximal usability.
6. Discuss the achieved results and propose possibilities for future work on the project; create

a poster and a short video for presenting the results of the project.
Recommended literature:

• Goodfellow, Bengio, Courville: Deep Learning, MIT Press, 2016
• Bharath Ramsundar, Reza Bosagh Zadeh: TensorFlow for Deep Learning: From Linear

Regression to Reinforcement Learning, O'Reily Media, 2018
• Gary Bradski, Adrian Kaehler: Learning OpenCV; Computer Vision with the OpenCV Library,

O'Reilly Media, 2008
• Richard Szeliski: Computer Vision: Algorithms and Applications, Springer, 2011
• Grill J-B et al.: Bootstrap your own latent: A new approach to self-supervised Learning,

NeurlPS 2020, https://arxiv.org/abs/2006.07733
• Caron M et al.: Emerging Properties in Self-Supervised Vision Transformers,

https://arxiv.org/abs/2104.14294
• Sermanet et al.: Time-Contrastive Networks: Self-Supervised Learning from Video, ICRA

2018, https://arxiv.Org/abs/1704.06888
• Asano et al.: Self-labelling via simultaneous clustering and representation learning, ICLR

2020, https://arxiv.Org/abs/1911.05371
• L. Jing, Y. Tian, Self-supervised visual feature learning with deep neural networks: A survey,

IEEE PAMI, 2020
Requirements for the semestral defence:

• Items 1 and 2, considerable development on items 3 through 5.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Herout Adam, prof. Ing., Ph.D.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: July 29, 2022
Approval date: November 1, 2021

Master's Thesis Specification/24543/2021/xkonec75 Page 1/1

https://arxiv.org/abs/2006.07733
https://arxiv.org/abs/21
https://arxiv.Org/abs/1
https://arxiv.Org/abs/1
https://www.fit.vut.cz/study/theses/

Abstract
The goal of this thesis is to recognize sports poses in image data wi th a self-supervised
learning approach to achieve high classification accuracy even wi th a low number of anno­
tated samples. Self-supervision is obtained by using images of the same scene from multiple
viewpoints at identical and different times. A convolutional neural network trained wi th
triplet loss learns embedding vectors of sports poses and a dense neural network classi­
fies them. The proposed self-supervised model achieves classification accuracy higher by
30-40 % than a supervised model when there are only tens or ones of annotated training
samples from each class. The main contributions of this thesis are a set of semi-automatic
tools to prepare a dataset for the specific t ra ining process, two datasets wi th sets of la­
bels for classification, and implemented models for specific self-supervised learning. The
results show that self-supervised learning is a meaningful approach for solving classification
problems wi th very few labeled samples.

Abstrakt
Cílem t é t o p r á c e je r o z p o z n á n í spo r tovn í ch pozic v ob razových datech za p o m o c í př ís­
tupu self-supervised learning pro docí lení vyšší ú spěšnos t i klasifikace s p o u ž i t í m m a l é h o
m n o ž s t v í a n o t o v a n ý c h vzorků . Učení za p o m o c í self-supervision je docí leno s n í m k y s te jné
scény z r ů z n ý c h ú h l ů ve s te jných a různých časech. Konvolučn í neu ronová síť n a u č e n á s po­
moc í funkce triplet loss zakódu je s p o r t o v n í pozice do l a t en tn í ch v e k t o r ů a p lně p r o p o j e n á
neu ronová síť tyto vektory klasifikuje. M o d e l n a t r é n o v a n ý p o m o c í self-supervised learning
dosahuje o 30-40% vyšší ú spěšnos t i než supervised model, když je t r é n o v a n ý pouze na
des í tkách či j e d n o t k á c h označených s n í m k ů z k a ž d é t ř ídy . H lavn ími p ř ínosy t é t o p r á c e jsou
nás t ro j e pro p ř í p r a v u da tové sady pro tento specifický typ učení , dvě d a to v é sady s více
anotacemi a i m p l e m e n t o v a n é modely využívaj ící self-supervised learning. Výs ledky ukazuj í ,
že učení za p o m o c í self-supervision je v h o d n ý p ř í s t u p pro řešení klasifikace za použ i t í velmi
m a l é h o m n o ž s t v í označených sn ímků .

Keywords
machine learning, computer vision, recognition, convolutional neural network, image, self-
supervised learning, time-contrastive learning, sports pose

Klíčová slova
s t rojové učení , poč í t ačové vidění , r ozpoznán í , konvoluční n e u r o n o v á síť, obraz, self-supervised
learning, time-contrastive learning, s p o r t o v n í pozice

Reference
K O N E Č N Ý , Danie l . Self-Supervised Learning for Recognition of Sports Poses in Image.
Brno , 2022. Master 's thesis. Brno Universi ty of Technology, Facul ty of Information Tech­
nology. Supervisor prof. Ing. A d a m Herout, P h . D .

Rozšířený abstrakt
P r á c e se zabývá r o z p o z n á v á n í m spo r tovn í ch pozic v ob razových datech. P r o n a u č e n í mod­
elu, k t e r ý r o z p o z n á n í provádí , je p o u ž i t a metoda self-supervised learning, ve k t e r é se využ ívá
nějaké informace, k t e r á je v t rénovac ích datech už o b s a ž e n a a nen í t ř e b a j i doplnit do­
d a t e č n ě . Trénovací data pak sama slouží modelu jako superv ízo r a ten se d íky tomu n a u č í
data smys lup lně reprezentovat v l a t e n t n í m prostoru. Kval i tn í reprezentace pak obsahuj í
informace h o d n o t n é k da l š ímu využ i t í a ignoruj í informace, k t e r é v or ig inálních datech ne­
nesly ž á d n o u hodnotu. S p o r t o v n í pozice z a k ó d o v a n á v l a t e n t n í m vektoru je pak j ednoduše j i
klasif ikovatelná a je tedy p o t ř e b a m é n ě t rénovac ích sn ímků .

V t é t o p rác i je self-supervised learning docí len metodou time-contrastive learning, k t e r á
využ ívá n a h r á v e k j e d n é scény z více různých úh lů . S p o r t o v n í pozice v jednom k o n k r é t n í m
čase, ačkoliv je zachycená z různých úh lů , je s tá le s te jná . Z a t í m c o pozice zachycená ze
s te jného m í s t a , ale po tom, co se o d e h r á l v obraze ně jaký pohyb, je j iná . Tato n á p o ­
m o c n á informace je ve videích o b s a ž e n a automaticky, pokud jsou synchron izovaná v čase,
a nen í tedy t ř e b a jakéhokol iv da lš ího označován í s n í m k ů pro n a u č e n í d o b r é reprezentace
spo r tovn ích pozic.

P ro co ne j j ednodušš í p ř í p r a v u t a k o v ý c h dat je p ř e d s t a v e n a sada ná s t ro jů , k t e r á videa
p řep racu je do s n í m k ů v h o d n ý c h p ř í m o k t r é n i n k u . N á s t r o j e p racu j í t é m ě ř automaticky,
vyžadu j í pouze m i n i m u m interakce s už iva te lem. V p r v n í ř a d ě už iva te l urč í z a č á t e k a konec
jednoho z n a h r a n ý c h videí , aby na z a č á t k u a konci nebyly nežádouc í záběry . Jedno video je
d o s t a t e č n é , neboť synchron izačn í n á s t r o j , k t e r ý bude p ř e d s t a v e n pozděj i , se p o s t a r á o zkrá­
cení t ěch o s t a t n í c h . N á s l e d n ě už iva te l vybere ve videu ohraničuj íc í obdé ln ík pro oř íznu t í
na oblast zá jmu . Ořezávac í n á s t r o j se p o s t a r á o to, aby výs ledné s n í m k y mě ly sp rávné
rozlišení pro v s t u p n í vrs tvu neu ronové s í tě . P o t é jsou videa p lně automaticky synchroni­
zována p o m o c í dense opt ical flow, kdy je nalezen p ř e k r y v videí s největš í korelací s m ě r u
pohybu ve videích a n á s l e d n ě jsou videa p a t ř i č n ě zk rácena . Nakonec je p o u ž i t detektor
pohybu pro rozpoznán í , zda se v obrazu u d á l dostatek z m ě n , aby mohly bý t s n í m k y b r á n y
jako rozdí lné a u loženy pro t r é n i n k jako obrázky . Detektor využ ívá sparse opt ical flow
a nás l edné zp racován í v e k t o r ů pohybu, aby co nejpřesněj i detekoval s n í m k y s rozd í lnými
s p o r t o v n í m i pozicemi.

Dá le jsou p rezen továny 2 da tové sady, k t e r é byly p o u ž i t y př i vývoj i a n á s l e d n é m tes tován í
n á s t r o j ů a m o d e l ů v t é t o p rác i . P r v n í z nich obsahuje pohyby ruky n a t o č e n é od před­
lokt í níže k p r s t ů m s t í m , že se ruka pohybuje p řevážně v zápěs t í a v prstech. Tato
d a t o v á sada byla p o u ž i t a pro vývoj a t e s tován í n á s t r o j ů pro p ř í p r a v u d a to v é sady pro time-
contrastive learning. D r u h á d a t o v á sada je t v o ř e n a n a h r á v k a m i člověka p řevážně od kolen
výše , ve k t e rých p rovád í r ů z n é s p o r t o v n í p ó z y p o m o c í p o h y b ů pažemi . Ve videích se nijak
n e m ě n í pozice tě la ani hlavy, pouze se ohýba j í paže v ramenech a loktech. V i d e a jsou
n a t á č e n a ve dvou p ros t ř ed í ch a osoba na nich zachycená m á r ů z n é oblečení pro dosažení
vě tš í r ů z n o r o d o s t i . Tato d a t o v á sada byla p ř i p r a v e n a p o m o c í zmíněných n á s t r o j ů a nás l edně
p o u ž i t a pro vývoj a v y h o d n o c e n í modelu t r é n o v a n é h o p o m o c í self-supervised learning.

M o d e l pro klasifikaci spo r tovn ích pozic se sk l ádá ze dvou čás t í : e n k o d é r a klasif ikátor .
E n k o d é r je konvoluční neu ronová síť a m á za úkol na léz t co nej h o d n o t n ě j š í reprezentace
spo r tovn ích pozic. Jeho architektura je za ložena na síti ResNet-50 s u p r a v e n ý m v ý s t u p e m
a je učený za p o m o c í funkce triplet loss. Klas i f ikátor p ř i j ímá na vstup l a t e n t n í vektory
v p ř e d e m u r č e n é d imenz iona l i t ě a jeho v ý s t u p e m jsou p r a v d ě p o d o b n o s t i p ř í s lušnos t i tohoto
vektoru k j e d n o t l i v ý m t ř í d á m . J e d n á se t a k é o neuronovou síť, ale pouze s jednou skrytou
p lně propojenou vrstvou s ne l ineá rn í ak t ivačn í funkcí, neboť řešený úkol už je j e d n o d u c h ý
a n e m u s í bý t poskytnuto mnoho t rénovac ích dat. Nakonec je t a k é i m p l e m e n t o v á n model

konvoluční neu ronové s í tě s t é m ě ř ekv iva len tn í architekturou, pouze učený se superviz í .
Tato síť slouží k p o r o v n á n í ú spěšnos t i p ř í s t u p ů self-supervised a supervised learning na
r ů z n ě velkých d a t o v ý c h sadách .

I m p l e m e n t o v a n é modely jsou vyhodnoceny p o m o c í různých metr ik a nás l edně je disku­
t o v á n a jejich ú spěšnos t v řešení úkolů, ke k t e r ý m byly určeny. Nejprve je provedena v izuá ln í
a n a l ý z a l a t e n t n í h o prostoru se zakódovanými pozicemi po tom, co je r e d u k o v á n a dimen-
zionali ta p o m o c í t -distr ibuted stochastic neighbor embedding. Z t é t o vizualizace vyplývá ,
že se enkodé r zv l ádne n a u č i t reprezentace spo r tovn ích pozic i s jejich p ř í s lušnými vlastnos­
tmi , avšak na d a n é d a t o v é s adě ned o k áže kva l i tně general izovať mezi j e d n o t l i v ý m i s cénami
a osobami. Dá le je provedeno v y h o d n o c e n í zakódovaných pozic na prostorech o různých
d imenzích , ze k t e r é h o vyplývá , že danou datovou sadu je ne jvhodně jš í reprezentovat v 64 d i ­
menzích . Nakonec je p o r o v n á n model t r é n o v a n ý p o m o c í self-supervised learning s modelem
t r é n o v a n ý m p o m o c í supervised learning na r ů z n ě velkých d a t o v ý c h s adách . Z experimentu
vyplývá , že př i použ i t í p o u h ý c h des í tek či jednotek označených s n í m k ů v j edno t l i vých
t ř í d á c h m á self-supervised model o 30-40% vyšší ú spěšnos t r o z p o z n á n í s p o r t o v n í pozice.
P ř i použ i t í vyšš ího m n o ž s t v í t rénovac ích dat je self-supervised model lepší než supervised
model, či a l e spoň dosahuje s te jných výs ledků .

Self-Supervised Learning for Recognition
of Sports Poses in Image

Declaration
I hereby declare that this Master 's thesis was prepared as an original work by the author
under the supervision of prof. Ing. A d a m Herout, P h . D . I have listed a l l the l i terary sources,
publications and other sources, which were used during the preparation of this thesis.

Danie l K o n e č n ý
Ju ly 23, 2022

Acknowledgements
I would like to express my sincere gratitude to my supervisor prof. Ing. A d a m Herout,
P h . D . for his valuable advice, professional guidance, and important feedback. I would also
like to thank M g r . L a d a K o n e č n á for helpful consultations of mathematical topics.

Contents

1 Introduction 2

2 Neura l Networks in Computer Vi s ion 3
2.1 Machine Learning 3
2.2 Convolut ional Neura l Networks 7
2.3 Recognit ion as a Supervised Learning Task 10
2.4 Self-Supervised Learning for Computer V i s i o n 11

3 Obtaining Datasets for Self-Supervised Learning 15
3.1 Creat ing Dataset for Time-Contras t ive Learning 16
3.2 Dataset of Sports Pose Images 22

4 Recognition of Sports Poses from Images 27
4.1 Representing Sports Poses in Latent Space 27
4.2 Sports Pose Classification from Embeddings 29
4.3 Classifier Trained w i t h Supervision 30
4.4 Add i t i ona l Usage of Sports Pose Encodings 31

5 Evaluat ion of Models Trained with Self-Supervision 32
5.1 V i s u a l Analysis of Latent Space 32
5.2 Evaluat ion of Encoder on Val ida t ion Dataset 35

5.3 Comparison of Self-Supervised and Supervised-Trained Models 36

6 Conclusion 40

Bibl iography 42

1

Chapter 1

Introduction

Learning algorithms of many models used for recognition are nowadays relying on large
datasets and also high computat ional power. Whereas the computat ional power of com­
puters is s t i l l expected to increase, the creation of larger and more accurate annotated
datasets is a task much harder. Label ing usually requires some sort of manual work that
cannot be automated unless the required task was previously solved. This problem can be
minimized by using unlabeled data to learn their representations and then needing only
a smaller amount of labeled samples to provide good classification results. This method is
referred to as self-supervised learning.

The introduct ion to machine learning and convolutional neural networks is covered
at the beginning of Chapter 2. Then, important features of convolutional neural networks
that are used i n this thesis are described. After that, current advances i n sports pose
recognition are presented. The following section introduces self-supervised learning and
its advantages and disadvantages i n deep learning. F ina l ly , various loss functions for self-
supervised learning are discussed.

This thesis discusses self-supervision achieved wi th a time-contrastive approach when
one scene is filmed from mult iple viewpoints and the difference in t ime and camera posit ion
is used as supervision that needs no labeling. The recorded video footage has to be normal­
ized to the network's input, synchronized, and then motion detection is needed to produce
ind iv idua l t ra ining images. This whole process is specified i n detai l i n Chapter 3. A set
of tools for semi-automatic preparation of such dataset is proposed. F ina l ly , 2 different
datasets w i th mult iple sets of labels are presented. The datasets were recorded for this
thesis and were prepared wi th the introduced tools.

The classifier model can be divided into 2 parts: the first one encodes the image into
an embedding and the second one recognizes the sports pose from the embedding. Chapter 4
describes both of these models and their specific parameters. Inputs of the first model are
images wi th sports poses and outputs are their representations - embeddings i n a form of
latent vectors. The first model is a convolutional neural network trained w i t h triplet loss
function, the second model is a simple neural network wi th densely connected layers, which
classifies the embeddings into given categories.

Evaluat ion of the performance of a l l described models is provided i n Chapter 5. A t first,
class dis t r ibut ion is visual ly analyzed wi th t-distr ibuted stochastic neighbor embedding to
better understand the embedding space. Afterward, the models are evaluated on vali­
dation data and their different settings are compared to each other. F ina l ly , the overall
performance of the self-supervised model on sports poses is measured and compared to the
supervised model . A l l evaluations are discussed and their key takeaways are emphasized.

2

Chapter 2

Neural
Vision

Networks in Computer

Machine learning (M L) is playing a great role in solving many tasks proposed by the field
of computer vision (C V) [19]. A n a l y z i n g objects from images is a task widely considered as
not definable by a set of conditions and therefore, some sort of artificial intelligence (AI)
has to be used, as is further discussed i n Section 2.1. W h e n problems got more complicated,
M L models had to be increased i n depth, which led to the introduct ion of the term deep
learning (D L) .

Neura l networks (NNs) became a very powerful computing architecture i n machine
learning. Section 2.2 informs how the introduct ion of convolutional layers to neural networks
further increased their efficiency i n image processing. Various other operations were also
implemented into convolutional neural networks (C N N s) to fit the needs of specific C V
challenges.

Deep learning has untangled many problems which were not solvable w i th other meth­
ods. Recognit ion, being one of these problems, requires a large amount of t ra ining data
when the model is using supervised learning. This matter is further described in Section 2.3.
The quali ty of annotated data available for the t ra ining process has a great influence on the
model performance and as such became a challenge i n the further development of recogni­
t ion models.

Therefore, learning algorithms that do not require large datasets are being developed.
One of these approaches is self-supervised learning introduced in Section 2.4. It extensively
uses a large amount of data without any labels as these are easier to obtain. A model trained
in this manner needs a smaller amount of annotated data to generalize. Such an attribute
is very valuable since labeling can often be done only by hand and is very time-consuming.

2.1 Machine Learning

Computers are very good at solving problems that can be specified wi th a set of conditions
and states, such as a game of chess. The computat ional power that it possesses allows it
to analyze the game many steps ahead. Whereas the human m i n d finds these tasks very
complicated. It is, therefore, no surprise that computers managed to defeat the best chess
players i n the world . Tha t is why one of the ways to create an art if icial intelligence (AI)
is focused on the knowledge base approach. The main hypothesis was that every problem

3

can be described i n a formal language. After designing a set of logical inference rules, the
problem would be solved wi th just a simple inference.

Unfortunately, when it comes to solving real-world problems, this approach cannot
be applied. Humans have immense knowledge about the world and applying it is very
subjective and intuit ive. It cannot be formalized i n any way. The knowledge base A I
often d id not understand the problem correctly and provided misleading results. Another
disadvantage is that the formalization itself was an unwieldy process requiring a large
amount of human staff [5].

Different approaches had to be chosen to solve real-world tasks. Instead of modeling
the real world w i th conditions and rules, probabil ist ic models w i t h a set of parameters were
chosen. Most parameters are to be set automatical ly based on the data provided to learn the
problem's nature. Logist ic regression is one of these basic models that provide subjective
reasoning based on the information that it learned from previous real-world examples.
It finds a correlation between inputs and various outcomes. The computat ion involves
a weighted sum of the inputs and a non-linear transformation of this sum, i l lustrated in
Figure 2.1. Parameters that are adjusted are the weights of each input and a bias, a single
number that is added to the sum, which can be also seen as a weight to a constant input
o f + 1 .

x 3

Figure 2.1: Logist ic regression as an elementary model i n machine learning. Xk, k £ {1,2 ,3}
are the inputs and h is the resulting output that equals the determined probabil i ty of the
input.

Inputs of these models are called features of the data and the performance of the model
heavily depends on their representation. If the features correlate w i th the different out­
comes, the model is expected to provide good results. If we wanted to recognize a sports
pose and the data provided would be positions of a l l joints and both eyes i n a human body,
the task would be fairly easy. After normal iz ing the scene to always have the same scale
and point straight to the eyes, the task gets even simpler. Inputs of such model would
be coordinates of mentioned objects and outputs probabilities of each sports pose. Th is
solution introduces another lot more complicated challenge - the coordinates are hard to
obtain without any special tools. W h a t we would like to have is a model that can work on
simple image data since obtaining those is affordable.

Images can be described wi th pixel values and provided to the input but ind iv idua l
pixels have no direct correlation to sports poses, therefore, the predictions would be useless.
There is a number of examples of why this is true but perhaps the easiest one is translational
dependence. Hav ing the sports pose moved just a few pixels i n any direction from where
it is expected to be, makes the results incorrect. A d d i t i o n a l problems would be caused by
shadows, different clothes that the person is wearing, etc.

4

This obstacle can be overcome by having the M L model discovering not only the mapping
of features to outputs but also finding the useful features i n the raw data on its own. This
makes the model not only work on raw data but also generalizes it to different tasks. For
example, not only recognizing sports poses but also vehicles w i t h the same model only
trained on different data. Logist ic regression is not capable of doing such predictions,
some more complex solution has to be found. In computer science, the concept of bui lding
complex structures from simple modules is well known and can be used i n machine learning
as well . B y combining many logistic regressions into a structure, a neural network (NN) is
created [5].

These networks consist of neurons - logistic regressions. Its non-linear function can
be adjusted to fit the needs of a specific task and it is often referred to as an activation
function. The capabil i ty to solve complex problems arises from the structuring of simple
neurons into groups called layers. The key is not doing the mapping of abstract features
in one task but d iv id ing it into mult iple simple mappings. The input layer, also called
the visible layer because its data can be easily observed, provides data to the following
layer. The first simple mapping is done by the second layer and each following layer uses
the mappings of its predecessor to obtain more complex information from the data. These
following layers are also called hidden because their values are not given i n the data, they
have to be determined by the model . F ina l ly , the last layer provides outputs i n a format
specified by its activation function.

W i t h tasks becoming more complicated, the number of layers is growing bigger. A s
there was an increase i n the depth of the graph, such networks were called deep neural
networks, and their usage was referred to as deep learning (D L) .

Neura l network for classification can be seen as function y = f(x\0) that maps input
vector i to a category y w i th parameters of the network given by 6. It is also possible to
decompose the neural network function / to mult iple functions, each one representing one
layer, applied in the correct order. N N wi th two hidden layers and one output
layer is representing function:

Network parameters 6 are basically weights and biases of each neuron and they are un­
known when the model is constructed. The ideal values of parameters cannot be computed
i n a simple way because of the non-linearity of neural networks that causes most of the loss
functions to become non-convex. Loss functions are going to be further explained later in
this section. N N parameters have to be somehow ini t ia l ized and iteratively improved to
provide better results. Th is iterative process is called learning or t ra ining and its goal is to
approximate some function / * that provides accurate results for a given problem. Tha t is
achieved by finding parameters 6 that result in such approximat ion [5].

Non-linear results of neural networks are achieved wi th activation functions. There are
lots of various functions wi th different use cases, but two of them are very common. One is
a sigmoid function wi th Equa t ion 2.2, which maps any real number to a number between
0 and 1. It is often used to represent probabili ty. The other activation function is rectified
linear unit (R e L U) (Equat ion 2.3) that is linear for any positive number and 0 otherwise.
R e L U is very often used i n later discussed convolutional neural networks.

1
(2.2)

1 + e —X

5

f{x) = max(0, x) (2.3)

The learning algori thm consists of mult iple stages that repeat un t i l the model is produc­
ing satisfactory results. These stages are explained in detail in the following paragraphs.

1. Forward propagating data - inference.

2. Comput ing gradients w i th back-propagation algori thm.

3. Calcula t ing learning rate.

4. Performing learning step of the model w i th the opt imizat ion algori thm.

Evaluat ion y of samples x is computed by forward propagating the samples through the
network. Tha t means evaluating a l l layers i n the correct order as i l lustrated i n Equa t ion 2.1.
Correct values y* = f*{x) are known because the t ra ining data are annotated wi th them.
The loss (or cost) function can be used to compute how good the approximation / of / * is.
Loss functions are designed to fit specific tasks and data dis tr ibut ion. W h e n it is necessary
to compute some sort of distance on data that probably come from Gaussian dis t r ibut ion,
the M e a n Squared Er ro r function is often used.

For classification problems, the typica l choice is a measure called cross-entropy. It is
based on the K u l l b a c k - L e i b l e r divergence, which measures the difference between two prob­
abil i ty distributions. Cross-entropy computes the expected number of bits needed to repre­
sent data coming from the dis t r ibut ion p while using the dis t r ibut ion q and it is calculated
as follows [11]:

M(p,q)±-J2p(y)tegq(y). (2.4)
y

Gradients can be computed in many different ways but the most common one for models
that are working on large datasets is stochastic gradient descent (S G D) . Therefore, this is
the only one discussed i n this thesis. Generally, a gradient is a vector point ing i n the
direction of the steepest ascent. B y following such a vector, the local m a x i m u m can be
reached. In machine learning, the thought is often reversed - the goal is to reach the local
min imum, but the main idea remains the same. For the number of samples m and loss
function L , gradient g is computed w i t h this equation:

1 m
9 = -Y,VoL(f(x^\d),y*(% (2.5)

i=i

The direction of the next step is computed but another variable called the learning rate
is s t i l l unknown. It represents the size of the step and it has a vast impact on the t raining
performance. One possible solution is to keep the learning rate fixed for the whole t raining
but better results can be achieved wi th more advanced algorithms. The first improvement
can be achieved by computing a specific learning rate for each parameter of the network.
The second way to achieve better results is by changing the learning rate throughout the
t ra ining process.

The update of parameters is done w i t h an opt imizat ion algori thm. It uses previously
computed gradient g and other algorithm-specific parameters to update the network's pa­
rameters. It usually incorporates the calculat ion of the learning rate. Very common is

G

the use of the A d a m opt imizat ion algori thm which also uses the previously mentioned im­
provements for a more useful learning rate. The algori thm uses the mean and uncentered
variance of parameters to adapt the learning rates. The computat ion goes as follows [9].

s = pis + (1 - pi)g (2.6)

r = P2V + (l - P2)g®g (2.7)

s
(2.8) s

I-Pi

r
(2.9) r

1 - Pi

A6
s

(2.10) —e

6 d + Ad (2.11)

Where:
Pi,P2 are exponential decay rates for moment estimates (mean and variance, usually

ini t ia l ized to 0.9 and 0.999 respectively),
0 is an element-wise product,
s is an updated biased first-moment estimate,
r is an updated biased second-moment estimate,
s is a correct bias i n the first moment,
f is a correct bias i n the second moment,
e is a step size (usually ini t ia l ized to 0.001) and
5 is a smal l constant used for numerical s tabil izat ion (usually ini t ia l ized to 1 0 - 8) .

Another important part of the t ra ining process is how the data samples are handled.
It is possible to update the network's parameters after each sample but also wi th the
whole dataset. The ideal solution is to divide the dataset into minibatches of size ranging
from lower tens to higher hundreds of samples. Parameters are then updated wi th each
minibatch. After a l l minibatches of the dataset have been used for t raining, the process
can start again on the previously minibatches. It is also important to shuffle the data in
the dataset and in the minibatches. If the same order of samples was used, the network
might have problems wi th not generalizing enough.

Every t ime the whole dataset has been handled, one epoch has passed. Tra in ing can
consist of many epochs, depending on the problem difficulty, network size, and dataset.
It is important to measure the network's performance on data it has never seen during the
t raining. Once the model's accuracy is not improving and/or loss is approaching nearly
zero values, the t ra ining w i l l no longer provide better results. Therefore, the dataset should
be divided into t ra ining and val idat ion data.

2.2 Convolutional Neural Networks

Convolut ional neural networks are a special k ind of N N s including at least one layer that is
computing convolution. These networks are used for processing data w i th grid-like topolo­
gies, such as sequences and images. Th is thesis focuses on image data and therefore, only

7

those w i l l be discussed further on, even though the computat ion can be generalized to other
input types.

A t first, convolution is discussed as an operation on image data w i th its important
properties. Its usage as a layer i n a neural network is explained in detail . Then , other
operations important for C N N s are introduced and explained. Once most of the important
principles of convolutional neural networks have been mentioned, a specific convolutional
neural network architecture is presented.

2.2.1 C o n v o l u t i o n o n Image D a t a

Convolut ion is a mathematical operation of two functions that produces a th i rd function
that describes how one modifies the other i n shape. This is a very general definition that
is not necessary for image processing and can be made more specific. It is only necessary
to consider discrete values of inputs, continuous functions are not used i n C N N s . Images
usually consist of mult iple channels (typically red, green, and blue), but for convolutional
neural networks, channels are handled separately. For that reason, images w i l l be discussed
as 2-dimensional arrays of numbers only.

Convolut ion computes a weighted sum of values across a fixed-size area of the image. It
takes a 2-D image input and a 2-D array of weights called a kernel. Images can be extended
on the edges wi th padding, which are basically pixels w i th a value of zero. Since convolution
changes the size of the input image, padding is often used to equalize the sizes [4]. The
resulting 2-D array is often referred to as a feature map and it is computed by mul t ip ly ing
the input value wi th the corresponding kernel value for a l l of the overlapping elements and
then summed together. After that, the kernel moves one step further on the input and the
next value of the feature map is calculated the same way un t i l the whole input is processed.
Figure 2.2 illustrates one step of the computat ion.

Figure 2.2: Example of 2-dimensional convolution wi th input size 4 (blue), kernel size 3 (red)
and padding size 1 (white). The feature map (dark purple) has the same size as the input
because of the padding.

The operation of convolution is often denoted wi th an asterisk * and for input / of size
m x n and kernel K, feature map FM is calculated as:

FM(i,j) = (I*K)(i,j) =] T] T / (m , n) K (i - m , j - n) . (2.12)
m n

Layers that perform convolution are not that different from normal dense layers men­
tioned in the previous section. The input image is the layer's input, weights are the kernel
values and the output of the layer is the feature map. W h e n t ra ining is performed, the goal
is to find kernel values that produce the best results. Kernels are usually called filters in

8

the C N N context, therefore, this terminology w i l l be used from now on. E a c h convolutional
layer often includes more filters and produces an equal number of feature maps, one feature
map from each filter applied to the input . That means 2-D input data are transformed
into 3-D data, as there are mult iple 2-D feature maps of the same size. The following
convolutional layer applies filters to each input and sums the results over each filter. Color
images on the input are handled the same way as i f each channel was a feature map from
a previous convolutional layer, there is no difference between them.

Convolut ion is a very important operation for image processing because it holds many
essential properties. Since it is computed over mult iple neighboring values, the context
of p ixe l values is taken into account, not just the single values. Tha t enables pattern
recognition i n images. Simple patterns such as shadow information and edges are layer by
layer combined into more complex patterns unt i l an object detection can be done. Another
important property is equivariance, which means that the posit ion of objects in the image
plays no role in detection. Final ly , convolution has low memory requirements that are not
dependent on the input size, only values that are stored are 2-D filter arrays [5].

2.2.2 Additional Important Parts of Convolutional Neural Networks

Convolut ional layers are usually followed by pooling layers i n C N N architecture. Pool ing
is a function that for each value of the input gr id computes a summary statistic of its
nearby values. The most common statistics are m a x i m u m and average. For example, the
max pool ing layer w i th 2 x 2 pool size takes a m a x i m u m of every 2 x 2 region i n the image
and creates a new image constructed out of the m a x i m u m values. A simplified version of
this operation is in Figure 2.3. In this case, the output size w i l l be smaller than the input
size. To keep the size uniform, padding must be added the same way it was added during
convolution.

12 20 30 0

8 12 2 0

34 70 37 4

75 13 25 12

Figure 2.3: M a x pooling of 4 x 4 gr id into a 2 x 2 gr id w i th pool size also 2 x 2 . F r o m every
region, the max ima l value is taken to the output.

Pool ing layers make the model invariant to smal l translations. Even when the input has
moved a few pixels in some direction, pooled outputs should not change much. Pool ing can
be also easily used for downsampling of images when the stride is set to 2 or more. Another
use case of pool ing is handling images of varying sizes because classifiers are accepting only
images w i t h fixed size [5].

Residual blocks made a vast impact on the development of convolutional neural networks.
W h i l e the recognition problems got more complicated and datasets enormous, the need to
make C N N s deeper arose. Unfortunately, the performance of the networks d id not improve
by just adding more layers. Gradients could not be back-propagated a l l the way to in i t i a l
layers.

The solution to this problem came w i t h residual blocks that introduced a simple con­
nection that bypassed blocks w i t h convolution and pooling, as shown i n Figure 2.4. Th is

2x2 Max Pool
>

20 30

75 37

9

connection symbolizes a simple identity function, it takes the input and outputs it un­
changed. W h e n such an identity connection bypasses every convolutional block, the neural
network can basically work as an identity function. The same principle can be applied
when gradients are computed, therefore, larger gradients are back-propagated to the in i t i a l
layers [6].

Figure 2.4: Residual block w i t h bypassed convolutional and pool ing layers. Rectangular
nodes symbolize data and ell ipsoidal nodes are operations.

Dropout layer is used to deactivate some neurons dur ing the t ra ining process and by
that, it is t ry ing to simulate different models. For each mini-batch of data, some percentage
of neurons have their activation function set to zero. The t ra ining step is done as usual:
inference, back-propagation, and weight update. Then, for the next mini-batch, different
neurons are chosen to produce output w i th a value of zero. Dropout is a computat ional ly
inexpensive way to regularize models [5].

2.3 Recognition as a Supervised Learning Task

Recognit ion is one of many computer vision tasks and it can be further divided into multiple
more specific categories. The most common one is classification - the recognized image is
supposed to be assigned a class from a previously known set. Th is thesis focuses specifically
on sports poses classification, however, the other recognition varieties are worth mentioning
as well . Detect ion and segmentation challenges are t ry ing to localize objects i n images wi th
a bounding box or pixel-wise, respectively. A very specialized task is a pose estimation
where the model is t ry ing to assign a specific structure of connected joints to a human
body.

Supervised learning is one of the most general t ra ining methods. The main prerequisite
is generally a dataset w i th annotated samples. For the classification task, each data point
has to have a class assignment. Dur ing the t ra ining procedure, the model is t ry ing to assign
the correct class to each sample i n a mini-batch and compare it to ground t ru th - the real
class of the sample saved i n the dataset. If the model is not successful, the information is
back-propagated through the network to improve on the next mini-batch inference.

Nowadays, models are trained on datasets of mil l ions or even bill ions of data points.
Networks w i t h a number of layers well over 100 have enough parameters to be able to
classify very complicated images into a large number of categories (even tens of thousands
of hierarchically divided ones). A n important property of each classifier is its abi l i ty to
generalize - to classify correctly images it has never seen. Generalizat ion is achieved wi th
t ra ining on immense datasets w i th a large variety of images.

2.3.1 ResNet Architecture of Convolutional Neural Networks

This thesis implements residual network ResNet-50 from [6] as a backbone, a structure
of convolutions, pooling, and other operations to obtain information from images. Th is

10

network was chosen because of its well-known architecture which s t i l l provides good results.
It can be easily compared to other results since it is widely used across the whole computer
vision field. Its depth and number of parameters are not as high as the newer architectures
have and therefore, might be easier to t ra in on data. A s an alternative, a M o b i l e N e t - V 2
architecture was also tested [13]. A l though it learned faster, its results d id not achieve the
ResNet 's accuracy. It is easily possible to use other C N N architecture as a backbone, the
only difference might be the input size that has to be adjusted.

The network uses a well-known structure of convolutional layers followed by pooling
layers, where the number of convolutional filters corresponds to the size of the stride and
the number of filters in the previous layer. W h e n the stride size is 1, the input and outputs
of convolution have also the same size and therefore, the number of filters stays the same.
If the image size is decreased wi th stride size equal to 2, the number of filters doubles.
In the beginning, convolution wi th filter size 7 x 7 is used but afterward, standard 3 x 3
convolutions are implemented.

The head of the network has a densely connected layer w i t h a softmax activation func­
t ion. Th i s network introduces residual blocks further explained together w i th the other
mentioned concepts i n Section 2.2. Th is allows the network to have higher tens or even
lower hundreds of layers and s t i l l be able to learn well . The network also uses batch nor­
malizat ion after each convolution but before the activation. W i t h the exception of the
network's output, Rectified Linear U n i t is used as an activation function. A n example of
the architecture in a simplified form is i n Table 2.1.

2.3.2 Current Advances in Sports Pose Recognition

Most of the current research focuses on sports pose estimation which is a different task than
sports pose classification done i n this thesis. Researchers also t r ied yoga pose recognition
from body contours but the variety of poses d id not draw near to a l l possible options [2].
However, w i t h the publishing of the Yoga-82 dataset, results of different supervised-trained
models were also analyzed [20]. Summarized in Table 2.2 are the results of classifying
images from the Yoga-82 dataset w i th various C N N models.

The Yoga-82 dataset contains 82 third-level classes of yoga poses grouped into 20 second-
level classes that are further merged into 6 first-level classes. The poses are grouped ac­
cording to the posture and pose look. O f course, not a l l poses can be easily assigned to one
of the 82 third-level classes, some variat ion has to be taken into account. The hierarchy
of classes can be used to improve the classification or to estimate a pose type wi th higher
accuracy - reported first, second, and third-level accuracy is 89.81 %, 84.59%, and 79.08%,
respectively, for top-1 accuracy on DenseNet-201.

Yoga as a sport includes an extensive amount of poses w i t h a variety that stands out
amongst other sports. The poses can be also sorted into groups and thus create a hierarchy
that can be further used for classification as can be seen i n [20].

2.4 Self-Supervised Learning for Computer Vis ion

Self-supervised learning is a method of t ra ining a model first to learn data representations
on unannotated data and then to use annotated data to t ra in another model for classification
of the representations. The first model learns patterns in the data and how to represent
the needed information i n it w i th a latent vector. There is no need for any labels since the
data itself is used for supervision. Means of obtaining the supervision differ upon the task

11

Repeated Layer Settings

l x Input Size: (224, 224,3)
Filter count: 64

l x Conv2D Kernel size: (7, 7)
Stride size: (2, 2)
Filter count: 64

6x Conv2D Kernel size: (3, 3)
Stride size: (1, 1)
Filter count: 128

l x Conv2D Kernel size: (3, 3)
Stride size: (2, 2)
Filter count: 128

7x Conv2D Kernel size: (3, 3)
Stride size: (1, 1)
Filter count: 256

l x Conv2D Kernel size: (3, 3)
Stride size: (2, 2)
Filter count: 256

l l x Conv2D Kernel size: (3, 3)
Stride size: (1, 1)
Filter count: 512

l x Conv2D Kernel size: (3, 3)
Stride size: (2, 2)
Filter count: 512

5x Conv2D Kernel size: (3, 3)
Stride size: (1, 1)

l x Dense
Units: 1000 l x Dense
Activation: Softmax

Table 2.1: ResNet-34 architecture wi th only the main layers mentioned together w i t h their
settings. Some layers are repeatedly used after each other, the number of repetitions is in
the first column. Residual connections are over every 2 convolutional layers except the first
one.

and data available. The second model needs to use an annotated dataset to assign classes
to latent vector output by the first model . Classification is made easier w i th the data being
represented efficiently and there is no need for large annotated datasets to achieve good
generalization properties of the model.

There are various ways to use the image data itself as supervision. For instance,
it is possible to use a smal l distort ion on the original data and expect it to not change
its meaning. W i t h this, different images that are bound together are created automatically.
Self-supervision can also be used for colorization tasks, the original color images are easily
converted into grayscale images and the model's goal is to colorize it to match the original
sample. Another common challenge is generating missing image data, which is done wi th
context encoders. Some part of the image is cropped out and the encoder is t ry ing to fil l
it in to its previous form.

This thesis uses models called time-contrastive networks (T C N s) introduced i n [15]. Self-
supervision is achieved by using mult iple cameras to f i lm a scene from different viewpoints.
After the videos are synchronized, frames wi th the same t imestamp but from different
cameras should s t i l l produce latent vectors fairly close to each other. W h e n the timestamps
are different (and the scene changed), latent vectors should be further from each other even
when filmed from an identical viewpoint.

12

Architecture Dep th Parameters Top-1 Accuracy Top-5 Accuracy
ResNet-101 101 42.72 M 65.84 84.21

169 12.60 M 74.73 91.44
201 18.25 M 74.91 91.30

88 2.33 M 71.11 88.50
50 23.15 M 68.45 86.42

DenseNet-169
DenseNet-201
M o b i l e N e t - V 2
ResNeXt-50

Table 2.2: Performance of widely-known C N N architectures on Yoga-82 dataset using third-
level classes from [20].

Self-supervised models use different loss functions that suit their specific approach
to solving the problem. A s described i n the previous paragraphs, self-supervised learn­
ing has many different forms and, therefore, architectures vary i n many ways. The time-
contrastive network has to learn to represent the object i n the image independently of the
viewpoint. Images from the same viewpoint can differ just a l i t t le i n t ime but their im­
age embeddings should be different if the observed object changed. Whereas images from
different viewpoints at the same time can be entirely different, only the observed object is
constant. Therefore, their embeddings should be reasonably similar. Such a challenge can
be solved w i t h a loss function called the triplet loss.

2.4.1 Triplet Loss Function

The triplet loss function pushes embeddings of similar data closer together and pulls em­
beddings of diverse data further apart. Its main goal is learning data representation in
a d-dimensional Eucl idean space. Inputs of the function are 3 data embeddings: anchor,
positive, and negative. Anchor and positive should be closer to each other than anchor
and negative. It can be thought of as anchor and positive belonging to the same class and
negative to a different one [14].

D a t a point x has an embedding f(x) £ M r f which is addi t ional ly constrained to live
on a unit hypersphere - | | / (a0 | | 2 = 1. Triplet i consists of anchor image xf, positive image
x\ and negative image xf. The goal of the network is for inequality 2.13 to held true wi th
condit ion 2.14.

Where a is a margin that is enforced between positive and negative pairs and T is the set
of a l l possible triplets, | T | = N.

The triplet loss to be minimized is then:

l l / «) - / (^) l g + « < l l / «) - / «) l l 2 (2.13)

V(/(x?),/(x?),/(x?))€T (2.14)

N

(2.15)

A n d more often it is used as:

N

(2.16)

13

The triplet selection is an important part of the whole t ra ining process. W h e n the
constraint 2.14 is easily met, the triplet has not improved the model at a l l and therefore,
it w i l l converge slower. The ideal triplets (hard positive and hard negative, respectively)
are satisfying these two conditions [14]:

^ a r d = a r g m a x | | / «) - / «) | g , (2.17)

z ^ = a r g m i n | | / (<) - / (* ™) | | 2 . (2.18)

In this thesis, w i t h the time-contrastive learning method, hard triplets cannot be com­
puted i n any way. H a r d positive pair is enforced by making the viewpoints of the images as
different as possible. Since anchor and positive images are taken from different viewpoints,
the background of the scene and light conditions can vary. A l so , just by filming the scene
from different angles, the object can look completely different. The hard negative pair
condit ion can be fulfilled by choosing an image from the same viewpoint as for the anchor
image but w i th a slightly different t imestamp. How much should the t imestamp differ, de­
pends on the scene itself. If it is very dynamic, the images can be just a few frames apart,
if it stays the same for a longer time, a different approach has to be chosen. One possibil i ty
to choose a hard negative pair from a video is by computing opt ical flow from the video
and using it to detect movement. Th is procedure is thoroughly discussed i n Section 3.1.3.

2.4.2 Other Metric Learning Loss Functions

Triplet loss is not the only possible loss function that can be used to construct an embedding
space wi th a neural network. There are several other functions for metric learning that can
be applied to the same task that is being solved i n this thesis. These alternative functions
are proposed as a possibil i ty for future work on the project and are not implemented.

Lif ted Structure Loss is a good candidate for an alternative to the triplet loss function
[18]. It uses a similar format to the triplet loss's t ra ining data: anchor, positive, and negative
samples. The difference is that it utilizes mult iple negative samples at once and thus
provides faster convergence. It is fairly easy to provide a higher number of negative samples
since frames before and after the t imestamp of anchor-positive pairs from a l l viewpoints
are candidates for negatives.

Mul t i -C las s N - P a i r Loss is very similar to lifted structure loss in the sense that it uses
mult iple negative samples but it differs i n what it tries to optimize [17]. It computes cosine
similar i ty between features of the data points and tends to be scale-invariant.

W h i l e triplet and lifted structure losses both use relative distance as a metric, angular
loss accounts for the angle at the negative edge of the triplet triangle [21]. It drags negative
data points away from the anchor-positive pair. The pair is on the other hand pushed closer
together. Th i s metric also benefits from scale invariance. The advantage over triplet loss
is an easier setting of margin as a hyperparameter. The margin for triplet loss depends on
the intra-class variance of data while the margin angle for angular loss is invariant of such
property.

14

Chapter 3

Obtaining Datasets for
Self-Supervised Learning

Datasets for self-supervised learning, in general, can be very different from each other, their
form depends on the task that is being solved and the way of achieving the self-supervision.
Al though , a l l of them have one th ing i n common - they main ly consist of unannotated data
and in the end, they need a smaller amount of annotated data to be able to classify from
learned embeddings.

A s is mentioned i n Section 2.4, this thesis focuses on Time-Contrast ive Learning (T C L) ,
which means that it achieves supervision wi th mult iple viewpoints of the same scene con­
currently as is displayed in Figure 3.1. W h i l e the filmed object may look very different
when filmed from different angles, it is s t i l l the same object if the timestamps are identical.
It is also possible to use moving cameras for the fi lming of the scene, al though this might
introduce some inaccuracy to movement detection. O n the other hand, even when the
viewpoint is equivalent, the object can be altered only after a short t ime has passed. This
characteristic holds supervision when T C L is used and because no extra work (e.g. labeling)
has to be done, the data is supervised by itself - self-supervised. The only restriction is the
need to have mult iple videos of the same scene synchronized i n time.

CO
a
~—i o
£

Figure 3.1: Example of a scene filmed from different viewpoints w i th 3 cameras. The higher
number of viewpoints ensures greater variabil i ty i n the dataset for time-contrastive learning.

It is necessary to have the process of dataset creation as automated as possible. Other­
wise it would have been easier to just label the data and s imply use a supervised learning
approach. Therefore, I propose a set of tools i n Section 3.1 that creates a dataset ready for

15

T C L wi th just a smal l amount of user interaction. After that, a simple tool for labeling
images is presented i n Section 3.1.5, because at least a smal l number of images wi th an
assigned class is always necessary.

A t the end of this chapter, in Section 3.2, a basic dataset of sports poses is presented.
It contains scenes w i t h a solid background and sports pose wi th variance only i n a rm
movement and it was captured and prepared especially for this thesis. The basic sports pose
dataset was demonstratively prepared only wi th the tools described below. Final ly , possible
directions of the development of the dataset w i t h advanced sports poses are discussed.

3.1 Creating Dataset for Time-Contrastive Learning
Dataset for Time-Contrast ive Learning (T C L) is created from synchronized videos of the
same scene filmed from different angles. I propose a tool for semi-automatic preparation
of such a dataset, i l lustrated i n Figure 3.2. It offers a few simple edit ing features such as
cropping and t r imming . A very important feature it provides is the automatic synchro­
nizat ion of mult iple videos. The second necessary component is a movement detector that
estimates how much movement happened between frames of the video. Th is information is
essential to achieve the t ime contrast that T C L relies on. F ina l ly , the tool exports chosen
video frames w i t h their timestamps to simplify the creation of triplets for model t raining.

Raw
Trim Crop

Video 1
Trim Crop Synced

Video 1

Raw Crop Synchronize Synced Detect
Dataset Video 2

Crop Synchronize
Video 2 Motion Dataset

Raw Crop
Video 3

Crop Synced
Video 3

Figure 3.2: Tools for construction of dataset presented in the order of their usage. Whi t e
boxes represent data and colored boxes the tools. The red color symbolizes tools that need
some user interaction whereas blue-colored tools are fully automatic. The tool for cropping
needs a user to select a specific area but then it automatical ly adjusts the selection to fit
al l needs.

Cross-platform video conversion solution FFmpeg is used to handle a l l video modifica­
tions effectively. Videos can be either processed direct ly w i th FFmpeg or a script is created
that does the identical operations but can be launched later. The ind iv idua l parts of the
editing tool are presented i n the following subsections i n the order of their execution.

3.1.1 Preparing Videos Filmed with Various Cameras

The first step i n dataset preparation is to t r i m the start and the end of the video. It is almost
certain that the video contains a l i t t le bit of inapplicable footage at the beginning and at
the end. Therefore, a simple tool that allows users to select the t r i m range wi th sliders is
developed for the purpose of this thesis. Because of how the synchronization tool works,
a user only needs to t r i m one of the videos, the others w i l l be t r immed automatical ly when
being synchronized. This is further described i n Section 3.1.2.

In most cases, the video's resolution does not match the input of the model and has
to be scaled down, and is often also cropped to the correct ratio. The tool allows users to

16

select a bounding box around the scene which w i l l always be included i n the cropped video
and non-important parts of the scene w i l l mostly be deleted. Correct crop coordinates
are automatical ly computed to match the input of the network and a l l other constraints.
The computat ion consists of operations shown i n Figure 3.3 and described i n detail i n the
following enumerated list, their order is important .

1. A view of the video as a single image is constructed from 10 merged frames taken out
of the whole video in order to provide the user w i th enough information about the
range of motion.

2. User selects the part of the scene that has to be included in the cropped video wi th
a bounding box, these are the in i t i a l crop coordinates.

3. C rop coordinates are adjusted to match the height x width ratio of the model input.

4. If crop selection has a lower resolution than the network input, the selection is equally
extended.

5. If crop selection exceeds the frame size, it is decreased to the closest possible value.

6. If crop selection is positioned out of the frame, it is moved to the closest correct
position.

7. Video is cropped to the computed crop selection.

Crop coordinates are correctly computed to match the model input height x width ratio
but the resolution w i l l most l ikely not match. Therefore, the video has to be scaled down
or (in the case of a video having lower resolution than model input) scaled up. Lastly, the
framerate of a l l of the videos has to be unified to a previously chosen fixed value to ensure
the correct run of synchronization and mot ion detection algorithms.

3.1.2 Synchronizing Videos by using Dense Optical Flow

The ma in requirement for T C L to work is the synchronization of a l l used videos. It is very
likely that not a l l used videos are perfectly synchronized and manual synchronization would
not be very precise nor effortless. Therefore, I present an automatic tool that determines
the correct synchronization and tr ims a l l videos at the beginning and at the end so that a l l
are the same length and synchronized.

The synchronization is done by opt ical flow, which is information about the movement
of each pixel between video frames [8]. Dense version of opt ical flow from OpenCV l ibrary
is used [1]. Visua l iza t ion of dense opt ical flow is shown in Figure 3.4. The assumption
behind using dense opt ical flow for synchronization is that videos of the same scene have
a correlative amount of movement i n similar directions at the same time. The precise
movement of each pixel cannot be easily computed, it is only possible to approximate i t .
However, the precise values are not necessary for synchronization purposes, rough values
are accurate enough.

Movement vector of each pixel is from two reasons too specific for this task. F i rs t reason
is that each video displays the scene from different angle and their opt ical flows w i l l most
l ikely be different. It is more useful to have general information about movement i n the
whole frame than to have it pixel-wise to eliminate smal l discrepancies. The second reason
to aggregate information over the whole frame is growing computat ional complexity. If the

17

0 1 2

Figure 3.3: Process of cropping a video w i t h the semi-automatic tool . The user selects
an area of interest w i th a bounding box and the tool performs cropping and resizing to
a given resolution. The numbering of ind iv idua l steps refers to the previously mentioned
description of the tool . Blue arrows symbolize automatic steps and a red arrow manual
steps. Steps 5 and 6 are only needed for some specific cases displayed in the figure, step 4
is not shown.

information is accumulated over a l l pixels into a fixed number of values, the computat ional
complexity stays constant, whereas it grows when pixel mot ion values are used individual ly.

Since a l l pixels can move i n two dimensions, it would make sense to gather information
about the horizontal and vert ical movement by s imply summing up a l l the values. The
problem wi th this approach is that when some pixels move to the right and some to the left,
their movement vectors subtract from each other in that dimension and a lot of information
is lost. For that reason, I propose to sum separately positive and negative values in each
dimension and obtain information about the amount of mot ion i n 4 directions: up, down,
left, and right. E a c h frame (except the first one) of each video is assigned these 4 values
describing the opt ical flow from the previous frame to the current one.

After that, Pearson correlation of the aggregated opt ical flows of video pairs has to be
done. These are not computed for a l l pair combinations, a l l flows are only compared to
the shortest one to perform a smaller number of computations but s t i l l guarantee to get

18

(a) (b) (c) (d)

Figure 3.4: Dense Op t i ca l F l o w visualized on mult iple frames from the same video where
a person is moving his arms. Visua l iza t ion 3.4a shows both arms moving up while 3.4b
captures both arms moving down. A s can be deduced, visual izat ion 3.4c is a combination
of the previous two: one a rm is moving up and the other one down. Graphics 3.4d displays
only forearms moving closer to each other while the elbows stay i n place. A l l other parts
of the frames stay steady.

the best possible synchronization. E a c h flow pair is compared to get an overlap w i t h the
highest correlation, which means the correlation for each possible overlap is computed. The
only restrict ion is that the overlap has to be at least a certain number of frames long to
eliminate corner cases where for example only one frame has the best correlation (the first
frame from one video and the last one from another). Th is min ima l overlap length can be
a l i t t le lower than what the expected length of synchronized videos is to optimize for the
lowest number of correlations that has to be done. B y default, it is set to 1,000 frames.

Each overlap is assigned a specific index that w i l l be used to describe it in the following
text. The problem is that the overlap index wi th the highest correlation might not be the
correct one that synchronizes the videos because of some inaccuracy. To eliminate this
problem, one addi t ional property can be used - if the correlations are computed accurately,
the highest ones w i l l be of overlap indices from a similar range, just a few frames apart.
To use this property, overlap indices are sorted descending by correlation, and the top 10 are
taken. The standard deviat ion of these samples is computed and i f it exceeds 10, it means
that there is at least one overlap index among them that does not fit the majority. A l l these
indices are checked and if they are further than one standard deviation from the mean, they
are removed from this list. This operation is repeated un t i l the standard deviation of the
whole list is lower than 10. After that, the index wi th the highest correlation that is s t i l l on
the list is the best one for synchronization. Rea l data example of this a lgori thm is provided
in Table 3.1.

W h e n the best overlap indices for the flow pairs are computed, flows are shortened
to the same length where a l l of them overlapped. Thei r respective videos are t r immed at

19

State
Best overlap indices

(descending by correlation)
Standard

deviat ion (SD)
Al lowed range

Ini t ia l
2882, 1410, 1543, 1692, 1691,
1693, 1690, 1694, 1388, 1695

398.7 > 10 (1339,2137)

1st epoch
1410, 1543, 1692, 1691, 1693,

1690, 1694, 1388, 1695
122.3 > 10 (1488,1733)

2nd epoch
1543, 1692, 1691, 1693, 1690,

1694, 1695
52.3 > 10 (1618,1724)

3rd epoch
1692, 1691, 1693, 1690, 1694,

1695
1.7 $ 10

A n y - S D
condit ion satisfied

Table 3.1: Example of real data from the algori thm that tries to find the correct overlap
index of two flows to have them correlated as much as possible. The algori thm needed
3 epochs to remove indices that had no other surrounding ones and, therefore, were detected
as false findings. These indices are out of the allowed range, while the other were close to
each other and i n the allowed range. Index 1692 had the best correlation and was chosen
as the best overlap index.

the beginning and at the end to have the same length as well and are thus synchronized
because of the correct t r i m times.

3.1.3 Detecting Movement with Sparse Optical Flow

After videos of a scene are synchronized, the last step in creating the dataset is choosing
the correct frames to be used for t ra ining a neural network model . These frames have to
satisfy one property - there has to be enough movement between them for a model to be
able to recognize the difference. The less movement is between the frames, the harder it
w i l l be for the model to learn embeddings of the filmed object but also the more precise
the embeddings might be. It is necessary to set the movement threshold to a correct value
since the dataset quali ty is crucial for the model's performance.

The first chosen approach was taking every k-th frame where k was manual ly set by
the amount of movement in the video. Since the amount of movement varies i n different
timestamps of each video, this approach d id not produce good enough frames for t raining.
The next chosen tactic was using Dense Op t i ca l F l o w for motion detection but this a lgori thm
tracks every pixel i n the video and the necessary information about the movement of the
followed object is lost i n the amount of unnecessary data.

Therefore, I decided to use Sparse Op t i ca l F low to fulfill the movement detection task.
Unl ike the Dense Op t i ca l F low, the sparse variant chooses only some pixels w i th the Shi-
Tomasi corner detector and those are being tracked [16]. Th is is a specific implementat ion
of the sparse opt ical flow from OpenCV l ibrary [1]. The amount of movement has to be
ideally aggregated into a single number and summed frame after frame unt i l it exceeds
a certain threshold. Then , enough mot ion has been detected and the given frame is selected
and mot ion detection continues again from zero to detect another frame. This procedure
dynamical ly chooses the gap between chosen frames, which is essential for sports pose
recognition. It is possible that at some times, a few seconds of no movement are followed
by a lot of mot ion i n just one second.

20

The challenging task is aggregating the information from sparse opt ical flow to a valuable
metric. Since each scene can be different, the number of tracked pixels can also vary.
Therefore, the distances cannot be easily summed but rather averaged. Another problem is
introduced when the background of the scene is not solid and some of the tracked pixels are
in the background. Those do not move and they should not influence the average distance
of p ixel movement. Th is is solved by calculat ing the average of only those pixels, whose
movement is above a certain threshold.

One more problem that was encountered during the development of the mot ion detection
algori thm was the vanishing of monitored pixels. After a higher amount of movement, the
pixels detected to be followed might get lost and there are not enough pixels left to precisely
detect motion. W h e n this happens, the Shi-Tomasi corner detector has to be run again to
detect new pixels for the sparse opt ical flow.

The last feature that the mot ion detector uses to provide more accurate results is ac­
counting only for unique moves. If a l l pixels move the same way, that means the scene
has changed but the sports pose probably d id not change at a l l . This problem also has
to be addressed. The mot ion detector does so by computing a cosine s imilar i ty between
al l mot ion vectors produced by sparse opt ical flow and ignores those vectors that are too
similar.

Detected frames from the video are saved as images and w i l l be used for self-supervised
learning of a neural network. The mot ion detection has to be run prior to the learning
procedure to enable for shuffling of t ra ining data and also to make the loading of the
dataset less computat ional ly demanding.

3.1.4 Building Triplets from Video Frames

The neural network used i n this thesis is trained w i t h tr iplet loss function and, therefore,
it has to be provided wi th 2 data samples of the same pose from a different viewpoint and
1 sample of a different pose from the same viewpoint as one of the previous two. The goal
is to provide the network wi th batches of such triplets.

A t first, file paths to the correct images are formed into triplets and then into batches.
After that, file paths are replaced wi th images that they were point ing at. Dataset of
batches of triplets is then shuffled and split into t ra ining and validat ion subsets. Before
each epoch, the t ra ining subset is always shuffled again to provide for higher variability.

3.1.5 Tool for Labeling Sports Poses in Dataset

Even though the ma in advantage of self-supervision is that very few annotated t raining
samples are needed, there is s t i l l a need for some of them. Tha t is why I decided to also
develop a tool for very fast and easy labeling of t ra ining samples. This labeling tool takes
a directory w i t h unsorted images as input and moves them to their respective directories
named after their labels.

If launched for the first t ime, new classes have to be assigned to specific keyboard keys
and then w i t h just a single press of the key, the displayed image is assigned to its class.
Th is procedure makes image labeling as minimal is t ic as possible. Key-class pairs are saved
as a dict ionary to a file that can be loaded at any t ime to continue annotating of images.

21

3.2 Dataset of Sports Pose Images
M u l t i p l e sets of videos were recorded for developing tools for a dataset suitable for time-
contrastive learning and then for the sports pose recognition itself. A t first, the goal was to
obtain a dataset consisting of a simple scene that presents an easy challenge for both the
dataset preparing tools and for recognition models. Afterward, a more difficult task can
be presented to the dataset tools and encoding and classifying models, e.g. a dataset w i th
sports poses recorded i n mult iple environments. Sports poses from yoga are proposed for
future development as one of the most challenging tasks possible in this field.

3.2.1 Hand Poses as a Simple Testing Data

One hand i n different poses is a real-world si tuation wi th pretty low variability, especially
if the background is solid. Therefore, it is a good candidate for testing data for the dataset
preparation tools and can be used for the testing of a self-supervised trained model during
its development. The original videos are cropped so that only the forearm and hand wi th
fingers are i n the frame to make them as elementary as possible. This dataset w i l l be
referred to as the H a n d Dataset. Examples of its images are shown i n Figure 3.5.

Figure 3.5: H a n d Dataset images from different scenes. Some images have a fairly solid
background while the others have a very heterogenous one to simulate various possible
situations for the dataset preparation tools.

T r imming and cropping of the video are done completely manually and basically are not
dependent on the dataset, the first real challenge comes wi th the automatic synchronization
of videos from mult iple viewpoints. The task was easily fulfilled on videos w i t h a solid
background and not so different viewpoints but once these two conditions were disrupted,
an incorrect synchronization could be found. Therefore, an algori thm that searched for
the top 10 best synchronization timestamps, not only the best one, was developed. This
algori thm is fully described i n the previous section.

The following challenge was to obtain specific frames from the video used for t raining.
Videos without a solid background showed the importance of only taking into account
the moving pixels because the Shi-Tomasi corner detector used i n Sparse Op t i ca l F low

22

computat ion selects also pixels from the background, not only those related to the followed
object. Another task that this dataset exposed was the vanishing of the followed pixels.
The last and most difficult challenge to solve was the detection of translat ion where the
pose actually does not change. Movement without any pose adjustment is a phenomenon
normally present i n this dataset. Another instance of the same problem is when the camera
is moving and the pose stays i n the same posit ion.

3.2.2 Sports Poses with Upper Body Movement

The H a n d Dataset served its purpose in the making of the dataset preparation tools and
the next task is the development of the self-supervised model . I recorded and prepared
a dataset of simplified sports poses that are less complicated than what would for example
yoga poses look like but s t i l l have the character of sports poses. A n example of poses can be
seen i n Figure 3.6. A l l of the recorded poses hold these conditions. The person is recorded
from knees up and moving only his arms, while any bending of shoulders, elbows, wrists,
and fingers is allowed (and advised).

The dataset videos include one person in two scenes wi th different backgrounds. There
are 5 recordings of each scene wi th the person wearing various clothing i n each of them to
increase variabi l i ty in the dataset. Tha t means 10 recordings i n total . Performed poses are
chosen randomly. E a c h scene was filmed wi th 3 cameras wi th different lenses. The camera
angles were chosen so that one is facing straight from the front side and one is on each side
at approximately 45 degrees angle from the front one. The to ta l number of images i n the
dataset is 3,804 but each of those is one of 1,268 potential ly different poses captured wi th
3 cameras. Dis t r ibu t ion of the poses count across a l l ten recordings is following: 34, 49, 67,
99, 96, 51, 204, 128, 295, 245.

3.2.3 Sorting Upper Body Dataset into Classes

The recorded dataset of a rm movement is prepared for self-supervised t ra ining of an encoder
model but for real recognition, some amount of labeled samples is also necessary. There are
many different ways to sort a l l the poses into classes. I decided to assign two sets of labels
to a l l the samples to have enough data for experiments, one wi th a lower number of classes
that presents an easier recognition task and the other w i th a higher number of classes to
demonstrate the model's performance.

A t first, I d ivided the data into 4 classes to create an easier task. Since arms are the
only moving entities in the image, only those are taken into account and the rest of the
body is ignored. E a c h a rm can be either i n an upward or downward direction but when
various elbow bendings are taken into account, resolving whether the a rm is point ing up or
down is ambiguous. Therefore, a strict cri terion has to be set. I decided to use the height of
the wrist and shoulder to be the determining factor. If a wrist is above shoulder height, the
a rm is i n the upward posit ion. Final ly , each a rm is dealt w i th separately and that means
4 classes emerge: both arms down (down-down - 1,146 samples), left a rm down and right
a rm up (down-up - 813 samples), left a rm up and right a rm down (up-down - 795 samples)
and both arms up (up-up - 1,050 samples). Dataset w i th basic sports poses divided into
these 4 classes w i l l be from now on referred to as Directions Dataset.

For a more complex and convincing evaluation of developed models, I prepared one
more set of labels w i th finer separation. The main thought is the same as for the Directions
Dataset - each a rm is either point ing up or down, but one more feature was added. Each
a rm can be either bent i n the elbow or not - if the elbow angle is smaller than 135 degrees,

23

Figure 3.6: Samples from the dataset w i th upper body poses. Recordings come from
2 places, each wi th 5 videos wi th different clothing. The scenes are recorded wi th 3 cameras
from different viewpoints.

the a rm is considered bent. A l l of the Directions Dataset classes have 2 possible options
which create 16 classes i n total . A higher number of classes not only allows for more valuable
testing of the model but also brings the option of evaluating not only top-1 accuracy but
also top-3 accuracy. W h e n the correct class of a certain pose is not the one wi th the highest
probabil i ty according to the classifier but s t i l l is the second or th i rd , the model shows some
abil i ty to recognize poses too. Counts of samples for each class of the Bent Dataset are
presented i n Table 3.2. Class names are derived from the Directions Dataset, the only
change is that when an a rm i n the given direction is bent, the letter 'b ' is placed i n front
of the direction.

B o t h of the presented datasets cannot be perfectly divided into classes without any
discrepancy. Followed features are i n some cases right in between the available classes. The
a rm can be almost perfectly horizontal w i th its wrist at the same height as the shoulder.

24

Class
Sample
count

Class
Sample
count

Class
Sample
count

Class
Sample
count

down-down 1,005 bdown-down 63 down-bdown 48 bdown-bdown 63
down-up 399 bdown-up 21 down-bup 285 bdown-bup 102
up-down 399 bup-down 282 up-bdown 33 bup-bdown 90

up-up 495 bup-up 135 up-bup 99 bup-bup 285

Table 3.2: Dis t r ibu t ion of sports pose images between a l l classes of the Bent Dataset. The
first word shows the direction that the left a rm is heading, and the second word represents
the right a rm. If the a rm is bent, the letter 'b ' precedes the direction.

Correspondingly, the elbow angle can be precisely 45 degrees or very close to it and it is
not possible to distinguish this difference from a single image. Therefore, some error rate
is almost inevitable and has to be taken into account during the model evaluation.

Directions Dataset has fairly equally distr ibuted images between classes whereas Bent
Dataset has significant disproportions i n the counts. Th is presents another challenge for the
classifier that is t ry ing to learn from the data. In general, self-supervised models should have
better performance on such data because they first learn the data embeddings without any
labels and then solve the fairly simple task of classifying those. In contrast to a supervised
classifier that is solving the difficult task directly on the labeled data and might not update
its weights enough because other classes i n the batch are more significant.

3.2.4 Yoga Sports Poses for Future Development

Yoga sports poses are one the most complex among a l l sports poses, there are hundreds
of possible poses and their variants. They can be also sorted into different sets according to
their similarities. A l l these attributes make them the perfect candidate for a very difficult
sports pose recognition task and, therefore, I propose yoga poses as a benchmark for future
development in this field.

Verma et a l . i n [20] present a new dataset Yoga-82 for human pose classification that
is based on yoga poses. It contains over 28 400 annotated samples of 82 different yoga
poses. The classes are sorted into a 3-level hierarchy where each of the 82 poses is assigned
a second and first-level class as well . Th is structure can be further used for the recognition
of poses that are projected into an embedding space since embeddings of poses from the
same higher-level class can have similarities i n the space.

The dataset is available to download i n form of U R L links to each image sorted into
files according to their classes. The images are under different creative commons licenses.
There is no script for downloading of the images as a part of the publicat ion. Since the
images are from various sources on the internet, their availabil i ty is out of reach of the
dataset authors. A t the t ime of publishing this thesis, there are already hundreds of images
not available.

The images differ i n resolution and aspect ratio, therefore, some sort of preprocessing is
necessary. The i r variabi l i ty is very high, they are captured both indoors and outdoors and
wi th very different backgrounds. The displayed people differ in their gender, skin color,
clothing, and other visible characteristics. Some images even contain mult iple people, text
added over the pose in postproduction or the images are just a simple i l lustrat ion of the pose,
not a real photo. These addi t ional features might not serve well for better generalization
of the trained model, but rather for confusion because of the unrealism.

25

These images could be used for the classification of the poses from embeddings but
the more complicated task is learning the sports pose embeddings wi th a time-contrastive
network. This process requires synchronized videos or at least images of the same scene from
different viewpoints. I have not found such a dataset online and therefore, I suspect it has to
be recorded specifically for this task. One possible solution for making the dataset creation
more feasible would be to partner w i t h some yoga video producers. There is a chance they
are fi lming their videos from mult iple angles and could offer their raw recordings for such
a project. The variabi l i ty of a l l recordings has to be taken into account. If they are from
the same environment (e.g. indoor gym), the model w i l l probably not generalize well to
other surroundings (for example outdoors).

26

Chapter 4

Recognition of Sports Poses from
Images

Recognit ion or classification is a task of assigning a class from a defined set of classes
to an image according to what is displayed i n i t . W h e n a video is on the input, it is often
divided into single frames that are handled and classified individual ly . The most common
approach to processing image data is w i th convolutional neural networks that are explained
in depth in Section 2.2. Models i n this thesis also use an architecture that relies on such
networks and they were implemented i n TensorFlow 2 l ibrary [12].

Whereas supervised learning is done in most cases wi th a single model that has an im­
age on the input and outputs probabilit ies of the image belonging to available classes.
Self-supervised learning usually requires two models that are trained separately and are
working together after they are fitted to the data. Therefore, the input and output of the
self-supervised model are the same as for the supervised trained model once it is fitted. The
first of two models that form the described architecture is usually called the encoder and
its goal is to find the most valuable representation of the input i n an embedding space. Im­
plementation of this model is described i n depth i n Section 4.1. The embeddings produced
by the encoder are used as an input to the second model , the classifier. Its objective is to
find the most probable class the embedding is representing. A thorough description of the
second model can be found i n Section 4.2.

Another model for sports pose recognition but trained wi th supervision was also imple­
mented to provide a comparison i n evaluation. This network is introduced in Section 4.3 in
contrast to the models proposed before. F ina l ly , Section 4.4 discusses how the sport pose
embeddings could be used i n future research on this topic.

4.1 Representing Sports Poses in Latent Space

A n encoder is the crucial part of a model that is trained wi th self-supervision. It uses some
information that is natural ly contained i n the dataset as a supervisor during the learning
process. In the case of this thesis, the supervision is provided wi th mult iple synchronized
videos of the same scene. Its target is to find the most efficient yet the most descriptive
embedding of the input . If the goal is to recognize sports poses, the best embedding
describes the whole body in the correct posit ion but ignores a l l the specifics of the person
and the environment around.

27

O n the input of the model is an image wi th a specific resolution and channels i n the
correct format. O n the output is an embedding vector describing the input image i n the
set dimensionality. Section 4.1.1 specifies the model's architecture into detail .

4.1.1 Architecture of the Encoder

The input is always a single image that needs no preprocessing because a l l the necessary
operations were already done wi th the dataset preparation tool from the previous chapter.
In case of a smaller dataset size, to gain more generalization, data augmentation is also
implemented. It is not recommended to use any rotat ion or hor izontal /ver t ical flipping
augmentation because of the model's dependence on positions of body parts and dist in­
guishing between left and right-hand sides. Augmentations that alter colors, brightness,
and contrast are a favorable option used i n this thesis.

To obtain embeddings of the images, a convolutional neural network is used. Th is thesis
uses a ResNet-50 architecture from [6] w i th weights trained on ImageNet dataset [3]. The
head of the network is replaced to provide embeddings as vectors in d-dimensional latent
space. Th is is done wi th a single dense layer after the data from the last convolution are
processed by average pool ing and flattening layers. The number of units of the dense layer
and the dimensionality of the embedding space is equal.

The embedding vectors are sometimes restricted by the condit ion to sit on a unit hy-
persphere. Tha t means that squared values i n a l l dimensions of the vector have to sum up
to 1. Th is is done to provide normalizat ion of the ind iv idua l values in a l l dimensions. This
restriction can be fulfilled w i th L 2 normalizat ion used as the last layer after the previously
mentioned dense layer. Th is is the output layer of the whole model.

The model was trained wi th A d a m optimizer. Under ly ing concepts and the calcula­
t ion of A d a m are presented i n Section 2.1. Parameters were configured to typica l values:
learning rate = 0.001,01 = 0.9, f32 = 0.999, e = 1 0 " 7 .

The network is trained on triplet loss i n the self-supervised manner [14]. This loss
function is described in Section 2.4.1 and Section 2.4.2 proposes possible improvements in
this direction that were not implemented. Since the triplet loss uses Eucl idean distance
to compare embeddings, its effective calculation is crucial to the good performance of the
model. The function is implemented to compute loss over the whole batch of triplets.
It uses simple subtraction and squaring i n each dimension and then a sum to reduce a l l the
dimensions into a single number. The loss is only influenced by the triplets that do not have
the positive sample closer to the anchor than the negative sample by a set margin. Value
of the loss is a sum of their differences in positive-anchor and negative-anchor distances.
W h e n computing accuracy, the margin is not taken into account.

The t ra ining of the model can be divided into two parts: fitting and fine-tuning. W h e n
the encoder is fitted, only the head of the network, and weights of the last dense layer,
are adjusted. The ResNet-50 backbone has its weights locked to the ImageNet-pre-trained
values. After that, a fine-tuning process can be turned on as well . F ine- tuning starts w i th
unfreezing a l l the weights of the backbone except the ones used for batch normalizat ion.
Then , a learning rate is changed from 1 0 - 3 to 1 0 - 5 to prevent large changes and possible
loss of information already acquired from fitting and pre-training. After that, the model's
weights from the epoch that provided the best results on the validat ion dataset during
fitting are restored and fine-tuning is launched as a casual fitting. F r o m the experiments
done, it seems the encoder can provide very good results just w i th fitting and fine-tuning
provides almost no improvement i n the model's accuracy.

28

F i t t i n g of the model is done i n epochs wi th the dataset divided into mini-batches (further
only as batches). Each batch contains a fixed number of anchor-positive-negative triplets,
only the last batch of the epoch can be smaller. The batch size can be set according
to the memory constraints of the t ra ining machine, i n most cases between 32 and 256.
Since the network is designed to only accept one image as an input, the triplets have to
be merged together into a "merged,, batch. Its size is correspondingly 3 x as large. After
a l l the ind iv idua l images are encoded into embeddings, they can be split into the original
triplets again. The merging and spl i t t ing algorithms have to be deterministic and mutual ly
reversed to ensure a l l triplets stay the same. O n l y after that, the loss of the whole batch can
be computed. F ina l ly , gradients are computed from the loss and applied to the network's
weights.

The model reports loss and accuracy on training and validat ion datasets i n a such format
that can be further analyzed wi th TensorBoard. It also saves the model's weights after each
epoch to allow for restoring the best-performing model . The implementat ion also allows
for restoring weights and continuing fitt ing and wi th that divide the t ra ining process into
mult iple sessions.

4.2 Sports Pose Classification from Embeddings

After the sports poses are encoded into a <i-dimensional embedding vectors, various op­
erations can be done wi th them. This thesis only implements classification, the other
possibilities are discussed i n Section 4.4. The ma in advantage of a classifier that has vector
embeddings on the input instead of images is that the important information is already
extracted and, therefore, the classifying is a lot easier task.

The classifier i n this thesis is a simple neural network wi th one hidden dense layer.
The input layer has an identical size to the dimensionality of the embedding space and the
output layer corresponds to the number of classes the sports pose can be classified to.

The size of the dense layer (number of units) is a hyperparameter that can be tuned
according to the difficulty of the task that is being solved. Since a l l the needed information
is already effectively encoded into the embedding, it is not advised to use a dense layer
wi th more units than the input layer has. Likely, no other information w i l l be gathered
from the data and, therefore, there is no need to represent it w i th more values. After the
experiments were done, one dense layer performed on par w i th networks wi th two or three
hidden dense layers. Thus, I chose a single dense layer w i th 64 units for the classifier model
implemented i n this thesis. To introduce some non-linearity to the model, a Leaky R e L U
wi th a = 0.01 is used as an activation function of this layer.

The output of the classifier uses the softmax activation function to output the proba­
bilities of each class that sum up to one. The t ra ining is opt imized wi th A d a m optimizer
w i th parameters set to learning rate = 0.001, f3\ = 0.9, = 0.999, e = 10~ 7 and as a loss
function is used categorical cross-entropy which corresponds to classifying tasks wi th more
than two possible outcomes.

29

4.3 Classifier Trained with Supervision
To evaluate the effectiveness of self-supervision, a supervised-trained model is implemented
as a comparison. The ma in condit ion is to make both models as identical as possible to not
distort the experiments w i th model dissimilarities. The model is presented i n comparison
to the self-supervised model that was introduced earlier.

The main parts of both networks are completely the same, they both have ResNet-50
as a backbone. Th is means that the inputs of the networks are also identical . They only
differ i n the network heads - self-supervised model needs more dense layers to account
for the embeddings. The architecture comparison can be seen in Table 4.1. The model's
optimizer is A d a m wi th the same parameters as for bo th of the self-supervised model:
learning rate = 0.001, (3\ = 0.9, /?2 = 0.999, e = 10~ 7 . The loss function is identical to the
classifier from the self-supervised model - categorical cross-entropy.

Self-Supervised M o d e l Supervised M o d e l

Descr ipt ion Layer - Shape Layer - Shape Descript ion

Image Input - (224, 224, 3) Input - (224, 224, 3) Image

Backbone
Padd ing - (230, 230, 3) Padd ing - (230, 230, 3)

Backbone
ResNet50

Pool ing - (2048) Pool ing - (2048)
ResNet50

Dense - (64)
Embedding L 2 Normal ize - (64)

Dense - (4) L a b e l
Dense - (64)

Dense - (4) L a b e l

L a b e l Dense - (4)

Table 4.1: Compar ison of architectures of self-supervised and supervised models. Thei r
input, backbone, and output are identical, only the top of the self-supervised model is
adjusted for the self-supervised training.

A l though the models trained w i t h supervision and self-supervision have almost the same
architecture, the t ra ining process vastly differs. W i t h a different approach to learning of the
data structure, the number of parameters that have to be fitted is also different. Table 4.2
illustrates the contrast between them.

M o d e l
Self-Supervised

Encoder (fit)
Self-Supervised

Encoder (fine-tune)
Self-Supervised

Classifier
Supervised

Trained
Parameters

131,136 23,665,728 4,420 23,542,788

Table 4.2: Different t ra ining procedures require a different number of model parameters to
be trained. Th is table compares them. The self-supervised model encodes the input into
a 64-dimensional embedding space and the number of classes on the output is 4, which
also affects the parameter count. The self-supervised model mostly trains parameters of
the encoder w i th fitt ing (fine-tuning d id not br ing significantly better results) and then
parameters of the classifier. Thei r sum is the best comparison to the supervised model's
number of parameters: 135,556 and 23,542,788.

30

In this chapter, only static data were shown. The performance of each model on the
validat ion dataset is presented and discussed i n the following Chapter 5. B o t h models
perform very differently when only a lower number of t ra ining samples is introduced to
them. The results of these experiments are shown i n Section 5.3.

4.4 Addit ional Usage of Sports Pose Encodings

This thesis only discusses the classification of sports poses from their embedding vectors
but this is not the only possible usage of such information. In this section, I propose several
other possibilities for how the information could be processed.

W h i l e classification assigns a class to an embedding vector, other information could be
assigned as well . A very common task in this field is the pose estimation, which can include
several different information about a human pose such as joint posit ion and orientation of
different body parts. Obta in ing this information just from an embedding could be very
useful since labeling the pose estimation dataset is even more t ime-consuming than the
labeling of a simple classification dataset.

There might be also a possibil i ty to perform operations on embedding vectors such as
addi t ion or subtraction to obtain embeddings of poses that are not captured. This could
be pract ical ly used to classify poses that are not even part of the t ra ining data and the
model has not seen them or at least it could help lower even more the required number of
t ra ining samples.

Generally, the implemented tools could also be used for another classification problem
that includes an object that changes poses or a similar challenge. It could not only capture
humans but also animals, robots, or machines.

31

Chapter 5

Evaluation of Models Trained with
Self-Supervision

Models trained wi th self-supervision can be evaluated at two stages. Obviously, the accuracy
of the classification of a given input is one way to do so. The other way is to evaluate
embeddings either w i th loss function used for t ra ining of the encoder or visual ly after
dimensionality reduction. A l l of these approaches are discussed in this chapter.

A t first, the sports pose embeddings are visual ly analyzed in Section 5.1. Then , Sec­
t ion 5.2 presents the encoder's accuracy on the validat ion dataset and how it is affected
by the number of dimensions of the embedding space. F ina l ly , the accuracy of the classi­
fication itself on the validat ion dataset is compared to a supervised model w i th the same
architecture i n Section 5.3. The results of each evaluation are discussed i n their respective
sections. Experiments were done fairly and no results were cherry-picked.

5.1 Visual Analysis of Latent Space

The latent space has well over 3 dimensions and therefore cannot be easily visualized.
Typical ly , embeddings of more complex information such as sports pose can range from
64 to 512 dimensions. Vectors representing them usually satisfy the constraint of l iv ing
on a unit hypersphere. A n a l y z i n g data visually can help understand patterns i n them and
detect emerging problems. W h e n the dimensionality is decreased to only 2 dimensions, a lot
of information can be lost. Therefore, the challenging task for the projecting algori thm is
to drop the non-necessary information and preserve the patterns i n the data.

The elemental method for dimension reduction is P r inc ipa l Component Analys is (P C A) .
It computes a new basis of the vector space to maximize the data variance. After projecting
the data into the new basis, only 2 or 3 dimensions wi th the highest variance can be taken
into account and the rest is ignored. F ina l ly , such data can be plotted and reviewed.
Another possible projection is Linear Discr iminant Analys is (L D A) which also takes into
account the label of each data point and is t ry ing to find a basis that allows for the best
linear separation of classes.

Whereas the previously mentioned algorithms allowed for computing the precise results,
more complex methods for dimension reduction are based on iterative approaches to find
the best approximation of the ideal state since it cannot be computed directly. A widely
used algori thm for this task is t-distr ibuted Stochastic Neighbor Embedding (t - S N E) . It
puts data points into pairs and tries to attract those that are similar and repel the dissim-

32

i lar ones. Another iterative method is Uni form Mani fo ld Approx ima t ion and Project ion
(U M A P) which also non-linearly projects data into 2D or 3D. I chose to use t - S N E as
the dimensionality reduction algori thm because it was able to find patterns i n the data
embeddings better than the other algorithms.

5.1.1 Dimensionality Reduction with t-distributed Stochastic Neighbor
Embedding

t -distr ibuted Stochastic Neighbor Embedding (t -SNE) is a non-linear dimensionality reduc­
t ion method suited for displaying embedding vectors i n two or three-dimensional space [10].
It is based on Stochastic Neighbor Embedd ing (S N E) but it uses also t -dis tr ibut ion instead
of only Gaussian dis t r ibut ion [7]. t -dis tr ibut ion has heavier tails in comparison to Gaussian
dis tr ibut ion and therefore, it solves one of the problems of S N E , which was centering the
data points into one place in the low dimensions and not preserving the gaps between them.

The t - S N E algori thm starts w i t h random ini t ia l iza t ion of projected data points i n the
targeted 2 or 3-dimensional space. It places them fairly close to each other to allow for
patterns to emerge on a higher scale. T h e n two similar i ty distributions are constructed:
one from points in the source high-dimensional space, the other from points i n the desti­
nation low-dimensional space. B o t h distributions are constructed from distances between
al l pairs of data points i n their respective spaces. Then, Kul lback-Le ib le r divergence of
joint dis t r ibut ion P i n the high-dimensional space and Q in the low-dimensional space is
minimized:

C = KL{P\\Q) =J2J2Pvl°Z—-
i j

Distances of data points from themselves pa and qu are set to zero, pij and pji are aver­
aged i n order to preserve symmetry = pji. E a c h data point pair is assigned a probabi l i ty
from Gaussian dis t r ibut ion wi th mean set to coordinates of point i and variance computed
from the density of other points around i t . The distance of point j from i is projected to
the Gaussian dis t r ibut ion and p^ equals the given probability, calculated as:

e-\\vi-yj\\2

P i j = J2 e-\\y*-y\\2' (5 ' 2)

Probabil i t ies qij are obtained from Student's t -dis tr ibut ion wi th one degree of freedom wi th
a similar approach to the p^. The formula is as follows:

% 3 ~Ea + iiw-wii2)-1" (]

k+l

Final ly , a gradient of the Kul lback-Le ib le r divergence between P and Q is computed wi th :

dC
q - = ^^(Pij - qij)(yi - 2/j)(l + \\yi ~ VjW2)'1 • (5-4)

33

5.1.2 Analysis of Embeddings with t-distributed Stochastic Neighbor
Embedding

The encoder presented i n Section 4.1 transforms image of sports pose into 64-dimensional
vector embedding. The goal is to have this embedding describe only the sports pose and
ignore the background of the scene and the look of the person doing the pose. Sports poses
similar to each other should be closer to each other in the embedding space than poses
that are completely different. If only one a rm moved from one image frame to another,
their embeddings should be very similar. The same pose performed by another person in
a different place and even photographed from a different angle should have the same or at
least very similar embedding.

The whole Directions Dataset introduced in Section 3.2.3 includes 3,804 divided into
4 classes according to a rm positions of the person - each a rm is either point ing down or
up and therefore, the corresponding classes are named: down-down, down-up, up-down or
up-up. Positions, where both arms are i n a downward direction, should be relatively far
from each other while the other 2 classes can be placed somewhere i n between the edge
cases. The dataset consists of 10 scenes, each filmed from 3 angles. Projected embedding
are displayed i n Figure 5.1.

Embeddings of sports poses after t - S N E projection

down-down
down-up
up-down

up-up

- 4 0 - 3 0 - 2 0 - 1 0 0 10 20 30 40
x

Figure 5.1: Embeddings of a l l 3,804 samples from the Directions Dataset projected from
64 dimensions to 2D wi th the t - S N E algori thm. D a t a points are colored according to their
class. Parameters of the t - S N E were 600 iterations, perplexity 32, learning rate 10 and the
algori thm ran without any supervision based on sample labels.

The projection clearly shows a number of clusters of different sizes, each consisting
of data points from a l l 4 classes. E a c h cluster is probably a representative of a single

34

viewpoint of a scene wi th some of them being closer to each other or even almost merged
together. Th is shows that the encoder model is not capable of generalizing over different
scenes or viewpoints. One possible explanation for such behavior is not using a diverse
enough dataset.

W h e n focusing on each cluster individual ly, the data point dis t r ibut ion holds relations
for s imilar sports poses. Classes down-down and up-up are usually far apart from each other
wi th in the cluster and while the down-up and up-down are between them. Some images
of poses contain arms point ing almost perfectly horizontally and their classification cannot
be precise. These cases have to be taken into account.

5.2 Evaluation of Encoder on Validation Dataset

The encoder itself is just a single component i n the whole model that performs the classi­
fication. Its performance cannot be easily measured like a normal classifier - by counting
how many of the validat ion data were correctly assigned their class. There are no ground
truths to the inputs, no image of a sports pose has a correct nor false embedding. The
only way to measure the encoder's performance is by comparing one embedding to another.
If the objective is to have similar sports poses close to each other i n the embedding space,
the distances of embeddings can be compared.

The encoder is trained wi th a triplet loss function whose a i m is to have two embeddings
of different images of the same sports pose closer to each other than two embeddings of
a distinct pose. The distance between correct and false pairs should also be greater than
some fixed value called margin. Therefore, the same function can be also used to evaluate
the encoder. The only difference is that the margin is set to 0, whereas dur ing the learning
process, the value is above 0.

The objective of this experiment was to evaluate the performance of the encoder model
on different dimensionalities of the embedding space. The numbers of dimensions used
for testing were 16, 32, 64, 128, 256, and 512. The margin of the triplet loss was set to
0.1. The model was trained for 50 epochs on the same t ra ining data and evaluated on the
validat ion subset after each epoch. The dataset used for this experiment is Upper B o d y
Dataset from Section 3.2.2. Dataset was split so that 9 0 % of it was used for t raining
and 10% for validation. E a c h model was trained 5 x on the same dataset but shuffled
wi th a distinct seed. To provide consistency of t ra ining data between different embedding
space dimensionalities, the seed had the same value from 0 to 4 in the 5 runs. The best
val idat ion accuracy of a l l epochs was taken as the model's accuracy. The obtained results
are presented i n form of boxplots i n Figure 5.2. The format of the boxplots is from the
bot tom: min imum, first quartile, median, th i rd quartile, and max imum.

The highest median accuracy on the validat ion dataset achieved a model that encoded
the sports pose images into 64-dimensional vectors. Embedding spaces wi th 32 and 16
dimensions might achieve comparable accuracy i n some runs but their variance is very high.
Th is suggests that the model is not always capable of finding efficient enough encoding to
store a l l the information about the pose, even though it might be possible. Models producing
encodings wi th 64 and more dimensions show less variance i n accuracy which advocates for
their abi l i ty to save a l l the necessary information i n the embedding. Thei r median accuracy
declines wi th r ising dimensionality. Tha t is a corresponding incident since encoding pose
into a higher-dimensional space is a more difficult task and wi th rising complexity, the
accuracy drops. F r o m these assumptions, an embedding space wi th 64 dimensions provides
the best results on Upper B o d y Dataset.

35

Comparison of val idat ion accuracy on different embedding dimensionalities

o
X
CO
CO

T3
a

CS

-Ö

1
a
o
CJ

S-H
CJ

o

1

0.99

0.98

0.975

0.97

0.96

0.95

i

I
16 32 64 128 256 512

Embedding dimensionali ty

Figure 5.2: W h e n an image of a sports pose is encoded into a vector i n embedding space,
its dimensionality can play a role i n the performance of the model . The encoder model
was tested on a number of dimensions between 16 and 512. The best median accuracy
on val idat ion data had an embedding space wi th 64 dimensions.

Dataset w i th very high diversity i n sports poses requires more information to be stored
and therefore an embedding space wi th more dimensions. The correctly chosen size of the
embedding space can influence the performance of the model and the t ime it requires for
fitt ing on the dataset. Therefore, it is advised to tune this hyperparameter to match the
dataset complexity.

5.3 Comparison of Self-Supervised and Supervised-Trained
Models

The main advantage of models trained in a self-supervised manner is their abi l i ty to perform
well w i th datasets containing a smaller number of labeled data than what would supervised
t ra ining needed. This advantage is shown i n the evaluation done on different-sized datasets
in the following experiments.

The encoder and classifier models described in sections 4.1 and 4.2 is used as the self-
supervised learning benchmark. For the supervised learning representative, the most similar
network is chosen. Th is model and its comparison to the self-supervised one is i n Section 4.3.

Since each model is t rained i n a different way, it is not t r iv i a l to set the borderline
for the number of epochs used for t raining. For that reason, each model was trained for
a sufficient number of epochs after which it no longer improved on validat ion data. The
self-supervised model consists of two parts - the encoder which creates the embedding from
an image and the recognizer which classifies the pose from the embedding. The encoder was
trained for 30 epochs and the recognizer for 20 epochs. The encoder was trained once and
stayed the same for the whole experiment while the recognizer was fitted for every dataset
sample. The supervised model was trained for 50 epochs on each dataset sample.

36

Dataset used for these experiments is thoroughly described i n Section 3.2 - Upper B o d y
Dataset. It contains 3,804 images of 1,268 poses, each captured from 3 different angles.
The poses are not necessarily unique but the images differ i n background and clothes of
the person. Overal l , there are 10 different scenes wi th 2 possible backgrounds and different
clothing of the person i n each of the scenes. The poses represent possible movements of
a person's arms i n a l l directions and joints ' bendings, other parts of the body such as the
torso, head, or legs are not moving.

The first experiment is done on the Directions Dataset which contains 4 classes that
differ in the posit ion of arms - left or right a rm is point ing either down or up. Since some
positions may be questionable, the rule of thumb during the labeling of data was whether
the wrist is above or below the corresponding shoulder. The second experiment was done on
Bent Dataset w i th 16 classes that extended the Directions Dataset w i th one more attribute
- whether the arms are bent or not.

W h i l e the first experiment only evaluates the accuracy of choosing the correct class
(top-1 accuracy), the second one evaluates also the accuracy of whether the correct class is
wi th in 3 of the most probable outcomes (top-3 accuracy). The decision to provide results
i n this format was made based on the number of classes in used datasets.

B o t h of tested models were fitted on datasets of different sizes and then their accuracy
on never-seen val idat ion data was evaluated. Before each training, the whole dataset was
shuffled and then divided into t ra ining and val idat ion subsets. The por t ion of data used
for t ra ining was the changing variable and it ranged from 0.9 to 0.025. The rest of the data
were always used for val idat ion. Th is approach decreases variance i n the t ra ining dataset
and concurrently increases it i n the validat ion dataset. Because of this, the model's abi l i ty
to generalize well is displayed.

To keep the experiment fair, the dataset for each experiment was shuffled wi th the same
seed for both models and, therefore, they had the same data for t ra ining and evaluation.
For each dataset split port ion, 10 runs of fitt ing and evaluating were done, each one wi th
a different seed. Seeds were chosen deterministically as integers from 0 to 9. Accuracy on
validat ion data was then averaged over a l l 10 runs to get the final accuracy of the model
for a given fraction of t ra ining data.

The results of the experiment on the Directions Dataset are shown i n Figure 5.3a.
For t ra ining dataset portions down to 15 % (which equals 570 of the 3,804 images used for
training), the performances of self-supervised and supervised models are on a par. W h e n
the t ra ining dataset por t ion decreases to 12.5 % (475 of 3,804 images) the supervised model
starts to degrade and wi th just 2 .5% images it approaches accuracy 2 5 % which is for
4 classes basically a random guess. W h i l e the self-supervised model keeps its accuracy
above 6 0 % even when trained on 2 .5% data which equals to 95 images for t ra ining and
3,709 for validation.

Experiment number 2 wi th t ra ining and evaluation done on Bent Dataset provides not
only top-1 but also top-3 accuracy. The results are presented in Figure 5.3b. W h i l e the
previous experiment included only 4 classes, the Bent Dataset consists of 16 classes and this
difference made an impact on the results. The accuracy of both models dropped down by
approximately 0.2 overall. The self-supervised model performed better than the supervised
model i n a l l provided dataset splits. Th is is a display of one of the advantages of self-
supervised learning, it adapts better to a higher number of classes since it already learned
the key features on unlabeled data. W h e n the amount of t ra ining samples approaches less
than 10 for each class overall (the por t ion of 0.025), the accuracy of the supervised model
drops significantly while the self-supervised model's accuracy stabilizes.

37

The top-3 accuracy reveals important information about the supervised model when
trained on 10 % of the Bent Dataset - part of the plot w i th the dashed line. The predicted
results degrade in a way that the top-3 accuracy equals 1.0 for more and more of the
experiment runs and the top-3 accuracy suddenly rises. Since the top-1 accuracy declines,
the model is not performing better, rather it found some workaround that produces these
improbable results. The model is also not trained to maximize the top-3 accuracy, it is
t ry ing to minimize the loss function. Self-supervised learning clearly provides results w i th
higher or equal accuracy for a l l experiments and shows its advantages mainly on datasets
wi th a low number of t ra ining samples.

38

Comparison of self-supervised and supervised models' accuracy
on Directions Dataset w i th 4 classes

o
X

+̂
Ci

1
O

SH

o

3

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

^ A ft Q
d E l c

r r

- - -

r r

- - -
r

—e— Self-Supervised
—B— Supervised

i i

—e— Self-Supervised
—B— Supervised

i i

0 0.1 0.2 0.4 0.6 0.8 1
Por t ion of the dataset used for t raining

(a) Self-supervised model displays better accuracy for small training datasets. Wi th the dataset size
getting larger, both models perform similarly.

Comparison of self-supervised and supervised models' accuracy
on Bent Dataset w i th 16 classes

1

1 0.9

Ig 0.8

2 0 7

1B 0.6

| 0.5

fl 0.4
o
>? 0.3
| 0.2
u
- 0.1

° 0 0.1 0.2 0.4 0.6 0.8 1
Por t ion of the dataset used for t raining

(b) Self-supervised model performs better overall for all dataset splits in top-1 and top-3 accuracy,
especially when the number of training samples approaches an average of fewer than 10 samples for
a class with a portion equal to 0.025. For the training portion of less than 0.1, the top-3 accuracy
is degraded. This section of the plot is marked with a dashed line.

Figure 5.3: Performance of self-supervised and supervised models on validat ion dataset
based on what fraction of the whole dataset was used for t raining. The rest of the dataset
was used for validation. E a c h data point is an average of 10 runs.

39

Chapter 6

Conclusion

The goal of this thesis was to develop a model that can classify sports poses from images
and uses self-supervised learning to achieve better results on datasets w i th a smal l amount
of annotated samples. Time-contrastive learning was chosen as the approach to achieve self-
supervision of the data. For that, a set of tools for video preparation had to be implemented
and tested on various scenes. After collecting and preparing a dataset of sports poses, a self-
supervised model consisting of an encoder and classifier was developed. The self-supervised
model was evaluated i n comparison to the model trained wi th supervision and results were
presented and discussed.

A set of tools for dataset preparation was developed and it is effectively working on
any number of videos of different scenes. The tools can t r i m and crop videos easily w i th
the least amount of manual work. The synchronization too l can automatical ly adjust the
video start times and lengths to al ign any number of videos. A useful dataset of images
for time-contrastive learning is then detected by using sparse opt ical flow and exported for
future use. A simple tool for labeling images is also implemented.

Two datasets were recorded and prepared wi th the mentioned tools. The first one
contains hand gestures wi th different backgrounds and was mainly used for testing the
dataset preparation tools. The second one contains recordings of the upper body wi th
diverse a rm movements. This dataset was used to t ra in and evaluate the self-supervised
model. It contains 3804 images of sports pose wi th two sets of annotations of 4 and 16
classes.

Two models constructing the self-supervision architecture were developed: encoder and
classifier. The encoder uses ResNet-50 architecture together w i th a triplet loss function
to provide embeddings of sports poses. The classifier is a simple dense neural network that
takes embedding vectors and classifies them. Another model doing the same task but w i th
supervision was also developed to have a comparison between the two architectures.

The embedding space of the encoding is visual ly analyzed wi th t-distr ibuted stochastic
neighbor embedding and the resulting visualizat ion shows the upsides and downsides of
the encodings. Possible settings of encoding dimensionality are evaluated on the validat ion
dataset and the results are compared according to the median accuracy and the variance
of results. F inal ly , a self-supervised model is compared to a model trained wi th supervi­
sion. Datasets w i t h different amounts of annotated samples were used for t ra ining and the
validat ion accuracy of both models was compared. The self-supervised model performs sim­
i lar ly on dataset w i th hundreds of samples from each class but when the amount of samples
drops to lower tens or even under 10 per class, the self-supervised model outperforms the
supervised one by tens of percent on the validat ion accuracy.

40

Future work on the project was proposed i n various directions. To increase the vari­
abi l i ty in sports poses, yoga poses are recommended together w i th possible sources of data
and related work i n this direction. Numerous other loss functions that can be used for
self-supervision are presented together w i th their advantages. The obtained embeddings
can not only be used for classification but also for other computer vision challenges. These
possibilities such as pose estimation or embedding vector operations are discussed. Last ly,
the implemented work could also be used for other object classification, not only for sports
poses.

41

Bibliography

[1] B R A D S K I , G . and K A E H L E R , A . Learning OpenCV: Computer Vision in C++ with
the OpenCV Library. 2nd ed. O ' R e i l l y Med ia , Inc., 2013. I S B N 1449314651.

[2] C H E N , H . - T . , H E , Y . - Z . , H S U , C . - C , C H O U , C . - L . , L E E , S . - Y . et a l . Yoga Posture
Recogni t ion for Self-training. In: G U R R I N , C , H O P F G A R T N E R , F . , H U R S T , W . ,

J O H A N S E N , H . , L E E , H . et a l . , ed. MultiMedia Modeling. C h a m : Springer
International Publ i sh ing , 2014, p. 496-505. I S B N 978-3-319-04114-8.

[3] D E N G , J . , D O N G , W . , S O C H E R , R . , L I , L . - J . , L I , K . et a l . ImageNet: A Large-Scale

Hierarchical Image Database. In: 2009 LEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2009.

[4] D U M O U L I N , V . and V I S I N , F . A guide to convolution arithmetic for deep learning.
2016. Available at: https://arxiv.org/abs/1603.07285.

[5] G O O D F E L L O W , I., B E N G I O , Y . and C O U R V I L L E , A . Deep Learning. 1st ed. M I T

Press, 2016. I S B N 0262035618. http://www.deeplearningbook.org.

[6] H E , K . , Z H A N G , X . , R E N , S. and S U N , J . Deep Residual Learning for Lmage
Recognition. 2015. Available at: https://arxiv.org/abs/1512.03385.

[7] H I N T O N , G . E . and R O W E I S , S. Stochastic Neighbor Embedding . In: B E C K E R , S.,
T H R U N , S. and O B E R M A Y E R , K . , ed. Advances in Neural Lnformation Processing
Systems. M I T Press, 2003, vol. 15. I S B N 0-262-02550-7. Available at:
https: //proceedings.neurips.cc/paper/2002/file/

6150ccc6069bea6b5716254057al94ef-Paper.pdf.

[8] H O R N , B . K . and S C H U N C K , B . G . Determining opt ical flow. Artificial Lntelligence.
1981, vol . 17, no. 1, p. 185-203. D O I : https://doi.org/10.1016/0004-3702(81)90024-2.
I S S N 0004-3702. Available at:
https: //www. sciencedirect.com/science/article/pii/0004370281900242.

[9] K I N G M A , D . P . and B A , J . Adam: A Method for Stochastic Optimization. 2017.
Available at: https://arxiv.org/abs/1412.6980.

[10] M A A T E N , L . van der and H I N T O N , G . Visua l i z ing D a t a using t - S N E . Journal of
Machine Learning Research. 1st ed. 2008, vol. 9, no. 86, p. 2579-2605. Available at:
http: / / j mlr.org/papers/v9/vandermaaten08a.html.

[11] M U R P H Y , K . P . Probabilistic Machine Learning: An introduction. 1st ed. M I T Press,
2022. I S B N 0262046822. Available at:
https: //probml.github.io/pml-book/bookl.html.

42

https://arxiv.org/abs/1603.07285
http://www.deeplearningbook.org
https://arxiv.org/abs/1512.03385
http://neurips.cc/paper/2002/file/
https://doi.org/10.1016/0004-3702(81)90024-2
http://sciencedirect.com/science/article/pii/0004370281900242
https://arxiv.org/abs/1412.6980
http://mlr.org/

[12] R A M S U N D A R , B . and Z A D E H , R . B . TensorFlow for Deep Learning: From Linear
Regression to Reinforcement Learning. 1st ed. O ' R e i l l y Media , Inc., 2018. I S B N
1491980451.

[13] S A N D L E R , M . , H O W A R D , A . , Z H U , M . , Z H M O G I N O V , A . and C H E N , L . - C .

M o b i l e N e t V 2 : Inverted Residuals and Linear Bottlenecks. In: 2018 LEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2018, p. 4510-4520. D O I :
10.1109/CVPR.2018.00474.

[14] S C H R O F F , F . , K A L E N I C H E N K O , D . and P H I L B I N , J . FaceNet: A unified embedding

for face recognition and clustering. In: Google Inc. 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2015, p. 815-823. D O I :
10.1109/CVPR.2015.7298682. I S S N 1063-6919. Available at:
http://dx.doi.org/10.1109/CVPR.2015.7298682.

[15] S E R M A N E T , P. , L Y N C H , C , C H E B O T A R , Y . , H S U , J . , J A N G , E . et a l .

Time-Contrastive Networks: Self-Supervised Learning imafrom Video. 2018.
Available at: https://arxiv.org/abs/1704.06888.

[16] S H I , J . and T O M A S I . G o o d features to track. In: 1994 Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition. 1994, p. 593-600. D O I :
10.1109/CVPR.1994.323794. Available at:
https://ieeexplore.ieee.org/document/323794.

[17] S O H N , K . Improved Deep Met r i c Learning wi th Mult i -class N-pa i r Loss Objective.
In: L E E , D . , S U G I Y A M A , M . , L U X B U R G , U . , G U Y O N , I. and G A R N E T T , R . ,

ed. Advances in Neural Information Processing Systems. C u r r a n Associates, Inc.,
2016, vol. 29. Available at: https://proceedings.neurips.cc/paper/2016/file/

6bl80037abbebea991d8bl232f8a8ca9-Paper.pdf.

[18] S O N G , H . O. , X I A N G , Y . , J E G E L K A , S. and S A V A R E S E , S. Deep Met r i c Learning v ia

Lifted Structured Feature Embedding . In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2016, p. 4004-4012. D O I :
10 .1109/CVPR.2016.434. Available at:
https://ieeexplore.ieee.org/document/7780803.

[19] S Z E L I S K I , R . Computer Vision: Algorithms and Applications. 1st ed. Ber l in ,
Heidelberg: Springer-Verlag, 2010. I S B N 1848829345.

[20] V E R M A , M . , K U M A W A T , S., N A K A S H I M A , Y . and R A M A N , S. Yoga-82: A New

Dataset for Fine-grained Classification of Human Poses. 2020. Available at:
https: //arxiv.org/abs/2004.10362.

[21] W A N G , J . , Z H O U , F . , W E N , S., L I U , X . and L I N , Y . Deep Met r i c Learning wi th
Angula r Loss. In: 2017 IEEE International Conference on Computer Vision (ICCV).
2017, p. 2612-2620. D O I : 10.1109/ICCV.2017.283. Available at:
https://ieeexplore.ieee.org/document/8237545.

43

http://dx.doi.org/10.1109/CVPR.2015.7298682
https://arxiv.org/abs/1704.06888
https://ieeexplore.ieee.org/document/323794
https://proceedings.neurips.cc/paper/2016/file/
https://ieeexplore.ieee.org/document/7780803
https://ieeexplore.ieee.org/document/8237545

