
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

DETECTION OF PEOPLE IN ROOM USING LOW-COST
THERMAL IMAGING CAMERA
DETEKCE LIDÍ V MÍSTNOSTI ZA POUŽITÍ NÍZKONÁKLADOVÉ TERMÁLNÍ KAMERY

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR MICHAL CHARVÁT
AUTOR PRÁCE

SUPERVISOR prof. Ing., Dipl.-lng. MARTIN DRAHANSKÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2018

Bachelor's Thesis Specification/21293/2017/xcharv16

B r n o U n i v e r s i t y o f T e c h n o l o g y - F a cu l t y o f I n f o r m a t i o n T e c h n o l o g y

D e p a r t m e n t of In te l l i gent S y s t e m s A c a d e m i c yea r 2 0 1 7 / 2 0 1 8

B a c h e l o r ' s T h e s i s S p e c i f i c a t i o n

For: Cha rvá t M i c h a l

B ranch of s tudy : I n f o rma t i on Te chno l ogy

_ . | D e t e c t i o n o f P e o p l e i n R o o m U s i n g L o w - C o s t T h e r m a l I m a g i n g
C a m e r a

Ins t ruc t i ons for pro jec t work :

1. S t udy the l i te ra ture o r i en ted on t he rma l image p rocess ing and i ndoo r de tec t i on of
peop le . Fami l i a r i ze yourse l f w i th the low-cost t h e rma l imag ing c a m e r a ava i l ab le at

2. P ropose an a l go r i t hm i c app roach for coun t ing peop le in a room and de tec t i on of the i r
pos i t i ons , us ing the low-cos t t h e rma l imag ing c a m e r a (s) .

3. I m p l e m e n t the p roposed so lu t ion f r om the p rev i ous po int .
4. Pe r fo rm expe r imen t s and s u m m a r i z e the a ch i eved resu l t s , i nc lud ing d i s cuss i on

devo ted to these resu l t s .

Bas ic r e fe rences :
• K w a s n i e w s k a A., Rum in sk i J . Face Detection in Image Sequences Using a Portable

Thermal Camera. P roceed ings of the 13th Quan t i t a t i ve In f ra red T h e r m o g r a p h y
Con f e r ence 2016 , pp. 4 9 3 - 4 9 9 , DOI 1 0 . 2 1 6 1 1 / q i r t . 2 0 1 6 . 0 7 1 .

• U m b a u g h S.E . Digital Image Processing and Analysis. 2nd Ed. , C R C Press, p. 956 ,
I S B N 9 7 8 - 1 - 4 3 9 8 - 0 2 0 6 - 9 .

Requ i r emen t s for the f i rst s emes t e r :
I t ems 1 and 2.

Deta i l ed f o rma l spec i f i ca t ions can be found at h t tp : / /www. f i t . vu tb r . c z / i n f o / s z z /

The Bachelor's Thesis must define its purpose, describe a current state of the art, introduce the theoretical
and technical background relevant to the problems solved, and specify what parts have been used from earlier
projects or have been taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of
the complete program documentation, program source files, and a functional hardware prototype sample if
desired. The information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R,
etc.) in formats common at the FIT. In order to allow regular handling, the medium will be securely attached to
the printed report.

Supe r v i s o r : D r a h a n s k y M a r t i n , p r o f . I n g . , D i p l . - I n g . , P h . D . , DITS FIT BUT

Beg inn i ng of work : N o v e m b e r 1, 2 0 1 7

Date of de l i ve ry : May 16, 2018

Ca tego ry : I m a g e Process ing

FIT BUT.

Petr Hanáček
Associate Professor and Head of Department

2

http://www.fit.vutbr.cz/info/szz/

Abstract
As we are approaching times of Industry 4.0 and smart homes, there is a need for auto
matic reliable mechanisms for detecting living beings. There are many use cases—from
aiding elderly or disabled people with their everyday life to increasing safety in dangerous
workplaces by guarding hazardous areas. We propose a method for counting, detecting
and locating people using a single low-cost thermal camera module F L I R Lepton 3 and
Orange P i computer. This paper describes the process of necessary hardware configura
tion of the whole system and a software solution to the problem of detecting and locating
people. The method, we utilize in order to detect and locate people, is based on applying
human temperature filter, image processing with object detection using OpenCV library,
and 3D scene reconstruction with known environment parameters. This approach, even in
its simplest form, provides accuracy around 90 % on our data set with various possibilities
for improvement.

Abstrakt
S příchodem průmyslu 4.0 a chytrých domovů se zvyšují nároky na automatické a spolehlivé
technologie umožňující detekci živých bytostí. Tyto technologie můžou například pomáhat
starším či postiženým osobám s každodenním životem nebo zvyšovat úroveň bezpečnosti na
pracovištích tak, že budou hlídat rizikové zóny. Představujeme metodu počítání, detekce a
lokalizace osob za použití jediné nízkonákladové termální kamery F L I R Lepton 3 a počítače
Orange P i . Tato práce popisuje proces konfigurace hardwarových součástí celého systému a
softwarové řešení problému detekce a lokalizace osob. Naše řešení je založeno na aplikování
teplotního filtru s rozmezím lidských teplot, zpracování obrazu s detekcí objektů s pomocí
knihovny OpenCV a rekonstrukci 3D scény o známých parametrech. Tento přístup, i ve
své jednoduché podobě, dosahuje na naší kolekci dat přesnosti kolem 90 % a nabízí řadu
příležitostí na vylepšení.

Keywords
thermal, detection, counting, locating, person, people, low-cost, camera, image processing,
object detection, Orange P i , Lepton3, OpenCV, scene reconstruction

Klíčová slova
termální, detekce, počítání, lokalizace, osoba, lidé, nízkonákladová, kamera, zpracování
obrazu, detekce objektů, Orange P i , Lepton3, OpenCV, rekonstrukce scény

Reference
CHARVÁT, Michal. Detection of People in Room Using Low-Cost Thermal Imaging Cam
era. Brno, 2018. Bachelor's thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor prof. Ing., Dipl.-Ing. Martin Drahanský, Ph.D.

Rozšířený abstrakt
S příchodem průmyslu 4.0 a chytrých domovů se zvyšují nároky na automatické a spolehlivé
technologie umožňující detekci živých bytostí. Tyto technologie můžou například pomáhat
starším či postiženým osobám s každodenním životem ovládáním chytrých domovů nebo
zvyšovat úroveň bezpečnosti na pracovištích tak, že budou hlídat rizikové zóny. Takové zóny
si můžeme představit například jako kolejiště na vlakovém nástupišti nebo ve výrobních
halách u nebezpečných přístrojů. Mimo jiné se metody detekce a počítání lidí používají
také k analýze toku lidí u hromadné dopravy, či správě prostředků a personálu na úřadech
nebo v obchodech.

V této práci představujeme metodu počítání, detekce a lokalizace osob za použití jediné
nízkonákladové termální kamery F L I R Lepton 3 a počítače Orange P i PC2 . Práce je
rozdělena na několik částí.

Úvodem práce rozebírá motivaci projektu, možnosti použití mechanismů pro detekci a
lokalizaci osob, aktuálně používané technologie, které srovnává navzájem i s naším řešením
a popisuje i jejich konkrétní použití. Tyto mechanismy můžeme obrazně rozdělit do dvou
kategorií: jedna, sloužící primárně k jednoduššímu počítání průchodů osob—k analýze
toku lidí, a druhá, která do jisté míry zahrnuje zpracování obrazu a detekci objektů, popří
padě lokalizaci objektů ve známé scéně. Druhá kategorie představuje dražší pokročilejší
technologie, jako například stereovize nebo pokročilé zpracování videa z kamery. Do této
kategorie patří i naše detekce a lokalizace termokamerou. Oproti ostatním řešením má
však výraznou výhodu, a to, že přirozeně s malým termálním kamerovým modulem nelze
provést rozpoznávání osob, tudíž může být vhodným řešením na místa, kde soukromí hraje
důležitou roli, jako domovy nebo pracoviště.

Další část práce popisuje hardwarové součásti systému: termální kameru Lepton 3 a
malý počítač Orange P i PC2 z rodiny Raspberry P i , konkrétně jejich parametry, z nichž
nejdůležitější je způsob komunikace. Lepton 3 používá SPI rozhraní pro odesílání video
snímků a I 2 C pro řízení kamery. Pro komunikaci s kamerou pomocí těchto nízkoúrovňových
rozhraní slouží právě malý počítač Orange P i , jehož procesor obsahuje hardwarové moduly
pro komunikaci právě přes tato rozhraní. Práce obsahuje popis konfigurace počítače Orange
P i , která umožňuje komunikaci přes daná rozhraní. Proces aktivace rozhraní není dvakrát
transparentní a může být záludný. Práce obsahuje přesný popis nutných akcí pro aktivaci
všech rozhraní a poznámky z vlastních zkušeností.

Kromě popisu hardwaru práce obsahuje také podrobný popis protokolů pro přenos videa
přes SPI rozhraní a pro ovládání kamery přes I 2 C , které byly nastudovány z oficiálního
produktového manuálu. Znalosti obou protokolů byly využity v další části projektu, který
se zabývá implementací knihovny pro přenos video snímků a ovládání kamery v4l2lepton3.
Vývoj vlastní knihovny byl zvolen po několika neúspěšných pokusech o použití existujících
knihoven pro kamery Lepton. Většinou byla existující řešení navrhnuta pro nekompatibilní
(starší) verze kamery.

Výsledkem je plně funkční knihovna v C++, která umožňuje přenos snímků beze ztráty
synchronizace s kamerou. Součástí knihovny je i Python skript pro čtení jediného snímku
a skript pro ovládání kamery.

V následující části práce představujeme algoritmus detekce lidí z jednoho termálního
snímku pořízeného kamerou Lepton 3. Náš přístup je založen na zpracování obrazu z jed
iného termálního snímku s pomocí knihovny OpenCV. Proces detekce se dělí na několik
částí: termální snímek se surovými daty senzoru převedeme na reálnou teplotu pomocí ex
perimentálně určené převodní funkce, provedeme vymaskování částí snímku, které neleží v
rozmezí teplot lidského těla, na snímek aplikujeme binární adaptivní prahovací funkci, která

převede snímek na černobílý, kde černé pixely jsou pozadí a bílé pixely reprezentují možné
osoby, neboť mají teplotu z rozmezí lidského těla. Černobílý snímek filtrujeme morfolog
ickými transformacemi, které odstraní šum, a aplikujeme na něj algoritmus hledání kontur
z knihovny OpenCV (cv2. f indContours). Výsledkem hledání jsou záznamy kompaktních
bílých oblastí snímku na černém pozadí. Kolem těchto oblastí můžeme vykreslit ohraniču
jící obdélníky, které v podstatě obklopují detekovaný objekt. Dále lze využít heuristik
k dalšímu filtrování detekovaných objektů. Například můžeme pomocí plochy obdélníku
filtrovat drobné předměty a podobně. Popsaná metoda s jednotlivými funkcemi je im
plementována v pomocné Python třídě ThermoHelper a je součástí projektu, a to včetně
ukázkových skriptů.

Jakmile získáme detekované obdélníky z termálního snímku, můžeme přejít na finální
část projektu, a to lokalizaci objektů ve známé scéně, kterou popisuje závěrečná kapitola,
a to jak teoreticky, tak prakticky. Metoda lokalizace je založena na rekonstrukci scény
zpětnou projekcí obrazových souřadnic do scény.

Nezbytnou podmínkou pro tuto zpětnou projekci je znalost pozice kamery ve scéně.
Pozicí kamery rozumíme její natočení (rotaci) a posunutí (translaci) v dané scéně. Určení
této pozice popisuje perspektivní problém n bodů (Perspective-n-point problém). Ten
řeší perspektivní projekci bodů ze souřadnicového systému scény do systému obrazového
(souřadnice obrazových pixelů) pomocí soustavy lineárních rovnic. Pokud dosadíme do
rovnice alespoň 4 body představující projekci z bodů scény do bodů obrazových, jsme
schopni vypočítat translaci a rotaci kamery v dané scéně, a t ím i popsat transformaci všech
bodů ze scény do obrazového souřadnicového systému.

Tuto transformaci poté můžeme obrátit a popsat přímku v souřadnicovém systému
scény, jejíž body by se promítly do jediného obrazového bodu. Pokud najdeme přímku
tvořenou body, které se promítnou do nejspodnějšího bodu detekovaného obdélníku, kde
se nohy detekované osoby pravděpodobně dotýkají země, můžeme určit průsečík přímky s
podlahou a aproximovat tak, kde se detekovaná osoba ve scéně nachází. Popřípadě jde ještě
počítat s průměrnou výškou člověka.

Tato část projektu byla implementována v Python třídě Scene, která je abstrakcí známé
scény. Její instance umožňuje nastavit hranice scény, souřadný systém a po provedení kali
brace (určení pozice kamery) pomocí čtyř mapujících bodů lze zpětně promítat libovolné
obrazové pixely zpět do souřadnicového systému scény (za předpokladu explicitního dodání
třetí souřadnice) a zobrazit scénu včetně promítnutých bodů a polohy kamery z ptačí per
spektivy.

Práce popisuje do detailu všechny jednotlivé části projektu. Každá část byla softwarově
realizována, přičemž komunikace s kamerou, čtení snímků videa a ovládání kamery funguje
velmi dobře. Zde není mnoho možností na vylepšení.

Použitá metoda lokalizace objektů ve známé scéně je přirozeně matematicky velmi
přesná, záleží jen na přesnosti dodaných mapujících bodů při kalibraci modelu scény.

Nejkritičtější část projektu je detekce lidí z termálních snímků. Naše metoda, i přesto, že
je relativně jednoduchá, dosahuje úspěšnosti kolem 90 % na zkoumaných datech. Výhodou
našeho jednoduššího přístupu může být stabilita vůči bizarním polohám detekovaných osob,
ale co se týká dalšího vylepšení a ošetření některých nesprávně vyhodnocených situací,
má metoda své limity. V této oblasti se však nabízí celá řada jiných přístupů detekce
objektů jako H O G s S V N , řešení s pomocí konvolučních neuronových sítí, či sledování
pohybu objektů. Vylepšování metody detekce lidí z termálních snímků či videa bude před
mětem dalšího výzkumu s cílem ještě více vylepšit stabilitu detekčního algoritmu pro reálné
nasazení například kombinací různých přístupů.

D e t e c t i o n o f P e o p l e i n R o o m U s i n g L o w - C o s t T h e r

m a l I m a g i n g C a m e r a

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work
under the supervision of prof. Ing., Dipl-Ing. Martin Drahansky Ph.D. A l l the relevant
information sources, which were used during preparation of this thesis, are properly cited
and included in the list of references.

Michal Charvát
July 19, 2018

Acknowledgements
I would like to thank prof. Drahansky for supervising this thesis, for his relaxed and
constructive approach and for acquiring necessary hardware components, without which
the research would never have even started. Furthermore, I would like to thank prof. Guido
Kempter, and also prof. Drahansky, for arranging a student mobility at the University of
Applied Sciences Vorarlberg, where I continued the second part of my research, wrote this
thesis and was allowed to present an article about this project at the uDay X V I technological
conference in Dornbirn. I am also grateful to all the staff at the university for their kindness
and willingness to help in every situation.

Contents

1 Introduction 2

2 Utilization of people detection and current technology comparison 3
2.1 Utilization of people detection 3
2.2 Currently available technologies allowing for people detection 4

3 Hardware part of the detection system 10
3.1 Thermal camera module Lepton® 3 10

3.1.1 Specifications 11
3.1.2 Modes of operation 12
3.1.3 Transferring video over SPI 14
3.1.4 Controlling the camera module over I 2 C 17

3.2 Master controlling device Orange P i ™ 22
3.3 Enabling Orange P i hardware interfaces 24

4 Lepton 3 software library v4l2lepton3 29
4.1 Receiving video frames over VoSPI 29

4.1.1 Single frame capture using Python 29
4.1.2 Capturing frames using v4l2lepton3 32

4.2 Controlling the camera over I 2 C 36

5 Image processing and object detection 38
5.1 Pixel values to temperature 39
5.2 Image processing using OpenCV 39

5.2.1 Temperature filtering 39
5.2.2 Normalization 40
5.2.3 Adaptive binary mean thresholding 40
5.2.4 Noise removal 41
5.2.5 Object shape detection 43

5.3 Scene reconstruction 45
5.3.1 Perspective-n-point problem 46
5.3.2 Scene reconstruction using OpenCV 46
5.3.3 Reversing world to screen projection 47

5.3.4 Scene software abstraction 49

6 Conclusion 51

Bibliography 55

1

Chapter 1

Introduction

This thesis deals with utilizing a single low-cost thermal camera module, small single board
computer and image processing to solve the problem of detecting and locating people.

Detecting and locating people have found their usage in many areas of everyday life.
It is often used for queue management in shops and in marketing for determining the best
product placement. We also encounter people detecting mechanisms in smart homes where
they aid to control the environment and most importantly, they can help to ensure safety
in heavy machinery workplaces, industry halls or often at train stations by guarding hazard
zones.

In simple cases it is sufficient to use technologies, that allow only for simple people
counting. They are usually a form of a sensor built into a door frame which detects objects
passing through. The advantage of such a simple approach is its cost and also it usually
does not allow for person recognition. This privacy issue comes into play when dealing with
more complex solutions allowing for detecting people in open areas or even locating people.

By using a small thermal camera module approach, we eliminate the possibility of people
and/or face recognition while preserving the capabilities of more complex solutions, so we
are still able to detect and even locate people in any known environments. Solution to the
problem of detecting people based on a thermal camera could be therefore a viable option
for places, where privacy plays an important role.

After briefly going through comparison with currently used technologies of people detec
tion, we describe all hardware components of our system—camera specifications, interfaces,
low-level computer dedicated to camera interaction, communication protocols and so on.

The next section of the thesis focuses on necessary communication software developed
specifically for this project used for capturing frames with the camera and controlling the
camera.

In the last section of the thesis, we present a simple people detection method based
on image processing. The method consists of temperature filtering, adaptive thresholding,
morphology transformations and object shape (contour) detecting.

We also propose a scene reconstruction technique that enables us to not only detect peo
ple and therefore count them, but also approximate their location in a known environment
by reverse projecting image points of detected objects.

2

Chapter 2

Utilization of people detection and
current technology comparison

This chapter is split into two sections. The first section deals with usage of people detection
in general and the second one compares currently used technologies in people counting/de
tecting/locating with respect to its use case.

2.1 Uti l izat ion of people detection

As stated in the introduction, counting/detecting/locating people has found its usage in
many areas and is an essential part of many complex systems.

The following listing describe some of the most important areas, where people detection
is used.

Mercantile interests

In marketing it is possible to determine the best placement of a product based on a model
constructed with data of customer movement. Usable information, extracted from people
detection systems, would be for this use case: in which areas they spend majority of time,
what path they tend to take in a particular environment (shop, supermarket). The tech
nology provides us with data we can analyze and optimize for example our advertisement.

Queue management

In shops and at public service places in general, counting and detecting techniques are used
to measure number of customers in premises, estimate queue length in real time, measure an
average wait time to be served, or staff idle time. The data provided might serve to improve
customer experience and manage resources more efficiency For supermarkets, number of
open desks can vary over time based on current queue length, we can distribute staff more
efficiently or adjust it on the fly.

People transportation

Similarly to the previous paragraph, for relatively same purposes, detection and counting
techniques are vastly used at airports, in subway, and sometimes at train or bus stations.

3

These automatic people counting solutions are mostly used for people flow analysis. Ana
lyzing people flow statistics is the key to maintain user friendly environment and can serve
as an initiative for improvement. We count number of passengers being transported, how
full a train/bus gets during a day, and again we measure time delays as with the queue
management.

Hazard zone guarding

One of the most important areas, where living beings detection is used, is undoubtedly
workplace safety mechanisms. This might include hazardous areas at train and subway
stations near railway tracks, in heavy machinery, industry halls near dangerous machines,
where no living being should be present while operating. We may utilize people detec
tion mechanisms to alert responsible personnel and help preventing severe accidents from
happening.

Smart homes

Another usage of people detecting and locating systems is in smart homes. By getting
information about people's presence, location and/or pose, the system can control their
environment to ease their everyday life. This can help elderly or disabled people with
turning machines on or disabling them, if there is a high chance of them forgetting to.
In smart home environments, there is a possibility to utilize counting, detecting and also
locating people techniques. [3] [17]

2.2 Currently available technologies allowing for people de
tection

Some of the technologies nowadays being used for purposes of counting/detecting/locating
people might include:

• IR/Laser beam interruption

• Laser light burst travel time (LIDAR l)

• GPS/WiFi /Bluetooth tracking

• Projecting structured light

• 3D stereo video analysis

• Monocular video analysis

The following paragraphs describe these technologies, point out their weaknesses and
determine their most suitable usage.

IR/Laser beam interruption

Infrared/laser beam interruption technique can be used only for counting people entering
and leaving room, that is why it is usually installed in a doorway. On one side of a narrow

1 LIDAR - Light Detection And Ranging

4

passage (entry point, doorway etc.), a transmitter device is installed, a receiver is installed
on the other side, as illustrated in figure 2.1. The receiver and the transmitter are connected
together and form an invisible barrier of light. When an object steps into the barrier, it
breaks the connection between the transmitter and receiver and the system registers plus
one count. This general solution yields inaccurate results, when there are more people
passing through the sensor close to each other or when they decide to turn around.

This problem is usually solved by installing more advanced sensors. The accuracy of
the system can be increased by using multiple barriers and analyzing measured intensities
of each sensor to detect special CctS6S, ctS when people turn around in the doorway. [] In
order to achieve even higher success rate, we might consider using for example a L I D A R 1
based solution.

Figure 2.1: Infrared/laser barrier sensor for counting people passing through. (Source:
[24].)

L I D A R

Figure 2.2 shows an example of such device. The L I D A R device consists of only a single
sensor usually placed above ge. The sensor is a transmitter and a a receiver at the
same time. The device casts laser beams into several directions and precisely measures
time required for the reflected beam to get back into the sensor. This way it is possible to
calculate the distance the laser beam has traveled and therefore create a depth map.

The L I D A R approach makes counting people in a doorway way more accurate than
the beam interruption method. The device can differentiate entering and leaving through
the area, and since the sensor is usually installed above the passage, it has no problem
with detecting multiple people passing next to each other, which is a major problem with
the infrared/laser barrier. This solution is widely used at airports and has a guaranteed
accuracy over 95 %. []

5

Figure 2.2: L I D A R based device for counting people entering and leaving through a door
way. (Source: [2].)

GPS/WiFi /Bluetooth smart device tracking

With the growth of smart devices supporting wireless technologies such as W i F i or Blue
tooth, a new method of tracking people arises. Devices with these technologies make it easy
to triangulate their position. Obviously, not every living being needs to carry this kind of a
smart device, however, still for merchants, this kind of tracking their customers offers valu
able information about their whereabouts. Although it can not be reliably used to detect
people, as we would get plenty of false negatives, tracked paths of detected devices can be
used to create a map of customer movements, which can help to promote products or op
timize advertisement in general. A n illustration of a map, representing different durations
of people's presence throughout a shop is depicted in figure 2.4.

G

Figure 2.3: Intensity map representing duration of people's presence at a certain location.
(Source: [33].)

Projecting structured light

Method of projecting structured light is not used for purposes of detecting or locating
people. This technology is often used for obtaining 3D models of relatively small objects or
continuous depth maps.

The system consists of usually two parts: a camera and a projector. The projector casts
structured light on the scene. The structured light is usually a horizontal black and white
line pattern or a checkerboard pattern. The camera is then used to view the scene, and by
analyzing deformations in the projected pattern, a depth map is constructed.

On its own, this technique may be used in the same use case as L I D A R sensors—people
counting. This setup has one advantage, when compared to the L I D A R solution. L I D A R
sensors casts rays only into several directions. By projecting the light pattern, this technique
covers larger continuous area and has the potential to be more accurate. As with L I D A R
devices, this sensor is placed above ge and would often use structured light from the
invisible infrared spectrum.

The structured light sensors, however, have major disadvantages. Such system requires
extreme calibration and is bigger in size and more complex. In order to detect living beings
with such sensor, it would have to be joint with other methods such as video analysis.

7

Figure 2.4: Example setup of depth mapping system composed of single camera and a
projector casting structured light. (Source: [18].)

3D stereo video analysis

3D stereo video analysis is quite often used in high end solutions. The system consists of
two precisely calibrated cameras viewing a scene. The technology is somewhat similar to
human vision. Two eyes viewing a scene with the brain extracting depth information from
differences in the two images, caused by a different position of each eye. By combining
video frames from two cameras, we receive a depth dimension, which generally provides
accurate distance measurement. Wi th the usage of such depth map, it is generally more
accurate to perform people detection/tracking by image analysis.

This approach can be seen in cutting edge solutions provided for airports, big train
stations, where accurate detection and location of as well as counting people is a necessity.
The ready made solutions using this technology tend to be very expensive, due to its
complexity and calibration requirements.

When compared to the L I D A R and structured light approach for counting people, it
has one drawback. It has much narrower field of view, which means, that at places with low
ceiling, this is challenging to find a proper location for installing the stereoscopic device.
Another drawback, which also applies to the monocular video analysis, is a privacy issue.
Wi th the use of regular cameras for purposes of detecting/locating/counting people, it is
possible to perform facial recognition, which may be unacceptable in certain situations.

Monocular video analysis

The monocular video or single frame analysis is quite similar to the 3D stereoscopic vision,
however, for monocular video analysis, no depth map is used, as the monocular video
analysis uses only a single camera.

By video analysis and digital image analysis (used in both monocular and stereoscopic
vision), we understand a process of extracting meaningful information from video or images

8

respectively. Today various techniques and approaches are being used. The process can be
somewhat generalized into few steps:

1. Image preprocessing - preparing the image for analysis by usually digital image
processing. This might include filtering, adjusting contrast, dynamic range of the
image and so on.

2. Feature extraction - extracting indices, that are meaningful for the type of analysis,
we want to perform. This might include finding binary contours in the image, lines,
corners, extracting histogram of oriented gradients (HOG [9]) and so on.

3. Final stage of the analysis - the actual algorithm used to achieve the goal of
video/image analysis. The goal might be object detection, classification, recognition
and similar. In this stage, we encounter various algorithmic approaches, often from
the machine learning family, from simple thresholding, linear binary classifiers all the
way to support vector machines and deep neural networks.

Using a thermal imaging camera module to help solving the problem of detecting people
also belongs to the monocular video analysis section and brings several advantages, when
compared with other approaches. [] Firstly, we need only a single camera, so there is no
need for extremely precise calibration, as with stereo vision or structured light projection.
We can detect and also locate living beings in contrast with infrared/laser beam or light
travel techniques, which can only count objects entering and leaving an area. The biggest
advantage, however, is a fact, that by using a thermal camera, it is impossible to perform
facial or person recognition. This makes this approach more suitable for places, where
privacy plays an important role like workplaces or homes.

9

Chapter 3

Hardware part of the detection
system

This chapter describes all hardware parts of the project, which are: a thermal camera
module, Raspberry Pi-like low-level computer and their interfaces, along with the necessary
procedure on how to set up individual parts as well as the whole system, to be able to receive
video frames from the used camera module.

3.1 Thermal camera module Lepton® 3

This section describes the thermal camera module we use in this project. We will go se
quentially through its specifications, modes of capture and communication protocol for both
video frames transfer and camera control. Information about the camera in the following
section comes from the official documentation [11] [13] [12].

Figure 3.1: Lepton 3 with breakout board. (Source: [].)

10

3.1.1 Specifications

In this project we use a Lepton 3 thermal camera module 2 made by the company F L I R 3

which is currently one of the top manufactures of thermal camera solutions. It contains
a sensor sensitive to long wave infra red (LWIR) light in range from 8 to 14 jim. The
camera module is smaller than a dime and provides decent images with its 160 by 120
pixels resolution. The effective frame rate of the camera is only 8.8 Hz, however for our
needs this is not a problem. The camera only requires low voltage supply and has small
power consumption of around 140 mW. See table 3.1 for more specifications.

For better manipulation with the camera module we use a breakout board (figure 3.1)
with a housing for the Lepton camera module. The breakout board provides better physical
accessibility, improves heat dissipation and increases input voltage supply range to 3-5 volts,
as it has its own regulated power supply. This power supply provides the camera module
with three necessary voltages: 1.2, 2.8 and 2.8-3.1 volts. The breakout board also supplies
the camera with master clock signal. [14] The camera uses two interfaces for communication:

• SPI for transferring video frames from the camera to a SPI master device.

• I 2 C for receiving control commands from the I 2 C master device.

Even though the name of the project include the keyword low-cost, we need to think
of this statement with respect to the thermal camera market. The Lepton 3 thermal
camera module can be considered low-cost when compared to other thermal camera devices
available—as it costs around $250 (2018) 4 . This could however be considerably more when
compared to other nonthermal solutions, however way more than if we would utilize a
simple infrared counting sensors for example.

Spectral range 8 to 14 fim
Array format 160 x 120 pixels

Pixel size 12 fim
Thermal sensitivity <50 mK

F O V horizontal 56°
F O V diagonal 71°
Depth of field 28 cm to oo

Lens type f/1.1 silicon doublet
Output format 14-bit Y14 raw flux or 24-bit RGB888 false color

Clock speed 25 MHz
Input voltage 2.8 V, 1.2 V, 2.8-3.1 V

Power dissipation 140 mW operating, 5 mW shutdown mode
Dimensions 11.8 x 12.7 x 7.2 mm

Table 3.1: Lepton 3 camera module specifications. [11]

2Lepton homepage https:/ / lepton.fl ir .com/
3 F L I R homepage http://www.flir.eu/
4 F L I R Lepton 3 supplier e-shop https://groupgets.com/manufacturers/flir/products/lepton-3-0

11

https://lepton.flir.com/
http://www.flir.eu/
https://groupgets.com/manufacturers/flir/products/lepton-3-0

3.1.2 Modes of operation

Lepton 3 module outputs two video formats—standard 24-bit R G B false color video
and raw 14-bit, whose pixels correspond to raw input light flux. Both formats will be
described in more detail in video transfer subsection 3.1.3. Several features are available
with the Lepton 3 camera module—most important ones being:

• flat-field correction (FFC)

• telemetry

• radiometry

• automatic gain control (AGC)

Flat-field correction (FFC)
The Lepton 3 camera should produce highly uniform image when viewing a uniform-
temperature scene. Drift effects over longer periods of time degrade imagery and make
it look more grainy and/or blotchy (see figure 3.2). In order to fix these issues we can use
the flat-field correction (FFC) feature. The F F C is a process of briefly exposing camera's
sensor to a uniform thermal scene allowing its signal processing engine to automatically
recalibrate to produce optimal image quality. The uniform thermal scene can be provided
using Lepton's integral shutter The whole recalibration process takes less than a second.
The F F C mode can be set to be performed manually upon command or automatically after
a specified period of time.f] [20] In this project we are using automatic F F C with Lepton's
integral shutter.

(a) Highly uniform image. (b) Grainy image. (c) Blotchy image.

Figure 3.2: Example of drift effects degrading imagery without the use of F F C . (Source:
[11][20].)

Telemetry

Telemetry mode provides us with additional information about the current state of the
camera. This data is packed and transmitted with every video frame as a part of it. The
packed data is 656 or 976 bytes in size per frame and for example contains information like
power-up time, frame counter, internal temperature, time counter at last FFC, FFC state,
AGC clip limits (more in following section 3.1.2), overtemperature shutdown imminent flag
and so on. For our purposes we do not require any information provided by the telemetry
so we can keep the feature disabled and save some time during video frame transfer.

12

Radiometry

Radiometric modes affect the translation from incident flux to pixel output of the camera.
When radiometry is enabled, the camera ensures that the conversion from camera's output
to scene temperature yields constant results over the full operating temperature range of the
camera. When disabled, output pixels of the camera, viewing a constant temperature scene,
would have different values for different camera temperature. See hypothetical illustration
of the negative effect in figure 3.3. As we need to convert incident flux to real scene
temperature in this project, we will be using the radiometry feature.

Radiometry Disabled Radiometry Enabled

-10 20 50 SO -10 20 50 80

Camera Temp (deg C) Camera Temp (deg c)

Figure 3.3: Hypothetical illustration of camera output vs. camera temperature. (Source:
[11] [26-27].)

Automatic gain control (AGC)

A G C , with respect to thermal imaging, is a process of collapsing rather large dynamic range
of the infrared sensor to the range more suitable for displaying.

The simplest form of A G C would be linear A G C (scaling). We would find lowest and
highest values in the image and map all pixels between these two values to the full range.
The linear A G C however has one major drawback: situation of having for example a very
hot object in front of a colder background would result in losing almost all details of the
background as most pixels would be mapped to either full black or white with very little
use of grayshades in between. To eliminate this problem Lepton 3 uses a more sophisticated
A G C algorithm, which is an improved version of a histogram equalization. Comparison of
the linear and Lepton's version of A G C is depicted in figure 3.4. However good the Lepton's
A G C algorithm is for presenting a scene to a human eye, we will not be using it in our
project, as we would like to measure the real scene temperature and any A G C algorithm
completely obscures camera output values, making it impossible to determine the actual
temperature of a pixel.

13

(a) Linear AGC. (b) Lepton's improved histogram equalization.

Figure 3.4: Comparison of linear A G C and Lepton's histogram equalization. (Source:
[][29].)

3.1.3 Transferring video over SPI

As mentioned previously, the camera can output video frames in two formats:

• Raw Y14 - 1 x 14-bit grayscale - raw flux

• RGB888 - 3 x 8-bit R G B - false color

The first mode is appropriate for viewing or processing raw data captured by the camera
module. In this case it only make sense not to use A G C feature, as we would be interested
only in unaltered data.

On the other hand, for presenting images to the user, one can preferably use the RGB888
mode, which allows for colorizing the captured image, according to a selected look-up color
table (false color palette). Lepton 3 comes with 8 color palettes by default, however, it is
possible to load a custom one. See illustration comparing grayscale and false color image
in RGB888 mode 3.5.

Note,that A G C feature must be enabled in order to use colorization. Output formats
can be switched between using control commands—more in control interface section 3.1.4.

(a) Grayscale. (b) Fusion color palette.

Figure 3.5: Comparison of grayscale and false color palette (fusion). (Source: [1][32].

14

For transferring video frames from the camera module to a master control device, the
Lepton 3 VoSPI (Video over SPI) protocol is used to transfer data over Serial Peripheral
Interface bus (SPI). The protocol is packet-based with no timing signals nor requirement for
flow control. The host computer device (SPI master) initiates all transactions and provides
clock signal to the Lepton 3 camera (SPI slave).

This way the master can pull data from the camera at a flexible speed. The speed
of the transmission is however flexible only up to a certain point: unless you are able to
transfer the whole data segment before a new one is available, the camera desynchronizes
and restarts the transmission. This happens to be a common problem in the community,
caused by the transmission not being fast enough. More on that in software section 4.
The VoSPI utilizes three lines:

• S C K - clock signal

• CS - chip select

• MISO - master In/Slave Out

Typical fourth line MOSI (Master Out/Slave In) is not used in this CctS6 ctS there is no
need for data transfer from the host to the camera. The VoSPI protocol uses SPI mode 3
(C P O L = l , C P H A = 1) 5 and transmits data—most-significant byte first, in big-endian order.
The VoSPI protocol is build on a collection of object data types:

• VoSPI Packet: Packet represents the minimum transaction between master and
slave. Each video packet contains data for one half of a video line. In case there are
no new video segments available, the camera transmits packets with garbage data.
Depending on output video format, the packet is 164 or 244 bytes long.

• VoSPI Segment: Segment is defined as a continuous sequence of VoSPI packets,
representing one quarter of a video frame. To avoid losing synchronization with the
camera, each segment must be read out before next one is available. Every segment
is 60 packets long. If the telemetry feature is enabled, the number is 61.

• VoSPI Frame: VoSPI frame represents the whole real video frame, additionally it
could also contain telemetry data. The frame is composed from 4 VoSPI segments.

—

Segment 2, Packet 0 Segment 2, Packet 1

Segment 2
Segment 2, Packet 59

Segment 3, Packet 0 Segment 3, Packet 1

Segment 3
Segment 3, Packet 59

Segment 4, Packet 0 Segment 4, Packet 1

Segment 4
Segment 4, Packet 59

Figure 3.6: VoSPI frame structure illustration. (Source: [11].)
5 SPI modes clock polarity and phase https://en.wikipedia.org/wiki/

Serial_Peripheral_Interface_Bus#Clock_polarity_and_phase

15

https://en.wikipedia.org/wiki/

Table 3.2 summarizes data object size comparison. Knowing the total size of each
frame and having a frame rate of the camera approximately 26.4 frames per second, we can
calculate the absolute minimum clock rate for SPI transmission at which the host needs
to read frames from the camera to maintain synchronization. For Rawl4 mode without
telemetry, the minimum SPI clock rate is 8.3 MHz. For a different combination of the
video format and telemetry feature, the clock speed will be higher. The minimum SPI
clock rate as well as maximum hardware SPI clock speed limit 20 MHz, create a boundary,
in which the host device must communicate with the camera.

Telemetry diabled
Data object Raw Y14 RGB888
VoSPI Packet 164 B 244 B
VoSPI Segment 60 packets, 9.84 kB 60 packets, 14.640 kB
VoSPI Frame 4 segments, 240 packets, 4 segments, 240 packets,

39.36 kB 58.56 kB

Telemetry enabled
Data object Raw Y14 RGB888
VoSPI Packet 164 B 244 B
VoSPI Segment 61 packets, 10.004 kB 61 packets, 14.884 kB
VoSPI Frame 4 segments, 244 packets, 4 segments, 244 packets,

40.016 kB 59.536 kB

Table 3.2: Summary of VoSPI data objects size with respect to used features.

The first 4 bytes of every packet contain a packet header, (figure 3.7.) The header
consists of 2-byte ID and 2-byte error-detecting cyclic redundancy check code (CRC) . The
rest of bytes in the packet contain data payload.

ID C R C Data payload
2 bytes 2 bytes 160 or 240 bytes

Figure 3.7: VoSPI packet structure.

According to figure illustrating the packet header 3.8, the first bit is always zero, fol
lowing three TTT bits encode segment number (1-4)—but only for packet number 20—and
next twelve bits hold a packet number. For every other packet except number 20, the TTT
bits do not have to contain valid segment information. Example of a valid VoSPI packet
can be seen in figure 3.9.

0 T T T Packet number C R C
1 bit 3 bits 12 bits 16 bits

Figure 3.8: VoSPI packet header structure.

16

0 T T T Packet number C R C
0 O i l OOOO 0001 0100 C R C

Figure 3.9: Example of a valid VoSPI packet number 20 belonging to a segment 3.

In case a packet number 20 contains TTT bits with value 0, the whole segment is invalid
and should be discarded. If the second 4 bits of ID section (the first 4 bits of the packet
number) have a value OxF (as depicted in figure 3.10), the whole packet is invalid and
should be discarded.

ID C R C Data payload
?F?? ???? 160 or 240 bytes of garbage data

Figure 3.10: Example of an invalid VoSPI packet.

The procedure to establish synchronization with the camera is following:

1. De-assert CS line and idle S C K for at least 185 ms. This step ensures VoSPI timeout
and sets Lepton 3 to a proper state to re-establish synchronization.

2. Assert CS and enable clock. This makes Lepton 3 camera start transmitting packets.

3. Read out the entire packet. Check the ID field of a packet header to recognize an
invalid packet.

4. Continue reading packets. The first valid video packet should be transmitted within
10 ms.

There are three violations when reading frames that causes a loss of synchro
nization:

• Once a transmission of a packet is started, the packet must be completely read out
within three line periods, given that CS is not de-asserted nor clock signal disrupted.

• A l l packets of a segment must be read out before a next segment is available.

• A l l segments of a frame must be read out before a next frame is available. This also
applies to invalid frames.

3.1.4 Controlling the camera module over I 2 C

Lepton 3 provides a command and control interface (CCI) via a two-wire interface almost
identical to I 2 C . The only small difference, when compared to a traditional I 2 C , is that all
transfers must be 16-bit long. A l l Lepton 3 registers are 16 bits wide. Lepton's C C I address
is 0x2A and behaves slave device.

Some features, that can be affected by command and control interface are: AGC mode,
AGC settings, telemetry mode and its location, select/upload false color palette, output video
format, FFC mode, FFC parameters, radiometry mode, camera current status information,
statistics and many more.

17

C C I registers

The command and control interface consists of registers through which a host (master
device) issues commands—writes data to the camera and retrieves responses. CCI registers
can be seen in figure 3.11. Each register is 16 bits wide and alongside 4 control registers, the
CCI has up to 16 D A T A registers. In addition, the C C I also has two block data registers
for big transactions (such as for uploading color palettes), each being 1024 bytes wide.

Lepton CC I / TWI Interface

Sub-Address

0x0000

0x0002

0x0004

0x0006

0x0008

0XO00A

0XO00C

OxOOOE

0x0010

0x0012

0x0014

0x0016

0x0018

0x001 A

Figure 3.11: Partial Lepton 3 C C I register illustration. (Source: [13][9].)

Power On/Off register is used to wake up the camera after putting it into shutdown
mode. We achieve this by writing zero to the register.
Lepton C C I supports three types of commands:

• G E T - host requests data from the camera (e.g. retrieves camera statistics).

• SET - host alters configuration of the camera (e.g. sets output video format).

• R U N - host makes camera execute an action (e.g. manually issues F F C calibration
process).

Most commands require some data to be transfered as a part of a command either
from master host to the camera or the other way around. This data is written into the
D A T A registers. To signalize how many D A T A registers were set—either by the host
when executing a SET command or by Lepton when extracting information using a GET
command—we use DATA length register. Number written into the D A T A length register
signifies how many 16-bit D A T A registers are in use, and thus valid for current command.

Commands are grouped and identified by a module they affect. Lepton C C I modules
are: AGC, SYS, VID, OEM, RAD. Camera modules encapsulate properties, attributes
and methods of a camera sub-system. For example commands corresponding to the A G C
module alter the process of automatic gain control process (AGC) , analogically commands
in the R A D module control radiometry features and so on.

Power On/Off Register

STATUS Register

Command ID Register

DATA Length Register

• ATA 4 Register

DATA 5 Register

DATA & Register

• ATA 7 Register

• ATA S Register

• ATA 9 Register

Command STATUS read
here. BUSY Bit is 0

Command ID'S written here

Length of DATA to read/
write goes here

Command D A T A ľ O here
Up to 1B registers

18

Command ID register

In order to specify and issue a command over the CCI , a Command ID register must be
set properly. See command ID register overview in figure 3.12. A command is identified by
a module ID (bits 8-11) and then by a command ID (bits 2-7) with respect to the module
specified. For each Lepton 3 module, a unique command ID identifies a command. The
O E M bit (bit 14) serves as a safety measure—this bit must be set in order to run commands
from O E M and R A D modules. Last thing to set is the command type (bits 0-1).

15 14 13 12 11 10

Undefined

BIT;
O E M
BIT

Undefined

BITS
Module

ID

0 0 0 0 undefined
0 0 0 1 A G C
0 0 1 0 SYS
0 0 1 1 VID •••

Public
M o d u l e

Command IDs
(up to 64 per module)

Y

Command
Type

0 0 GET
0 1 SET
1 0 RUN
1 1 undef ined

Figure 3.12: Command ID register overview. (Source: [][17].)

Status register

The Lepton's status register contains information about command and camera boot status.
See status register illustrated in figure 3.13.

Boot status bit (bit 2) is set after a successful boot. A master device can monitor this
bit to know when the camera has booted up.

After a command is issued to the camera, the busy bit (bit 0) is set automatically.
When the busy bit is set, the camera is processing a command and does not accept new
commands. When the command is completed, an error response code is written into the
high 8 bits (bits 8-15) of the status register and the busy bit is cleared. If an error response
code is 0, the command has completed successfully. In any other case, an error has occurred
during execution of the command and an error specific code is written to the status register
according to the C C I documentation [][21].

15 14 13 12 11 10

Response Error Code
Range: -128 t o O

Reserved
BITs

Boot Boot
Status M o d e

Bit Bit

BUSY
Bit

Figure 3.13: Lepton 3 status register overview. (Source: [][18].

Writing to the camera

The camera supports write access to any random 16-bit aligned location. The address
of a target register to write to is specified at the beginning of the transmission process.

19

After setting the target address, we can start writing bytes to the specified location. The
number of bytes written must be even (16 bits registers and transmission units). In the
transmission, the most-significant-byte-first order is used. After writing a byte, the target
register address automatically increases by one. This way we perform sequential writings
easily. Figure 3.14 illustrates sequential writing to the camera.

DEVICE ADDRESS [7:1] D A REGISTER ADDRESS [15:8] A REQISTER ADDRESS [7.0] A DATA [IS: E J A DATA [7:0] A DATA[7XJ] |A

rJ-•, :• J : J : J J •;; V*. :J ^ HIWBJSEAL[UBS VALID AEDHESS»:1 ^Acratg,-»2 / / ^ APPMiS ^

'̂''j Aiito-Incremerit Address |'

Figure 3.14: Sequential writing to the camera using the CCI . (Source: [][15].)

A necessary sequence of bytes for a successful write using the C C I is the fol
lowing:

1. Byte with device address (higher 7 bits) and bit determining a write operation (bit 0
set to 0).

2. Higher byte of the address to write to.

3. Lower byte of the address to write to.

4. Higher byte of the 16-bit value to be written to the address specified.

5. Lower byte of the 16-bit value to be written to the address specified.

6. Repeat steps 4 and 5 for writing a 16-bit values to the next register (address + 2).

7. End transmission.

Note, that these bytes must be transmitted without interruption. If the transmission
is stopped by sending a stop bit (P), it is necessary to resend the device address and the
target register address.

Reading from the camera

Performing a read from the camera is a bit more complicated as two transmissions are
necessary. First, we have to perform a write operation to set a target address to read from.
Secondly we initiates a second transmission—this time a read transmission and we begin
to read bytes from the address we have specified. Again after each byte the target address
automatically increases. Figure 3.15 illustrates reading from the camera using the CCI .

: DEVICE ADDRESS [7:1] D A REGI5TER ADDRESS [1S:S[A REGISTER ADDRESS [7:0] A DEVICE ADDRESS [7:1] 1 A DATA [15: S]

Figure 3.15: Sequential reading from the camera using the CCI . (Source: [13][14].

A necessary sequence of bytes for a successful read using the C C I is the follow
ing:

1. Write operation — set the target address (same as regular writing, but
without writing data to the address).

20

(a) Byte with device address (higher 7 bits) and bit determining a write operation
(bit 0 set to 0).

(b) Higher byte of the address to read from.

(c) Lower byte of the address to read from.

(d) End transmission.

2. Read operation — read from the target address specified.

(a) Byte with device address (higher 7 bits) and bit determining a read operation
(bit 0 set to 1) .

(b) Higher byte of the 16-bit value read from the address specified.

(c) Lower byte of the 16-bit value read from the address specified.

(d) Repeat steps 2 and 3 for reading a 16-bit values from the next register (address
+ 2).

(e) End transmission.

Startup sequence

When accessing the CCI of the Lepton camera after power up, the following sequence is
recommended:

1. Wait 950 ms minimum after power up/master clock applied. (In case of automatic
F F C mode, extend the wait time to 5 s.)

2. Read the boot bit from the status register. If the bit is 0, the camera has not booted
yet, extend wait time and repeat this step.

3. Read the busy bit from the status register. If the bit is 1, keep polling status register
until the value becomes 0.

4. Lepton camera is ready to accept commands.

Process of execution of G E T , S E T , R U N commands

Issuing a typical S E T command follows a typical sequence of read write C C I operations:

1. Poll status register until busy bit becomes 0.

2. Write data to the D A T A registers.

3. Write number of data registers written into the data length register.

4. Write command ID to the command ID register.

5. Poll status register until the busy bit becomes 0.

6. Process a command error response code from the status register.

Issuing a typical G E T command follows a typical sequence of read write C C I operations:

1. Poll status register until busy bit becomes 0.

21

2. Write number of data registers to be read into the data length register.

3. Write command ID to the command ID register.

4. Poll status register until the busy bit becomes 0.

5. Process a command error response code from the status register.

6. If command completed without any errors, perform a sequential read from the D A T A
registers.

Issuing a typical R U N command follows a typical sequence of read write C C I operations:

1. Poll status register until busy bit becomes 0.

2. Write command ID to the command ID register.

3. Poll status register until the busy bit becomes 0.

4. Process a command error response code from the status register.

3.2 Master controlling device Orange P i ™

In order to be able to communicate with the Lepton 3 module, we have to chose an appro
priate low-level computer which is able to communicate over both SPI and I 2 C interfaces.
The computer has to be powerful enough to operate SPI interface with relatively high
frequency of about 20 MHz.

While choosing the type of the computer, we must consider the fact that a single video
frame coming from the Lepton camera is at least 38 kB in size. This requirement disqualifies
many well known boards like the Arduino. A n average Arduino board with the fastest
crystal-based clock can transceive data over SPI at a rate of 20 MHz, however, it is usually
not equipped with more than a few kilobytes of R A M memory. This limitation would make
it almost impossible to receive and process video stream from the Lepton 3 camera.

Another aspect is undoubtedly the comfort of developing software support for these
computers. After considering all pros and cons, it seemed only reasonable to choose a
single-board computer of a Raspberry P i type—a powerful A R M based developing board
with capabilities of communicating over several low-level hardware interfaces providing the
comfort of high-level Linux abstraction.

22

Allwinner H5 Quad-core Cortex-A53 64bit Ethernet chip

40 Pin headers
1R Receiver

One USB 2.0

USB OTG

1000M Ethernet

Camera Interface

Power Switch
Two USB 2.0

Power(5V 2A DC) Video output and audio output
HDMI MIC

Debug TTL UART 1GB DDR RAM

Figure 3.16: Orange P i P C 2 computer overview. (Source: 6.)

In this project we are using the Orange P i PC2 A R M developing board which is
a cheaper however slightly more powerful brother of the traditional Raspberry P i . The
Orange P i is running quad-core 64-bit Cortex A53 C P U with 1 GB of R A M , and as usual
with Raspberry Pi-like boards, it has 40 general I /O pins connected to various hardware
modules. Full specifications of the developing board Orange P i PC2 can be found in table
3.3. Specific information about the computer comes from [35].

In this project we are mostly interested in SPI and I 2 C hardware modules, that enable
us to receive video frames from, as well as control the thermal camera directly from a
high-level Linux system running on the board.

The Orange P i PC2 board also provides connectivity to three U A R T 7 , two T W I 8 and
one SPI 9 hardware modules.

The C P U has enough processing power to maintain smooth operation without delays,
which turned out to be crucial for maintaining synchronization with the camera module
when transferring video frames.

6 Orange P i PC 2 official product page http://www.orangepi.org/orangepipc2/
7 U A R T - Universal Asynchronous Receiver-Transmitter
8 T W I - Two wire interface - identical to I 2 C (Inter-integrated circuit)
9 SPI - Serial peripheral interface bus

23

http://www.orangepi.org/orangepipc2/

Manufacteur Shenzhen Xunlong Software CO. , Limited
System on a chip

C P U
G P U

A l l winner H5 (sun50i)
Quad-Core Cortex-A53 A R M @ 1.3 GHz

Mali450 M P 4 G P U
D R A M 1 GB DDR3
Power D C 5V@2A
Video
Audio

H D M I 1.4, C V B S
3.5 mm Jack, H D M I , mic

Network
Storage

USB

10/100/1000 Mbps ethernet (Realtek RTL8211E)
micro SD, 16 Mb N O R flash

3 x USB 2.0 host, 1 x USB 2.0 O T G

Table 3.3: Orange P i PC2 specifications. [35]

There are several operating system officially supported by the Orange P i . Official images
include Android 5.1, Ubuntu, Debian, Raspbian as well as Banana P i . Next to official
images, we can also chose an unofficial Linux operating system Armbian 1 0 . After exploring
several images, we have decided to go with the unofficial Armbian operating system, even
though only an experimental build was available. Three main aspects were in favor for the
Armbian OS:

• Stability - some images seem to by unstable on our board, especially the Android
OS and unfortunately also Raspbian.

• Community - Armbian has plenty active forum users and is reasonably well docu
mented.

• Hardware interface access - from all available and working system images, Arm
bian image seemed to have the best support for accessing low-level interfaces on the
board.

In this project we are using the Linux Armbian 5.37 image based on desktop version of
the Ubuntu Xenial 16.04.

3.3 Enabling Orange P i hardware interfaces

Most of the times, operating systems, that are available for Raspberry Pi-like boards, come
with hardware interfaces like I 2 C or SPI disabled by default and I /O pins, that are connected
to them, are used as standard general purpose I /O pins. One can access these hardware
modules on Linux running machines using so called devices in the /dev/* directory and
control them with standard system calls like ioctl (). If there is not a device for a particular
hardware module listed in the /dev/* directory, then the module is disabled or not available
at all.

Enabling these modules happens not to be a simple task, since there is no officially
documented straight forward procedure that could be generalized to every system and
board. Steps required to enable them vary not only from one operating system to another,
but also from one board to another. Bits and pieces, about how to enable the hardware

1 0Armbian - Linux for A R M development boards https://www.armbian.com/orange-pi-pc2/

24

https://www.armbian.com/orange-pi-pc2/

interfaces for Armbian operating system, had to be collected throughout multiple Armbian
forums. [] Some well-educated guesswork with the help of the official documentation [6]
was also necessary.

As mentioned in previous paragraphs—we use so called devices to access hardware
interfaces (mapping of their hardware modules) from the Linux operating system. A device
tree (DT) is a way of describing the hardware module configuration to the operating system
kernel. In order to enable hardware modules of the S o C 1 1 we need to modify the device
tree.

For Armbian, this can be accomplished with help of so called device-tree overlays—
compiled configuration files loaded at startup and used by the kernel to create requested
hardware module pin mappings. The Armbian OS comes with several D T overlays already
included. The first step would then be to try to use the provided D T overlay at startup. This
can be achieved by modifying the /boot/armbianEnv.txt configuration file, respectively,
by adding the D T spi-spidev overlay to the used overlays as well as specifying spidev
parameters:

• param_spidev_spi_bus - ID of the SPI interface according to the pinout of the board.

• param_spidev_max_f req - setting a hard limit for the maximum speed of the SPI
interface module.

The edited section of the boot configuration illustrating usage of spi-spidev and i2c0 D T
overlay can be seen in listing 1.

overlays=spi-spidev i2c0

param_spidev_spi_bus=0

param_spidev_max_freq=100000000

Listing 1: Device-tree overlay configuration file /boot/armbianEnv.txt loaded at startup.

These lines ensure, that the precompiled device-tree overlay maps the /dev/spidevO. 0
device into the system DT.

The first zero of 0.0 in the device name corresponds to an SPI bus ID. This ID depends
on the pinout of a specific board and the SPI module used. The ID usually ranges from 0

to at most 3. The second zero corresponds to a chip select (CS) pin number. To every SPI
interface on the Orange P i board, we can connect usually up to two devices. Devices would
share the same S C K , MOSI, MISO lines, however each device would have its own CS line
(separate hardware pins). In case there is the possibility of connecting two devices to the
same SPI interface, the CS number is either 0 or 1.

To summarize, after enabling the SPI 0 interface, we should be able to see two devices
available in the device tree: /dev/spidevO. 0 and /dev/spidevO. 1—one of them using
CSO line, the other CS1 line.

In case there is still no such device visible in the D T after rebooting, that could mean
that the interface is not available or that the provided precompiled D T overlay spi-spidev
is incorrectly configured. In the second case, we may try to take the longer way of decom
piling the provided overlay first, reconfiguring it, compiling it back, and only then will the
device hopefully appear in the D T .

1 1 S O C - System on a chip—integrated circuit integrating computer components with other electronics

25

For every board there is a default hardware module configuration file stored in the
/boot/dtb/allwinner/ directory starting with a SoC code name. For Allwinner H5 SoC,
the prefix is sun50i-h5. The default configuration file for the Orange P i PC2 is therefore
sun50i-h5-orangepi-pc2. dtb. This file contains default mapping for every hardware
module on the board for a specific SoC. This might include modules controlling for example:
sound, clocks, SPI, HDMI, DMA, LCD controller, memory, USB, ethernet etc.

After configuration is loaded from this base file at startup, we override parts of con
figuration by applying D T overlays specified in the /boot/armbianEnv.txt file. The D T
overlay files are stored in the /boot/dtb/allwinner/overlay directory. The overlay file
name consists of SoC code name and overlay name. For already mentioned spi-spidev
overlay the file name is sun50i-h.5-spi-spidev.dtbo.

The . dtb and . dtbo extensions stand for device tree blob or binary. These files contain
a database, that represents the hardware components on a given board. If we want to
view or edit a device tree blob, firstly, we must decompile it into the device tree source
form (extension . dts), which is basically a form of a text file. We can decompile D T blob
files using so called device tree compiler - dtc. The compiler is usually provided with the
embedded Linux distribution. [15]

When troubleshooting the problem with a missing device, at first, we might take a look
into the main base configuration file, whether a configuration for a given hardware module
is provided. We decompile the file using the following command:

$> dtc -I dtb - 0 dts -o sun50i-h5-orangepi-pc2.dts

•-• sun50i-h5-orangepi-pc2.dtb

Listing 2: Command used to decompile device tree blob using device tree compiler.

In the file we can find sections belonging to SPI and I 2 C modules. See snippet from
configuration file in listing 3. In this file, nothing looks suspicious, as instead, everything
looks configured properly—names of the pins match and so on.

spiO {

pins = "PCO", "PCI", "P

function = "spiO";

Linux,phandle = <0x20>;

phandle = <0x20>;

PC2", II PC3";

};

i2c0 {

pins = "PA11", "PA12";

function = "i2c0";

Linux,phandle = <0x26>;

phandle = <0x26>;

Listing 3: Snippets of SPI and I 2 C module sections in the base configuration file.

26

http://sun50i-h.5-spi-spidev.dtbo

Next step is to check the overlay DT blob for each module, we want to troubleshoot.
We decompile it the same way as we have decompiled the base configuration file. Contents
of the decompiled DT blob of the spi-spidev overlay can be seen in listing 4.

compatible = "allwinner,sun50i-h5";

fragmentOO {

target-path = "/aliases";

overlay {

spiO = "/soc/spi@01c68000";

} ;

>;

fragmentOl {

target = <0xffffffff>;

overlay {

#address-cells = <0xl>;

#size-cells = <0x0>;

spidev {

compatible = "spidev";

status = "disabled";

reg = <0x0>;

spi-max-frequency = <0xf4240>;

} ;

} ;

>;

fixups {

spiO = "/fragmentOl:target:0";

>;

Listing 4: Configuration snippet of SPI 0 from spi-spidev overlay DT blob.

As we can notice on the line 18 of the SPI 0 module configuration (listing 4), the
module is set to be disabled. In our case, this was causing the problem of the device not
being visible in the system DT. What we need to do, is to change the status attribute
to "okay", recompile the device-tree Source: file back to a binary blob using command
depicted in listing 5 and replace the old blob file. (Or configure armbianEnv.txt to use
the new DT overlay.)

$> dtc -I dts - 0 dtb -o sun50i-h.5-spi-spidev.dtbo

•-• sun50i-h.5-spi-spidev.dts

Listing 5: Command used to decompile device tree blob using device tree compiler.

Repeat these steps analogically for I 2 C or any other incorrectly configured device. After
repairing the configuration of the device tree and rebooting the board, we should be able to

27

http://sun50i-h.5-spi-spidev.dtbo
http://sun50i-h.5-spi-spidev.dts

see requested devices in the /dev/* directory. (Figure 3.17 illustrating correct configuration
of SPI 0, 1 and I 2 C 0, 1, 2 devices.) [5]

root@orangepipc2: - 0 0

FiLe Edit V iew Search Terminal. He l p

root@orangepipc2:~# Is -la /dev/spi*
c r w i

 r
oot root 153, 0 Feb 8 18:14 /dev/spidevO.O

c r w
 1

 r
oot root 153, 1 Feb 8 18:14 /dev/spidevl.0

root@orarigepipc2:~# Is -la /dev/i2c*
crw-rw-- 1 root 12c 89, O Feb 8 18:14 /dev/l2c-0
crw-rw 1 root 12c 89, 1 Feb 8 18:14 /dev/l2c-l
crw-rw 1 root 12c 89, 2 Feb 8 18:14 /dev/l2c-2
root@orangepipc2:~# |

Figure 3.17: Correctly configured SPI 0, 1 and I 2 C 0, 1, 2 devices.

28

Chapter 4

Lepton 3 software library
v4l2lepton3

Once the proper functionality of both I 2 C and SPI interfaces has been confirmed using an
Arduino board as a loop-back device, next step is to develop a software layer, that would
enable us to control the camera and capture video frames. This chapter describes a software
library v4121epton3 which has been created specifically for purposes of this thesis. The
library is available publicly in a git repository 1 2. It consists of two parts:

• Frame capture tool written in fast C++ with dual segment buffering.

• Python control script allowing for sending commands to the camera.

4.1 Receiving video frames over VoSPI

Writing a custom software for receiving video from the camera would not have to be neces
sary, if we could find a decent, working, ready made library solution. Unfortunately, none
of the found libraries would work for the newer Lepton 3 camera, because either they would
not be finished or would be programmed for the previous version of the camera—Lepton 2,
whose VoSPI protocol is not compatible with the camera we are using. In addition, many
existing libraries are pointing out problems with losing synchronization with the camera.
After few unsuccessful attempts to receive frames using several libraries for example from
the Groupgets F L I R solutions git repository 1 3 1 , we came to realization, that a custom
software is required. Even though mentioned libraries did not work with our camera, they
served as an inspiration for our custom software.

4.1.1 Single frame capture using Python

The most friendly way to access the SPI interface directly from Linux system would be from
Python environment. There are plenty of Python libraries available for communication over
SPI interface. For our distribution, we are using the SPI-Py l ibrary 1 5 . Simply by using a
single import and a setup call to configure SPI mode, speed and SPI device, we can start
transferring bytes. Example transmission code is depicted in listing 6.

12v4121epton3 library official git repository https://gitlab.com/CharvN/v4121epton3
13Groupgets LeptonModule library git repository https://github.com/groupgets/LeptonModule.
14Groupgets Pylepton library git repository https://github.com/groupgets/pylepton.
1 5 SPI-Py official git repository https://github.com/lthiery/SPI-Py

29

https://gitlab.com/CharvN/v4121epton3
https://github.com/groupgets/LeptonModule
https://github.com/groupgets/pylepton
https://github.com/lthiery/SPI-Py

import spi

spi.openSPI(mode=3, device="/dev/spidevl.0", speed=15000000)

tx_bytes = tuple(0 for x in range(164))

rx_bytes = spi.transfer(tx_bytes)

Listing 6: Example code transceiving a VoSPI packet (164 bytes) using Python.

The first step was to capture a stream of raw bytes and try to match the content with
information of the VoSPI protocol provided in the Lepton 3 documentation. After grouping
captured bytes (depicted in listing 7) by 164 bytes (VoSPI packet in the raw Y14 format),
we can immediately recognize a pattern.

According to the documentation, if the highest 4 bits of the packet number column in
the VoSPI header have a value OxF, the packet is invalid. We can see the beginning of
a VoSPI segment transmission in listing 7 on the line 4 and the last VoSPI packet of a
segment (packet number 59) on the line 10.

ff ff ff ff 00 00 00 00 . . .

ff ff ff ff 00 00 00 00 . . .

70 00 7e 72 If 0b If 05 . . .

00 01 c3 3b le f4 le f 5 . . .

00 02 fb cf If 00 le f e . . .

00 03 69 6e le ed le f 2 . . .

00 3a 0a 30 If 3d If 38 . . .

00 3b 67 be If 46 If 4a . . .

ff ff ff ff 00 00 00 00 . . .

Listing 7: Raw bytes of VoSPI packet stream in hexadecimal format. Beginning and ending
of a VoSPI packet visible on line 4 and 10.

Listing 7 illustrates an ideal situation, when the host manages to pull all packets of the
segment. At first, this was not our case. In fact, we were able to receive only about one third
of the total number of packets. In the middle of the transmission the camera would stop
transmitting valid packets, send a few invalid ones and then reset the transmission from
packet 0. As mentioned in section 3.1.3, a reasonable explanation would be insufficient
speed.

In order to ensure maximum speed during transmission, we have undertaken the follow
ing measures:

• Used short wiring—no longer than 15 cm.

• Soldered wire connections directly to the Orange P i board.

• Used additional capacitor close to the Lepton camera.

• Installed extra pull-up resistor on the S C K SPI line.

30

• Cranked up the SPI speed to 20 MHz.

• Wrote as efficient Python code as possible to ensure minimal delays.

After these adjustments, we were able to read the entire segment without losing syn
chronization. We could proceed and construct an algorithm, that strictly follows the VoSPI
protocol and captures a whole frame.

Based on the information from the VoSPI protocol documentation, we were able to
construct an algorithm capturing a single frame. A Python code snippet illustrating the
algorithm is depicted in listing 8.

def capture_frame():

frame = li s t ()

segment = list ()

tx_bytes = tuple(0 for x in range(164)) # 164 bytes -

segment_number = 1

while(segment_number < 5): # for every segment number (1 ,2 ,3 ,4)
packet = spi.transfer(tx_bytes)

i f (packet[0] & OxOF) == OxF: # i f packet invalid

recapture segment

segment = li s t ()

continue

segment.append(packet)

i f (packet[1] == 59): # i f segment completed (telemetry disabled)

i f (segment[20][0] » 4) == segment_number: # i f segment valid and

<-> in order

continue capturing next segment

frame.append(segment)

segment_number += 1

segment = li s t ()

return frame

Listing 8: Python algorithm for capturing a VoSPI frame.

This way, we are able to capture a single frame at a time. See example image captured
by the camera in figure 4.1. The image is captured in raw Y14 video format mode. The
left image (a) displays pure data, the image on the right side (b) is identical to the one on
the left side, only with a linear A G C applied externally for viewing detail enhancement. As
you can see, there is almost nothing visible to the human eye on the image without A G C
applied, as the pixel values are very close to each other (scene temperature does not cover
the whole Lepton temperature range).

31

(a) Raw Y14 mode, no adjustments, pure data (b) Raw Y14 mode, linear AGC applied

Figure 4.1: Image captured by by Lepton 3 camera. Comparison between raw data and
when A G C is used.

Despite the fact, that now we are able to capture a single frame, maintaining synchro
nization with the camera and capture frames in a continuous manner seems to be a quite
difficult task. The root of this issue is the nature of Python language. Running the Python
interpreter on an A R M board, making system calls to transfer 164 bytes 60 times for each
segment gets simply too slow, even when running the SPI transfer at maximum speed of
20 MHz, which should give us some time reserve.

4.1.2 Capturing frames using v4l2lepton3

This speed issue can be solved only by implementing the capture software in a faster
language. In this subsection, the first part of the v4121epton3 library is described, which
implements frame capture in fast C++.

Dual segment buffering

Just by itself, switching to C++ code improves the performance significantly. Furthermore,
we are utilizing mulithreading to minimize system call delays. The technique is an analogy
for dual frame buffering, however in this case, we shall call it dual segment buffering as we
have two buffers for segments, not frames.

One thread performs system calls, receives VoSPI packets and writes them into a seg
ment buffer. After the segment transmission is completed, the two segment buffers are
swapped, the first thread continues capturing new packets—now into the second buffer—
and the second thread performs post-processing for every packet in the finished segment,
and copies the segment to the correct location in the frame buffer.

Using these techniques, the library does not lose synchronization with the camera while
transferring video frames, and thus allows for continuous operation.

Packet and frame post-processing

Packet post-processing, next to stripping VoSPI packet header, might include reordering
bytes for raw mode, as bytes are transfered in the opposite order (most significant byte first).
When the last fourth segment is received, and therefore the whole frame completed, frame

32

post-processing is performed. This might include performing a custom A G C algorithm
or applying custom color palette. Both packet and frame post-processing routines are
implemented as virtual methods and can be overridden for custom requirements.

In our implementation of packet post-processing, we strip out the packet header, and
only for raw mode, we change order of every two bytes.

In the frame post-process method, there is no action performed as we need unaltered
data for raw mode. For RGB888 video format, we preferably use camera's internal A G C
with preloaded color look-up table.

Virtual video loopback device

When the transmission of the whole frame is completed, we need a way to forward this frame
to the user. The v4121epton3 library works in hand with the kernel module v4121oopback
1 6 , which allows us to create V4L2

17

 virtual loopback devices in the Linux system.
Our library writes frames from the Lepton 3 camera module into a virtual video device,

which then provides accessibility to the video stream for all standard Linux tools like
ffmpeg, gstream, vie and so on. The video can also be streamed over a network. Because
the virtual video device behaves in the same way as any standard real-time video capture
device in Linux (web cameras, T V tuners), it is also possible to simply extract video frames
from the device using the OpenCV library [30]. Code extracting an image frame from a
virtual video device 0 using Python-ported OpenCV can be seen in listing 9.

1 import cv2

2 cap = cv2.VideoCapture(0)

3 ret, img = cap.read()

Listing 9: Example code for extracting an image frame from a virtual video device 0 using
Python-ported OpenCV library.

In order to get the v4121oopback kernel module up and running, it is necessary to
compile it directly on the machine. We can acquire the kernel module a using package
handling tool apt-get.There is, however, one requirement, that needs to be fulfilled before
setting up the kernel module. In order to build the module, there must be kernel headers
installed in the system and they must match the Linux kernel which you want to use it
with.

For Armbian, finding and installing the proper kernel headers is a bit tricky and re
quire some trial and error approach. We can find currently used kernel release name by
running a uname -r command. What also might help, while figuring out the proper kernel
header version to download, is to browse official Armbian remote apt repository available
at apt.armbian.com.

For our board and Armbian version, we have managed to successfully install Linux
kernel headers by using the command:

1 6 v4121oopback virtual video loopback device kernel module for Linux official git repository https:
//github. com/umlaeute/v4121oopback

1 7 V4L2 - Video 4 Linux 2

33

http://apt.armbian.com

I $> sudo apt-get install linux-headers-next-sunxi64

Listing 10: Command used to download and install Linux kernel headers for our version of
Armbian and Orange P i .

After acquiring kernel headers, the v4121oopback kernel module can be downloaded,
build and loaded with its control tool by executing commands depicted in listing 11. While
loading the module with modprobe command, we can specify number of virtual devices,
their ID and other parameters. More options available in the description of v4121oopback
available in the official git repository 16.

$> sudo apt-get v4121oopback-dkms

$> sudo apt-get v4121oopback-utils

$>

$> sudo modprobe v4121oopback

Listing 11: Command used to download, build and load the v4121oopback kernel module
and its control tool.

When the kernel module is loaded, we should be able to see a new video device available
in the system device tree, as illustrated in figure 4.2.

r o o t @ o r a n g e p i p c 2 : - 0 0

FiLe E d i t V i e w S e a r c h T e r m i n a l . H e L p

root@orangepipc2:~# modprobe v4l2loopback
root@orangepipc2:~# Is - l a /dev/vldeo*
crw-rw 1 root video B l , 0 May 6 17:22 /dev/videoO

Figure 4.2: Correctly configured virtual video loopback device 0.

Using v4121epton3 library to capture video

We can build the library using the standard make command, as the Makefile file is provided,
or we can use CMakeLists.txt.

The v4121epton3 executable can be run with following parameters:

• -s — s p i <SPI device name> name of a SPI device e.g. /dev/spidevl .0

• -v —video <video device name> name of a virtual video loopback device e.g.
/dev/videoO

• -f —format <format name> lepton3 format output video format. Possible choices
are:

— raw assumes, that the Lepton 3 VoSPI packets are 164 bytes long. Sets the video
device to Y 1 6 1 8 format.

1 8 Y16 and Y14 formats are identical, only Y14 does not use the highest two bits (14-bit resolution)

34

— rgb assumes, that the Lepton 3 VoSPI packets are 244 bytes long. Sets the
video device to RGB24 format. See example image extracted using this method
in figure 4.3.

— raw_over_rgb [Experimental] assumes, that the Lepton 3 VoSPI packets are
164 bytes long in raw format (resolution 160x120x2 bytes) and sends the data
to video device configured to RGB24 format (resolution 160x80x3 bytes) for
purposes of raw frame extraction to the Python-ported OpenCV, as this version
is unable to read frames from a video device without transforming the image to
the RGB24 format and thus losing the original raw flux values present in the Y14
format. Unfortunately the data passed through are slightly altered (probably due
to anti-aliasing or frame smoothing), making the extracted frame unusable for
raw value analysis (after reconstructing back to Y16) due to unwanted artifacts
mostly among the edges in the image. Such artifacts are visible in figure 4.4.

Figure 4.3: Example image captured from the virtual video device using RGB888 method.

35

Figure 4.4: Illustration of artifacts after reconstruction back to Y16 format when using
experimental method raw_over_rgb.

4.2 Controlling the camera over I 2 C

Second part of the library, dealing with controlling the Lepton 3 camera module, is contained
in a single lepton3.py script, that allows for sending commands to the camera. The script
uses the smbus2 Python l ibrary 1 9 to access I 2 C device in the system D T . [1] We can acquire
the library using the pip tool for Python 3:

| $> sudo pip3 install smbus2

Listing 12: Command used to acquire Python3 library smbus2 for accessing the I 2 C inter
face.

Commands sent to the camera must strictly follow the C C I protocol as described in the
section 3.1.4. The most challenging part is to send all the bits in correct order—especially
correct placement of stop bits and reinitializing transfer from the high-level Python library
calls.

The lepton3.py script contains prepared infrastructure for sequential reading/writing
and setting/reading random registers in the camera as described in detail the section 3.1.4.
This infrastructure is implemented in the Lepton3Control class and consists mainly of
three methods:

• _read_register(self, register_address, mimber_of_bytes) - reads requested
number of bytes (must be even) from a register specified by its address.

• _write_register (self, register_address, data) - writes data to a register spec
ified by its address, data can be either a 16-bit integer or an array of bytes (must be
even).

1 9Official smbus2 Python I 2 C library git repository https://github.com/kplindegaard/smbus2

36

https://github.com/kplindegaard/smbus2

• _command(self, module, command_id, command_type, data) - issues a command
with command_id in a module of a type SET/GET/RUN specified by the command_type.
The data depends on the command type—can be None for RUN command, must be an
even integer for GET command (number of bytes requested) and must be list of bytes
for a SET command.

This way, it is fairly easy to add not implemented commands directly from the doc
umentation [13] with help of command templates provided. A command example can be
seen in listing 13—the function issues a SET command in the OEM module with command
id 0EM_F0RMAT and the data being set is 16-bit value 0x0007.

1 def format_rawl6(self):

2 return self._command(Lepton3Control.OEM, Lepton3Control.0EM_F0RMAT,

Lepton3Control.SET, [0x00, 0x07])

Listing 13: Command example for setting the video format to raw mode.

At this moment, the control script implements the following commands:

• agc_enable

• agc_disable

• agc_enable_calculation

• agc_disable_calculation

• ping

• colormap_grayscale

• colormap_fusion

• ffc_radiometry

• format_rawl6

• format_rgb

• radiometry_enable

• radiometry_disable

• format_get

Usage of the Python control script is described in listing 14. Necessary argument
device_number corresponds to a I 2C device number in the Orange Pi's device tree. For
I 2C device /dev/i2c-0 the number would be 0.

| $> python3 lepton3.py <device_number> <command>

Listing 14: Usage prescription of the lepton3.py control script.

37

Chapter 5

Image processing and object
detection

This section describes a method of detecting people from a single raw thermal image and
a technique for locating people used in this project.

The software part of this chapter, dealing with detecting and locating people from a
single raw thermal image in a known environment, is available along with this thesis in
a public git repository 2 0. The repository contains Python module ThermoDetection with
helper class ThermoHelper encapsulating helper functions for detecting people. The module
also contains class Scene, which provides an abstraction over a known environment. We
use this environment model to display mutual positions of the camera, scene borders and all
detected objectes. Along with the Python module, the repository contains Python scripts
used for testing, experimenting, calibrating detection methods and plotting figures in this
thesis.

Steps describing the process of detecting people from a single thermal image can be sum
marized by the following enumeration:

1. Convert raw pixel values into real temperature.

2. Apply human-body temperature filter.

3. Increase dynamic range of the image using custom linear A G C .

4. Apply adaptive binary mean thresholding to the image resulting in a black and white
image.

5. Reduce noise using morphological transformations erosion and dilation.

6. Find contours of compact consistent shapes of warm objects.

7. Apply border boxes around found contours.

8. Filter living being object by border box threshold.

9. Apply border boxes enclosing found objects on the original image.
20thermo-person-detection git repository https://gitlab.com/CharvN/thermo-person-detection - the

second part of the software published with this thesis.

38

https://gitlab.com/CharvN/thermo-person-detection

5.1 P ixe l values to temperature

Once we obtain a single image in raw format (Y14 gray scale), whose pixels have unaltered
values of flux coming to the sensor, it is reasonable to convert the values into real tem
perature. The raw pixel values range from 0 to 16383 . In order to extract the real pixel
temperature, we must create a mapping function from flux to temperature.

Although the Lepton 3 module has radiometry support, it is not in fact true radiometry
in a sense, that we would be able to receive temperature readings from the sensor directly,
as it is possible with different models of the Lepton series. Lepton 3's radiometry mode only
compensates for the change in internal and ambient temperature difference, so that its raw
output does not get affected by this change of temperature and the camera always produces
the same data with respect to the incoming infrared flux, as described in the section 3.1.2.

For our type of camera, it is convenient to use an external spot thermometer device for
calibration purposes such as the MLX90614 2 1 . Using this device, we can create a precise
mapping function between flux values produced by Lepton module and actual temperature.

In this project, since we do not require extreme temperature precision, we can empiri
cally approximate the mapping with a linear function as depicted in equation 5.1.

t = 0.016632 *p- 50.93347 + ta (5.1)

Figure 5.1: Simple linear mapping function from raw flux pixel values into real temperature,
where t is result temperature, p is a raw pixel value to be converted and ta is the ambient
temperature.

5.2 Image processing using O p e n C V

Image processing techniques play a very important role in the detection method we propose.
Most of them are based on the OpenCV22libiaiy (Python ported) as it is a very powerful
tool in the area of image processing alongside the Numpy l ibrary 2 3 for Python. The theory
and general techniques of image processing and scene reconstruction are sourced from [],
[]. The knowledge about possibilities regarding image processing and scene reconstruction
provided by the library were gained mostly from [8], [31], [23], [21].

This subsection describes parts of the image processing technique, that we use in this
project to detect people in stationary thermal images.

5.2.1 Temperature filtering

Since we already have an image with raw flux values and temperature mapping function,
we convert pixels into real temperature and create a binary mask for all pixels with a value
in human temperature range using the numpy. inRange () function.

Since we are using only an approximated temperature mapping function, there is no
point in stating the minimum and maximum human temperature value, as these values
highly depend on the chosen temperature mapping function. The edge values, as well as
the mapping function, were determined empirically.

2 1Melexis MLX90614 spot infrared thermometer https://www.melexis.com/en/product/MLX90614/
Digital-Plug-Play-Infrared-Thermometer-TO-Can

2 2 0pen Source: Computer Vision Library https://opencv.org/
2 3Numpy scientific computing package for Python http://www.numpy.org/

39

https://www.melexis.com/en/product/MLX90614/
https://opencv.org/
http://www.numpy.org/

Before applying the binary mask on the captured image, we need to provide values for
image areas outside the human temperature range. Zero value can not be used, because
this would negatively affect normalization process later on. (We would be wasting dynamic
range of the image.)

Using the inverted binary mask, we fill areas outside human temperature range with the
higher value of the following two: lower human temperature range limit and global minimum
pixel value. This way we can merge the original image after applying the temperature mask
with the second image containing minimal values in areas outside the specified human
temperature range.

In summary, we replace all areas of the image with values outside the specified human
temperature range by the lowest reasonable value, so that we do not decrease dynamic
range of the image.

5.2.2 Normalization

Since this method is using primarily object or shape detection, algorithm it is reasonable to
perform some kind of normalization. In this case, we would use in fact a method identical
to the linear A G C . We find global minimum and maximum pixel value in the image and
map all pixels linearly between the lowest and the highest possible value.

Furthermore we are also lowering the resolution from 14 to 8 bits. Effects of applying
the linear A G C on a raw image are depicted in figure 4.1.

5.2.3 Adaptive binary mean thresholding

In the next step, we utilize OpenCV functionality and we perform adaptive binary mean
thresholding. The cv2.adaptiveThresholdO takes two parameters and they were empir
ically set to 95 for the block size and -30 for constant difference. As a result, we
get a binary image (black and white) displaying white compact shapes of objects in human
body temperature range on a black background. Example image after applying adaptive
mean thresholding can be seen in figure 5.2.

Jf f
Figure 5.2: Example of thermal binary image after applying the adaptive mean thresholding.

The adaptive mean thresholding has been chosen empirically as it outperformed other
thresholding techniques for our use case. The regular thresholding with hardcoded or evalu
ated threshold performs significantly worse than adaptive thresholding due to its nature—
single threshold value. In regular imagery, the single value threshold algorithm yields
unsatisfying results, when the light conditions are not the same across the whole image.

40

For thermal imagery, this would mean, that objects slightly colder than other, but still
in the human temperature range, would not be detected perfectly. Single value threshold
algorithms seemed very hard to tune properly. In case of changing ambient temperature of
the scene, they do not yield convincing stable results.

The adaptive thresholding differs from the standard thresholding. In the standard
thresholding, a single threshold value is used for the entire image, however, adaptive thresh
olding splits the image into blocks—squares of block size—and for every block, a local
threshold is calculated. The OpenCV functions have, apart from block size, also a
constant difference or C parameter. This parameter is simply a constant, that is sub
tracted from the calculated threshold before applying on the image. In addition, there are
two ways to calculate the threshold for every block:

• Adaptive mean thresholding
block values.

the threshold of a block is a mean of surrounding

• Adaptive Gaussian thresholding - the threshold of a block is a weighted sum of
surrounding block values, where weights £1X6 cl Gaussian window.

From the adaptive family of OpenCV's thresholding algorithms, we have also tried the
adaptive Gaussian thresholding. This algorithm performed almost the same as the one we
have chosen, however, it seemed little bit more noisy—warm objects on a colder background
were not as uniform and compact as with the mean thresholding. Comparison of mean and
Gaussian thresholding with the same block size and constant C can be seen in figure 5.3.

Jf f
(a) Adaptive mean thresholding (b) Adaptive Gaussian thresholding.

Figure 5.3: Comparison between thermal binary images after applying different adaptive
thresholding with the same parameters introducing different amount of noise.

5.2.4 Noise removal

In order to remove noise in the image, we use morphological transformations, which are
also available in the OpenCV library. Two basic operators in the area of mathematical
morphology are:

• Erosion - erodes away the boundaries of (shrinks) regions of foreground pixels (usu
ally white pixels on black background in binary images).

• Dilation - gradually enlarges the boundaries of regions of foreground pixels.

41

In order to perform the transformation, we have to provide a so called kernel. The kernel
is a structuring element that determines the precise effect of the morphological operator.
The operators on binary images work as follows:

• Erosion - we set an output pixel only if all the pixels under the kernel at the same
coordinates are set in the input image.

• Dilation - if an input pixel is set, we set output pixels in a shape of the kernel at the
same coordinates as the input pixel.

See illustration of applying erosion and dilation operators in figure 5.4.

•

(a) Original binary image. (b) Image after erosion.
1>

(c) Image after dilation.

Figure 5.4: Effects of erosion and dilation on a binary image. (Source: [] [Chapter
Morphological Transformations].)

The two basic transformations can by applied one after another. Since the order matters,
the combinations have different names and separate functions in the OpenCV as well:

• Opening - erosion followed by dilation. Removes white noise outside the white
compact objects (false positives).

• Closing - dilation followed by erosion. Removes black noise inside the white compact
objects (false negatives).

Filtration effects of opening and closing morphological transformations are depicted in
figure 5.5.

(a) Original noisy image suitable(b) Original noisy image suitable
for opening. for closing.

(c) Result image without noise.

Figure 5.5: Illustration of opening and closing morphological operators removing noise in
a binary image. (Source: [21] [Chapter Morphological Transformations].)

42

In this project, we use the following sequence to filter thermal images. Firstly, the
opening transformation with square kernel of size 2 is used and secondly, the closing with
square kernel of size 5. These transformations remove noise in the image and make all
found shapes more consistent and compact. A n example of removing noise in the thermal
image after applying adaptive mean thresholding can be seen in figure 5.6.

20

40

SO -

so -

100 •

20 -

40

60

SO

ICO

0 20 40 60 80 100 120 140

(a) Original image with noise.
0 2 0 40 6 0 80 100 120 140

(b) Result image with reduced noise.

Figure 5.6: Example of filtering effects of morphological transformations on a noisy thermal
image after thresholding applied.

5.2.5 Object shape detection

The core of the detection method, we propose, lies in function cv2. f indContours () of
the OpenCV library. Given a binary input image, the function returns a list of contours
found in the image. These contours are edge points of compact shapes (single color). It is
recommended to apply this function only on binary image for best results.

In order to differentiate between persons and random small objects or heat noise, we
encapsulate found objects into boxes with the help of function cv2. contourArea(). Then,
we can calculate border box area for every contour and based on a specified threshold value
, we are able to filter out small objects, that are most likely not people. See example of
border boxes of found objects applied on the original thermal image in figure 5.7.

Figure 5.7: A normalized thermal image with drawn border boxes around detected persons.

This technique, however, also detects black objects on a white background—cold objects
on warm ones. This behavior is unwanted. We can eliminate this problem by using oriented

43

contour area. By setting the oriented argument, when calling cv2. contourArea(), to
True, the returned area is a negative number, when the contour is white on black and
positive otherwise. This way, we can discard black contours on white background, as we
only want warm objects on relatively colder background scene. A n example of incorrectly
detected cold object in front of a warm one can be seen in figure 5.8.

Figure 5.8: Example of incorrectly detected cold object (motorcycle body armor) in front
of warm one before fix.

By acquiring a list of border boxes around detected persons in the thermal image, we
can naturally straight away determine their count.

There are many more different approaches, when trying to detect objects in a stationary
image. Every approach has its advantages and disadvantages. Even though our method of
shape detection is very simple, it performs considerably well. In fact, this method correctly
detected people in over 90 % cases in our data set. Additionally, due to its simplicity, it
has no trouble with detecting people in various poses—even very bizarre ones, as depicted
in figure 5.11.

Adaptive mean threshold: 95 , -30

0 20 40 60 80 100 120 140

Min box area: 400

Dilation & Erosion 5x5 Adaptive mean threshold: 95 , -30

20 40 60 80 10O 120 140

Mormalized image.

20 40 60 80 100 120 140

Min box area: 400

0 20 40 60 80 100 120 140 0 20 40 60 80 10O 120 140

(a) (b)

Dilation & Erosion 5x5

SO 80 100 120 140

Normalized image.

0 20 40 6 0 80 1O0 120 140 0 20 40 60 80 100 120 140

44

5.3 Scene reconstruction

At this point, we have bounding boxes around detected people with image coordinates from
the camera. In order to approximate the object coordinates in world space, we first have
to determine the camera pose in world space. Knowing the pose of a camera allows us to
reconstruct the 3D scene and display the camera and detected objects in it. The camera
pose estimation problem is often referred to as Perspective-n-point problem or PnP.

After obtaining the pose of the camera—more specifically its rotation and position
(translation)—we are able to cast rays from the camera origin into world space using pixel
coordinates of detected people, and therefore approximate their location in the observed
environment.

Knowledge used in this section comes from [16], [19], [31].

45

5.3.1 Perspective-n-point problem

The perspective-n-point is the problem of estimating the pose of a calibrated camera [10].
By pose, we understand camera's position and orientation with respect to another coor
dinate system. We will represent the camera pose by rotation matrix R and translation
vector t. Solving the PnP problem requires pairs of corresponding 3D to 2D (world to
image) mapping points. Given mapping points, estimating the pose is a matter of solving
a system of linear equations. At least 4 point pairs are required to find a single solution.
The perspective-n-point problem can be expressed by equation 5.2, which comes from the
perspective projection (world to screen/image).

Pi = K [R | t] P , (5.2)

where Pi is an image point (2D), K is a matrix of intrinsic camera parameters, R is a
rotation matrix, t is a translation vector and P w is a world point (3D).

The expanded form of equation 5.2 can be found in equation 5.3.

Xi fx 7 Cx TOO m ro2 tx

Vi = 0 fv Cy no rn ty

l 0 0 1 V20 ''21 V22 tz

xw

JJw
zw

1

(5.3)

where the fx and fy are focal lengths, cx and cy are center point coordinates of the
image (principal point) and 7 is axis skew (usually assumed 0).

The [R|t] matrix is usually extended into a single 4x4 matrix for the sake of convenience
(equation 5.4). This matrix allows to project points from world to camera space (coordinate
system) and thus is sometimes referred to as world to camera, world to view or simply
view matrix.

[R I t

''00 m ''02 tx

no rn ''12 ty

T20 ''21 T22

0 0 0 1

(5.4)

The matrix of intrinsic camera parameters K represents the transformation of a point
from camera to screen (image) space. The matrix can be assembled from known camera
parameters such as resolution and field of view or focal lengths (more on that later).

By plugging image points (2D) and corresponding world points (3D) into equation 5.3,
it is possible to acquire rotation and translation vectors and therefore construct the world
to camera transformation matrix used to project world points into camera space.

5.3.2 Scene reconstruction using O p e n C V

By solving the perspective-n-point problem, we are able to determine rotation and position
of the camera in world space based on pairs: 3D world coordinate and 2D corresponding
image coordinate. The pose estimation can be done using a function cv2.SolvePnP() in
the OpenCV library. [20] The function takes along with mentioned 2D and 3D points also
the intrinsic camera matrix K and distortion coefficients.

K
fx 7 Cx

0 fy Cy

0 0 1

46

The intrinsic camera matrix can be constructed with focal length in each axis and
usually camera resolution—width x and height y. In our case, we calculate focal lengths
fx) fy from horizontal and vertical field of view (FOV), which are known parameters of the
Lepton 3 camera module.

For the intrinsic camera parameters matrix K, we also need the principal point or center
point cx, cy, which is a relative center point to the image origin. In equation 5.5, the center
point is calculated using camera's image resolution x and y.

x
cx = -

- y
Cy ~ 2

(5.5)

fx = (5-6)
tan i"<-2

p..
f. t a n ^

The 7 variable represents axis skew causing shear distortion in the projected image. For
our camera and simplicity, we assume 7 = 0. In this project, we are also not taking into
count radial nor tangential distortion of the camera, which means, that we keep distortion
coefficients equal to 0.

Given array of world points, image points, intrinsic camera parameters and distortion
coefficients, the cv2.solvePnP() function returns rotation and translation vectors of
the camera, which represent the pose of the camera.

From the rotation vector, we are able to acquire the rotation matrix using the Rodrigues'
algorithm 2 ' 1 and express the whole transformation from world to camera space using a
single matrix—world to camera matrix. The Rodrigues' algorithm is also available in
the OpenCV library as cv2.Rodrigues().

5.3.3 Reversing world to screen projection

After obtaining the world to camera matrix, we can reverse the whole (world to screen)
transformation in order to project points from the image back to world space. To reverse
the transformation, we need to rearrange equation 5.2 (or 5.3). The rearranged equation
can be seen in equation 5.7.

xw

Vw

_ww

where
TOO ro2 -1

t X

no m r\2 ty
T20 ''21 T22 tz

Rodrigues' rotation formula - allows to compute a rotation matrix from an axis-angle representation
(rotation vector).

R 1 - R - 1 t
0 1

K
Xi

Vi
l

(5.7)

47

Also note, that since the rotation matrix R is an orthogonal matrix with its determinant
equal to 1, its inverse is equal to its transpose.

R" 1 = R T

The rearranged equation 5.7 describes the process of transformation of a point from
image space back to world space. The intrinsic camera matrix inverse represents the trans
formation from screen (image) space into camera space. Again, we again can assemble a
single 4 x 4 matrix simplifying the transformation from the camera coordinate system to
the world coordinate system. The matrix corresponding to this transformation would be
called camera to world matrix. This matrix is the key to reverse projecting points.

It is important to note, that when projecting any point from world space (3D) to screen
space (2D), we always lose the depth dimension. When reverse projecting a point from
screen space, it is impossible to determine the original world point, as infinite number of
world points with varying depth gets projected into a single screen point.

What we can do with any screen point, that we want to reverse project, is to cast a
ray from camera origin that intersects one arbitrary world point, which is projected to the
initial screen point. The ray is effectively a line in world coordinates, whose points all get
projected into the same one screen point.

For purposes of locating detected people, the ray would intersect the position of their
feet or head. We can then assume, that the person is standing on the ground or we can
calculate with an average person height to collapse the ray into a single point in world space.
In this case, we would explicitly set the point's z coordinate—height from the ground. For
any detected object in the thermal image enclosed with its bounding box, we can either
assume its lower edge is touching ground or its upper edge is located the human average
height above ground.

Reverse projection steps for any image point

For every image 2D point P i , we want to reverse project into a single world 3D point P ,
the following steps are required:

1. Multiply the inverted matrix of intrinsic camera parameters K _ 1 and image point
P i = [xi,Vi, 1] T- This projects the image point into camera space, resulting in point
Pc

2. Project point in camera space P c = [xc, yc, zc, l]T into world space by multiplying the
camera to world matrix with it. This results in an arbitrary world point P w , that
gets projected to initial image point P i .

3. Use step 2 to project camera origin in camera space C c = [0,0,0,1]T into point in
world space C w . (Note, that this step can be done only once for a particular scene.)

4. Calculate euclidean vector R (ray direction) with the direction from camera origin
C w to point P w . This vector with the camera origin effectively describe the ray or
line in world space, whose points get projected into initial image point P i . We obtain
the vector by subtracting the camera origin from the projected point.

R = Pw — C w

18

5. By scaling vector R with scalar s and adding it to the camera origin, find the single
result reverse projected point P on the ray in world space.

P = C w + s R

Scalar s can be adjusted, so that the result point meets our specific requirements.
In our case, we want the z coordinate of the point to have a specific value z. We
compute the scalar the following way:

This method of locating people turned out to work very well. Its weakest point is
the necessary precision of the mapping 3D to 2D points, which are required for a proper
estimation of the pose of the camera. A n example representing detected and located people
can be seen in figure 5.12.

Detected objects. Located objects

Figure 5.12: Example of a room with detected people from top view.

5.3.4 Scene software abstraction

As mentioned at the beginning of this chapter, in the second part of the software published
with this thesis, we provide a scene abstraction, that can be used to model a room with
borders, dimensions and a camera inside. The scene model also allows to reverse project
image points captured with the camera into that room. The abstraction is provided by
Python class Scene in the ThermoDetection module.

Typical steps, used to calibrate and utilize this scene model, would be the following:

1. Instantiate the Scene class.

| s = Scene()

2. Set the position of the camera - (x, y) coordinates. These are the coordinates used
for marking the camera in the top view representation of the scene.

s.set_camera_position((x, y))

49

3. Set camera intrinsic parameters. This function builds and stores the intrinsic camera
matrix K and its inverse K _ 1 .

s.set_intrinsic_camera_parameters(width, height, horizontal_fov,

•-• vertical_f ov)

4. Set scene vertices—borders of the scene (edge vertices, corners of the room).

| s.add_scene_vertices(vertex_list)

5. Calibrate the scene, find the pose of the camera. The function builds and stores world
to camera and camera to world matrices. It is necessary to provide at least 4 mapping
points from 3D world space to 2D image space.

| s.scene_calibrate(points_3d, points_2d)

6. Reverse project points from image space to world space with a desired z coordinate.

| s.reverse_project_zcoord((x,y), desired_z)

7. Plot the top view representation of the scene with borders, camera and projected
points.

s.draw_scene()

50

Chapter 6

Conclusion

The goal of this project was to utilize a small low-cost thermal imaging camera Lepton
3 with the combination of image processing to create another solution to the problem of
detecting and/or locating people, which could find its usage in many areas, especially where
privacy plays an important role.

Even though the project title might suggest the main focus to be on techniques, dif
ferent approaches regarding image processing and ways of detecting people, a big part of
the project had to deal with the necessary hardware part—creating a working software
abstraction over the Lepton 3 thermal camera module, that would provide capture and
control mechanisms.

We have implemented fully functional high-level Python script for controlling the Lep
ton 3 camera module. The control script can be easily extended to support more com
mands, thanks to the provided infrastructure. This control script is a smaller part of the
v4121epton3 library, which was developed for purposes of this thesis, and is as well ready
to use. The other part of the library deals with video capture from the camera.

Furthermore, we include a single frame capturing Python script. The single capture
script, altogether with the v4l2lepton3 C + + library open various options for capturing
thermal video stream from the camera. We can access frames from the Lepton 3 camera
module directly from Python environment, or if we need to capture frames continuously,
we can utilize the faster option—using the provided C++ library, that feeds frames into
a virtual video device. From the virtual video device, we can process video frames using
standard Linux tools as vie, ffmpeg and others or stream it over a network and process
them elsewhere.

There is, however, undoubtedly a lot of opportunities to improve and extend current
relatively simple people detection algorithm, which uses temperature filtering and shape
detection with a help of the OpenCV library. The detection mechanism is the crucial part.
Once we obtain boxes enclosing detected people, it is only a matter of math to approximate
their location in a known environment. The model used for scene reconstruction displaying
position of detected people, which is also included in the software part of this thesis, is
accurate and reliable. Its only weakness is the necessity of accurate mapping points for
calculating the camera pose (calibrating the model).

The method of detecting people used in this project and described in this thesis, even
though it is based on a very simple concept, works well in over 90 % cases on our data
set. On one hand, it is common, that simpler solutions can sometimes outperform and be
more reliable than complex solutions, however, in this case, I believe, that including other
techniques, would improve its accuracy and stability even more.

51

It is important to note, that even though we have achieved relatively high success rate
of detecting people in images collected at different places from different angles under differ
ent conditions, the data was collected and examined during winter time. Before using the
system in real applications, it would be necessary to make sure the algorithm stays stable
even during the summer or in environments with higher ambient temperature. Wearing
different types of clothing, especially clothes designed to isolate heat (low thermal conduc
tivity index), might also significantly decrease the success rate of people detection. It is
important to bear this in mind, when deciding which people detection mechanism to use in
a particular use case and environment.

One of the candidate techniques for improvement, would be implementing motion track
ing. [] This mechanism would increase the success rate and lower the probability of false
positives. We could first capture a scene without any people and create a subtraction
mask. This would help to filter out static warm objects in the scene, that are the same
temperature as human beings, for instance heavy industry machines, computers and so on.
We would also be able to detect warm objects entering and leaving the scene. This would
improve overall stability and help solving an issue, the system currently has, and that is
occluded scenes—when a person is located behind another, the system detects them as a
single person, which might be unacceptable in some situations.

There are also various other approaches to object detection itself, mostly in the machine
learning field. We could try to use one of older techniques, previously used a lot with face
recognition—Histograms of Oriented Gradients (HOG) [] as feature sets fed into a support
vector machine (SVM). A larger data set with features extracted by hand would be required.
This method would, however, take more processing time to perform and the effects of the
speed decrease would have to be tested.

Since we now live in the deep learning era, we might also incorporate deep learning—
specifically convolutional neural networks. [! I] There is a new technique called YOLO (You
Only Look Once)[26] [27]. YOLO is a technique which is based on a convolutional neural
network and is the current state-of-the-art in real-time object detection [25]. I believe,
that YOLO with motion tracking would be the ultimate solution to the problem of real
time people detection from thermal imagery. YOLO however, since it is based on a neural
network, requires even a bigger data set to be trained on than SVMs and would struggle
with uncommon person poses. Wi th enough data however, this technique has the potential
to outperform all the other methods. YOLO with motion tracking shall be a subject for
further research and testing in this

The following tables sum up all parts of the project with their completion level, quality of
the solution or approximated success rate and options for improvement:

Hardware communication between Lepton 3 and Orange Pi
Description • SPI and I 2 C hardware interfaces enabled on the Orange P i com

puter.

• Mutual communication established.
Completion Done.
Improvements None.

52

Controlling Lepton 3 camera over I 2 C
Description • A Python script implemented as a part of the v4121epton3 library.

• Supports important commands.
Completion Done, working with no issues. Provided infrastructure for easy exten-

tions.
Improvements Adding support for more commands, if necessary.

Capturing video frames
Description • A Python script implemented for single frame capture.

• Implemented v4121epton3 library in C++ for sequential capture
without losing synchronization with the camera. Allows general
access to the video stream from a virtual video device.

Completion Done. Working without losing synchronization.
Improvements If possible, provide more general access to the Y16 R A W stream of

frames in the virtual video device from a Python environment, as not
all versions of OpenCV support R A W format.

Algorithm for detecting people
Description • Provided Python helper library and example scripts.

• Detection is performed from a raw thermal image. Algorithm is
based on a simple method: temperature filtering, thresholding,
morphological filtering, finding contours, applying border boxes.

Completion Done. Simple, but working method. 90 % success rate on our data
set, however further testing needed, (warm environment, occluded
objects, and so on)

Improvements This algorithm is the crucial part of the project and will be subject
to further research. There are various possibilities for improvement
and experimenting:

1. Motion tracking with background temperature masking.

2. H O G 2 5 and S V N 2 6 based detection.

3. C N N 2 7 based Y O L O 2 8 object detection.

H O G - Histograms of Oriented Gradients [9]
S V N - Support Vector Machine
C N N - Convolutional Neural Network
Y O L O - You Only Look Once [26]

53

Algorithm for locating people
Description • Provided Python scene abstraction class for 3D reconstruction with

example scripts.

• Method is based on reverse screen to world projection (ray cast
ing). Assuming, that objects touch the ground or calculating with
average person height.

Completion Done. People position estimation is accurate. The only weak point is
precise camera pose calibration in a particular scene.

Improvements Mathematically the algorithm is very accurate, however strongly de
pends on people detection algorithm. We could include heuristics:
people crouching, person too tall, which could mean two people be
hind each other etc. If needed, thermal stereo vision could be used to
improve accuracy even more.

54

Bibliography

[1] A B Electronics U K : I2C, SMBus and Armbian Linux. Feb 2017. [Online; Accessed:
25-05-2018].
Retrieved from: h t tps :
/ /www.abelectronics .co.uk/kb/ar t ic le /1061/ i2c--smbus-and-armbian- l inux

[2] Airport Suppliers, Acorel SAS: Automatic High Accuracy Passenger Counting
Systems. 2016. [Online; Accessed: 28-05-2018].
Retrieved from: h t tps : / /www.a i rpor t - suppl ie rs .com/suppl ie r /acore l /

[3] Alhamoud, A . ; Nair, A . A . ; Gottron, C ; et al.: Presence detection, identification and
tracking in smart homes utilizing bluetooth enabled smartphones. In 39th Annual
IEEE Conference on Local Computer Networks Workshops. Sep 2014. pp. 784-789.
doi:10.1109/LCNW.2014.6927735.

[4] Andriluka, M . ; Roth, S.; Schiele, B. : People-tracking-by-detection and
people-detection-by-tracking. In 2008 IEEE Conference on Computer Vision and
Pattern Recognition. Jun 2008. ISSN 1063-6919. pp. 1-8.
doi:10.1109/CVPR.2008.4587583.

[5] AnonymousPi: Using 16x2 ('1602') LCD with I2C connector with Orange Pi PC.
May 2017. [Online; Accessed: 25-05-2018].
Retrieved from: h t tps : / /forum.armbian.com/topic/4377-using-16x2-1602-lcd-
wi th - i2c -connec to r -wi th -o range -p i -pc /

[6] Armbian Community: Armbian official documentation. 2017. [Online; Accessed:
25-05-2018].
Retrieved from: https://docs.armbian.com/

[7] Armbian Official Forum, Technical Support: How to enable hardware SPI -
Allwinner H2 & H3. Mar 2017. [Online; Accessed: 29-05-2018].
Retrieved from:
h t tps : //f orum.armbian.com/topic/3772-how-to-enable-hardware-spi/

[8] Bradski, C ; Kaehler, A . : Learning OpenCV. O'Reilly Media, Inc.. 09 2008. ISBN
978-0-596-51613-0. first edition.

[9] Dalai, N . ; Triggs, B. : Histograms of oriented gradients for human detection. In 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR'05), vol. 1. June 2005. ISSN 1063-6919. pp. 886-893.
doi:10.1109/CVPR.2005.177.

55

http://www.abelectronics.co.uk/kb/article/1061/i2c--smbus-and-armbian-linux
http://www.airport-suppliers.com/supplier/acorel/
http://armbian.com/topic/4377-using-
https://docs.armbian.com/
http://orum.armbian.com/topic/3772-how-to-enable-hardware-spi/

[10] DeMenthon, D. F. ; Davis, L . S.: Model-Based Object Pose in 25 Lines of Code.
International Journal of Computer Vision, vol. 15, no. 2. June 1995: pp. 123-141.

[11] F L I R Commercial Systems, Inc.: FLIR LEPTON® 3 Long Wave Infrared (LWIR)
Datasheet. 2014. document number: 500-0726-01-09 rev. 100.

[12] F L I R Commercial Systems, Inc.: FLIR LEPTON® Lepton vs. Lepton 3 Application
Note. 2014. document number: 102-2012-100-01 rev. 100.

[13] F L I R Commercial Systems, Inc.: FLIR LEPTON® Software Interface Description
Document (IDD). 2014. document number: 110-0144-04 rev. 200.

[14] GroupGets L L C : FLIR Lepton Breakout Board Official Page, Schematics,
Specifications. 2018. [Online; Accessed: 25-05-2018].
Retrieved from: h t tps : //groupgets.com/manuf ac tu re r s /ge t l ab /p roduc t s / f l i r -
l ep ton-breakout -board-v l-4

[15] Hallinan, C : Embedded Linux Primer: A Practical Real-World Approach, 2nd
Edition, chapter 7. Bootloaders in Embedded Linux Systems. Prentice Hall, second
edition. Oct 2010. ISBN 0-13-701783-9. [Online; Accessed: 26-05-2018].
Retrieved from:
h t tp : //www. in formi t . com/art i c l e s / a r t i c l e . a s p x ? p = 164705 l&seqNum=5

[16] Hartley, R.: Multiple View Geometry in Computer Vision. Cambridge University
Press, second edition. 2004. ISBN 354049698X.

[17] Ivanov, B. ; Ruser, H . ; Kellner, M . : Presence detection and person identification in
Smart Homes. Jul 2014.

[18] Kyle McDonald: Structured Light 3D Scanning. Instructables website. Dec 2009.
[Online; Accessed: 27-06-2018].
Retrieved from:
h t tp : //www. i n s t ruc t ab le s . com/id /St ruc tured-Light -3D-Scanning/

[19] Kyle Simek: Dissecting the Camera Matrix: Part 1,2,3 - Extrinsic/Intrinsic Camera
Matrix. Kyle Simek's Computer Vision Blog. 2012-2013. [Online; Accessed:
18-06-2018].
Retrieved from: h t tp : / /ks imek .g i thub . io/2012/08/14 / decompose /

[20] Maffick, S.: Head Pose Estimation using OpenCV and Dlib. Learn OpenCV blog. Sep
2016. [Online; Accessed: 25-05-2018].
Retrieved from:
h t tps : //www.learnopencv.com/head-pose-estimation-using-opencv-and-dlib/

[21] Mordvintsev, A . ; K . , A . : OpenCV-Python Tutorials. 2013. [Online; Accessed:
26-05-2018, Revision 43532856].
Retrieved from: h t tp : / /opencv-python- tu t roa ls . readthedocs . io /en / la tes t /
p y _ t u t o r i a l s / p y _ t u t o r i a l s . h t m l

[22] Negied, N . K . ; Hemayed, E . E . ; Fayek, M . B.: Pedestrians' detection in thermal
bands - Critical survey. Journal of Electrical Systems and Information Technology.
vol. 2, no. 2. September 2015: pp. 141-148.

56

http://ksimek.github.io/2012/08/14/decompose/
http://www.learnopencv.com/head-pose-estimation-using-opencv-and-dlib/
http://opencv-python-tutroals.readthedocs.io/

[23] OpenCV Dev Team: OpenCV 3 official documentation. Feb 2018. [Online; Accessed:
26- 05-2018].
Retrieved from: https://docs.opencv.Org/3.4.l/

[24] People Counting P R O : Smart Counter DATA: wireless, data logging by 365 days,
infrared beam - product page. People Counting P R O eshop. 2018. [Online; Accessed:
27- 06-2018].
Retrieved from: h t tps :
/ /peoplecount ing.pro/product/ condor-8-people-count er-with-da ta - logging /

[25] Raval, S.: YOLO Object Detection. Nov 2017. [Online; Accessed: 26-05-2018].
Retrieved from: h t tps : / /g i thub .com/ l lSource l l /Y0L0_0b j ec t_Detec t ion/b lob/
master/Y0L07,200bject7„20Detection.ipynb

[26] Redmon, J.; Divvala, S. K . ; Girshick, R. B.; et al.: You Only Look Once: Unified,
Real-Time Object Detection. CoRR. vol. abs/1506.02640. 2015.
Retrieved from: ht tp: / /arxiv.org/abs/1506.02640

[27] Redmon, J.; Farhadi, A . : YOLO9000: Better, Faster, Stronger. CoRR. vol.
abs/1612.08242. 2016.
Retrieved from: h t t p : / / a r x i v . o r g / a b s /1612 .08242

[28] Rodger, I.; Connor, B.; Robertson, N . M . : Classifying objects in LWIR imagery via
CNNs. In Proc. SPIE: Electro-Optical and Infrared Systems: Technology and
Applications XIII, vol. 9987. 10 2016. pp. 99870-99884. doi:10.1117/12.2241858.
winner of Best Student Paper prize.

[29] Ruser, H. ; Pavlov, V . : People counter based on fusion of reflected light intensities
from an infrared sensor array, vol. 1. Jan 2006: pp. 379-383. conference: Informatik
2006 - Informatik für Menschen.

[30] Smith, J . W.: Capturing a webcam stream using vJyl2. Dec 2014. [Online; Accessed:
26-05-2018].
Retrieved from:
h t tp : / / jwhsmith.net/2014/12/capturing-a-webcam-stream-using-v412/

[31] Solem, J . E . : Programming Computer Vision with Python: Tools and algorithms for
analyzing images. O'Reilly Media, Inc.. 2012. ISBN 1449316549,9781449316549. first
edition.

[32] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer Science &
Business Media. 2011. ISBN 1848829345,9781848829343.

[33] The Economist: In-store detecting - A new industry has sprung up selling
"indoor-location" services to retailers. The Economist newspaper. Dec 2016. [Online;
Accessed: 27-06-2018].
Retrieved from: h t tps : //www.economist.com/business/2016/12/24/a-new-
i n d u s t r y - h a s - s p r u n g - u p - s e l l i n g - i n d o o r - l o c a t i o n - s e r v i c e s - t o - r e t a i l e r s

[34] Umbaugh, S. E . : Digital Image Processing and Analysis: Human and Computer
Vision Applications with CVIPtools, Second Edition. C R C Press Taylor &; Francis
Group. 2010. ISBN 14-398-0205-X.

57

https://docs.opencv.Org/3.4.l/
http://github.com/llSourcell/Y0L0_0b
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1612.08242
http://www.economist.com/business/2016/12/24/a-new-

[35] Xunlong Software CO.,Limited: Xunlong Orange Pi PC 2 - product wiki. Apr i l 2018.
[Online; Accessed: 25-05-2018].
Retrieved from: http : / / l inux-sunxi .org/Xunlong_0range_Pi_PC_2

58

http://linux-sunxi.org/Xunlong_0range_Pi_PC_2

