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Abstrakt 
Tato práce pojednává o návrhu a implementaci systému řízení kvadrokoptéry s vizuálním 
naváděním k vytištěné značce. Systém se skládá výhradně z komerčně dostupného hard
waru a open source nebo uživatelského softwaru. Jednotkami jsou například mikropočítač 
Raspberry P i 3 Model B, mikrokontrolér Arduino Nano, letový kontrolér Omnibus F3 atd. 

V první části je nastíněna struktura navrhnutého systému a popsány vlastnosti a 
funkce jednotlivých komponent. Následuje přehled použitých druhů komunikací a jejich 
verzí specifických pro létající platformy. Nakonec je popsána architektura uživatelského 
softwaru společně s fungováním jednotlivých částí a důvody pro jejich přítomnost v kódu. 

Druhá část se zaměřuje na použití knihovny pro augmentovanou realitu ArUco za 
účelem odhadování polohy, dále se zaměřuje na opatření zavedená pro kompenzaci ne
dostatků spjatých s použitím tohoto systému. Tato část také obsahuje popis vývoje 
řídícího algoritmu a následného testování implementovaného řešení. Na závěr jsou navženy 
možné další kroky ve vývoji. 

Summary 
This thesis deals with the design and comprehensive implementation of a quadcopter con
trol system with visual guidance towards a printed marker. The system consists exclu
sively of low-cost, commercially available hardware and open-source or custom software. 
The units used are, for example, microcomputer Raspberry P i 3 Model B, microcontroller 
Arduino Nano, flight controller Omnibus F3, etc. 

In the first part, the structure of the system is outlined and the properties and functions 
of the components described. Following is an overview of the communications used and 
their versions specific to flying platforms. Finally, the architecture of the custom software 
is described together with the inner workings of the single parts and the reasons for their 
presence in the code. 

The second part details the use of the ArUco augmented reality library for pose es
timation, including the measures introduced to compensate for the inherent flaws of this 
system. This part also contains a description of the control algorithm development and 
of the subsequent testing of the implemented solution, as well as suggested further steps. 
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1. Introduction 
Unmanned Aerial Vehicles (UAVs) have recently become a major focus of research for 

they allow for a variety of applications, ranging from payload transportation and search-
and-rescue missions to aerial photography and infrastructure inspections. Specifically 
rotary-wing UAVs (also known as multirotors) are gaining massive popularity; since they 
are capable of vertical take-off and landing as well as hover and slow movements, they 
are suitable for flying in confined spaces or executing precise operations. On the other 
hand, unlike fixed-wing UAVs, multirotors lack any natural stabilization elements and re
quire Inertial Measurement Units (IMUs) in conjunction with considerable computational 
resources to keep the aircraft stable. The advancements in miniaturization of these tech
nologies and their increased affordability are the main reasons behind the recent expansion 
of multirotors. 

1.1. Goals and Motivations 
Despite the significant progress in terms of computational power, localization of UAVs 
remains a substantial challenge, particularly in GPS-denied environments. It is vital to 
autonomous flight that the vehicle can obtain its own position in respect to its surround
ings. Many possible applications of multirotors include environments that obstruct the 
GPS transmission and so, additional sensory input is needed. Traditional sensors used 
for localization in robotics, such as laser scanners, are often unsuitable for UAVs due to 
the payload and power consumption constraints inherent to flying platforms. Therefore, 
cameras are often used, being a cheap, lightweight means of acquiring information-rich 
data. 

The goal of this thesis is to design and implement a quadrotor control system based 
around the aforementioned visual input. The solution should consist of low-cost, commer
cially available units and open-source or custom software. The sensing, image processing 
and computation should be done entirely on-board, as external systems and ground sta
tions pose serious limitations in real-life usage of UAVs. The aircraft should be capable 
of hovering indoors with the use of basic control principles. 

1.2. Existing Solutions 
The task of estimating the aircraft's pose (i.e. position and orientation) is typically solved 
by utilizing an array of infrared cameras and emitters distributed around the testing area 
and placing reflective markers on the tracked object. Such systems offer up to sub-
20/xm accuracy [1] and are frequently used as so-called ground truth systems, providing 
a reference when assessing the accuracy of the tested method, as can be seen in [2]. This 
solution, however, does not fulfill the requirement of on-board sensing and tends to be 
rather expensive. 

One of the major issues of on-board localization via cameras is obtaining the absolute 
scale of the viewed scene. In [3], homography is estimated between consecutive images and 
Simultaneous Localization And Mapping (SLAM) is employed to estimate the attitude 
and velocity. The data is then fused with measurements from an inertial unit through 
an Extended Kalman Filter (EKF) . Alas, low-cost commercially available IMUs only 
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1. INTRODUCTION 

provide angular velocity and acceleration, not translational. Moreover, the experiment 
was carried out in an outdoor environment in a large field, allowing for accuracy within 
2 meters, rendering it completely inapplicable for the goal mentioned above. 

A similar approach was taken in [4] where the accuracy was greatly increased with 
stereo vision, using two front-facing and two downward-facing cameras, achieving an av
erage error of 11.0cm in hover. Unfortunately, dual cameras not only result in larger 
platform and higher power demands, but also increase the computing power needed for 
image processing. Furthermore, S L A M and E K F add a layer of complexity that is beyond 
the scope of this thesis. 

Figure 1.1: A figure from [2] showing the image plane, which has to remain unaffected by 
the quadcopter's roll and pitch movements (© 2014 IEEE) 

In many scenarios (e.g. following or escorting), it is sufficient to know the exact posi
tion of the U A V in relation to a specific object. Given that the geometry of the object is 
known a priori, the scaling factor no longer presents a problem. As shown in [2], it is pos
sible to realize such an object-tracking system using only a Raspberry P i microcomputer, 
Raspberry P i native camera sensor and the OpenCV library. Nevertheless, the nature of 
the object used (a bright colored sphere) introduces the need for a camera gimbal to keep 
the camera's attitude constant. To avoid this need and reduce the payload the quadrotor 
has to carry, printed markers (originally used for augmented reality) can be utilized as 
presented in [5]. 

1.3. Proposed Solution 
The quadcopter itself will be assembled from hobby parts in a configuration that is com
monly used (and has been proven optimal for the chosen frame size) to ensure reliable 
performance. To reduce the complexity of the task, an off-the-shelf Flight Controller (FC) 
with an embedded I M U and open-source firmware will be employed, providing attitude 
stabilization. Additionally, ultrasound range finder will be connected to the F C to aid the 
custom position control algorithm by using the already-present altitude control feature 
of the FC's firmware. The F C then, based on the stick commands and the data from 
its sensors, outputs control signals to the Electronic Speed Control modules (ESCs) that 
drive the quadcopter's motors. 

The position sensing will be executed through a downward-facing camera and a printed 
marker from an open-source augmented reality library. The marker will be placed on the 

Image Plane 
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1.3. PROPOSED SOLUTION 

transmitter 

P C 

receiver 
ultrasonic 

range finder 

microcomputer F C 

4x 

camera 
E S C 

quadcopter platform 

Figure 1.2: A block diagram of the proposed solution 

ground beneath the aircraft. The image processing and position control computations will 
be performed on a microcomputer (attached to the flying platform), using the aforesaid 
library and custom software. The microcomputer will also be receiving stick commands 
from a hand-held radio controller (generally referred to as a "transmitter") to enable 
manual takeover at any moment as well as initial take-off and final landing. 

Lastly, the microcomputer will be connected to a laptop (PC) via Wi-F i , transmitting 
relevant data for debugging and receiving commands for activating the software along 
with custom software updates. The entire proposed system is illustrated in fig. 1.2. 
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2. PLATFORM 

2. Plat form 
The development of the flying platform began in the spring of 2017. The first version 

(pictured in figure 2.1) was built upon a pre-assembled quadrotor in a V-tail configura
tion; the rear arms are inverted and tilted upwards around the longitudinal axis of the 
body. Such construction leaves sufficient space for all the necessary components as the 
top rear is protected from the propellers. Unfortunately, the quadcopter proved itself 
unsuitable for hovering due to the fact that the flight controller was mounted without any 
dampening. The vibrations from the motors that propagated through the frame to the 
accelerometer in the FC's I M U resulted in invalid readings, as the sum of the accelerations 
in all axes becomes greater than the gravitational acceleration and it becomes impossible 
to determine the "downwards" direction that is used for attitude calculation. 

Figure 2.1: The first version of the quadrotor platform 

The design of the frame and the circuit board did not allow for any after-market 
dampening elements to be implemented. Also, the whole system consisted of atypical 
and proprietary solutions and only the Emax RS2205 2300KV brushless DC motors and 
Emax Lightning 20A ESCs were possible to transplant into a new frame. 

The latest version can be seen in fig. 2.2 with the units labeled. A l l the components 
installed are covered in chapter 2.1 with the exception of the Power Distribution Board 
(PCB), ESCs and motors. The propellers used are HQprop 5x4.3x3 VIS Durable, the 
frame size is 250mm (motor axis to motor axis diagonally) and the system is powered by 
a 4-cell 1500mAh Lithium-Polymer battery. 

2.1. Hardware 
As outlined in chapter 1.3, at the core of the platform is an Omnibus F3 flight controller. 
The FC ensures stability and attitude control based on the stick input. Since the FC's 
firmware (INAV version 1.9) has a surface-following feature, an ultrasonic rangefinder (US-
100) was connected via an Arduino Nano microcontroller board. The board accommodates 
initiating and receiving distance measurements from the rangefinder and sending the 
readouts to the F C upon request, using the I 2 C bus. Accounting for the fact that Arduino 
Nano uses 5V logic levels and the Omnibus F3 uses 3.3V logic, a bi-directional logic level 
converter had to be inserted between those two devices. 
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2.1. HARDWARE 

Figure 2.2: The current version of the quadrotor platform 

The stick input into the F C comes from the Raspberry P i 3 Model B via the MSP serial 
interface. Essentially, the microcomputer acts as a pilot, processing the visual data from 
the Raspberry P i camera module, performing closed-loop position control computations, 
and then, depending on whether the aircraft is in automatic or manual mode, either 
outputting the results of the algorithm or just forwarding the stick commands coming from 
the operator. Moreover, the part of the custom software present on the microcomputer 
that is responsible for image processing and position control sends data through a ROS 
network (described in chapter 2.1.2) to the part of the software that receives and outputs 
stick commands. The ROS master of that network is located on a laptop connected to the 
microcomputer's wireless network, making it possible to log the data and later analyze it. 

In the test scenario, the operator uses the T G Y i6S radio controller for manual ma
neuvering. The stick input is received by the T G Y iA6C radio receiver and turned into a 
P P M signal. As the P P M signal is very time-sensitive, another Arduino Nano had to be 
dedicated to the task of decoding it and forwarding the values via USB to the Raspberry 
P i , since the microcomputer is unsuitable for precise tasks requiring /xs accuracy. The 
early version of the platform used a single Arduino Nano for receiving the P P M signal 
and data from the microcomputer and generating output P P M signal leading to the FC. 
That solution, however, suffered from data fluctuations and output noise due to the fact 
that at any given moment, only one interrupt process can be running on the Arduino's 
M C U , thus creating inaccuracies in the time sensitive readings and signal generation. 

The entire implemented system is captured in figure 2.3, including the specific com
ponents and communication interfaces used. The following sub-chapters briefly describe 
the units and give insight into the principles of the communications used, especially the 
versions which are utilized in the field of UAVs. 
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Figure 2.3: A block diagram of the implemented solution 

2.1.1. Uni t descriptions 

Arduino Nano 

Arduino Nano (fig. 2.4) is a small single-board microcontroller based on the Atmel AT-
mega328. Among its features are an integrated miniUSB port, 8 analog pins, 22 digital 
pins (6 of which are P W M enabled), 32kB of flash memory, 2kB S R A M , l k B E E P R O M 
and a clock speed of 16MHz. The Arduino Nano accepts an input voltage between 5 and 
12 Volts. It is worth noting that all Arduino software and Arduino hardware designs are 
distributed as open-source, thus many manufacturers can produce Arduino boards legally, 
making it a cheap, universal and ubiquitous tool for prototyping and Do-It-Yourself (DIY) 
projects. 

Figure 2.4: A n Arduino Nano V3 board manufactured by Geekcreit (Tong De Limited) 
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2.1. HARDWARE 

L L C - Logic Level Converter 

A bi-directional logic level converter (also called a logic level shifter) is a circuit that safely 
steps down signals from higher voltage to lower voltage and vice versa. 

OMNIBUS F3 

Omnibus F3 (fig. 2.5) is a popular flight controller based on the STM32 F303 Micro-
Controller Unit and the MPU6000 Inertial Measurement Unit (3-axis gyroscope, 3-axis 
accelerometer). It features a BMP280 barometer unit, an On-Screen Display chip, a 
microSD card slot (for blackbox data storage), 8 P W M outputs, 3 UARTs (Universal 
Asynchronous Receiver-Transmitter interfaces) and SPI, P P M and I 2 C connections, and 
many more flying platform-specific peripherals and connectivities. The board can be 
powered by voltage of up to 21V (the voltage of a fully charged 5 cell Lithium-Polymer 
battery). 

Figure 2.5: A n Omnibus F3 flight controller board with all header pins soldered. 

Raspberry Pi 3 Model B 

Raspberry P i is a series of microcomputers developed by the Raspberry P i Foundation 
to facilitate education in the field of computer science in schools and developing coun
tries. Since the initial product launch in 2012, Raspberry Pis have outgrown their original 
purpose and found application in such fields as robotics, as well as prototyping and DIY 
projects. As of March 2018, 19 million units have reportedly been sold [6]. The predomi
nant operating system of choice is Linux. 

The Model B of the third generation (fig. 2.6) was the first one from the series to 
introduce a built-in Wi -F i chip, along with Bluetooth Low Energy. At the heart of this 
model is a Quad Core Broadcom BCM2837 64-bit ARMv8 processor accompanied by 1GB 
R A M . It offers full connectivity, including HDMI, 4 USB ports, an Ethernet port, 4-pole 
jack (audio and video) port, 40-pin extended GPIO, CSI and DSI ports, a microSD card 
slot and a microUSB port (power only). 
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2. PLATFORM 

Figure 2.6: The Raspberry P i 3 Model B [7] 

Raspberry Pi Camera V2 

The Raspberry P i Camera module V2 is a second generation of the official camera module 
for Raspberry P i microcomputers. It has an 8-megapixel sensor Sony IMX219 and is 
capable of capturing still images together with videos of resolution up to 1920x1080 
pixels and a frame rate of 30 FPS. 

T G Y i6S 

T G Y i6S is a 2.4GHz radio controller by Turnigy. It uses the A F H D S 2A protocol 
described in chapter 2.1.2. Among its highlights are two internal dual omnidirectional 
antennas (oriented at a 90° angle to each other), a backlit L C D touchscreen, a microUSB 
port for connecting to P C (firmware updates and simulator controller) and a variety of 
position, momentary and self-centering proportional wheel switches. 

T G Y iA6C 

T G Y iA6C is a 2.4GHz radio receiver by Turnigy. It also uses the A F H D S 2A protocol 
and has dual omnidirectional antennas. Its output signal is either encoded as P P M (see 
chapter 2.1.2) or S.BUS/I.BUS (digital protocols). Unlike many other radio receivers, 
the T G Y iA6C has a built-in voltage sensor to report the battery voltage back to the 
transmitter. 

US-100 

US-100 (fig. 2.7) is an ultrasonic rangefinder offering up to 1mm accuracy and a range of 
distances from 2 to 450cm. The sensor's operating voltage is 5V, its detection cone angle 
is 15° and it can communicate either in a trigger/echo mode (as detailed in chapter 2.1.2) 
or in a serial mode which also outputs temperature to further increase accuracy of the 
readings (speed of sound is temperature-dependent). The mode is selected via a jumper 
on the backside. 
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2.1. HARDWARE 

Figure 2.7: The US-100 mounted on the flying platform. 

2.1.2. Communications overview 

A F H D S 2A 

The A F H D S 2A (Automatic Frequency Hopping Digital System) is a second generation 
of the data transmission protocol developed by F L Y S K Y R C model technology Co.,LTD 
and is used in their and their partners' 2.4GHz radio control systems. 

CSI 

The Camera Serial Interface (CSI) is the standard for connecting camera modules to 
processors, originally developed for the mobile phone industry by the Mobile Industry 
Processor Interface (MIPI) Alliance. 

I 2 C 

I 2 C (Inter-Integrated Circuit) bus is a popular asynchronous serial interface that allows 
for communication between multiple "slaves" and even multiple "masters" using only two 
wires: serial data line (commonly noted as SDA) and serial clock line (SCL). To make this 
possible, each device connected to the bus has to be addressable by its own unique address. 
Also, every byte transmitted is followed by an Acknowledge (ACK) or Not Acknowledge 
(NACK) bit from the receiving side, confirming (or not) that the byte was successfully 
received and the transmission can continue. 

M S P 

The Mult iWii Serial Protocol is a widespread standard for communication with flight 
controllers over U A R T . MSP was originally part of the Mult iWii flight controller firmware. 
The data is transmitted over MSP in frames, which are structured as shown in figure 2.8. 

The header contains a preamble ("$M") and information about the direction of the 
transmission in a form of a "<" (to FC) or ">" (from FC) character. The next byte 
contains the length of the payload. The 5th byte is the message identifier, defining the 
type of message (based on a pre-defined list of message types). What follows is the 
payload itself ended with a checksum byte (security measure). At the time of writing, 
there are about 38 message types documented, ranging from raw I M U data requests and 
stick commands to control algorithm adjustments and GPS data requests. 
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size type payload 

command $|M|< N T N-bytes C 

header size type CIC 

request $ M < 0 T c | 
header size payload CFC 

response $|M| > NT T N-bytes c 

checksum -XOR( N T N-bytes ]] 

P P M 

Figure 2.8: Mult iWii Serial Protocol frame format [8] 

The Pulse Position Modulation is a signal modulation technique that uses pulses of a fixed 
width and the information transferred is encoded as time delays between the pulses. Its 
main use is in optical communication, although this description will focus on its specific 
use for communication of radio control (RC) receivers with flight controllers or other 
microcontrollers. The signal in this case has a form depicted in figure 2.9. 

1 frame, 8 channels 

channel 1 
1.500ms 

channel 5 
1.000ms 

Figure 2.9: P P M signal outputted by an R C receiver 

Every frame (usually 20ms long, varies by manufacturer) can contain up to 8 channels 
separated by fixed-width pulses (in this instance 0.4ms long). The value of every channel 
is the time delay between the pulses' rising edges and ranges from 1ms (0%) to 2ms 
(100%). In the example noted in fig. 2.9, the first channel has a value of 50%, while the 
fifth channel has a value of 0%. This percentage usually represents the amount of stick 
deflection of the transmitting radio controller. 

P W M 

The Pulse Width Modulation is a signal modulation technique that encodes the infor
mation transferred into the pulse length. The typical form of P W M signal, used in, for 
example, switched-mode power supplies or motor drivers, transfers a single value as a 
percentage of the time the signal is high. However, P W M signals are also often used as 
control signals, having a fixed-length time frame of 20ms and a pulse width ranging from 
lms (0%) to 2ms (100%). The P W M used specifically on the flying platform to transfer 
values from the FC to the ESCs follows a OneShotl25 protocol, which uses pulses 125/zs 
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to 250/xs long, allowing for refresh rates of up to 4kHz. It also does not have a constant 
time period, as it waits for the next update from the F C and only then sends the value. 
This FC-ESC synchronization results in a reduced control delay. Such kind of signal is 
visualized in fig. 2.10. 

(0%) 
0.125ms 
H • 

I F C 
update 

(20%) 
0.150ms 

•4 • 

I F C 
update 

(100%) 
0.250ms 

t F C 
update 

Figure 2.10: A n example of the P W M signal under the OneShotl25 protocol 

ROS 

ROS stands for Robotic Operating System, but rather than an operating system, it is a 
framework and a set of tools and libraries. ROS is completely open-source and lightweight 
and has been implemented in many programming languages. The system presented in this 
thesis takes advantage of the fact that ROS can connect any two processes (called nodes) 
that are on the same network. The ROS communication infrastructure offers several types 
of communication between the nodes: services (synchronous request-response communi
cation), topics (asynchronous streaming) and storing data on a Parameter Server. The 
communication style used in this case are topics. 

Topics are a unidirectional way for nodes to exchange messages anonymously and 
independently of each other in a publisher/subscriber fashion. During its initialization, 
every node has to register with the ROS master using a unique node name. ROS master 
then keeps track of publishers and subscribers to topics and enables the nodes to allocate 
each other. Firstly, a node notifies the master that it wants to publish messages to a 
certain topic. Once another node subscribes to that topic, the data stream starts flowing 
peer-to-peer. Every topic can have multiple publishers and/or multiple subscribers. The 
specific use of ROS topics on the flying platform is explained in greater depth in chapter 
2.2. 

Trigger/Echo 

Many ultrasonic rangefinders, including the US-100, HC-SR04 and SRF05, use a simple 
interface consisting of an input "trigger" pin and an output "echo" pin. To start a distance 
measurement, a 5V pulse at least 10/xs long has to be applied to the trigger pin. The 
rangefinder then emits eight 40kHz pulses and measures the time it takes for the acoustic 
waves to deflect from any objects in its way and then return back to the sensor. Lastly, 
the rangefinder holds the echo pin in a HIGH state proportionally to the time recorded. 
Given that the speed of sound is about 340m/s and that the sound wave goes across the 
distance 2 times, the value calculated from the measurement in figure 2.11 is 

503 89 • 10—^ 
distance = time • velocity = • 340 = 0.0857m = 8.57cm (2.1) 
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2.2. Software Architecture 
Both Arduino Nanos, as well as the Raspberry Pi , are running a custom software written 
in C for Arduinos and Python for the Raspberry P i . In addition, a laptop is connected 
to the microcomputer's W i - F i and is used to run the ROS master (roscore) and record 
data for later analysis. The programming language of choice, Python, unlike for exam
ple C++, is an interpreted programming language offering reduced complexity, garbage 
collection, high-level native data types without the need to declare them and overall user-
friendly syntax, making it the first choice for many program and web-app developers. The 
broad range of libraries and scientific tools together with no need for compiling are also 
the reasons for this language being used for scientific research, development and rapid 
prototyping. The Raspberry P i runs two Python scripts in particular; the first script is 
responsible for image processing and position control, the second script switches between 
the operator's stick input and the position regulator's output. The software structure is 
laid out in figure 2.12. 

The "image and control.py" script is executing a loop with a more-or-less constant 
frequency of 10Hz maintained by the rospy library's "rate.sleepQ" feature, which holds the 
script idle in case the loop finishes earlier than in the desired time period. The frequency 
was chosen for reasons detailed in chapter 3.1. At the beginning of the loop, image data is 
acquired from the Raspberry P i camera module to be processed by the ArUco augmented 
reality library (a sub-library of the CV2 library). A set of commands from the ArUco 
library is executed, first detecting potential ArUco markers of the ChArUco board, then 
refining the candidates, interpolating ChArUco corners and finally estimating the board's 
pose (position and attitude). Next, given that the library yields a valid result, the position 
control algorithm calculates the stick command needed to eliminate the control error (the 
algorithm is described in depth in chapter 3). 

Inside of this script is present a ROS node (via the rospy library) which publishes the 
position data, the stick commands and an information about whether the position control 
algorithm is receiving useful data. A l l this information is published as a single message 
into a ROS topic. The topic has 2 subscribers in total; a node running in the second 
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2.2. SOFTWARE ARCHITECTURE 
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Figure 2.12: A block diagram showing the custom software architecture 

Python script and a node running in the laptop terminal (this node performs recording 
of the messages for debugging). As noted in chapter 2.1.2, the ROS master running in 
another terminal on the laptop acts as a middleman only in the initial phase when the 
publishing node needs to be connected to the subscribing nodes. Besides creating a means 
of intercepting the data flow, the use of ROS topics also solves a problem of the first and 
second script using loops running with different frequencies. 

After decoding the stick input values from the P P M signal, the Arduino Nano sends 
them to the "image and control.py" script thanks to the pySerial library. One of the 
P P M channels contains a value representing a position of one of the radio controller's 
position switches. This switch is used by the operator to switch between "auto" (as in 
automatic) and manual mode of flight. The manual mode is engaged by the operator only 
prior to landing and in emergency situations. If the switch is in the auto position A N D 
the position control algorithm is being provided with position data, the loop in this script 
forwards the control commands to the FC via the pyMultiWii library. If either of the 
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2. PLATFORM 

conditions is not fulfilled, the script forwards the stick input (manual mode). That makes 
it possible to manually navigate the quadrotor towards the ChArUco board and for the 
position controller to take over only when it has sufficient position data. In the same way, 
if the quadrotor happens to lose the target, the script starts forwarding operator's inputs. 

Moreover, to ensure seamless transition between the stick input and the position con
troller's command and to prevent the aircraft from sudden and exaggerated movements, a 
measure displayed in fig. 2.13 was introduced. If the control command significantly varies 
from the previous value, the previous value will be slightly changed towards the command 
value. Given that the switching loop runs with a frequency of 400Hz and alfa=0.5, the 
complete transition would take 0.4s in an extreme case of a 100 points difference. 

fif a b s { xC-a i l e ron )>20 : 
a i l e r o n = a i l e r o n + n p . s i g n ( x C - a i l e r o n ) * a l f a 

e lse : 
a i l e r o n = xC 

i f abs {yC-elevator )>20: 
e l e v a t o r = e l e v a t o r + n p . s i g n ( y C - e l e v a t o r ) * a l f a 

e lse : 
I e l e v a t o r = yC J 

Figure 2.13: A transition measure preventing sudden changes in stick commands 

The remaining custom software is the code deployed on the second Arduino Nano; 
about every 76ms, distance measurement is triggered and read out. The distance is then 
sent to the FC when requested. Additionally, the built-in L E D on the Arduino board lights 
up when the distance measured is less than 100cm, providing the user with a simple way 
of troubleshooting the platform. 
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3. Position Sensing A n d Control 
For the position sensing and control, a Cartesian coordinate system with the origin 

in the center of the target was used, as illustrated in figure 3.1. The Y axis is oriented 
in the forward direction (pitch+) of the flying platform and the position in this axis is 
controlled by the elevator stick command, while the X axis is oriented in the right direction 
of the quadcopter (roll+) and the position in this axis is controlled by the aileron stick 
command. As described in previous chapters, the control in the Z axis is done by the 
flight controller's firmware's built-in surface following feature. 

The following chapters focus on describing the ArUco position estimation process and 
its properties and caveats that were discovered during testing and subsequently compen
sated for, as well as on describing the development of the position control algorithm and 
the results achieved with the solution implemented. 

Figure 3.1: A n illustration of the world coordinate system 

3.1. ArUco pose estimation 
ArUco is a popular open-source augmented reality library based on [9] and [10] and is 
now a part of the OpenCV library as a module. It is used to generate special binary 
square fiducial markers (up to 1024 unique markers) and detect them in images. To 
estimate the pose of a camera with respect to ArUco markers, the algorithm has to be 
provided with calibration parameters that describe the properties of the camera's optics. 
OpenCV offers an interactive calibration tool, making it fairly easy to obtain the camera's 
optical parameters using either dual circles pattern or a ChArUco board. ChArUco is a 
chessboard with ArUco markers interspersed inside and provides more stable and reliable 
edge recognition than a bare ArUco marker grid. 

After markers are detected and refined, the corners of the ChArUco board can be in
terpolated and the board's pose estimated. The resulting translation and rotation vectors 
represent the position and attitude of the board in respect to the camera and can be used 
for projection on the board in real time as shown in fig 3.2. 
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3. POSITION SENSING AND CONTROL 

Figure 3.2: A projection of axes and corner IDs on the detected ChArUco board 

When assessing the accuracy of the pose estimation, the Z axis measurements appeared 
to suffer from an error that was not constant, unlike the measurements in X and Y 
directions which have only an insignificant offset. The Z axis position, which corresponds 
to the distance from the ChArUco board, deviates from the ground truth in a more-or-
less linear fashion, as depicted in figure 3.3. By applying linear regression to the relation 
between the measured position and the ground truth, a simple equation can be obtained 
for retrieving a more accurate Z position value. 

linear regression 
y = x 

80 90 100 
Z position - measured [cm] 

130 

Figure 3.3: Graph showing the relation between the real and the measured Z position 
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3.1. ARUCO POSE ESTIMATION 

This relation is different for every combination of markers and had to be measured 
every time a different size or scale of the ChArUco board was chosen during the ex
perimentation phase. In the case of the board used for recording the final results, the 
particular form of the equation is: 

Zreal = 1.0577485523 • Zmeas - 5.7732550258cm (3.1) 

Despite the final Z axis value not being used in the control loop, the primary Z axis 
value, which represents the distance of the marker from the camera in the coordinate 
system originating from the camera, is important for the subsequent calculations. 

Since the position control requires information about the camera's position in the world 
coordinate system, the data gained in the aforementioned steps have to be transformed 
from their camera-centered coordinate system. First, the rotation vector is converted into 
a rotation matrix R via the Rodrigues function. Then, the position C of the camera in 
world coordinates is calculated from the R and the vector of translations T as follows 
(notation T stands for transpose): 

C = -RTT (3.2) 

To determine the optimal frequency for the position sensing and control loop, a series 
of measurements was carried out recording the performance of the Python loop running on 
the Raspberry P i microcomputer with various degrees of processing load. The results are 
summarized in figure 3.4. The speed of the marker detection and ChArUco pose estimation 
greatly varies and depends on many factors, such as the number of markers in the view, 
the distance of the board from the camera, the angle of the board, etc. Considering that 
the position control algorithm takes a negligible processing time in comparison to the 
image processing algorithm, a frequency of 10Hz was chosen for this loop. As explained 
in chapter 2.2, if the iteration of the loop finishes earlier than in 100ms, the rospy library 
will wait for the rest of the time period before allowing the loop to continue. If the 
iteration takes longer than 100ms to finish, a new iteration starts right away. 

processes running in Python: Frames Per Second 

image capture 26.4 

image capture + marker detection 11.1-13.6 

image capture + marker detection + C h A r U c o pose estimation 10.2-13.6 

Figure 3.4: Performance of a Python loop running on the Raspberry P i microcomputer 

Unfortunately, such a low-frequency video system is more prone to data outages, as 
one invalid image results in at least 100ms of no data being inputted into the position 
controller. Invalid result of the marker detection can be caused by motion blur or simply 
by the ChArUco board temporarily exiting the field of view of the camera. For these 
reasons, the isData parameter had to be designed not merely to hold a binary value, but 
to rise from 1 to a certain level instead. While this parameter is greater then 1, the last 
output of the position control algorithm is sent as a command. The maximum value of the 
parameter is 5, adding a buffer of up to 400ms for the ArUco library (the value increases 
by 1 on every iteration). The usefulness of this measure is demonstrated in figure 3.5, 
where the regions highlighted in red represent frames with no position data. 
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3. POSITION SENSING AND CONTROL 
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Figure 3.5: A flight recording showcasing the ability to minimize the position error despite 
position data outages (marked red) 

Furthermore, the data acquired from the ArUco library are accompanied by noise-like 
inconsistencies that grow stronger with greater distance of the camera from the board. 
Taking into account the relatively small field of view of the Raspberry P i camera module 
(60°x40°) and the resulting need to maintain a sufficient distance from the marker to keep 
it in view while moving around, filtering is inevitable. 

The filter of choice is a median filter as a simple yet effective means of reducing 
noise. Specifically, a median of the last 4 values is used as the input into the position 
control algorithm. The same filter and number of samples is applied to the derivatives 
(velocities). However, the existence of an array of the last 4 values causes issues upon 
detecting the position and velocity for the first time after a period of no markers being 
detected, especially if the previous values vastly differ from the current values. The 
median filter yields the "old" measurements (or values close to them) temporarily and as 
a consequence, a spike in velocity is typically seen on the output, often three to four times 
larger than the actual velocity. 

To prevent the position control algorithm from reacting to this false readout, the isData 
parameter does not start at 0, but starts at -10 instead. Therefore, the position control 
does not engage until about a full second after the first marker recognition, ensuring that 
the position and velocity data are stable and reliable. A n example of such behavior is 
shown in figure 3.6. Combined with the transition measure described in chapter 2.2, the 
system is capable of a smooth progression from the manual navigation towards the target 
to the automatic navigation when the ChArUco board is detected. 
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3.2. POSITION CONTROL ALGORITHM 

Figure 3.6: A flight recording showing the false peak in velocity and the position control 
algorithm engaging only after the data readouts have settled 

3.2. Position control algorithm 
One of the most basic concepts in control theory is a closed-loop negative feedback control 
system. As can be seen in figure 3.7, the measured process variable (output of the plant 
recorded by the sensor) is subtracted from the setpoint, which is the desired output of 
the whole system. The result of this subtraction is the error signal, based on which the 
controller decides about the value of the manipulated variable. The plant represents the 
dynamic system or process to be controlled. The output of the system, which is measured 
by the sensor and fed back, depends on the action signal from the controller and the 
dynamic properties of the plant. 

setpoint  

measured 
process 

variable 

manipula ted process 
y\ error controller 

variable 
plant 

variable 

V * 
controller plant 

t-

sensor sensor 

Figure 3.7: A closed-loop negative feedback control system 

In the case of this thesis, the setpoint is position [0,0], the controller is represented 
by the position control algorithm, the manipulated variables are the stick commands, the 
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3. POSITION SENSING AND CONTROL 

plant is the quadrotor with its actual position being the processing variable and the sensor 
consists of the camera and the ArUco library. 

The stick command translates directly into the tilt angle of the aircraft around the 
given axis. As is illustrated in figure 3.8, the tilt results in the thrust force F being 
distributed among the the X and Z axes (2D space is used for simplicity). Assuming that 
the tilt angle is very limited, small-angle approximation can be used to substitute sin(a) 
with a. The small angle also allows for approximating the vertical force as Fz pa F. Since 
the quadcopter is supposed to be static along the Z axis, the thrust can be expressed as 
F = mg, where m is the mass of the platform and g is gravitational acceleration. It is 
also assumed that the effect of air resistance is negligible, as the platform performs only 
relatively slow movements. Similar assumptions were made for example in [11]. 

sin(a)'F 

Figure 3.8: A n illustration of the force distribution resulting from the platform tilting 

To obtain the transfer function describing the relation between the stick command 
(input) and the resulting position of the aircraft (output), the following series of steps 
has to be realized, in which Xc is the stick command in the X axis (roll), ax stands for 
acceleration in the X axis and k is a constant for converting the stick command into tilt 
angle in radians: 

a = k • Xc, (3.3) 

Fx = a • mg, (3.4) 
Fx 

ax — — — a • g — k • Xc • g. (3.5) 
m 

Because acceleration is a second derivative of position, Laplace transformation yields 

ax(s) = s2 • x, (3.6) 

where the parameter s expresses derivation. By substituting ax with the result from 
equation 3.5 

k • Xc • g = s2 • x, (3.7) 

the transfer function Q of the quadcopter system can be calculated: 
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3.2. POSITION CONTROL ALGORITHM 

3.2.1. Proportional control 

The simplest type of controller is a proportional controller. The error is only multiplied 
by a constant P (as in proportional) and then directly inputted into the plant. Position 
control using only P gain was simulated and the result displayed in figure 3.9. 

0 5 10 15 
time [s] 

Figure 3.9: Position data from the simulation of proportional control 

It is apparent that such type of controller is unsuitable, as the the model oscillates with 
the amplitude equal to the initial position without any dampening. The reason is that 
the quadcopter transfer function is a second-order system as it contains two integrating 
elements (s 2). To be able to control the system, the controller must have a derivative 
term. 

3.2.2. Introducing derivative term 
To implement a derivative into the controller in an easy-to-comprehend fashion, an inner 
loop velocity control concept was chosen. The first proportional term together with the 
position error determines the setpoint for the inner loop, which acts essentially as a 
velocity controller. The system laid out in figure 3.10 describes the final version of the 
controller used (including the median filters), although slightly more complicated systems 
were tested in chapter 3.2.3. 

posit ion 
0.0] + / \ ~ ~ / \ error " 

inner loop 

velocity 
setpoint *2> 

velocity 
error 

filtered 
[dX/dt, dY/dt] 

median filter 

[dX/dt, dY/dt] 

d/dt 

filtered 
[X,Y] 

saturation 

median filter * 

Q 
[X, Y] 

measured 

. [X. Y] 
sensor sensor 

Figure 3.10: Position control system with inner loop velocity control 
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Based on the current difference of the desired position and the perceived position, the 
desired velocity is established via the Pi gain. After filtering the position data, calculating 
the derivative and filtering it again, the velocity error is multiplied by the P2 gain. Before 
the stick commands are sent to the plant, they are passed through a saturation function, 
limiting the controlled value to a safe level. 

The behavior of the controller was verified in a simulation with the Pi gain set to 0.5, 
meaning that when the platform is 30cm from the origin of the coordinate system, the 
setpoint for the velocity controller will be 15cm/s. The data plotted in figure 3.11 were 
recorded with the P2 gain holding a value of 1.4. The saturation function was limiting 
the output to 10% to ensure that the tilt angle won't surpass a threshold of the maximum 
angle for small-angle approximation. 

J l 0-

0 1 2 3 4 5 6 7 8 9 10 

Figure 3.11: Data from the simulation of the position control with inner loop velocity 
control 

3.2.3. Testing 
The tests were carried out in a local gymnasium and took over 60 hours. The first 
control algorithm that was used was an exact implementation of the controller modeled 
in chapter 3.2.2 with the exception of the P2 gain, which was initially lowered before the 
basic functionality was tested on the real system. 

In every flight, the target was slowly approached in manual mode (i.e. controlled by 
the operator) and once the system obtained position data, the control was automatically 
switched from the operator to the position controller. The direction of approach was semi-
arbitrary to capture possible differences in flight characteristics related to the direction 
of the flight of the aircraft. 
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In many of the trials, the quadrotor seemed to get in the proximity of the ChArUco 
board with successful velocity reduction, but over time, instead of getting even closer to 
the target and eliminating the control error, it started retreating, essentially resulting in 
lost of the visual of the board. A n example of such flight can be viewed in figure 3.12. 

40 
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g -20 
ft 

-40 

r •\ 
\ 

X 
Y 

1 

19 20 
time Is] 

Figure 3.12: A n example of the quadrotor retreating after getting in the proximity of the 
ChArUco board 

Assuming that the cause of this behavior was an imperfect calibration of the accelerom-
eter or other constant influence, an integral term was added in parallel with the P2 gain 
to help the controller reduce the error when the result yielded by the proportional term 
was not large enough to counter the disturbance force acting on the aircraft. The I term 
was implemented at a very low value at first, about 1%, but when raised to a level that 
would have the desired effect, large overshoots started to occur, as the quadrotor would 
not start slowing down soon enough. Figure 3.13 shows a recording of a flight in which 
the velocity does not start decreasing until after the origin of the coordinate system is 
surpassed, due to the integral component being too prominent. 

Several other implementations of the integral term were proposed and tested, including 
a system that turned the integrator on only once the quadrotor reached a position close to 
[0,0], the idea being that the initial approach would be controlled only by the proportional 
terms to ensure a timely velocity reduction. Once the absolute value of the position 
error decreases beyond a certain level, the integral term is engaged and the integrator is 
enabled. In theory, this approach should hold the platform in the close vicinity of the 
target. However, it didn't solve the original problem shown in figure 3.12. 

The reason why the P2 gain was not increased to a degree that would cause an elimina
tion of the position error was the fact that higher numbers led to sudden and exaggerated 
control commands with the effect of reaching a velocity too great to be lowered before 
losing the target from view, or too great for the camera to be able to provide useful images 
consistently. 
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Figure 3.13: A flight recording displaying the unwanted effect of the integral component 

Consequently, the whole system present on the flying platform was revised and the 
transition measure introduced (described in chapter 2.2) and the isData parameter was 
redesigned (described in chapter 3.1) to help the controller mitigate the effect of data 
outages. Furthermore, the size of the ChArUco board was increased and the number of 
markers raised. That expanded the area in which the platform can move without losing 
visual of the board and also improved accuracy of the position estimation. 

Altogether, these advancements made it possible to increase the proportional terms 
to an extent that resulted in successful position error elimination. Figure 3.14 offers the 
data from the flight that used these new values and is documented on a video recording 
attached to this thesis. The enlarged board is depicted in figure 3.1 and the measurements 
shown in figure 3.3 were carried out for this board. 

As can be seen, the system oscillates in proximity of the origin of the world coordinate 
system. This is due to several reasons. Firstly, the frequency of the control loop at 10 Hz 
is far from ideal for such a dynamic system. The more aggressive tune of the controller 
has the effect of faster movements and the loop is too slow to be able to control such 
fast processes. Secondly, the median filters cause a delay of up to 0.3s for the position 
measurements and up to 0.6s for the velocity measurements. The outcome is the controller 
acting on values that are "old" and not as relevant. Thirdly, the surface-following feature 
of the FC's firmware is not reliable for longer periods of time as the altitude starts drifting 
slightly. To compensate, the operator has to make adjustments in the set altitude. 

Unfortunately, the change to the manual input in altitude is often larger than would 
be appropriate and causes the quadcopter to significantly change the magnitude of the 
thrust force, thus significantly changing the magnitudes of the horizontal components of 
the force and introducing substantial disturbances into the system, which usually leads 
to increasing the amplitude of the oscillations despite their originally stable nature. 
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Figure 3.14: Data from the flight recorded in the video attached to this thesis 

Lastly, towards the end of the flight, the multirotor ascended to an altitude in which 
the measurements become unviably inaccurate and subsequently, the derivation becomes 
unusable due to the higher noise in the position signal. Since the control signal directly 
depends on the velocity, the controller becomes unable to act accordingly and causes the 
platform to fly out of range of the camera. 

26 



4. CONCLUSION 

4. Conclusion 
The goal of the thesis was to design and implement a quadcopter control system with 

visual guidance, using low-cost, commercially available hardware and open-source or cus
tom software, with the computations executed entirely on-board and with the capability 
to hover indoors using basic control principles. 

Based on the research of existing systems, a solution was proposed with a description 
of the units' functions and implemented in a custom-built flying platform. A l l the units 
consist of relatively cheap and widely-available components (such as the single-board 
microcomputer Raspberry P i 3 Model B or the microcontroller board Arduino Nano) and 
contain only open-source software or software written by the author of this thesis. The 
components are described in depth in chapter 2.1.1, while the communications between 
them are detailed in chapter 2.1.2, including technicalities concerning the versions of 
signals specific to U A V platforms (as opposed to general description). 

The structure and function of the custom software is outlined in chapter 2.2. Its archi
tecture and the use of the Robotic Operating System allows for the position sensing and 
control loop to run on a different frequency than the loop forwarding the stick commands 
to the Flight Controller. At the same time, all data can be recorded during flight by a 
laptop connected to the flying platform's wireless network. 

For position sensing, augmented reality library ArUco was chosen. After calibrating 
the camera and choosing an appropriate marker option, the properties, performance and 
accuracy of the pose estimation were examined and tested and compensation elements for 
inaccuracies and issues related to the image processing were designed (see chapter 3.1). 

Lastly, a model of the quadcopter system was inferred and multiple control systems 
were designed, tested in simulation and applied to the flying platform. Throughout the 
extensive testing of the system in and indoor environment, many measurement were ob
tained and many steps towards improving the system were carried out. Several datasets 
are pictured in chapter 3.2.3, including explanations for the signals' characteristics and 
proposed measures to achieve the desired behavior. 

The final version of the system is captured in the video attached to this thesis and 
corresponds with the very last figure of this thesis (figure 3.14). As stated in chapter 
3.2.3, the reason behind the oscillating tendencies is the low frequency of the control loop 
combined with the delays introduced by the median filters. Future improvements could 
include predicting the position based on data from the FC's Inertial Measurements Unit 
and fusing them with the high-delay image data via, for example, an Extended Kalman 
Filter. 
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5. List of abbreviations used 
U A V Unmanned Aerial Vehicle 

GPS Global Positioning System 

S L A M Simultaneous Localization and Mapping 

E K F Extended Kaiman Filter 

I M U Inertial Measurements Unit 

F C Flight Controller 

ESC Electronic Speed Controller 

P C Personal Computer 

P C B Power Distribution Board 

I 2 C Inter-Integrated Circuit 

MSP Mult iWii Serial Protocol 

ROS Robotic Operating System 

P P M Pulse Position Modulation 

P W M Pulse Width Modulation 

USB Universal Serial Bus 

CSI Camera Serial Interface 

FPS Frames Per Second 

R C Remote Control 

M C U Microcontroller Unit 
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6. LIST OF ATTACHMENTS 

6. List of attachments 
Attachment A : Video CD 

31 


