

University of Hradec Králové

Faculty of Informatics and Management

Department of Information Technologies

Dissertation

Sensorial Networks
embedded in Mobile Devices

Mgr. Miroslav Behan

Acknowledgement

Special thanks to my supervisor Ondřej Krejcar for acquired knowledge during my studies by writing

articles and by his effective reasonable motivation based on evolutionary mind with possibility of

change and brighter vision of future science in the Czech Republic.

Declaration

I declare that I carried out this doctoral thesis independently, and only with the cited sources, literature

and other professional sources. I understand that my work relates to the rights and obligations in

particular the fact that the University of Hradec Králové has the right to conclude a license agreement

on the use of this work as a school work.

In Hradec Králové date 2015 Signature ………………..............

Abstract / English

TITLE SENSORIAL NETWORKS EMBEDDED IN PERSONAL MOBILE DEVICES

AUTHOR Mgr. Miroslav Behan

DEPARTMENT /

INSTITUTE

Department of Information Technologies, Faculty of Informatics and

Management, University of Hradec Králové

SUPERVISOR OF THE

DOCTORAL THESIS

doc. Ing. Ondřej Krejcar, Ph.D., Department of Information

Technologies, Faculty of Informatics and Management, University of

Hradec Králové

ABSTRACT The modern society evolves into a sensorial network environment

where individual sensor data can be transformed into cumulative and

comprehensive representation for human. In a real time, it is

independent of current location or behavior. The only limits to

increase productivity and to create a smarter surrounding

environment are personal habits and technology progress. The paper

describes sensorial framework, which is dealing with the current

aspects of technology, sociology, and usability in daily life usage of

ubiquitous mobile devices with sensors, and arising computed and

energy power. Nowadays, most of the common tasks of our lives are

mainly influenced by network and social connectivity where

infrastructural speed limits are provided by the information flow.

KEYWORDS Sensor, Android, Mobile

Abstrakt / Česky

NÁZEV PRÁCE SENZORICKÉ SÍTĚ V OSOBNÍCH MOBILNÍCH ZAŘÍZENÍ

AUTOR Mgr. Miroslav Behan

KATEDRA / ÚSTAV Katedra Informačních Technologií, Fakulta Informatiky a Managementu,

Universita Hradec Králové

VEDOUCÍ DOKTORSKÉ

PRÁCE

doc. Ing. Ondřej Krejcar, Ph.D., Katedra Informačních Technologií,

Fakulta Informatiky a Managementu, Universita Hradec Králové

ABSTRAKT Současný evoluční rozvoj mobilních osobních zařízení přináší nové

příležitosti vedoucí k zefektivnění lidských činností. Společnost se

z informační posouvá do roviny senzorické, kde je možné na základě

aktivity jednotlivce a díky všudypřítomným senzorům extrahovat

znalosti o modelech chování, které mohou být prospěšné jak pro

jednotlivce, tak pro společnost. Tyto modely mohou přispět k chytré

distribuci informací, kde uživatelé definují svým chováním vlastní

informační světy, které v důsledku slouží ke kvalitnějšímu životnímu stylu

a přispívají k zlepšení procesů ve společnosti.

KLÍČOVÁ SLOVA Senzor, Android, Mobil

Abbreviation List

AIAI Artificial Intelligence Applications and Innovation

ANR Application Not Responding

API Application Program Interface

APK Android Package Kit

CI Continues Integration

CRUD Create, Read, Update and Delete

DKIM Domain Keys Identified Mail

DSL Domain Specific Language

GPS Global Positioning System

HAL Hardware Abstraction Layer

HTTP Hyper Text Transfer Protocol

IDE Integrated Development Environment

IPC Inter-Process Communication

JVM Java Virtual Machine

MAC Mandatory Access Control

MTA Mail Transfer Agent

MVC Model, View and Control

REST Representational State Transfer

SASL Simple Authentication and Security Layer

SMTP Simple Mail Transfer Protocol

SNR Signal to Noise Ratio

SPF Sender Policy Forward

SSL Secure Socket Layer

TCP Transport Control Protocol

TLS Transport Layer Security

UML Unified Modeling Language

URI Uniform Resource Identifier

VPS Virtual Private Server

WLAN Wireless Local Area Network

WYSIWYG What You See Is What You Get

Content

1. INTRODUCTION.. 1

2. GOAL OF RESEARCH ... 3

3. PROBLEM DEFINITION.. 5

3.1. PHYSICS AND PROPERTY OF REALITY .. 5

3.2. EMBEDDED SENSORS ... 7

3.3. MOBILE DEVICES... 10

3.4. USABILITY OF EMBEDDED SENSORS IN CLOUD BASED SERVICES ... 14

3.4.1. Problem of Connectivity and Data Management.. 15

3.4.2. Problem of Networking ... 15

3.4.3. Problem of Battery Management ... 16

3.5. DISCUSSION ... 17

4. RELATED WORKS .. 20

4.1. FEEL THE WORLD FRAMEWORK ... 21

4.2. MOBISENS PLATFORM ... 23

4.3. SENSLOC LOCATION SERVICE .. 25

4.4. OPEN DATA KIT FRAMEWORK ... 27

4.5. OTHER WORKS ... 28

4.6. DISCUSSION ... 29

5. DESIGN OF SOLUTION .. 31

5.1. AGILE DEVELOPMENT BACKGROUND & USED TOOLS ... 31

5.2. GOALS & REQUIREMENTS & USER STORIES .. 34

5.2.1. User stories ... 35

5.2.2. Story board.. 36

5.3. SYSTEM ARCHITECTURE & COMPONENT MODEL.. 38

5.4. ACTIVITY & FLOW MODEL .. 39

5.5. CLASS & DATA MODEL & STATE MODEL .. 46

5.5.1. Modeling tools .. 46

5.5.2. State models ... 47

5.5.3. Class model & Data model .. 49

5.6. DEPLOYMENT MODEL .. 50

6. IMPLEMENTATION ... 52

6.1. PROGRAMING TOOLS & USED FRAMEWORKS .. 52

6.2. ARCHITECTURE OF THE SYSTEM .. 55

6.3. FRONTEND IMPLEMENTATION ... 57

6.3.1. Application Layout .. 58

6.3.2. Application Logic ... 65

6.3.3. Data Storage ... 69

6.3.4. Client API ... 71

6.4. BACKEND IMPLEMENTATION ... 73

6.4.1. Core Logic .. 74

6.4.2. RESTfull API ... 76

6.4.3. Services ... 78

6.4.4. Data Storage ... 78

6.5. CONTINUES INTEGRATION .. 80

6.6. SECURITY ASPECTS .. 85

6.7. MONITORING .. 87

6.8. REVIEW BOARD .. 88

7. USE CASES IN REAL ENVIRONMENT ... 90

7.1. SMART HOME .. 90

7.2. PUBLIC TRANSPORT ... 93

8. DISCUSSION OF RESULTS .. 95

9. CONCLUSIONS .. 97

10. BIBLIOGRAPHY ... 98

11. APPENDIX A - AUTHOR’S PUBLICATION ... 102

12. APPENDIX B - FIGURES ... 104

13. APPENDIX C - TABLES ... 106

1

1. Introduction

We are facing the progressive mobile smart based reality nowadays where all life supportive

informational systems are able to propagate effectiveness of human behavior on the Earth. The key

for intelligent human behaving is in embracing ecological sustainable solutions which could move

people from financial slavery to creative oriented future. Human needs are changing accordingly to

human wisdom during each era of evolution and human dreams or desires are the most important

catalyst for elevation of effectiveness in knowledge distribution throughout mankind. The knowledge

itself consist of informational pieces where some parts are related to physical aspect of reality and

others are relevant to relations between those solid aspects which can be gathered by mobile device

sensors. The time of plain non-sensorial smart phones is more or less over, and we are facing the future

environment where built-in sensors as ambient temperature, magnetic field, accelerometer, gravity,

light, humidity, and others are common equipment of current mobile devices [1] and [2]. We assume

sensors as basement in our discovery and as mandatory information providers for building future

knowledge based sensorial informational system and as providers of physical reality aspects which the

most are related to the surrounding environment for single person in current place and time. Such

sensor centric view is the key to improve effectiveness of human behavior in relation to actual

resources and knowledge of environment.

The history of sensors started around 1883 when the first electric thermostat came up onto market

and many people consider this as the first modern, manmade sensor. “The inventor would be Warren

S. Johnson. While it might have seemed crude by the modern standards that we have today, this

thermostat was able to keep temperatures within a degree of accuracy – something that’s better than

some of the low quality thermostats on the market today! The first motion sensor used for an alarm

system came about in the early part of the 1950s, and was the invention of Samuel Bagno. His device

made use of ultrasonic frequencies as well as the Doppler Effect.” [3]

Since then the evolutionary roller-coaster of inventions came up and today we have sensors embedded

everywhere for instance in smart phones, smart walls or other surrounding technology where

information is used as relation between physical reality and system automation or in conjunction of

visualization to human for better environment cognition or decision making. The Ubiquitous

computing is modern poem which define such informational systems based on relevant inputs from

physical reality and which are important for humans based on algorithms and based on knowledge to

be able to make decisions automatically. These ubiquitous sensors and the computing power are

2

important for creation effective human life support systems which can in the future facilitate

population itself.

In further chapters we will go deeper into ubiquitous computing with consideration of its positive

aspects for human evolution. We define goal of research [Chapter 2] accordingly to our interest of

effective needs for humankind and also we define the problematic area itself over physical reality and

over its property which are also relevant to our discovery [Chapter 3]. Where we go through available

sensors and describe them in details with their pros and cons. Furthermore we do not forget on the

recognition process from computational side and perception from human side to outline criteria and

possibilities of our discovery in comparison with others related works [Chapter 4]. We define [Chapter

5] the ideal sensorial framework as blue print for design model of solution. And lastly we proceed into

particular implementation to have a proof of concepts for our research [Chapter 6]. At the end we

specify the areas of usage of our sensorial framework at various environments [Chapter 0] and provide

discussion over discovery and results gathered from real usage [Chapter 8].

3

2. Goal of Research

The goal of research is about to discover sensorial based framework which provides information

relevant to mobile device users in particular sensorial, location based or device relevant information.

The main usage of such framework we consider at home, public and work environment where users

became more productive to desired activities where sensorial framework became supportive to

everyday users activities. In abstract framework we would be able to translate physical reality

cognitively by embedded sensors in mobile devices and provide comprehensive information to users

in terms of just in time notification message types or knowledge based messages. Sensorial data should

be gathered from masses of users by non-irritating mobile device clients. Data should be sent to cloud

and analyzed for environmental and behavioral patterns of individuals to provide intelligent or smart

environment capabilities in surrounding environment. In the following list we outlined the main goals

to explicitly provide the key points of the whole work on what we are focusing on:

 Discover mobile device embedded sensors area

 Analyze Senzoric framework which exploits embedded sensors capabilities

 Design Senzoric framework with agile development approach

 Implement Senzoric framework with state of art development techniques

 Test Senzoric framework with real users

 Consider areas of usage in real environments

 Evaluate Senzoric framework

To provide such a framework there is necessary to discover physical reality which is relevant to

available sensors embedded in mobile device currently available on market. It is needed to

comprehend the quality of such sensors and what can influence the gathered data in order to outline

pros and cons of each sensor type. Especially found out the real factors which have to be considered

as mandatory for real application in real environment and with real users. The challenge would be to

design framework itself properly where effectiveness of system architecture, technical capabilities of

used components and comprehensive interaction with users are key criteria which we have to

consider. We suggest to be selected appropriate programing techniques, used software and hardware

technology to reach goals of research inevitably. The knowledge gathered during research would be

as guidance for advanced research of similar solutions.

We conclude the implementation of sensorial framework consists of technical and programing

resolution with valuable information regarding to the state of art in sensorial mobile device networks

4

useful for others to contribute or obtain summarization information in this problematic. Implemented

sensorial framework will be tested in different scenarios by real users willing to provide our test cases.

The results would become as bases for creation knowledge based systems with influence of global

human effectiveness. Also the results will provide valuable information about possible improvements,

application logic and bug fixing. The results of dissertation work would be useful for further discovery

within practical usage of sensorial based networks for mobile device users.

5

3. Problem definition

There are several areas which have to be defined first to understand core principals of reality to design

the Senzoric Framework properly. At first we should know maximal information about embedded

sensors in devices, what and how they are measuring, how and what it the output. Then we should

consider real mobile devices which are going to be used for experiments. And then we discover how

these mobile devices interact with user and environment theoretically and practically. What are the

key factors which can influence our project and how. At last we have a discussion at the end of this

chapter.

3.1. Physics and property of reality

We will start to define area of our discovery by physics and property of reality. We assume the sensors

as convertors which measure a physical quantity and then convert it into a signal. Therefore the

understanding of physical reality is relevant to sensors used in smart devices and it is important for

comprehension of our possibilities and may conclude readers to vision of future sensors innovation or

revolution.

As base part of physics we have to describe system of units SI [4]. The system was established in 1960

with the international support of standardization process where are defined seven basic units and all

others are derived from these base units namely Meter, Kilogram, Second, Ampere, Kelvin, Mole,

Candela. All other units of reality defined by mankind are derived from these seven basic ones. The

relation between them is outlined in the following [Figure 1] where solid lines are used for indication

of multiplication and broken lines for indicating of division from basic SI units.

6

Figure 1 Relation SI base units [5]

After brief description of system units [Table 1], to remind such statements forming mankind behavior

in many directions from economical, intellectual and social point of view and establish essential

knowledge of nature so important in society development, we will step further into our discovery area.

In last decade we realize to enhance mobile devices with all possible sensors which are capable to

connect our applications to external reality which are surrounding us.

We are nowadays conform with situation that all basic sensors are “a must have” in our mobile phones,

tablets or wearables for gathering data from physical reality and support our decision making

throughout visualization comprehensive form of results. We outline all sensors available on market for

daily usage by common mobile devices and their parameters and relation with physical system units

in the following [Chapter 3.2].

7

Table 1 Definition SI base units

QUANTITY NAME SYMBOL DEFINED BY

LENGTH Meter m The length of the path traveled by light in vacuum in

1/299.792.458 of a second. (1983)

MASS Kilogram kg The mass of platinum-iridium prototype (1889)

TIME Second S The duration of 9.192.631.770 periods of the

radiation corresponding to the transition between the

two hyperfine levels of the ground state of the

cesium-133 atom (1967)

ELECTRIC

CURRENT

Ampere A Force equal to 2x10-7 Nm of length exerted on two

parallel conductors in vacuum when they carry the

current (1946)

THERMO-

DYNAMIC

TEMPERATURE

Kelvin K The fraction 1/273.16 of the thermodynamic

temperature of the triple point of water length (1967)

AMOUNT OF

SUBSTANCE

Mole mol The amount of substance which contains as many

elementary entities as there are atoms in 0.012 kg of

carbon 12 (1971)

LUMINOUS

INTENSITY

Candela Cd Intensity in the perpendicular direction of a surface of

1/600.000 m2 of a blackbody at temperature of

freezing Pt under pressure of 101.325 Nm2 (1967)

3.2. Embedded Sensors

The commonly embedded sensors in mobile devices nowadays, for instance, temperature, light,

gyroscope, etc. [Table 2]; are kind of raw extractors of data from external reality but we also expect to

find and include complementary sensors in our analysis, such as microphone, camera, or battery

indicator described [Table 3]. The way of gathering sensorial data, we identified in supported system

calls dedicated to specific mobile device platform, are based on the study of literature [6], [7], [8] and

[9]. We divided the sensors into two groups where the first one is with short-term and second one is

with long-term data change characteristics. According to the data amount which sensors possibly

producing; the first group required more frequent measurement to gather the correct samples of data

for better pattern recognition, while the second group is resistant to infrequent precise

measurements. The complementary sensors are more related to pattern environment recognition

8

than behavior. From all available defined sensors, we announced which one of them are contributory

to specific behavior and environment pattern recognition with brief description. Behavior patterns are

the bases of motion effects of device sensors. That means recognition whether the device is worn and

somehow influenced by a human body. The running motion is significant with fast location movements

and periodical short shocks, while walking is distinguishable by lower shocks and slower location

changes. By standing, we assume a static body position with small movement interferences, while

sitting is more stable and longer lasting [10]. Sleeping behavior is recognizable in deferred device

position where surrounding specific pattern noise occurs.

Table 2 Native sensors embedded in current Smart Devices [11]

TYPE AND UNIT DESCRIPTION

ACCELEROMETER

(M/S2)

Motion sensor of three dimensional X, Y, Z acceleration includes gravity

magnitude which is g = 9.81 m/s2 and is expressed by following equitation:

 Acceleration = -g - ∑F / mass

To express pure acceleration, the gravity force must be removed from data

and the result is basically a linear acceleration.

from Android 1.5 API 3, from iPhone 3G

TEMPERATURE

(°C)

Environmental sensor of one dimensional ambient temperature in degree

Celsius.

from Android 4.0 API 14

GRAVITY

(M/S2)

Motion sensor of three dimensional x, y, z vector indicating the direction and

magnitude of gravity. The coordinate system is the same as acceleration.

 from Android 2.3 API 9

GYROSCOPE

(RAD/S)

Motion sensor of three dimensional x, y, z rotation vector around device’s

local axis.

 from Android 2.3 API 9, from iPhone 4S

LIGHT

(LUX)

Environmental sensor of one dimensional ambient light level indicator.

 from Android 1.5 API 3, from iPhone 3G

LINEAR

ACCELERATION

(M/S2)

Motion sensor of three dimensional x, y, z linear acceleration vector

indicating acceleration along each device axis, not including gravity. The

coordinate system is the same within acceleration. Assume following

equation:

 Acceleration = gravity + linear-acceleration

 from Android 2.3 API 9

9

MAGNETIC FIELD

(µT)

Motion sensor of three dimensional ambient magnetic fields measured in

micro-Tesla in the x, y, and z axis.

 from Android 1.5 API 3, from iPhone 3GS

PRESSURE

(HPA)

Environmental sensor of one dimensional ambient air pressure in hPa or

mBar units.

 from Android 2.3 API 9

PROXIMITY

(CM)

Environmental sensor of one dimensional distance measured in front of the

device.

 from Android 1.5 API 3, from iPhone 3G

HUMIDITY

(%)

Environmental sensor of one dimensional relative ambient air humidity.

 from Android 4.0 API 14

ROTATION VECTOR

(SCALAR)

Motion sensor of three dimensional rotation vector expressed by following

equation:

 Value = sin (θ / 2)

Where θ is angle of device has rotated around specific axe.

 from Android 2.3 API 9, from iPhone 3G

That was a brief description of basic motions, and more will be described in further discovery, as

dancing, watching, gym, fun, etc. All of them are based on accelerometer, gyroscope, rotation, or

magnetic field. Another point of view is environmental-based resolution which is more limited and

relies on external resource and social or network collected group knowledge. We defined the basic

environment as home, work, transportation, or others which are less statistically probable. The home

environment is recognizable as a place located overnight staying with the most count of occurrences

in time. Work environment is a place located over recognizable specific equal time duration

consumption over an awaken user state and most likely during a day in a different location than home.

The transportation by car, plane, boat, train, bike, etc., is recognizable by the speed of a device,

respectively, measured by location differences. Therefore, environment recognitions are essential

location sensors and supportive sensors as humidity, temperature, pressure, light, and charging

indicator.

10

Table 3 Complementary sensors derived from Smart Devices

TYPE AND UNIT DESCRIPTION

GPS

(LATITUDE,

LONGITUDE)

Location sensor of Global Positioning System where the minimal three

different satellite signals are required [12]. The coordinates are calculated

by trilateration [13] but outdoors only.

CELL GSM

(DB)

Location sensor of Global System for Mobile communication signal

measuring where coordinates are estimated over multilateration [14], [15]

within outdoors or indoors.

WIRELESS

(DB)

Location sensor type, where signal of access point results within external

knowledge base in dynamic location monitoring.

MICROPHONE

(DB)

Environmental sensor of noise level where a Signal to Noise Ratio (SNR)

technique is appropriate for environment evaluation.

CAMERA

(PIXEL)

Alternative way of a light sensor, but with another applicability, as face or

object recognition is out of energy scope.

BATTERY CAPACITY

(%)

Sensor for smart reminding to charge in specific environment and smart

battery management.

Power plugin (bool)

In building environment recognition.

In short [Table 3] above are highlighted complementary sensors which are capable to consider as

everyday usage information provider which benefits to quality of gathered data and increase

correctness of automation decision in supporting application. In the following chapter we outlined the

mobile devices it selves as mobile personal computer unit which is able to gather and analyze sensor

data in real time and provide consistent information into cloud or other parties.

3.3. Mobile devices

Cellphones, smart phones, mobile devices and others names those are synonyms for something quite

new or do we think it is just old well known personal computer but just mobile? Well that is a good

question for each one of us. Someone can tell that these are not the same old crap machines; someone

can tell we have still our mobile computers with us on every step. Nevertheless the main reason of

arise of mobile devices was actually simply communication and because human is moving mammal the

science has to come up with something small and handy what has speaker and microphone and also

with some human interface based on simple press buttons. After while the internet as new information

11

and communication medium forced this technology to adopt itself and then came into existence a

mobile devices with arm processors and big touch screens capable to handle much more variety of

user tasks.

At first we need to analyze what mobile devices are available on the market and which operation

system suits for our discovery purposes, therefore we outlined in the following [Figure 2] graph data

of smartphones OS market first to announce that the Android OS is very one suitable mobile device

operation system which we need to use regardless to others well known operation systems as iOS or

Windows Phone.

Figure 2 Smartphone OS Market Share [16]

Once we are convinced by the market which platform is the most world widely spread out we assumed

that it is a right choice speaking for Android platform. Another argument is open source available on

Android Source [17] which can be considered as a main reason for some development projects. Next

supportive argument for Android is that it is Java based programing language. The last but not least

argument why the Android is the winner one in category of the mobile device operation systems is

simply because of its open architecture. Developers are able to publish platform changes

independently and push application on the Android market without censorship. Once there is any

12

functionality developed in one application it is possible to be reused by other application by magical

intent handling. Therefore it is possible to introduce application community development which

actually speeds up and improves the usability in total application on this platform.

As far as we now know that the Java and Android OS is preferred our choice in discovery we also have

to use real mobile devices and tablets defined by exact model and brand available on market the

nowadays. Also another consideration which has to be taken into account regarding mentioned

openness of platform we have to use mobile devices models which actually support customization

from the beginning. It means that we have to be able to flash the operation system image by

customized the Android source code. There are supported models from Google Company which enable

such customization of operation system such as Nexus 7, Nexus 10, Galaxy Nexus, Motorola Xoom,

Panda Board, etc. The whole list of devices is available on Android source code [17] in section of

customized operation system images. Also to decide what devices are the most relevant and suitable

for our discovery we based our choice on the very top of worldwide used mobile devices in last year

2014. Another source is top sales Mobile Phones in the category of personal usage on daily bases world

widely [18]. The top most seller Android based mobile device is Samsung Galaxy S4, Samsung Note 3,

Samsung Galaxy S4 mini and Xioami Hongmi Redrice from sales numbers February 2014 therefore we

would use at least one Samsung device. Another mobile devices representative we also consider Sony

Xperia M and Samsung Mini 5. In terms of use of tablets we have to consider relevant Android tablet

device which would be Nexus 7 (Wi-Fi) because it enables customization operation system build. Next

tablet with the best power capacity of battery is Sony Xperia Z2 also announced as the best product of

the year 2014-2015 of EISA Awards. In the following [Table 4] we are providing the list of parameters

and features of these mobile devices and tablets to have clear comparison picture of used devices.

13

Table 4 Comparison of mobile devices [19]

MODEL SONY XPERIA M2

DUAL

SAMSUMG S5

MINI

TABLET SONY

XPERIA Z2

TABLET NEXUS 7

FRONTSIDE

WIDTH 71.14 mm 64.8 mm 266 mm 200 mm

HEIGHT 139.65 mm 131.1 mm 172 mm 114 mm

THICKNESS 8.64 mm 9.1 mm 6.4 mm 8.65 mm

WEIGHT 148 g 120 g 426 g 290 g

CPU ARM Cortex-A7 ARM Cortex-A7 Krait 400 Krait 200

CPU CORES 4 4 4 4

CPU

FREQUENCY

1200 MHz 1400 MHz 2300 MHz 1500 MHz

GPU Qualcomm

Adreno 305

ARM Mali-400

MP4

Qualcomm Adreno

330

Qualcomm Adreno

320

GPU CORES 1 4 4 4

GPU

FREQUENCY

450 MHz 450 MHz 450 MHz 400 MHz

RAM CAPACITY 1 GB 1.5 GB 3 GB 2 GB

ASPECT RATIO 1.778

16:9

1.778

16:9

1.6

16:10

1.6

16:10

RESOLUTION 540 x 960 pixels 720 x 1280

pixels

1920 x 1200 pixels 1920 x 1200 pixels

SENSORS Proximity

Light

Accelerometer

Compass

Proximity

Light

Accelerometer

Compass

Gyroscope

Light

Accelerometer

Compass

Gyroscope

Proximity

Light

Accelerometer

Compass

Gyroscope

14

Fingerprint

Heart rate

WI-FI 802.11a

802.11b

802.11g

802.11n

Wi-Fi Hotspot

Wi-Fi Direct

802.11a

802.11b

802.11g

802.11n

802.11n 5GHz

Dual band

Wi-Fi Hotspot

Wi-Fi Direct

802.11a

802.11b

802.11g

802.11n

802.11n 5GHz

802.11ac

Dual band

Wi-Fi Hotspot

Wi-Fi Direct

802.11a

802.11b

802.11g

802.11n

802.11n 5GHz

Dual band

CAPACITY 2300 mAh 2100 mAh 6000 mAh 3950 mAh

The most suitable for our discovery is mobile phone with limitless battery and with all sensors possible

to be embedded in a single device. But reality is far away from perfectness for our needs and as such

we rely on mobile devices which are reasonable on price and also which combines desired parameters

with maximal battery capacity and also are in major stream of world widely usage. We consider these

devices are only relevant in developments phase and after deployment phase we outline the cross

region model representation globally based on real use of Sensorial Framework.

3.4. Usability of embedded sensors in cloud based services

Sensors embedded in mobile devices have additional value in our research. The most important is the

influence of power consumption which is given appropriately by specific mobile device based on the

process of prioritization and real hardware consumption. Some mobile devices operation system

control power consumption provide better customer experience where in case of minimum energy

left most of the sensors are powered off. Actually if customer explicitly says that the internet

connection or GPS sensor reading is necessary for usage of the system then the device cannot be

switched off for battery saving. We assume the sensors which are commonly embedded in nowadays

mobile devices as base information channel and according to the current possibility in mobile device

segment of sensors we consider available functionalities and capabilities. Basically framework solution

has to be capable to involve future types of sensors which will evolve in terms of power consumption.

And also we have to consider that any physical characteristics have to be possible to be described in

the future therefore we have to keep in mind such functionality in our sensor framework.

15

3.4.1. Problem of Connectivity and Data Management

The connectivity is a basic factor which influences speed and power consumption of transmitted data

where the aggregation ratio between raw sensorial data and representational device state information

implicates to deliver a reasonable data stream, which competes to be the most effective informational

dataflow in time, energy consumption, and expected system functionality. We consider the minimal

granularity of sensor’s transmitted information dedicated to maximal network throughput. All it

depends on mobile device connectivity over well-known standards such as General Packet Radio

Service (GPRS), Enhance Data rates for GSM Evolution (EDGE), Universal Mobile Telecommunication

System (UTMS), High Speed Packet Access, Wireless Local Area Network (WLAN), or Worldwide

Interoperability for Microwave Access (WiMAX). We also see considerable differences between Quality

of Service according to a network type or current distance between mobile device and network access

point.

3.4.2. Problem of Networking

We focus on wireless networks where data transfer rate fluctuates more than on wired networks;

therefore, there is ongoing challenge with data optimization that has to be considered in application

development depends on location and provided technology. Nowadays, wireless networks are being

challenged by increasing amount of users and data application dependency. That is why we test the

performance of current wireless connectivity [20]. The measurements are provided over Transport

Control Protocol (TCP). Backend server is located depending on the tested technology that means using

Virtual Private Server (VPS) with backbone connectivity for mobile networks, and using local network

server for wireless fidelity (Wi-Fi). The results are outlined in [Table 5]. There are theoretical and

practical capabilities according to the types of networks which serve to smarter definition of a

development data management concept. Bandwidth emphasizes the possibilities of data amount

stream, the distance range recalls the possibility of locational change possibility during transmitting,

and measurement overview real data statistics of latency; upload and download provided by Android

mobile devices ZT3-Blade by application available on Google Play. The data acquired depend also on

the mobile network provider and its implementation of network standard. Therefore, the test results

could be different. In addition, the environmental and distance factors influence the network

connectivity. For further discovery, we expect more data from crowd with more statistical results

according to countries. The test application, where latency, the download and upload measurements,

is provided in basic testing flow triggered by a user on the start button. The principles of testing are to

disable all remaining network traffic and to locate the server to the closest location to test the device.

16

We provide only one server in Prague, so the latency could be influenced by the maximal round trip

around the world, which is in the worst case around 200 ms and around the Europe 30 ms. The testing

process starts from a client who is sending Transport Protocol Packets with minimal size 1B containing

urgent processing flags and waits until the response is received from the server, where the time

dilation is a real Round Time Trip. The download is requested from the client after latency timeout.

The server produces the maximal buffer size output stream which client receives in specific amount

sizes, estimates speed as time dilation rate, and receives sizes supported by the average value for

fluent result flow. The upload is the same on the server side just when the server is sending back to

client a 4B packet with the speed encoded from integer value. The results were gathered from

approximately 400 mobile devices by downloading applications from market. We expect to elaborate

the statistics over time and cover all available network types in further discovery.

Table 5 Wireless network limits for mobile devices

TECHNOLOGY BANDWIDTH

(D/U MBPS)

DISTANCE

RANGE

(KM)

LATENCY

(MS)

DOWNLOAD

(KB/S)

UPLOAD

(KB/S)

EDGE (2,5G) 1.3/0.6 10-35 100-1200 3-10 2-5

UTMS (3G) 28/11 5-30 50-500 20-50 10-40

HSDPA (3,5G) 42/12 5-30 - - -

LTE (4G) 100/50 5-30 - - -

WI-FI 10/54 0.001-0.5 10-100 400-1000 300-900

WIMAX 46/4 5-10 - - -

BLUETOOTH 2/2 0.001-0.005 - - -

3.4.3. Problem of Battery Management

All sensors are consuming energy to provide measurements and with mobile devices it is especially

real challenge to maximize the duration of usage of device without charging. We assumed the energy

consumption for localization is the most effective within Global System for Mobile communication

(GSM) cell bases evaluation [21]. The energy cost is lower than <20 mW and is followed by WLAN which

have around 500 mJ and finally Global Positioning System (GPS) sensor is the most consumer of energy

more than >1,000 mJ dependable on mobile device. Therefore, the sensors used for location

estimation have to be considered in order relevant to energy efficient factor. Instead of that the

accelerometer, gravity, magnetometer have quite minimal energy consumption and sampling of those

17

sensors is not that painful in terms of power management. In the following [Table 6] are measured

energy consumptions of Samsung S2 smartphone sensors.

Table 6 Sensors energy consumption Samsung S2 [21], [22]

SENSOR SAMPLING IDLE SWITCH ON / OFF

ACCELEROMETER 21mJ - -/-

GRAVITY 25mJ - -/-

MAGNETOMETER 48mJ 20mJ -/-

GYROSCOPE 130mJ 22mJ -/-

MICROPHONE 101mJ - 123mJ/36mJ

We can conclude from measurements the efficient sensor for motion detection of smart phone which

is accelerometer [22] that means when we need to trigger any action when mobile device start to

moving the listening of accelerometer sensorial data is sufficient.

3.5. Discussion

All previous chapters are showing the problems in our discovery area in more details and we can now

conclude the suitable solution for our goal of research based on gathered knowledge. We are able to

provide effective solution in terms of battery consumption of mobile devices, available network

connectivity and necessity of provided information. We consider sensorial informational flow in

following [Figure 3] as basement of our Senzoric Framework (SF) where information are delivered

effectively across internet and provides end users or external informational system sensing data of

user behavior.

18

Figure 3 Sensor Informational Flow of Senzoric Framework

All possible sensors of mobile devices are producing a large amount of data in total which are not

necessarily to be transferred over network and reasonably shared in a real time. That is why we could

consider most of them in raw form as redundant or without meaningful informational value. Also,

processing of sensorial values with maximal refresh data rate would be unreasonable in terms of

battery management or use of non-real-time system bases. The key to sensorial networks, where

mobile devices are an essential part, is in the balanced design of outlined high-level architecture

[Figure 3]. There, the device is producing a meaningful amount and type of sensor’s data, which

depend on current network connectivity and are required to measure representational device states.

To provide the maximal efficient informational stream between the entities of system, we have to

consider data granularity and sampling intervals of transmitting data. The reason is to minimalize

energy consumption of mobile devices and to maximize provided informational value to our SF. We

assume the maximal granularity of sensor’s information where the defined behavior and

environmental patterns are over time period recognized by mobile device and transmit only a minimal

amount of data through network. We outlined defined patterns in [Table 7]. The minimal transition

bundle of information has to consist of pattern identification (4B), timestamps (8B*2) of starting and

ending time of recognition, location (8B*2) of latitude and longitude and the last device id or

temporary token (16B). Therefore, a real-time data transmission has a minimal size (52B) in online

mode delivery. We also consider an offline mode for data flow, where the lists of recognition states

are transferred over network that is demanded by remote request or periodically uploaded to data

distribution server by time period or buffer size limit. The data flow type of service is according to

battery management limited in real-time processing; therefore, the historical and current data are

19

flushed to server only if required, with possibilities of in time authorization. Otherwise, in case of real-

time processing requirements where the predefined authorization variant exists, the data flow

depends on the point of interest and on the status change events with maximal battery effectiveness

of sensor data gathering.

Table 7 Activity and environment context

STATES SENSORS SAMPLING

(HZ)

DURATION (S)

ACTIVITY – WALKING Accelerometer 20 3 seconds

ACTIVITY – RUNNING Accelerometer 30 2 seconds

ACTIVITY – SLEEPING Microphone 1 20 seconds

ACTIVITY – STANDING Accelerometer 10 3 seconds

ACTIVITY – SITTING Accelerometer 5 3 seconds

ACTIVITY – DRIVING Accelerometer, Localization 1 5 seconds

ENVIRONMENT – HOME Localization, State 0.1 1 week

ENVIRONMENT – CAR Accelerometer, Localization 1 10 seconds

ENVIRONMENT – WORK Localization 0.1 1 week

Other aspect, which would be taken in consideration, is network availability where the online mode is

in fact commonly expected during the day, but it may also occur on specific occasions when the mobile

device is temporarily or in the long-term without network connection. In that case, we expect to

continue saving locally the desired sets of sensorial information for correct results in the objective of

large scale. Therefore, the data could be stored on the device locally with optional network batch

upload performed upon intelligent upload mechanism.

20

4. Related works

Once we declared the core problems in previous chapter we are now ready to start searching related

works in this area. There are plenty of papers which are dealing with sensor based computing but we

have to constrict our view only on those which have something in common with mobile devices. Such

set of works are rapidly decreased but still we are talking about thousands of articles and works.

Therefore we consider other criteria of search and that is framework and informational system related

applications. Now we have reasonable amount in our sets which are mainly oriented onto context-

awareness area works. We consider such frameworks aiming our area of discovery which are outlined

in the following [Table 8] and be part of our comparison analysis.

Table 8 Related works

ID NAME OF RELATED WORK TYPE

[7] (FTW) Feel The World: A Mobile Framework for

Participatory Sensing

Sensor development

framework

[9] (MobiSens) A Versatile Mobile Sensing Platform for Real-

World Applications

Sensor development

platform

[23] (SensLoc) Sensing Everyday Places and Paths using Less

Energy

Location based service

[24] (ODK) Open Data Kit Sensors: A Sensor Integration

Framework for Android at the Application-Level

Sensor development

framework

[25] Implementation of a smartphone sensing system with social

networks

Social location aware

mobile application

[26] An activity recognition system for mobile phones Activity recognition

system

[27] Logging user activities and sensor data on mobile devices Environment recognition

application

[28] (InContexto) Multisensory architecture to obtain people

context from smartphones

Activity recognition

system

[29] Activity recognition for risk management with installed

sensor in smart and cell phone

Activity recognition

application

We describe in more detail the first four related works in separate subchapter and the rest of related

works are summarized in the last subchapter because they are the most closed to our desired goals of

21

Sensorial Framework. In the last chapter we discuss comparison of works with brief functionalities

overview.

4.1. Feel the World Framework

This related work provide embedded sensor middleware with ability for the third party programmers

to develop application that enables people to sense, visualize and share information about surrounding

environment. This middleware platform is called Feel the World (FTW) and the key contributions of

work can be summarized as follows [7]: “An open source framework for developing people-centric

sensing Android applications. Through FTW, developers would be able to exploit and configure all the

embedded sensors of mobile phone as well as external sensors. The general configuration properties of

FTW are the sampling rate, the duration of each data collection, the priority of data and the running

environment (background/foreground). Additionally, developers can specify whether or not the data

will be uploaded on a server and how often this will take place. ”

The framework proposing system architecture based on Android SDK and Java Runtime Environment

(JRE) with possibility to download source code. The framework introducing universal embedded and

external sensors handling based on objective data type BaseSensor outlined in the following [Figure

4].

Figure 4 FTW Sensor Class Hierarchy [7]

The FTW allows extending the BaseSensor hierarchy by inherited classes implemented by external

developers giving the framework slightly more flexibility for improvements to others. The data itself

are stored on mobile devices by default as CSV values in different files. Such implementation is not

sufficient as data access where we might consider patterns recognitions based on gathered sample on

22

mobile devices itself of course where it makes sense. The core architecture is outlined in the following

[Figure 5] where are all components of the system dedicated to the specific role. The data layer on the

client side is responsible for foreground and background data collection as well as external sensors

pairing and collection. The computational layer consists of monitoring service and file writer

responsible for storage data on mobile device with decision maker in cases such as battery level is

below 20%, the sensor sampling is stopped itself.

Figure 5 FTW System Architecture [7]

23

Communication layer is responsible for uploading datasets to server with consideration of network

throughput and therefore when Wi-Fi is connected the files are automatically being transferred in

maximal speed. And last one on the client side are the utilities services such Bluetooth and

Compression manager. The work using compression algorithm Deflate which is the most energy-

efficient for compression rather than Huffman coding, combination Huffman and Run-Length or Zip

compression.

The FTW work proves by its implementation possibility of the third party support in development

process and proposed several optimal sensor data gathering scenarios in background mode which are

effectively worked. But there are couple of issues which may be considered in further discovery which

is resolving our solution such as security aspect, client side pattern recognition based on knowledge

base, effective data storage based on database instead of flat files. Some of pros and cons are outlined

in the following summarization as overview to extract possible improvements for our work:

 Pros

o Extensible potential together with the third parties.

o External sensors for mobile devices support.

o Resource monitoring - User friendly policy based on battery capacity, compression

tools.

 Cons

o Local storage CSV on the mobile device.

o Static data (process, clock, ram) vs Dynamic data (battery level, processes)

categorization.

o No security consideration, no Social networking possibilities.

4.2. MobiSens Platform

The versatile mobile sensing platform for real world application where common requirements of

mobile sensing application depend on power consumption, activity segmentation, recognition and

annotation based on description provided by group of motivated users who provide activity labels. The

framework proved over the time the usability of several applications with auto-segmentation and

auto-recognition features which increased the usability of the whole framework. In short by their own

achievements is following [9]: “Based on the MobiSens platform we developed a range of mobile

sensing applications including Mobile Lifelogger, SensCare for assisted living, Ground Reporting for

24

soldiers to share their positions and actions horizontally and vertically, and CMU SenSec, a behavior

driven mobile Security system.“ Therefore we are delighted to analyze pros and cons of their solution

based on the user behavior patterns to find out some missing gaps. At first we recognize MobiSens

system architecture [Figure 6] which is based on the client/server consisting of three main parts such

as mobile application which collects sensors data, apply activity segmentation with light-weight

algorithms, backend system first tier where data are indexed and processed with heavy-weight

algorithms and second tier with application and services.

Figure 6 MobiSens System Architecture [9]

Once we understand the client architecture we can assume some advantages of solution in

simplification of message based processing of sensors data and using separate sensor widgets but on

the other hand there are some implementation disadvantages based on the raw file storage system of

sensors data which cannot provide online processing on the client side in case of independent mobile

sensor storage provider. The database sensor data handling could be improved in pattern recognition

processing to be able to provide for the third party applications sensorial content. Nevertheless we

consider implementation of sensing profile pulling as innovative approach where all settings of mobile

client application are not tight to application release itself but rather are maintained on backend server

and can be pulled to mobile client application upon request. The sensing profile consists of list of

sensors which needs to be sampled, sensor sampling rate, sampling strategy, data push intervals and

others to provide users maximal efficiency in terms of battery consumption and activity recognition.

25

On the backend side we consider as improvement database type of sensor data handling together with

transmission provided rather than raw files by JSON based format. There are couple of reasons

speaking for JSON format such as native implementation available on the most clients and together

with GZIP compression creates the effective and fast solution with less power consumption which can

be used for data transport. The most significant contribution of MobiSens platform is covered by

activity classification based on Hidden Markov Models (HMM) together with adaptive activity

recognition based on user annotation interaction with sophisticated User Interface (UI) where end

users are willing to annotate their unknown activities. We summarize pros and cons in following points:

 Pros

o Behavior-based anomaly detection, behavior-driven passive authentication, future

activity detection, adaptive activity recognition algorithm

o Sensing profile pulling from server

o Real world application implemented based on MobiSens platform

 Cons

o Raw data file handling of sensor data

o Database support vs raw data files of sensor data content handling

o Users privacy & security concerns

4.3. SensLoc Location Service

We conclude the location based services as core functionality of sensorial framework. The SensLoc

location service covers innovative approach on mobile device to result the location with minimal

battery consumption. Namely authors telling us following: “SensLoc comprises of a robust place

detection algorithm, a sensitive movement detector, and an on demand path tracker. Based on a user’s

mobility, SensLoc proactively controls active cycle of a GPS receiver, a Wi-Fi scanner, and an

accelerometer. Pilot studies show that SensLoc can correctly detect 94% of the place visits, track 95%

of the total travel distance, and still only consume 13% of energy than algorithms that periodically

collect coordinates to provide the same information.” Therefore we consider such work as relevant

benefit to our discovery since location resolution is mandatory for advance environment and behavior

pattern recognition. The proposed service declares the optimization for location resolution gathered

from sensors Wi-Fi, GPS and accelerometer with advance technique for indoor location since

commonly people spent approximately 89% of their time indoors and only 6% outdoors [30]. The

concept of system architecture is illustrated in the following [Figure 7].

26

Figure 7 SensLoc System Architecture [23]

Service consists of several parts namely Movement Detector, Place detector and Path tracker

responsible of each area. The place detection is provided by scanning surrounding area with Wi-Fi

Access Points (APs) and by filtering, finger printing and Tanimoto coefficient based algorithm where

entering place is detected by increasing current Wi-Fi signal vector maximum threshold and departure

place is oppositely detected by decreasing values down to minimum threshold. The movement

detection is bound by accelerometer sensor where magnitude is computed over all tree axes with

intelligent double sizing scan interval to reduce battery consumption. Lastly the path tracking is

provided by GPS sensor monitoring which is invoked by departure place detection. In case of speed is

over threshold 2 m/s the Wi-Fi scans are turned off to save energy and turned back on when speed is

under threshold means the user may be entering a new place. We consider couple of ideas as

contributory to our work and useful and the pros and cons are outlined in following points:

 Pros

o Energy efficient location based service which overcomes other approaches

o Innovative algorithm for Place, Path and Motion detection

 Cons

o Missing blacklisting Wi-Fi signature based on past experience

o Server data synchronization is not enabled

27

4.4. Open Data Kit Framework

Once we are decided to develop application which works with external mobile device sensors

connected via Bluetooth or USB this related work Open Data Kit Framework come a handy partner.

The authors describe their framework as: “A framework to simplify the interface between a variety of

external sensors and consumer Android devices. The framework simplifies both application and driver

development with abstractions that separate responsibilities between the user application, sensor

framework, and device driver”. Therefore we acknowledge this framework as modular to adding new

sensors into the system with isolation between applications and sensor-specific code. There is available

single sensing interface for external and internal sensors to provide low-level abstraction of sensor

communication. Typically applications can directly communicate with sensor manager over standard

Android service interfaces or content providers. In the following [Figure 8] is outlined architecture of

ODK framework for application developers.

Figure 8 ODK System Architecture [24]

28

We consider to use this framework and such principals in case of external sensors usage which is

currently out of scope of our discovery but can be considered as future work and innovation. The pros

and cons are as follows:

 Pros

o Universal driver support and development

o Dynamic sampling

o Android Binder IPC

 Cons

o Sensor driver has to be explicitly implemented for framework

4.5. Other works

Activity recognition system [26] was developed as a real time monitoring system for mobile devices

that embrace neuronal network motion pattern recognition by body accessories, wirelessly connected

over Bluetooth to provide sensorial data. The proposed solution requires additional components

outside of the mobile device and additional energy consumption for local communication [31]. Another

related work [8] considers providing sensorial information by context-aware web browsers which are

able to merge web application tags with current mobile device sensorial data but only as a foreground

process invoked by user actions, and therefore, for smart environmental-behaving solutions, it is

insufficient. On the other hand, InContexto [28] is a solid work that represents background service with

still, walk, and run recognition with 97% accuracy, but the only sensor used for gathering these data is

accelerometer which is not enough for larger scale of behavior and environment recognition. For

environment recognition and connected activities, where data are being minded in a recorded log, the

case is to predict or analyze future patterns or to recognize the environment as a great work [27] where

the point of view of soft sensors is taken into account, but the hard sensors are considered as a future

possible improvement. Another interesting point of view, from activity recognition algorithm

classification [29], provides the accuracy comparison and results with 97.7% measured by a mobile

device in a pocket but with the fact that the tested data are gathered with high sampling frequency

which leads to higher battery consumption. Related works [26], [27], [28] and [29], created to compare

the needed solution for the cross features and also to define a more precise goal of developing the

application and to define specific requirements. According to the demonstrated summary [Table 9], it

is hard to find a complex solution around all the mentioned solutions. This fact leads us to design and

29

develop a new architecture as well as to implement some parts to provide a basic evaluation of the

proposed solution.

Table 9 Comparison Context Aware Works

FEATURE [26] [27] [28] [29] REQUIRED

SAMPLING DATA/HZ/SEC 1/50/2 - -/0.6-2/5 6/16/4 1-7/5/5

SAMPLING WINDOW SIZE 100 - 512 384 100

SENSORS 1 1-15 2-10 6 1-7

BACKGROUND PROCESSING Yes Yes Yes No Yes

EFFECTIVE BATTERY CONSUMPTION No Yes No No Yes

CONNECTIVITY No No WSDL No REST / UDP

EMBEDDED SENSORS No Yes Yes Yes Yes

PATTERN RECOGNITION TYPE Neuronal - SMA* SVM** Intensity

ACT. / ENV. RECOGNITION Yes/No Yes/Yes Yes/No Yes/No Yes/Yes

*Signal Magnitude area **Support Vector Machine

There are others relevant works as Jigsaw [32], Funf [33] or SociableSense [34] which covering part of

system features where Funf was even bought by Google due to exceptional design and sensorial

unifying data approach. We can use them as think tank for some innovative ideas which we have to

resolve during design or implementation of our Senzoric Framework.

4.6. Discussion

Throughout all related works analyzation we consider really contributory many ideas and solutions of

problems mentioned. In the following [Table 10] we outlined core features which are relevant to our

discovery across others related works. We consider using only embedded sensor in our SF and external

sensors connected to mobile device are in scope of future work. Server data synchronization is

basement of spreading out dataflow to multiple clients and we consider such feature also as

mandatory. Dynamic sampling is required to adjust sensors usage in terms of effectiveness and battery

consumption. Decision module on the client side is one of the feature which supports intelligent data

transmission and pattern recognition.

30

Table 10 Sensorial Frameworks Comparison

CORE FEATURES FTW [7] MOBISENS [9] SENSLOC [23] ODK [28] REQUIRED

EMBEDDED SENSORS ALL ALL Wi-Fi

Accelerometer

GPS

ALL ALL

EXTERNAL SENSORS YES NO NO YES NO

SERVER DATA SYNC YES YES NO NO YES

DYNAMIC SAMPLING YES YES NO NO YES

DECISION MODULE YES YES NO NO YES

SECURITY NO NO NO NO YES

THIRD PARTIES YES YES NO YES YES

SOCIAL CONNECTORS NO NO NO NO YES

The related works do not include all of our desired goals and functionality therefore we assumes as

really contributory to design and implement such sensorial framework which provides sensorial

information related to mobile devices in comprehensive form on mobile device itself or externally in

other devices.

31

5. Design of Solution

In this chapter we define the full model of our solution of Sensorial Framework. To be able to easily

and fast develop such solution we decided to use agile techniques which will be described in the first

sub chapter. Then we will proceed to definition of our goals with description and considerations about

possibilities of our sensorial framework. Then by increasing granularity of our goals we convert ideas

into user stories where we would reach the level of project model definition and basic architecture of

system as activity flow, class and data model. After we consider some security aspects and possible

security threats and lastly we configure deployment model of the system in terms of end user usages.

We also describe in minimal details techniques or tools which we are using for modeling and analysis.

We will prefer more agile approach for modeling information system and as such less move on modern

agile approach.

5.1. Agile development background & used tools

During last decade the software development evolved into agile approach which seems to fit more to

the human concept of thinking with more flexibility instead of old schema as waterfall type of

development. The agile approach is a type of software development where requirements and solutions

evolve thought cross functional teams which are able to self-organize. It promotes flexible planning,

evolutionary development, early delivery and continuous improvement where the changes are

provided as soon as possible.

We have to outline core principals of agile approach in following list to ensure we have clear vision in

how the development of sensorial framework will be driven.

 End user satisfaction by rapid delivery of useful software

 Requirements change are welcomed even at the end of development

 Working software is delivered frequently in weekly based periods

 Closed on daily based cooperation with developers and end users

 Face-to-face conversation is the best communication channel

 Project is built around motivated individuals

 Working software is basic measurement of progress

 Team self-organization

Once we are clear in focus in agile development area we also have to setup timing and format of how

our agile process of development is going to be realized. Basically the shortest cycles of delivery

32

working software are better than longer ones but there should not be too much tight schedule without

stressful timing. Typical timing for synchronization / brainstorming meetings also called scrums is to

be organized on daily bases where duration is maximal 15-30 minutes. The purpose of scrum meeting

is about every team member have to call about on what he or she is working on, if there is any problem

with that and what is planned for the next day. Problems and technical solutions are not solved on

scrums there is space only for discussion who and when can help or how to escalate the problem. The

timing for cycle of working software delivery also called sprint is about 1-2 weeks where discussed

functionalities are analyzed, implemented, tested and deployed to the solution which can be

demonstrated on the end of the cycle. In the following [Figure 9] is overview of the whole process of

agile software development where also we define product backlog which typically is created by the

end users / product owners and developers on weekly / monthly based periodical meetings called

product review. This product backlog gathers all requirements on functionalities of developing system

in form of short description also called user story which we will describe in more details in the following

chapters.

Figure 9 Agile Development Flow [35]

From product backlog we are able to plan the sprint back log by scope and priority which has to be

provided during sprint reviews and retrospective meetings. The sprint can start after sprint backlog is

planned and discussed on sprint review meeting with each team member and once the sprint ends the

functionalities which are not ready for delivery and are moved to next sprint during sprint retrospective

meeting. Also in the stage of product presentation and delivery at the end of each sprint the features

are reviewed and if they do not fit to the end user needs they are moved back to next sprint iteration

for modification. Also there are other agile methodologies for software development good to be

33

mentioned in the following [Table 11] as well as scrum agile approach which is used for our software

development phase.

Table 11 Agile methodologies of software development

METHODOLOGIE DESCRIPTION

ADAPTIVE SOFTWARE

DEVELOPMENT

Replaces traditional waterfall cycle with a repeating series

speculate, collaborate and learn cycles

AGILE MODELING Methodology for modeling and documenting software system

based on best practices

AGILE UNIFIED PROCESS The simplified version of the Rational Unified Process

DYNAMIC SYSTEM DEVELOPMENT

METHOD

Interactive and incremental approach which embraces

principal of agile development including continuous user /

customer delivery

EXTREME PROGRAMING Improve software quality and responsiveness to changing user

/ customer requirements completed by pair teams

FEATURE DRIVEN DEVELOPMENT Interactive and incremental software development process

which is driven by client valued functionality / features

perspective

KABAN Visual process management system to manage knowledge of

work in terms of just-in-time delivery

SCRUM Interactive and incremental self-organizing within team

development method

The user stories captured simplicity of “who” “what” and “why” have to be done by the end user within

future information system as a part of requirements specification where in simple short sentences

which could be written on small cards is defined what is and what is not the part of the end user’s job

function. It is comprehendible expression of common everyday business language and is close to user

cases requirement gathering technique. There is a way of how user stories are being captured – it is

called the “Scrum” which is basically kind of brainstorming where representative of developers and

end users are coupled together and by idea creation process generating user stories by questions from

developers. There are maybe required other roles in case of more scrum members such as scrum

master who moderate effectively creation process and also role such as product manager who is

responsible to capture message of user stories and formulating precise simple sentences which have

34

to be written down for future usage. There are defined formats of user stories outlined in the following

formula:

 As a <role>, I want <goal/desire>

 As <who> <when> <where>, I <want> because <why>

 In order to <receive benefit> as s <role>, I want <goal/desire>

After definition of user stories by formulation in short sentences the customer end user side has to

prioritize each story accordingly its real value basically in terms of which story values the informational

system the most. Based on defined priority the user stories with the highest priority are processed as

first in kind of life cycle where each user story has to be defined, implemented, tested and shown to

end user if it fulfill the needs. The life cycles may be considered on weekly bases or two week bases

dependable on team size of suitable processing habits for providing team. The key of success is velocity

and periodicity of standard outcome of providing team which also can be measured by story points

where the difficulty of system feature is expressed. Such measurements are having only high level

informational value which is increasing in time in preciseness of estimation in case the team has not

been changed and their skills are static. But in the real world most of the teams are changing over the

time and also skills are changing during the time and team in good environment should be more

efficient over time. Therefore the measurement of project finalization is statistical derivation based on

previous experience in order to revise story point value and good personal quality estimation. Anyways

the measurement of difficulty and timeline consumption is still much better than other techniques due

to small well defined chunks of system which are immediately incrementally provided and delivered

as real functionality.

After description the software agile development theory and methodologies we start to develop

sensorial framework with goals definition in the following chapter.

5.2. Goals & requirements & user stories

We have to specify our goals which we would like to be reached and at what we should be focused on

create reality by thinking more sharply therefore following list outlined the mainstreams goals to be

considered and repeatedly kept in mind.

 Gather any possible sensorial information from mobile devices

 Provide visualization of gathered sensors data into comprehensive form for the end users

 Add prediction models for consolidated sensorial data

35

Also we have to mention innovation potential and reasons for such defined goals. At first each

voluntary user is able to view history of sensor’s data on his/her mobile device. Where it make sense

we outlined graphical representation of records based on user’s location, time and activity. Users

would be able to see sensorial map provided by sensorial framework which can help to automate

decision making of any sensorial based electronic. And now let’s describe user stories as basement for

our models and further analysis.

5.2.1. User stories

For user story definition we are using scrum format where the developer side is represent by me and

end users are represented by students who own Android mobile devices with desire to use innovative

approach to information distribution. In the following [Table 12] we outlined user stories which are

extracted by questionnaires from end user group.

Table 12 User stories defined by end user group

USER STORY

IDENTIFIER

(USI)

CONTENT OF USER STORIES RELATED TO

USI-1-1 As a User I want to register into sensorial framework with specific

credentials as email and password

Main

USI-1-2 As a User I want to login to sensorial framework with defined

credentials

Main

USI-1-3-1 As a User I want to change password when I forget via email channel Main

USI-1-3-2 As a User I want to change password when I am logged in Main /Authorized

USI-1-3-3 As a User I want to change email when I am logged in Main /Authorized

USI-1-4 As a User I want to logout Main /Security

/Authorized

USI-2-1 As a User I want to connect device to sensorial framework by

installing application on device with the same login credentials and

by specification basic description as name

Devices

/Authorized

USI-2-2 As a User I want to disconnect the device Devices

/Authorized

USI-2-3 As a User I want to modify name of the device Devices

/Authorized

36

USI-2-4-1 As a User I want to see all connected devices to sensorial framework

with basic description as a name, type of device and connection

status of device in the device list

Devices

/Authorized

USI-2-4-2 As a User I want to see all details of devices by selecting item from

the device list

Devices

/Authorized

USI-3-1 As a User I want to see list of available sensors of the device with

name, type, periodicity/action and data counters

Device

/Authorized

USI-3-2 As a User I want to see details of device sensor where I can

customize details as period of monitoring, type of action, …

Sensor

/Authorized

USI-3-3 As a User I want to see historical data of sensor in timeline charts Sensor

/Authorized

Once we have defined user stories we should be able to prioritize them and make assumption of

difficulty in story points. We define such criteria to improve quality of decision making where the most

important user stories are developed first and with difficulty we are able to count how much time it

takes with how many human resources have to be spent. This kind of measurements increasing the

flexibility of project organization and also much easily everyone can have brief insight of current

project status. There is specialized form to visualize such overview called story board and we are

providing in the following chapter in more detail the user stories with difficulty and priority where we

consider as the main reason for that kind of view it is its simplicity for anyone and even view can be

provided simply by pencil and stickers on any wall around you without needs to use electronic

equipment.

5.2.2. Story board

In our case we are using for agile software development JIRA Agile v6.3.15 which is for non-commercial

usage free to use by students or individuals. There are lots of functionalities which empower users in

their aim to develop in agile style any software but we will focus on story boards. There are two main

types of story boards – KABAN type or SCRUM type where visualized user stories are bounded into

epics which are high level boundaries for them. Each member of the team can participate by work

spent on specific user story in specific time line unit called sprint which can take days or weeks

dependable on team size and its work efficiency. For overview following [Figure 10] outlined how story

board of scrum type is possible to be visualized in planning phase before sprint starts.

37

Figure 10 Story board – plan

After definition of each user story with required assigned attributes as estimate a story points,

description, version of release, epic link, resolver assignment and assignment priority the sprint can be

started. The typical trigger to start next sprint is meeting with all participants in form of scrum / work

where all team members synchronized their knowledge about issues and planned workload. The

simplest workflow consists just from To Do, In Progress and Done state but for our purposes we have

to define more sophisticated workflow with a bit higher granularity which should be monitored. More

states increase system monitoring ability of different types of participants such as external suppliers

or third parties where information of states are required to be monitored. We define states as Open,

In Development, Waiting for QA, In QA review and done visualized on the following [Figure 11] where

relation between all states are also. All issues which have the initial state Open are basically in sprint

backlog and also in product backlog and wait until one of the developers choose them.

Figure 11 Software development workflow

38

Once developer start working on issue the state is changed to state In development and after success

implementation such user story goes into live system by release and deployment procedure. The end

user or Quality Assurance (QA) tester reviewed them if it fulfills requirements defined in user story and

if review of the user story is success the issues state is state Done otherwise ends up on the beginning

in state Open with updated comments what else should be changed. Following [Figure 12] highlights

story board of work in progress context where each user story or issue goes through defined states

which are defined by particular workflow. Such view is really simple and easy to monitor in which state

issue is at that time and also who is working on the issue with time consumption. We start sprint with

bundle of user stories where estimation of difficulty in total do not exceed week limit of sprint. The

week limit of sprint is defined by multiplication of daily limit which estimates capabilities of team

members to deliver work.

Figure 12 Story board - work

Each member of the team continuously updates status of a given user story during sprint which

basically enables to monitor and report project status online even before the sprint ends. The velocity

of the team can be expressed as multiplication between sum of difficulty of all tasks and their team

members and multiply with empirical coefficient based tasks criteria.

5.3. System architecture & Component model

This chapter is dedicated to high level system architecture design and its used component to be ready

to dig deeper into each part of the system. We consider client / server architecture [Figure 13] for

39

information distribution where server is defined as a single instance and clients are multiple instances

of mobile device application. Client consists from application, User Interface (UI), background service,

sensors readers and database. The end users controls and view all information over UI from application

module which gathers from server or from locally saved data in database. Once end user connect

mobile device into the system the background service provides data from sensors to server and update

local database. Server consists of several components as listeners, Application Program Interface (API),

core, management, logging and database. The listeners storing sensorial data gathered from mobile

devices into database. Those data are consolidated by core module and are ready for distribution if

client requests them through application interface.

Figure 13 System architecture

5.4. Activity & Flow model

In design and analysis phase of Senzoric framework development process we are now ready to analyze

in more detail each user story to provide us necessary insight for implementation. We define

process/activity flow in comprehensive form to gather data to define classes and data models later on.

For every first activity within the system end user has to have Android mobile device with access to

the internet. The first action is about to install application on mobile devices from cloud store and start

application. We outline high level of application flow where all user stories can be applied from specific

application point of flow in the following [Figure 14].

40

Figure 14 Application flow

At first describe activities after the application has started when user first time launched the Senzoric

framework client application on mobile device. For such a start point there are just tree user stories

registration of end user (USI-1-1), login already registered end user (USI-1-2) and password recovery

for already registered end users via defined email (USI-1-3-1). The end users can choose from these

three options by simple tap from menu after start. First we start with registration activity of the end

users defined in the following [Figure 15] where we analyze required attributes for successful

procedure.

Figure 15 USI-1-1 User registration

41

During typing or when end user enters email where are constrain checks of validators with check of

uniqueness entered email and once all checks passed then system can send verification code via email

to the end user. Whenever user has verified the email by secret token included in the email the system

can mark down email as verified and registration ends up as a success otherwise after defined period

of time or in case of failed verification the system announces the registration as expired or invalid.

Users have to confirm validity of email address by confirmation email to be able to login into the system

later on. Once user was successfully registered and email address is verified as valid he or she can then

use login activity to access the system. We defined in the following [Figure 16] the login activity itself.

The credentials consists of email and password where constrains check controls only validity of email

string entered and then verifies credentials in secured form with already stored credentials.

Figure 16 USI-1-2 User login

If user is verified the login process end up with success and is able to proceed to authorized section

otherwise if login process has failed the user ends up still in unauthorized section and password

recovery procedure is right procedure which should be offered therefore we have to take it into

account during application flow design in next chapters. Nevertheless following [Figure 17] defines

mentioned password recovery procedure where user enters correct email which is checked if exists

within the system or not.

Figure 17 USI 1-3-1 Password recovery

System generates access token for user to be able to change password in the system via recovery email

and user after password change can be logged again into the system with correct email and password.

This is why we have to verified user’s email prior to start any operation. Different scenario is when

42

user is already logged into the system. The authorization was provided and we can provide authorized

operation for the existing user’s account such as password change designed in following [Figure 18]

where from user’s state is logged we perform activity password change and system asks to enter new

password in dual control mode which means that user has to enter password two times. The system

verifies password correctness and generates hash for password string which is transmitted to backend

side for update. If everything goes well the procedure ends up with success and password for the user

account is correctly changed otherwise in case of any failure user has to start the operation again.

Figure 18 USI-1-3-2 User password change

Next user story is about to change account identification which is email therefore we can basically

consider such scenario as security relevant where possibility to change email of user account may leads

in case of any kind of break into the system to takeover of existing users accounts. We should be aware

of it and this functionality relies on a high level of security and authorization level provided by the

system. We define in the following [Figure 19] user email change. We consider user as logged into

authorized system section and after requiring email change action user has to provide new email which

is also verified based on sending email verification and receiving user verification response. In any case

operation failed we consider the email change transaction as invalid and last verified email is being

used.

Figure 19 USI-1-3-3 User email change

The last access control operation we consider in our user stories is user logout. Basically once the user

requests logout [Figure 20] the system we have to perform security based solution to close any other

43

action till another authorization is provided from the user side. The solution is based on authorization

token which provides access to the system for defined operations and once the logout action is

requested the current authorization token which is being used has to have revoked permission from

the system. Basically we provide OAuth authorization system for dynamic account access which can

be modified for the 3rd parties as well as other purposes.

Figure 20 USI-1-4 User logout

That’s all done with basic management and now we can go further into design of core functionalities

of the system related to the devices. We consider as core device management user stories namely

connect (USI-2-1), disconnect (USI-2-2), change name of the device (USI-2-3), view list of devices (USI-

2-4-1) and view details of the devices (USI-2-4-2) within sensorial framework. We start with connection

of device into the system outlined in the following [Figure 21] where user confirms current mobile

device as provider of sensorial data which are going to be collected by sensorial framework.

Figure 21 USI-2-1 Device connect

First user has to enter device name as main human readable identification otherwise as default there

is proposed device type name. In the next step there is configuration of sensorial data updates how

should be post into sensorial framework and be distributed. Once configuration is done we consider

device connect as a success and every time after the device is started up there have to be running

background service which is posting data to backend to collect and consolidate. In case of off-line mode

sensorial data are not sent to the server and they are stored in local storage for later use on upload.

Also user has to be able to disconnect device from the system and for such operation we design

following activity in [Figure 22].

44

Figure 22 USI-2-2 Device disconnect

Once device is disconnected the background services are stopped after uploading disconnection status

into backend system and the background service is not started after boot until the user connects again

device into the system. Another user story describes device name change therefore we consider such

activity outlined in [Figure 23] as possibility of name change only current device.

Figure 23 USI-2-3 Device name

After several connected devices we appreciate to have list of them at one place as easy and fast

direction to each of them with basic description as a name, type and connection status. We design list

of devices associated to user which is currently logged in as next activity visualized in the following

[Figure 24] together with edit device name directly from device list story.

Figure 24 USI-2-4-1 Device list

When the user is logged in there is an option to view devices in the list with fresh data based on

synchronization with backend system for remote devices therefore in offline mode only device visible

is current device being used itself and in case of online mode all connected devices are visible. We are

able to sort and filter devices in device list based on name, device status and time of last update. For

45

device item such action as selection of device we continue into device details activity in the next [Figure

25] where together with sensor list activity is outlined the necessity of synchronization in case of

remote devices. We consider having single approach to get data collection from local device or remote

devices. So data for local device can be gathered directly over local data collection cache and for

remote devices are available upon requests.

Figure 25 USI-2-4-2 Device details & USI-3-1 Device sensor list

Once the user selects sensor list in device details view the list is provided with possibility to filter and

order cross sensor attributes such as name, type and period of collecting. User can also select single

sensor to visualize sensor details and its history outlined in the following [Figure 26] as well as previous

flow of the data collections are gathered on the local cache which is synchronized with system over

the network based on user specific requests.

Figure 26 USI-3-2 Sensor details & USI-3-3 Sensor history

Those all previous defined use cases are just core functionality of Senzoric Framework. We consider

possibility for third party developers to be able to implement plugins or customized widget views on

mobile devices. And now let’s start with models based on required use cases in following chapter.

46

5.5. Class & Data model & State model

This chapter is dedicated to modeling states, classes and data of the system. We consider

activity/process flow design as sufficient for basic understanding what and how it should works within

the system and from now on we have to be focused on how we are implementing such of

functionalities. The state model can be for us the basement agreement about possibilities of system

entities how they can behave and core principal how information is distributed internally between

entities. We have to define main entities which can have states and later on which are natural binding

for others derivate entities in our classes and data model universe. First we describe a few modeling

tools which we are using and which we found out to be considered as useful.

5.5.1. Modeling tools

There are plenty of software tools for Unified Modeling Language (UML) based modeling. We highlight

just a few of them and point out their advantage and disadvantage regarding to our purposes. For

better overview we add small comparison set into the following [Table 13] where main attributes are

highlighted as openness of software, latest release date and other features.

Table 13 Model tools for UML

LABEL LICENSE LAST RELEASE GENERATION / REVERSE ENGINEERING

ENTERPRISE

ARCHITECT

Commercial 2015-05-13 ActionScript, C, C#, C++, Delphi, Java,

PHP, Python, Visual Basic, Visual Basic

.NET, DDL, XML Schema, WSDL

MODELIO GPL open source 2015-02-23

(3.3.1)

Java, C++, C#

PAPYRUS EPL open source 2014-06-25 None

UML DESIGNER EPL open source 2015-05-29 None

It is quite tricky to find out the correct modeling tool which fulfills specific project needs as programing

languages used for generation code as well as reverse engineering to get models from code and also

management tools possible to connect with. We propose at first well known modeling tools Enterprise

Architect from Sparx System originated from Australia. It is handy, sophisticated and provides support

for variety programing languages but we are not willing to use it because it is commercial. There are

others well known modeling tools such as Papyrus and UML Designer which are open sourced and

47

covers main functionalities with UML standard but generation and reverse engineering is missing so

we decided to use Modelio which comes as modified eclipse environment standalone and provides

Java, C++ a C# reverse and generation software engineering.

5.5.2. State models

We conceive core entities as natural representation of reality such as user, device and sensor. Those

are main three entities which are basement for others to interact with and to be connected with. The

user entity represents all information related to single user in data collection. The states where user

entity can result are defined firstly for authorization purposes as you can see in the following [Figure

27].

Figure 27 State model - User

Those user authorization states are relevant to influent other parts of the system to behave

correspondingly. In the case of Register state which is first initial state the user fill out credentials and

post them on backend system which waits for verification via user’s email. When user verified the

email then user’s state is idle and system from now on can accept login credentials into the system.

After success login the user state became authorized in which authorize users can perform tasks within

the system. The user can also change email which requires also email verification therefore once email

change is performed the user state became Awaiting for verification. This means that when the user is

authorized and asks for email change with invalid email, the old email address is still used for

authorization for login into the system otherwise we allow dead lock in process flow. From Authorized

state user can become logged out or expired after specific timeout for security reasons. And lastly

when user is asking for closure account we consider such state as state Gone and user account is

48

disabled and email address is not used for uniqueness check so the same user with that email address

is able to register again but with new account. Next core entity is device where we understand the

states as are visualized in the following [Figure 28].

Figure 28 State model – Device

The device initially is in state idle which means that the device only view the system data. Once the

user explicitly connects device into the system the device from that point provides data into the system

which can be distributed. If devices has network available then can change state to online which means

it provides data on background. If the network is not available the device falls down to state offline

which identifies no network and no data are currently provided to the system. Lastly the state Gone is

for excluding the device out of the system by uninstalling application or in case of that the device is

lost or is damaged. Another core entity of system is sensor and it state model is outlined in following

[Figure 29].

Figure 29 State model – Sensor

The sensor after boot started in Idle state where the mobile device enables interface for registration

listeners. After sensor listener is registered in state Register the sensorial data are received by Listening

state through inner handler to process incoming data.

49

5.5.3. Class model & Data model

In design phase the class model is main principal to express how system should look like in

implementation phase and is really necessary to straight up minds from class point of view to not to

get confused and to get sustainable design proposal. In our case we already declared basic entities

important for modeled system such as user, device and sensor. We outlined in the following [Figure

30] the core class infrastructure which shows association in between those entities. Each user can

authorize zero, one or more devices which are connected to the system and can be controlled or

viewed by this user. Also each device can consist of zero, one or more sensors for gathering sensorial

data for distribution. The act of data collecting from sensors we defined as measurement entity which

can be considered as fact representation of reality. In diagram are mentioned main functionalities

defined in user stories which seems to be sufficient but we assumes that during implementation phase

the amount of functions and classes rapidly increases to cover defined goals together with platforms

possibilities and other aspects.

Figure 30 Class model – core system

50

5.6. Deployment model

The key part of software development is deployment process flow where we decided to use

customized agile flow rather than classical once such as water flow. We considering development,

testing and production phases being processed on demand with as minimal as possible granularity of

source code increment. Based on long term experience our deployment flow outlined in the following

[Figure 31] using specific tools and customized process flow where the issue lifecycle is designed to

minimalizing delays and providing automation where possible. The flow starts by formulation of task

or issues which are materialized by project management software (JIRA) located on dedicated VPS.

Each task after formalization is consider to be implemented locally on development computer where

implementation is committed and pushed to repository server. We uses as repository server a version

control management (GitLab) to be able to handle user management, control and maintain

repositories easily. From repository the dedicate VPS such as Continuous Integrational (CI) server with

running web application (Jenkins) performs compilation and testing of committed source code in

customized test environment.

Figure 31 Deployment Process Flow

51

Whenever the builds are processed with error in test or compilation the outcome is announced to

developers responsible for source code which causes the error. And if builds on CI are processed

correctly without error then Quality Assurance (QA) performing the testing based on user stories

manually or by monkey runners. The most valuable testing from QA is the end to end testing where

the function is tested across the whole system. If all issues were implemented properly and QA approve

their correctness then system parts can be released for production environment where the additional

quality is improved by the end users of the system in the form of feedback management.

52

6. Implementation

In this chapter we go through implementation phase of the system development lifecycle. We describe

tools and programing languages which are being used at first and then we produce the source code

based on defined class model and criteria from design phase. At the end we review our goals by testing

the implementation according defined test cases.

6.1. Programing tools & used frameworks

We consider Java programing language as well as Java community as the most suitable for ours

implementation needs. The main reason is of course the front end application for Android mobile

device platform where Java is used as programing language. In following [Figure 32] is highlighted the

the ranking of programing language in terms of independent open sourced code available within

community, ability of usage on different platforms, the size of knowledge base available on the

internet and the size of community for co-working.

Figure 32 Programing Language Ranking [36]

53

There are other advantages speaking for Java programming language which is debugging mode and

performance monitoring tools (JMX) of Java Virtual Machine (JVM). Against others interprets Java

provides debugging even for remote usage so developers are able to remote debug backend or

frontend. That is such significant advantage for developers in case of resolving bugs which are often

not able to be seen in source code. Also Java is based on bytecode which provides cross platforms code

delivery and developers are not tight to once specific platform of operation system. Therefore those

reasons led us to choose Java based application server for backend, client frontend application and

development environment tool.

There is plenty of programing Integrated Development Environment (IDE) tools. One of them is open

sourced and one of them is commercial and also some of them are both models together. We will use

open sourced IDE due to our academic aim and of course the price nevertheless in the following [Table

14] are outlined also commercial for better overview for programmers to get the best choice of

programing tools.

Table 14 Integrated Development Environment

NAME DESCRIPTION

ECLIPSE License: EPL, originated from IBM VisualAge, the Eclipse foundation was created

at 2004, and the IDE is based on workspace and extensible plug-in system written

in Java

IDEA License: Community Edition: Apache License v2.0, Ultimate Edition: proprietary,

developed by JetBrains with first release 2001

NETBEANS License: CDDL, GPL2, started as student project IDE on MatFyz UK in 1996 and

after it was bought by Sun Microsystem 1999 and later on by Oracle 2010, IDE

with modular based software development

For our development we use Eclipse together with Idea and from developers point of view the Idea

benefits with more error prone solution, faster search based on indexed files and better appearance

variability. Eclipse still has some advantages in compilation based tasks where each change of source

file edited in IDE is automatically being processed for compilations across the whole project therefore

the errors or mistakes made by developers are highlighted immediately.

Now we describe implementation of the frontend application which in comparison with backend does

not have that much variety across single programing language platform. Frontend is closer to hardware

and firmware therefore the framework is kind of glue between developers and framework providers

https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/CDDL
https://en.wikipedia.org/wiki/GPL2

54

and manufacturers. We support nowadays only Android mobile device platform for its openness and

the highest market share around the world. But there are also others different platforms which are

good to mentioned in the following [Table 15].

Table 15 Frontend – Client application

NAME DESCRIPTION

ANDROID Google, free and open source, 65.4% (2014), build on Linux kernel

IPHONE Apple, closed source and proprietary, 14.8% (2014), build on open source

Darwin core OS

WINDOWS Microsoft, closed source and proprietary, 2.7% (2014), build on Windows 10

core OS

The Android platform also benefits with open source code availability against IPhone and Windows the

only Application Program Interface (API) is provided to developers. Nevertheless in some cases this

closed platform still can have benefits in terms of performance of graphical output on mobile device.

For instance on IPhone platform the system handles graphical tasks with maximal priority in exclusive

mode for processor instead of Android platform where the same tasks are being processed in parallel

to other common tasks on mobile device processor. The freedom has to pay for kind of power in usage.

As next we describe the backend implementation of application server where the set of well-known

application servers based on Java programing language is outlined in the following [Table 16]. In our

case we used the Tomcat application server for web sites because of relative excellent performance

and simplicity to use for deployment and security.

Table 16 Backend – Web Application Servers

NAME DESCRIPTION

TOMCAT / APACHE 2.0

FREE

Small download (12MB size), Maven dependency integration,

great IDE support, great community

JETTY / APACHE 2.0

EPL

Smallest download (just 8MB size), easy to start, Maven

dependency integration, single config file

JBOSS / REDHAT

COMMERCIAL

Largest download, slower, good IDE support, excellent

administration and monitoring

GLASSFISH / ORACLE

COMMERCIAL

Reasonable download size, no straightforward way to start, full

JEE and OSGi support

55

There are also other types of backend written in and using as interpret for instance Javascript (Node)

which may result in faster requests delivery but regarding debugging we stay with Java based. Also

Jetty server based implementation covers real advantages of simplicity and performance in production

environment but on the other hand more robust backend Java application servers such as JBoss or

Glassfish are excellent in management tasks. We decide to compromise between performance,

management and simplicity and therefore the Tomcat outcome as winner in our criteria

6.2. Architecture of the system

We consider the architecture of the system defined earlier in design part for implementation in terms

of used technology of each component. We consider there are two main parts of the system which are

frontend and backend but there are also others to be considered as intersection of both parts such as

models and communication principals interface encoded in kind of blueprints and also website for

public information distribution.

Table 17 Project infrastructure

PROJECT NAME DESCRIPTION

SENZORIC-BACKEND The representation of all server side implementation of SF functionalities

written in Java and using embedded Tomcat as TCP web server container

and using Nette framework for UDP messaging

Available on git@repo.cexbit.com:senzoric/senzoric-backend.git

SENZORIC-FRONTEND The representation of client side for Android mobile device written in Java

and using Android framework and external libraries for networking and

processing

Available git@repo.cexbit.com:senzoric/senzoric-frontend.git

SENZORIC-COMMONS The library representation of intersection between backend and frontend

where models and blueprints are defined and used in other projects

Available git@repo.cexbit.com:senzoric/senzoric-commons.git

SENZORIC-WEBSITE The public web site representation to bundle all necessary information for

open source project Senzoric.com

Available on git@repo.cexbit.com:senzoric/senzoric-website.git

56

SENZORIC The representation of container for bundle all project modules at one

place.

Available on git@repo.cexbit.com:senzoric/senzoric.git

Therefore we need to define project infrastructure in combination of versioning source code to handle

each part independently defined in [Table 17]. Over time we have been experienced with necessities

of developing system parts separately with multiple users in parallel. From code versioning point of

view the smaller parts of code are easier to be managed in independent build system and for

independent developers which have to cooperate. That is a reason why at first we have to define

project infrastructure and code repository settings for proper workflow.

Each project module has its own GIT repository and the shared part senzoric-commos is included in

senzoric-backend and senzoric-frontend as their GIT submodule. The shared parts are visualized

in the following [Figure 33] and [Figure 34] as yellow components marked as commons. The change of

shared components influence both system parts therefore the versioning and releases of share part

have to be done in minimal amount with consideration of backporting compatibility.

First we start with frontend architecture where used cases are closer to reach the goals and basically

define the backend functionality at the beginning. The frontend consists of User Interface (UI), core

application, background service, sensors monitor and database. In the following [Figure 33] we

outlined the basic components of client architecture grouped by functionality.

Figure 33 Client Architecture

The UI provides interactions with user and visualizes necessary information such as the collected data

from sensors during monitoring and the application control information. Core application

communicates with backend and provides data to database and UI. The data itself are gathered by

background service which is started after boot and reading by listeners provided sensors data. On the

other hand the backend outlined in the following [Figure 34] have to take into account the

57

management of multiple client instances which are going to be served. Such logic is covered in the

heart of backend system called core logic application where the message flows for incoming and out

coming messages is defined. As entry point for system to provide data fronted client we define the

application program interface where clients are able to question desired information. Instead of entry

point API we defined the component called listeners which is dedicated to receiving bundles of sensors

data from mobile device sensors which are being stored later on into database.

Figure 34 Server Architecture

The architecture both frontend and backend can change during implementation itself based on

available external open sourced libraries and capabilities of dedicated environment.

6.3. Frontend implementation

Before we start implementation of the frontend application we need to understand Android

framework in more details. The Android framework consists of several layers Linux kernel, Hardware

Abstraction Layer (HAL), Libraries, Android runtime, Application framework and finally Applications

their selves outlined in the following [Figure 35]. The Linux kernel is well known project which was

originally developed in 1991 by Linux Torvalds together with set of GNU tools, utilities and compiler

developed by Richard Stallman. Currently Android using Linux kernel version 2.6 to provide preemptive

multitasking, low-level core system services for memory, processes, power management, networking

and device drivers for hardware. The upper layers such as Android libraries and HAL are written in

C/C++ and providing unified access to hardware together with commonly used functionalities available

in shared libraries. The Android runtime uses Dalvik Virtual Machine instead of Java Virtual Machine

as interpret and Dalvik Executable (DEX) instead of Java bytecode as Android code to be interpreted.

The Dalvik format excels with almost 50% smaller memory footprint than standard Java bytecode and

Dalvik VM is specially designed to provide sandbox for each application by its own virtual machine

58

instance and is optimized to run efficiently within resource constrains of mobile device. Upper layer

such as Application framework is written in Java and provides high level interface to system based

services for developers. And finally the application top layer where are some default application

located together with our frontend application which are gathering sensorial data from mobile device.

Figure 35 Android framework [37]

We customize proposed system architecture from previous chapters with consideration of Android

framework where application layout UI, application logic and application data store are the main parts

to be implemented. We start with implementation of UI in the following application layout chapter.

6.3.1. Application Layout

The visualization mechanism on Android platform is based on static definition wrapped into xml file

layout or dynamic definition when during runtime we create visual components as instances and

adding them into our layout. The fist method help developers for fast and What You See Is What You

Get (WYSIWYG) design mode. On the other hand the dynamic definition access advance design mode

is based on variables in runtime. We will use the combination of both where basic layout is defined as

static and will not change during the application lifecycle and inner visual components which some of

them will be generated during the start of the application. So we define two basic layout which are

highlighted in the following [Figure 36] where user can see sensor list immediately after startup and

59

can by touching on each graph start monitoring or stop monitoring of sensor. The navigation is handled

by menu in right top corner which is also visualized in right screenshot. The users are able to log in into

the system, see sensors profile, connect / disconnect device to cloud, see devices which are also

connected to system and even change device name. We consider that in common development

scenario where the layout is designed by graphics and user experience (UX) the layout may not change

but in our case the proposed layout can be optimized and simplified based on future change requests.

Figure 36 Client Android Application – Sensor List

This layout dashboard is dynamically generated by list of available sensor from SensorManager

supplied with each item by SensorViewGraph class which is responsible for proper data visualization

of cached data in memory of each sensor. This view is refreshed at least 10 fps and we consider that

for prototype it is sufficient to able to see in real time what is behind sensor raw data but in further

development we consider to provide visualization with GL rendering for better refresh rate.

Nevertheless current solution is based on Canvas and provides real time data graphing. Sensors data

60

are firstly collected into memory cache by sensor listeners. Then collected data are processed and the

intensity is being calculated. Independently view manager whenever the canvas can be refreshed after

propagating invalidate state on view the canvas is redraw with current values from cache memory.

This process is repeatedly provided and the sensor data animation appears on the screen.

Next we describe Android framework static layout defined by xml file. The layout files has to be located

in res/layout/*.xml and looks like following simple example of the sensor profile customization layout

called activity_setup.xml where you can see defined attributes of sensor which can be customized

as sensor type, sampling rate, sampling period, logging rate for local data store and sending rate for

posting to cloud data store.

<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent" // define inner width to outer parent

 android:layout_height="wrap_content" // define inner height to outer parent

 >

 <TableRow // add button widget to layout

 android:layout_width="match_parent"// define inner width to outer

 android:layout_height="wrap_content"> // maximize height as possible

 <TextView

 android:layout_width="0dp"

 android:layout_height="wrap_content"

 android:text="@string/sensor_type" // define string resource

 android:id="@+id/textView" // define id of widget

 android:textSize="20dp" // define size of text

 android:layout_weight="1" />

 <Spinner

 android:layout_width="0dp"

 android:layout_height="wrap_content"

 android:id="@+id/spinner"

 android:layout_gravity="center_horizontal"

 android:layout_weight="1"

 android:spinnerMode="dropdown" />

 </TableRow> …. // others elements

</TableLayout>

61

The activity layout defined in previous code example called activity_setup.xml is visualized in the

following [Figure 37] on right side. The sensor profile layout of client Android application is dedicated

to customization of embedded mobile device sensors. The user can choice by Spinner Android

component from scanned sensor list the required embedded sensor. After selection of desired

embedded sensor of mobile device user can customized sensor attributes in order to change the

sampling rate, sampling period, logging data rate and cloud sending data rate. Those attributes of

sensor profile can be set via interactive number entering dialog. The user can customized sampling

rate in millisecond just by entering integer value in input form. The entered value is locally stored first

and then synchronized with cloud to sensor profile. The values are applied instantly by updating live

instance and updating listeners of sensor via SensorManager after user exists from activity by back

button.

Figure 37 Client Android Application – Sensor Profile & Info

62

As future extension for sensor profile layout we consider advance UI components where inputted data

do not have to be entered in raw form as number but rather as touchable progress bar where exact

number value is changed by sliding bar from left to right or opposite.

On the left side of [Figure 37] there are illustrated behavior pattern recognition such as walking,

running and no motion. Those behavior recognition is based on monitoring accelerometer it means

when intensity of measured data exceed over empirically defined threshold the engine evaluate that

the user is walking, running or doing nothing and show up notification on client application as well as

storing status locally which is latter on synchronized with cloud. Instead of that the environment

recognition using location input data and based on user time spent on specific place the home or work

environment is recognized and also the notification is provided on top status bar with local and remote

synchronization. Each graphical element used in layout and notification have the same source. We call

them in Android framework resources which are located in res/* directory. Regarding statically defined

layout in Android applications the identification of each element is provided by android:id attribute

of View Widget type of XML element where (@) is required when you are referencing any resource

from XML. The plus sign (+) is relevant only for the first time generation the resource into R.java

where all resources are generated during build and the id represents resource type where all ids type

are grouped with unique identification. For referencing resource there are defined rules as follows in

Java code and in XML files which are bind for developers together.

In XML : @|?[<package_name>:][+]<resource_type>/<resource_name>

In Java : R.<resource_type>.<resource_name>

And for referencing style attributes which are defined in theme we have to use instead of at-symbol

(@) the question-mark symbol (?). Once we have defined layout with elements we can access them in

application logic easily and each resource such as images can be easily provided in Java code or XML

files with simple reference to single point in resource location.

Another layout visualization which have to be provided in location based services is map layout viewed

in the following [Figure 38] on the left side. We providing the localization of measured events base on

geo graphical information and Google maps API. We implementing overlay on the top of Google maps

and throughout our own visual definition of items in overlay and Google API the map is visualized with

overlaid items. The item is composited from personal image, personal name and current activity

recognized. The personal image is externalized from social connector such as Facebook, Gplus, Twitter

or nonsocial identification such as Gavatar which is based only on valid email. Personal name can be

only externalized from social connectors and current user activity is provided by our client application.

63

Figure 38 Client Android Application – Map & Logger

For debugging purposes we added LoggerView where logging information are outlined based on

logging level applied [Figure 38] right side. There are several logging levels which differs from Java and

Android which are ERROR, WARN, INFO, DEBUG, VERBOSE. The log is also stored locally with log rotation

enabled due to sparing disk space of mobile device and in case of cash provide relevant

information.

We consider that the layout can change in time to provide efficient and comprehensive user interface

and also we are planning to add once implemented functionality in already published works [Imp1]

where application such as Speed Net Tester [Figure 39] and Wi-Fi Connectivity Test [Figure 40] was

proposed.

64

Figure 39 Client Android Application – Speed Net Tester [Imp1]

The Speed Net Tester is dedicated to testing the throughput and Round Trip Time (RTT) of current

network connection. The Android client application provides network testing results in real time by

speedometer where current value is viewed by pointer on logarithmic scale on left side of [Figure 39].

The test is started by start on the very first right test button in the bottom navigation bar. The result

of passed speed measurements are also viewed in list view in the middle of the screen with attribute

Network type, Date/Time, Latency in ms, Download speed in kBps and Upload speed in kBps. If location

provider is enabled the results can be even viewed on the map view. On the right side of [Figure 39]

there is setting of application where periodicity of measurements can be applied by progress bar in

the middle of screen. Also reset of global counters is presented to clean out previous statistics of

measurements. And the last is backend server connection choicer to choice which server should be

measurement mirror provider.

The Wi-Fi Connectivity Tester using scanning of surrounding environment to find out available Wi-Fi

access points. The client application scans in intervals active signal and trying to connect to those which

65

are without password authentication. Once the connection is establish between client application and

trusted server the access point is considered as free connectivity resource for our sensorial network.

To use such open free Wi-Fi based network for connection extremely speeds up throughout of data

and increase the battery capacity significantly.

Figure 40 Client Android Application – Wi-Fi Connectivity Tester [Imp1]

The reservoir of access point measurements can also serves for in-door localization based on

fingerprinting where minimal batter consumption can be reached to extract location with comparable

precision to Global Positioning System (GPS).

6.3.2. Application Logic

After we defined application layout we can start to bind view with application logic. In Android

framework there is Java class called Activity which is binding together UI and application logic. It is

basic fundamental principal in Android framework philosophy of application design to use activity

66

which are in Model, View and Control (MVC) point of view the control. Each activity has to be defined

in application manifest file called AndroidManifest.xml which is XML file for high level meta-

information about application outlined in the following example.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.senzoric.frontend">

 <application

 android:icon="@mipmap/ic_launcher" // define icon of app

 android:label="@string/app_name" // define label of app

 android:theme="@style/AppTheme" > // define theme of app

 <activity

 android:name=".ActivityMain" // bind java class for activity

 android:label="@string/app_name" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

The most concerning in the example is definition of how activity is going to be invoked on Android

mobile device. In the Android framework intent provides a facility for performing late runtime binding

between different applications. Its most use is to launch the activities where it is basically a passive

data structure holding an abstract description of an action to be performed. In our example there is

defined XML element called intent-filter.

67

Figure 41 Android Activity Lifecycle [37]

The intent filter providing kind of fish net to catch correct intent specified by action attribute with

unique identification in android:name and when such intent is broadcasted over Android system the

activity is invoked. Once the activity is being launched it goes through defined lifecycle model viewed

68

in the following [Figure 41]. The developers are able to inherit Activity type and override each of

on<EVENT>() function to react according to application needs.

In our case of activity we use onCreate() for static view initialization and binding model/data with

background service and onPause() for saving persistent data to database or configuration files. The

others callbacks such onRestart() and onStart() are called just before application becomes visible.

Then onResume() is called just before user can interact with activity and that means the activity is on

the top of activity stack. Lastly onStop() is called when activity is not visible and onDestroy() is called

when activity is finished or destroyed by the system. The callbacks onStop() and onDestroy() may

not be called at all due to the system process resource handling.

Figure 42 Application Logic

And now when we understand activity lifecycle we can implement global application logic how should

be activities coupled together and react on events. As was mentioned we can call activity from another

activity via intent or by listening broadcasted intents within system such as onBootComplete,

onActionMain or onSensorChanged visualized in the following [Figure 42]. The background service

ServiceMain which is responsible for gathering data from sensors and storing them in effective way

to local database where content provider is able to populate them to be used externally.

69

We consider user workflow scenario started with user intent by launching application from launcher

and jumps to ActivityMain which is responsible for static initialization control flow. The control is

given to activity ActivityAuth where all authentication tasks are performed with backend. Once the

valid token is received from backend and stored locally in secure store the control is given again to

ActivityMain with success result code and ActivityDashboard can be started. Now on dashboard

operates with Android fragments so there is no extra need for another activity. The

ActivityDashboard provides all necessary data for UI from local and also from remote datasets with

valid token. If token expires over time the control is again given back to ActivityMain and

authentication proceeds again. We will describe secure storage and authorization procedures in next

chapters also with Fragment handling in Dashboard view but at first we will focus on providing content

in Android Framework in the next chapter.

6.3.3. Data Storage

Loading and storing data on mobile device is the key part of each mobile application. There are some

significant read/write accesses which can be used with consideration to operation speed or data size

amount. We are using all of methods which are outlined in the following [Table 18]. Each of them is

dedicated to its purpose and benefits application responsiveness and better user experience. We are

using in-memory caches for calculation global patterns of sensors data where amount of that data is

not possible to store in a real time and also it is waste of space. Therefore we are using cache like

system to provide calculated samples of data based on intensity in precise delta timing.

Table 18 Mobile Data Storages

METHOD NAME DESCRIPTION

IN-MEMORY HASHMAP Dedicated to cache types of storages without persistency and

the high data throughput

DATABASE CRUD Selective search with persistency and reasonable speed of

response

FILE READ/WRITE Suitable for huge amount of media or raw data types

NETWORK REQUEST/RESPONSE Scalable storage with needs of internet connection

As next we need database like storage for storing and loading sample patterns and for such reasons

there is in Android Framework by default embedded SQLite database engine which provides common

SQL commands functionality for mobile application. But there is one difference between commonly

70

known SQL database engine and SQLite engine and that is access controlling which is not provided for

SQLite. That means if we want to use access control on Android Framework we have to use kind of

wrapper on SQLite database engine and by default there is such solution available and is called Content

Provider. In essence it establish read / write permissions for users which are defined in Android

manifest file and outlined in the following example.

<provider

 android:name=".SensorContentProvider"

 android:authorities="com.senzoric.frontend.provider"

 android:grantUriPermissions="true" // grant perms via URI

 android:readPermission="com.senzoric.frontend.provider.READ"

 android:writePermission="com.senzoric.frontend.provider.WRITE"

 android:enabled="true"

 android:exported="true" > // allowed for third parties

</provider>

For data access by external application like the 3rd party developers we have to specify

android:exported="true" and also permission Uniform Resource Identifier (URI) in our case

com.senzoric.frontend.provider for dynamical and static read and write permission definition

where grantUriPermissions="true" means dynamical defined by generated intent from external

application with correct URI and request. And on the other hand we can also define permissions

statically in Android manifest file of client application with explicitly defined read or write permissions

as follows.

<uses-permission android:name="com.senzoric.frontend.provider.READ">

<uses-permission android:name="com.senzoric.frontend.provider.WRITE">

Once we deal with all permissions configuration we can now easily use content provider cross whole

Android platform within any application by following URI read and write access.

content://com.senzoric.frontend.provider/events

71

6.3.4. Client API

For exchanging request/response type messages between backend and frontend we design

Application Programing Interface (API) based on Representational State Transfer (REST) which is the

simplest way for Create, Read, Update, Delete (CRUD) information on server with HTTP calls. Each

entity has its own unique identifier known as Uniform Resource Identifier (URI) and with basic CRUD

operation we are capable to manage entity content remotely. To handle such implementation in our

framework easily we are using shared library program code called senzoric-commons where classes

are shared between backend and frontend code. In shared library are blueprints for class models and

API interfaces. For instance following code represents AuthService interface to define server and

client side API interface implementation with type safe constrains.

public interface AuthService { // shared interface in library

 @POST("/auth/register") // HTTP mapping on post method and path

 public Token register(@Body User user);

 @GET("/auth/login") // HTTP mapping on get method and path

 public Token loginWithEmail(@Query("email") String userName,@Query("password")

String password);

 @GET("/auth/recover") // HTTP mapping on get method and path

 public Boolean recover(@Query("email") String email);

}

On the client side the implementation of AuthService is pretty straightforward because we are using

external library called retrofit which wraps Android DefaultHttpClient and URLConnection to

REST oriented client RestAdapter by simple commands as follows

static final String apiUrl = "https://api.cexbit.com";

RestAdapter restAdapter = new RestAdapter.Builder().setEndpoint(apiUrl).build();

AuthService authService = restAdapter.create(AuthService.class);

Token token = authService.loginWithEmail(email, password);

The AuthService is instantiated by retrofit library and all methods are from now on available by

simple calling of request method invocation anywhere throughout the application. The library has its

own thread pool so it can be called even from main foreground activity thread with non-blocking

72

aspects on application. The API request can use HTTP request methods as classical GET, POST, PUT,

DELETE, and HEAD where the method input parameters are used as containers for content. The Java

annotation identifies specific type of method input parameters (see blueprint of AuthService

interface). The library covers several Java annotations for method input parameters which specifies

how should be HTTP request generation handled in more detail in the following [Table 19].

Table 19 HTTP Request Input Method Annotations

ANNOTATION DESCRIPTION USAGE

@BODY Any Java object is serialized and

deserialized by RestAdapter

converter and used for HTTP

request content.

GsonConverter / JSON

JacksonConverter / JSON

SimpleXMLConverter / XML

ProtobufConverter / Streaming

@FIELD Form type field of HTTP request

commonly goes with POST or PUT in

query string as content.

Can be also with @FormUrlEncoded to be

encoded where key=value are defined as

follows @Field(“key”) String value

@HEADER Setting up HTTP header by string

value for instance authorization

token value.

For using headers as name: value we have

to use method input parameter defined as

follows @Header(“name”) String value

@PATH In most cases we use path

parameter together with GET

method for working with entity

identification such as ids.

First we have to declare path location for

replacement with @GET(“/users/{id}”)

by curly brackets and then use method

input parameter as follows @Path(“id”)

int value

@QUERY The queries are often used for

parametrization of web content

defined as string after question

mark character in HTTP request URI

parameter.

Usage for query is simple for ?name=value

by method input parameter as

@Query(“name”) String value

Once the requests are correctly generated on frontend side we have to also do implementation how

to handle responses on backend side in the next chapter backend implementation.

73

6.4. Backend implementation

There are many ways how to implement our backend and we choose the one which is based on the

String Framework convenient, easy to use and really rapid for developing application in Java. In essence

the Spring Framework is the movement forward from old conventional rules to fresh and reasonable

easiness for developers through comprehensive solutions. When we consider web based services

throughout Spring Framework for our backend there it come String-Boot which combines all classical

web containers based on XML configuration files but for us rather than static useless old school

approach we prefer Java annotation based configurations in minimalistic form outlined in following

code. The whole application is in couple of lines of code where main as usual is entry point to Java

application and @SpringBootApplication annotation which are joining all following annotations

@Configuration, @EnableAutoConfiguration and @ComponentScan into one since they are used

commonly together. Basically that means it will search all components in the classpath and inject

instances or configure bean where is also defined by annotation for instance @Autowired.

@SpringBootApplication // combines component scanning and auto configuration

public class Application {

 public static void main(String[] args) {

 SpringApplication.run(Application.class, args); // run standalone app

 }

}

Such web embedded container Java application can be started by single command as follows by Java

as jar, by building system such as Maven or by Gradle.

java –jar application.jar

mvn spring-boot:run

gradle bootRun

Basically now web server is running on default port 8080 with embedded tomcat web server container.

Further we describe implementation of main parts of backend system such as core logic, used

databases and web service. When we need to change server configuration the most convenient way

is one configuration file embedded in application archive which differs by test mode or production

mode. By default the Spring framework using application.properties file which have to be located

in case of test environment in src/test/resources directory and for production environment in

74

src/main/resources directory. For instance in our backend project the following parameters are

related to customize database attributes.

db.host=db.senzoric.com

db.port=27017

db.admin.login=backend

db.database=senzoric-test

By two configuration files we can easily use one configuration for test database and attributes and for

production. The mapping of key/value parameters from properties file to application instance is

straightforward. We have to define for each parameter key=value the specific Java class which is

enabling mapping throughout Java annotations. The Spring framework search for classes which are

annotated with @Configuration and proceed by default with application.properties file to map

values into class fields by annotation @Value(“${key}”) and the value is injected directly to field

object or primitives.

@Configuration // auto mapping of config file management

public class AppConfig {

 @Value("${db.host}") private String host; // map db.host to variable host

 @Value("${db.port}") private int port; // map …

 @Value("${db.admin.login}") private String login;

 @Value("${db.admin.password}") private String password;

 @Value("${db.database}") private String database;

 public @Bean MongoClient mongoClient() throws Exception {

 return new MongoClient(host, port); // provide mongo database client

 }

}

Everywhere in backend web application we are able to use AppConfig class by @Autowire annotation

and use predefined values for different environments.

6.4.1. Core Logic

The key principal of backend server is about request / response handling throughout Hyper Text

Transfer Protocol (HTTP) where the knowledge how HTTP works come a handy. Our implementation

is based on Spring framework which brings to developers intention to be focused on their own business

75

logic of application rather than rewrite once invented wheel. For better understanding the backend

implementation we outlined in the following [Figure 43] the request / response process flow principal.

We using external parts of Spring framework which are pictured with blue color and our internal

implementation is colored by yellow.

Figure 43 Backend request / response process flow

At first the request is received on server via DispatcherServlet which immediately dispatch the task

to HandlerMapping for selection the appropriate controller by mapping defined in Controller and

returns selected Handler and Controller back to DispatcherServlet. Then the task is dispatched

to HandlerAdapter which calls the business logic of Controller. Business logic with persistence data

layer are being processed and then the processing result is set into Model and returns the logical name

of view to HandlerAdapter. DispatcherServlet dispatches the task of resolving the View

corresponding to the View name to ViewResolver and returns the View mapped to View name.

DispatcherServlet dispatches the rendering process to returned View which renders Model data and

returns the response. All services are designed to server itself purpose as gathering date from / to

database or processing data bundles. The services can be handled independently no matter what they

are servicing. The main reason for such architecture is about to distribute request in proper order and

way which suits to developers scenarios where the main aspect for implementation is about to design

effective way.

76

6.4.2. RESTfull API

To implement RESTfull web services we have to be quite familiar with Representation State Transfer

(REST) HTTP request / response messaging. In most Java API for RESTfull Web Service (JAX-RS) based

on Java Specification Requests (JSR-311) framework implementation are used Java annotation on

classes which handles HTTP requests without needs to explicitly define configuration in XML based

files such as web.xml and others. Just to mention some of them which implements JAX-RS such as

Jersey, RESTeasy, Restlet, Apache CXF and of course String Framework. We are using the last one

mentioned and therefore our implementation relies on the state of art approach for Java based web

application with embedded web container where the future development style is about to compose

single web application into single web container without needs of multiple web application instances

tuning and cross application bugs tracking. The proposed solution is lightweight easy to maintain and

scalable based on Model View Control (MVC) fundamentals. For instance following code for

UserController implements AuthService from shared library senzoric-commons with Java

annotation based HTTP request mapping.

@RestController // Spring rest controller mapping

public class UserController implements AuthService {

 @Autowired

 private UserProvider userProvider;

 @RequestMapping(value=AuthService.URL_REGISTER, method=RequestMethod.POST)

 public Token register(User user) { …

 // register user into system

 }

 @RequestMapping(value=AuthService.URL_LOGIN, method=RequestMethod.GET)

 public Token loginWithEmail(String email, String password) { …

 // login user

 }

 @RequestMapping(value=AuthService.URL_LOGIN, method=RequestMethod.POST)

 public Token loginWithEmailEncryptPassword(String email, String secret) { …

 // login user with secured pass in md5 hash

 }

 @RequestMapping(value=AuthService.URL_RECOVER, method=RequestMethod.GET)

 public Boolean recover(String email) { …

 // recover user via email and secret

 }

}

77

As you can see the controller receives the data for instance in form of JSON which is depended on used

data convertor. The requests are receiving the data form on method input values and are being

processed by inner implementation which is basically covered by some checks and by some data

manipulation operation. Controller distribute data to database or in memory cache where can be

delivered over the network to multiple clients. To use Spring Framework Controller or

RestController correctly is the about to define proper request mapping defined by Java annotations.

Following several combinations of annotations describe request mapping in more detail.

JAVA ANNOTATION DESCRIPTION/EXAMPLE

@REQUESTMAPPING Core request mapping annotation used on class or class method in order

to define match between request and processing method. Usage

@RequestMapping(“/users”)

@PATHVARIABLE Path variable mapping where define variable as pattern in given URI as

follows @RequestMapping(“/users/{userID}”) the variable itself is

mapped on method input variable as follows

findUser(@PathVariable String userID)

@REQUESTBODY Maps the whole object as method input parameter as follows

 createUser(@RequestBody User user) the content type JSON and

POST method is required in order to use default Jackson converter.

@REQUESTPARAM Annotation used for request mapping query parameters where

@RequestMapping(“/users”) is base of URI and ?userID=<value> is

query string which is mapped as follows

findUser(@RequestParam(“userID”) int userID)

Once we understand in more detail the request mapping scenario we are able to implement the whole

scale of HTTP request API handlers. After all sets of request handlers are implemented they are

implicitly activated by injection dependency of Spring framework and therefore the implemented

services should be as much different as possible. We consider to proceed the data in services as

independent to main request stream. The most effective way how to implement backend services is

about to effective middle layer processing. The less of procedures mounted on request controller is

less processing time consuming.

78

6.4.3. Services

The most of business logic implementation in our concept should be implemented in kind of services

which should be independent to data store layer and request handler layer. The services are core

functionalities defined within the system to serve user cases to fulfill designed goals. For instance the

email service on our backend server as mail client is designed to proceed all email requirements via

Simple Mail Transfer Protocol (SMTP) dedicate to remote Mail Transfer Agent (MTA) as mail server

with validation based on Sender Policy Forward (SPF) and Domain Keys Identified Mail (DKIM) where

the Secure Socket Layer (SSL) or Transport Layer Security (TLS) secured layer should be used for

connection between mail client and server since the Simple Authentication and Security Layer (SASL)

we using SMTP credentials exchanging in plain text form.

We implemented authentication service two types of public and private entities where public are

accessible to all frontends without authorization and private once are accessible only after correct

authorization process based on provided credentials or short term tokens.

6.4.4. Data Storage

We decided to use as a main database engine the MongoDB where its qualities were proven over the

time in many cases. MongoDB is document based database where documents are similar to JSON

objects. The values of fields may include other document, arrays and arrays of documents. It supports

dynamic schema definition which can change in real time without data constrains. Provides high

performance data persistence where index supports faster queries together with high availability

provided via replication facility called replica sets. Also automatic scaling where horizontal scalability

is part of core MondoDB functionality with automatic sharding distribution data across a cluster of

machines. Once we have database engine installed on server and it runs in separate process listening

on default port 27017 we can start to use Java database clients to connect on localhost. We are using

for interaction with database engine the database client implementation based on Spring Framework

via spring-data-mongodb in the following source code is defined interface which coupling data

manipulation operations by annotations. The MongoRepository class binds together all basic CRUD

operation with defined entity UserEntity and implements customized once by input parameter and

class field identification. Such customization can be also enhanced by Java annotation support Java

Persistence API (JPA) outlined in following code of simple entity UserEntity where identification @Id

is mandatory for all entities definition. The @Id annotation defines the unique identifier for each entity

and can be used for indexed search and joins of entities throughout database. In our UserEntity

definition we inherited User class which is basically kind of blueprinted container for JSON data

79

transportation between frontend and backend and on the backend side we are adding database

related fields with Mongo database annotations.

public class UserEntity extends User {

 @Id // must be included for database entity

 String id;

 public UserEntity() {

 }

 public UserEntity(String email, String password) {

 super(email, password);

 }

 … // getters & setters

}

There are other useful annotations which help to drive database mappings for

MappingMongoConverter. An overview of the annotations is provided below [38]

 @Id - applied at the field level to mark the field used for identity purpose.

 @Document - applied at the class level to indicate this class is a candidate for mapping to the

database. You can specify the name of the collection where the database will be stored.

 @DBRef - applied at the field to indicate it is to be stored using a com.mongodb.DBRef.

 @Indexed - applied at the field level to describe how to index the field.

 @CompoundIndex - applied at the type level to declare Compound Indexes.

 @GeoSpatialIndexed - applied at the field level to describe how to geoindex the field.

 @Transient - by default all private fields are mapped to the document, this

annotation excludes the field where it is applied from being stored in the database.

 @PersistenceConstructor - marks a given constructor - even a package protected one - to

use when instantiating the object from the database. Constructor arguments are mapped by

name to the key values in the retrieved DBObject.

 @Value - this annotation is part of the Spring Framework. Within the mapping framework it

can be applied to constructor arguments. This lets you use a Spring Expression Language

statement to transform a key's value retrieved in the database before it is used to construct a

domain object.

Once we define the entity class with appropriate annotations we are ready to define repository access

for that type of entity in the following source code we outlined interface UserRepository which is

80

extended from MongoRepository from Spring Framework and it provides the intelligent database

CRUD operation based on naming convention. All methods starts with findBy<attribute> define search

in database documents by specific entity where <attribute> is used as search criteria with value

entered as input value of method. It can be combined together with logical operators such as And, Or,

Between, LessThan, GreaterThan or Like. The outcome would look like for search user via email and

last name as findByEmailAndLastname(String email, String lastname) that kind of strategy

really minimize boilerplate code and increase clarity of code.

public interface UserRepository extends MongoRepository<UserEntity, String> {

 public UserEntity findByEmail(String email); // db search users via email

 public UserEntity save(UserEntity user); // store user into db

 …

}

6.5. Continues Integration

The integral part of the development is Continues Integration (CI). These sets of techniques and tools

are enabling developers to integrate their incremental piece of work within teams and allowing to

dramatically reducing amount of time wasted for searching defects which can be automatically found

by specialized tools. We describe in this chapter commonly used CI tools as well as criteria and

advantages for those who are using this proved by time approach. First we start with a bit of history

where in early sixties of the last century the IBM came out with a special method for building processes

which were triggered multiple times per day. In couple of decades most companies producing software

solutions were realizing similar processes based on daily automated building environments and

servers. The main reasons for usage of CI techniques and run CI servers are following hints.

 High bugs rate in source code of developers

 To find out single bug is time and resource much consuming

 Creation of new builds is sophisticated process

 New builds with minimal effort can be created daily

 Inconsistence of release versioning leads to automation

 Simplification of repository access and its maintenance

Those are just a few common criteria leads to the necessity of usage Continuous Integration. To

demonstrate classical integration server with basic functionality we highlight in the following [Figure

81

44] of high level CI process flow. At first developers are committing source code to remote shared

repository where the code is being downloaded. Once there are no conflicts in the source code and is

delivered to repository process flow then can start compilation where all static syntax bugs are

resolved immediately. Then there can be provided test cases implementation and those can be

automatically tested by framework without human needs. If tests are valid then it goes further deep

to code analysis where the knowledge of programing rules is applied on code and it searches for error,

warning or even trivial issues which can be resolved. Next step is documentation generation where for

distribution purposes and descriptive capabilities to other parties the document type outcome is

generated mostly based on code and its annotations. Lastly after all checks are passed then the binaries

are distributed to specific location of production.

Figure 44 Continuous Integration Workflow

Each sub process of continuous integration process flow is basically provided by different tool which

are all together and are invoked from CI server with specific inputs and outputs. There are several well-

known CI servers such as Apache Continuum, BuildBot, Hudson, Jenkins or Bamboo. They perform

process flow based on customized configuration and run the builds in a certain period of time typically

during the night. Some of building tasks can be quite time consuming for instance Android source build

distribution

public vs private channels archivation auto deployment

documentation

generation outputs javadoc api html pdf

code analysis

coverage findbugs checkstyle sonar

automated tests

test driven development JUnit TestNG

compilation

static analysation of code syntax with dependencies cross modules checks

source code

commit to repository independent developers works in parallel GIT,SVN,CSV

82

have to run around one hour to build all binaries on high performance server and therefore the time

management of builds in such cases has to be also considered.

We are using in our development continuous delivery Jenkins which is Java web application with build

management system and possibility of many plugins for application. The Jenkins worker has to have

access to shared repository which is in our case GIT and in our case on different server so the most

convenient way is to create Jenkins account with SSL based authentication. The repository structure is

defined previously in [Table 17] and is used by build server as well as by developers. Once the building

process is started all source code is cloned to working directory within Jenkins worker and is being

compiled. The way how to tell Jenkins what to do with source code is typically project management

file pom.xml in case of Maven build tool or in our case gradle.build of Gradle build tool. Such file

defines all necessary information for build locally such as which external resource has to be

downloaded, definition of versions, definition of signing binaries for security reasons and how should

be binaries or documentation for source code distributed. Following code outlined backend Gradle

build definition file where are mandatory information specified.

group 'com.senzoric'

version '1.0-SNAPSHOT'

buildscript {

 repositories {

 jcenter()

 }

 dependencies {

 classpath 'org.springframework.boot:spring-boot-gradle-plugin:1.2.5.RELEASE'

 }

}

apply plugin: 'java'

apply plugin: 'idea'

apply plugin: 'spring-boot'

jar {

 baseName = 'senzoric-backend'

 version = '1.0'

}

repositories {

 jcenter()

}

sourceCompatibility = 1.8

targetCompatibility = 1.8

83

dependencies {

 compile 'org.springframework.boot:spring-boot-starter-web'

 compile 'org.springframework.data:spring-data-mongodb'

 compile 'org.slf4j:slf4j-api:+'

 compile 'ch.qos.logback:logback-classic:+'

 compile 'org.codehaus.jackson:jackson-mapper-asl:1.9.11'

 compile project(':senzoric-commons')

 testCompile 'junit:junit'

}

The build file defines global repository for downloading as well as which resources and libraries are

necessary for our implementation and therefore have to be downloaded locally. There are some

advantages in contrast to Maven based build system. Gradle build system is based on Domain Specific

Language (DSL) Groovy instead of traditional eXtensible Markup Language (XML) which provides real

advantages for developers to use programing techniques directly through build file. And it really excels

in multi-project builds because it supports incremental builds by intelligent determining which parts

are up to date and which should be re-executed in building tree based on dependencies. There are

plenty of plugins which can be used by simple command apply plugin: ‘java’ and from that point

Gradle has defined default structure of project where source, resource, test source and test resource

are located in directory structure. For instance source is located in src/main/java but it can be easily

changed by Groovy command within Java plugin as follows sourceSets.main.java.srcDirs =

['src/java'] in build file. After build file is properly set we can call Gradle build by simple command

from bash gradle build if environment PATH variable is correctly setup to Gradle binaries. The

outcome from simple project based on Java plugin is as follows.

> gradle build

:compileJava

:processResources

:classes

:jar

:assemble

:compileTestJava

:processTestResources

:testClasses

:test

:check

84

:build

BUILD SUCCESSFUL

All of these steps processed by Gradle build are basement for continuous integration server how

should behave in general. Each step can be configured in build file or directly in integration server

management console but the good practice leads to single build file tree possible to build on any

environment except specific external native builders for specific platform different from Java.

Another requirement for effectiveness of building system for frontends when we are talking about

Android platform build variants. That customization of build file based on build variants enables to

provide system unique identification of packages for each product flavors and their build variants. In

our project we are building frontends with build variants debug and release which are by default

enabled for Android builds and differs only by suffix added to each output Android Package Kit (APK)

file. The product flavors are defined as demo and full where the name of flavor defines subdirectory

in src directory where only source code or resource files are located and which should override default

once in src/main directory. Following Gradle build file defines the build variants together with product

flavor.

android {

 ...

 defaultConfig { ... }

 signingConfigs { ... }

 buildTypes {

 release {

 minifyEnabled false

 proguardFiles getDefaultProguardFile('proguard-android.txt'),

'proguard-rules.pro'

 }

 debug {

 debuggable true

 }

 }

 productFlavors {

 demo {

 applicationId "com.senzoric.frontend.demo"

85

 versionName "1.0-demo"

 }

 full {

 applicationId " com.senzoric.frontend.full"

 versionName "1.0-full"

 }

 }

}

There are others relevant topics regarding proper auto build procedures which may be considered

such as proguard for code redundancy optimization routines in Android applications. Also testing with

automatic tests which are implemented by independent developer who not implement feature itself.

And at last all possible code analysis as Sonar, Coverage, FindBugs, CheckStyle, etc.

6.6. Security aspects

We consider really important the implementation of security relevant aspect for Senzoric framework

on frontend side, backend side and communication in between to provide safe, robust non leak able

environment. First let’s talk about frontend side where the core security principals lay on Linux

hardening techniques in combination of Android framework security. The Android mobile device after

power on give control to secure boot and it gives control to Linux system which starts independent

Java Virtual Machines (JVMs) for each application in sandbox. We consider for Senzoric framework on

Android platform several security enhancements which are outlined in following list:

 Application sandbox - apps are isolated with their code execution and data from other

apps. That is provided by Android framework naturally based on Dalvik Virtual Machine.

 Framework security functionality – cryptography, file system permission and secure Inter-

Process Communication (IPC). We are using local keystore and truststore as repository of

certificates and private keys for encryption database sensitive data as well as

communication data.

 Encrypted filesystem – enables to protect data on lost or stolen devices

 Application defined permissions – control system features and user data based on

application level. The permission for application defined in Android manifest file we

defined to fulfill required sensors, connectivity and user access account needs.

 Input user data validation – performing validation of entered data prevents SQL injection

to minimalize vulnerabilities.

86

 Handling credentials – user passwords are required only first time of login on specific

device since than the short live access token is used and the password is not stored on

frontend and on backend only in form of MD5 hash value for verification.

The backend side is little bit more complex due to security features provided by Android platform

which are not as default on standalone Linux server. We using for backend Debian Linux distribution

running on Virtual Private Server (VPS) in computing center where the security after server boot is

supported by VPS provided since the server instance is running. We are connection to VPS via SSL

terminal for setup secure environment outlined in following list:

 Encrypt data communication – Using SSL for terminal connection, TLS for SMTP email

clients and HTTPS for frontend communication.

 Linux system management – Uninstalled all unnecessary software to minimize

vulnerability. Using chrooted sandbox network service with Tomcat web server. Keeping

automatically Linux kernel and software updates to apply security updates as soon as

possible.

 Logging and Auditing – We using standard Linux logging and auditing system to monitor

any suspicious activity on server.

 Database security – The access to database is restricted only for localhost. The database

server runs on the same machine with the same IP address and connection is based on

private / public key SSL layer. User passwords are stored in MD5 hash format to minimize

risk of database administrators to compromise users.

 Security Enhance Linux – Implementation of Mandatory Access Control (MAC) to enhance

security of Linux operation system which is considered in our Senzoric framework used in

future.

 Client web server communication – We using for communication HTTPS with first class

certificate provided by StartSSL certification authority for domain name verification and

communication encryption between frontend and backend. Frontend require root

certificate of certification authority to be included in trust store to verify backend.

The security of user access control to backend application is based on provided access tokens which

are generated for short time period upon correct user credentials. The tokens provide access internally

in backend application to user resources which were once approved explicitly by user on implicitly by

user action.

87

6.7. Monitoring

Once we have implemented the system and deployed on production environment we need to monitor

the system to be able to analyze performance and scalability of the system. We are using Java Mission

Control from Oracle to monitor Java Virtual Machines (JVM) locally or remotely based on Java

Management Extensions (JMX). Such remote JMX Tomcat Java instance monitoring provides tuning

and easy issue resolving in production environment. To enable JMX for Tomcat web server is about to

setup couple of parameters for CATALINA_OPTS or JAVA_OPTS as follows:

-Dcom.sun.management.jmxremote

-Dcom.sun.management.jmxremote.port=9010

-Dcom.sun.management.jmxremote.ssl=true

-Dcom.sun.management.jmxremote.authenticate=false

-Dcom.sun.management.jmxremote.ssl.need.client.auth=true

-Djavax.net.ssl.keyStore=<keystore file>

-Djavax.net.ssl.keyStorePassword=<keystore password>

After properly parameters configuration the Tomcat web server can start with JMX remote monitoring

optionality and we are able to connect remotely via SSL by Java Mission Control (JMC) software [Figure

45]. The monitoring consists of comprehensive layout with possibility to monitor parameters, setup

triggers, view memory and dig into threads.

88

Figure 45 Monitoring JMX with JMC

6.8. Review Board

Based on definition of user stories we are prepared to schedule an activity which leads to provide

outcome to working system. Each user story has its own lifecycle outlined in the following stage list

 Design – definition of functionality within system

 Implementation – incremental update of working system

 Test – testing functionality & find bugs

 Verification – consideration of requirements fulfillment

 Deployment & Production – upgrade of working system in production environment

And as such each user story has to be picked up into specific sprint where its lifecycle can start. In our

project all tasks are performed by me but in a real world each edge of stages has influence on

increasing software quality caused by necessity for externalized knowledge between team members.

The communication between team members partially resolves the possible gaps in the user stories

definition. Also during stage implementation the developers can rise a lot of technical issues related

89

to the core system functionalities as data model and its application, class model and its application and

other technical aspects which are not possible to be seen during the planning stage. We highlighted

such additional tasks which have to be done prior to its own implementation of the user story in

implementation chapter. Therefore we have to just plan non-technical issues which are basically user

stories outlined in the following [Table 20] with attributes of story points, sprints and production

review. All records can change in time and we consider table as the final one.

Table 20 User stories review board

IDENTIFIER NAME POINTS FINAL STAGE / REVIEWED

USI-1-1

 User registration 2 Test – add build auto testing

USI-1-2 Login 1 Test – add build auto testing

USI-1-3-1 Password recovery 1 Test – add build auto testing

USI-1-3-2 Password change 1 Design – minor

USI-1-3-3 Email change 1 Design – minor

USI-1-4 Logout 1 Implemented / Change – timeout session

expiration

USI-2-1 Connect device 5 Design – request change to messaging updates

during live data stream

USI-2-2 Modify name of device 1 Design – minor

USI-2-3 Disconnect device 1 Design – together with connect device

USI-2-4-1 Device list 3 Design

USI-2-4-2 Device details 2 Design

USI-3-1 Sensor list 3 Implemented – on client only

USI-3-2 Detail of sensor 2 Implemented – on client only

USI-3-3 Sensor history 5 Design

Currently we consider the implementation of prototype as partly implemented where core

functionalities are available. To deploy system on production server we have to finish others use cases.

And during implementation we realize another functionalities which conforms to sensing platform

such as automatic social media notification feature or auto execution procedures in surrounding area

which we will describe in more detail in following chapter of using sensing framework in real

environments.

90

7. Use Cases in Real Environment

We dedicate this chapter to Sensoric Framework based solutions used in real environments. The most

significant usage would be in Smart Home where everyone can recognize the advantage of home which

sensing surrounding environment. We publish the work Smart Home Point As Sustainable Intelligent

House Concept based on Senzoric Framework published [Conf8] and [Conf9] therefore we describe

work in more detail in the following Smart Home chapter. There are others areas where SF can be

useful in business, public or private environments. We consider main area in business in automation

processes which are saving money to companies in business process, in public where aggregation of

users may effective declare demand of public services and therefore they can be distributed more

effectively, and in private mostly in combination with social media where kind of excitation of users

context awareness is desired content to be consumed.

7.1. Smart Home

The idea behind Smart Home Point is easy, comprehensive and social connected UI with their home

place. The system is based Sensoric Framework and enables to monitor, control and socialize

householders with their facilities, families and friends. The monitoring is covering any sensor which

could be connected via Ethernet network such as motion, light intensity, temperature and other

ambient sensors as well as voice, video or other signal readers. The controlling enables door locking,

heating, air-conditioning, lighting and networking management on spot or remotely from the mobile

device or web browser. Mentioned socialization feature ability of the system enables to create new

interactive environment within home users who are identified by over their personal mobile devices

and could share their own social channels. The cost of chips and sensors will reach ubiquitous level

soon and we will interact and provide sensorial data to our environment. The smart environment at

home will have for us more attractive background due to human social and personal behavior needs.

Our relaxation, comfort, social zones will increase their efficiency thanks to the intelligent sustainable

environment. The houses will manage energy from recoverable sources and provide free of charge

sustainable ecological live support without waste. The challenge is more than contrived where limited

resources are drained in meaningless outcome in terms of human society. Therefore we propose

sustainable open source project called Smart Home Point in exampled house schema [Figure 46] where

all house management needs are connected in a single UI ready for any customization. Nowadays we

consider personal automation as one of the biggest challenges. The personal automation stands in the

line just after the industrial and business automation, but requires higher computation power. There

91

are two factors which enable such opportunity as wireless communication and mobile computing. Both

in time will become the main stream providers of personal daily bases solution resolvers or advisers in

terms of location, society or other contexts. Also the human interaction with the system is considerable

as mandatory where visualization and control of human environment functionalities would be as one

undivided unit which keeps purpose and sense of information.

Figure 46 Smart Home Point overview deployment schema

The prototype of system consists of Commander, Controller, Element and UI units. We consider

Commander Unit as Linux based minicomputer known Raspberry Pi where nonstop running web server

responds for user’s mobile device and other UI applications. Also inner part of the system is socket

server bind with logic and database which is listening on port 5000 for every event or command

messages transported over local network. The communication with web server is provided by

Representational State Transfer (REST) as web resource based access. The Application Programing

Interface (API) describes main functionalities. We consider also third party access, therefore open

based API access is provided and the documentation with mock’s objects is available. API conforms to

latest consideration of resource based best-practices where all types of resources if are allowed to

access are able to reach from top level hierarchy or from relation between resources. The relations are

92

expressed as inner mount point with identification of upper leading resource. The authorization to

resource is provided by implementation of Filter class of web server where access privileges are

defined in profile type of user and therefore resources are defined as accessible to specific type of

profile. For instance Admin or Householder is able to add new user into the system and authorize for

him or her to execute commands. We consider implementation on different mobile platforms as

Android, iOS and Windows for UI application with simple user friendly component as a part of further

discovery. Nevertheless nowadays we just propose open resource based interface which leads to

correct implementation of mobile UIs. The practical main resources are User, Element, Controller,

Command, Event and House which allow settings and maintaining the system which was at first

configured by technical person and provide proper setup of controller and commander unit. The User

resource allows plain Create Read Update Delete (CRUD) operation for authorized actor with resource.

These are provided to all resources as generic plain implementation. The other operations as login,

logout, findUserByKeyword, createWithArray or createWithList are provided for specific functionality

where name or detailed description expresses their purpose defined by annotation on entity classes

and generated on every request, therefore the API documentation is all the time up to date. Mobile

application is designed as a remote controller of the house system. It depends only on connectivity

weather mobile device is connected to internet or within local network to home server. We implement

simple remote controller where are possibilities of shortcuts keys, menu direction handlers and easy

buttons such as hide or show menu on TV screen. The prototype layout in [Figure 47] and [Figure 48]

is briefly describe functionality in its layout and keywords.

Figure 47 Mobile application prototype layout

Also the home point screen of the system is mandatory in terms of usability. We are considering as

authentication mechanism with mobile device time interval tokens which are encoded to QR code.

93

Therefore you could see on prototype layout and the visualization of smart home point application

where is content and house information centralizing also QR codes. The mobile device at first has to

scan QR code viewed on TV screen to obtain access token for remote control. When the token is

verified over server the mobile application controls the smart home point and QR code disappears.

The controlling is based on driving through menus by simple arrows. We are considering also as

improvements mouse type cursor handling where only UDP packets are that fast to handle this

solutions in terms of ANR (Application Not Responding). The activation selected menu is done by speed

button called action and this triggers routines on server side. For instance when the switch all lights

are willing to be on the menu all lights on have to be activated. That triggers background process which

send UDP packet to all nodes with command to switch lights on. In case of RGB lights the command

would be set all values R, G and B to default values.

Figure 48 Application prototype TV layout

7.2. Public Transport

The public environment where people can share something in common is for example public transport.

They share traveling paths and there is only challenge for public providers of transportation to

effectively maintain resources such busses, trains or other vehicles to provide optimal transportation

paths and timing to fulfill public demand. The sensorial framework such as Senzoric can assist with

creating and updating effective timetable and paths since the distribution of population in cities can

change overtime. Normally the public traffic is based on solid timetable and paths given by public

traffic designers based on experience and previous state. But think about if such prolonging process

could be shortened into on demand process based on real situation power by sensors of personal

mobile devices with public traffic sensors. The traffic lights can be managed by current density of

94

needed transportation in demanded way. The busses can increase or decrease intervals on bus stops

upon current amount of requests or even there could be dynamic paths of busses driven by destination

spots of travelers [Figure 49]. There can help Sensoric Framework to provide sense data of users and

with extension in form of travelling application where users specify destination spots it can maintain

whole public traffic system with automation.

Figure 49 Public transport

The only problem is to balance current state of roads where the bus stops are at solid places and the

challenge for smart cities is about to uniform roads to provide stopping places anywhere based on

current demand. Such idea can be kind of revolutionary but future public transport will be about

automation vehicles without drivers which take you from your positions precisely to your destination.

95

8. Discussion of Results

In evaluation of achieved results during phases of Senzoric framework realization such as analyzation

problem definition area, designing architecture and concept, and also implementation and

deployment we consider following points which were fully or partly completed to achieve working

application prototype available for multiple Android mobile devices which are capable to gathering

online sensorial data from device embedded sensors.

 Analysis of embedded sensors with theirs physical and software capabilities

 Analysis of mobile devices available on market

 State of art regarding software development technique and used tools

 Declaring use cases and process flow for framework

 Proposal of system architecture on frontend and backend

 Implementation of system components in Java

 Design and implementation of database structure and data types

 Implementation of automatic test during build

 Verification of implemented solution by running application in real environment

All those achieved results increase our knowledge in area of discovery sensorial networks embedded

in mobile devices. We realize that others relative works based on sensorial framework are completed

within teams during couple of years and therefore we consider that our minimalistic prototype is well

performed result in terms of programing capacities. We need to join others developers world widely

to able to provide real production sensorial framework with rich plugins and visualization widgets on

more than one mobile platform. The main our contribution we believe is in state of art development

techniques and used tools as well as design and implemented architecture with the secured, effective

data transmission and minimal battery consumption during behavior pattern recognition.

We provided real time sensorial framework prototype which is being used by group of voluntaries in

real environment where evaluated data gathered by framework showing repetitive users behavior

patterns which may be used for further discovery to enable framework triggering smart environment

actions for instance automatic house doors opening based on prediction patterns and location sensor

bases. There are plenty of real usages in our daily lives where the most challenging is integration within

other system to provide complex smart environment behavior.

To deploy Senzoric framework in real mass production environment is profile optimization needed to

don’t bother common users to fulfill precise sensorial data gathering in current form but rather than

96

that provide intelligent self-managing profile handling based on previous experience or by wizard

handling form where user define desired outcome from framework in combination of available mobile

device embedded sensors. Currently we provide just one default profile which can be customized by

user and stored in cloud but the customization for not advance users are not realistically to ask for.

The common user customization ends up with not optimized data a transfer result which ends up in

capturing more mobile device resource than should be desired.

We consider the extended usability of Senzoric framework in open sourced code available on website

for third parties to provide more implementation customized sensorial based features. For third

parties it unifies embedded sensors access for mobile devices application and backend management

system. The developers can implement sensorial triggers to run external procedures in smart

environment by behavior or environment patterns recognition. Our implementation provides location

monitoring of mobile devices which can be used in many real business cases. For instance traveling

agency can monitor travel agent during the work. The shipping company can monitor driver’s paths

and optimize workload. Or microphone and camera sensors monitoring can be invoked by

accelerometer and mobile devices can server as extended node for video monitoring system.

The Senzoric framework was designed with regard to extensibility in future internally or with third

parties to provide connection within smart applicants in smart environments. The behavior of users

can trigger actions of electronic applicants in surrounding area such as smart walls, smart cars, smart

fridge and others. Based on such automatic actions users can literally feel that the environment can

sense them. Another huge area of extensions is in auto notification on social media networks where

the behavior, environment or context recognition sense users publicly and users can share their

common habits as well as they can joining in predictive recognized behavior patterns.

97

9. Conclusions

The sensorial based frameworks are currently evolving areas in fast changing mobile devices

environment. The effective concept for distributive sensorial information creates a challenge

concerning the battery consumption, communication, and effective sensorial data gathering. There is

group of sensorial applications which partly provides desired functionalities but none of them provides

fully capable sensorial framework with open sourced code, with social connectors available, with

predictive pattern recognition, with customization of visual components, intelligent profile handling

and minimal battery consumption. All of these aspects are evaluated equal in order to help to increase

the usability and we considered those aspects as challenge for us to design and implement such

framework in real environment.

The goal of dissertation was to create sensorial framework which capture embed sensors data and

transform them into comprehensive information which can be share through the cloud. To reach that

goal was necessary analyze currently available mobile device sensors, discover the most suitable

development tools and techniques, design and implement prototype application, test prototype in real

environment and evaluate results. We choice in the beginning agile development approach together

with Java and Android based platforms for implementation which latter on was proven as good choice.

The key benefit of the proposed architecture is in scalability and applicability for further location,

motion, and environmentally based real-time solutions.

The work proposes effective sensorial information distribution in terms of usability and we consider

the future smart environment based on mobile device embedded sensorial networks. Parts of work

was published in journals [Scop1], [Imp1] with impact factor 0,805 and conferences [Conf6], [Conf8]

and [Conf9].

We stand at the beginning of a new era of sensorial social networks where we will perceive only

information which is relevant to us. In other words, we will create, through our activities, our own

artificial informational shield or receiver, and through our life style, we will obtain corresponding

informational channels.

98

10. Bibliography

[1] P. Mikulecky, "Remarks on ubiquitous intelligent supportive spaces," in 15th American

Conference on Applied Mathematics/International Conference on Computational and

Information Science, Houston, 2009.

[2] P. C. Hii and W. Y. Chung, "A comprehensive ubiquitous healthcare solution on an android (TM)

mobile device," Sensors 11(7), p. 6799–6815, 2011.

[3] "What is sensor," 2014. [Online]. Available: http://what-is-a-sensor.com/.

[4] B. I. Poids and , Le Systéme International d’Unités (SI), The International System of Units (SI),

France: Sèvres, 2006.

[5] A. Thompson and N. Barry, Guide for the Use of the International System of Units (SI), NIST

Special Publication 811, 2008.

[6] S. Bobek, G. J. Nalepa and A. Ligȩza, "Mobile context-based framework for threat monitoring in

urban environment with social threat monitor," in Multimedia Tools and Applications, 2013.

[7] H. Efstathiades, G. Pa and P. Theophilos, "Feel the World: A Mobile Framework for Participatory

Sensing," in 10th International Conference, MobiWIS 2013, Paphos, Cyprus, August 26-29, 2013.,

2013.

[8] M. Schirmer and H. Höpfner, "Approaches for reducing the energy consumption of smartphone-

based context recognition," in SenST*, Modeling and Using Context 6967, 2011.

[9] P. Zhang, W. Jiang and J. Y. Zhu, "MobiSens: A Versatile Mobile Sensing Platform for Real-World

Applications," Mobile Networks and Applications, pp. 60-80, 2013.

[10] P. Brida, J. Machaj, J. Benikovsky and J. Duha, "An experimental evaluation of AGA algorithm for

RSS positioning in GSM networks," Elektron. Elektrotech 104, p. 113–118, 2010.

[11] W. Woerndl, A. Manhardt, F. Schulze and V. Prinz, "Logging user activities and sensor data on

mobile devices," Analysis of Social Media and Ubiquitous. Data Lect. Notes. Comput. Sc. 6904, p.

1–19 , 2011.

99

[12] L. Lhotska, M. Bursa, M. Huptych, V. Chudacek and J. Havlik, "Standardization and

Interoperability: Basic Conditions for Efficient Solutions," IFMBE Proceedings, vol. 37 , p. 1140–

1143, 2011.

[13] K. Juszczyszyn, N. T. Nguyen, G. Kolaczek and A. Grzech , "Agent-based approach for distributed

intrusion detection system design," Lect. Notes. Comput. Sc. 3993, p. 224–231, 2006.

[14] O. Krejcar, "User localization for intelligent crisis management," in Conference on Artificial

Intelligence Applications and Innovation (AIAI), Athens, 2006.

[15] S. Huseth and S. Kolavennu, "Wireless networking based control," Localization in Wireless Sensor

Networks, p. 153–174, 2011.

[16] IDC, "Market share Smartphones OS," 2014. [Online]. Available:

http://www.idc.com/prodserv/smartphone-os-market-share.jsp.

[17] Google, "Android Source," 2015. [Online]. Available: https://source.android.com/index.html.

[18] "Top sales Smartphones," Forbes, 2014. [Online]. Available:

http://www.forbes.com/sites/chuckjones/2014/04/03/apples-iphone-5s-still-the-top-selling-

smartphone-worldwide/.

[19] DeviceSpecifications, "Comparision," 2015. [Online]. Available:

http://www.devicespecifications.com/en/comparison/eaf0277a0.

[20] K. Choros, "Further tests with click, block, and heat maps applied to website evaluations," in Lect.

Notes in Artif. Int. 6923, 2011.

[21] S. Huseth and S. Kolavennu, "Localization in Wireless Sensor Networks," in Wireless Networking

Based Control, 2011.

[22] S. Tarkoma, M. Siekkinen, E. Lagerspetz and Y. Xiao, Smartphone Energy Consumption: Modeling

and Optimization, Cambridge University Press, 2014.

[23] D. H. Kim, Y. Kim and D. Estrin, "SensLoc: Sensing Everyday Places and Paths using Less Energy,"

SenSys’10, 2010.

100

[24] W. Brunette, R. Sodt, R. Chaudhri and M. Mayank, "Open data kit sensors: a sensor integration

framework for android at the application-level," MobiSys '12 Proceedings of the 10th

international conference on Mobile systems, applications, and services, pp. 351-364, 2012.

[25] P. Lin, S. Chen and C. Yeh, "Implementation of a smartphone sensing system with social networks:

a location-aware mobile application," in Multimedia Tools and Applications, 2015.

[26] N. Győrbíró, A. Fábián and G. Hományi, "An activity recognition system for mobile phones," in

Mobile Netw. Appl. 14(1), 2009.

[27] W. Woerndl, A. Manhardt, F. Schulze and V. Prinz, "Logging user activities and sensor data on

mobile devices," in Analysis of Social Media and Ubiquitous Data, 2011.

[28] G. B. Gil, J. M. Molina, A. Berlanga and Gil, G B; A Berlanga, A; Molina, J M; A Berlanga, , "In

Contexto: multisensor architecture to obtain people context from smartphones," in Article ID

758789, 2012.

[29] D. Honda, N. Sakata and S. Nishida, "Activity recognition for risk management with installed

sensor in smart and cell phone.," in Human-Computer Interaction. Towards Mobile and Intelligent

Interaction Environments., 2011.

[30] N. E. Klepeis, "The national human activity activity pattern survey," Journal of Exposure Analysis

and Environmental Epidemiology, p. 231–252, 2001.

[31] L. Lhotska, M. Bursa, M. Huptych, V. Chudacek and J. Havli, "Standardization and Interoperability:

Basic Conditions for Efficient Solutions," in IFMBE Proceedings, vol. 37, 2011.

[32] T. Choudhury, H. Lu, J. Yang, Z. Liu and N. Lane, "The Jigsaw Continuous Sensing Engine for Mobile

Phone Applications," In: Proceedings of the 8th ACM Conference on SenSys, MobiSys 2010, p. 71–

84, 2010.

[33] N. Aharony, A. Gardner and C. Sumter, "The Funf Open Sensing Framework is an extensible

sensing and data processing framework for mobile devices.," [Online]. Available:

http://funf.org/about.html.

101

[34] K. K. Rachuri, C. Mascolo, M. Musolesi and P. J. Rentfrow, "Sociablesense: Exploring the tradeoffs

of adaptive sampling and computation offloading for social sensing," In: Proceedings of the 17th

MobiCom, pp. 71-84, 2011.

[35] "Agile development," [Online]. Available: http://eontek.co/services/software-

development/web-application-development/.

[36] IEEE, "Spectrum’s Ranking," 2014. [Online]. Available: http://www.sitepoint.com/best-

programming-language-learn-2014-mid-year-update/.

[37] "Android Operation System," [Online]. Available:

https://en.wikipedia.org/wiki/Android_(operating_system).

[38] Spring, "Spring Framework - spring.io," [Online]. Available: http://docs.spring.io/spring-

data/data-document/docs/current/reference/html/#mapping-usage-annotations.

[39] A. G. Parada, E. Siegert and L. B. de Bri, "Generating Java code from UML Class and Sequence

Diagrams," in Computing System Engineering (SBESC), 2011.

[40] M. Behan and K. Ondrej, "Smart Home Point As Sustainable Intelligent House Concept," in 12th

IFAC Conference on Programmable Devices and Embedded Systems, 2013.

102

11. Appendix a - Author’s publication

Journal papers indexed by ISI WOK database as JCR impact factor

[Imp1] Behan, M., Krejcar, O., Modern Smart Devices based Concept of Sensoric Networks. EURASIP J

 ournal on Wireless Communications and Networking. Vol. 2013, No. 155, DOI 10.1186/1687-

1499-2013-155, Received 9 October 2012; Accepted 15 May 2013; Published 6 June 2013. ISSN

1687-1499. (Impact Factor (2013 Thomson JCR Science Edition): 0,805)

Journal papers indexed by SCOPUS database

[Scop1] Behan, M., Krejcar, O., The Concept of the Remote Devices Content Management. Journal of

Computer Networks and Communications. vol. 2012, Article ID 194284, 2012. DOI

10.1155/2012/194284. Received 20 June 2012; Accepted 31. 08. 2012

Conferences indexed by ISI WOK database (CPCI index) and by SCOPUS database

[Conf1] Behan, M., Krejcar, O., Adaptive Graphical User Interface Solution for Modern User Device. In

4th Asian Conference, ACIIDS 2012, Kaohsiung, Taiwan, March 19-21, 2012, Proceedings, Part

II. Intelligent Information and Database Systems, Vol. 7197. pp. 411-420. Springer, Heidelberg.

ISBN 978-3-642-28490-8, ISSN 0302-9743, DOI 10.1007/978-3-642-28490-8_43

[Conf2] Behan, M., Krejcar, O., Smart Communication Adviser for Remote Users. In 8th International

Conference on Multimedia & Network Information Systems 2012, MISSI 2012, September 19-

21, 2012 Wroclaw, Poland. Advances in Multimedia and Network Information System

Technologies, Series Advances in Intelligent and Soft Computing, Vol. 183. pp. 169-178.

Springer, Heidelberg. ISBN 978-3-642-32334-8, ISSN 2194-5357, DOI 10.1007/978-3-642-

32335-5_16

[Conf3] Behan, M., Krejcar, O., Open Personal Identity as a Service. In 8th International Conference on

Multimedia & Network Information Systems 2012, MISSI 2012, September 19-21, 2012

Wroclaw, Poland. Advances in Multimedia and Network Information System Technologies,

Series Advances in Intelligent and Soft Computing, Vol. 183. pp 199-207. Springer, Heidelberg.

ISBN 978-3-642-32334-8, ISSN 2194-5357, DOI 10.1007/978-3-642-32335-5_19

[Conf4] Behan, M., Krejcar, O., Concept of the Personal Devices Content Management Using Modular

Architecture and Evaluation Based Design. In Context-Aware Systems and Applications, ICCASA

2013, Lecture Notes of the Institute for Computer Sciences, Social Informatics and

103

Telecommunications Engineering, Vol. 109. pp 151-159. Springer, Heidelberg. ISBN 978-3-642-

36641-3, ISSN 1867-8211, DOI 10.1007/978-3-642-36642-0_15

[Conf5] Behan, M., Krejcar, O., Mobile Widget Technology as a Solution for Smart User Interaction. In

Third International ICST Conference, AMBI-SYS 2013, Athens, Greece, March 15, 2013. Lecture

Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering, LNICST Vol. 118. pp. 10p. Springer, Heidelberg.

[Conf6] Behan, M.; Krejcar, O. Open Source Based Concept of Intelligent House. In: Intelligent

Environments (Workshops). 2013. p. 330-337. IE 2013. Athens, Greece

[Conf7] Behan, M., Krejcar, O., Vision of smart home point solution as sustainable intelligent house

concept, In 12th IFAC Conference on Programmable Devices and Embedded Systems, PDeS

2013; Velke Karlovice; Czech Republic; 25 September 2013 through 27 September 2013, IFAC

Proceedings Volumes (IFAC-PapersOnline), Volume 12, Issue PART 1, 2013, Pages 383-387, DOI

10.3182/20130925-3-CZ-3023.00057

[Conf8] Behan, M., Krejcar, O., Open IP-based sustainable concept of intelligent house controlled by

mobile devices, In IEEE 8th International Symposium on Intelligent Signal Processing (WISP

2013), 16. - 18. September 2013, Funchal, Madeira, pp. 121-125, DOI

10.1109/WISP.2013.6657494

104

12. Appendix b - Figures

Figure 1 Relation SI base units [5] ... 6

Figure 2 Smartphone OS Market Share [16] ... 11

Figure 3 Sensor Informational Flow of Senzoric Framework .. 18

Figure 4 FTW Sensor Class Hierarchy [7] ... 21

Figure 5 FTW System Architecture [7] ... 22

Figure 6 MobiSens System Architecture [9] .. 24

Figure 7 SensLoc System Architecture [23] ... 26

Figure 8 ODK System Architecture [24] ... 27

Figure 9 Agile Development Flow [35] .. 32

Figure 10 Story board – plan ... 37

Figure 11 Software development workflow .. 37

Figure 12 Story board - work ... 38

Figure 13 System architecture... 39

Figure 14 Application flow ... 40

Figure 15 USI-1-1 User registration ... 40

Figure 16 USI-1-2 User login .. 41

Figure 17 USI 1-3-1 Password recovery ... 41

Figure 18 USI-1-3-2 User password change .. 42

Figure 19 USI-1-3-3 User email change ... 42

Figure 20 USI-1-4 User logout ... 43

Figure 21 USI-2-1 Device connect ... 43

Figure 22 USI-2-2 Device disconnect ... 44

Figure 23 USI-2-3 Device name ... 44

Figure 24 USI-2-4-1 Device list .. 44

Figure 25 USI-2-4-2 Device details & USI-3-1 Device sensor list ... 45

Figure 26 USI-3-2 Sensor details & USI-3-3 Sensor history ... 45

Figure 27 State model - User ... 47

Figure 28 State model – Device ... 48

Figure 29 State model – Sensor ... 48

Figure 30 Class model – core system .. 49

Figure 31 Deployment Process Flow ... 50

Figure 32 Programing Language Ranking [36] ... 52

105

Figure 33 Client Architecture .. 56

Figure 34 Server Architecture ... 57

Figure 35 Android framework [37] .. 58

Figure 36 Client Android Application – Sensor List ... 59

Figure 37 Client Android Application – Sensor Profile & Info ... 61

Figure 38 Client Android Application – Map & Logger .. 63

Figure 39 Client Android Application – Speed Net Tester [Imp1] ... 64

Figure 40 Client Android Application – Wi-Fi Connectivity Tester [Imp1] .. 65

Figure 37 Android Activity Lifecycle [37] ... 67

Figure 38 Application Logic ... 68

Figure 39 Backend request / response process flow .. 75

Figure 40 Continuous Integration Workflow ... 81

Figure 41 Monitoring JMX with JMC ... 88

Figure 42 Smart Home Point overview deployment schema .. 91

Figure 43 Mobile application prototype layout .. 92

Figure 44 Application prototype TV layout ... 93

Figure 45 Public transport ... 94

106

13. Appendix c - Tables

Table 1 Definition SI base units ... 7

Table 2 Native sensors embedded in current Smart Devices [11] .. 8

Table 3 Complementary sensors derived from Smart Devices ... 10

Table 4 Comparison of mobile devices [19] .. 13

Table 5 Wireless network limits for mobile devices .. 16

Table 6 Sensors energy consumption Samsung S2 [21], [22].. 17

Table 7 Activity and environment context .. 19

Table 8 Related works ... 20

Table 9 Comparison Context Aware Works .. 29

Table 10 Sensorial Frameworks Comparison .. 30

Table 11 Agile methodologies of software development ... 33

Table 12 User stories defined by end user group ... 35

Table 13 Model tools for UML ... 46

Table 14 Integrated Development Environment... 53

Table 15 Frontend – Client application ... 54

Table 16 Backend – Web Application Servers ... 54

Table 17 Project infrastructure ... 55

Table 18 Mobile Data Storages ... 69

Table 19 HTTP Request Input Method Annotations ... 72

Table 20 User stories review board ... 89

	1. Introduction
	2. Goal of Research
	3. Problem definition
	3.1. Physics and property of reality
	3.2. Embedded Sensors
	3.3. Mobile devices
	3.4. Usability of embedded sensors in cloud based services
	3.4.1. Problem of Connectivity and Data Management
	3.4.2. Problem of Networking
	3.4.3. Problem of Battery Management

	3.5. Discussion

	4. Related works
	4.1. Feel the World Framework
	4.2. MobiSens Platform
	4.3. SensLoc Location Service
	4.4. Open Data Kit Framework
	4.5. Other works
	4.6. Discussion

	5. Design of Solution
	5.1. Agile development background & used tools
	5.2. Goals & requirements & user stories
	5.2.1. User stories
	5.2.2. Story board

	5.3. System architecture & Component model
	5.4. Activity & Flow model
	5.5. Class & Data model & State model
	5.5.1. Modeling tools
	5.5.2. State models
	5.5.3. Class model & Data model

	5.6. Deployment model

	6. Implementation
	6.1. Programing tools & used frameworks
	6.2. Architecture of the system
	6.3. Frontend implementation
	6.3.1. Application Layout
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	1.1.1.
	6.3.2. Application Logic
	6.3.3. Data Storage
	6.3.4. Client API

	6.4. Backend implementation
	6.4.1. Core Logic
	6.4.2. RESTfull API
	6.4.3. Services
	6.4.4. Data Storage

	6.5. Continues Integration
	6.6. Security aspects
	6.7. Monitoring
	6.8. Review Board

	7. Use Cases in Real Environment
	7.1. Smart Home
	1.1.
	7.2. Public Transport

	8. Discussion of Results
	9. Conclusions
	10. Bibliography
	11. Appendix a - Author’s publication
	12. Appendix b - Figures
	13. Appendix c - Tables

