
VYSOKÉ UČENI TECHNICKE V BRNE
B R N O U N I V E R S I T Y O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

F A C U L T Y O F I N F O R M A T I O N T E C H N O L O G Y

D E P A R T M E N T O F C O M P U T E R S Y S T E M S

NÁVRH ARCHITEKTURY SONDY
PRO MONITOROVÁNÍ SÍŤOVÝCH TOKŮ
D E S I G N O F F L O W M O N I T O R I N G P R O B E

DIPLOMOVÁ PRAČE
M A S T E R ' S T H E S I S

AUTOR PRÁCE Bc. MARTIN ŽÁDNÍK
A U T H O R

VEDOUCÍ PRÁCE Ing. JAN KOŘENEK
S U P E R V I S O R

B R N O 2 0 0 7

LICENČNÍ SMLOUVA
POSKYTOVANÁ K VÝKONU PRÁVA UŽÍT ŠKOLNÍ DÍLO

uzavřená mezi smluvními stranami

1. Pan
w

Jméno a příjmení: Bc. Martin Zádní k
Id studenta: 49297
Bytem: Staměřice 94, 751 25 Dolní Újezd

Narozen: 25. 10. 1982, Přerov

(dále jen "autor")

a

2 . Vysoké učení technické v Brně
Fakulta informačních technologií

se sidlem Božetěchova 2/1, 612 66 Bmo, IČO 00216305

jejímž jménem jedná na zaklade písemného pověření děkanem fakulty:

(dále jen "nabyvatel")

Článek 1

Specifikace školního díla

1. Předmětem této smlouvy je vysokoškolská kvalifikační práce (VŠKP):
diplomová práce

Název VŠKP: Návrh architektury sondy pro monitorováni síťových toku
Vedoucí/školitel VŠKP: Kořenek Jan, tng.

Ustav: Ustav počítačových systému
Datum obhajoby VŠKP:

VŠKP odevzdal autor nabyvateli v:

tištěné formě počet exempláru: 1
elektronické formě počet exemplářů: 2 (1 ve skladu dokumentu, 1 na CD)

2. Autor prohlašuje, že vytvořil samostatnou vlastni tvůrčí činností dílo shora popsané
a specifikované. Autor dále prohlašuje, že při zpracováváni díla se sám nedostal do
rozporu s autorským zákonem a předpisy souvisejícími a že je dílo dílem původním.

3. Dílo je chráněno jako dílo dle autorského zákona v platném znění.
4. Autor potvrzuje, že listinná a elektronická verze díla je identická.

Článek 2
Udělení l icenčního oprávnění

1. Autor touto smlouvou poskytuje nahyvateli oprávnění (licenci) k výkonu práva
m e d e n é dílo nevýdělečně užít, archivovat a zpřístupnit ke studijním, výukovým a
výzkumným účelům včetně pořizování výpisů, opisů a rozmnoženin.

2. Licence je poskytována celosvětově, pro celou dobu trvání autorských a
majetkových práv k dílu.

3. Autor souhlasí se zveřejněním díla v databázi přístupné v mezinárodní síti:
• ihned po uzavření této smlouvy
• 1 rok po uzavření této smlouvy
13 3 roky po uzavření této smlouvy
• 5 let po uzavření této smlouvy
• 10 let po uzavření této smlouvy
(z důvodu utajení v něm obsažených informací)

4. Nevýdělečné zveřejňování díla nabyvatelem v souladu s ustanovením $ 47b zákona
č. 111/ 1998 Sb., v platném znění, nevyžaduje licenci a nabyvatel je k němu
povinen a oprávněn ze zákona.

Článek 3
Závěrečná ustanovení

1. Smlouvaje sepsána ve třech vyhotoveních s platností originálu, př ičemž po jednom
vyhotovení obdrží autor a nabyvatel, další vyhotovení je vloženo do V Š K P .

2. Vztahy mezi smluvními stranami vzniklé a neupravené touto smlouvou se řídí
autorským zákonem, občanským zákoníkem, vysokoškolským zákonem, zákonem
o archivnictví, v platném znění a popř. dalšími právními předpisy.

3. Licenční' smlouva byla uzavřena na základě svobodné a pravé vůle smluvních stran,
s plným porozuměním jejímu textu i důsledkům, nikoliv v tísni a za nápadně
nevýhodných podmínek.

4. Licenční smlouva nabývá platnosti a účinnosti dnem jejího podpisu oběma
smluvními stranami.

V Bmě dne:

Lé» éM*Ä
Nabyvatel Autor

Abstrakt
Tato p r á c e popisuje n á v r h a implementaci mon i to rovac í sondy pro sběr s t a t i s t i ckých ú d a j ů

o toc ích na vysokorych los tn ích sí t ích. N a v r ž e n á sonda využ ívá spo j en í h a r d w a r o v é akce
lerační karty a běžného P C . Úloha z p r a c o v á n í a m o n i t o r o v á n í p a k e t ů na rychlosti deset gi-
g a b i t ů je d i s t r i b u o v á n a mezi kar tu a hos t i t e l ský poč í t ač . Z hlediska sys t émové architektury
jsou z k o u m á n y algoritmy pro m o n i t o r o v á n í t o k ů a nav rženy z p ů s o b y jejich implementace
v hardwaru či softwaru. Dá le jsou n a v r ž e n a rozší ření sondy o možnos t i autokonfigurace a
adaptace ř ídích p a r a m e t r ů na zák ladě a k t u á l n í h o vy t í žen í sondy. V ý z n a m n ý m rozš í řením
je konf igurovate lná definice s ledovaných ú d a j ů o toku. Výs ledky s imulac í p o t v r z u j í vysoký
výkon a robustnost sondy pro m o n i t o r o v á n í dese t ig igabi tových sítí .

Klíčová slova
Síť, m o n i t o r o v á n í , IP tok, Ne tF low, architektura, model, simulace.

Abstract
This thesis deals w i t h the design and implementat ion of a moni tor ing probe intended

for I P flow measurements i n high-speed networks. The probe is based on commodi ty P C
and network acceleration card. The moni tor ing process is part i t ioned between these two
platforms. The thesis explores ways of mapping flow moni tor ing algorithms to hardware or
software implementations. Several improvements are suggested to increase performance and
functionality of the probe. T w o level memory hierarchy increases the performance whereas
autoconfiguration and adaptation of control parameters contribute to its robustness. The
definition of variable flow-record allows to customize monitored statistics about the network.
Analysis and simulations of proposed architecture indicate that the probe is suitable for
monitoring of ten gigabit networks.

Keywords
Network, monitoring, I P flow, NetF low, architecture, model, s imulation.

Citace
M a r t i n Žádn ík : Design of F low Moni to r ing Probe, d ip lomová práce , Brno , F I T V U T v Brně ,
2007

Design of Flow Monitoring Probe

Prohlášení
Proh lašu j i , že jsem tuto diplomovou p rác i vypracoval s a m o s t a t n ě pod v e d e n í m Ing. Jana
Kořenka .

M a r t i n Žádn ík
19th M a y 2007

Poděkování
I would like to thank my supervisor Ing. J an K o ř e n e k for his advice and information. I
am also grateful to my colleges from Liberouter project whom I discussed parts of my work
wi th .

© M a r t i n Žádn ík , 2007.
Tato práce vznikla jako školní důo na Vysokém učení technickém v Brně, Fakultě in
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Theoretical Background 5
2.1 T C P / I P M o d e l 5

2.1.1 Network Access Layer 6
2.1.2 IP Network Pro toco l 6
2.1.3 Transfer Layer and T C P / U D P protocols 7
2.1.4 App l i ca t ion Layer 7
2.1.5 Dynamic properties 8

2.2 Types of Network Moni to r ing 8
2.2.1 Simple Network Moni to r ing 9
2.2.2 Packet Cap tu r ing 9
2.2.3 Packet Inspection 10
2.2.4 Flow-based Measurement 10

3 Standards of Flow Moni tor ing and Expor t 13
3.1 Exporters and Collectors 13
3.2 Ne tF low 14
3.3 I P F I X 16

4 Heuristics and Algori thms of Flow Moni tor ing 18
4.1 F low maintenance 18
4.2 Enhancements and advanced techniques 19

4.2.1 Exp i r a t i on control 19
4.2.2 Protect ion 20
4.2.3 Indexing and Addressing 21
4.2.4 Anonymiza t ion 23
4.2.5 Performance improvement using Temporal locali ty 23
4.2.6 Variable Flow-record 24

5 System Architecture 25
5.1 Pla t form 25
5.2 Architecture Overview 27
5.3 Fi rmware Archi tecture 28

5.3.1 Adapt ive Sampl ing U n i t 29
5.3.2 Packet Pars ing 30
5.3.3 Hash Generator 30
5.3.4 F low State Manager 31

1

5.3.5 F low Processing U n i t 33
5.4 Software Archi tecture 34
5.5 Parameters Settings 35
5.6 Concept of Variable F low-Record 35

6 M o d e l s 3 8

6.1 Packet Pars ing 38
6.2 Temporal locality and Memory Access 39
6.3 Collisions, fragmented flows and deceleration 42
6.4 Resource Protect ion using Sampling 45

7 C o n c l u s i o n 4 7

2

Chapter 1

Introduction

Information technology and closely related network technology are very fast developing
fields. More data is stored and transfered i n digi ta l form which allows its fast retrieval and
processing. Th is trend correlates w i th the growth of the Internet as an interconnection
network of local networks. Growing number of people is connected to the Internet at
work but also at home. Not only number of users grows but their demands on network
capabilities are higher than was ten years ago. Nowadays user requires low latency high
bandwidth interconnections to be able to transfer large amount of data, to access electronic
services and to react in real-time on the network. Especial ly last mentioned demand is i n
the focus dur ing last years and its achievement allows users and machines to respond very
fast on recent events for example to deal on the exchange or to have telephone calls using
Internet. It is said that who has information has also the power. So it is only natural that
growing number of people access the network to use its services such as e-mail, web pages,
distr ibuted database, VoIP, Internet-banking, etc. Today we witness large networks wi th
complex topologies working at high transfer speeds. Unfortunately we also witness how
easily they can be misused if they are not managed and monitored properly.

The Internet is based on I P protocol and is composed of many network domains which
are more or less administrated by different entities. It is obvious that such an environment
is not too friendly for reliable services. Various types of attacks can cause denial of service,
leakage of information or to increase interconnection latency. Therefore there is a need for
monitoring devices which are able to provide accurate data about spectrum of traffic mix ,
attacks, applications, etc. Such type of systems can help network operators to manage
current networks or plan new network topologies. In addit ion, bandwidth provisioning,
detecting DoS attacks, b i l l ing and accounting are also possible and required today.

Nowadays si tuation in the field of network moni tor ing is not satisfiable. A l though some
active devices have monitor ing abilities (added value to their original functionality) it is
usually only a por t ion of the traffic about what they are able to give appropriate data [18].
E .g . , dur ing a traffic peak or an attack the device is overwhelmed and unable to monitor
whole bandwidth . Th is significantly decreases the quali ty of statistical information it pro
vides. Unfortunately some networks are without any moni tor ing systems at a l l . M a i n l y
because of lack of available and suitable moni tor ing devices or just because of they are us
ing devices of another vendor which does not support monitor ing i n his equipments. Such
networks connected to the Internet significantly undermines global effort to brings the order
in the world largest network and they are often source of attacks against the rest of the
networks. The min ima l solution is to place monitoring-capable device at the edge of the
local network where it is connected to the Internet. The question is which type of moni-

3

toring to choose. Moni to r ing abilities differ from one device to another. A lot of methods
have been introduced dur ing last few decades. Each usually focuses on a specific problem.
For example moni tor ing based on simple counters per interface is suitable when network
operator wants to know the ut i l izat ion of the device but it is absolutely useless for b i l l ing or
payload checking. Advanced solutions are provided by devices where operators can specify
rules for the traffic they want to analyze thus seeing only a por t ion of the original traffic.
The complex solution wi th good abstraction is based on flows. Aggregate statistic data
can be viewed from different angles and wi th different granularity. A l so in this field some
devices are opt imized to gather only specific flows such as T C P connections.

General flow monitoring, first introduced by Cisco, is called Ne tF low. Or ig ina l ly it was
used as a cache to support rout ing decisions. Later on when the architecture changed, the
flow cache was left i n place for statistic purposes only and showed up pretty useful and
popular. Ne tF low is the most widely used measurement solution today. Keeping state
for every flow allows to tel l w i th whom, how long, at what intervals, w i th what protocol
and port how much data was transfered [2]. Unfortunately Ne tF low is Cisco proprietary
protocol. Therefore Internet Engineering Task Force (I E T F) introduced open standard in
form of R F C dedicated to flow information export. It is called I P F I X and allows al l network
devices capable of collecting flow-oriented statistics to export it .

Most of the network elements capable of export ing flow information are routers. In par
allel, software PC-based probes are also developed. In comparison wi th routers standalone
dedicated device for such type of moni tor ing has several benefits: no need to change routers
that do not support Ne tF low, high speed of data processing, large flow cache, various en
hancements to protect itself against malicious traffic (for example [15, 18]).

Unfortunately pure software implementations suffers from lack of resources to process
whole bandwidth of current backbone links w i t h speeds exceeding 1 Gbps (see results of
tests i n A n n e x D) . Robust solutions for high-speed flow monitor ing require some k ind of
wire acceleration. In recent years field programmable gate arrays became popular way to
hard-wire specific architectures. In comparison to A S I C s their configuration is not static
and can be changed anytime new firmware is uploaded. This allows a rapid development,
smaller t ime to market interval and space for bug fixing. Thus field programmable gate
array placed right on the network card can be a good way to accelerate traffic monitoring.
The data acquisition and statistic computat ion take place on the card and only results
are sent to the host P C . C h i p manufacturers indeed provide wide range of network F P G A
boards wi th support of various network interfaces such as one or ten gig Ethernet.

The thesis is organized as follows. In the beginning, the work focuses on an introduc
t ion to I P network and I P network moni tor ing systems wi th emphasis on flow-oriented
measurement. Next chapter describes standards of flow measurement and its export. Var
ious techniques of flow measurement are discussed in the forth chapter. Chap . 5 describes
the architecture of the probe. Several models are given i n Chap . 6 i n order to study the
behavior of the probe. Achieved results and future work are discussed in conclusion.

4

Chapter 2

Theoretical Background

In the Internet, when two network nodes want to communicate w i th each other they wrap
data into several packets and send them on the network interface. Packets traverse v ia
networks to the destination points which is fairly complex process.

Therefore i f we want to obtain accurate moni tor ing results we must understand al l
underlying mechanism, protocols and events that influence communicat ion on the network.
In other words we have to know what do we work wi th , what to measure, how to do it and
how to interpret the results. Fol lowing paragraphs answer first two points by describing
standard Internet traffic model T C P / I P focusing i n details on important features of I P
flows monitoring. After that basic principles of network moni tor ing are described.

2.1 T C P / I P Mode l

The T C P / I P is a derivation of reference model I S O / O S I for Internet. Unl ike I S O / O S I it
has lower expectation of the under lying network, above al l it does not suppose any reliable
transfer t i l l the application layer. The only demand is best effort delivery. The model has
four layers and their approximate equivalents to I S O / O S I models are denoted in Figure 2.1.

T C P / I P ISO/OSI

Application
Layer

Application L.

Application
Layer

Presentation L. Application
Layer

Relation Layer

TCP/UDP Transport L Transport Layer

IP Network Layer Network Layer

Network Access
Layer

Link Layer Network Access
Layer Physical Layer

Figure 2.1: T C P / I P model used in Internet communicat ion and I S O / O S I reference model

The purpose of these layered models is to provide various levels of abstraction and
to arrange tasks into separate categories. W h e n the packet travels across the networks
its content is analyzed at different layers. Each layer has its own function and provides
specific information for network nodes to transfer packets to the destination point correctly.

5

Following sections describe each layer in greater detail and specifies its functionality.

2 .1 .1 Network Access Layer

T C P / I P groups physical and l ink layer into network access layer which describes communi
cation channel, its properties (electrical, transfer speed, fu l l /ha l f duplex), access methods,
synchronization, data protection, etc. T C P / I P model is not concerned much about network
access layer since mostly i n praxis there are protocols standardized by I T U that already
suit the I S O / O S I physical and l ink layers. For instance Ethernet, Token R i n g , A T M , F D D I
or H D L C .

Ethernet belongs among the most ut i l ized and popular Internet protocols. Its transmis
sion unit is called frame and consists of:

• Preamble (7 Bytes) - Al lows clock synchronization.

• S F D (2 Bytes) - Start Frame Delimiter

• M A C Dest inat ion Address (6 Bytes)

• M A C Source Address (6 Bytes)

• L e n g t h / T y p e (2 Bytes)

• M A C D a t a and P a d (46 - 1500 Bytes) - D a t a of higher level protocols.

• F C S (4 Bytes) - Frame Check Sequence.

The most important element for measurement is M A C D a t a which contains headers
and data of higher level protocols. The administrator might also be interested in M A C
addresses and number of packets w i th bad Frame Check Sequence. For design of the probe
parameter of interest is the min ima l interval between arrivals of two subsequent frames on
the 10-Gigabit Ethernet . It gives the m i n i m u m time that is left for processing of one frame.

Table 2.1: Intervals between arrivals of two consequent frames

Packets/sec M i n . Interval
Ethernet IPv4 14.88 mi l l ion 67ns
Ethernet IPv6 12.02 mi l l ion 83ns

2 . 1 . 2 IP Network Protocol

M a i n task of the IP protocol is to deliver datagram from source node to the destination
node. It does not establish any channel and instead every datagram contains source and
destination IP address according to which are indiv idual ly routed throughout the Internet
by a net of cooperating routers.

There are two versions of IP protocol: IPv4 and IPv6 . IPv4 use 32-bit I P addresses
segmented in class. Wasteful use of these addresses enforced introduct ion of sub-netting
and network translation. Despite this effort the space of IPv4 addresses w i l l be exhausted
and therefore IPv6 protocol w i th 128-bit addresses was introduced. Not only address length

6

changed but the whole header was redesigned to support new services most of a l l real time
transfers (for details see IPv4 specification [25] and IPv6 [11]).

There are several header fields in IPv4 and IPv6 that might be interesting for monitoring:

• Version (4 bits) - IPv4 or IPv6 .

• T y p e of Service (IPv4) or Traffic Class (IPv6) (1 Byte) .

• F low L a b e l (20 bits) - Used for specifying special router handl ing from source to
destination(s) for a sequence of packets.

• P ro toco l (IPv4) or Next Header (IPv6) (1 Bytes) - Specifies the next encapsulated
protocol.

• Source and Dest inat ion Addresses (IPv4 - 8 Bytes; IPv6 - 32 Bytes) .

• Payload Length (IPv6) (2 Bytes) - The length of data in the packet.

• Tota l Length (IPv4) (2 Bytes) - The length of datagram (header and data).

It is necessary to allocate sufficient resources (memory and performance) to handle bo th
IPv4 and IPv6 datagrams. Moreover there are bui l t - in extension of I P protocol to provide
necessary Internet services, e.g. I C M P , I G M P . Moni to r ing of these protocols provides a lot
of valuable information to the operator so they should be included as well .

2.1.3 Transfer Layer and T C P / U D P protocols

The task of the transfer layer is to determine the application the packet belongs to and
to provide services the application demands. For instance T C P [26] guarantees reliable
transmission and flow control over unreliable underlying layers. Some application sacrifice
such features for the speed and s implic i ty (e.g., real-time) which is provided by U D P [24].
B o t h protocols have common fields called source and destination ports. There is a list of
applications given by I A N A that listen on known ports and provide their services. M o n i
toring of these fields gives an administrator the perspective what services are ut i l ized i n his
network. There are another interesting fields worth of watching:

• Source and Dest inat ion Por t (4 Bytes) - Determines the application.

• Sequence Number (T C P) (4 Bytes) - Used for in-order delivery.

• Con t ro l Bi t s (T C P) (1 B y t e) - Used to establish, mainta in and cancel the session.

2.1.4 Application Layer

In T C P / I P the App l i ca t ion Layer includes also data presentation and session management.
Appl ica t ions use its own data encoding although there are some exceptions that util ize
standardized presentation protocols (e.g., S N M P use A S N . l) . There are numerous appli
cation level protocols in T C P / I P , inc luding Simple M a i l Transfer Pro toco l (S M T P) and
Post Office Pro toco l (P O P) used for e-mail, Hyper Text Transfer Pro toco l (H T T P) used
for the Wor ld-Wide-Web, and F i l e Transfer P ro toco l (F T P) . Most application level pro
tocols are associated wi th one or more port numbers and can be tracked as mentioned i n
previous section. Content analysis of application data is computat ional ly demanding but
might be worth of i t . It is possible to detect known patterns of worms, viruses or to prevent

7

spams. D a t a analysis is hampered by many obstacles. F i r s t of them are different encodings
standards. Next when applications are using compression or encryption it is impossible to
check the original content. Moreover the speed of the incoming data is usually very high to
look for more then several patterns using an ordinary P C . Last but not least is the ethical
issue. Moni to r ing at the level of I P and Transport Layer is considered to be ethical as it is
necessary for maintenance of the network and incident localization. B u t scanning of users
private data, even on the public media, is subject of many discussion and should be defined
by the law.

2.1.5 Dynamic properties

The previous description is static in means that it describes the packet at one t ime interval.
B u t the packet has also dynamic characteristics. The packet may change dur ing its lifetime
either because of transmission errors or because it has to. The second possibil i ty is less
obvious but happens at each network node a l l the time. For example when router or switch
change destination physical address of next hop device or when the router decrements
number of remaining hops or splits packet into several fragments etc. Moni to r ing must
take this into account and consider possibilities how to compound different information
from different location about the same traffic. For example the study how to derive a
packet trajectory through the network is published i n [13].

2.2 Types of Network Monitoring

There is a lot of ways of network traffic monitoring. It depends on network device what
type of monitor ing is supported and also on needs of network operator. Operator is usually
interested in following network or network traffic characteristics:

• Network device management (uti l ization, fault detection)

• Spect rum of traffic mix

• Network services

• At tacks detection (DoS, dDoS, spoofing, worms, spams)

• Packet delay

• B i l l i n g and accounting, keep pol icy

Accord ing to the level of aggregation we can divide:

• Tota l aggregation

• Defined level of aggregation

• N o aggregation - Packet traces

8

2.2.1 Simple Network Monitoring

Usual ly each network device has means to provide data about its u t i l iza t ion and config
uration. Hardware based devices holds these values i n counters and registers, software
implementations as variables or files. A network operator is typical ly interested i n total
number of packets and bytes, dropped number of packets and bytes. These statistics are
typical ly moving averages over relatively long t ime windows (e.g., 5 minutes), and serve as
a coarse-grain indicat ion of operational health of the network. The most common method
of obtaining such measurements are through the appropriate S N M P M I B s architecture:

• S M I - Structure of Management Information - D a t a structure

• M I B - Management Information Base - Object definition

• S N M P - Simple Network Management Pro tocol

S M I uses presentation ISO standard A S N . l for data types and syntax description and
together w i th B E R (Basic Encod ing Rules) allow data to be exchanged independently on
the architectures. M I B is a v i r tua l storage of managed objects which are hierarchically
ordered. W h e n the management station wants to know the state of the managed device
it sends S N M P messages wi th request which is processed by S N M P agent at the device.
After retrieving the information the agent replies to the management station. Another
type of communicat ion between management station and managed device is based on trap
conditions (events like failure, overflow, etc.). W h e n the conditions are met an unsolicited
S N M P message is sent to the management station. For large networks the amount of com
municat ion caused by S N M P would be very large. Thus the R M O N (Remote Monitor ing)
architecture based on agents and network management station is used.

Concerning of the device ut i l iza t ion the previous technique is quite suitable. B u t it fails
to give details about the composit ion of the traffic m i x as it reports only the total amount
of traffic received by the device [18] or to detect any attacks. To sum up this method
of moni tor ing is sufficient for smaller networks where operator does not have to handle
difficulties w i t h network topology and where incident handl ing is not necessary.

2.2.2 Packet Capturing

In most cases, aggregate l ink statistics are not sufficient to dist inguish short-term changes
on the l ink (the attack might be averaged out in a 5 m i n window). The opposite solution is
to sample and capture ind iv idua l packets. Selected information about each packet is sent to
the remote collector using for example P S A M P protocol [14]. It is possible to estimate how
many bytes and packets belongs to each source/destination address and port or to slice and
dice the data according to protocol number, M P L S obtaining different views on the traffic.
Moreover it allows to detect various attacks. Suppose an operator sees too many packets
w i th identical destination and port address and different sources then he can estimate that
the traffic belongs to DoS attack.

Packet sampling is ideally suited to estimate the composit ion of the traffic (e.g., on
a l ink) i n terms of various attributes (source and destination address and port numbers,
prefix, protocol number, type of service, etc.) Typical ly , unfiltered sampling would be used
to obtain a coarse-grained view of the traffic on a l ink, say. Once the characteristics of an
interesting subset of traffic (e.g., a service type, or a source address prefix corresponding
to some customer) has been identified, the resolution can be refined by filtering out this

9

traffic, and by boosting the sampling rate correspondingly. In this way, the traffic can be
examined and characterized ("sliced and diced") arbi t rar i ly [14].

Spat ial reconstruction of packet trajectory [13] is also considered by this method. It is
based on hash function which is computed over a set of stable field of IP packet header and
payload. Routers compute a hash over incoming packets and if it falls i n certain interval
the packet is sampled. Information from several routers discover the packet path.

2.2.3 Packet Inspection

Captur ing and analyzing each packet is scope of method called deep packet inspection. It
is a combination of classification techniques and payload checking. Classification allows
the operator to define rules how to process the packet dur ing the next phase of payload
checking which is v i t a l to reduce number of false alarms and to improve performance. For
example classification allows to constrain the set of patterns that are relevant for packet.
It makes no sense to look for patterns malicious for S M T P protocol i n web traffic. A s
mentioned above the packets are checked whether they contain certain patterns. If so they
cause an alert which is handled specifically according to user defined rules. Usual ly the
alert is logged together w i th packet that caused it.

Deep packet inspection is ut i l ized in so called Intrusion Detection Systems (IDS) and
Intrusion Prevention Systems (IPS) together w i th firewalls. Firewalls filter incoming traffic
so the packet inspection does not have to analyze a l l the traffic. The difference between
IDS and IPS is that IPS can block malicious packets entering the network. For the same
abil i ty IDS have cooperate w i th firewall and to create a firewall rules which may come late
after an attack. Most of currently running IDS are therefore passive and the alerts are left
for manual solving (i.e., email to the local administrator) .

Intrusion systems evolved dur ing t ime very similar to firewalls as they shifted from
stateless to stateful analysis. Stateful I D S / I P S is able to reassemble T C P stream and looks
for the patterns seamless across the packet boundaries. O n the contrary stateless analysis
does not contain any records of the previous seen packets and generally is less powerful as
the attacker can hide the malicious pattern in two consequent packets. O n the other hand
when dealing wi th the performance issues then the stateless is less resource consuming.

The rules for the packet inspection must be created by the administrator according
to his experience. Al ternat ively there is an open database of known threats in a form
of suitable for inspection systems. This de facto standard is set by program called Snort
which is supported by a broad network community. Nowadays the database contains several
thousands of rules and more comes every day along w i t h newly discovered threats and
vulnerabilities.

Unl ike previous described methods deep packet inspection is focused on high security
of the network based on the detection or blocking of malicious traffic.

2.2.4 Flow-based Measurement

The Internet is based on the concept of packets which travels across networks from its
origin to its destination. There are no means to guarantee any bandwidth for packets
transmission, i.e., to create a v i r tua l channel w i th assigned network resources. B u t instead
of channels we can observe that the corresponding packets create flows which are mutual ly
mixed and fill the bandwidth (see Figure 2.2).

The aggregate information about flows are able to provide crucial information not only
about volume but also about spectrum of the traffic mix and about behavior of ind iv idua l

10

Figure 2.2: Packets of the same values in header belongs to the same flow and statistics
can be performed upon them

entities on the network. F l o w measurement is used i n many application such as:

• Accounting and billing - F low data are able to provide essential information for var
ious accounting models. The flat-rate scheme can be exchanged for the usage-based
accounting [5]. The Internet Service Provider(ISP) can offer a customer a flexible
b i l l ing scheme based on for instance time-of-day, bandwidth usage, application usage,
quality of service, and so on. The essential elements needed for accounting are the
number of transferred packets and bytes and timestamps per flow.

Note that current flow monitor ing systems does not provide the rel iabil i ty required by
usage-based billing-systems as defined i n [5] because of unreliable transport protocol.

• Network planning - Measurement results monitored over a long per iod of t ime allows
to track and anticipate network growth and usage. Trend analysis allows to p lan new
network topologies, discover bottlenecks i n the network and replace them wi th more
powerful systems. Moreover it allows to optimize strategy of rout ing and peering.
Decisions are made according to knowledge of flow duration, flow volume, burstiness,
the dis t r ibut ion of used services and protocols, the amount of packets of a specific
type, etc.

• Traffic Engineering - The goal of traffic engineering is to optimize network resource
ut i l izat ion and traffic performance [6]. The analysis relies on information about l ink
ut i l izat ion, load between specific network, nodes, number, size and entry/exi t points
of active flows and rout ing information [27]. These parameters can be successfully
derived from the flow data and allows to optimize load balancing traffic across alter
nate paths or by forwarding traffic to a preferred route. Moreover it provides ISP
peering partners wi th the abi l i ty to measure the volume and characteristics of traffic
exchanged wi th each other and to modify their peering agreements.

• Application and User monitoring and profiling -

Content and service providers are able to p lan and allocate network and applica
t ion resources (such as database server sizing and location) according to gained flow
data. F low data provides them wi th statistics about application usage over t ime and
network.

11

The same what holds for applications can be applied to users. The ISP can monitor
customers behavior in order to efficiently plan and allocate access, backbone, and
application resources as well as to detect and resolve potential security and pol icy
violations.

Storing and min ing i n the flow data enables ISP to create top lists and aggregates of
their customers traffic, most used services and applications.

• Network monitoring and Security analysis - F l o w moni tor ing can reveal potential
network errors, attacks and intrusions. Significant differences in actual and i n common
traffic patterns are alarming indicators of for instance routing problems, DoS attacks,
affected computers, etc. Us ing several sources of flow data can speed-up the problem
localization and resolution. Moreover exchange of flow data between ISPs allows to
discover and track incidents that cross ranges of local networks.

In comparison wi th per interface summaries and packet capturing, flow level statistics
provides more fine-grained application data than S N M P method and less volume than
capturing every packet. Moreover the level of detail can vary wi th different aggregation
levels. The basic unit created by the measurement device is a flow-record. These records
are usually post-processed and aggregated according to operators needs in a database like
way. Aggregate statistics per F low allows the operator to d r i l l down into the traffic on a
link, and obtain measurements that are of selectable granularity both in space and time.

12

Chapter 3

Standards of Flow Monitoring and
Export

The definition of the flow can be found in [27]. Briefly it is a set of packets w i th common
properties (referring to as key-fields) passing an observation point i n the network dur ing a
certain t ime interval. Other studies contributes to this definition by adding up details. For
example act ivi ty and directionali ty of flow is added i n [8].

Especial ly the act ivi ty is very important parameter of flow in moni tor ing devices. A flow
is active as long as observed packets that are meeting the flow specification are observed
separated in time by less than a specified timeout value. A s soon as the flow is not active
it can be released from the memory and reported.

Claffy [8] defines a flow as unidirect ional or bidirectional . W h i l e the connection-oriented
T C P traffic generally exhibits bidirectionality, it often exhibits very significant asymmetries
in the traffic profile of the two directions. Each T C P flow from A to B also generates a
reverse flow from B to A , at the very least for smal l acknowledgment packets. O n the other
hand more general is unidirect ional definition since U D P and also other protocols are i n
fact unidirect ional . Besides unidirect ional flows can be transformed into bidirect ional flows
during the analysis process.

The rest of the chapter briefly describes the idea of flow information acquisition, its
export and processing. Further it focuses on ind iv idua l protocols for flow information
export.

3.1 Exporters and Collectors

Basic units of whole system are exporters (routers or probes, Figures 3.1, 3.2) . They are
usually situated at an important locations of the network, near gateways or borders of
networks.

B y tapping the l ink they gather statistics and export them to the collector unit . E x
porters are passive flow moni tor ing devices which identify packets according to source and
destination I P addresses, ports, protocol and/or other fields. Th is way packets are assigned
to the corresponding flow. The flow-record is kept in memory as long as the flow is active.
Once the flow ends exporter wraps statistical data (flow-record) into flow information pro
tocol and sends them to the collector. B u t it is not always easy for exporter to find out
whether the flow has already ended. Unl ike T C P flow, other protocol do not have start,
end or reset flags to signal end of the session so other methods come into play. For example

13

measurement in t ime bins or inactive and active timeouts. These techniques are described
in Chap . 4.

The exported flow-records are essential information basis for the traffic analysis i n col
lector. They are either stored i n raw format or entered in database. It depends on the
way the operator wants to handle the data and what are expected analysis operations.
Parameters as performance, quali ty and convenience dur ing receiving, processing and post
processing must be considered, e.g., when receiving large amount of flow data entering
them i n database is more expensive than to store them in raw format but their analysis
(aggregation, selection, etc.) would be more convenient.

Collector usually receives flow-records from several probes which allows operator to
compare and match traffic originating from different locations i n network. For example the
administrator receives an email about the dDos originating from his network. The first
th ing he can do is to check whether he has seen the same attack at the border probes,
i . e., huge amount of flows targeting one server i n v i c t i m network. If so, he can track down
the vulnerable servers that was used to cause DoS and further to track down the attacker
who used this vulnerabil i ty. Us ing a local network probes he can estimate the approximate
source of the attack and notice a local authority to track and solve incident further.

Collector side requires large storage fields because original flow-records are stored for
weeks. D u r i n g this per iod they are accessed and processed many times. Spectrum of
traffic, attacks or top-lists are gained by selection and/or aggregation of stored data using
a database queries or command line scripts. Popular representation of measured results is
in the form of graphs wi th temporal X-ax i s .

For most of the operators the recent data are of the greatest importance as the incidents
are reported maximal ly in two days since they had happened. W h i l e old flow-records are
post-processed and aggregated to release storage space (Figure 3.3) [30].

3.2 Net Flow

NetF low is Cisco proprietary protocol. It defines flow-record content, flow export format
and related terminology. Improving moni tor ing abilities of network devices required changes
in its definition and therefore several other versions of Ne tF low were introduced. Most
commonly used is Ne tF low v5 and Ne tF low v9. Ne tF low v5 is very popular for its ease

14

Figure 3.3: Lifet ime of data i n collector

of use. It has a fixed format of flow-record as well as fixed discr iminat ing key-fields. The
version 5 record is described in table 7 i n A n n e x A . U D P stream is used to export data to the
collector. Version 5 is supported by most of the exporters (simple hardware implementation)
and collectors.

Ne tF low v9 is much more developed and benefit from large experience i n real environ
ment of previous versions. Its concept is based on variable flow-records which significantly
distinguish it from previous versions. Its variabil i ty is based on user-defined templates.
Template is a collection of fields along wi th the description of their structure and semantics
[9]. Template mechanism allows the user to select which fields he is interested in . Then
the moni tor ing can be focused only on these fields which can lead to higher performance,
memory and bandwidth savings when export ing smaller records to the collector. Another
significant advantage of templates is extensibility i n the sense that new fields can be added
to the flow-record any time. Records extension does not imp ly new version of the export ing
protocol any more. The templates contain v i t a l s t ructural information for the collectors
to be able to process the data. It is thus important to resend the template descriptions
every once i n a while and before the first data transmission. Even i f the collector does not
understand the semantics of any field i n the flow-record it is s t i l l able to work wi th the field
because it knows its structure.

A n exported packet consists of a header followed by one or more FlowSets. FlowSet
is a generic term for a collection of records which have similar structure. There are three
different types of FlowSets:

• Template FlowSet

• D a t a FlowSet

• O p t i o n FlowSet

A n exported packet contains one or more FlowSets, and the three FlowSet types can
be mixed wi th in the same E x p o r t Packet (see Figure 3.4).

Packet Header consists of several fields but the most important are Version (version of
flow-record format exported i n this packet) and Source ID (Source ID field characterizes
the Observation Domain . Collectors should use the combination of the source I P address

15

Packet Template Data Option Template

Header FlowSet FlowSet FlowSet FlowSet • • •

Figure 3.4: Format of Ne tF low version 9 packet

and the Source ID field to separate different export streams originating from the same
Expor ter) .

The template FlowSet contains template definitions. Each template is marked wi th
unique ID and a list of field definitions - a pair of field type and its length (an example is
given i n table 3.2).

Table 3.1: Defini t ion of items in flow-record

T Y P E I D E N T I F I E R L E N G T H (B y t e s)

8 (I P V 4 _ S R C _ A D D R)
12 (I P V 4 _ D S T _ A D D R)

1 (IN . B Y T E S)

4
4
4

D a t a FlowSet consists of flow-records each assigned to a given template by the template
ID. Op t ion FlowSet is used to advertise collector settings of exporter.

Ne tF low version 9 was designed to be independent on the transport protocol so the
congestion aware protocols might be used but for pract ical reasons such as efficiency, per
formance and simple implementation U D P datagrams are ut i l ized.

3.3 I P F I X

Unfortunately Ne tF low is Cisco proprietary. Therefore Internet Engineering Task Force
(I E T F) introduced open standard i n the form of R F C document for flow information export.
The protocol is called I P F I X and allows al l network devices capable of collecting flow-
oriented statistics to export it in a unified way.

The I E T F workgroup proposed several drafts that contributes to flow measurement and
export. Some of them are listed together w i th their status to give the reader possibil i ty
to look for closer information i f interested. Next paragraphs t ry to sum up information
collected from these drafts to create an information basis that can be used dur ing the
design phase of the flow probe.

1. I P F I X Requirements (R F C 3917)

2. Archi tecture for IP F low Information Expo r t (I E S G Evaluation)

3. Specification of the I P F I X Pro toco l for the Exchange of I P Traffic F low Information
(R F C editor Queue)

4. Information M o d e l for IP F low Information E x p o r t (I E S G Evaluat ion)

5. I P F I X Appl i cab i l i t y (Wai t ing for I E S G Evaluation)

16

IP F I X Requirements [27] and Archi tecture [28] give general details about flow monitor
ing system(terminology, concepts), assign tasks to part icular processes (metering process,
export ing process, collecting process) as well as discuss security issues.

The I P F I X protocol [10] definition requires congestion aware transport protocol to ex
port flow-records from exporter to collector which concerns of packet loss, packet retrans
mission, etc. Suggested protocols are S C T P or T C P . U D P protocol can be used but it is
optional. Us ing congestion aware and secure channel allows to solve some of the security
issues (eavesdropping, packet forgery) and allows its usage for accounting and b i l l ing ap
plications. I P F I X protocol much like Ne tF low v9 uses templates containing pairs of type
and length to specify which fields are present i n data records. Different data records may
be t ransmit ted s imply by sending new templates specifying the pairs (type and length) for
the new data format.

Information M o d e l for IP F low Information Expo r t [12] defines a large number of stan
dard Information Elements which provide the necessary type information for templates.
The use of standard elements enables interoperabili ty between different vendors implemen
tations as well as it helps to derive requirements on the hardware resources (64-bit counters,
various t imestamp precisions, etc.).

I P F I X Appl i cab i l i t y [31] draft shows how applications can use I P F I X . It describes the
relevant information elements and shows opportunities and l imitat ions of the protocol. The
document furthermore describes relations of the I P F I X framework to other architectures
and frameworks.

17

Chapter 4

Heuristics and Algorithms of Flow
Monitoring

The flow moni tor ing consists of packet sampling, t imestamping, packet header parsing, and
maintaining flow records. Several algorithms and heuristics were defined to assist dur ing
the moni tor ing process.

4.1 Flow maintenance

The maintenance of flow records includes creating new records, updat ing existing ones,
detecting flow expiration, passing flow records to the export ing process, and deleting flow
records. The measurement process has therefore means how to control a l l its tasks, some
of them are simple but some of them require closer explanation which is given in following
paragraphs.

W h e n the first packet of the flow is seen by the moni tor ing process the flow record has
to be created. The address of the memory location for the flow record is usually computed
from the key-fields of the packet. Subsequent packets of the same flow updates the flow
record.

The monitor also keeps an extra state for every flow in the memory to determine the
time when to release the flow record to the export ing process. There are several conditions
under which the flow record should be expired:

• Inactive timeout - F l o w records are periodical ly checked whether they have received
packet recently. If the interval since the last received packet and current t ime is greater
than the Inactive timeout then the flow is considered as inactive and reported.

• Active timeout - Th is criterion guarantees that the long lasting flows are reported.
For instance imagine the communicat ion of two S M T P servers whose communicat ion
probably never ends. T h e n there would be no reported record. To prevent it the flows
are checked for their act ivi ty and reported i f exceed active timeout.

• Explicit notice - There are protocols such as T C P that expl ici t ly advertise their
start and end of flow. These flows are considered inactive when the end packet is
transmitted.

• Resources - Measurement process can expire flows when it experiences the lack of
resources.

18

Cont ro l mechanisms are usually implemented i n different ways according to the required
designation of the device. For instance implementation of software based probe would
significantly differ from the one implemented directly i n A S I C .

4.2 Enhancements and advanced techniques

Dur ing past years new techniques or heuristics addressing the flow measurement were pub
lished each contr ibut ing i n one of the following fields:

• Cont ro l

• Resource protection

• Qua l i ty of results

• Performance improvements

4.2.1 Expiration control

In work [17] is stated that most traffic analysis tools divide the traffic stream into fixed
intervals of time. Therefore instead of expir ing flows upon the conditions mentioned i n the
beginning of this chapter, the measurement i n t ime bins is proposed.

T ime bins measurement gathers statistics for a fixed length interval while no flows are
expired. A t the end of each interval a l l aggregated data are expired at once. O f course
some flows spread across several bins and therefore are recognized by collector as several
consequent flows . For example when the flow starts at the end of the b in it is immediately
exported and monitored again in the next b in . The situation is explained i n F i g . 4.1.

A A A B B C A A C A

Number of
flows = 6
Number of
Bin Flows = 9

FlowID=A, Pkts=6

B,2

C,2

C D B D D D D D C E

B,l
C, 2

D,6

E F F F F F F F F F

E E
D,6

Time bins

time 3

Figure 4.1: A l l flows are exported after a fixed interval (some of them are splitted)

This k ind of expirat ion control is suitable for analysis tools that work w i t h post-
processed, aggregate results while the precise t imestamping and pr imary flow records are
necessary for applications such as security analysis, one way delay measurement, etc. A d
vantage of t imebin approach is that it is not necessary to detect which flows are expired
because a l l of them are reported at the end of the measurement interval.

In most flow-monitoring devices, classical approach (described in Sec. 4.1) of flow ex
pirat ion control is implemented. A l so I P F I X and Ne tF low protocols requires flow-oriented
expiration.

19

4.2.2 Protection

Flow monitor ing systems are vulnerable to various attacks (dDos, DoS attacks, smurfs,
port scans for instance). It is because the state is kept for a l l simultaneous flow present at
the network. Attacking-packets usually do not belong to one flow but each creates a new
one. Therefore flow systems are overwhelmed and unable to give appropriate and unbiased
information about those attacks. Several techniques were published in last decade to protect
monitoring elements. They are usually based on some k ind of sampling or aggregation.

1. Input Sampling - Sampl ing of incoming packets is the easiest way how to guaran
tee min ima l t ime between two consequent packets, thus to decrease the load of the
processing engine. It helps also to decrease number of total flows. For example sam
pling one to ten reduce number of new flows approximately ten times. O n the other
hand sampling makes it difficult to estimate exact number of flows in original traffic
(Fig . 4.2) [17].

sampling rate 1:4

X X X
2 packets are of
the same flow

A B B A C D C D E E

X X X
one packet
= one flow A B J D c F G H E I

Figure 4.2: Wrong estimate how many flows are present

2. Output Sampling - Rate of expired flow records is strongly dependent on the traffic
mix . Outpu t sampling can keep transfer of flow records to the export ing process under
certain level and prevent congestion at the exporter. Next stage of output sampling
can be performed i n exporter itself to lower the load on the l ink and on the collector.

3. Sample and Hold - Th is method is quite similar to input sampling but w i th following
twist. A s wi th ordinary sampling, each packet is sampled wi th a probabili ty. If a
packet is chosen and the flow it belongs to is not in the flow memory, a new i tem is
created. However, after an i tem is created for a flow, unlike in Input sampling, every
subsequent packet belonging to the flow updates the i tem as shown in F i g . 4.3 [18].
Th i s method is able to significantly decrease number of new flows which can come
handy dur ing attacks while long lasting flows are not influenced because some of their
packets always make it in and then are monitored wi th no sampling.

4. Multi-stage accounting filters - Th is method gives similar results as sample and hold.
It utilizes smal l amount of memory to measure how many bytes came for each flow
and mult iple hash functions that address this memory by computing a hashes from
the flow ID . W h e n packet comes its length is accumulated to a l l items addressed by
the hashes. If a l l currently addressed items have greater value than specified threshold
then the flow is considered large enough to be monitored [18].

20

create
update

sampling rate 1:3

M 4

A 3

A A M X M A Q A M M A X

Figure 4.3: Once the entry has been created record is updated for every belonging packet

5. Adaptive Input Sampling - A static sampling rate is either subopt imal at low traffic
volumes or can cause resource consumption (memory bandwidth) or difficulties at
high traffic volumes. Adap t ive Input Sampl ing holds outgoing export wi th in fixed
resource consumption l imits while using the opt imal sampling rate for a l l traffic
mixes [17]. The exporter is prevented from being overwhelmed by aggressive export
rate dur ing peaks or attacks by decreasing the sampling rate and when the cr i t ical
traffic ends than the sampling rate is increased for example up to 1 : 1 which means
sample every packet.

The adaptive sampling shows promising results i n test scenarios. Unfortunately there
are no implementations (not known to the author) of monitor ing devices that would
allow to configure and set adaptive sampling. Mos t ly it is because of uncertainty how
to set and control i t . The interpretation of exported data is also subject of discussion
and therefore not supported by most of the collectors.

6. Pre-aggregation - Most of the sampling methods have the disadvantage of loosing
information randomly. B y a specified filter placed in flow probe we can choose ac
cording to which fields in packet header we want to aggregate thus selecting what
type of information we are interested i n and what we are wi l l ing to loose.

For example let us imagine denial of service attack targeting one server and one port.
If the flow measurement is configured to monitor according to destination port and
IP address then this attack does not create mill ions of single packet flows but is
aggregated as one huge flow (see F i g . 4.4). However pre-aggregated records miss a lot
of essential information present i n raw flow records.

4.2.3 Indexing and Addressing

W h e n the packet comes, belonging flow-record must be addressed to update the statistics.
The direct model of addressing (the whole key is an address i n the memory) is not possible
because the key has usually around 300 bits. Tha t is why the hash-based addressing is used,
i.e., the memory location is directly addressed by hash of key-fields. It is not always ideal
and usually suffers from a lot of collisions which are handled by replacing the old records
by the new ones. In pathological si tuation packets of two different flows which maps to
the same spot replace instantly each other. It leads to no aggregation what so ever and
causes problems in subsequent systems (e.g., congestion of exporter, collector, inaccuracy
of monitoring). More efficient ways of addressing comes into play.

The flow identifier consists besides others from I P addresses and therefore it would be

21

Vulnerable Computers

192.168.1.2

lb

Raw Statistics
SrcAddr:SrcPort DstAddr:DstPort Pkts

192.168.1.2:1 192.168.1.9:80 1
192.168.1.2:2 192.168.1.9:80 1
192.168.1.2:3 192.168.1.9:80 1
192.168.1.2:4 192.168.1.9:80 1
192.168.1.3:1 192.168.1.9:80 1
192.168.1.3:2 192.168.1.9:80 1
192.168.1.2:3 192.168.1.9:80 1

Victim Target

192.168.1.10

Pre-aggregated Statistics
SrcAddr:SrcPort DstAddr:DstPort Pkts

XXX 192.168.1.9:80 4000

Figure 4.4: R a w versus pre-aggregated statistics dur ing DoS

possible to use trie structure to look up the record. Unfortunately the t ime to look up the
record is l imi ted as well as the access to the memory is expensive. Therefore modifications
of hash-based addressing are proposed and implemented. In [23] the search in the flow
cache is once again based on the computat ion of a hash function on the flow identifier. The
hash function result (or a masked subset of its bits) is used to index a vector of pointers to
the lists of records, as shown i n F i g . 4.5.

Hash

2 AN

Figure 4.5: Hash and search addressing

Prac t ica l implementations of hash and search usually require two restrictions. F i x e d
length of the search list and instead of flow-records only pointers to the flow-records i n
the lists itself. There are several reasons to follow these rules. For instance fixed length
of the list is required because of dynamic memory allocation in the P C can be be costly
as well as hardware implementation could not benefit from the burst mode access to the
memories. It would be necessary to follow pointers b inding the list to collect a l l items i n
the list. Second constraint for pointers i n the list is necessary to efficiently uti l ize the search

22

memory. Instead of whole record which is 64 bytes large it is better to hold 4 bytes pointer
and 4 bytes addit ional identification. The locali ty is again better and also allows to split
tasks of finding the location of the flow-record and processing of the flow-record.

4.2.4 Anonymization

Flow data posses a lot of information about users behavior, e.g., when do they browse the
web what pages do they visit , etc. Moreover flow data might compromise hidden aspects of
the network which could help attacker to launch an attack. Anonymiza t ion provides tech
niques to alter IP address and/or ports to hide most of the sensitive data. Anonymiza t ion
is necessary when the flow data are publ ic ly available such as on-line statistics, publications
or when there is a suspicion of wiretapping the export. Several types of anonymization were
proposed to support specific post-processing of flow data.

Fi rs t set of algorithms consists of hashing and encryption algorithms (M D 5 , S H A , A E S
and D E S) . A p p l i e d to the selected fields they provide constant one-to-one mapping between
original and anonymized items. These techniques are suitable for flow records upon which no
further analysis is required. It is because they do not preserve original relative dis t r ibut ion
of values i n the traffic. To explain it suppose a DoS attack where the original traffic shows
incrementing source IP address in certain range i n subsequent packets. Anonymiza t ion of
the traffic causes uniform dis t r ibut ion of the incrementing addresses across the whole state
space wi th absolutely no relationship between each other. Thus the subsequent analysis
would fail to detect the attack i n anonymized data.

It is, therefore, highly desirable for the address anonymization to be prefix preserving
(second set of algorithms). Tha t is, i f two original IP addresses share a k-bit prefix, their
anonymized mappings w i l l also share a k-bit prefix. One approach to such prefix preserving
anonymizat ion is adopted in T C P d p r i v [22]. Another prefix-preserving anonymization is
proposed i n [19] u t i l iz ing a bit f l ipping anonymization tree where each bit of I P address is
either flipped or kept according to the value i n the tree (see F i g . 4.6).

Prefix-preserving anonymization allows the flow analysis to process anonymized data
and look for characteristics of the original traffic. O n the other hand prefix-preserving
anonymization is more sensitive to cryptoanalyt ical attacks and is more resource demanding.

4.2.5 Performance improvement using Temporal locality

Apparently, the speed of links grows faster than the C P U power and memory speed. A s a
result, memory access becomes a bottleneck i n applications and devices that need to store

Figure 4.6: Example of anonymization tree for four bits

23

and update context information for every received packet. One of such applications is the
flow metering process itself.

Knowledge of network traffic characteristics can improve throughput of metering process
whose performance is often l imi ted by slow access to memories. We suggest that design of
such application in hardware could use a hierarchical system of memories i n a similar way as
the processor cache is used by the P C architecture. The success of such an approach depends
on a deep understanding of the dynamica l characteristics of the incoming data. In the
case of network traffic the most important properties are temporal and spatial correlations
(locality).

F low metering process usually monitors wider network thus the spatial locali ty of the
traffic seen by the process is not the direction that could lead to significant optimizations.
O n the other hand it is worth to explore temporal locali ty which means that i f certain
packet was seen in recent past it is highly probable that it w i l l be seen i n close future. To
this end, we have performed measurements described in Sec. 6.2 which shows promising
results.

4.2.6 Variable Flow-record

So far, implementations of flow probes have fixed structure of flow record. It means that
there is no way how to reconfigure the flow record if the administrator is interested i n
another information (e. g. different fields of packet header). A l though this feature is
already supported by latter export ing protocols which use templates to define the structure
and semantics of exported information.

We suggest to implement the configuration scheme using X M L language. The adminis
trator has a choice which fields to monitor. Implementation details are discussed in Sec. 5.6.

24

Chapter 5

System Architecture

The probe is supposed to be based on commodi ty P C running L i n u x O S w i t h network
acceleration card wi th 10-Gigabit interface. The card accelerates the t ime cr i t ical parts
of the flow moni tor ing process. W h i l e the P C is responsible for post-aggregation and the
export of the collected flow statistics.

The chapter is dedicated to the description of platform and implementation details of
monitoring process suitable for F P G A . After that software architecture is outl ined together
wi th suggestions for aggregation process implemented i n software. Each stage, either mon
itoring or aggregation process, requires implementation some of the procedures described
in Chap . 4. Various algorithms are suggested and analyzed to select the best solution for
the given procedure and platform.

5.1 Platform

The target platform of the firmware architecture are ten gigabit card X F P r o and C O M B 0 6 X
mother card. B o t h are described in following paragraphs.

The concept of C O M B O acceleration cards is based on idea of hardware-software co-
design. Hardware acceleration card is plugged i n system bus of the host P C . Time-cr i t ica l
parts are implemented i n firmware of F P G A while software part performs more general
but computat ional ly less demanding operations above preprocessed data coming from the
card. The goal of the C O M B O family is to give developers a possibil i ty to work wi th "open
hardware" and use it i n the same way as open-source software [3]. Or ig ina l ly the cards
were developed for a design of a multi-gigabit IPv6 and IPv4 PC-based router as a part of
C E S N E T [1] research activity. Later on it showed up very useful to use them i n broader
variety of applications as their hardware resources provide a great computat ional power.

The heart of C O M B O cards consists of one or more F P G A (Field Programmable Gate
Ar ray) chips, memories and other necessary components (power supply, 10 chips, connec
tors, etc.). Due to the flexibility of F P G A chips, the functionality of C O M B O cards can be
easily (and quickly - wi th in just several milliseconds) changed by downloading a new design
into the F P G A . This way the same cards can be used for a wide array of research and de
velopment projects. Curren t ly the most advanced and powerful cards are C 0 M B 0 6 X wi th
X F P r o . The i r design was adapted to suit applications working wi th 10-Gigabit Ethernet.
B o t h of them are described in following paragraphs.

C 0 M B 0 6 X (see F i g . 5.1) replaced older version of C 0 M B 0 6 card to offer faster chips,
larger memory capacity and compliance wi th new P C I architectures (P C I - X , P C I Express).

25

It consists of two X i l i n x Vi r tex- I I P r o F P G A chips, Ternary C A M , dynamic and static
memories. Various add-on cards can be used wi th C O M B 0 6 X card.

Figure 5.1: Front side of C O M B 0 6 X card

C O M B 0 6 X is equipped wi th :

• V i r t e x II P R O - X C 2 V P 5 0 (the series up to X C 2 V 7 0 can be used)

• V i r t e x II P R O - X C 2 V P 4 wi th P C I core (alternatively P C I - X)

• C A M - 2 M b ternary C Y N S E 7 0 0 6 4 A

• 3x S S R A M - 2 M B 512K36

• E E P R O M - 93S66

• P C I connector

• Connector for add-on card

• Extension/test connector

• D R A M connector for P C D D R up 2 G B

Besides card for P C I - X there is a card for Express P C I as well. B y support ing new
bus standards - P C I - X and Express P C I - C O M B O cards open new design possibilities for
network devices. Hence the P C I bus is no more the bottleneck of the system and it is easier
to uti l ize the host P C processor along wi th C O M B O hardware. Specialized chips for P C I
communicat ion were replaced by pre-programmed modules directly i n the X C 2 V P 4 F P G A
or X C 2 V P 2 0 (Express P C I) . Paral le l buses were replaced by serial communicat ion lines i n
order to prune away issues w i t h feedthrough noise, clock dis t r ibut ion and lack of external
pins. Serial l inks are supported by X i l i n x Vi r tex- I I P r o v ia fast serial RocketIO circuits
inside F P G A .

Mother cards are ready to host variety of add-on cards. The i r mutua l interconnection is
possible v ia RocketIO interfaces or ordinary parallel bus connector w i th about one hundred
available wires. The add-on cards are equipped wi th different network interfaces such as
four port gigabit Ethernet, OC-48 or 10 G E interfaces.

26

The add-on C O M B O - 2 X F P R O was designed to support two 10-Gigabit network inter
faces. Thus it can work as a repeater and when inserted in a line it is fully transparent for
al l network traffic (see F i g . 5.2).

C O M B O - 2 X F P R O is equipped wi th :

• V i r t e x II P R O - X C 2 V P 2 0 (the series up to X C 2 V 3 0 can be used)

• 2x S S R A M - 2 M B 512K36

• E E P R O M - 93S66

• 2x X F P cages

• Connector to the mother card

There is an hardware abstract layer called N e t C O P E [29] for both cards, C O M B 0 6 X
and X F P r o . The N e t C O P E provides standard interfaces to receive and transmit packets,
it also allows to access available memories or to uti l ize communicat ion connector between
cards. Another already implemented block is F lowContext [21] that provides an access to
the records i n the memory. Due to these prefabricated blocks t ime to develop application
firmware is shortened.

5.2 Architecture Overview

The system architecture is d ivided into two parts - hardware and software. The hardware
part is intended to process and aggregate incoming packets at the wire speed. Whereas
the software part post-processes records transfered from the card and exports them to the
collector. The F i g . 5.3 shows the simplified architecture of the whole probe together w i th
estimated input transfer speeds.

The first stage of probe i n the F P G A decelerates incoming ten gigabit stream by aggre
gation packet information into flow-records. Before the flow-record is created or updated,
incoming packet is processed at network layer L I , L 2 and L 3 to verify C R C , extract infor
mation about I P addresses, ports, protocol, length of the packet and other fields (complete
list can be found i n [27]).

Second stage aggregation implemented i n software creates new or updates corresponding
existing flow-record by the data acquired from the transfered flow-records from hardware.

Figure 5.2: C O M B O probe tapping the l ink

27

PCI

FPGA-NetCOPE

10G bps

2.5Gbps

lOGbps
First stage

Packet parsing pipeline W aggregation

PC

200Mbps Exporter -

Exporter -

100Mbps

100Mbps

Figure 5.3: System architecture

The main reason for the second stage aggregation is to eliminate number of fragmented-
flow, flows that were expired because of other reasons than timeouts (collisions, lack of
memory). User-space application then wraps the records i n datagrams and sends them to
a collector using an ordinary network card (see F i g . 5.2).

5.3 Firmware Architecture

The probe has a ten gigabit network interface. A l l packets that are seen on this interface
must be received (or sampled) and processed at the wire speed. T h e processing includes
parsing of the packet, extracting available information, indexing the flow memory and
aggregating information into the flow-records. The connection of the processing chain is
shown on F i g . 5.4.

The task of the packet parsing and extracting the information out of the headers is
left on the F P G A of X F P r o card while aggregation process itself is suited for F P G A on
C O M B 0 6 X .

Adaptive
Sampling

NetCOPE NetCOPE
Memory Memory

NetCOPE Sequence HFE-C Sequence Hash Flow
State

Manager IBUFs Splitter x times Binder Generator

Flow
State

Manager

Flow
Context

Flow
Proces.

Unit(FPU)

NetCOPE
SWBUF

Figure 5.4: F i rmware block structure

The application firmware utilizes N e t C O P E network interface to receive packets. The
interface provides packets at Layer 2 which means that received packets are already checked
for the correct C R C , correct S F D and m i n i m u m and/or m a x i m u m transfer length. Each
packet is also assigned w i t h a 48-bit t imestamp which resolution is 8 nanoseconds and range
is 26 days. Very high resolution is used to assign each packet w i th unique t imestamp so
they can be correctly ordered i n time. The source of timestamps could be either a G P S
unit which guarantees a high precision of the t imestamp or ordinary free running counter.
In bo th cases the t imestamp is converted to U T C time i n software. The N e t C O P E provides

28

interface to sample received packets. The sampling function though must be implemented
in application itself which brings greater flexibili ty to the sampling process itself.

5.3.1 Adaptive Sampling Unit

Packet sampling at the input interface allows to decrease the intensity of the incoming traffic
and thus decrease the load on the subsequent systems (probe, exporter, collector). It is the
most desirable type of sampling as it preserves most of the information about the traffic in
comparison wi th for example flow sampling. Unfortunately setting the fixed sampling rate
wastes performance and capacity of the probe. Therefore it is better to use sampling which
adapts its rate. Such type of sampling guarantees opt imal resource ut i l izat ion through
various traffic mix .

Proposed Adapt ive Sampl ing U n i t has two inputs according to which the adaptation
takes place.

1. Packet rate

2. Memory ut i l izat ion

The adaptation function is implemented as a look-up table. Each row contains lower
and upper boundary for every parameter and the corresponding sampling rate. The unit
works as follows:

• T h e table is ini t ia l ized by software.

• Row-pointer is set to zero, which means that row number zero is currently addressed.

• Input parameters are compared wi th lower and upper boundaries at the current row.

• If parameters exceeds lower/upper boundary i n the row then the row-pointer is decre
mented/incremented and thus new sampling rate is selected. G o to previous point.

Note that it is up to user how to init ial ize the table. B u t it is recommended that he
keeps certain hysteresis when setting the boundaries. So the row-pointer remain steady for
longer t ime after each change (see F i g . 5.5).

Q.
E
CO

Up

Down

Packet rate

Figure 5.5: Hysteresis of adaptive sampling

29

5.3.2 Packet Parsing

Packets w i th assigned timestamps are processed by several Header F i e l d Extractors (H F E) .
The task of H F E is to extract information from the packet header. H F E uses extracted
information to create so called unified header (unified structure for a l l k ind of IP packets)
which contains data for the moni tor ing process. The example of Unif ied Header is i n the
Annex B . The H F E unit is implemented using Handel -C (H F E implemented in Handel -C is
further referred as H F E - C) . Handel -C is a modification of standard C language specialized
for description of parallel computing structures. H F E - C compared to the standard has
several advantages. For example H F E - C does not have an overhead of addi t ional hardware
and there are also no wait cycles dur ing jumps. O n the other hand the functionality of
H F E - C is hard-coded and cannot be uploaded any t ime as it requires to reload the whole
firmware of F P G A . T h e Handel -C implementation has also advantages when compared to
the V H D L finite state machine. One of them is its abstraction of hardware structures, the
programmer does not have to know anything about F P G A , at the same time it is nearly as
efficient as the V H D L .

We have done comparisons of H F E implemented as processor and i n H A N D E L - C . Re
sults shows that Handel -C is indeed right choice for effective packet header parsing (see
Tab. 5.3.2).

Table 5.1: Compar ison of H F E - C and processor H F E

Implementation Frequency Throughput Resources
H F E - C 125 M H z 1306 M b p s 572 Slices
H F E - C 100 M H z 1044 M b p s 550 Slices
processor H F E 100 M H z 782 M b p s 510 Slices + 2 B R A M s

The table shows that the performance of the H F E - C running at 125 M H z is sufficient
to process more than one gigabit traffic. Hence ten gigabit incoming stream is distr ibuted
among eight of these parsers. Each H F E - C can process one word of packet every clock.
Unfortunately different lengths of packets causes different execution times which scrambles
ordering of the packets. The ordering must be remained so it does not cause race conditions
in F low Processing U n i t dur ing updates of flow-records. Therefore a l l packets are marked
wi th sequence numbers before they are dispatched to H F E - C s . After H F E - C s are done
wi th their processing, they create unified headers which are ordered again by the sequence
number into one stream. F i g . 5.6 displays the situation.

5.3.3 Hash Generator

Fields that determines the flow (known as key-fields) are subject of the hash function. Its
result is the address to the memory of flow-records. Coll isions caused by hash (two flows
map to the same memory location) are handled in the first aggregation stage where the old
record is exported to the software and new record is created for the new packet. Simulations
show that good hash function and sufficient memory capacity w i l l keep the collision rate
reasonably low (see Sec. 6.3 for modeling of the collisions).

30

Timestamp

Input Packet

NetCOPE Sequence
IBUFs Splitter

Seq. number

Timestamp

Input Packet

HFE-C

HFE-C

- HFE-C

HFE-C

HFE-C

Seq. number

Unit. Header

Flow ID

Unit. Header

^Sequence Hash
Generator ? Binder

Hash
Generator

Unit. Header

Figure 5.6: Sketch of processing of incoming traffic by several H F E - C

5 . 3 . 4 Flow State Manager

Flow State Manager is intended for keeping state of a l l flows in the memory. State of the
flow means an information about its lifetime i n this context. It allows to identify those flows
which have already ended and can be released out of the memory. The flow is considered
to be finished after certain t ime when no packet comes for given flow. Therefore the F low
State Manager keeps track of the t imestamp of the last seen packet of each flow and if
the interval between current t ime and the last seen packet is greater than the inactive
timeout (parameter set by an administrator) then the flow is released. Please note that
in a l l following algorithms t imestamp can be of arbi trary bit-length and has nothing to do
wi th the t imestamp assigned to the packet at the input interface.

Several possible algorithms are able solve this task. F i rs t of them is based on the
ordering of flow states according to time of the last seen packet. The quickest way how to
do it is to keep states of flows i n bidirect ional bounded list. Each i tem has a t imestamp
and list pointers. The idea of ordering is simple. New or updated flows are rebounded
to the top of the list and their t imestamps are updated. This way the least recently used
(inactive) ones remain at the ta i l . Then it is easy to identify inactive flows.

Next of them can be i n short described as Field of sequentially decremented counters.
It works as follows:

1. Every incoming packet causes setting the counter for the given flow to the maximal
value.

2. A l l non-empty counters are periodical ly checked and decremented.

3. If the value of counter reaches one then the flow is considered to be expired.

4. After the flow is removed zero value is set into the given counter which signals that
the i tem is empty.

The inactive timeout is changed by adjusting the speed of the periodic countdown of coun
ters.

T h i r d algori thm stores timestamps of last seen packet i n the memory which is again
periodically checked whether the interval between the last seen packet is longer than inactive

31

timeout. One bit of each word is allocated to denote emptiness of the i tem. It is necessary
to store only significant bits of the t imestamp counter because of l imi ted memory resources.
For example, only four bits are allocated for the t imestamp and the inactive timeout is set to
fifteen seconds. In this case four bits that represents the range of 16 seconds are taken from
the t imestamp counter, stored i n memory and used to compute inactive timeout criterion
afterwards. If the inactive timeout is one second then lower bits of the t imestamp counter
are ut i l ized. Every t ime the inactive timeout is changed then a l l stored timestamps must
be rescaled so that they fit to the range of current timeout. To suppress this negative effect
we suggest to implement the t imestamp counter w i th the same bit-length as the memory
word. The inactive timeout increases/decreases the clock rate for t imestamp counter. The
shorter the inactive timeout the faster the clock cycle and the sooner the flow is expired.
The scheme of th i rd algori thm is described on the F i g . 5.7.

Inactive
Timeout

Timestamp
Counter

Free running
Counter

State
Memory

Expired?

Figure 5.7: Scheme of A l g o r i t h m wi th speed variable t imestamp counter

To sum up, a l l methods have its pros and cons. For example, bidirect ional list requires
an extra memory for list pointers or several memory access to rebind the i tem. O n the
other hand the only record which has to be checked for the inact ivi ty is the one at the
ta i l of the list. Bidi rec t ional list seems to perform better i n software than in hardware.
Second algori thm has a lot of advantages. It is memory efficient, a l l the bits of the word
are maximal ly ut i l ized and so this setup has wi th same memory requirements the largest
resolution or range of a l l algorithms. It has one disadvantage which is caused by the
requirement to read and write the value that is checked and decremented. This disadvantage
is solved by the last a lgori thm where the t imestamp is only read out of the memory and
only if the the inactive timeout criterion is fulfilled the empty bit is wri t ten. Unfortunately
it is necessary to have an extra bit to denote the emptiness of the i tem. Following Tab. 5.3.4
sums up pros and cons of described algorithms.

Table 5.2: Compar ison of flow state t racking algorithms

Implementation Quality M e m . Access M e m . Efficiency
Lis t Excellent Poor Poor
Counters Very G o o d G o o d Excellent
Timestamps G o o d Excellent G o o d

Second and th i rd algorithms were identified as suitable for F P G A implementation of
F low State Manager. The t imestamp algori thm is the best solution wi th usage of external
memories.

32

5.3.5 Flow Processing Unit

M a i n task of F low Processing U n i t is to aggregate information about packet into the flow-
records. To this end it is connected to the F lowContext which is described i n Sec. 5.1.
The interface of F lowContext is based on random memory access to any i tem of the flow
record and any i tem of the unified header. The F lowContext also allows to connect several
F low Processing Un i t and balance the load among them. The assignment of flow-records
to ind iv idua l units must be atomic. It means that i f one unit is processing the flow record
then no other unit must work wi th the same flow-record i n parallel.

The F low Processing U n i t performs also other tasks besides the aggregation. Success
ful establishment or update of the flow-record is dependent on the following sequence of
operations:

1. Flow-record Cont ro l

• Check i f the flow-record is not empty

2. Unif ied Header Cont ro l

• Check i f the Release command is set

• Check i f the unified header is not empty

3. Col l i s ion Cont ro l

• Compare a l l key-fields of U H and flow-record

4. A d d i t i o n a l Controls

• Ac t ive timeout control

• T C P bits control

• Overflow controls

5. Record operation establishment, update, release or no operation

• Establishment of a new flow-record, mark flow-record as non-empty

• Upda te of existing flow-record

• Swap of existing flow-records

• Release of existing flow-record, mark flow-record as empty

The flowchart on F i g . 5.8 defines the plan for flow-record processing. The update of the
flow-record consists of repeating sequence of following pr imit ive operations:

1. Read data from Header and Context Memory

2. Process the data

3. Store result back to the Context Memory

After the flow-record expires it is subject of opt ional sampling at the flow level. It
can also be anonymized using a C R C hash function which can be easily implemented i n
hardware. F i n a l flow-record is submit ted to the N e t C O P E software output buffer where it
waits to be transferred v i a D M A to the kernel space of the operating system.

33

Figure 5.8: Flowchart of F low Processing U n i t

5.4 Software Architecture

The software of the probe consists of several programs (Fig . 5.9) - kernel driver, common
flow library, second metering process, flow exporters exporters, programs for configuration.

WWW interface

Collector 1 | | Collector n | TERM interface ^

NetFlow v5, v9 ^ ""j^ ""j" NetFlow v5, v9

Exporterl K"" 1

l l Exporter n | ^ — | Flowmond |;

Metering process

3 £
Kernel space NetCOPE driver

'-^--<>-'
HW I NetCOPE Metering process [HowContext | |

WWW interface

Collector 1 | Collector n

NetFlow v5, v9 \ \ ^ NetFlow v5, v9

Exporter 1 Exporter n

Metering process Metering process

Ii ll

TERM interface

Kernel space NetCOPE driver

<>--<>-
NetCOPE [(Z^| Metering process | FlowContext |

Figure 5.9: Layout of software w i th com
mon second metering process

Figure 5.10: Layout of software w i th sepa
rate second metering processes

The kernel driver provides an abstract layer of the underlying P C I architecture by
interface for read and write operations, boot ing the firmware and D M A transfers. The
D M A transfers are triggered by the firmware v i a interrupt when enough flow-record is
ready to be transferred or when the t imer overflows.

The common flow l ibrary allows applications to access the flow-records after they are i n
the P C memory. Driver shares this memory wi th application so there is no data dupl icat ion
which optimize the performance of applications. Further the l ibrary implements functions
that are able to configure the probe parameters such as inactive and active timeout, sam
plings, etc.

Because of the collisions of flow-records i n the memory of firmware there has to be a
second stage aggregation process that allows to put together fragmented-flows. The process
must aggregate a l l flows without collisions. To this end the indirect hashing wi th lookup
is a good choice. Also the bidirect ional ordering list shows up as an efficient software
implementation of inactive timeout heuristic. The metering process is ideally suited right

34

into the common l ibrary where it can process a l l the firmware flow-records only once and
then to distribute them to the applications. Unfortunately it would spoi l the concept of
shared memory between driver and applications, therefore other solutions might be also
possible. For example to connect the aggregation process to each exporter (see F i g . 5.10).

The architecture of exporter must be modular to allow later improvements and addi
tions. Indiv idual modules can implement various processing of flow-record like:

• Filtering - is a basic interval matching related to network addresses i n the record. If
they are wi th in the range then the flow-record is accepted.

• Anonymization - is designed to hide original data source information, like I P addresses
and port numbers.

• Protocol for Flow Export - can be changed to Ne tF low v5, v9 or I P F I X .

A t the end flow data are sent using U D P , T C P or S C T P channel to the collector.
The probe is remotely configured v i a the terminal or web interface using the N E T C O N F
protocol [16].

5.5 Parameters Settings

One of the most difficult tasks is to configure the probe settings to suit the administrator
needs and to allow m a x i m u m performance wi th current traffic dis t r ibut ion. The probe
has several parameters which could be set on-the-fly. For example inactive and active
timeouts, input sampling range and mode, output sampling of flow-records and various
thresholds that triggers another functions. For example even the adaptive sampling must
be ini t ia l ized wi th sampling values that are used according to triggers.

Given that the incoming traffic is variable dur ing time, the opt imal settings is hard to
find and usually it depends on the experience of the administrator. Therefore we suggest to
either assist the administrator v ia advertising important statistics about current network
traffic mix or to implement a configuration process that observes traffic for a short time-
interval and then set the probe parameters automatically.

To this end the acceleration card must be able to switch its functionality between
ordinary network interface card and flow monitor ing probe. The configuration process can
observe a l l the traffic coming on the network interface at first, then switch the card to
the flow moni tor ing probe, configure it and observe if the probe follows the anticipated
behavior. The flowchart on the F i g . 5.11 shows the whole configuration process.

5.6 Concept of Variable Flow-Record

Current ly the flow monitor ing probes have fixed structure of flow-record. This state corre
sponds wi th the old popular i ty of Ne tF low v5 which has a fixed format of export protocol.
O n the other hand new flow export protocols are ready to transfer any information ele
ments. To this end we propose the concept of variable flow-record. It requires that al l
components which works wi th the flow-record are aware of changes of the structure and are
able to process the modified flow-record.

X M L scheme is suggested to define the structure of the flow-record, unified header,
operations and controls. The description of X M L definition is given i n F i g . 5.12. The X M L
tree shows how aggregation operations (<f lowoperation>) are assigned to the field i n the

35

Figure 5.11: Flowchart of configuration process

flow record (<f lowf ield>). Each field is also paired wi th its modifier represented by field i n
the U H record (<uhf ield>). Add i t iona l ly a flowfield can be paired wi th control operation
(<f lowcontrol>) which can drive its expiration.

Complete D T D validation scheme and an example of X M L configuration file for the
whole flow-record are attached i n A n n e x C . T h e X M L configuration file must be passed to
several units so they recognize and process the flow-record correctly.

The F i g . 5.13 shows which components needs to be aware of X M L configuration. It
is supposed that once the administrator configure his record, new firmware is generated
and uploaded to the F P G A . It leads to significant savings of F P G A resources but also to
the loss of current statistics i f the moni tor ing is already running and the firmware must
be reloaded. Fol lowing list describes what k i n d of information has to be passed to each
component.

• HFE-Cis generated according to the information about Unified Header. Part icular ly,
the generator is interested i n what fields must be extracted out of the packet and
where is their location i n Unified Header.

• Hash Generator must be aware of the key-fields i n the Unif ied Header to be able to
generate the F low ID .

• Flow Processing Unit is the most complex. It utilizes the X M L reference mechanism
to associate the fields i n flow-record wi th appropriate field in U H and other tags
defining control and aggregation operations.

• Second Aggregation process must be aware of the flow record structure to process it
and aggregate correctly.

• Exporter needs to know the structure of the flow-record to use it when the exported
packets are filled w i th data.

36

flowmoncontext

flowrecord

L- flowfield

allocation

defaultvalue

control

operation - -

— uhrecord

I— uhfield —

L allocation

flowoperations

L flowoperation -« —

description

implementation

- flowcontrols
L flowcontrol -«

— description

implementation

Figure 5.12: X M L tree wi th cross references

flowmoncontext.xml

HW
description
generator

— Second aggregation

HFE-C
*

HashGen

Exporter

FPU

Figure 5.13: X M L usage by system components

37

Chapter 6

Models

The architecture of the probe must be robust and comply wi th required performance.
Robustness of the probe is its abil i ty to stay operational even dur ing the attacks against
the probe resources. Sufficient performance must allow to process a typica l ten gigabit
traffic without a packet loss. It is usually hard to prove such characteristics in an exact
way. B u t modeling and simulations can reveal some of the bottlenecks which l imi t the
performance. It is not feasible to bu i ld whole model of the probe wi th a l l the details
as it would require higher effort then the system implementation itself. Therefore the
architecture is decomposed into smaller parts where irrelevant details are omit ted. It is
worth to model only those parts that can influence the performance or the behavior of
the probe. Also some of the parts do not have to be modeled since their behavior can be
inferred easily from known information.

6.1 Packet Parsing

The packet parsing is performed by eight H F E - C units as described i n Sec. 5.3.2. The
sequence splitter distributes packets to smal l buffers before each H F E - C . The pol icy of
packet assignment to H F E - C is simple: Transfer the packet to the least occupied buffer.
Each H F E - C generates Unified Header from packet to its dedicated buffer i n sequence
binder where it waits t i l l it is read out i n correct order.

The least occupied buffer is the best pol icy to distribute packets among H F E - C units
because it causes the smallest ordering errors. The main reason for this statement is that
if the variable length of packets is omit ted then "the least occupied buffer" policy equals to
the round-robin fair d is t r ibut ion a l l H F E - C has same performance (one word of packet per
cycle). The variable length of the packet is taken into account by introducing an addit ional
criterion of buffer ut i l izat ion. A s a consequence it allows to keep the input buffers of
sequence binder reasonably small .

It is suggested to size the input buffers of H F E - C to host the longest packet. So the
spl i t t ing process does not have to wait t i l l the longest packet is processed by H F E - C . The
setup is analyzed on three types of network traffic that can possibly emerge:

• O n l y the longest packets - Packets are sequentially assigned to H F E - C units. W h e n
the first assigned H F E - C is again about to be assigned, its input buffer is already
empty.

• O n l y the shortest packets - Same as previous point. Buffers are less ut i l ized.

38

• M i x of short and long packets - H F E - C are able to process a l l of them, but ordering
errors happen.

The worst case scenario happens when the longest packet is outrun by the shortest ones.
Accord ing to this scenario each buffer of Sequence Binder must be sized to host at least
\LongestPacket\/\ShortestPacket\ of Unif ied Headers ("\packet\" means the length of the
packet). The example is given for case of one long and several short packets on F i g . 6.1.

Sequence
Splitter

H F E - C

6 5 4 H F E - C

f

Sequence
Binder

3 2 1

Figure 6.1: Headers w i th sequence numbers 1, 2, 3 wait for header of long packet 0

Neither splitter nor H F E - C are bottlenecks in the throughput for ten gigabit traffic.
The Sequence binder could cause congestion of its buffers because it has to wait for headers
of long packets to process them i n correct order. Fortunately the size of headers is the same
as of the shortest packets. Therefore i f the buffers of binder are full w i th headers of short
packets (blocked by the header of a long one) then another subsequent long packet causes
a t ime window for emptying of these buffers.

6.2 Temporal locality and Memory Access

The FlowContext unit handles the storage and dis t r ibut ion of context information. It can
be connected to any type of memory available on C O M B 0 6 X card. It is either slow but
large D R A M or smaller and faster S S R A M or on-chip very smal l and the fastest B l o c k R A M
(B R A M) . Unfortunately smaller memories cannot be used as a main storage for a l l s imul
taneous flow-records and therefore only D R A M can be used. A more sophisticated design
should use a hierarchical system of memories i n a similar way as the processor cache is used
by the P C architecture. To this end, we follow the presumption stated in Sec. 4.2.5 and
explore the temporal locali ty of the traffic from the flow point of view. A good temporal
locality would support the implementation of cache and D R A M . The parameter of interest
is the flow gap (see F i g . 6.2), i.e., the number of foreign packets between two packets of the
same flow.

10 packets

5 packets 7 packets

5 packets 5 packets

Figure 6.2: Examples of flow gaps

The measurement consists of collecting traffic samples from several points of C E S -
N E T [1] network and their analysis. T c p d u m p tool was used to store packet traces on the

39

disk. Each trace contains source and destination IP address, source and destination port
(if applicable) and protocol number, an example is given:

1 4 7 . 2 5 1 . 1 4 5 . 1 7 : 1 3 9 0 , 1 3 0 . 1 4 . 2 9 . 1 1 0 : 8 0
1 4 7 . 3 2 . 1 2 2 . 2 4 3 : , 1 3 2 . 2 2 9 . 2 1 6 . 1 6 5 :

Please note that the traces are without timestamps. A l though tcpdump can assign times-
tamp to each packet, its resolution is l imi ted to milliseconds which is not enough to dist in
guish between two but also between thousands of packets on ten gigabit network. Another
reason not to use timestamps is that the point of interest are flow-gaps which are perfectly
measurable w i t h relative posi t ion i n time, i . e. t ime measured in number of packets.

Following statistical indicators are measured for every flow:

• Number of packets

• Average flow gap

• M i n i m u m and m a x i m u m flow gap

• Standard deviation of the flow gap

• His togram of the flow gap

The overall statistics consist of weighted averages (the more packets, the greater weight)
of max imum, m i n i m u m and average flow gaps. Cumula t ive histograms are constructed to
display the por t ion of the traffic w i th the flow gap below a certain threshold. F i g . 6.3 shows
an example of cumulative histogram of weighted m a x i m u m gaps.

i . i •

1 •

0.9- - — — " J ~ J

o 0.8 • J_ _L _|
nj |
H
"o /
gS 0.7- \ 1- 1

0.6 • I 1 h 1

0.5- r r - r - i
i

0.4- 1 1 1
0 5000 10000 15000 20000 25000 30000 35000

Length of Gaps

Figure 6.3: Dis t r ibu t ion of m a x i m u m flow-gaps

Measurements showed that the flow gap is exponentially distr ibuted. W h i c h means that
most of them are very short whereas long flow-gaps are rare. Accord ing to the graph we
can set the size of the cache to the longest flow gap for which we s t i l l want to keep the flows
in the cache. A n d vice versa, the cumulative histogram also allows to estimate percentage
of the traffic that requests its flow-records from the cache.

40

Table 6.1: Number of cycles to retrieve 64 B flow-record from various memories

M e m o r y Access time Read time Total
Internal Cache (B R A M) 1 8 9
Exte rna l Cache (S S R A M) 4 8 12
No cache (only D R A M) 16 8 24

C O M B 0 6 X card allows to implement cache either i n external S S R A M or on-chip small
B l o c k R A M s . The access times including t ime to read out the whole record are given i n
Tab. 6.2.

Accord ing to the Amdah l ' s law, the speed-up factor of whole process is

(6.1)
(! - /) + £

where / is the part of task that is accelerated and r is the speed-up of the part.
G r a p h on F i g . 6.4 shows the speed-up for increasing size of the cache. Please note

that cache wi th up to 4096 of flow-records can be implemented in F P G A and larger one in
external S S R A M memories.

— Internal Cache — External Cache

1.8 • -I - - A — r

1.6 • Q. 13
L J_ L ± J

6
Q. to

1.4- X- 4 J- 1 -4

1.2 - \ j- j [

5000 10000 15000 20000
Size of Cache

25000 30000 35000

Figure 6.4: Es t imated speed-up of Cache wi th D R A M

Apar t from estimating the cache size, we also want to tune its performance. The
simulations are focused on the on-chip cache since no optimizations can be implemented
using an external cache. Caches have several parameters such as associativity, v i c t i m polit ics
and others. The degree of associativity is l imi ted by available implementations i n F P G A s .
Though we have simulated several degrees of associativity wi th the fixed size of the cache to
determine whether the higher degree of associativity leads to significant improvements. The
graph on F i g . 6.5 shows that it is not wor th to implement high degree of associativity as it
does not significantly improve the performance of the cache. A t the same time L R U v ic t im
policy was compared against the random one. A g a i n L R U does not perform significantly
better than random v ic t im policy (only difference of three percents).

41

Figure 6.5: Simulat ion results of associativity and v i c t im pol icy

In the previous paragraphs it was find out that the m a x i m u m speed-up to retrieve the
flow-record is around 1.8 of the original t ime when using the on-chip cache. The original
time is 24 cycles whereas the new one is 15 cycles. Though it is not enough to process full
ten gigabit traffic consisting of the shortest packets only. It would require only 4 cycles.
Fortunately a typical ten gigabit traffic is far less packet-intensive as it consists of the mix
of long and short packets. Therefore it is a decision to make whether use a cache solution
or not as the implementation costs could be high. Fol lowing Tab. 6.2 gives an estimated
throughput of both solutions for increasing lengths of packets.

Table 6.2: Es t imated throughput[Gbps] of F lowContext

Length 64 96 128 192 256
Throughput (cache) AA 6^6 SL8 l O O 10.0
Throughput (D R A M) 2.7 4.1 5.4 8.2 10.0

6.3 Collisions, fragmented flows and deceleration

The concept of the whole probe is based on the processing of the incoming traffic i n the
firmware where it is decelerated so the outgoing data stream can be handled in software.
Avai lable memory capacity for flow-records l imits the aggregation on the card. B u t it is
not the only one. Suggested direct addressing of flow-records by hash value is another
parameter that l imits the aggregation factor. In fact the memory capacity is sufficient to
hold a l l simultaneous flow-records i f there was a perfect hash that could dist inguish a l l flows
wi th l imi ted bit range or different type of addressing. O f course such hash function cannot
exist because if a fully occupied larger state space is transformed by hash into smaller
one then collisions must happen. The probabi l i ty of collision for direct addressing can be
expressed as:

N
P(collision) = — (6.2)

42

where i V is current number of flows-records i n the memory and C is the capacity of memory.
A typica l ten gigabit traffic consists of lOO'OOO flows approximately. Therefore the

probabil i ty of collisions is very high for smal l memories. A n d despite that even small
memory can provide certain level of aggregation. It is due to the burstiness and fact that
10%-20% of flows account for 90% of total traffic. Thus the deceleration factor is influenced
by the m i x of:

• collisions of heavy flows,

• collisions of light and heavy flows and vice versa,

• collisions of light flows.

Because it is hard to estimate the weights of each case i n the deceleration function and also
the exact d is t r ibut ion of flow types, it is better to simulate the behavior. The deceleration
factor is derived from simulations as

Deceleration
TotalPackets

collisions
(6.3)

F i g . 6.6 displays deceleration function for smal l sizes of memory. The curve shows how
small memories suffer from a lot of collisions of heavy flows which becomes better w i th
increasing sizes unt i l the influence disappears completely.

Figure 6.6: Deceleration factor for small
sizes of memories

Figure 6.7: Deceleration factor for large
sizes of memories

The second graph on F i g . 6.7 represents the deceleration function for larger memories.
The deceleration is l inearly dependent on the size of larger memories because of negligible
influence of heavy collisions which are rare. The deceleration function can be expressed as

Deceleration = c *
1

P(collision)
(6.4)

where c is a coefficient dependent on the incoming traffic mix.
Another graph on F i g . 6.8 shows how many flows is created when using different sizes of

memories. A g a i n smal l memories create a lot of flows (so called fragmented-flows) because
of high number of collisions. A s the size of memory increases and the number of collisions
decreases, the number of flows settles on a nearly fixed value. The si tuation is displayed
for two settings of inactive timeout which influences number of flow-records in the memory
and thus the probabil i ty of collision. Higher timeout also put together those flows that are

43

— Inact=1 s —lnact=5s

3500000

3000000

2500000

2000000

1500000

1000000

500000

—I -I
1

- i -L

V h —
1
1

1
-t
1
1

100000 200000 300000 400000

Capacity

500000 600000

Figure 6.8: Number of created flows depending on the size of memory for representative
sample of the traffic

by shorter timeout marked as inactive. Despite that the number of created flows remains
steady around a fixed value. It tells us that the number of real existing flows in the traffic
is reached and most l ikely a lot of flows is not fragmented.

Obtained results indicate how the memories of C O M B 0 6 X card are to be ut i l ized for
the aggregation process. Memory sizes of C O M B 0 6 X are given in Tab. 6.3 (size is measured
in number of 64 Bytes flow-records).

Table 6.3: Types of memories w i t h their capacity

M e m o r y type N u m b e r of records Deceleration factor
B R A M (F P G A) 4096 ~ 2
3 x S S R A M 96 K ~ 10
D R A M 512 K - 8 M ~ 40 - ~ 200

There are two possibilities where to implement main memory of flow-records. It is either
S S R A M s or D R A M , B l o c k R A M memory is too smal l to give reasonable deceleration factor.
The S S R A M capacity can decelerate the typica l ten gigabit traffic ten times. It might seem
to be enough but i f a fully loaded l ink is considered then the bulk of transfered data to P C
is too high (more than 200Mbps) . Therefore the only solution is to util ize the D R A M wi th
high capacity. The design of memory ut i l iza t ion is following:

• DRAM - main memory for flow-records

• BRAM - cache to support main memory

• SSRAMs - memory of flow states, ut i l ized by F low State Manager

Such a lay-out has a high deceleration factor (about 250) as well as a good throughput (see
Tab. 6.2). S S R A M s are ut i l ized by the F low State Manager for keeping state of flows using
the t imestamp algori thm.

44

6.4 Resource Protection using Sampling

The probe is expected to be reliable and robust. It means not only long times between errors
but also that the probe must be able to monitor unexpected traffic mix even though it is not
designed to do so from the long-term point of view. Malic ious traffic occurs dur ing attacks
(DoS, port scans, smurfs and others) or network anomalies (such as rout ing failures).

Despite the probe is able to monitor part of the malicious traffic even without any
protective method, most of the packets are nondeterministically discarded which makes it
impossible to estimate the original traffic mix .

To this end the sampling algori thm is proposed to protect the probe hardware and
software resources. It means that the sampling must be able to decrease the incoming data
rate and also to decrease the memory requirements. A t the same time it must not introduce
large bias i n measured statistics. Therefore it is supposed that the current sampling rate is
advertised to a l l analyzing programs running at the collector. The original traffic m i x can
be mostly extrapolated from sampled statistics. For example what concerns of number of
packets or bytes it is sufficient to mul t ip ly measured results by reciprocal value of sampling
rate. O n the other hand it is much more harder to estimate the original number of flows.
It is because the sampling change dis t r ibut ion of packets i n flows and so a lot of the light
flows disappear at a l l , while the heavy flows remains al l . Th is behavior has a positive
effect on the occupation of the flow-record memory as required. O n the other hand it can
make certain analysis technique not applicable due to the bias i n number of flows statistics.
F i g . 6.9 shows an example how the sampling influences the dis t r ibut ion of packets in flows.

Original Traffic Sampled Traffic 1:2

1/2 of the orig.
packets in flow

Missing one-packet
flows

Created
one-packet flows

Flows Flows

Figure 6.9: Influence of sampling on dis t r ibut ion of packets in flows

A s an example let us consider how to set the sampling rate for the estimated throughput
of F lowContext unit w i th cache (see Tab. 6.2). The unit is able to process m a x i m u m of
7 mi l l ion of packets per second which is 4.4 Gbps using the shortest packets only. Thus
if the sampling rate is set to the rate of 1/3 then even ten gigabit traffic w i th 15 mi l l ion
of shortest packets cannot overwhelm the unit . The F lowContext unit stores flow-records
i n the memory which has l imi ted capacity. Let us suppose that it is designed to handle
lOO'OOO simultaneous flows w i t h inactive timeout 10 second. It means that the traffic can
create at most lO'OOO new flows every second while the other lO'OOO must expire. The
administrator expects the malicious traffic to create l'000'OOO one-packet flows per second
and therefore he sets the sampling rate to 1/100. Such a high static sampling rate is an
issue because the probe is supposed to work wi th the typical traffic mix most of its time
and it can be monitored without any sampling.

The adaptive sampling is proposed to suppress disadvantages of static sampling. It is
supposed that the sampling rate is driven by current packet rate and memory ut i l iza t ion to

45

meet the demands on l imi ted throughput and memory capacity. A prior i ty is always given
to request for decrease of the sampling rate. The implementation is done using a range
associative array of parameters and sampling rates. The concept is described in Sec. 5.3.1.
It is proper to set sampling rates according to the exponential function of low order. For
example 2X. It allows to predict very easily what happens after the range of current row
is exceeded. A s an example, let us again consider the case of the F lowContext unit . The
upper ranges of packet rate are set to l imi t the speed of the traffic, so it stays w i th in the
throughput of the unit . It means that i f the sampling is applied the resulting packet rate
must be below 7 mi l l ion packets per second. The memory ut i l iza t ion must not exceed
memory capacity and therefore it is set s imilar ly to packet rate wi th smal l modification.
Because the current memory ut i l izat ion is measured using already sampled traffic, the
l imits of ranges must respect the results caused by decreased/increased sampling. A small
example of four configuration rows is given i n Tab. 6.4. To explain how the proposed

Table 6.4: Example of configuration of Adapt ive unit

Packet Rate M e m . Uti l izat ion Sampling
Lower Upper Lower Upper
0 m i l . 7 m i l . 0% 60% 1
5 m i l . 14 m i l . 20% 70% 2
13 m i l . 15 m i l . 25% 80% 4
13 m i l . 15 m i l . 30% 85% 8

configuration works let us imagine following scenario. A typical traffic is being monitored
wi th sampling rate equal to one. Suddenly a DoS attack (one-packet flows) emerges. For
simplici ty the packet rate remains the same but the memory ut i l iza t ion exceeds 60% of
memory capacity. Therefore the sampling is decreased to 1:2. Please note that there is a
small margin between upper l imits of adjacent rows which allows the probe to expire old
flows while new are already monitored without further decreasing of the sampling rate. The
min imal expected ut i l izat ion after decreased sampling rate is 30 percent which is above the
lower l imi t so the sampling rate is not immediately increased back to one. Now if the DoS
continues, the memory keeps filling again and the sampling rate is decreased.

O f course other schemes of configuration can be used and may perform better (less
biased statistics) as the l imits do not have to be so strict i f the malicious traffic is expected
to be less aggressive.

46

Chapter 7

Conclusion

This thesis presented an IP-flow monitor ing probe intended for 10-Gigabit networks. The
design of the probe was preceded by the study of flow based monitoring. The stress was given
on algorithms and heuristics whose good understanding allows to optimize and distribute
monitoring tasks between target platforms efficiently The probe was designed for C O M B O
acceleration cards and P C . Such a combination allows to accelerate t ime-cri t ical part on
the card and addi t ional operations can be done i n P C .

The contr ibut ion of proposed probe is its abil i ty to either monitor whole bandwidth
or to discard deterministically the out-of-band traffic and to inform about it subsequent
systems. It is significant step forward in comparison to other implementations. Next
contribution is design and implementation of adaptive sampling algori thm wi th suggestions
on its configuration. Further, a s tudy was given on the temporal locali ty of the ten gigabit
traffic w i th suggestions on how to use it for memory hierarchy of the probe. The thesis
also gives a basis to the definition of variable structure of the flow-record which allows
administrator to monitor various addi t ional characteristics of the traffic. Therefore the
implementation of control mechanisms must be generated on demand using Handel -C.

The system architecture was optimized to suit the C O M B O cards hardware, especially
the memory architecture, so to allow m a x i m u m performance. Simulations of cr i t ical parts
of the architecture allowed to estimate the throughput of the architecture. It is more than
sufficient to monitor typica l 10-Gigabit network link.

Target applications of the probe are i n the field of security where a reliable measurement
is v i t a l for analysis systems. For example, flow data can be used to bu i ld users profiles and
then to detect anomalies of the original behavior. It is also possible to look for DoS and
other flooding attacks wi th various methods (for example [20], [7]).

The future work is focused on further optimizations of the architecture to increase its
performance and scalability. O u r interest is also i n sampling algorithms where methods of
estimating the original traffic mix should be further investigated. A potential outcome of
the study might be an algori thm to estimate not only the original number of packets or
bytes but also the original number of flows wi th their traffic dis t r ibut ion. Next the exact
mathematical model of adaptive sampling algori thm should be created so the configuration
parameters could be derived.

47

Bibliography

[1] Cesnet web pages, ht tp: / /www.cesnet .cz, 2007.

[2] Cisco web pages, h t tp : / /www.cisco .com, 2007.

[3] Liberouter web pages, h t tp : / /www.l iberouter .org , 2007.

[4] L . Der i , nprobe an extensible netflow v 5 / v 9 / i p f i x gpl probe for ipv4 /v6 .
h t tp : / /www.ntop .org /nprobe .h tml , 2006.

[5] B . A b o b a , J . A r k k o , and D . Harr ington. Introduction to accounting management.
R F C 2975, Internet Engineering Task Force, October 2000.

[6] D . Awduche, J . Ma lco lm, J . Agogbua, M . O ' D e l l , and J . M c M a n u s . Requirements for
traffic engineering over M P L S . R F C 2702, Internet Engineering Task Force,
September 1999.

[7] P . Barford, J . K l i n e , D . P lonka , and A . R o n . A signal analysis of network traffic
anomalies. In IMW '02: Proceedings of the 2nd ACM SIGCOMM Workshop on
Internet measurment, pages 71-82, New York , N Y , U S A , 2002. A C M Press.

[8] K . C . Claffy, H . Braun , and G C . Polyzos. A parameterizable methodology for
internet traffic flow profiling. IEEE Journal on Selected Areas in Communications,
13(8):1481-1494, 1995.

[9] B . Claise. Cisco systems netflow services export version 9. R F C (Informational) 3954,
Internet Engineering Task Force, 2004.

[10] B . Claise. Ipfix protocol specification. Internet draft: draft-ietf-ipfix-protocol-21.txt,
work i n progress, Internet Engineering Task Force, A p r i l 2006.

[11] S. Deering and R . Hinden . Internet protocol, version 6 (ipv6) specification. R F C
2460, Internet Engineering Task Force, December 1998.

[12] T . Dietz , F . Dressler, G . Carle , and B . Claise. Information model for packet sampling
exports. Internet draft: draft-ietf-ipfix-info-07, work in progress, Internet Engineering
Task Force, M a y 2004.

[13] N . G . Duffield and M . Grossglauser. Trajectory sampling for direct traffic
observation. IEEE/ACM Trans. Netw., 9(3):280-292, 2001.

[14] N . Duffield. A framework for packet selection and reporting. Internet draft, Internet
Engineering Task Force, 2005.

18

http://www.cesnet.cz
http://www.cisco.com
http://www.liberouter.org
http://www.ntop.org/nprobe.html

[15] N . Duffield and C . L u n d . Predic t ing resource usage and estimation accuracy i n an ip
flow measurement collection infrastructure. In IMC '03: Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement, pages 179-191. A C M Press, 2003.

[16] R . Enns . Netconf configuration protocol. R F C 4741, Internet Engineering Task
Force, 2006.

[17] C . Es tan , K . Keys , D . Moore, and G . Varghese. B u i l d i n g a better netflow.
SIGCOMM Comput. Commun. Rev., 34(4):245-256, 2004.

[18] C . Es tan and G . Varghese. New directions i n traffic measurement and accounting:
Focusing on the elephants, ignoring the mice. ACM Trans. Comput. Syst.,
21(3):270-313, 2003.

[19] J . Fan, J . X u , M . H . A m m a r , and S. B . M o o n . Prefix-preserving ip address
anonymization: measurement-based security evaluation and a new
cryptography-based scheme. Comput. Networks, 46(2):253-272, 2004.

[20] Y . G u , A . M c c a l l u m , and D . Towsley. Detecting anomalies i n network traffic using
max imum entropy estimation. Internet Measurment Conference, p. 345-350, 2005.

[21] M . Košek . S tavové z p r a c o v á n í t c p / i p t o k ů . Bachelor thesis, F I T B U T , 2007.

[22] G . Minsha l l . T c p d p r i v command manual, 1996.

[23] M . M o l i n a , A . Chios i , S. D ' A n t o n i o , and G . Ventre. Design principles and algorithms
for effective high speed ip flow monitoring. Technical report, 2004.

[24] J . Postel . User datagram protocol. R F C 768, Internet Engineering Task Force,
August 1980.

[25] J . Postel . Internet protocol. R F C 791, Internet Engineering Task Force, September
1981.

[26] J . Postel . Transmission control protocol. R F C 793, Internet Engineering Task Force,
September 1981.

[27] J . Quit tek, T . Zseby, B . Claise, and S. Zander. Requirements for I P flow information
export (I P F I X) . R F C 3917, Internet Engineering Task Force, October 2004.

[28] G . Sadasivan, N . Brownlee, B . Claise, and J . Quit tek. Archi tecture for ip flow
information export. Internet draft: draft-ietf-ipfix-architecture-08.txt, work in
progress, Internet Engineering Task Force, M a r c h 2005.

[29] J . Tobola. P la t forma pro rychlý vývoj síťových zař ízení . Master thesis, F I T B U T ,
2007.

[30] T . K o š n á r . Notes to flow-based traffic analysis system design. Technical report,
C E S N E T , 2004.

[31] T . Zseby, E . Boschi , N . Brownlee, and B . Claise. Ipfix applicabili ty. Internet draft:
draft-ietf-ipfix-as-10.txt, work in progress, Internet Engineering Task Force, August
2006.

49

Annex A

Table 7.1: Version 5 F low Record Format

Flow-key T y p e Description
yes srcaddr Source IP address
yes dstaddr Destination I P address
no nexthop IP address of next hop router
no input S N M P index of input interface
no output S N M P index of output interface
no dPkts Packets in the flow
no dOctets Tota l number of Layer 3 bytes i n the packets of the flow
no Firs t SysUpt ime at start of flow
no Last SysUpt ime at the t ime the last packet of the flow was received
yes srcport T C P / U D P source port number or equivalent
yes dstport T C P / U D P destination port number or equivalent
no tcp-flags Cumula t ive O R of T C P flags
yes prot IP protocol type (for example, T C P = 6; U D P = 17)
no tos I P type of service (ToS)
no src_as Autonomous system number of the source, either origin or peer
no dst_as Autonomous system number of the destination, either origin or peer
no src_mask Source address prefix mask bits
no dst_mask Destination address prefix mask bits

50

Annex B

Example of Unified Header.

Basic structure for IPv6 Difference for IPv4
1 1 O i l 0
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 Address 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Ob +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I Timestamp 0 I 0x00 I Timestamp 0 I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I Timestamp 1 | 0x01
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I 0x0000 I 0x02
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I 0x0001 I 0x03
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 64b
I HFE_REG I 0x04
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I T r a f f i c Class | 0x00 I 0x05 I T0S I 0x00 I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I 0x0000 I 0x06
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I PLEN | 0x07
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 128b
I 0x0000 I 0x08
I 0x0000 I 0x09
I 0x0000 I OxOA
I 0x0000 I OxOB
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 192b
I FLAGS I PROTOCOL | OxOC
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I TCP FLAGS I Reserved | OxOD
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I SRC_P0RT or ICMP options | OxOE
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I DST_P0RT | OxOF
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 256b

51

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 256b +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
SRC_IP

DST_IP

0x10
0x11
0x12
0x13

I SRC_IPv4 addr |
I I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

320b
0x14
0x15
0x16
0x17

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 384b +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I DST_IPv4 addr 0x18

0x19 I I
0x1A +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
OxlB

448b
OxlC
OxlD
OxlE
OxlF

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 512b

52

Annex C

The D T D scheme of the X M L configuration of the variable flow-record.

<!ELEMENT flowmoncontext (flowoperations,flowcontrols,uhrecord,flowrecord)>

<!ELEMENT flowoperations (flowoperation+)>
<!ELEMENT flowcontrols (flowcontrol+)>
<!ELEMENT uhrecord (uhfield+)>
<!ELEMENT flowrecord (flowfield+)>

<!ELEMENT flowoperation (description,implementation?)>
<!ELEMENT flowcontrol (description,implementation?)>
<!ELEMENT uhfie l d (allocation,defaultvalue?)>
<!ELEMENT fl o w f i e l d (allocation,defaultvalue,operation,control*)>

<!ELEMENT description (#PCDATA)>
<!ELEMENT implementation (#PCDATA)>

<!ELEMENT allocation (EMPTY)>
<!ELEMENT defaultvalue (EMPTY)>
<!ELEMENT operation (EMPTY)>
<!ELEMENT control (EMPTY)>

<!ATTLIST operation
name ID #REQUIRED>

<!ATTLIST control
name ID #REQUIRED>

<!ATTLIST uhfi e l d
name ID #REQUIRED
i d e n t i f i e r (yes I no) no>

<!ATTLIST fl o w f i e l d
name ID #REQUIRED
i d e n t i f i e r (yes I no) no>

<!ATTLIST allocation
address CDATA #REQUIRED
size CDATA #REQUIRED>

53

<!ATTLIST defaultvalue
value CDATA #REQUIRED>

<!ATTLIST operation
name
operandi
operand2
constant

IDREF #REQUIRED
IDREF #IMPLIED
IDREF #IMPLIED
CDATA #IMPLIED>

<!ATTLIST control
name
operandi
operand2
constant

IDREF #REQUIRED
IDREF #IMPLIED
IDREF #IMPLIED
CDATA #IMPLIED>

The X M L configuration of the variable flow-record.

<?xml version=''1 . 0 ' ' encodings'iso-8859-2'' ?>
<flowmoncontext>

<flowoperations>
<flowoperation name=''move-uh''>

<description>
Always move value from unif i e d header to the context.

</description>
</flowoperation>
<flowoperation name=''movefirst-uh''>

<description>
Move value from unified header to the context only for the f i r s t
packet of the flow.

</description>
</flowoperation>
<flowoperation name=t'movelt-uh''>

<description>
Conditional move. Move the value from unified header
only i f i t i s less than context value.

</description>
</flowoperation>
<flowoperation name=<'moveneq-uh''>

<description>
Conditional move. Move the value from unif i e d header
only i f i t i s not equal to the context value.

</description>
</flowoperation>
<flowoperation name=''or-uh''>

<description>
OR value from unified header with value i n context and
store i t i n context.

51

</description>
</flowoperation>
<flowoperation name=''and-un''>

<description>
AND value from unified header with value i n context and
store i t i n context.

</description
</flowoperation>
<flowoperation name=''acc-un''>

<description>
Accumulate value from uni f i e d header with value i n context
and store i t i n context.

</description>
</flowoperation>
<flowoperation name=''acc-constant''>

<description>
Accumulate constant specified i n ''source operation tag''
with value i n context and store i t i n context.

</description>
</flowoperation>

</flowoperations>

<flowcontrols>
<flowcontrol name=''control-equal''>

<description>
If the header and context f i e l d are not equal then replace the old
flowrecord with the new one. The old record i s exported to the
NetCOPE swobuf.

</description>
</flowcontrol>
<flowcontrol name=''control-overflow''>

<description>
If the value i n context f i e l d are greater than specified constant
in ''source control tag'' then expire the flowrecord.
The record i s exported to the
NetCOPE swobuf.

</description>
</flowcontrol>
<flowcontrol name=''control-activetimeout''>

<description>
If the value i n difference of the actual time and the
flowStratTimestamp i s greater than active timeout than
expire the flowrecord. The record i s exported to the
NetCOPE swobuf.

</description>
</flowcontrol>

</flowcontrols>

55

<uhrecord>
<uhfield name=''uh-timestamp'' i d e n t i f i e r = < ' n o ' ' >

<allocation address = i ' 0 x 0 ' ' size=''4''/>
</uhfield>
<uhfield name=''uh-constant-one'' identifier=''no''>

<allocation address = < '0x6'' size="2"/>
</uhfield>
<uhfield name=<'uh-hfeReg'' i d e n t i f i e r = < ' n o ' ' >

<allocation address=''0x8'' size=''2''/>
</uhfield>
<uhfield name=''uh-ipClassOfService'' identifier=''no">

<allocation address=''OxA'' s i z e = " l " / >
</uhfield>
<uhfield name=''uh-ipPacketLength'' i d e n t i f i e r = < ' n o ' ' >

<allocation address=''OxE'' size=''2''/>
</uhfield>
<uhfield name=''uh-protocolldentifier'' identifier=''yes''>

<allocation address=''0x19'' size=''l''/>
</uhfield>
<uhfield name=''uh-tcpControlBits'' identifier=''no''>

<allocation address=''OxlA'' size=''l''/>
</uhfield>
<uhfield name=''uh-portld'' identifier=''yes''>

a l l o c a t i o n address=''OxlB'' size=''l''/>
<defaultvalue value=''0x00''/>

</uhfield>
<uhfield name=''uh-sourcePort'' identifier=''yes''>

a l l o c a t i o n address=''OxlC'' size=''2 " />
</uhfield>
<uhfield name=''uh-destinationPort'' identifier=''yes''>

a l l o c a t i o n address=''OxlE'' size=''2''/>
</uhfield>
<uhfield name=''uh-sourceIpv4Ipv6Address'' identifier=''yes''>

a l l o c a t i o n address="0x20" size="16"/>
</uhfield>
<uhfield name=''uh-destinationIpv4Ipv6Address'' i d e n t i f i e r ^ ' y e s ' ' >

<allocation address=''0x30'' size=''16''/>
</uhfield>

</uhrecord>

<flowrecord>
<flowfield name=''flowStartMicroseconds'' identifier=''no''>

<allocation address=''0x0'' size=''4''/>
<defaultvalue value=''0x00000000''/>
<operation name=''movefirst-uh'' operandl=''uh-timestamp''/>
<control name=''control-active-timeout''/>

</flowfield>
<flowfield name="packetTotalCount" i d e n t i f i e r = " n o " >

56

a l l o c a t i o n address="0x4" size="4"/>
<defaultvalue value=''0x00000000''/>
<operation name=''acc-constant'' constant=''0x000000001 "/>
<control name=''control-overflow'' constant^'OxFFFFFOOO''/>

</flowfield>
<flowfield name=''hfereg'' identifier=''no''>

a l l o c a t i o n address=''0x8'' size=''2''/>
<defaultvalue value= " 0x0000 "/>
<operation name=''or-uh'' operandl=''uh-hfereg'' operand2=''hfereg''/>

</flowfield>
<flowfield name=''ipClassOfService'' identifier=''no''>

<allocation address=''OxA'' size=''l''/>
<defaultvalue value=''0x00''/>
<operation name=''or-uh'' operandl=''uh-ipClassOfService''

operand2=''ipClassOfService''/>
</flowfield>
<flowfield name=''octetTotalCount'' identifier=''no">

<allocation address=''OxB'' size= " 5''/>
<defaultvalue value=''0x000000000''/>
<operation name=''acc-uh'' operand=''uh-ipPacketLength''/>
<control name="control-overflow" constant=''0xFFFFFF000"/>

</flowfield>
<flowfield name=''flowEndMicroseconds'' identifier=''no''>

<allocation address=''0x10'' size=''4''/>
<defaultvalue value=''0x00000000''/>
<operation name=''move-uh'' operand=''uh-timestamp''/>
<control name=''control-time-sequence''/>

</flowfield>
<flowfield name=''protocolldentifier'' identifier=''yes''>

<allocation address=''0x19" s i z e = " l " / >
<operation name=''move-uh" operand=''uh-protocolldentifier''/>
<control name=''control-equal"/>

</flowfield>
<flowfield name=''tcpControlBits" identifier=''no">

a l l o c a t i o n address=''OxlA" size=''l"/>
<def aultvalue value="0x00"/>
<operation name=''or-uh" operand=''uh-tcpControlBits''/>

</flowfield>
<flowfield name=''portld" id e n t i f i e r = ' 'yes">

<allocation address=''OxlB" size=''l"/>
<operation name=''move-uh" operand=''uh-portld"/>
<control name=''control-equal"/>

</flowfield>
<flowfield name=' 'sourcePort" i d e n t i f i e r = ' 'yes">

<allocation address= "OxlC " size= " 2''/>
<operation name=''move-uh" operand=''uh-sourcePort"/>
<control name=''control-equal''/>

</flowfield>

57

<flowfield name=''destinationPort'' identifier=''yes''>
<allocation address="OxlE" size="2'V>
<operation name=''move-un'' operand=''uh-destinationPort''/>
<control name=''control-equal''/>

</flowfield>
<flowfield name=''sourceIpv4Ipv6Address'' identifier=''yes''>

a l l o c a t i o n address="0x20'' size="16"/>
<operation name=''move-uh'' operand=''uh-sourceIpv4Ipv6Address''/>
<control name=''control-equal''/>

</flowfield>
<flowfield name=''destinationIpv4Ipv6Address'' identifier=''yes*'>

<allocation address="0x30'' size="16"/>
<operation name=''move-uh'' operandl=''uh-destinationIpv4Ipv6Address'
<control name=''control-equal''/>

</flowfield>
</flowrecord>

</flowmoncontext>

58

Annex D

The results in F i g . 7.1 indicate that the hardware probe is able to process 1 Gbps traffic
at line rate without any packet losses, regardless of the packet size. In comparison, the
nProbe [4] software suffers from massive losses for packet sizes below 400 B .

59

