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1 Introduction

Classical differential equations are widely used in different processes. For example, the input

continuous signal of the linear system x(t) and the corresponding output signal y(t) can be

connected by some differential equation. But if we want to replace a continuous variable t

with a discrete one, it leads to the replacement of the differential equation with a difference

equation.

To analyse difference equations, we can also use different analytical methods, most of

them using approaches similar to those of the classical differential equation. We can also

use numerical methods of solving, obtaining a result in the form of a numerical sequence,

therefore, the difference equation in this case is perceived as an algorithm for the functioning

of a discrete system for which a suitable computer programs can be devised.

We also mention the contribution of the mathematicians Bohner M., Georgiev, S.G. and

Peterson A.C [7], [8] and [9] to the creation of a theory that combines both classical calculus and

the theory of difference equations, expanding the scope of application to continuous scales,

as well as allowing us to consider both more complex discrete scales or a combination of

discrete-continuous time scales.

In the doctoral thesis we discuss the asymptotic properties of the Emden-Fowler discrete

equation. This equation is an extension to the theory of difference equation of a well-known

Lane-Emden-Fowler differential equation, which has a great deal of applications in physics,

cosmology, meteorology and chemistry. In [16], the form of this equation was

d2u

dr2
+

2

r

du

dr
+ β2un = 0, (1.1)

where r is the radius of a polytropic gas sphere, n = 1/(k − 1), with k being the polytropic

index and β some physical constant.

The change of variables u = y/r transforms (1.1) into the following equation

y′′ + β2r1−nyn = 0.

Now we get the form that is often used in mathematical literature:

y′′ + xσ|y|k−1y = 0,

where k and σ are constants. Later, this equation was generalized for the case of n-th order

differential equation

y(n) + p(x)|y|ksgny = 0, (1.2)

where n > 2 is an integer, p(x) is a continuous function and k is a constant.

Different properties of the solutions of Emden-Fowler differential equations were investi-

gated by many authors. The R.Bellman’s monograph [5] had a great influence on the in-

vestigation of the Emden-Fowler equations, where he discussed the asymptotic properties of

the solutions tending to infinity. F.V.Atkinson in [4] also made a significant contribution

to the theory of Emden-Fowler equations. The list of works devoted to the Emden-Fowler

type equations is very wide, we will mention some of them: H. Fowler [18], I.T. Kiguradze,

T.A. Chanturia [28], V.A. Kondratev, V.S. Samovol [29], I.V. Astashova [3], H. Goenner, P.

Havas [19], S.C. Mancas, H.C. Rost [30], C.M. Khalique [22] and P. Guha [21].
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1.1 The current state

In previous chapter, we have already mentioned that there are many papers and books on the

Emden-Fowler differential equation. However, turning our attention to the discrete case, we

see that there are not so many articles about this type of equation. We can refer to papers

by L. Erbe, J. Baoguo and J. Peterson [17] dealing with non-oscillatory solutions of Emden-

Fowler type discrete equations providing asymptotic properties of a similar equation on time

scales.

V. Kharkov in [23], [24], [25] has also discussed the asymptotic properties of the equation

∆2yn = αpn|yn+1|σsgnyn+1,

where α ∈ {−1.1}, σ ∈ R \ {0, 1} and the sequence pn satisfies the following condition

lim
n→+∞

n∆pn
pn

= k, k ∈ R \ {−2,−1− σ}.

In the thesis we will discuss the asymptotic properties of the solutions to the another discrete

equivalent of the Emden-Fowler equation. In our case, let k0 be a natural number. By N(k0)

we denote the set of all natural numbers greater than or equal to k0, that is,

N(k0) := {k0, k0 + 1, ...}.

We will study the asymptotic behaviour of the solutions of a second-order non-linear discrete

equation of Emden-Fowler type

∆u(k)± kαum(k) = 0, (1.3)

where u : N(k0) → R is an unknown solution, ∆u(k) is its first-order forward difference,

i.e., ∆u(k) = u(k + 1) − u(k), ∆2(k) is its second-order forward difference, i.e., ∆2u(k) =

∆(∆u(k)) = u(k + 2) − 2u(k + 1) + u(k), and α, m are real numbers. A function u = u∗ :

N(k0)→ R is called a solution of equation (1.3) if the equality

∆2u∗(k)± kα(u∗(k))m = 0

holds for every k ∈ N(k0).

Equation (1.3) is a discretization of the classical Emden-Fowler second-order differential

equation (we refer, e.g., to [5]) y′′ ± xαym = 0, where the second-order derivative is replaced

by a second-order forward difference and the continuous independent variable is replaced by

a discrete one.

One special case of the discrete Emden-Fowler type equation has been discussed in a recent

article by Christianen, M.H.M., Janssen, A.J.E.M., Vlasiou, M., and Zwart, B. [11], which

describes the charging process of electric vehicles, considering their random arrivals, their

stochastic demand for energy at charging stations, and the characteristics of the electricity

distribution network. The equation

vj+1 − 2vj + vj−1 = k/vj

is considered, where j = 1, 2, ...; v0 = 1, v1 = 1 + k and proving that there exists a solution

with “logarithmic” asymptotic behaviour, i.e.

vj ∼ j(2k ln(j))1/2,

when j →∞.
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1.2 Preliminaries

This section introduces the notation, definitions and theorems used in the thesis.

Definition 1. A function uupp : B→ R is said to be an approximate solution to equation (1.3)

of an order g where g : N(k0)→ R if

lim
k→∞

[∆3uupp(k)± kαunupp(k)]g(k) = 0.

If the main term (i.e. the term being asymptotically leading) in uupp(k) is a power-type

function, we say that it is a power-type approximate solution.

Definition 2. We say that a function x(k) is of order O(y(k)) if there exists a constant K,

such that

|x(k)| ≤ |M(y(k))|
on N(k0). We use the shorter notation O(y(k)).

Definition 3. We say that a function x(k) is of order o(y(k)) if y(k) 6= 0 for all sufficiently

large k ∈ N(k0) and

lim
k→∞

x(k)

y(k)
= 0.

This property is more simply written as x(k) = o(y(k)).

In computations below, we will also use the following modification of the Landau order

symbol big “O”.

Definition 4. Let f : N(k0)→ R, g : N(k0)→ (0,∞). We write f = O+(g) if there exists an

index k1 ≥ k0 such that inequality

|f(k)| 6 g(k), ∀k ∈ N(k1)

holds.

Definition 5. A solution of the equation (1.2) is called a blow-up one if there exists some

point x0 ∈ R, such that

lim
x→x0−0

y(x) =∞.

1.2.1 Binomial series

In the proof of the main results, we use the following formula for the decomposition of a binom

into a “binomial series”.

Let r ∈ R, p ∈ R, k ∈ N(k0) and let ∣∣∣ r
k

∣∣∣ < 1.

Then, (
1 +

r

k

)p
= 1 +

(
p

1

)
r

k
+

(
p

2

)
r2

k2
+

(
p

3

)
r3

k3
+ ...+

(
p

l

)
rl

kl
+ ... (1.4)

where (
p

l

)
:= p(p− 1)...(p− l + 1)

1

l!
.
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1.2.2 Discrete retract principle

In the proofs of the results on the asymptotic behaviour of solutions to equation (1.3), we use

an auxiliary apparatus taken from [12,14] and described below. Consider a system of discrete

equations

∆Y (k) = F (k, Y (k)), k ∈ N(k0) (1.5)

where Y = (Y0, . . . , Yn−1)T and

F (k, Y ) = (F1(k, Y ), . . . , Fn(k, Y ))T : N(k0)× Rn → Rn. (1.6)

A solution Y = Y (k) of system (1.5) is defined as a function Y : N(k0) → Rn satisfying (1.5)

for each k ∈ N(k0). The initial problem

Y (k0) = Y 0 = (Y 0
0 , . . . , Y

0
n−1)T ∈ Rn

defines a unique solution to (1.5). Obviously, if F (k, Y ) is continuous with respect to Y , then

the initial problem (1.5), (1.6) defines a unique solution Y = Y (k0, Y
0)(k), where Y (k0, Y

0)

indicates a dependence of the solution on the initial point (k0, Y
0), which depends continuously

on the value Y 0. Let bi, ci : N(k0)→ R, i = 1, ..., n be given functions satisfying

bi(k) < ci(k), k ∈ N(k0), i = 1, ..., n. (1.7)

Define auxiliary functions Bi, Ci : N(k0)× R→ R, i = 1, . . . , n as

Bi(k, Y ) := −Yi−1 + bi(k), Ci(k, Y ) := Yi−1 − ci(k) (1.8)

and auxiliary sets

Ωi
B := {(k, Y ) : k ∈ N(k0), Bi(k, Y ) = 0, Bj(k, Y ) ≤ 0, Cp(k, Y ) ≤ 0,

∀ j, p = 1, . . . , n, j 6= i}, (1.9)

Ωi
C := {(k, Y ) : k ∈ N(k0), Ci(k, Y ) = 0, Bj(k, Y ) ≤ 0, Cp(k, Y ) ≤ 0,

∀ j, p = 1, . . . , n, p 6= i} (1.10)

where i = 1, ..., n.

Playing a crucial role in the proofs and being suitable for applications, the following lemma

is a slight modification of [12, Theorem 1] (see [14, Theorem 2] also).

1.2.3 Auxiliary result of a Liapunov type

A result formulated below is proved in [13] by Liapunov-like reasonings.

Definition 6. The set Ω is called the regular polyfacial set with respect to the discrete

system (1.5) if

bi(k + 1)− bi(k) < Fi(k, Y ) < ci(k + 1)− bi(k), (1.11)

for every i = 1, . . . , n and every (k, Y ) ∈ Ωi
B and if

bi(k + 1)− ci(k) < Fi(k, Y ) < ci(k + 1)− ci(k), (1.12)

for every i = 1, . . . , n and every (k, Y ) ∈ Ωi
C .
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To formulate the following theorem, we need to define sets

Ω(k) = {(k, Y ), Y = (Y1, . . . , Yn) ∈ Rn, bi(k) < Yi < ci(k), i = 1, . . . , n},

Ωi(k) = {(Y ) : Y ∈ R, bi(k) < Yi < ci(k), i = 1, . . . , n}.

Theorem 1. [13, Theorem 4] Let F : N(k0) × Ω → Rn. Let, moreover, Ω be regular with

respect to the discrete system (1.5), and let the function

Gi(w) := w + Fi(k, Y1, . . . , Yi−1, w, Yi+1, . . . , Yn)

be monotone on Ωi(k) for every fixed k ∈ N(k0), each fixed i ∈ {1, . . . , n}, and every fixed

(Y1, . . . , Yi−1, Yi+1, . . . , Yn)

such that (k, Y1, . . . , Yi−1, w, Yi+1, . . . , Yn) ∈ Ω. Then, every initial problem Y (k0) = Y ∗ with

Y ∗ ∈ Ω(k0) defines the solution Y = Y ∗(k) of the discrete system (1.5) satisfying the relation

Y ∗(k) ∈ Ω(k)

for every k ∈ N(k0).

1.2.4 Auxiliary results of an Anti-Liapunov type

Now we formulate a result which is in [12] proved by a retract method sometimes called an

Anti-Liapunov method due to the assumptions used being often an opposite to those used

when Liapunov method is applied (such an approach goes back to Ważewski, who formulated

his topological method formulated for ordinary differential equations). The following theorem

is a slight modification of [12, Theorem 1] (see [14, Theorem 2] also).

Theorem 2. Assume that the function F (k, Y ) satisfies (1.5) and is continuous with respect

to Y . Let the inequality

Fi(k, Y ) < bi(k + 1)− bi(k) (1.13)

hold for every i = 1, . . . , n and every (k, Y ) ∈ Ωi
B. Let, moreover, inequality

Fi(k, Y ) > ci(k + 1)− ci(k) (1.14)

hold for every i = 1, . . . , n and every (k, Y ) ∈ Ωi
C. Then, there exists a solution Y = Y (k),

k ∈ N(k0) of system (1.5) satisfying the inequalities

bi(k) < Yi−1(k) < ci(k)

for every k ∈ N(k0) and i = 1, . . . , n.

2 Preliminary calculations and theorems

2.1 Constructing an asymptotic power-type solution.

In this chapter we will construct an approximate solution to equation (1.3) in a power form.

Let us define

s = (α + 2)/(m− 1) , (2.1)
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a = [∓s(s+ 1)]1/(m−1) , (2.2)

b = (as(s+ 1))/(s+ 2−ms). (2.3)

Remark 1. We need to assume m 6= 0, m 6= 1, s+ 2 6= 0, and s+ 2−ms 6= 0, that is, m 6= 0,

m 6= 1, α 6= −2, and α 6= −2m.

Remark 2. If in formula (2.2) either the upper variant of sign is in force (i.e. −) and

s(s + 1) > 0 or the (2.2) lower variant of sign in force (i.e. +) and s(s + 1) < 0, then the

constant m has the form of a ratio m1/m2 of relatively prime integers m1, m2, and is m2 is

odd, the difference m1 −m2 is odd as well. If this convention holds, the formula (2.2) defines

two or at least one value.

As equation (1.3) splits into two equations, when formulating the results, we assume that

a concrete variant is fixed (either with the sign + or with the sign −).

Theorem 3. Let a, b and s be defined by the formulas (2.1) – (2.3). Then, the function

uapp(k) ∝ a · k−s + b · k−(s+1) (2.4)

is an approximate power-type solution of equation (1.3) of order g(k) = ks+3.

2.2 System of difference equations equivalent to a differential equa-
tion

Below, rather than of equation (1.3), we will analyse an equivalent system of two difference

equations. This system will be constructed using the below auxiliary transformations

u(k) = a · k−s + b · k−(s+1)(1 + Y0(k)), (2.5)

∆u(k) = ∆
(
a · k−s

)
+ ∆

(
b · k−(s+1)

)
(1 + Y1(k)), (2.6)

∆2u(k) = ∆2
(
a · k−s

)
+ ∆2

(
b · k−(s+1)

)
(1 + Y2(k)). (2.7)

where s, a and b are defined by formulas (2.1) – (2.3), and Yi(k), i = 0, 1, 2 are new dependent

functions. Below, we derive relations connecting them. Recall a useful known formula (we

refer, e.g., to [15]), used in computations. If x and y are defined on N(k0), then

∆(x(k)y(k)) = x(k + 1)∆y(k) + (∆x(k))y(k), k ∈ N(k0).

Taking the first differences of the left-hand and right-hand sides of (2.5), we derive

∆u(k) = ∆
(
a · k−s

)
+ b · (k + 1)−(s+1)∆Y0(k) + ∆

(
b · k−(s+1)

)
(1 + Y0(k)).

Comparing the result with (2.6), we get the equation

b · (k + 1)−(s+1)∆Y0(k) + ∆
(
b · k−(s+1)

)
(1 + Y0(k)) = ∆

(
b · k−(s+1)

)
(1 + Y1(k)) ,

which is equivalent with

∆Y0(k) = (k + 1)s+1∆
(
k−(s+1)

)
(−Y0(k) + Y1(k)) . (2.8)

Taking the first differences of the left-hand and right-hand sides of (2.6), we obtain

∆2u(k) = ∆2
(
a · k−s

)
+ ∆

(
b · (k + 1)−(s+1)

)
∆Y1(k) + ∆2

(
b · k−(s+1)

)
(1 + Y1(k)).
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Comparing the result with (2.7), we get

∆
(
b · (k + 1)−(s+1)

)
∆Y1(k) + ∆2

(
b · k−(s+1)

)
(1 + Y1(k)) = ∆2

(
b · k−(s+1)

)
(1 + Y2(k)) ,

and an equivalent equation is

∆Y1(k) =
∆2
(
k−(s+1)

)
∆
(
(k + 1)−(s+1)

)(−Y1(k) + Y2(k)). (2.9)

The derived system of difference equations (2.8), (2.9) defines the relationships between Yi(k),

i = 0, 1, 2 implied by transformations (2.5)–(2.7). Next, we will get a system equivalent with

equation (1.3). To do this, we must express Y2(k) in (2.9) in terms of Y0(k) using initial

equation (1.3). After some cumbersome calculations we get

∆Y0(k) =

(
−s+ 1

k
+O

(
1

k2

))
(−Y0(k) + Y1(k)) , (2.10)

∆Y1(k) =

(
−s+ 2

k
+O

(
1

k2

))(
ms

s+ 2
Y0(k)− Y1(k) +O

(
1

k

))
. (2.11)

3 Power-type asymptotic behaviour in case of constant

upper and lower functions

The aim of this chapter is to find conditions for existence of the solution (1.3) with the

power-type asymptotic behaviour when Theorem 2 is applied with constant upper and lower

functions b1(k), b2(k), c1(k) and c2(k). We use the approximate power-type solution described

by formula (2.4), where s, a and b are defined by formulas(2.1), (2.2) and (2.3). The results

of this chapter were published in [1].

We will prove the theorem, formulated below. Here we deal only with the case s+ 1 > 0.

Theorem 4. Let s > −1, m 6= 0 and m 6= 1. Assume that there exist positive numbers εi,

i = 1, . . . , 4, such that either

ms > 0, ε3 < ε1, ε2 > ε4, ε3 >
ms

s+ 2
ε1, ε4 >

ms

s+ 2
ε2, (3.1)

or

ms < 0, ε3 < ε1, ε2 > ε4, ε3 > −
ms

s+ 2
ε2, ε4 > −

ms

s+ 2
ε1. (3.2)

Then, for a sufficiently large fixed k0, there exists a solution u : N(k0) → R of equation (1.3)

such that, for every k ∈ N(k0),

−ε1 <
[
u(k)− a · k−s − b · k−(s+1)

] [
b · k−(s+1)

]−1
< ε2 , (3.3)

−ε3 <
[
∆u(k)−∆

(
a · k−s

)
−∆

(
b · k−(s+1)

)] [
∆
(
b · k−(s+1)

)]−1
< ε4 , (3.4)

− ε1 +O
(
k−1
)
<
[
∆2u(k)−∆2

(
a · k−s

)
−∆2

(
b · k−(s+1)

)] [
∆2
(
b · k−(s+1)

)
ms(s+ 2)−1

]−1

< ε2 +O
(
k−1
)
. (3.5)
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Figure 3.1: Summary of admissible values

Remark 3. In the proof of Theorem 4 we will apply Theorem 2 from Chapter 1, where

system (2.10), (2.11) is considered instead of a system of discrete equations (1.5). That is, in

system (1.5) we set n = 2 and

F1(k, Y0(k), Y1(k)) :=

(
−s+ 1

k
+O

(
1

k2

))
(−Y0(k) + Y1(k)) ,

F2(k, Y0(k), Y1(k)) :=

(
−s+ 2

k
+O

(
1

k2

))(
ms

s+ 2
Y0(k)− Y1(k) +O

(
1

k

))
.

The core of the proof consists of verifying inequalities (1.13), (1.14) estimating functions F1 and

F2 for properly defined functions bi, ci : N(k0)→ R, i = 1, 2 (see (1.7)) satisfying bi(k) < ci(k),

k ∈ N(k0), i = 1, 2. By bi and ci, i = 1, 2 functions Bi(k, Y ) and Ci(k, Y ), i = 1, 2 in (1.8) and

sets Ωi
B, Ωi

C , i = 1, 2 in (1.9), (1.10) are defined.

All particular cases are highlighted in Figure 3.1 in (m,α)-plane in corresponding colours.

If a fixed (m,α) belongs to the domain of admissible values, all hypotheses of Theorem 4 are

true and, for a sufficiently large fixed k0, there exists a solution u : N(k0)→ R of equation (1.3)

satisfying, for every k ∈ N(k0), inequalities (3.3)–(3.5).

4 Power-type asymptotic behaviour in case of tending

to zero upper and lower functions

In this chapter, we will show that the areas of possible coefficient values for which equation (1.3)

has solutions asymptotically expressed by a power-type function may change depending on

the type of the upper and lower functions. We will search for the conditions such that there

exists a solution to equation (1.3) with the following asymptotic behaviour:

u(k) = a · k−s + b · k−(s+1) +O
(
k−(γ+s+1)

)
, (4.1)
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where a, b and s are defined in (2.2), (2.3) and (2.1) and γ is some positive constant.

In this chapter, we have chosen power-type upper and lower functions b1(k), b2(k), c1(k)

and c2(k) tending to zero.

The idea of the proof is similar to the one in the previous chapter, while requiring more

complex calculations. The scheme of all investigations is the following. The transforma-

tions (2.5)–(2.7), where a±, b± are computed by formulas (2.2), (2.3), are used to transform

the equation (1.3) into an auxiliary system of two equations (2.10), (2.11).

Then, some particular results of those published in [12, 14]) are applied to investigate

system (2.10), (2.11). A correct use of Theorem 2 necessitates the proper choice of functions

bi(k), ci(k), i = 1, 2. In this chapter, we will assume

b1(k) := −ε1 · k−γ , c1(k) := ε2 · k−γ , b2(k) := −ε3 · k−β , c2(k) := ε4 · k−β, (4.2)

where εj, j = 1, . . . , 4 are positive constants.

This chapter is divided into 4 parts depending on the values s + 1 and ms, where s is

defined in (2.1).

To prove all the below theorems we need to define some auxiliary sets and functions identical

for all four cases.

Let εi > 0, i = 1, . . . , 4 and let β and γ be fixed. Assuming k0 positive and sufficiently large

such that the asymptotic computations in the proof are correct for every k ∈ N(k0), define

functions bi, ci, i = 1, 2, satisfying (1.7), by formulas

b1(k) := −ε1 · k−γ , c1(k) := ε2 · k−γ , b2(k) := −ε3 · k−β , c2(k) := ε4 · k−β.

Then,

B1(k, Y ) := −Y0 + b1(k) = −Y0 − ε1 , B2(k, Y ) := −Y1 + b2(k) = −Y1 − ε3 ,

C1(k, Y ) := Y0 − c1(k) = Y0 − ε2 , C2(k, Y ) := Y1 − c2(k) = Y1 − ε4

and

Ω1
B =

{
(k, Y ) : k ∈ N(k0), Y0 = −ε1 · k−γ, −ε3 · k−β ≤ Y1 ≤ ε4 · k−β

}
, (4.3)

Ω2
B =

{
(k, Y ) : k ∈ N(k0), Y1 = −ε3 · k−β, −ε1 · k−γ ≤ Y0 ≤ ε2 · k−γ

}
, (4.4)

Ω1
C =

{
(k, Y ) : k ∈ N(k0), Y0 = ε2 · k−γ, −ε3 · k−β ≤ Y1 ≤ ε4 · k−β

}
, (4.5)

Ω2
C =

{
(k, Y ) : k ∈ N(k0), Y1 = ε4 · k−β, −ε1 · k−γ ≤ Y0 ≤ ε2 · k−γ

}
. (4.6)

For later formulation, we will need to verify four differences: b1(k+1)−b1(k), b2(k+1)−b2(k),

c1(k + 1)− c1(k) and c2(k + 1)− c2(k). As functions b1(k), b2(k), c1(k) and c2(k) are similar,

we will show the calculation for only one case using the binomial formula (1.4):

b1(k + 1)− b1(k) = −ε1 · (k + 1)−γ + ε1 · k−γ = ε1γ · k−γ+1
(
1 +O

(
k−1
))
. (4.7)

To apply Theorem 1.13, inequalites (1.13) and (1.14) must hold.

Since inequality (1.13) assumes (k, Y ) ∈ Ωi
B, i = 1, . . . , n and inequality (1.14) assumes

(k, Y ) ∈ Ωi
C , i = 1, . . . , n, we need to verify (taking into account specifications (4.3)–(4.6))

and (4.7) the following:

F1(k, b1(k), Y1)|(k,Y0,Y1)∈Ω1
B

= F1

(
k,−ε1 · k−γ, Y1

)∣∣
b2(k)≤Y1≤c2(k)
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< b1(k + 1)− b1(k) = ε1γ · k−(γ+1)
(
1 +O

(
k−1
))
, (4.8)

F1(k, c1(k), Y1)|(k,Y0,Y1)∈Ω1
C

= F1

(
k, ε2 · k−γ, Y1

)∣∣
b2(k)≤Y1≤c2(k)

> c1(k + 1)− c1(k) = −ε2γ · k−(γ+1)
(
1 +O

(
k−1
))
, (4.9)

F2(k, Y0, b2(k))|(k,Y0,Y1)∈Ω2
B

= F2

(
k, Y0,−ε3 · k−γ

)∣∣
b1(k)≤Y0≤c1(k)

< b2(k + 1)− b2(k) = ε3β · k−(β+1)
(
1 +O

(
k−1
))
, (4.10)

F2(k, Y0, c2(k))|(k,Y0,Y1)∈Ω2
C

= F2

(
k, Y0, ε4 · k−γ

)∣∣
b1(k)≤Y0≤c1(k)

> c2(k + 1)− c2(k) = −ε4β · k−(β+1)
(
1 +O

(
k−1
))

(4.11)

whenever

−ε3 · k−β ≤ Y1 ≤ ε4 · k−β , −ε1 · k−γ ≤ Y0 ≤ ε2 · k−γ

in (4.8), (4.9) and in (4.10), (4.11).

The scheme of each of the following fourth sections (sections 4.1–4.4) is similar. In each

part, we give two theorems on the existence of a power-type solution. The first theorem

considers the conditions, including the values and variables not defined in the formulation of

the equation (1.3). The second theorem will define the strict values of m and α and will be

represented in the plane.

4.1 The case of ms > 0 and s + 1 > 0

Theorem 5. Let either

s > 0, m > 0 (4.12)

or

−1 < s < 0, m < 0. (4.13)

Assume that there exists a constant γ satisfying 0 < γ < 1 and positive numbers εi, i =

1, 2, 3, 4, such that

ε3 < ε1
γ + s+ 1

s+ 1
, ε4 < ε2

γ + s+ 1

s+ 1
, ε1 < ε3

γ + s+ 2

ms
, ε2 < ε4

γ + s+ 2

ms
.

Then, for a sufficiently large fixed k0 > 0, there exists a solution u : N(k0) → R of equa-

tion (1.3) such that, for every k ∈ N(k0) asymptotic representation (4.1) holds or, more

presisely, this solution satisfies

−ε1 · k−γ <
[
u(k)− a · k−s − b · k−(s+1)

] [
b · k−(s+1)

]−1
< ε2 · k−γ , (4.14)

−ε3 · k−γ <
[
∆u(k)−∆

(
a · k−s

)
−∆

(
b · k−(s+1)

)] [
∆
(
b · k−(s+1)

)]−1
< ε4 · k−γ , (4.15)

− ε1 · k−γ +O
(
k−1
)
<
[
∆2u(k)−∆2

(
a · k−s

)
−∆2

(
b · k−(s+1)

)]
·
[
∆2
(
b · k−(s+1)

)
ms · (s+ 2)−1

]−1
< ε2 · k−γ +O

(
k−1
)
. (4.16)
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Figure 4.1: Summary of admissible values (Theorem 6)

Theorem 6. Let at least one of following assumptions hold:

m ∈
(
−7− 4

√
3,−7 + 4

√
3
)
, −2 < α < −m− 1, (4.17)

0 < m < 1, α < −2, (4.18)

m > 1, −2 < α <
1

2

(
−(m− 1) +

√
(m− 1)2 + 16m

)
, (4.19)

−2 < α < −m− 1, m < 0, (m− 1)2 + 16m > 0 (4.20)

and either

α <
1

2

(
−(m− 1)−

√
(m− 1)2 + 16m

)
or

α >
1

2

(
−(m− 1) +

√
(m− 1)2 + 16m

)
.

Then, the conclusion of Theorem 5 holds.

All suitable areas on the (α,m)-plane indicated in Theorem 6 are visualized on the fig-

ures 4.1, 4.2.

4.2 The case of ms < 0 and s + 1 > 0

Theorem 7. Let either

s > 0, m < 0

or

−1 < s < 0, m > 0.
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Figure 4.2: Summary of admissible values - zoom (Theorem 6)

Assume that there exists a constant γ satisfying 0 < γ < 1 and positive numbers εi, i =

1, 2, 3, 4, such that

ε3 < ε1
γ + s+ 1

s+ 1
, ε4 < ε2

γ + s+ 1

s+ 1
ε1 < −ε3

γ + s+ 2

ms
, ε2 < −ε4

γ + s+ 2

ms
.

Then, for a sufficiently large fixed k0 > 0, there exists a solution u : N(k0) → R of equa-

tion (1.3) such that, for every k ∈ N(k0) asymptotic representation (4.1) holds or, more

presisely, this solution satisfies

−ε1 · k−γ <
[
u(k)− a · k−s − b · k−(s+1)

] [
b · k−(s+1)

]−1
< ε2 · k−γ , (4.21)

−ε3 · k−γ <
[
∆u(k)−∆

(
a · k−s

)
−∆

(
b · k−(s+1)

)] [
∆
(
b · k−(s+1)

)]−1
< ε4 · k−γ , (4.22)

− ε1 · k−γ +O
(
k−1
)
<
[
∆2u(k)−∆2

(
a · k−s

)
−∆2

(
b · k−(s+1)

)]
·
[
∆2
(
b · k−(s+1)

)
ms · (s+ 2)−1

]−1
< ε2 · k−γ +O

(
k−1
)
. (4.23)

Theorem 8. Let m and α satisfy one of the following conditions (4.24)–(4.26):

m < 0 ∧ α < −2, (4.24)

0 < m < 1 ∧ − 2 < α < −m− 1, (4.25)

m > 1 ∧ −m− 1 < α < −2, (4.26)

and let, moreover,

α2(1 +m) + α(m2 + 8m− 1) + 8m2 > 0. (4.27)

Then, for a sufficiently large fixed k0 > 0, there exists a solution u : N(k0) → R of equa-

tion (1.3) such that, for every k ∈ N(k0), asymptotic representation (4.21)–(4.23) holds.

In figure 4.3, 4.4 the resulting domain in (m,α)-plane is highlighted in violet.
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Figure 4.3: Summary of admissible values (Theorem 8)

4.3 The case of ms < 0 and s + 1 < 0

Theorem 9. Let α 6= 0 and

s < −1, m > 0, s 6= −2

Assume that there exists a constant γ, satisfying 0 < γ < 1 and positive numbers εi,

i = 1, 2, 3, 4, such that

ε4 < −ε1
γ + s+ 1

s+ 1
, ε3 < −ε2

γ + s+ 1

s+ 1
, ε2 < −ε3

γ + s+ 2

ms
, ε1 < −ε4

γ + s+ 2

ms
. (4.28)

Then, for a sufficiently large fixed k0 > 0, there exists a solution u : N(k0) → R of equa-

tion (1.3) such that, for every k ∈ N(k0) asymptotic representation (4.1) holds or, more

presisely, this solution satisfies

−ε1 · k−γ <
[
u(k)− a · k−s − b · k−(s+1)

] [
b · k−(s+1)

]−1
< ε2 · k−γ , (4.29)

−ε3 · k−γ <
[
∆u(k)−∆

(
a · k−s

)
−∆

(
b · k−(s+1)

)] [
∆
(
b · k−(s+1)

)]−1
< ε4 · k−γ , (4.30)

− ε1 · k−γ +O
(
k−1
)
<
[
∆2u(k)−∆2

(
a · k−s

)
−∆2

(
b · k−(s+1)

)]
·
[
∆2
(
b · k−(s+1)

)
ms · (s+ 2)−1

]−1
< ε2 · k−γ +O

(
k−1
)
. (4.31)

Theorem 10. Let the numbers α and m satisfy

α 6= {0,−2m},

α +m+ 1

m− 1
< 0 , m

α + 2

m− 1
< 0 ,

2α + 5m− 1

m− 1
> 0 , (m−1)(α2 +αm−α−4m) < 0 (4.32)

and

γ +
α +m+ 1

m− 1
> 0 (4.33)
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Figure 4.4: Summary of admissible values - zoom (Theorem 8)

where γ is a fixed number such that γ ∈ (γ∗, 1) and

γ∗ =
1

2

(
−2α + 3m+ 1

m− 1
+

√
4m

α + 2

m− 1
· α +m+ 1

m− 1
+ 1

)
.

Then, the conclusion of Theorem 9 holds.

Remark 4. Note the following. For the solvability of the system of inequalities (4.28), the

inequality

γ + s+ 1 > 0 (4.34)

is necessary as, in the opposite case, two inequalities from (4.28), cannot be satisfied due to

the positivity of εi, i = 1, 2, 3, 4 and the property s+ 1 < 0.

Remark 5. The system of inequalities (4.32)–(4.33) is solvable as well as the system of

inequalities (4.28). We show that the system of inequalities (4.32)–(4.33) is satisfied, e.g., for

the choice m = 1/2, α = −27/20. In such a case, inequalities (4.32) hold since

s =
α + 2

m− 1
= −13

10
, s+ 1 =

α +m+ 1

m− 1
= − 3

10
< 0,

ms = m
α + 2

m− 1
= −13

20
< 0 , 2s+ 5 =

2α + 5m− 1

m− 1
=

12

5
> 0,

(m− 1)(α2 + αm− α− 4m) = −199

800
< 0.

Moreover

γ2 =
1

2

(
−2α + 3m+ 1

m− 1
+

√
4m

α + 2

m− 1
· α +m+ 1

m− 1
+ 1

)
= −1

5
+

1

2

√
1.78

.
= 0.467

and inequality (4.33) holds since

γ + s+ 1 = γ − 3

10
> 0,
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Figure 4.5: Summary of admissible values (Theorem 10)

where γ is a fixed number such that γ ∈ (γ2, 1). Let, e.g., γ = 0.8. Then the system of

inequalities (4.28) equals

ε4 <− ε1
γ + s+ 1

s+ 1
= −ε1

0.8− 0.3

−0.3
=

5

3
ε1, (4.35)

ε1 <− ε4
γ + s+ 2

ms
= −ε4

0.8− 0.3 + 1

−13/20
=

30

13
ε4. (4.36)

The choice, e.g., ε1 = ε4 = 1 solve the sub-system (4.35), (4.36) i.e., solve the sub-system of

inequalities (4.28).

Remark 6. The domain defined by inequalities (4.32)–(4.33) in Theorem 10 is visualized in

(m,α)-plane by Figure 4.5. This domain splits other two open sub-domains, one of them being

blue color and other green.

4.4 The case of ms > 0 and s + 1 < 0

Theorem 11. Let α 6= 0 and

s < −1, m > 0, s 6= −2.

Assume that there exists a constant γ, satisfying 0 < γ < 1 and positive numbers εi,

i = 1, 2, 3, 4, such that

ε4 < −ε1
γ + s+ 1

s+ 1
, ε3 < −ε2

γ + s+ 1

s+ 1
, ε1 < ε3

γ + s+ 2

ms
, ε2 < ε4

γ + s+ 2

ms
. (4.37)

Then, for a sufficiently large fixed k0 > 0, there exists a solution u : N(k0) → R of equa-

tion (1.3) such that, for every k ∈ N(k0) asymptotic representation (4.1) holds or, more

precisely, this solution satisfies

−ε1 · k−γ <
[
u(k)− a · k−s − b · k−(s+1)

] [
b · k−(s+1)

]−1
< ε2 · k−γ , (4.38)
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−ε3 · k−γ <
[
∆u(k)−∆

(
a · k−s

)
−∆

(
b · k−(s+1)

)] [
∆
(
b · k−(s+1)

)]−1
< ε4 · k−γ , (4.39)

− ε1 · k−γ +O
(
k−1
)
<
[
∆2u(k)−∆2

(
a · k−s

)
−∆2

(
b · k−(s+1)

)]
·
[
∆2
(
b · k−(s+1)

)
ms · (s+ 2)−1

]−1
< ε2 · k−γ +O

(
k−1
)
. (4.40)

Theorem 12. Let the numbers α and m satisfy

α 6= {0,−2m}

α +m+ 1

m− 1
< 0 , m

α + 2

m− 1
> 0 ,

2α + 5m− 1

m− 1
> 0 , α2 + 8m2 + 8mα− α+mα2 +m2α > 0

(4.41)

and

γ +
α +m+ 1

m− 1
> 0 (4.42)

where γ is a fixed number such that γ ∈ (γ∗, 1) and

γ∗ =
1

2

(
−2α + 3m+ 1

m− 1
+

√
1− 4m

α + 2

m− 1
· α +m+ 1

m− 1

)
.

Then, the conclusion of Theorem 11 holds.

Remark 7. For the solvability of the system of inequalities (4.37), the inequality

γ + s+ 1 > 0 (4.43)

is necessary as, in the opposite case, two inequalities cannot be satisfied due to the positivity

of εi, i = 1, 2, 3, 4 and the property s+ 1 < 0.

Remark 8. The system of inequalities (4.37) is solvable, e.g., for the choice m = −2, α = 3/2.

In such a case, inequalities (4.41) will hold since

s =
α + 2

m− 1
= −7

6
, s+ 1 =

α +m+ 1

m− 1
= −1

6
< 0,

ms = m
α + 2

m− 1
=

7

3
> 0 , 2s+ 5 =

2α + 5m− 1

m− 1
=

8

3
> 0 ,

α2 + 8m2 + 8mα− α +mα2 +m2α =
41

4
> 0.

Moreover,

γ2 =
1

2

(
−2α + 3m+ 1

m− 1
+

√
1− 4m

α + 2

m− 1

α +m+ 1

m− 1

)
.
= 0.46597

and inequality (4.42) holds since

γ + s+ 1 = γ − 1

12
> 0,
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Figure 4.6: Summary of admissible values (Theorem 12)

where γ is a fixed number such that γ ∈ (γ2, 1). Let, e.g., γ = 5/6. Then, system (4.37) has

the form

ε4 < −ε1
γ + s+ 1

s+ 1
= 4ε1 , ε3 < −ε2

γ + s+ 1

s+ 1
= 4ε2,

ε1 < ε3
γ + s+ 2

ms
=

5

7
ε3 , ε2 < ε4

γ + s+ 2

ms
=

5

7
ε4.

The choice, e.g., ε1 = ε2 = 1, ε3 = ε4 = 2 solves this system.

Remark 9. The domain defined by inequalities (4.41)–(4.42) in Theorem 12 is visualized in

(m,α)-plane by Figure 4.6. This domain splits into two open sub-domains, one of them shown

in red while the other in blue.

4.5 All the above cases unified and compared with the case of con-
stant upper an lower functions

In this section, we will compare the above results. The results of Theorems 5 – 12 can all be

united represented by the below Figures 4.7 and 4.8.

Now, in addition, we need to compare these results with the Theorem 4 of Chapter 3. As

the proof of this theorem is structured similarly, it should be mentioned that the crucial role in

applying Theorem 2 is played by a proper choice of upper and lower functions bi(k) and ci(k),

where i = 1, 2. Both sets of the upper and lower functions lead to the identical asymptotic

relation

−ε1 · k−γ <
[
u(k)− a · k−s − b · k−(s+1)

] [
b · k−(s+1)

]−1
< ε2 · k−γ ,

−ε3 · k−γ <
[
∆u(k)−∆

(
a · k−s

)
−∆

(
b · k−(s+1)

)] [
∆
(
b · k−(s+1)

)]−1
< ε4 · k−γ ,

− ε1 · k−γ +O
(
k−1
)
<
[
∆2u(k)−∆2

(
a · k−s

)
−∆2

(
b · k−(s+1)

)]
[
∆2
(
b · k−(s+1)

)
ms · (s+ 2)−1

]−1
< ε2 · k−γ +O

(
k−1
)
,
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Figure 4.7: Summary of admissible values (Theorems 5–12)

or more precisely ∣∣u±(k)− a±k−s − b±k−s−1
∣∣ < max{ε1, ε2}|b±|

ks+γ+1
,

∣∣∆u±(k)− a±∆k−s − b±∆k−s−1
∣∣ < ∣∣∣∣∆( b±

ks+1

)∣∣∣∣ max{ε1, ε2}
kγ

,

∣∣∆2u±(k)− a±∆2k−s − b±∆2k−s−1
∣∣ < ∣∣∣∣∆2

(
b±
ks+1

)∣∣∣∣ (max{ε1, ε2}
ms

kγ|s+ 2|
+

∣∣∣∣O(1

k

)∣∣∣∣) .
However, the change of the form of upper and lower functions from constants to power

functions extends the set of appropriate conditions reopening the question of the asymptotic

behaviour of the Emden-Fowler equation solutions in the case of s+ 1 < 0.

To illustrate that the set of appropriate conditions has expanded even in the case of s+1 > 0

all sets are put in a single Figure 4.9. Here the yellow domain is the summary of the results of

this chapter (non-constant case) while the green domain summarises the results of Chapter 3

(constant case).

Remark 10. All the green domains of Figure 4.9 are the subset of the yellow domain.

5 A discrete analogy of the blow-up solution

To illustrate an analogy of blow-up phenomenon for a discrete second-order equation, we will

use an autonomous second-order Emden-Fowler type differential equation

y′′(x) = ys(x), (5.1)

where s 6= 1 is a real number.

Let us show that (5.1) can have blow-up solutions.
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Figure 4.8: Summary of admissible values - zoom (Theorems 5–12)

First, equation (5.1) is solvable and its general solution can be written in the form∫ y(x)

y0

dz√
2
∫
zsdz + C

= x− x0 (5.2)

where C is an arbitrary (but admissible) constant and (x0, y0) is an arbitrary admissible point.

If, for example, s = 3 and C = 0, then it is easy to derive from (5.2) a class of solutions

y(x) = ±
√

2

x+K
(5.3)

where K is an arbitrary constant and one can see the blow-up phenomenon explicitly if x→
±K.

In directly transferring the above phenomena to discrete equations, there are some circum-

stances to be taken in consideration because the independent variable in discrete equations is

discrete and runs over a set of integers. Therefore, we prove the existence of this phenomenon

implicitly as follows. First, we transform equation (5.1) by a transformation

x = u(y) (5.4)

where u is a new unknown function. This transformation will be such that x tends to a finite

limit when y tends to infinity. For example, writing solution (5.3) in the form (5.4), we derive

x = u(y) = ±
√

2

y
−K. (5.5)

If y →∞, then, by (5.5), x→ −K. Next, we will compile a differential equation for u in (5.4)

and the form of this equation will serve as a motivation for constructing a related discrete

equation.

Differentiating the transformation (5.4) with respect to x, we derive

1 = u′y · y′x. (5.6)

Differentiating (5.6) with respect to x again, we have

0 = u′′yy · (y′x)
2

+ u′y · y′′xx. (5.7)
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Figure 4.9: Summary of admissible values (Theorems 5–12) and Chapter 3)

Assuming u′y 6= 0, from (5.7), we get

y′′ = −u
′′ · (y′)2

u′
(5.8)

and, using (5.1), (5.6), (5.8)

ys = y′′ = −u
′′ · (y′)2

u′
= − u′′

(u′)3

and, finally, for u we derive

u′′ = −ys (u′)
3
. (5.9)

Then, a discrete analogy to differential equation (5.9) is the following

∆2v(k) = −ks (∆v(k))3 . (5.10)

A problem equivalent to blow-up phenomena for differential equation (5.1) is one of proving

the existence of a nontrivial solution to equation (5.9) such that limit limy→∞ u(y) exists and

is finite. Therefore, we consider the problem to prove the existence of a nontrivial solution

to equation (5.10) such that the limit limk→∞ v(k) exists and is finite. More exactly, under

condition s > 1, we prove the existence of a solution to equation (5.10) such that

lim
k→∞

v(k) = 0. (5.11)

5.1 An approximate solution of second-order discrete Emden-Fowler
equation (5.10)

We will search for an approximate solution of discrete equation (5.10) with asymptotic be-

haviour

v(k) ∼ V (k) := c · k−α
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as k →∞ where c and α are constants still unknown. We assume c 6= 0, α 6= 0 trying to find

these constants. To do this, we must replace ∆V (k) and ∆2V (k) in (5.10). Let us perform,

for k → ∞, auxiliary asymptotic computation of ∆V (k) and ∆2V (k). With the necessary

order of accuracy for ∆V (k), we obtain

∆V (k) = c(k + 1)−α − ck−α = ck−α
(
1 + k−1

)−α − ck−α =

= −cα · k−(α+1) + cα(α+ 1) · (1/2) · k−(α+2)− cα(α+ 1)(α+ 2) · (1/6) · k−(α+3) +O
(
k−(α+4)

)
and, for ∆2V (k), we have

∆2V (k) = c(k + 2)−α−2c(k + 1)−α+ck−α

= cα(α + 1) · k−(α+2) − cα(α + 1)(α + 2) · (1/3) · k−(α+3) +O
(
k−(α+4)

)
.

Then, replacing in (5.10) ∆v(k) and ∆2v(k) with ∆V (k) and ∆2V (k), after some simplifica-

tions we derive
cα(α + 1)

kα+2
=

c3α3

k3α+3−s +O

(
1

k3α+4−s

)
+O

(
1

kα+3

)
. (5.12)

Relation (5.12) is satisfied for {
α + 2 = 3α + 3− s,
cα(α + 1) = c3α3.

(5.13)

The values

α =
s− 1

2
, c = ±

√
α + 1

α
= ±
√

2s+ 2

s− 1
(5.14)

solve the system (5.13). Since V (k) can assume two values, we denote

V (k) = V±(k) = ±
√

2s+ 2

s− 1
k(1−s)/2.

5.2 System equivalent to discrete Emden-Fowler equation (5.10)

Define the following change of variables:

v(k) = ck−α(1 + Y1(k)), (5.15)

∆v(k) = (∆(ck−α))(1 + Y2(k)), (5.16)

∆2v(k) = (∆2
(
ck−α

)
)(1 + Y3(k)) (5.17)

where Yi(k), i = 1, 2, 3 are new dependent functions Yi : N(k0) → R, c and α are defined

by (5.14). In (5.10) replace ∆v(k), ∆2v(k) with (5.16), (5.17).

After some cumbersome calculations this change of variables provides us the following

system

∆Y1(k) =

(
α

k
+
α(α− 1)

k2
+O

(
1

k3

))
(Y1(k)− Y2(k)), (5.18)

∆Y2(k) = −
(
α + 1

k
+O

(
1

k2

))(
2Y2(k) + 3Y 2

2 (k) + Y 3
2 (k) +O

(
1

k

))
. (5.19)
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Theorem 13. Let s > 1. Let εi, γi, i = 1, 2 be fixed positive numbers such that ε2 <

ε1 < 1, γ2 < γ1 < 1. Then, there exists a solution Y (k) = Y ∗(k) = (Y ∗1 (k), Y ∗2 (k)) to the

system (5.18), (5.19) such that

−εi < Y ∗i (k) < γi, i = 1, 2, ∀k ∈ N(k0) (5.20)

provided that k0 is sufficiently large.

5.3 Existence of a nontrivial solution to equation (5.10) with prop-
erty (5.11)

In this part, we show that Theorem 13 implies the existence of a nontrivial solution to equa-

tion (5.10) with property (5.11).

Theorem 14. Let s > 1. Let εi, γi, i = 1, 2 be fixed positive numbers such that ε2 < ε1 < 1,

γ2 < γ1 < 1. Then, there exists a solution v = v(k) to equation (5.10) such that

−ε1|c|k−α < v(k)− ck−α < γ1|c|k−α,

−ε2γ2∆(|c|k−α)) < ∆v(k)− (∆(ck−α)) < γ2∆(|c|k−α))

and

∆2v(k) = O(1) (5.21)

for all k ∈ N(k0) provided that k0 is sufficiently large.

6 Conclusion

This doctoral theses studied the asymptotic behaviour of a discrete Emden-Fowler equation.

Analysis of the results reveals two different types of asymptotic behaviour.

The first one may be termed a power type. The idea of the proof consists in the retract

principle and we see that the choice of different upper and lower functions provides us with

different areas of existence of a power-type asymptotic behaviour.

The second one is an analogy for the blow-up solutions. The method of searching for

solutions of this type can be applied to other different non linear discrete equations.

Moreover, a little bit more general difference equation than (1.3),

∆2v(k)± pkαvm(k) = 0, (6.1)

where p is a positive constant, can obviously be transformed to the form (1.3) by a transfor-

mation v(k) = qu(k) where q is a positive number defined as q = p1/(1−m).

We can also extend the results achieved in Chapters 3 and 4, by adding to the equation (1.3)

(or (6.1)) a perturbation - function ω(k): N(k0)→ R assumed to be sufficiently small. Thus,

we can study the equation

∆u(k)± kαum(k) = ω(k).

Here, ”sufficiently small” is understood as:

ω(k) = O
(
k−(s+4)

)
,
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where s was defined in (2.1)

From the proofs, we can see that all the calculations can be applied as this “smallness” is

hidden in the Landau symbol “big O”.

This thesis includes several theorems on the conditions for the existence of solutions to

the Emden-Fowler type difference equations with power-type asymptotic behaviour. Each

theorem is supplemented with a figure to be more illustrative. Also, examples are given to

show applications of the results achieved.
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Abstract

In the literature a differential second–order nonlinear Emden–Fowler equation

y′′ ± xαym = 0,

where α and m are constants, is often investigated.

This thesis deals with a discrete equivalent of the second order Emden-Fowler differential

equation

∆2u(k)± kαum(k) = 0,

where k ∈ N(k0) := {k0, k0 +1, ....} is an independent variable, k0 is an integer and u : N(k0)→
R is an unknown solution. In this equation, ∆2u(k) = ∆(∆u(k)), ∆u(k) is the the first-order

forward difference of u(k), i.e., ∆u(k) = u(k+1)−u(k), and ∆2(k) is its second–order forward

difference, i.e., ∆2u(k) = u(k+ 2)− 2u(k+ 1) + u(k), α, m are real numbers. The asymptotic

behaviour of the solutions to this equation is discussed and the conditions are found such that

there exists a power-type asymptotic: u(k) ∼ 1/ks, where s is some constant.

We also discuss a discrete analogy of so-called “blow-up” solutions in the classical the-

ory of differential equations, i.e., the solutions for which there exists a point x∗ such that

limx→x∗ y(x) =∞, where y(x) is a solution of the Emden-Fowler differential equation

y′′(x) = ys(x),

with s 6= 1 being a real number.

The results obtained are compared to those already known and illustrated with examples.

Abstrakt

V literatuře je často studována Emden–Fowlerova nelineárńı diferenciálńı rovnice druhého

řádu

y′′ ± xαym = 0,

kde α a m jsou konstanty.

V disertačńı práci je analyzována diskrétńı analogie Emden-Fowlerovy diferenciálńı rovnice

∆2u(k)± kαum(k) = 0,

kde k ∈ N(k0) := {k0, k0 + 1, ....} je nezávislá proměnná, k0 je celé č́ıslo a u : N(k0) → R je

řešeńı. V této rovnici je ∆2u(k) = ∆(∆u(k)), kde ∆u(k) je diference vpřed prvńıho řádu funkce

u(k), tj. ∆u(k) = u(k + 1)− u(k) a ∆2(k) je jej́ı diference vpřed druhého řádu, tj. ∆2u(k) =

u(k + 2) − 2u(k + 1) + u(k), a α, m jsou reálná č́ısla. Je diskutováno asymptotické chováńı

řešeńı této rovnice a jsou stanoveny podmı́nky, garantuj́ıćı existence řešeńı s asymptotikou

mocninného typu: u(k) ∼ 1/ks, kde s je vhodná konstanta.

Je také zkoumána diskrétńı analogie tzv. “blow-up” řešeńı (neohraničených řešeńı) známých

v klasické teorii diferenciálńıch rovnic, tj. řešeńı pro která v některém bodě x∗ plat́ı limx→x∗ y(x)

=∞, kde y(x) je řešeńı Emden-Fowlerovy diferenciálńı rovnice

y′′(x) = ys(x),

kde s 6= 1 je reálné č́ıslo.

Výsledky jsou ilustrovány př́ıklady a porovnávány s výsledky doposud známými.
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