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1 Introduction 
Classical differential equations are widely used in different processes. For example, the input 
continuous signal of the linear system x(t) and the corresponding output signal y(t) can be 
connected by some differential equation. But if we want to replace a continuous variable t 
with a discrete one, it leads to the replacement of the differential equation with a difference 
equation. 

To analyse difference equations, we can also use different analytical methods, most of 
them using approaches similar to those of the classical differential equation. We can also 
use numerical methods of solving, obtaining a result in the form of a numerical sequence, 
therefore, the difference equation in this case is perceived as an algorithm for the functioning 
of a discrete system for which a suitable computer programs can be devised. 

We also mention the contribution of the mathematicians Bohner M . , Georgiev, S.G. and 
Peterson A . C [7], [8] and [9] to the creation of a theory that combines both classical calculus and 
the theory of difference equations, expanding the scope of application to continuous scales, 
as well as allowing us to consider both more complex discrete scales or a combination of 
discrete-continuous time scales. 

In the doctoral thesis we discuss the asymptotic properties of the Emden-Fowler discrete 
equation. This equation is an extension to the theory of difference equation of a well-known 
Lane-Emden-Fowler differential equation, which has a great deal of applications in physics, 
cosmology, meteorology and chemistry. In [16], the form of this equation was 

£ + * £ + / j V = o, (i . i) 
arz r ar 

where r is the radius of a polytropic gas sphere, n — l/(k — 1), with k being the polytropic 
index and /3 some physical constant. 

The change of variables u = y/r transforms (1.1) into the following equation 

y" + P2r1~nyn = 0. 

Now we get the form that is often used in mathematical literature: 

y" + x°\y\k-1y = 0, 

where k and a are constants. Later, this equation was generalized for the case of n-th order 
differential equation 

yW+p(x)\y\ksgny = 0, (1.2) 

where n > 2 is an integer, p(x) is a continuous function and k is a constant. 
Different properties of the solutions of Emden-Fowler differential equations were investi­

gated by many authors. The R.Bellman's monograph [5] had a great influence on the in­
vestigation of the Emden-Fowler equations, where he discussed the asymptotic properties of 
the solutions tending to infinity. F.V.Atkinson in [4] also made a significant contribution 
to the theory of Emden-Fowler equations. The list of works devoted to the Emden-Fowler 
type equations is very wide, we will mention some of them: H. Fowler [18], I.T. Kiguradze, 
T.A. Chanturia [28], V . A . Kondratev, V.S. Samovol [29], I.V. Astashova [3], H. Goenner, P. 
Havas [19], S.C. Mancas, H.C. Rost [30], C M . Khalique [22] and P. Guha [21]. 



1.1 The current state 

In previous chapter, we have already mentioned that there are many papers and books on the 
Emden-Fowler differential equation. However, turning our attention to the discrete case, we 
see that there are not so many articles about this type of equation. We can refer to papers 
by L. Erbe, J. Baoguo and J. Peterson [17] dealing with non-oscillatory solutions of Emden-
Fowler type discrete equations providing asymptotic properties of a similar equation on time 
scales. 

V . Kharkov in [23], [24], [25] has also discussed the asymptotic properties of the equation 

A2yn = apn\yn+1\asgnyn+1, 

where a G { — 1.1}, a G M \ {0,1} and the sequence pn satisfies the following condition 

\ i m ^ ^ = k, {-2, - 1 - a}. 

In the thesis we will discuss the asymptotic properties of the solutions to the another discrete 
equivalent of the Emden-Fowler equation. In our case, let k0 be a natural number. By N(k0) 
we denote the set of all natural numbers greater than or equal to ho, that is, 

N(fco) := {fc0, fco+ ! , - } • 

We will study the asymptotic behaviour of the solutions of a second-order non-linear discrete 
equation of Emden-Fowler type 

Au(k) ± kaum(k) = 0, (1.3) 

where u : N(fco) —> M. is an unknown solution, Au(k) is its first-order forward difference, 
i.e., Au(k) = u{k + 1) — u(k), A2{k) is its second-order forward difference, i.e., A2u{k) = 
A(Au(k)) = u{k + 2) — 2u(k + 1) + u(k), and a, m are real numbers. A function u = u* : 
N(fco) —> K. is called a solution of equation (1.3) if the equality 

A2u*{k)±ka{u*{k))m = 0 

holds for every k G N(fco). 
Equation (1.3) is a discretization of the classical Emden-Fowler second-order differential 

equation (we refer, e.g., to [5]) y" ± xaym = 0, where the second-order derivative is replaced 
by a second-order forward difference and the continuous independent variable is replaced by 
a discrete one. 

One special case of the discrete Emden-Fowler type equation has been discussed in a recent 
article by Christianen, M . H . M . , Janssen, A . J . E . M . , Vlasiou, M . , and Zwart, B. [11], which 
describes the charging process of electric vehicles, considering their random arrivals, their 
stochastic demand for energy at charging stations, and the characteristics of the electricity 
distribution network. The equation 

Vj+i — 2VJ + Vj-i = k/vj 

is considered, where j = 1,2,...; VQ — 1, v\ — 1 + k and proving that there exists a solution 
with "logarithmic" asymptotic behaviour, i.e. 

vj-j^kHj))1/2, 

when j —> oo. 

G 



1.2 Preliminaries 

This section introduces the notation, definitions and theorems used in the thesis. 

Definition 1. A function uupp : B —> R is said to be an approximate solution to equation (1.3) 
of an order g where g : N(fco) —> R if 

lim [A3uupp(k) ± kaun(k)]g{k) = 0. 
fc—>-oo 

If the main term (i.e. the term being asymptotically leading) in uupp{k) is a power-type 
function, we say that it is a power-type approximate solution. 

Definition 2. We say that a function x(k) is of order 0(y(k)) if there exists a constant i f , 
such that 

\x(k)\ < \M(y(k))\ 

on N(fco). We use the shorter notation 0(y(k)). 

Definition 3. We say that a function x{k) is of order o(y(k)) if y{k) ^ 0 for all sufficiently 
large k G N(fco) and 

x(&0 

This property is more simply written as x{k) = o(y(k)). 

In computations below, we will also use the following modification of the Landau order 
symbol big "O". 

Definition 4. Let / : N(k0) ->• R, g: N(k0) ->• (0, oo). We write / = 0 +(#) if there exists an 
index k\ > ko such that inequality 

\f(k)\^g(k), VkeNih) 

holds. 

Definition 5. A solution of the equation (1.2) is called a blow-up one if there exists some 
point Xo G R, such that 

lim y(x) = oo. 

1.2.1 Binomial series 

In the proof of the main results, we use the following formula for the decomposition of a binom 
into a "binomial series". 

Let r G R, p G R, k G N(fc0) and let 
r 

Then. 

< 1. 

where 
' P \ 1 N 1 : = p ( p - l ) . . . ( p - Z + l ) - . 
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1.2.2 Discrete retract principle 

In the proofs of the results on the asymptotic behaviour of solutions to equation (1.3), we use 
an auxiliary apparatus taken from [12,14] and described below. Consider a system of discrete 
equations 

AY(Jfe) = F(k,Y(k)), k e N(Jfcb) (1.5) 

where Y = ( Y 0 , . . . , Y n _ ! ) T and 

F(k, Y) = (F^k, Y),...,Fn(k, Y))T: N(kQ) x l » 4 Rn. (1.6) 

A solution Y = Y(k) of system (1.5) is defined as a function Y: N(fco) —> K™ satisfying (1.5) 
for each e N(fco). The initial problem 

Y(k0) = Y° = (Y0°,...X-i)T 

defines a unique solution to (1.5). Obviously, if F(k, Y) is continuous with respect to Y, then 
the initial problem (1.5), (1.6) defines a unique solution Y = Y(k0,Y°)(k), where Y(k0,Y°) 
indicates a dependence of the solution on the initial point (ko, Y°), which depends continuously 
on the value Y°. Let biy Ci \ N(k0) —> M, i — 1, ...,n be given functions satisfying 

bi(k)<Ci(k), keN{k0), i = l,...,n. (1.7) 

Define auxiliary functions C j : N(fco) x M. —> M, z = 1,..., n as 

^ ( f c . y ) ^ - ^ . ! + Ci(k,Y) -a(k) (1.8) 

and auxiliary sets 

:= {(fc, y ) : jfe e N(fc0), ^(A;, Y) = 0, Sj(fc, y ) < 0, Cp(k, Y) < 0, 

V j,p= l , . . . , n , j y^i}, (1.9) 

^ c := {(Jfe, y ) : jfe e N(Jfcb), Ci(k, Y) = 0, ̂ ( /c , Y) < 0, Cp(Jfe, y ) < 0, 

V j,p = l , . . . , n , p^i} (1.10) 

where z = 1 , n . 
Playing a crucial role in the proofs and being suitable for applications, the following lemma 

is a slight modification of [12, Theorem 1] (see [14, Theorem 2] also). 

1.2.3 Auxiliary result of a Liapunov type 

A result formulated below is proved in [13] by Liapunov-like reasonings. 

Definition 6. The set Q is called the regular polyfacial set with respect to the discrete 
system (1.5) if 

h(k + l) -h{k) < Fi(k,Y) < Ci(k + 1) -bi(k), (1.11) 

for every % — 1,..., n and every (k, Y ) G VL%

B and if 

bi(k + 1) - a(k) <Fi(k,Y) <Ci{k + l)-Ci{k), (1.12) 

for every % — 1,..., n and every (k, Y) e fiz

c. 
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To formulate the following theorem, we need to define sets 

Q(k) = {(k,Y),Y = (¥,,..., Yn) e Rn, bi(k) <Yi< a(k),i = 1,..., n}, 

Qi(k) = { (Y) : Y G R, k(k) < Yi < a(k), i = l,...,n}. 

Theorem 1. [13, Theorem 4] Let F: N(fco) x —> Rn. Let, moreover, Q be regular with 
respect to the discrete system (1.5), and let the function 

Gi(w) :=w + Fi(k,Y1,..., Yj_ i , w, Yi+1,... ,Yn) 

be monotone on fli(k) for every fixed k G N(fco), each fixed i G { 1 , . . . , n}, and every fixed 

(Y1,..., Yi+i,..., Yn) 

such that (k,Yi,..., w, Yi+i,..., Yn) e VL. Then, every initial problem Y(ko) = Y* with 
Y* G fi(ko) defines the solution Y = Y*{k) of the discrete system (1.5) satisfying the relation 

Y*{k) G n(k) 

for every k G N(fco). 

1.2.4 Auxiliary results of an Anti-Liapunov type 

Now we formulate a result which is in [12] proved by a retract method sometimes called an 
Anti-Liapunov method due to the assumptions used being often an opposite to those used 
when Liapunov method is applied (such an approach goes back to Wazewski, who formulated 
his topological method formulated for ordinary differential equations). The following theorem 
is a slight modification of [12, Theorem 1] (see [14, Theorem 2] also). 

Theorem 2. Assume that the function F(k,Y) satisfies (1.5) and is continuous with respect 
to Y. Let the inequality 

Ft(k,Y)<bt(k + l)-bt(k) (1.13) 

hold for every i — 1,..., n and every (k, Y) G VtB. Let, moreover, inequality 

Fi(k,Y) > a(k +1) - Ci(k) (1.14) 

hold for every % = 1,... ,n and every (k,Y) G Ql

c. Then, there exists a solution Y = Y{k), 
k G N(fco) of system (1.5) satisfying the inequalities 

h(k) KYi-^k) < Ci(k) 

for every k G N(ko) and % — 1,..., n. 

2 Preliminary calculations and theorems 

2.1 Constructing an asymptotic power-type solution. 

In this chapter we will construct an approximate solution to equation (1.3) in a power form. 
Let us define 

s= (a + 2 ) / ( m - l ) , (2.1) 



a=[Ts(s + l)}1/(m-1) , (2.2) 

b=(as(s + l))/(s + 2-ms). (2.3) 

Remark 1. We need to assume m ^ O , m ^ l , s + and s + 2 — ms ^ 0, that is, m ^ O . 
m ^ l , a / —2, and ct 7̂  —2m. 

Remark 2. If in formula (2.2) either the upper variant of sign is in force (i.e. —) and 
s(s + 1) > 0 or the (2.2) lower variant of sign in force (i.e. +) and s(s + 1) < 0, then the 
constant m has the form of a ratio m\jmi of relatively prime integers mi , m.2, and is m<i is 
odd, the difference mi — m 2 is odd as well. If this convention holds, the formula (2.2) defines 
two or at least one value. 

As equation (1.3) splits into two equations, when formulating the results, we assume that 
a concrete variant is fixed (either with the sign + or with the sign —). 

Theorem 3. Let a, b and s be defined by the formulas (2.1) - (2.3). Then, the function 

uapp{k) oc a • k~s + b • k-(s+1) (2.4) 

is an approximate power-type solution of equation (1.3) of order g{k) = ks+3. 

2.2 System of difference equations equivalent to a differential equa­
tion 

Below, rather than of equation (1.3), we will analyse an equivalent system of two difference 
equations. This system will be constructed using the below auxiliary transformations 

u(k) = a-k~s + b- k~{s+1){l + Y0(k)), (2.5) 

Au{k) = A (a • k~s) + A (b • k-{s+1)) (1 + Yi(£;)), (2.6) 

A2u(k) = A 2 (a • k~s) + A 2 (b • k~{s+1)) (1 + Y2{k)). (2.7) 

where s, a and b are defined by formulas (2.1) - (2.3), and Yi(k), i = 0,1, 2 are new dependent 
functions. Below, we derive relations connecting them. Recall a useful known formula (we 
refer, e.g., to [15]), used in computations. If x and y are defined on N(fco), then 

A(x(k)y(k)) = x(k + l)Ay(Jfe) + (Ax(k))y(k), k e N(k0). 

Taking the first differences of the left-hand and right-hand sides of (2.5), we derive 

Au{k) = A (a • k~s) + b-{k + l)-{s+1)AY0{k) + A (b • fc"(s+1)) (1 + Y0(k)). 

Comparing the result with (2.6), we get the equation 

b-(k+ 1)-{S+1)AY0(k) + A (b • k~{s+1)) (1 + Y0(k)) =A(b- k~{s+1)) (1 + Yx{k)), 

which is equivalent with 

AY0(k) = (k + 1)S+1A (k-(s+1^ (-Y0(k) + Y^k)). (2.8) 

Taking the first differences of the left-hand and right-hand sides of (2.6), we obtain 

A2u{k) = A 2 (a • k~s) +A(b-(k + l ) - ( s + 1 ) ) AYi(k) + A 2 (b • k~{s+1)) (1 + Y^k)). 
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Comparing the result with (2.7), we get 

A (b • (k + l ) " ( s + 1 ) ) AYi(Jfe) + A 2 (b • A ; " ( s + 1 ) ) (1 + Yi(fc)) = A 2 (b • k~{s+1)) (1 + Y2{k)), 

and an equivalent equation is 

A 2 (k-^) 
A y i W = A ( ( f c V i ) - ( ^ ) ) ( - y i W + ( 2- 9) 

The derived system of difference equations (2.8), (2.9) defines the relationships between Fj(fc), 
z = 0,1,2 implied by transformations (2.5)-(2.7). Next, we will get a system equivalent with 
equation (1.3). To do this, we must express Y2(k) in (2.9) in terms of Y0(k) using initial 
equation (1.3). After some cumbersome calculations we get 

AY0(k)=(-^ + o(±yj(-Y0(k)+Y1(k)), (2.10) 

A K I W = (-£±2 + o (1)) (̂ y„(t) - y,(t) + o (I)) . ( 2 ,1 ) 

3 Power-type asymptotic behaviour in case of constant 
upper and lower functions 

The aim of this chapter is to find conditions for existence of the solution (1.3) with the 
power-type asymptotic behaviour when Theorem 2 is applied with constant upper and lower 
functions b\(k), b2(k), c\{k) and c2(k). We use the approximate power-type solution described 
by formula (2.4), where s, a and b are defined by formulas(2.1), (2.2) and (2.3). The results 
of this chapter were published in [1]. 

We will prove the theorem, formulated below. Here we deal only with the case s + 1 > 0. 

Theorem 4. Let s > — 1, m 7̂  0 and m ^ 1. Assume that there exist positive numbers ei} 

i = 1,..., 4, such that either 
ms ms 

ms>0, £ 3 < £ 1 , £ 2 > £4, e3 >——€!, £ 4 > — - £ 2 , (3.1) 
S ~~\~ Zi S ~\~ — 

or 
ms ms . . 

ms < 0, £ 3 < £ 1 , £ 2 > £4, £3 > ~ 9 £ 2 , Q > — £ i . (3.2) 

Then, for a sufficiently large fixed k0, there exists a solution u: N(k0) —> K. of equation (1.3) 
such that, for every k G N(fco), 

- £ 1 < [u(Jfe) - a • k~s - b • k~(s+1)] [b • k~(s+1)]_1 < £ 2 , (3.3) 

- £ 3 < [Au(Jfe) - A (a • fc"s) - A (6 • fc"(s+1))] [A (6 • k~{s+1))]_1 < £ 4 , (3.4) 

- £ 1 + 0(fc" 1 ) < [ A 2

t t ( f c ) - A 2 (a • /c"s) - A 2 (b-k~^)] [A 2 (6 • ms(s + 2 ) " 1 ] _ 1 

< £ 2 + 0(fc- 1 ) . (3.5) 

11 



Figure 3.1: Summary of admissible values 

Remark 3. In the proof of Theorem 4 we will apply Theorem 2 from Chapter 1, where 
system (2.10), (2.11) is considered instead of a system of discrete equations (1.5). That is, in 
system (1.5) we set n = 2 and 

F, (* ,y„(*) ,y 1 (*) ) := (-^±1 + O Q;)) (-Y„(k) + YM), 

*<*,*<*),*<*)) == ( - ^ + o (1)) ( ^ y „ W - y,(*) + o g)) . 
The core of the proof consists of verifying inequalities (1.13), (1.14) estimating functions Fi and 
F 2 for properly defined functions N(fco) —> M, i = 1,2 (see (1.7)) satisfying 6j(fc) < Cj(fc), 
fc G N(fc0), i = 1,2. By 6j and q, z = 1, 2 functions B^k, Y) and Cj(fc, F ) , % = 1, 2 in (1.8) and 
sets Ql

B, Ql

c, % — 1,2 in (1.9), (1.10) are defined. 

A l l particular cases are highlighted in Figure 3.1 in (m, a)-plane in corresponding colours. 
If a fixed (m, a) belongs to the domain of admissible values, all hypotheses of Theorem 4 are 
true and, for a sufficiently large fixed ko, there exists a solution u: N(fco) —>• 1R of equation (1.3) 
satisfying, for every k G N(fco), inequalities (3.3)-(3.5). 

4 Power-type asymptotic behaviour in case of tending 
to zero upper and lower functions 

In this chapter, we will show that the areas of possible coefficient values for which equation (1.3) 
has solutions asymptotically expressed by a power-type function may change depending on 
the type of the upper and lower functions. We will search for the conditions such that there 
exists a solution to equation (1.3) with the following asymptotic behaviour: 

u(k) = a-k~s + b- k~{s+1) + O (k~^+s+1)) , (4.1) 
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where a, b and s are defined in (2.2), (2.3) and (2.1) and 7 is some positive constant. 
In this chapter, we have chosen power-type upper and lower functions b\(k), b2(k), c\{k) 

and C2(k) tending to zero. 
The idea of the proof is similar to the one in the previous chapter, while requiring more 

complex calculations. The scheme of all investigations is the following. The transforma­
tions (2.5)-(2.7), where a±, b± are computed by formulas (2.2), (2.3), are used to transform 
the equation (1.3) into an auxiliary system of two equations (2.10), (2.11). 

Then, some particular results of those published in [12, 14]) are applied to investigate 
system (2.10), (2.11). A correct use of Theorem 2 necessitates the proper choice of functions 
bi(k), Ci(k), i — 1,2. In this chapter, we will assume 

bi(k) := —ei • k'1, ci(fc) :=e2-k-\ b2(k) := -e3 • k~p , c2(k) :— £4 • k~p, (4.2) 

where £j, j — 1,..., 4 are positive constants. 
This chapter is divided into 4 parts depending on the values s + 1 and ms, where s is 

defined in (2.1). 
To prove all the below theorems we need to define some auxiliary sets and functions identical 

for all four cases. 
Let £j > 0, % — 1,..., 4 and let (3 and 7 be fixed. Assuming ko positive and sufficiently large 

such that the asymptotic computations in the proof are correct for every k G N(fco), define 
functions bi, Ci, % — 1,2, satisfying (1.7), by formulas 

b\(k) := —£1 • /c~ 7 , c\(k) := £ 2 • /c~ 7 , b2(k) := —£3 • k~^ , c2(k) := £4 • k~^. 

Then, 

Bi(k, Y) := -Y0 + h(k) = -Y0 - e1, B2(k, Y) := -Y, + b2(k) = -Y, - e3 , 

Cx{k,Y):= Y0-Cl(k)= F 0 - £ 2 , C2(k,Y):= Yx - c2(k) = Yx - £4 

and 

= {(k,Y): k G N(k0), Y0 = - £ 1 k~ -7 
• - £ 3 k~ < Y1 < £4 k~ (4.3) 

= {(k,Y): k G N(fcb), Yx = - £ 3 k~ - £ \ k~ -1 <YQ< £2 k~ (4.4) 

= {(k,Y): k G N(k0), Yo = e2 
k~ -7 

• - £ 3 k~ -p < Yi < k~ (4.5) 

nl = {(k,Y): k G N(k0), Yx = £ 4 k~ • - £ i k~ -1 <YQ< £2 k~ (4.6) 

For later formulation, we will need to verify four differences: bi(k+l)—bi(k), b2{k+l)—b2{k). 
c\{k + 1) — c\{k) and c2(k + 1) — c2(k). As functions b\(k), b2(k), c\(k) and c2(k) are similar, 
we will show the calculation for only one case using the binomial formula (1.4): 

h(k + 1) - 6i(Jfe) = - £ 1 • (k + l ) " 7 + £1 • /c" 7 = £ 1 7 • fc"7+1 (1 + 0 (k-1)) . (4.7) 

To apply Theorem 1.13, inequalites (1.13) and (1.14) must hold. 
Since inequality (1.13) assumes (k,Y) G Ql

B, i = l , . . . , n and inequality (1.14) assumes 
(k,Y) G Ql

c, i = l , . . . , n , we need to verify (taking into account specifications (4.3)-(4.6)) 
and (4.7) the following: 

1̂ {k, h(k), Yi)I( f c jy 0 j y i) Gn^ = F1 (k, - £ l • k~\ Yx)\b2(k)<Yi<C2(k) 
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< 6i(fc + 1) -6i(fc) = £ 1 7 • / c " ( 7 + 1 ) ( l + O (/c - 1)) , (4.8) 

Fi( f c. ci( f c). yi)l(fc 1yo,n)enfe = F l £ 2 • 7 , y ) L 2 ( f c ) < y i < C 2 ( f c ) 

> ci(A; + 1) - Cl(k) = - e 2 l • (1 + 0 (/c - 1)) , (4.9) 

F 2 ( / c , F 0 , 6 2 ( / c ) ) | ( f c y 0 i y i ) e n | = F 2(fc, F 0 , - ^ 3 •^" 7 ) | 6 l ( f e ) <y 0 < c i ( f e ) 

< b2(k + 1) - b2(k) = e3p-k~^+1) (1 + 0 (A;" 1)), (4.10) 

F 2 ( / c , F 0 , c 2 ( / c ) ) | ( f c i y 0 i y i ) e ^ = F 2 (/c, y 0 , ^ - /c - 7 ) | b i ( f c ) < y o < C i ( f c ) 

> c2(fc + 1) - c2(k) = -eAf3 • & T ( / 3 + 1 ) (1 + 0 (/c - 1)) (4.11) 

whenever 

- e 3 • fc_/3 < F i < e4 • k~p , - e i • k'1 <Y0<e2- k'1 

in (4.8), (4.9) and in (4.10), (4.11). 

The scheme of each of the following fourth sections (sections 4.1-4.4) is similar. In each 
part, we give two theorems on the existence of a power-type solution. The first theorem 
considers the conditions, including the values and variables not defined in the formulation of 
the equation (1.3). The second theorem will define the strict values of m and a and will be 
represented in the plane. 

4.1 The case of ms > 0 and s + 1 > 0 

Theorem 5. Let either 
s > 0, m>0 (4.12) 

or 
-Ks<0, m<0. (4.13) 

Assume that there exists a constant 7 satisfying 0 < 7 < 1 and positive numbers Ei, % = 
1, 2,3,4, such that 

7 + s + l 7 + s + l 7 + S + 2 7 + S + 2 
s +1 s +1 ms ms 

Then, for a sufficiently large fixed ko > 0, there exists a solution u: N(fco) —> M of equa­
tion (1.3) such that, for every k G N(k0) asymptotic representation (4.1) holds or, more 
presisely, this solution satisfies 

- e i • /c~7 < [u(k) -a-k~s-b- k~{s+1)] [b • k-{s+1)]_1 < e2 • /c" 7 , (4.14) 

- e 3 • &~7 < [Au(Jfe) - A (a • fc"s) - A (6 • fc"(s+1))] [A (6 • fc-(s+1))]_1 < e 4 • A;" 7 , (4.15) 

- e1 • /c" 7 + O (/c_ 1) < [ A 2 ^ ) - A 2 (a • fc"s) - A 2 (6 • fc"(s+1))] 

• [A 2 (b • k-{s+1)) ms-{s + 2 ) " 1 ] " 1 < e2 • /c" 7 + O (/c_ 1) . (4.16) 

14 



Figure 4.1: Summary of admissible values (Theorem 6) 

Theorem 6. Let at least one of following assumptions hold: 

m G ( - 7 - 4 \ / 3 , - 7 + 4\/3) , —2 < a < —m — 1. 

and either 

or 

0 < m < 1, a < - 2 , 

m > 1, - 2 < a < ^ ( - ( m - 1) + yj{m- l ) 2 + 16mj , 

- 2 < a < —m — 1, m < 0, (m - l ) 2 + 16m > 0 

- ^—(m — 1) — yj(m — l ) 2 + 16mj 

^—(m — 1) + yj(m — l ) 2 + 16mj . 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

Then, the conclusion of Theorem 5 holds. 

A l l suitable areas on the (a, m)-plane indicated in Theorem 6 are visualized on the fig­
ures 4.1, 4.2. 

4.2 The case of ms < 0 and s + 1 > 0 

Theorem 7. Let either 
s > 0, m < 0 

or 
-1 < s < 0, m > 0. 

15 



a2 + am — a — Am = 0 

m = 0 

Figure 4.2: Summary of admissible values - zoom (Theorem 6) 

Assume that there exists a constant 7 satisfying 0 < 7 < 1 and positive numbers Si, i = 
1, 2,3,4, such that 

7 + s + l 7 + s + l 7 + S + 2 7 + S + 2 
£3 < ei ~.— 1 £4 < £2 — £1 < — £3 1 e2 < —£4 • 

s +1 s + 1 ms ms 
Then, for a sufficiently large fixed ko > 0, there exists a solution u: N(fco) —> K. 0/ egna-
tton (1.3) snc/i t/iat, /or ever?/ G N(fco) asymptotic representation (4.1) /jo/ds or, more 
presisely, this solution satisfies 

- e i • /c~7 < [u(Jfe) - a • fc"s - 6 • A ; - ( s + 1 ) ] [6 • fc"(s+1)]_1 < e 2 • /c~7 , (4.21) 

- e 3 • &~7 < [Au(Jfe) - A (a • fc"s) - A (6 • fc"(s+1))] [A (6 • A;" ( s + 1 ) ) ] 1 < e 4 • /c" 7 , (4.22) 

- £1 • /c" 7 + O (/c_ 1) < [A2u(k) -A2 (a- k~s) - A2 (b • fc"(s+1))] 

• [A 2 (b • k~{s+1)) ms-(s + 2 ) " 1 ] _ 1 < e2 • k'1 + O (/c_ 1) . (4.23) 

Theorem 8. Let m and a satisfy one of the following conditions (4.24)-(4.26): 

m < 0 A a < - 2 , (4.24) 

0 < m < 1 A - 2 < a < -m - 1, (4.25) 

m > 1 A - m - 1 < a < - 2 , (4.26) 

and Ze£, moreover, 
a2{l +m) + a{m2 + 8m - 1) + 8m2 > 0. (4.27) 

TTien, /or a sufficiently large fixed ko > 0, there exists a solution u: N(fco) —• K. 0/ egna-
£ion (1.3) such that, for every k G N(fco), asymptotic representation (4.21)-(4.23) holds. 

In figure 4.3, 4.4 the resulting domain in (m, a)-plane is highlighted in violet. 

1G 



m = 1 

m = 0 a + m + l = 0 

Figure 4.3: Summary of admissible values (Theorem 8) 

4.3 The case of ms < 0 and s + 1 < 0 

Theorem 9. Let a ^ O and 
s < - 1 , m > 0, 

Assume that there exists a constant 7, satisfying 0 < 7 < 1 and positive numbers ei} 

z = 1,2,3,4, such that 

7 + s + l 7 + s + l i + s + 2 7 + s + 2 f l n a . 
EAK-SX — — , e3 < - e 2 — — , £ 2 < - £ 3 , £i < • (4.28) 

s +1 s +1 ms ms 

Tnen, /or a sufficiently large fixed ko > 0, there exists a solution u: N(fco) —>• M 0/ egwa-
tton (1.3) snc/i that, for every k G N(k0) asymptotic representation (4.1) /jo/ds or, more 
presisely, this solution satisfies 

- e i • /c~7 < [u(Jfe) - a • fc"s - 6 • A ; - ( s + 1 ) ] [6 • fc"(s+1)]_1 < e 2 • /c~7 , (4.29) 

- e 3 • &~7 < [Au(Jfe) - A (a • fc"s) - A (6 • fc"(s+1))] [A (6 • A;" ( s + 1 ) ) ] 1 < e 4 • /c" 7 , (4.30) 

- ei • /c" 7 + O (k-1) < [A2u(k) -A2 (a- k~s) - A2 (b • fc"(s+1))] 

• [A 2 (b • fc"(s+1)) ms • (s + 2 ) " 1 ] _ 1 < e2 • k'1 + O . (4.31) 

Theorem 10. Let the numbers a and m satisfy 

a ^ {0,-2m}, 

a + m + l a + 2 2a + 5m — 1 . w , , . , 
< 0 , m < 0 , > 0 , ( m - l ) ( a 2 + a m - a - 4 m ) < 0 (4.32) 

m — 1 m — 1 m — 1 

and 
a + m + 1 . 

7 + 7— > 0 4.33 
m — 1 
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a. + m+ 1 = 0 
x — 

\ 
\ 

\ 
\ -0.5 

- 1 \ -7 + VŠ \ 
\ 

\ 

a = -2 

m = 1 

-0.5 

-1 

5 S 

-2 
m = 0 

• h i i i i i 

Figure 4.4: Summary of admissible values - zoom (Theorem 

where 7 is a fixed number such that 7 G (7*, 1) and 

2a + 3m + 1 
7 

. , a + 2 a + m + l 
+ A / 4 m — + 1 

m — 1 m — 1 m — 1 

ITien, i/ie conclusion of Theorem 9 holds. 

Remark 4. Note the following. For the solvability of the system of inequalities (4.28), the 
inequality 

7 + s + 1 > 0 (4.34) 

is necessary as, in the opposite case, two inequalities from (4.28), cannot be satisfied due to 
the positivity of £j, i — 1,2, 3,4 and the property s + 1 < 0. 

Remark 5. The system of inequalities (4.32)-(4.33) is solvable as well as the system of 
inequalities (4.28). We show that the system of inequalities (4.32)-(4.33) is satisfied, e.g., for 
the choice m— 1/2, a — —27/20. In such a case, inequalities (4.32) hold since 

a+m+l 3 
= < 0. 

10 

ms = m 

a + 2 13 
m — 1 "To 

a + 2 13 
m — 1 ~20 

m — 1 
„ „ „ 2a + 5m - 1 12 „ 

< 0 , 2s + 5 = = ^ > 0 , 
m — 1 5 

(m — l)(a2 + am — a — Am) 
199 
800 

< 0. 

Moreover 

7 2 = 2 
2a + 3m + l I a + 2 a + m + l \ 1 

+ x Urn — + 1 = - - + - V I . 7 8 = 0.467 
m — 1 V m — 1 m — 1 / 5 2 

and inequality (4.33) holds since 

7 + s + l = 7 
10 

> 0, 
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a + rn + 1 = 0 4 a m = 1 

\ 1 

a = -2 

3l m 

4 0 A n 

a + am — a — 4m = 0 

Figure 4.5: Summary of admissible values (Theorem 10) 

where 7 is a fixed number such that 7 G (72,1). Let, e.g., 7 = 0.8. Then the system of 
inequalities (4.28) equals 

£4 < - £ i 7 + ^ 1 " 1 = - £ i ° " 8 ° ' 3 = \\eu (4.35) 
s + 1 —0.3 3 

7 + s + 2 0.8 - 0 . 3 + 1 30 „ o c . 
£1 < - £ 4 = - £ 4 i q / o n = ^4- 4.36 

ms —13/20 13 
The choice, e.g., £1 = £4 = 1 solve the sub-system (4.35), (4.36) i.e., solve the sub-system of 
inequalities (4.28). 
Remark 6. The domain defined by inequalities (4.32)-(4.33) in Theorem 10 is visualized in 
(m, a)-plane by Figure 4.5. This domain splits other two open sub-domains, one of them being 
blue color and other green. 

4.4 The case of ms > 0 and s + 1 < 0 

Theorem 11. Let a ^ 0 and 

s < - 1 , m > 0, s ^ - 2 . 

Assume that there exists a constant 7, satisfying 0 < 7 < 1 and positive numbers ei} 

z = 1,2,3,4, such that 

£4 < - £ 1 — — , £3 < - £ 2 —;—, £ 1 < £3 , £2 < £A • (4.37) 
s +1 s +1 ms ms 

Then, for a sufficiently large fixed ko > 0, there exists a solution u: N(fco) —> K. of equa­
tion (1.3) such that, for every k G N(k0) asymptotic representation (4.1) holds or, more 
precisely, this solution satisfies 

- e i • /c~7 < [u(Jfe) - a • fc"s - 6 • A ; - ( s + 1 ) ] [6 • fc"(s+1)]_1 < £ 2 • /c" 7 , (4.38) 
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- e 3 • k'1 < [Au(Jfe) - A (a • fc"s) - A (6 • fc"(s+1))] [A (b • k~{s+1))] 1 <e4-k~\ (4.39) 

- £i • /c~7 + O (/c_ 1) < [A2n(£;) - A 2 (a • fc"s) - A 2 (6 • fc"(s+1))] 

• [A 2 (6 • A ; - ( s + 1 ) ) ms • (s + 2 ) " 1 ] _ 1 < e 2 • /c~7 + 0 (/c_ 1) . (4.40) 

Theorem 12. Let t/ie numbers a and m satisfy 

a ^ {0, -2m} 

a + m + 1 a+ 2 2a + 5m - 1 2 , 0 2 , 0 , 2 , 2 
< 0 , m > 0 , > 0 , a + 8m + Sma — a + ma + m a > 0 

m — 1 m — 1 m — 1 
(4.41) 

and 
a + m + 1 . 

7 + 7— > 0 4.42 
m — 1 

where j is a fixed number such that 7 G (7*, 1) and 
1 2a + 3m + l / a+ 2 a + m + 1 

7* = h \ 1 - 4m 
2 \ m — 1 V m — 1 m — 1 

T/ien, t/ie conclusion of Theorem 11 holds. 

Remark 7. For the solvability of the system of inequalities (4.37), the inequality 

7 + s + 1 > 0 (4.43) 

is necessary as, in the opposite case, two inequalities cannot be satisfied due to the positivity 
of £j, % — 1, 2, 3,4 and the property s + 1 < 0. 

Remark 8. The system of inequalities (4.37) is solvable, e.g., for the choice m = —2, a = 3/2. 
In such a case, inequalities (4.41) will hold since 

a + 2 7 a + m + 1 1 
s = 7 = ~ « ' s + l = ^ = - « < 0 ' 

m — 1 0 m — 1 0 
a + 2 7 „ „ „ 2a + 5 m - l 8 „ 

ms = m = - > 0 , 2s + 5 = = - > 0 . 
m — 1 3 m — 1 3 

a + 8m + 8ma — a + ma + m a = — > 0. 
4 

Moreover, 

1 / 2a + 3m + l I A a + 2 a + m + l . . n t i r n _ 
72 = ^ : + a / 1 - 4 m — = 0.46597 

2 \ m — 1 V m — 1 m — 1 
and inequality (4.42) holds since 

1 
7 + s + l = 7 - — >0, 
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Figure 4.6: Summary of admissible values (Theorem 12) 

where 7 is a fixed number such that 7 G (72,1). Let, e.g., 7 = 5/6. Then, system (4.37) has 
the form 

7 + s + l A 7 + S + I 
£4 < - £ i —:— = 4ei , e 3 < - e 2 ——= 4e2, 

s + 1 s+1 7 + s + 2 _ 5 7 + s + 2 _ 5 
s — - £ 3 , £2 < £4 — ~t 

ms 7 ms 7 
The choice, e.g., S\ — e2 — 1, £3 = £ 4 = 2 solves this system. 

Remark 9. The domain defined by inequalities (4.41)-(4.42) in Theorem 12 is visualized in 
(m, a)-plane by Figure 4.6. This domain splits into two open sub-domains, one of them shown 
in red while the other in blue. 

4.5 A l l the above cases unified and compared with the case of con­
stant upper an lower functions 

In this section, we will compare the above results. The results of Theorems 5 - 1 2 can all be 
united represented by the below Figures 4.7 and 4.8. 

Now, in addition, we need to compare these results with the Theorem 4 of Chapter 3. As 
the proof of this theorem is structured similarly, it should be mentioned that the crucial role in 
applying Theorem 2 is played by a proper choice of upper and lower functions bi(k) and Cj(fc), 
where i = 1,2. Both sets of the upper and lower functions lead to the identical asymptotic 
relation 

- e i • /c" 7 < [u(k) -a-k~s-b- k~{s+1)] [b • k-{s+1)]_1 < e2 • /c" 7 , 

- e 3 • k'1 < [Au{k) - A (a- k~s) - A (b • k~{s+1))] [A (b • k~{s+1))]< e 4 • &~7 , 

- e1 • /c" 7 + O (k-1) < [A2u(k) -A2 (a- k~s) - A2 (b • k~{s+1))] 

[A2 (b • fc"(s+1)) ms • (s + 2 ) " 1 ] _ 1 < e2 • k'1 + O (/c_ 1) , 
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O: 

m = 0 

Figure 4.7: Summary of admissible values (Theorems 5-12) 

or more precisely 

\u±(k) - a±k s - b±k \ < maxjei, £2}\b 

Au±(k) - a±Ak-s - biAk-8-1] < J ± 

ks+l 

max{£i ,£ 2 } 
kr< 

\A2u±{k) - a±A2k~s - b^k-3-1] < 

However, the change of the form of upper and lower functions from constants to power 
functions extends the set of appropriate conditions reopening the question of the asymptotic 
behaviour of the Emden-Fowler equation solutions in the case of s + 1 < 0. 

To illustrate that the set of appropriate conditions has expanded even in the case of s+1 > 0 
all sets are put in a single Figure 4.9. Here the yellow domain is the summary of the results of 
this chapter (non-constant case) while the green domain summarises the results of Chapter 3 
(constant case). 

Remark 10. A l l the green domains of Figure 4.9 are the subset of the yellow domain. 

A 
ks+l max{£i ,£ 2 } ms 

fcT|s + 2| + O 

5 A discrete analogy of the blow-up solution 
To illustrate an analogy of blow-up phenomenon for a discrete second-order equation, we will 
use an autonomous second-order Emden-Fowler type differential equation 

y"(x)=ys(x), (5.1) 

where s ^ 1 is a real number. 
Let us show that (5.1) can have blow-up solutions. 
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a2 + 8m2 + &ma — a + ma2 + m2a = 0 T o? + am — a — 4m = 0 1 ' y / 

\m — 0 

Figure 4.8: Summary of admissible values - zoom (Theorems 5-12) 

First, equation (5.1) is solvable and its general solution can be written in the form 

"y{x) dz 
- = X — XQ 

:</o 
(5.2) 

'2 / zsdz + C 

where C is an arbitrary (but admissible) constant and (XQ, IJQ) is an arbitrary admissible point. 
If, for example, s = 3 and C — 0, then it is easy to derive from (5.2) a class of solutions 

„(*) = (5.3) 

where K is an arbitrary constant and one can see the blow-up phenomenon explicitly if x —> 
±K. 

In directly transferring the above phenomena to discrete equations, there are some circum­
stances to be taken in consideration because the independent variable in discrete equations is 
discrete and runs over a set of integers. Therefore, we prove the existence of this phenomenon 
implicitly as follows. First, we transform equation (5.1) by a transformation 

x = u(y) (5.4) 

where u is a new unknown function. This transformation will be such that x tends to a finite 
limit when y tends to infinity. For example, writing solution (5.3) in the form (5.4), we derive 

\/2 
x = u(y) = ± K. 

y ' y 

(5.5) 

If y —> oo, then, by (5.5), x —> —K. Next, we will compile a differential equation for u in (5.4) 
and the form of this equation will serve as a motivation for constructing a related discrete 
equation. 

Differentiating the transformation (5.4) with respect to x, we derive 

l = u'y-y'x. (5.6) 

Differentiating (5.6) with respect to x again, we have 

o = « j„- ( i4) 2 + «; V 4 - (5-7) 
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Figure 4.9: Summary of admissible values (Theorems 5-12) and Chapter 3) 

Assuming v! ^ 0, from (5.7), we get 

y 

and, using (5.1), (5.6), (5.8) 

and, finally, for u we derive 

V = V 

u" • {y'ý 
u1 

u" • (y'ý 
ti­

ll 
u 

A3 

u = -y (u) . 

Then, a discrete analogy to differential equation (5.9) is the following 

2..tl.\ 7-S / A . . / 7 „ \ \ 3 A2

v(k) = -ks (Av(k)y. 

(5. 

(5.9) 

(5.10) 

A problem equivalent to blow-up phenomena for differential equation (5.1) is one of proving 
the existence of a nontrivial solution to equation (5.9) such that limit l i m ^ o o u{y) exists and 
is finite. Therefore, we consider the problem to prove the existence of a nontrivial solution 
to equation (5.10) such that the limit lim^oo-u(/c) exists and is finite. More exactly, under 
condition s > 1, we prove the existence of a solution to equation (5.10) such that 

lim v{k) = 0. 
k—¥oo 

(5.11) 

5.1 A n approximate solution of second-order discrete Emden-Fowler 
equation (5.10) 

We will search for an approximate solution of discrete equation (5.10) with asymptotic be­
haviour 

v(k) ~ V(k) :=c-k~a 
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as k —> oo where c and a are constants still unknown. We assume c 7̂  0, a 7̂  0 trying to find 
these constants. To do this, we must replace AV{k) and A2V{k) in (5.10). Let us perform, 
for k —> 00, auxiliary asymptotic computation of AV(fc) and A2V{k). With the necessary 
order of accuracy for AV(k), we obtain 

AV(k) = c{k + l)~a - ck~a = ck~a (1 + k-1)"* - ck~a = 

= -ca • k~{a+1) + ca(a + 1) • (1/2) • k~{a+2) - ca(a + l)(a + 2) • (1/6) • k~{a+3) + O ( fc" ( a + 4 ) ) 

and, for A2V(k), we have 

A2V{k) = c{k + 2)~a-2c{k + l)-a + ck~a 

ca(a + 1) • k~(a+2) - ca(a + l)(a + 2) • (1/3) • k~(a+3) + O (k~{a+4)) . 

Then, replacing in (5.10) Av(k) and A2v(k) with AV(k) and A2V(k), after some simplifica­
tions we derive 

ca(a + l) c3a3 / 1 \ / 1 \ . i n , 

Relation (5.12) is satisfied for a + 2 = 3a + 3 — s, 
ca(a + 1) = c3a3. 

(5.13) 

The values 
s - 1 , + 1 , v / 2 s T 2 

a = , c = ± - = ± - (5.14) 
2 ' a s-1 y 1 

solve the system (5.13). Since V(k) can assume two values, we denote 

5.2 System equivalent to discrete Emden-Fowler equation (5.10) 

Define the following change of variables: 

v{k) = ck-a{l + Y1{k)), (5.15) 

Av(k) = (A(ck-a))(l + Y2(k)), (5.16) 

A2v(k) = (A2 (ck-a))(l + Y3{k)) (5.17) 

where Fj(fc), % = 1,2,3 are new dependent functions Y^: N(fc0) —>• M, c and a are defined 
by (5.14). In (5.10) replace Av(k), A2v(k) with (5.16), (5.17). 

After some cumbersome calculations this change of variables provides us the following 
system 

AY(k) = (I + + O ( ^ ) ) - ^ ) ) , (5.18) 

Ay 2 (*o = - ( — + o f - j I (2y2(fc) + 3 y 2 ^ ) + yf(fc) + o [ - ] ) . (5.19) 

20 



Theorem 13. Let s > 1. Let eit 7$, i — 1,2 be fixed positive numbers such that e2 < 
E\ < 1, 72 < 71 < 1. TTien, t/iere exists a solution Y(k) = Y*(k) = (Y*(k), Y2*(fc)) to t/ie 
system (5.18), (5.19) snc/i t/iat 

- £ i < >7(£0 < 7 i , i = 1,2, Vfc G N(Ato) (5.20) 

provided that ko is sufficiently large. 

5.3 Existence of a nontrivial solution to equation (5.10) with prop­
erty (5.11) 

In this part, we show that Theorem 13 implies the existence of a nontrivial solution to equa­
tion (5.10) with property (5.11). 

Theorem 14. Let s > 1. Let Si, 7«, % — 1,2 be fixed positive numbers such that e2 < £\ < 1, 
72 < 7i < 1- Then, there exists a solution v = v(k) to equation (5.10) such that 

-e1\c\k~a < v(k) - ck~a < 7i|c|/c"a, 

-e2l2A(\c\k-a)) < Av(k) - (A(ck-a)) < l2A(\c\k-a)) 

and 

A2v{k)=0{l) (5.21) 

for all k G N(fco) provided that ko is sufficiently large. 

6 Conclusion 
This doctoral theses studied the asymptotic behaviour of a discrete Emden-Fowler equation. 
Analysis of the results reveals two different types of asymptotic behaviour. 

The first one may be termed a power type. The idea of the proof consists in the retract 
principle and we see that the choice of different upper and lower functions provides us with 
different areas of existence of a power-type asymptotic behaviour. 

The second one is an analogy for the blow-up solutions. The method of searching for 
solutions of this type can be applied to other different non linear discrete equations. 

Moreover, a little bit more general difference equation than (1.3), 

A2v{k)±pkavm{k) = 0, (6.1) 

where p is a positive constant, can obviously be transformed to the form (1.3) by a transfor­
mation v(k) = qu(k) where q is a positive number defined as q = p 1^ 1 -™-). 

We can also extend the results achieved in Chapters 3 and 4, by adding to the equation (1.3) 
(or (6.1)) a perturbation - function oj{k): N(fco) —* R assumed to be sufficiently small. Thus, 
we can study the equation 

Au(k) ± kaum(k) =oo(k). 

Here, "sufficiently small" is understood as: 

u(k) = O (fc" ( s + 4 )) , 
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where s was defined in (2.1) 
From the proofs, we can see that all the calculations can be applied as this "smallness" is 

hidden in the Landau symbol "big O". 
This thesis includes several theorems on the conditions for the existence of solutions to 

the Emden-Fowler type difference equations with power-type asymptotic behaviour. Each 
theorem is supplemented with a figure to be more illustrative. Also, examples are given to 
show applications of the results achieved. 
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Abstract 
In the literature a differential second-order nonlinear Emden-Fowler equation 

y" ± xaym = 0, 

where a and m are constants, is often investigated. 
This thesis deals with a discrete equivalent of the second order Emden-Fowler differential 

equation 
A2u{k) ± kaum{k) = 0, 

where k G N(k0) := {k0, k0 + l,....} is an independent variable, k0 is an integer and u: N(k0) —> 
K. is an unknown solution. In this equation, A2u{k) = A(Au(k)), Au(k) is the the first-order 
forward difference of u(k), i.e., Au{k) = u{k+ 1) — u(k), and A2{k) is its second-order forward 
difference, i.e., A2u{k) = u{k + 2) - 2u(k + 1) + u(k), a, m are real numbers. The asymptotic 
behaviour of the solutions to this equation is discussed and the conditions are found such that 
there exists a power-type asymptotic: u{k) ~ l/ks, where s is some constant. 

We also discuss a discrete analogy of so-called "blow-up" solutions in the classical the­
ory of differential equations, i.e., the solutions for which there exists a point x* such that 
l i m ^ z . y{x) = oo, where y(x) is a solution of the Emden-Fowler differential equation 

y"(x) = ys(x), 

with s ^ 1 being a real number. 
The results obtained are compared to those already known and illustrated with examples. 

Abstrakt 
V literatuře je často studována Emden­Fowlerova nelineární diferenciální rovnice druhého 
řádu 

y" ± xaym = 0, 

kde a a m jsou konstanty. 
V disertační práci je analyzována diskrétní analogie Emden­Fowlerovy diferenciální rovnice 

A2u(k) ±kaum(k) = 0, 

kde k G N(ko) := {ko, ko + 1,....} je nezávislá proměnná, ko je celé číslo a u: N(ko) —> K. je 
řešení. V této rovnici je A2u{k) = A(Au(k)), kde Au{k) je diference vpřed prvního řádu funkce 
u(k), tj. Au{k) = u{k + 1) — u{k) a A2(k) je její diference vpřed druhého řádu, tj. A2u{k) — 
u{k + 2) — 2u(k + 1) + u(k), a a, m jsou reálná čísla. Je diskutováno asymptotické chování 
řešení této rovnice a jsou stanoveny podmínky, garantující existence řešení s asymptotikou 
mocninného typu: u{k) ~ l/ks, kde s je vhodná konstanta. 

Je také zkoumána diskrétní analogie tzv. "blow­up" řešení (neohraničených řešení) známých 
v klasické teorii diferenciálních rovnic, tj. řešení pro která v některém bodě x* platí l i m ^ ^ . y(x) 
= oo, kde y(x) je řešení Emden­Fowlerovy diferenciální rovnice 

y"(x) = ys(x), 

kde s 1 je reálné číslo. 
Výsledky jsou ilustrovány příklady a porovnávány s výsledky doposud známými. 
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