

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV RADIOELEKTRONIKY

DEPARTMENT OF RADIO ELECTRONICS

PLANÁRNÍ MONO- A DIPÓLOVÉ ANTÉNY PRO KOMUNIKACI PO TĚLE

PLANAR MONO- AND DIPOLE ANTENNAS FOR ON-BODY COMMUNICATION

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE AUTHOR Ivan Maro

VEDOUCÍ PRÁCE SUPERVISOR

prof. Dr. Ing. Zbyněk Raida

BRNO 2021

Bakalářská práce

bakalářský studijní program Elektronika a komunikační technologie

Ústav radioelektroniky

Student: Ivan Maro Ročník: 3 **ID:** 197722 Akademický rok: 2020/21

NÁZEV TÉMATU:

Planární mono- a dipólové antény pro komunikaci po těle

POKYNY PRO VYPRACOVÁNÍ:

Cílem bakalářské práce je vzájemně porovnat vlastnosti planárních širokopásmových monopólů a dipólů navržených pro bezdrátovou komunikaci po lidském těle v ISM pásmu 5,8 GHz. Do porovnání je třeba zahrnout jak elektricky vodivé monopóly a dipóly, tak antény štěrbinové. Anténní rameno by mělo být realizováno jako meandr, a mělo by být porovnáno se souvislým ekvivalentem. Aktivní anténní prvek musí být od tkáně vždy oddělen vodivou vrstvou, která minimalizuje pohlcování elektromagnetické energie.

Navržené anténní struktury je třeba optimalizovat pro trojrozměrnou pleteninu jako textilní substrát. U kovových vodivých ploch předpokládáme, že budou vyrobeny technologii sítotisku. Parametry navržených antén je třeba podrobně porovnat prostřednictvím simulací v programu ANSYS HFSS. Jednu z antén vyberte, realizujte a experimentálně ověřte její vlastnosti. Svůj výběr zdůvodněte.

DOPORUČENÁ LITERATURA:

[1] ALEMARYEEN, A.; NOGHANIAN, S.; On-body low-profile textile antenna with artificial magnetic conductor. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 6, p. 3649-3656. DOI: 10.1109/TAP.2019.2902632

[2] PITRA, K.; RAIDA, Z.; Miniaturized antenna for body centric communication. European Conference on Antennas and Propagation (EuCAP 2013). Gothenburg, Sweden: 2013. p. 3219-3222. ISBN: 978-88-907018-1-8

Termín zadání: 8.2.2021

Termín odevzdání: 27.5.2021

Vedoucí práce: prof. Dr. Ing. Zbyněk Raida

prof. Ing. Tomáš Kratochvíl, Ph.D. předseda rady studijního programu

UPOZORNĚNÍ:

Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Abstrakt

Táto bakalárska práca sa zaoberá návrhom a simuláciou niekoľkých monopólových a dipólovyýh textilných antén, pre použitie na komunikáciu po ľudskom tele v pasme ISM 5,8 GHZ. Taktiež preveruje možnosť použitia reflektoru z umelého magnetického vodiča za docielením celkového zlepšenia parametrov anténny. Funkčnosť anténny bola skúmaná pod vplyvom deformačného ohybu aby bolo zaručene správne fungovanie pri umiestnený na rôznych častiach tela. U vybraných antén bola taktiež simulovaná špecifická hodnota absorpcie SAR, tak aby anténa spĺňala limity udávane príslušnými úradmi. Následne pre výrobu boli zvolene dve anténny ktoré boli vyrobené technikou sieťotlače. Vyrobené antény sa merali v bezodrazovej komore a ich výsledky porovnané so simuláciami.

Kľúčové slová

nositeľná textilná anténna, dipólová anténna, monopolová anténna, AMC reflektor

Abstract

This bachelor's thesis is focused on designing and simulating several types of monopole and dipole textile antennas, which will be used for ON-body communication in ISM 5.8 GHz frequency band. It also examines the possibility of using a reflector made of artificial magnetic conductor to achieve an overall improvement in antenna parameters. The antenna has been subjected to bending, to ensure proper functionality when placed on different parts of the body. For selected antennas, a specific absorption rate SAR was also simulated so that the antenna meets the required limits specified by the competent authorities. Subsequently, two antennas were chosen for prototype production, which were produced by silkscreen printing technique. The manufactured antennas were measured in an anechoic chamber and their results compared with simulations.

Keywords

wearable textile antenna, dipole antenna, monopol antenna, AMC reflector

Bibliografická citácia

MARO, Ivan. Planární mono- a dipólové antény pro komunikaci po těle [online]. Brno, 2021 [cit. 2021-05-05]. Dostupné z: https://www.vutbr.cz/studenti/zav-prace/detail/133579. Bakalářská práce. Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav radioelektroniky. Vedoucí práce Zbyněk Raida.

Prehlásenie autora o pôvode diela

Meno a priezvisko študenta:	Ivan Maro
VUT ID študenta:	197722
Typ práce:	Bakalárska práca
Akademický rok:	2020/21
Téma záverečnej práce:	Planárne mono a dipólové antény pre komunikáciu po tele

Prohlašuji, že svou závěrečnou práci jsem vypracoval samostatně pod vedením vedoucí/ho závěrečné práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené závěrečné práce dále prohlašuji, že v souvislosti s vytvořením této závěrečné práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

V Brne dna: 27. mája 2021

podpis autora

Pod'akovanie

Rád by som poďakoval vedúcemu bakalárskej práce pánovi prof. Dr. Ing. Zbyňku Raidovi za odbornú pomoc, trpezlivosť a ochotu v každom smere pri spracovaní mojej bakalárskej práce. Tiež by som chcel poďakovať pánovi doc. Ing. Jaroslavu Láčíkovi, PhD. a Ing. Miroslavu Cupalovi za pomoc a cenné rady pri výrobe a meraní prototypu antén.

V Brne dňa: 27. mája 2021

podpis autora

Obsah

ZC)ZN	AM OBRÁZKOV	
ZC)ZN	AM TABULIEK	9
Ú١	/OD		
1.	N	NOSITEĽNÉ ANTÉNY	
	1.1	CHARAKTERISTIKA NOSITEĽNÝCH ANTÉN	
	1.2	POŽIADAVKY NA NOSITEĽNÚ ANTÉNNU	11
	1.3	MATERIÁLY A VÝROBA	
	1.4	TECHNOLÓGIE VÝROBY TEXTÍLII	
	1.5	MINIMALIZÁCIA HODNÔT SAR A SPÄTNÉHO VYŽAROVANIA	
2.	Ν	NÁVRH DIPÓLOVÝCH ANTÉN	
	2.1	NÁVRH ANTÉN	
	2.2	MEANDROVITÝ DIPÓL	
	2.3	POROVNANIE VÝSLEDKOV DIPÓLOVÝCH ANTÉN NA FANTÓME ĽUDSKÉHO TELA	17
3.	Ν	NÁVRH ANTÉNY S AMC REFLEKTOROM	
	3.1	NÁVRH AMC BUNIEK	
	3.2	MONOPÓLOVÉ ANTÉNY S AMC	
4.	١	VPLYV OHYBU NA ANTÉNU A VÝPOČET SAR	
	4.1	CHOVANIE ANTÉNY PRI OHYBE	
	4.2	MERANIE HODNOTY SAR	
5.	١	VÝROBA A MERANIE PROTOTYPOV ANTÉN	
	5.1	VYHODNOTENIE NAMERANÝCH HODNÔT VYROBENÝCH ANTÉN	
6.	7	LÁVER	41
LI	TEF	RATÚRA	
Z	OZN	AM SYMBOLOV A SKRATIEK	44

ZOZNAM OBRÁZKOV

1.1	Umiestnenie bezdrôtových snímačov pri On-body komunikácii [1]	11
2.1	Trojuholníkový dipól	15
2.2	Dipól s rovnými ramenami	16
2.3	Meandrovitá motýlikova dipólová anténa	17
2.4	Štvorvrstvový fantóm ľudského tela	18
2.5	Činiteľ odrazu pre antény s a bez fantómu	19
2.6	Meander_GP s rozšírenou zemniacou doskou	20
2.7	Vyžarovací diagram antén v E-rovine, pohľad z boku	20
2.8	Vyžarovací diagram antén v E-rovine, pohľad spredu	21
2.9	Vyžarovací diagram antén s fantómom v E-rovine pohľad z boku	21
2.10	Vyžarovací diagram antén s fantómom v E-rovine pohľad spredu	22
3.1	Umiestnenie antény nad reflektor do vzdialenosti $\lambda/4$ [9]	23
3.2	Umiestnenie antény nad AMC reflektor do vzdialenosti oveľa menšej ako λ [9]	24
3.3	Činiteľ odrazu AMC bunky	25
3.4	Detail jednej bunky AMC Square vl'avo a AMC Cross vpravo	25
3.5	Normovaná impedancie na povrchu AMC pri rezonančnej frekvencii	26
3.6	Monopolová trojuholníková anténa vľavo,	27
3.7	Umiestnenie antén na AMC reflektor pri použití krížového vzoru (vľavo), štvorcového tvaru	
	(vpravo)	28
3.8	Činiteľ odrazu pre trojuholníkovú monopólovú anténu s použitím AMC reflektorov	29
3.9	Činiteľ odrazu pre meandrovitú monopólovú anténu s použitím AMC reflektorov	29
3.10	Vyžarovací diagram antén v E-rovine	30
3.11	Vyžarovací diagram antén v H-rovine	31
4.1	Cylindricky ohnuté antény s polomerom ohybu 80 mm	32
4.2	Činiteľ odrazu S11pre rôzny polomer ohybu antén	33
4.3	Porovnanie smerových charakteristík antén pri ohybe a bez ohybu v E-rovine	33
4.4	Porovnanie smerových charakteristík antén pri ohybe a bez ohybu v H-rovine	34
4.3	Porovnanie hodnôt SAR pri použití AMC reflektoru (hore) a bez (dolu)	35
5.1	Vyrobená meandrovitá dipólová anténa technikou sieťotlače	36
5.2	Vyrobená meandrovitá dipólová anténa s štvorcovým AMC reflektorom	37
5.3	Porovnanie meraného a simulovaného činiteľa odrazu meandrovitej dipólovej antény	37
5.4	Porovnanie meraného a simulovaného činiteľa odrazu trojuholníkovej monopolovej antény	
	s štvorcovým AMC reflektorom	38
5.5	Nameraný zisk trojuholníkovej anténny s reflektorom v rovine konektoru	39
5.6	Nameraný zisk trojuholníkovej anténny s reflektorom v rovine kolmej na konektor	40

ZOZNAM TABULIEK

1.1	Hodnoty permitivity a stratového činiteľa pre nevodivé textílie	
2.1	Rozmery Dipólovej trojuholníkovej antény	16
2.2	Rozmery polvlnného dipólu	16
2.3	Rozmery motýlikovho meandrovitého dipólu	17
2.4	Vlastnosti ľudských tkanív pri frekvencii 5,8 GHz	
3.1	Tabul'ka rozmerov pre jednu bunku AMC Square a AMC Cross	
3.2	Rozmery meandrovitého monopolu	27
3.3	Rozmery trojuholníkového monopolu	27
5.1	Porovnanie nameraných a simulovaných hodnôt zisku trojuholníkovej AMC antény	
5.2	Referenčne hodnoty pre zisk 0 dBi meraných antén	

Úvod

V posledných desaťročiach sme svedkami masívneho rozvoja a miniaturizácie technológii vo svete počítačov, rôznej osobnej elektroniky, automobilov a ďalších odvetví elektroniky. Veľký pokrok môžeme sledovať v oblasti nositeľnej elektroniky, ktorá bola v minulosti limitovaná len pre vojenské, vesmírne poprípade medicínske účely. Nositeľná elektronika ma v dnešnom svete široké možnosti použitia, či už sa jedná o rôzne snímače na meranie rozličných veličín, alebo medicínskych zariadení ktoré, kontrolujú doležíte životne funkcie u pacientov. Súčasťou týchto "smart" technológií sú vždy aj anténny ktoré slúžia na odosielanie nameraných dát. Avšak práve tu vzniká problém, kedy sú anténny umiestnené do blízkosti vodivého ľudské tela. Dochádza tak k pohlcovaniu vyžarovaných vĺn tkanivom a deformácii parametrov anténny.

Tento problém má niekoľko riešení, použitie smerovej antény, alebo užitie takzvaného reflektoru pod anténou, poprípade ich vzájomnými kombináciami, ktoré budú bližšie rozobraté v tejto bakalárskej práci.

Hlavným cieľom bakalárskej práce je vzájomne porovnanie vlastnosti širokopásmových monopólov a dipólov navrhnutých pre bezdrôtovú komunikáciou po ľudskom tele v ISM pásme 5,8 GHz. Následne anténna, ktorá bude vykazovať najlepšie parametre bude zvolená pre prototypovú výrobu.

Táto bakalárska práca je rozdelená do šiestich častí. V prvej časti je čitateľ zoznámený s problémami, ktoré nastavajú pri použití antén v blízkosti ľudského tela a požiadavkami na takéto antény. Kapitola sa taktiež stručne venuje používaným materiálom a základným typom antén. Druhá kapitola je zameraná na dipólové štrbinové anténny s jednoduchým reflektorom. Tretia kapitola sa venuje anténam, ktoré sú podložené pasívnym AMC reflektorom, ktorý spadá do skupiny metamaterialov. Štvrtá kapitola zobrazuje prehľadne porovnanie navrhnutých antén a ich simuláciu pri sťažených podmienkach, kedy sú anténny vystavené deformačnému ohybu. Kapitola sa tiež venuje minimalizácii hodnôt SAR. Predposledná piata kapitola bakalárskej práce sa zaoberá výrobou a meraním prototypu antén a ich následného porovnania s výsledkami dosiahnutými pri simulácii v programoch HFSS a CST.

Kvôli zlej dostupnosti softvéru a hardvéru počas trvania mimoriadnej situácie bola časť bakalárskej práce vypracovaná v programe CST Studio.

1. Nositeľné antény

1.1 Charakteristika nositel'ných antén

Jedným z riešení pri návrhu flexibilnej anténny je anténnu vyrobiť z textilných materiálov. Zvolením textilného substrátu anténna získa niekoľko jedinečných vlastnosti a to flexibilitu a možnosť integrácie do oblečenia. Predpokladá sa, že používateľ anténny (smart technologie) bude anténnu využívať v každodennom kontakte preto by mal byť pri návrhu kladený dôraz hlavne na veľkosť štruktúry jej odolnosť voči vonkajším vplyvom ako vlhkosť opotrebovanie ohybom, oderom, praním zároveň však musia ostať zachované elektrické vlastnosti a v neposlednom rade aj komfort nosenia aj jej zasadenie do oblečenia.

Obrázok 1.1 Umiestnenie bezdrôtových snímačov pri On-body komunikácii [1]

1.2 Požiadavky na nositeľnú anténnu

Pri umiestnení anténny v blízkosti stratového materiálu ako napríklad ľudské telo dochádza k zmene účinnosti anténny, zapríčinenou kapacitnými väzbami medzi telom a anténou čo má za následok posun operačných frekvencii a zmenu vstupných impedancii anténny. Taktiež dôjde k zmene vyžarovacej efektivity anténny vplyvom absorpcie časti energie do tkanív ľudského tela. To ma za následok deformáciu vyžarovacej charakteristiky čo môže viest k chybám pri prenose dát. Na to aby anténna správne

fungovala v blízkosti lurského tela, musíme minimalizovať vyžarovanie smerom k telu tak, aby nedochádzalo k stratám energie a anténna zároveň splnila limity SAR (Specific Absorbation Rate). Hlavným sledovanými parametrami pri návrhu nositeľnej anténny sú jej pracovné frekvencie, šírka pásma a smer vyžarovania. Tieto vlastnosti úzko súvisia s tvarom a veľkosťou anténny. Anténna by nemala byť úzkopásmová, keď že pri nosení na oblečení dochádza k ohybu anténny, čo má za následok rozladenie jednotlivých rezonančných frekvencii a deformáciu vyžarovacej charakteristiky, čím anténna stráca svoje vlastnosti, poprípade môže byť pre nami požadovanú frekvenciu nepoužiteľná. Pri použití anténny na ľudskom tele je najvhodnejšia 180° smerová charakteristika, ktorá vyžaruje kolmo od roviny ľudského tela tak, že nedochádza k zbytočným stratám, taktiež je žiadúca, keďže nevieme, kde sa bude nachádzať prijímač. Avšak anténna so 180° stupňovou smerovou charakteristikou by mala veľmi malý zisk a preto je potrebne nájsť kompromis medzi smerovosťou a ziskom anténny. Musíme zohľadniť anatómiu ľudského tela vplyv tkaniva a mechanické deformácie štruktúry. Anténna by v ideálnom prípade počas nosenia nemala meniť svoje parametre, či už sa jedná o trvalé ohnutia ako napríklad pri uložení na ramene, kolene, alebo krátkodobej deformácii spôsobenej pohybom človeka. Dôležitým faktorom je výber materiálu, z ktorého bude anténna vyrobená. Bližšie bude táto problematika rozobraná v nasledujúcich podkapitolách.

1.3 Materiály a výroba

Na výrobu textilných antén sa používajú dve skupiny materiálov a to vodivé a nevodivé tkaniny[2]. Vlastnosti textilných antén sú dane hlavne použitými vláknami, vzduchovými medzerami medzi vláknami, taktiež aj nerovnosť ou povrchu textílie. Textil je flexibilný a stlačiteľný, takže jeho hrúbka a hustota sa môže po tlakom meniť, chovanie textilného substrátu, tiež zásadne ovplyvňuje vzdušná vlhkosť.

Vodivé textilne materiály obsahujú vlákna, ktoré boli pokovene najčastejšie zlatom, meďou, alebo hliníkom a pri výrobe tkaním sú použite spolu s nevodivými vláknami. Hlavným parametrom, ktorý nás bude zaujímať je permitivita zvyčajne je vyjadrená ako

$$\varepsilon_r: \varepsilon = \varepsilon_0 \varepsilon_r = \varepsilon_0 (\varepsilon_r' - j \varepsilon_r''), \tag{2.1}$$

kde $\mathcal{E}_0 = 8,854 \times 10^{-12}$ F/m označuje permitivitu vákua a \mathcal{E}_r relatívnu permitivitu. Vo všeobecnosti vlastnosti dielektrika závisia na teplote, drsnosti povrchu, vlhkosti, čistote a homogénnosti materiálu. Reálna časť permitivity $\mathcal{E}r'$ je nazývaná dielektrická konštanta, ktorá však nie je stála s frekvenciou. Pomer imaginárnej a reálnej zložky sa nazýva stratový uhol.

$$\tan\delta = \frac{\varepsilon_r''}{\varepsilon_r'} \tag{2.2}$$

Väčšina textílii ma nízku permitivitu, keďže sú to veľmi porézne materiály. Zvyčajne sa permitivita vodivých textílii pohybuje medzi $\mathcal{E}r = 1$ až $\mathcal{E}r = 2$ pre porovnanie permitivita bežne užívaných netextilných materiálov dosahuje od $\mathcal{E}r = 2,2$ do $\mathcal{E}r = 12$. Permitivita najpoužívanejších tkanín pri výrobe oblečenia je uvedená v tabuľke (viď Tab. 1.1) Výberom tkaniny s nižšou dielektrickou konštantou môžeme dosiahnuť zníženie strát pri povrchových vlnách, čo sa pozitívne prejaví na zisku antény. Keďže textílie majú úzke rozmedzie permitivity, je to hlavne hrúbka substrátu, ktorá ovplyvňuje rezonančne frekvencie a šírku pásma. Z uvedených zistení vyplýva, že vyber správneho substrátu je veľmi dôležitým faktorom pri výrobe anténny.

Nevodivé textílie	Er	Tano [rad]
Cordura	1,90	0,0098
Cotton	1,60	0,0400
100% Polyester	1,90	0,0045
Quartzel	1,95	0,0004
Lycra	1,50	0,0093

Tabuľka 1.1 Hodnoty permitivity a stratového činiteľa pre nevodivé textílie

1.4 Technológie výroby textílii

Vodivé materiály sú definované mernou vodivosťou σ v prípade vláken, alebo povrchovou rezistivitou R_S v prípade už utkaných textílií. Elektrickú vodivosť textilu dokážeme zabezpečiť niekoľkými spôsobmi:

- elektrotextilom
- elektricky vodivou farbou
- elektricky vodivou fóliou

Elektrotextil je vodivá tkanina vytvorená pomocou kovovo-polymérových vlákien v kombinácii s bežnými látkami, alebo pomocou samostatných vodivých vlákien. Tieto látky sú považované za vhodného kandidáta k integrácii na odev a elektronických aplikácii určených k použití na tele. Moderné elektrotextílie sú už mechanicky odolné a flexibilné, takže je ich možne prať. Existujú tri princípy vytvorenia vodivého vlákna:

- plnenie vlákien uhlíkom, kovom
- · nanesenie vrstvy vodivých polymérov, alebo kovov na vlákno
- použitie vlákien vyrobených z vodivých materiálov.

1.5 Minimalizácia hodnôt SAR a spätného vyžarovania

Ako už bolo spomenuté v predchádzajúcich kapitolách, hlavou prioritou pri návrhu antén použitých na ľudskom tele, poprípade v blízkosti stratových materiálov je minimalizovanie spätného vyžarovania antény. Keďže toto spätne vyžarovanie môže mať nepriaznivé následky na ožarované tkanivo, z dôvodu absorpcie energie a následného ohrevu tkanív. Povolene množstva absorbovanej energie na jednotku hmotnosti udáva takzvaný Specific Absorbtion Rate (SAR). Pre európsku úniu určuje maximálne hodnoty medzinárodná komisia pre ochranu pred neionizujúcim žiarením ICNIRP (International Comission on Non-ionizing Radiation Protection) a tá stanovila bezpečný limit 2 W/kg absorbovaného na 10g tkaniva. Taktiež sa môžeme stretnúť s hodnotou 1,6 W/kg absorbovaného na 1g tkaniva, tuto hodnotu stanovila Federálna komisia pre komunikácia FCC (Federal Communications Commission). Touto normou sa riadia najmä krajiny na Americkom kontinente. Hodnota SAR je daná vzorcom

$$SAR = \frac{\sigma E^2}{\rho} \left(\frac{W}{Kg}\right),\tag{2.3}$$

kde *E* označuje RMS hodnotu amplitúdy priloženého elektrického poľa (V/m), σ elektrickú vodivosť tkaniva (S/m) a ρ ,hustotu tkaniva (kg/m³). Vysoké hodnoty SAR zväčša vykazujú anténny, ktoré majú všesmerovú vyžarovaciu charakteristiku. Z tohto dôvodu je potrebne dosiahnuť vysoký pomer medzi predno-zadným vyžarovaním. Táto práca je zameraná na minimalizovanie spätného vyžarovania a minimalizáciu SAR, použitím rôznych typov odrazových povrchov. V kapitole 2 budú rozobraté antény s jednouchým rovinným reflektorom a v kapitole 3 budú antény doplnené o reflektor, ktorý patrí do takzvanej skupiny metamateriálov, ktoré sa ďalej delia na štruktúry ako Electromagnetic Band Gap (EBG), High Impedance Surface (HIS) a Artifiacial Magnetic Conductor (AMC).

2. NÁVRH DIPÓLOVÝCH ANTÉN

Pred zahájením návrhu antény, by sme mali zohľadniť niekoľko faktov. Anténa ktorú, použijeme by mala mať minimálnu možnú hrúbku, vďaka čomu sa uľahči následná integrácia do oblečenia. Minimalizovaním celkových rozmerov zaistime, že anténa pri nosení napríklad na ramenách, alebo ruke nebude namáhaná deformačným ohybom, nedôjde tak k zmene elektrickej dĺžky antény a anténa nebude náchylná na zmenu parametrov. Kapitola dva sa bude zaoberať návrhom dvoch štrbinových antén ktoré, svojimi vlastnosťami najviac vyhovujú danej aplikácii.

2.1 Návrh antén

V tejto kapitole budú navrhnute dve dipólové antény pre ISM pásmo (5,8 GHz). Tieto antény spadajú do skupiny štrbinových antén. Ich hlavnou výhodou je ich jednoduchá výroba, nízka cena a jednoduché prispôsobenie požadovaných parametrov. Obidve antény pozostávajú z dielektrickej vrstvy, ktorú tvorí textilná tkanina, ktorá je následne pokrytá vrstvou fólie o hrúbke 0,05 mm. Táto fólia ma zamedziť roztekaniu a presakovania medenej vrstvy, ktorá je nanášaná na povrch antény metódou sieťotlače. Bez tejto fólie by počas sieťotlače medená vrstva zatiekla do jednotlivých pórov textílie, čo by následne mohlo ovplyvniť správnu funkčnosť antény.

Trojuholníková dipólová anténa bola inšpirovaná prácou [4]. Úpravou štrbiny do zjednodušeného tvaru symetrického trojuholníka. Celkove rozmery boli upravené tak, aby rezonančná frekvencia mala svoje minimum na 5,8 GHz. Jedná sa o pomerne používaný typ antény symetrického trojuholníka zobrazeného (viď Obr. 2.1). 2,59 mm hrubý substrát o rozmeroch 49,9 x 30 mm je vyrobený z textilnej pleteniny s názvom 3D097 o relatívnej permitivite $\varepsilon_r = 1,22$ a stratovom uhle $tan\delta = 0,002$. Na ňom je umiestnená fólia a následne kovová vrstva. Spodná časť substrátu je pokovená, a tvorí rovinnú doskou spojenú s referenčnou zemou. Napájanie zabezpečuje koaxiálny konektor typu SMA.

Obrázok 2.1 Trojuholníkový dipól

Tabuľka 2.1 Rozmery Dipólovej trojuholníkovej antény

Rozmer	FI	Fm	Tw	Th	W	F	L	G
Hodnota								
[mm]	15	13,8	16,8	23,2	30	1	49,9	1,7

2.2 Meandrovitý dipól

Druhou uvažovanou anténou je meandrovitý dipól, ktorý patrí medzi najjednoduchšie antény. Dipól na obrázku (viď Obr. 2.2) je navrhnutý pre použitie na frekvencii 5,8 GHz, jeho rozmery sa dajú jednoducho odvodiť z jeho názvu polvlny dipól, kde dĺžka obidvoch ramien by mala dosahovať $\lambda/2$. Pri frekvencii 5,8 GHz dosahuje dĺžka jedného ramena 12,3 mm a celková dĺžka antény je 30 mm.

Tabuľka 2.2 Rozmery polvlnného dipólu

Obrázok 2.2 Dipól s rovnými ramenami

Jeho hlavným problémom je, že pri bežnom nosení na oblečení sa textilný substrát spolu s dlhými ramenami polvlnného dipólu ohýba, čim dochádza k jeho rozladeniu. Jednouchý dipól vyžaruje všesmerovo a veľká časť energie je tak pohlcovaná tkanivom a následne premenená na teplo, čim klesá celková účinnosť antény.

Jedným z riešení je poohýbať ramena dipólu do meandrovitého tvaru, čim zabezpečíme väčšiu robustnosť antény a menšiu náchylnosť na rozladenie. Doplnením antény o rovinný reflektor dosiahneme väčší pomer medzi predo-zadným vyžarovaním. Meandrovitá anténa navrhnutá v tvare motýlika na obrázku (viď. Obr. 2.3), pri rozmeroch 40 mm je oproti dipólu s rovnými ramenami o dĺžke 30 mm širšia. Čo predstavuje nárast veľkosti o 25 %. Pre používateľa je nárast rozmeru zanedbateľným

parametrom, ktorý nespôsobuje zhoršenie nositeľnosti. Rozmer antény je stále natoľko malý. že nedochádza skoro k žiadnemu ohybu pri umiestnení na tele, ohyb antény na končatinách je tiež minimálny, keďže priemerný polomer hornej končatiny v oblasti bicepsu u muža je 70 mm. Napájanie je zabezpečene pomocou koaxiálneho konektoru ktorý napája CPW vedenie. Vzhľadom na malé rozmery oboch antén sa SMA konektor javí ako najlepšia voľba pri napájaní antény, kvôli jeho malej veľkosti, ľahkej dostupnosti niekoľkých variant konektoru.

Tabuľka 2.3 Rozmery motýlikovho meandrovitého dipólu

Obrázok 2.3 Meandrovitá motýlikova dipólová anténa

2.3 Porovnanie výsledkov dipólových antén na fantóme ľudského tela

Pre analýzu parametrov antén v blízkosti ľudského tela pre "ON-body" komunikáciu je použitý model štvorvrstvého fantómu zloženého z kože, tuku, svalstva a kosti. Jedna sa o rovinný model o rozmere 20x20 cm, pričom jednotlivé antény sú umiestnene vždy uprostred. Vplyv cylindrického ohybu na anténny pri umiestnení na končatinách tela bude podrobnejšie rozobratý v kapitole 4. Elektrické vlastnosti rozličných tkanív ľudského tela sa zasadne líšia v závislosti na ich type. Vlastnosti sa taktiež menia v širokom rozsahu

v závislosti od použitej frekvencie. Niekoľko výskumov realizovaných na túto tému [3] preukázalo na rôznych typoch tkanív vo frekvenčnom rozsahu 500 MHz až 10 GHz, že končatiny majú vyššie hodnoty relatívnej permitivity a vodivosti, ako zvyšne časti tela, navyše sa ich dielektrické vlastnosti menia aj v závislosti od veku. Použitý model zobrazený na obrázku (viď. Obr. 2.4) vychádza z najčastejšie používaných hodnôt pre elektromagnetické simulácie (viď. Tab. 2.4).

Typ Tkaniva	permitivita	Vodivosť [S/m]
Koža	35,11	3,717
Tuk	4,954	0,293
Svalstvo	48,48	4,961
Kosť	9,674	1,155

Tabuľka 2.4 Vlastnosti ľudských tkanív pri frekvencii 5,8 GHz

Obrázok 2.4 Štvorvrstvový fantóm ľudského tela

Obidve antény popísané vyššie sú analyzované v programe HFSS/CST a vzájomne porovnane vo vákuu, kde dosahujú svoje ideálne vlastnosti. Činiteľ odrazu S11 je uvedený v grafe (viď. Obr. 2.5). Po zvyšok tejto kapitoly bude meandrovitá motýlikova dipólová anténa nazývaná ako "Meander" a trojuholníková dipólová anténa ako "Triangle".

V prostredí vákua majú Meander aj Triangle rezonančný kmitočet na 5,8 GHz, pre ktorý boli antény navrhnute. Šírka pásma dosahuje 3,82 % a 3,75 %. Z dôvodu malej šírky pásma sú štrbinové antény veľmi náchylne na rozladenie pri zmene vonkajších parametrov, napríklad zmena permitivity, vodivosti pri umiestnení na rôzne časti tela. Po umiestnení antén nad model fantómu došlo k posunu rezonančných frekvencii o 100 až 150 MHz a šírka pásma poklesla približne 1 %, čo dokazuje graf (viď. Obr. 2.5). Kvôli

posunu rezonančných frekvencii dosahuje činiteľ odrazu na frekvencii 5,8 GHz úrovne len okolo -10 dB. Táto hodnota je na hranici prípustnosti pre správne prispôsobenú anténu, keďže koeficient VSWR začína presahovať hodnotu 2. Tieto nechcene vlastnosti nedokážeme úplne eliminovať pomocou úpravy tvaru a rozmerov antény, pretože nedokážeme zabezpečiť homogenitu prostredia a jej správnu funkčnosť a spoľahlivosť v rôznorodom prostredí. V oblasti nositeľnej elektroniky sa v dnešnej dobe uprednostňuje použitie antén, ktoré využívajú na odizolovanie elektromagnetických vĺn od ľudského tela, buď aktívny, alebo pasívny reflektor vytvorený na základe metamateriálov, čomu sa ďalej bude venovať kapitola č. 3.

Obrázok 2.5 Činiteľ odrazu pre antény s a bez fantómu

Anténny boli navrhnute tak, aby ich vyžarovacie charakteristiky boli všesmerové v H rovine. Z obrázku (viď. Obr. 2.7 a Obr. 2.8) môžeme vidieť, že anténa Triangle dosahuje maximálneho zisku o hodnote 9,98 dBi a anténa Meander 3,17 dBi na frekvencii 5,8 GHz. Ako však vidieť z obrázku (viď. Obr. 2.7 a Obr. 2.8) anténa Meander dosahuje nízkej smerovosti a vyžaruje veľkú časť smerom k telu, čo je v tomto prípade nežiaduci efekt. Za účelom zvýšenia smerovosti bola anténa Meander upravená tak, že zemniaca doska bola roztiahnutá na dvojnásobok svojho pôvodného rozmeru (viď. Obr. 2.6) táto anténa je v grafe uvádzaná ako "Meander_GP".

Obrázok 2.6 Meander_GP s rozšírenou zemniacou doskou

Na vyhotovenie zemniacej dosky je možne použiť medenú fóliu. Zväčšením rozmerov antény došlo k značnému zlepšeniu pomeru predo-zadného vyžarovania a maximálny zisk antény narástol na 8,89 dBi, čo prestavuje nárast 5,72 dB. Zadný lalok bol taktiež utlmený o takmer 15 dB. Zväčšením rozmerov zemniacekj dosky, anténa získala na robustnosti. Celkove rozmery tak narástli na 80x40 mm, preto by bola anténa najvhodnejšia pre umiestnenie na ploche časti tela, ako napríklad hrudník, chrbát alebo stehná. Pri umiestnení na hornú končatinu by anténa vyžadovala menší polomer ohybu, čo by mohlo negatívne ovplyvniť jej vlastnosti.

Obrázok 2.7 Vyžarovací diagram antén v E-rovine, pohľad z boku

Grafy (viď. Obr. 2.9 a Obr. 2.10) zobrazujú smerové charakteristiky v E rovine pre anténu Triangle a Meander_GP, ktoré sú uložene na fantóme rovnakom ako v (viď. Obr. 2.4). Obidve antény dosahujú zisku približne 11 dBi, čo je v súlade s požiadavkami pre tento typ antény. Spätné vyžarovanie je výrazne potlačene o viac ako 20 dB a anténa vyžaruje požadovaný smerom v rovine ľudského tela.

Obrázok 2.10 Vyžarovací diagram antén s fantómom v E-rovine pohľad spredu

3. NÁVRH ANTÉNY S AMC REFLEKTOROM

V posledných rokoch sa rozšírila potreba použitia antén na ľudskom tele. Patch anténa napájaná koplanarnym CPW vedením patrí medzi najznámejšie a najpoužívanejšie antény vďaka jej jednoduchej konštrukcii a jednoduchosti výroby. Naviac "CPW Patch" anténa sa da l'ahko uspôsobiť pre použitie vo viacerých frekvenčných pásmach. Medzi jej hlavne nevýhody patrí jej úzkopásmovosť. Avšak anténa vyrobená konvenčným spôsobom, kde je na vrstvu substrátu vyleptaný vyžarovací element, je energia vyžarovaná obojsmerne. Preto tento typ antény dosahuje nízky zisk 2 - 4 dBi. To častokrát nesplňuje stanove požiadavky na vysoký zisk u antén použitých na komunikáciu po ľudskom tele. Z týchto poznatkov vyplynula požiadavka na usmernenie žiarenia požadovaným smerom. Typickým riešením je použitie reflektoru (viď. Obr. 3.1) s elektricky vodivým povrchom vo vzdialenosti minimálne štvrtiny vlnovej dĺžky pod anténnou, kde sa fáza vlny vyslanej smerom k reflektoru zmení o 90° následným odrazom od reflektoru sa zmení o ďalších 180°, pri opätovnom návrate vlny k anténne sa fáza zmení o dodatočných 90°. Následkom čoho dochádza k nedeštruktívnej interferencii priamej a odrazenej vlny, čo ma pozitívny vplyv na celkový zisk antény a minimalizáciu spätného vyžarovania. Pri frekvenciách 2,4 GHz dosahuje táto vzdialenosť medzi reflektorom a anténou približne 3 cm a na frekvencii 5,8 GHz je táto hodnota stále väčšia, ako jeden centimeter, čo nesplňuje jeden z hlavných požiadaviek a to nízkoprofilovosť navrhnutej antény.

Obrázok 3.1 Umiestnenie antény nad reflektor do vzdialenosti $\lambda/4$ [9]

Vylepšenie vlastnosti môžeme dosiahnuť pomocou reflektorov, ktoré spadajú do kategórie metamaterialov a v súčasnosti naberajú na popularite. Metamaterialy sú navrhnute tak, aby limitovali vlastnosti, ktoré sa bežne nevyskytujú. Tieto nové materiály vďaka svojim unikátnym elektromagnetickým vlastnostiam dokážu minimalizovať spätne vyžarovanie, vylepšiť zisk, zabezpečiť väčšiu použiteľnú šírku pásma a v neposlednom rade zmenšiť rozmery antény. Metamaterialy sa delia do niekoľkých skupín na základe svojich špecifických vlastnosti.Patria sem napríklad AMC (Artificial Magnetic Conductor), HIS (High Impedance Surface) a FSS (Frequency Selective Surface).

FSS metamateriál umožňuje prechod signálu v určitom frekvenčnom pasme a blokuje signál mimo zvoleného pásma

HIS metamateriály vykazujú veľkú permeabilitu a nízku permitivitu na rezonančnej frekvencii, čim dosahujú vysokú impedanciu a tým dochádza na ich povrchu k veľkým stratám a premene energie na teplo

AMC povrchy sú podobne ako HIS s rozdielom, že na ich povrchu dochádza k sufázovému odrazu signálu.

Táto kapitola je zameraná na návrh antén s použitím reflektoru, zhotoveného z umelého magnetického vodiča (Artificial magnetic conductor). Jeho hlavnú výhodu môžeme pozorovať na obrázku (viď. Obr. 3.2). Na rozdiel o klasického reflektoru, kde je anténa umiestnená do vzdialenosti minimálne $\lambda/4$, pri použití AMC reflektoru môžeme anténu umiestniť do vzdialenosti ďaleko menšej ako je vlnová dĺžka vo voľnom priestore. AMC reflektor v určitom frekvenčnom rozsahu, pre ktorý je navrhnutý, odráža dopadajúcu vlnu s nulovou zmenou fázy. Pri správne navrhnutom AMC reflektore je možne anténu umiestniť priamo na neho a tak minimalizovať celkovú hrúbku antény.

Obrázok 3.2 Umiestnenie antény nad AMC reflektor do vzdialenosti oveľa menšej ako λ [9]

3.1 Návrh AMC buniek

Tato podkapitola sa zaoberá návrhom dvoch AMC buniek, z ktorých následne bude vytvorený reflektor ,ako podklad pod monopolové antény z podkapitoly **3.2**.

Prvým realizovaným typom AMC bunky je AMC Square (viď. Obr. 3.4) s jednoduchým tvarom štvorca, druhá bunka predstavuje krížovú štruktúru AMC Cross (viď. Obr. 3.4), ktorá bola prevzatá z [2] a následne upravená pre potreby tejto práce.

Hlavnou výhodou štvorcovej bunky je jej jednoduchá prispôsobiteľnosť na požadovanú frekvenciu. Zmenou šírky medzery medzi jednotlivými bunkami ovplyvníme kapacitné väzby, ktoré majú za následok zmenu pracovného kmitočtu. Štvorcovú bunku v prípade potreby dokážeme jednoducho uspôsobiť pridaním ďalšieho štvorcového výrezu pre prácu na viacerých kmitočtoch. Nevýhodou je, že správne fungovanie AMC je závisle na stabilnej medzere medzi jednotlivými bunkami. Pri ohybe štruktúry môže dôjsť k zmene šírky medzery, v najhoršom prípade až k dotyku jednotlivých štvorcových elementov, čo má za následok pokles účinnosti celej štruktúry. Naopak u krížovej bunky vzájomný dotyk nehrozí, keďže bunky sú už vzájomne prepojené. Od tejto štruktúry taktiež očakávame väčšiu šírku pracovného pásma. Nevýhodou je, že optimalizácia je časovo náročnejšia, keďže obsahuje množstvo parametrov, ktoré sa môžu navzájom ovplyvňovať.

Obrázok 3.3 Činiteľ odrazu AMC bunky

AMC štruktúra ma nulovú fázu odrazu na 5,8 GHz, ako je ukázane v Grafe (viď. Obr. 3.3), kde sa fáza mení od +180° do -180°. Použiteľne pásmo jednotlivých AMC je dané zmenou fázy z 90° na -90°. Pre štvorcovú bunku (Square) dosahuje použiteľná šírka pásma 1,81 GHz a krížovú bunku (Cross) 0,65 GHz, čo predstavuje 30,8 % a 11,16 %. Krížová bunka dosahujem menšej šírky pásma ako bolo očakávane. U štvorcovej bunky dosahuje šírka pásma skoro 2 GHz ,čo necháva dostačujúci priestor pri následnom návrhu a optimalizácii použitej antény. Z toho dôvodu bola tato štruktúra zvolená aj pre výrobu prototypu antény.

Tabuľka 3.1 Tabuľka rozmerov pre jednu bunku AMC Square a AMC Cross

Rozmer	G	Р	W	Sw	Gl	L	Wp	Ws
Hodnota [mm]	1,07	1,27	16,63	6,07	4,3	0,54	17,6	20,6

Obrázok 3.4 Detail jednej bunky AMC Square vľavo a AMC Cross vpravo

AMC štruktúra je vysoko impedančný povrch, ktorý môžeme zjednodušene charakterizovať ako obvod na prázdno, kvôli jeho vysokej impedancii na rezonančnej frekvencii. Vďaka vysokej impedancii odráža dopadajúce vlny bez zmeny fázy a zároveň nepodporuje šírenie povrchovej vlny. Prudký nárast povrchovej impedancie môžeme sledovať v grafe (viď. Obr. 3.5).

Obrázok 3.5 Normovaná impedancie na povrchu AMC pri rezonančnej frekvencii

3.2 Monopólové antény s AMC

Na tému flexibilných textilných antén už bolo publikovanej množstvo literatúry, kde je popisovaných niekoľko druhov rôznych typov antén.

Táto kapitola bude porovnávať dve antény s použitím dvoch rozličných AMC reflektorov pre nositeľné aplikácie v pasme ISM 5,8 GHz. Prvou skúmanou anténou je jednoduchá trojuholníková monopólová anténa, ktorá bola inšpirovaná prácou [2]. Druhou anténou je meandrovitý monopol, ktorý tvorí polovicu dipólovej antény z kapitoly 2. Obidve antény (viď. Obr. 3.6) spadajú do skupiny monopólových antén, keď že majú len jedno rameno. Obe antény sa skladajú z koplanárneho CPW vedenia, ktoré napája hlavný vyžarovací element trojuholník respektíve meander. Anténny majú veľmi jednoduchú konštrukciu z textilného substrátu 3D097. Na substráte je následne umiestnený vyžarovací element, doplnený o postranne zemniace plochy. Pokovenie spodnej strany antén v tomto prípade nie je nutné, keďže neskôr budú antény na spodnej strane doplnene o AMC reflektor. Jednotlivé AMC bunky, ktoré boli optimalizovane pre použitú frekvenciu v prechádzajúcej podkapitole, sú následne spojené do mriežkovej sústavy, čim vytvoria rovinný reflektor, ktorý je možne umiestniť pod monopólové antény. Potrebný rozmer reflektoru je možne upraviť pridávaním, alebo odoberaním jednotlivých radov respektíve sťlpcov buniek. Užitím menšieho reflektoru získame anténu o menších celkových rozmeroch, avšak niektoré parametre antény sa môžu meniť. Výsledná veľkosť reflektoru závisí na konkrétnom použití a umiestnení antény. Dizajnér musí nájsť kompromis medzi rozmermi a a požadovanými vlastnosť ami.

Tabuľka	3.2	Rozmery	meandrovitého	monopolu
---------	-----	---------	---------------	----------

Rozmer	L	W	Gl	G	F	Mg	М	Gw
Hodnota [mm]	29	17,4	8	0,1	1	1,6	1,4	7,6

Tabuľka 3.3 Rozmery trojuholníkového monopolu

Rozmer	W	Wp	Lp	L	Gl	Gw	G	F
Hodnota [mm]	34	32	24	36,6	10,6	15,7	0,6	1,4

Obrázok 3.6 Monopolová trojuholníková anténa vľavo,

Meandrovitá monopólová anténa vpravo

Navrhnutá trojuholníková anténa s plochou 12,44 cm² pokrýva viac než dvojnásobnú plochu v porovnaní s meandrovitou anténnou o rozmere 5,04 cm². Napriek svojim menším rozmerom nie je meandrovitá anténa najvhodnejším kandidátom pre flexibilnú textilnú anténu. Meandrovitý monopol je náchylnejší na rozladenie parametrov, keďže rezonančná frekvencia je závislá na fixnom zachovaní medzier medzi jednotlivými ramenami meandru. U trojuholníkovej antény tento problém nie je tak výrazný, keďže je vyžarovací element tvorený uceleným trojuholníkom, pri ohybe nedochádza k zmene šírky medzier ako u meandru.

Obrázok 3.7 Umiestnenie antén na AMC reflektor pri použití krížového vzoru (vľavo), štvorcového tvaru (vpravo)

Nasledujúci text poskytne prehlaď o vlastnostiach jednotlivých antén v závislosti na type použitého reflektoru a rôzneho umiestnenia antén. Pri použití krížovej AMC bunky boli antény umiestnene uprostred spodného okraja reflektoru, kde dosahovali antény najlepších parametrov. Toto umiestnenie umožňuje použitie viacerých typov SMA a N konektorov, keďže nedochádza k vzájomnej kolízii konektoru a reflektoru, ako je to pri umiestnení antény uprostred (viď. Obr. 3.7). Umiestnením antény v strede reflektoru dosiahneme lepší rozptyl signálu v rovine antény. Čo však limituje použiteľnosť niektorých konektorov. Je možné použiť len nízko profilové konektory radu SMA, tak aby nedochádzalo ku kontaktu medzi konektorom a reflektora. Ďalším riešením je použitie vymedzovacej penovej podložky vloženej medzi reflektor a anténu. Použitím penovej podložky anténa však naberie na hrúbke.

Činiteľ odrazu S11 navrhnutých antén s použitím reflektoru aj bez použitia reflektoru zobrazujú grafy nižšie. Antény sú simulované na modeli fantómu o rovnakých rozmeroch a dielektrických vlastnostiach, ako bol použitý v kapitole 2. Monopólová trojuholníková anténa v grafe (viď. Obr. 3.8) pomenovaná ako "triangle" zobrazuje činiteľ odrazu antény v prítomnosti vodivého ľudského modelu. Výsledkom je, že u antény, ktorá je vo vákuu vyladená na rezonančnú frekvenciu 5,8 GHz došlo k posunu tejto rezonančnej frekvencie o 350 MHz. Naopak pri použití antény s reflektorom označeným ako typ "Crooss" a "Square" u anténny nedošlo k tak výraznému posunu rezonančných frekvencii. Pri použití AMC bunky typu "Square" došlo k posunu rezonančnej frekvencie o 300 MHz. Šírka použiteľného pásma dosahuje 630 MHz. Pri použití AMC typu "Cross" nedošlo k posunu rezonančnej frekvencie, šírka pásma je 570 MHz. Pri použití obidvoch reflektorov anténa dosahuje stále viac ako -10 dB, čo postačuje pre pokrytie celého ISM pásma (5,725 - 5,875 GHz). Môžeme z toho usúdiť, že použitím AMC reflektoru "Square" môžeme minimalizovať vplyv ľudského tela na vlastnosti antény.

Obrázok 3.8 Činiteľ odrazu pre trojuholníkovú monopólovú anténu s použitím AMC reflektorov

Obrázok 3.9 Činiteľ odrazu pre meandrovitú monopólovú anténu s použitím AMC reflektorov

Z grafu činiteľa odrazu S11 pre meandrovitú anténu (viď. Obr. 3.9) môžeme vidieť, že anténa v bezstratovom prostredí vákua rezonuje na frekvencii 5,8 GHz, avšak pri použití oboch typov reflektorov došlo k impedančnému rozladeniu antény. Simuláciou sme zistili, že meandrovitá anténa nie je vhodná pre použitie s navrhnutými AMC

reflektormi, jej d'alšie odladenie by vyžadovalo nadmerne úsilie a čas, čo by nemuselo priniesť požadovaný efekt. Z tohto dôvodu sa práca nebude touto anténou d'alej zaoberať.

Trojuholníková anténa vykazuje perspektívne lepšie parametre. A preto sa tejto anténne budeme ďalej venovať v nasledujúcich kapitolách.

Obrázok 3.10 Vyžarovací diagram antén v E-rovine

Grafy (viď. Obr. 3.10 Obr. 3.11) zobrazujú smerové charakteristiky v E a H rovine. Trojuholníková anténa "Triangle" a anténa s použitím krížového reflektoru "Cross" vykazujú v E rovine kvázihemisferické vyžarovanie Pri použití štvorcového reflektoru "Square" sme dosiahli väčší pomer predo-zadného vyžarovania, čo má za následok nárast zisku antény v požadovanom smere. To znamená minimalizáciu hodnoty SAR a anténa sa tak stáva robustnejšou a menej citlivou na prítomnosť ľudského tela. Simulované hodnoty taktiež ukazujú nárast zisku na hodnotu 6,77 dBi pre trojuholníkovú anténu s krížovým reflektorom a 9,52 dBi pre anténu so štvorcovým reflektorom, čo predstavuje nárast o 6,2 dB pri použití iba trojuholníkového monopolu. Anténny s reflektorom vykazujú v rovine H všesmerové vyžarovanie (viď. Obr. 3.11), ktoré je požadované u antén použitých pre ON-body komunikáciu.

Obrázok 3.11 Vyžarovací diagram antén v H-rovine

4. VPLYV OHYBU NA ANTÉNU A VÝPOČET SAR

4.1 Chovanie antény pri ohybe

Pri nosení textilnej antény na tele je očakávane od antén, že sa nosením čiastočne zdeformuje, aby sa tak prispôsobila kontúram ľudského tela. Predpokladá sa, že anténa bude umiestnená na horných, dolných končatinách, kde sa očakáva, že vplyvom výraznejšieho ohybu dôjde k zhoršeniu vlastnosti antény. Umiestnenie na hrudníku a chrbtovej časti, nevyžaduje tak výrazný ohyb, ako u končatín, preto očakávame, že vlastnosti antény sa výrazne nezmenia. Pre správne fungovanie antény by nemalo dôjsť k zmenám kľúčových parametrov a to najmä pokrytej šírky pásma pod úrovňou < -10 dB. Pre nasledovné simulácie boli zvolené dve antény, ktoré dosahovali najlepšie výsledky popísane v predchádzajúcich kapitolách. Prvou anténou je dipólová trojuholníková anténa z kapitoly č.2 (viď Obr. 2.1). Ďalšou porovnávanou anténou bude trojuholníková anténa so štvorcovým AMC reflektorom (viď Obr. 3.7 vpravo), ktorá doposiaľ vykazovala najlepšie parametre požadovaných hodnôt. Antény boli cylindricky ohnuté v osi z, vo voľnom priestore, čim bol simulovaný (viď. Obr. 4.1) ohyb pri deformácii na rôznych častiach tela. Boli zvolene rôzne polomery ohybu od 60 do 140 mm, čo simuluje ohyb okolo hornej a dolnej končatiny. Pri polomere ohybe 120 a viac milimetrov je simulovane umiestnenie na hrudník a chrbát.

Obrázok 4.1 Cylindricky ohnuté antény s polomerom ohybu 80 mm

Dipólová trojuholníková anténa bola ohnutá okolo cylindra s polomerom 80 mm, čo predstavuje uloženie antény na biceps. Ako vidieť z grafu (viď Obr. 4.2), kde čiarkovaná hodnota znázorňuje priebeh činiteľa odrazu u dipólovej antény, nedošlo k posunu rezonančnej frekvencie. Avšak S11 poklesol na -13 dB. Pri väčších ohyboch anténa nie je znázornená v grafe, keďže pre jej malé rozmery by došlo len k zanedbateľnému ohybu a kvôli tomu nedôjde k zhoršeniu parametrov. Trojuholníková anténa so štvorcovým AMC reflektorom si zachováva šírku pásma < -10 dB pri všetkých simulovaných ohyboch. K zásadnému rozladeniu dochádza až pri ohybe s polomerom o 60 mm.

Obrázok 4.2 Činiteľ odrazu S11pre rôzny polomer ohybu antén

Obrázok 4.3 Porovnanie smerových charakteristík antén pri ohybe a bez ohybu v E-rovine

Smerové charakteristiky v E a H rovine zobrazené v grafoch (viď Obr. 4.3 a Obr. 4.4) porovnávajú vyžarovanie antén pri ohybe s polomerom 80 a 100 mm. Taktiež je v grafe zobrazená charakteristika antény bez ohnutia. Polomer ohybu zásadne neovplyvňuje funkčnosť antény pokiaľ sa neprekročí kriticky polomer ohybu <80 mm . Maximálna hodnota zisku pri oboch ohyboch je 7,9 dBi respektíve 7,92 dBi, čo predstavuje pokles len o 0,6 dB v porovnaní s anténou bez ohybu.

Obrázok 4.4 Porovnanie smerových charakteristík antén pri ohybe a bez ohybu v H-rovine

4.2 Meranie hodnoty SAR

Nositeľne textilne antény, navrhnuté pre telovú komunikáciu pracujú v blízkosti ľudského tela a tak musia splňovať SAR limity, stanovene rôznymi inštitúciami. Skratka SAR (Specific Absorption Rate) vyjadruje špecifickú mieru absorpcie, čo je merná jednotka množstva rádiových vĺn, vstrebaných ľudským telom, v prípade vystavenia elektromagnetickému žiareniu. Na overenie vyžarovania antén bol vyhotovený rovinný model, ktorý predstavuje použitie na hrudníku. Pre simuláciu bol požitý model v programe CST, pozostávajúci zo štvorvrstvého modelu (koža, tuk, svalstvo, kosť). SAR bolo vypočítane pomocou priemerovacej metódy IEEE/IEC 62704-1 v CST, kde bola priemerovaná na kubicky objem o hmotnosti 10 g. V európskej únii stanovuje bezpečné limity SAR Medzinárodná komisia pre ochranu pred neionizujúcim žiarením (ICNIRP). Bezpečný limit je stanovený na 2W/kg, ak sa jedna o lokálnu expozíciu voči elektromagnetickému poľu. Na overenie účinnosti AMC reflektoru boli simulované dva modely antén. V prvom prípade bola simulovaná samostatná monopolová anténa, pod ktorú bol umiestnený do vzdialenosti 1 mm 4 vrstvový model ľudského tela. V druhom prípade bol medzi anténu a model ľudského tela umiestnený AMC reflektor, ktorý by mal minimalizovať energiu absorbovanú tkanivom. Z obrázku (viď Obr. 4.3) môžeme vidieť, že pri použití antény bez reflektoru, dosahuje hodnota SAR 4,43 W/kg, čo je viac než dvojnásobná hodnota, ktorú povoľuje norma. Použitím reflektoru je docielená minimalizácia hodnoty SAR, ktorá v tomto prípade dosahuje len 0,0046 W/kg. Z toho vyplýva, že reflektor mal značný vplyv na minimalizáciu absorbovaného elektromagnetického žiarenia.

Obrázok 4.5 Porovnanie hodnôt SAR pri použití AMC reflektoru (hore) a bez (dolu)

5. VÝROBA A MERANIE PROTOTYPOV ANTÉN

Po prepočtoch a simuláciách v predchádzajúcich kapitolách boli zvolene na výrobu prototypov dve antény. Pri výbere antén muselo byt zohľadnených niekoľko faktorov. Hlavným limitujúcim faktorom pri výrobe je dosiahnuteľná presnosť pri výrobe. Na ústave rádioelektroniky je možne pracovať z najväčšou presnosť ou na desatinu milimetra, čo nesplňuje hneď niekoľko antén popísaných v predošlých kapitolách. Pre samotnú výrobu je doležíte, aby zvolená anténa spĺňala nasledujúce podmienky:

- jednoduchý tvar antény a AMC reflektoru
- dostupnosť materiálov pri voľbe substrátu
- maximálny realizovateľný rozmer a požadovanú presnosť

Anténa, ktorá najlepšie splňovala tieto podmienky je, monopólová trojuholníková anténa so štvorcovým AMC reflektorom. Jednoduchý geometricky tvar štvorcového reflektoru znižuje náročnosť a čas potrebný na výrobu. Na overenie vplyvu nepresnosti na výrobu bola ako druha do výroby zvolená meandrovitá anténa s pokovenou spodnou stranou. Táto anténa obsahuje väčšie množstvo jemných detailov, kde pri nedodŕžaní vysokej presnosti hrozí rozladenie antény.

Pôvodným plánom bolo vyhotoviť všetky antény technikou sieť otlače na textilný substrát. Pre výrobu bola zvolená textilná pletenina 3D097 o permitivite $\varepsilon_r = 1,22$ a strátovom uhle tan $\delta = 0,002$. Na vrstvu textilného substrátu s hrúbkou 2,59 mm je nanesená vrstva fólie o hrúbke 0,05 mm. Vrstva fólie ma za úlohu zabrániť presakovaniu následne nanesenej medenej vrstvy do jednotlivých pórov textílie. Touto metódu je možné dosiahnuť vysokú presnosť, avšak táto metóda je časovo náročnejšia. Druhou možnosť ou je na textilný substrát ručne nalepiť vopred vyleptane medené elementy jednotlivých antén. Táto technika značne šetri čas, avšak nie je vhodná pri výrobe antén, ktoré požadujú vysokú presnosť. Z tohto dôvodu bol doliahnutý kompromis, kde antény boli vyrobené technikou sieť otlače. A rozmerný AMC reflektor pozostávajúci z buniek o počte 7 x 7 buniek. Ručným lepením jednotlivých buniek je presnosť výroby obmedzená, avšak vďaka robustnému návrhu AMC reflektoru sa dosiahlo uspokojivého výsledku, ktorého by nebolo možne dosiahnuť pri použití krížovej a AMC bunky. Vyrobená meandrovitá anténa je zobrazená na obrázku (viď Obr. 5.1). Výslednú monopólovú anténu s reflektorom môžeme vidieť na obrázku (viď Obr. 5.2).

Obrázok 5.1 Vyrobená meandrovitá dipólová anténa technikou sieť otlače

Obrázok 5.2 Vyrobená meandrovitá dipólová anténa s štvorcovým AMC reflektorom

5.1 Vyhodnotenie nameraných hodnôt vyrobených antén

Obrázok 5.3 Porovnanie meraného a simulovaného činiteľ a odrazu meandrovitej dipólovej antény

Jednotlivé antény boli po vyrobení zmerané v bezobrazovej komore pomocú vektorového obvodového analyzátoru R&S ZVL. Graf (viď Obr. 5.3) porovnáva nameranú a simulovanú hodnotu činiteľa odrazu pre meandrovitú anténu s jednoduchým zemným reflektorom. Ako bolo očakávane vplyvom zložitého tvaru a limitu presnosti pri výrobe došlo k rozladeniu antény. V grafe (viď Obr. 5.3) môžeme vidieť, že prvá rezonančná frekvencia bola posunutá na hodnotu 5,45 GHz. Na tomto minime činiteľ odrazu nedosahuje hodnoty -10 dB, čo značí nesprávne prispôsobenie antény. Anténa by mohla byť použitá na frekvencii 7,35 GHz, vďaka vzniku druhého rezonančného minima. Pri meraní smerových charakteristík v mieste prvého rezonančného minima, meraný zisk nepresahoval ani referenčnú hodnotu, z tohto dôvodu nie sú uvedene hodnoty zisku pre túto anténu.

Obrázok 5.4 Porovnanie meraného a simulovaného činiteľa odrazu trojuholníkovej monopolovej antény s štvorcovým AMC reflektorom

Navrhnutá trojuholníková AMC anténa dosahuje uspokojivých výsledkov, keď že pri meraní vyrobenej antény nedošlo k posunu rezonančnej frekvencie. Nameraná hodnota činiteľ a odrazu dosahuje -20 dB (viď Obr. 5.4). Šírka pásma vyrobenej antény dosahuje 1,07 GHz v porovnaní so simulovanou anténou, kde šírka pásma dosahuje 1,17 GHz. V oboch prípadoch je pokryté cele ISM pásmo 5,8 GHz

 Tabuľka
 5.1
 Porovnanie nameraných a simulovaných hodnôt zisku trojuholníkovej AMC antény

Frekvencia [GHz]	5	5,45	5,8
Zisk simulovane [dBi]	7,87	9,8	9,65
Zisk namerané [dBi]	8,7	7,3	5

Smerové charakteristiky boli zmerane na troch rôznych frekvenciách, ktoré boli zvolené na základe predchádzajúceho merania činiteľa odrazu, tak aby spadali do oblasti S11 < -10 dB. Meranie bolo uskutočnene v 2 dvoch rovinách kolmých na rovinu antény. Bezobrazová komora neumožňuje zmerať celú 360° stupňovú charakteristiku, z toho dôvodu bola anténa zmeraná pri rozsahu (SPAN) 240°. Graf (viď Obr. 5.5) zobrazuje smerovú charakteristiku trojuholníkovej AMC antény v rovine konektoru. Chyba spôsobená na strane meracieho pristroja zapríčinila, že charakteristika (viď Obr. 5.5) neobsahuje hodnoty v rozpätí 60° až 120°. Nasledujúci graf (viď Obr. 5.6) reprezentuje smerovú charakteristiku v rovinne kolmej na konektor. Porovnaním výsledných hodnôt zisku uvedených v tabuľke (viď Tab. 5.1), sme zistili, že meraná anténa vykazuje najväčšiu hodnotu zisku pri frekvencii 5 GHz a to 8,708 dBi. Zisk meranej antény pri 5,8 GHz poklesol oproti simulovanej hodnote 9,65 dBi na 5,0 dBi. Referenčné hodnoty pre zisk 0 dBi pri meraní sú uvedené v (Tab. 5.2).

Obrázok 5.5 Nameraný zisk trojuholníkovej anténny s reflektorom v rovine konektoru

Tabuľka 5.2 Referenčne hodnoty pre zisk 0 dBi meraných antén

Frekvencia [GHz]	5	5,45	5,8
Referenčne hodnoty zisku [dB]	-17,36	-18,23	-18,78

Obrázok 5.6 Nameraný zisk trojuholníkovej anténny s reflektorom v rovine kolmej na konektor

6. ZÁVER

V tejto práci boli porovnané vlastnosti rôznych nositeľných textilných dipólových a monopolových antén. Pri monopolových anténach bol taktiež preskúmaný vplyv AMC reflektoru, za účelom zlepšenia parametrov konvenčných antén. Všetky antény boli navrhnuté pre ISM pásmo 5,8 GHz. Hlavnými skúmanými parametrami boli smerová charakteristika zisku antény, činiteľ odrazu a hodnota SAR pri použití antén na ľudskom tele. Prvým skúmaným typom antén boli jednoduché dipólové štrbinové antény v tvare trojuholníka a motýlikovho meandra. Hlavnou výhodou týchto antén sú ich malé celkové rozmery, ktoré dosahujú rádovo len jednotiek centimetrov. Taktiež kvôli svojim malým rozmerom dochádza len k minimálnym deformáciám pri umiestnení na tele. Toto riešenie prináša aj nevýhody, kedy dochádza k posunom rezonančných frekvencii vplyvom interakcii medzi anténou a telom. Anténny majú malý zisk, okolo 3 a ž 4 dBi. Úpravou rozmerov reflektoru môžeme dosiahnuť nárast zisku na 8 až 9 dBi.

Na vyriešenie problému s posunom rezonančných frekvencii bol overený návrh použitia AMC reflektorov na stabilizáciu parametrov. Navrhnute boli ďalšie dve monopólové antény, odvodené od pôvodných štrbinových antén. Za cieľom minimalizácie hodnôt SAR a vylepšenia zisku boli pod monopolové antény navrhnuté dva druhy AMC reflektorov. Obe antény spolu s AMC boli podrobené simulácii, kde bolo skúmané chovanie sa antén pri ohybe okolo končatiny o rôznom polomere. Z výsledkov vyplynulo, že antény si zachovávajú svoje požadované parametre až kým nedôjde k prekročeniu kritickej medze ohybu, ktorá bola stanovená na 80 mm. Dôsledkom ohybu nedošlo k zmenám použiteľného rozsahu príslušného frekvenčného pásma a hodnota zisku sa vplyvom ohybu menila len minimálne a to o 0,6 dB.

AMC reflektor taktiež pomohol minimalizovať spätné žiarenie u monopólových antén na prípustne hodnoty SAR, ktoré by bez použitia reflektoru dosahovali 4,43 W/kg, čim by prekročili povolené limity viac než dvojnásobne.

Na overenie simulácii boli zvolene pre prototypovú výrobu dve antény vyrobené metódou sieťotlače. AMC reflektor bol vyrobený ručným lepením štvorcových elementov na textilný substrát. Jednou z antén bola monopólová anténa so štvorcovým AMC reflektorom, ktorá vďaka svojmu jednoduchému tvaru a vysokej tolerancii na nepresnosti, bola najvednejším kandidátom pre úspešnú výrobu. Počas výroby vznikol priestor aj na výrobu druhej antény s najzaujímavejším tvarom a to dipólová meandrová anténa. Vyrobené prototypy boli zmerané v bezodrazovej komore a výsledky porovnané so simuláciami. Reflektor bol vyrobený s menšími nepresnosťami, čo však negatívne neovplyvnilo výslednú anténu. Meandrovitá anténa by vyžadovala väčšiu presnosť výroby. Meraním bolo zistene, že došlo k rozladeniu antény, následkom čoho anténa dosahuje najnižšiu hodnotu činiteľa odrazu -13 dB, pri frekvencii 7,4 GHz. Bolo preukázané, že pre dipólové antény sú najvednejším miestom pre umiestnenie končatiny, vďaka malým rozmerom. Anténa s AMC reflektorom nájde využitie na rovnejších častiach tela, napríklad chrbát a hrudník, kde je požadovaná nízka hodnota SAR a vysoká hodnota zisku.

LITERATÚRA

- [1] VARNOOSFADERANI, Mohammad Vatankhah, David V. THIEL, Junwei LU a Manimaran KANESAN. Dual mode switched parasitic antenna for on/off body communication channels. In: 2014 International Workshop on Antenna Technology: Small Antennas, Novel EM Structures and Materials, and Applications (iWAT) [online]. IEEE, 2014, 2014, s. 25-28 [cit. 2021-5-26]. ISBN 978-1-4799-2329-8. Dostupné z: doi:10.1109/IWAT.2014.6958586
- [2] ALEMARYEEN, Ala a Sima NOGHANIAN. On-Body Low-Profile Textile Antenna With Artificial Magnetic Conductor. IEEE Transactions on Antennas and Propagation [online]. 2019, 67(6), 3649-3656 [cit. 2021-5-26]. ISSN 0018-926X. Dostupné z: doi:10.1109/TAP.2019.2902632
- [3] MOBASHSHER, Ahmed T. a Amin M. ABBOSH. Artificial Human Phantoms: Human Proxy in Testing Microwave Apparatuses That Have Electromagnetic Interaction with the Human Body. IEEE Microwave Magazine [online]. 2015, 16(6), 42-62 [cit. 2021-5-26]. ISSN 1527-3342. Dostupné z: doi:10.1109/MMM.2015.2419772
- [4] K. Pitra and Z. Raida, "Miniaturized antenna for body centric communication," 2013 7th European Conference on Antennas and Propagation (EuCAP), 2013, pp. 3219-3222.
- [5] LI, Wei, Bowen CAI a Ying SUO. A Broadband Circular Polarized Microstrip Antenna Based on Artificial Magnetic Conductor. In: 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting [online]. IEEE, 2018, 2018, s. 343-344 [cit. 2021-5-26]. ISBN 978-1-5386-7102-3. Dostupné z: doi:10.1109/APUSNCURSINRSM.2018.8608423
- [6] MAISARAH, Abu a Md Ali SITI ADLINA. Performances of an Ultra-Thin AMC and FSS for 5G Applications. In: 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST) [online]. IEEE, 2018, 2018, s. 1-4 [cit. 2021-5-26]. ISBN 978-1-5386-4956-5. Dostupné z: doi:10.1109/ICEAST.2018.8434489
- HADARIG, R. C., M. E. DE COS a F. LAS-HERAS. Microstrip Patch Antenna Bandwidth Enhancement Using AMC/EBG Structures. International Journal of Antennas and Propagation [online]. 2012, 2012, 1-6 [cit. 2021-5-26]. ISSN 1687-5869. Dostupné z: doi:10.1155/2012/843754
- [8] WISSEM, EL May, Imen SFAR, Lotfi OSMAN a Jean-Marc RIBERO. A Textile EBG-Based Antenna for Future 5G-IoT Millimeter-Wave Applications. Electronics [online]. 2021, 10(2) [cit. 2021-5-26]. ISSN 2079-9292. Dostupné z: doi:10.3390/electronics10020154

- [9] LUO, Qun, Huiping TIAN, Zhitong HUANG, Xudong WANG, Zheng GUO a Yuefeng JI. Unidirectional Dual-Band CPW-Fed Antenna Loaded with an AMC Reflector. International Journal of Antennas and Propagation [online].
 2013, 2013, 1-10 [cit. 2021-5-26]. ISSN 1687-5869. Dostupné z: doi:10.1155/2013/875281
- [10] RANGA, Yogesh, Ladislau MATEKOVITS, Andrew R. WEILY a Karu P.
 ESSELLE. A CONSTANT GAIN ULTRA-WIDEBAND ANTENNA WITH A
 MULTI-LAYER FREQUENCY SELECTIVE SURFACE. Progress In
 Electromagnetics Research Letters [online]. 2013, 38, 119-125 [cit. 2021-5-26].
 ISSN 1937-6480. Dostupné z: doi:10.2528/PIERL13021007
- [11] PANDIT, Vivek Kumar a A.R. HARISH. Dual-band monopole antenna loaded with dual-band AMC for WLAN/WiMAX applications. In: 2016 International Conference on Emerging Trends in Communication Technologies (ETCT) [online]. IEEE, 2016, 2016, s. 1-3 [cit. 2021-5-26]. ISBN 978-1-5090-4505-1. Dostupné z: doi:10.1109/ETCT.2016.7882966
- [12] KAMARDIN, Kamilia, Mohamad Kamal A. RAHIM, Peter S. HALL, Noor Asmawati SAMSURI, Tarik Abdul LATEF a Mohammad Habib ULLAH. Textile artificial magnetic conductor jacket for transmission enhancement between antennas under bending and wetness measurements. Applied Physics A [online]. 2016, 122(4) [cit. 2021-5-26]. ISSN 0947-8396. Dostupné z: doi:10.1007/s00339-016-9912-2
- [13] FALLAHPOUR, Mojtaba. Wireless Body Area Networking: Joint Physical-Networking Layer Simulation and Modeling. FARHADI, Hamed, ed. Medical Internet of Things (m-IoT) - Enabling Technologies and Emerging Applications [online]. IntechOpen, 2019, 2019-2-27 [cit. 2021-5-26]. ISBN 978-1-78985-091-8. Dostupné z: doi:10.5772/intechopen.79251
- [14] AFRIDI, Adeel, Sadiq ULLAH, Shahbaz KHAN, Aziz AHMED, Akhtar Hussain KHALIL a Munir Ahmad TARAR. Design of Dual Band Wearable Antenna Using Metamaterials. Journal of Microwave Power and Electromagnetic Energy [online]. 2016, 47(2), 126-137 [cit. 2021-5-26]. ISSN 0832-7823. Dostupné z: doi:10.1080/08327823.2013.11689852

ZOZNAM SYMBOLOV A SKRATIEK

Skratky:

FEKT	Fakulta elektrotechniky a komunikačných technológií		
VUT	Vysoké učení technické v Brne		
ISM	Industrial, Scientific and Medical band		
AMC	Artificial Magnetic Conductor		
SAR	Specific Absorbtion Rate		
ICNIRP	Interenational Commissson on Non-Ionizing Radiation		
	Protection		
SMA	SubMiniature version A		
FCC	Federal Comunications Commission		
EBG	Electro Magnetic band Gap		
HIS	High Impedance Surface		
FSS	Frequency Selective Surface		
CPW	Coplanar Waveguide		
VSWR	Voltage Standing Wave Ratio		

Symboly:

λ	vlnová dĺžka	(nm)
ρ	hustota	(kg/m^3)
E	efektívna hodnota elektrického poľa	(V/m)
SAR	Specific Absorbtion Rate	(W/kg)
σ	vodivosť	(S/m)
R_s	povrchová rezistivita	(Ω)
Er	relatívna permitivita	0
\mathcal{E}_0	permitivita vákua	(F/m)
3	permitivita	(F/m)
$\tilde{\varepsilon}_r$	imaginárna časť permittivity	0
Êr [°]	reálna časť permittivity	0
tan δ	strátový uhol	0