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AUTOR PRÁCE JAN REMEŠ
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Abstrakt
Tato práce popisuje použití systémů pro rozpoznávání mluvčího v prostředí VoIP, úspěšnost
systému a přístupy k jejímu zlepšení. Popisuje architekturu těchto systémů, metriky pro
vyhodnocení jejich úspěšnosti a klíčové komponenty VoIP z hlediska rozpoznávání mlu-
včího. Je zde popsáno vytvoření simulace VoIP prostředí, úspěšnost systému je vyhodno-
cena na datech pocházejících z různých druhů VoIP prostředí a výsledky jsou demostrovány.
Adaptace a kalibrace systému je provedena a jejich přínosy zhodnoceny.

Abstract
This work describes using speaker recognition systems in the VoIP environment, system
performance and approaches to improving it. System architecture, evaluation metrics and
VoIP technology key components from the view of speaker recognition are described. VoIP
environment simulation is described. Speaker recognition system’s performance is evaluated
on data sets from various kinds of VoIP environments and the results are demonstrated.
System adaptation and calibration is performed and their benefits are discussed.

Klíčová slova
SRE, rozpoznávání mluvčího, VoIP, síť, chyby sítě, kodeky, přesnost SRE, EER, DCF,
adaptace, kalibrace

Keywords
SRE, speaker recognition, VoIP, network, network errors, codecs, SRE performance, EER,
DCF, adaptation, calibration

Citace
Jan Remeš: Speaker Recognition in the VoIP Environment, bakalářská práce, Brno, FIT
VUT v Brně, 2014



Speaker Recognition in the VoIP Environment

Prohlášení
Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Ing.
Oldřicha Plchota. Uvedl jsem všechny literární prameny a publikace, ze kterých jsem čerpal.

. . . . . . . . . . . . . . . . . . . . . . .
Jan Remeš

May 21, 2014

Poděkování
I would like to thank my supervisor, Olda, for countless advices and guidance during my
work on the thesis.

c© Jan Remeš, 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.



Contents

1 Introduction 2

2 Speaker Recognition 3
2.1 Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 SRE system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 UBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 i-vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 PLDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 System accuracy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Voice over IP (VoIP) 12
3.1 VoIP call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 VOIP codecs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Silence transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 ITU-T G.711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 ITU-T G.723.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.4 ITU-T G.729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.5 GSM AMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Evaluations & Experiments 18
4.1 SRE system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Audio data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 VoIP and network simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Adaptation Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Calibration Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Conclusion 30

1



Chapter 1

Introduction

Speaker recognition (SRE) is a technology widely used in today’s world. It finds its use
in bank and financial sector (remote authentication in general), security applications, and
audio data indexing. The quality of SRE technology, in terms of percentage of wrong trials
(false-positives and false-negatives referred to as misses) is of great importance to everyone
using this technology. There are many software products for running SRE, and each may
provide different results. All of them, however, depend strictly on the quality of the data
provided.

In many applications, the data of interest come from a phone call (be it lawful intercep-
tion, remote authentication or call history search). As more and more organizations and
people tend to use VoIP technology (so-called

”
Internet-telephony“) instead of the classical

phones, there is a need for SRE technology to adapt to these conditions.
This work describes current state of SRE technology, VoIP technology and problems

arising from it for SRE, and metrics for evaluating SRE systems’ performance. SRE system
performance is measured for both ’ordinary’ data and their VoIP counterparts. Issues
leading to their difference are described and possible solutions are suggested. Results of
conducted experiments are provided.

In chapter 2, the SRE system and metrics designed to evaluate its performance are
described. Chapter 3 deals with the VoIP technology, describes VoIP codecs and features
with focus on properties, which may influence SRE performance. In chapter 4, software
setup and data used to conduct experiments are described and the results of the experiments
are shown. Chapter 5 brings the summary of the work and suggests possible ways of further
extensions.
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Chapter 2

Speaker Recognition

Speaker recognition (SRE) is a classification process, where automatic software systems
extract information from audio recordings and identify their speakers. As described by [4],
the process may be viewed either as an identification task, where the system’s goal is to
determine, to whom in a given set of speakers given recording belongs; or as a verification
task, where two recordings are given and the system must decide, whether they have been
uttered by the same speaker, or not. For the identification task, the set of potential speakers
may either be closed (the recording must have been uttered by a speaker from the set; or
open, where previous condition does not hold. The fact, that the speaker may not be
present in the considered set (which is true for most of the applications), can make the
identification task results difficult to interpret. The identification task, however, can be
reinterpreted as a series of verification tasks for each speaker in the considered set. This
fact allows SRE systems to provide the verification task capabilities only without removing
their ability to perform the identification. The tasks are presented to the system in the
form of trials. A trial is defined by pair of recordings. Each trial is either target (both
recordings were uttered by the same speaker) or nontarget (each recording was uttered by
different speaker).

2.1 Score

SRE systems return their decision in the form of numerical value called score. The higher
the score, the more likely is the trial target. There is a threshold value (usually zero) defined
for the system. Trials with score above the threshold are considered target, the ones with
score below the threshold are considered nontarget. The system may even produce the
threshold value when it cannot reach the decision (e. g. recordings contain too little speech
to be processed). With threshold set to zero, system’s decision may be simply reached by
examining score sign; the absolute value of the score then indicates system’s

”
certainty“

over the result.
Usually, the score is system’s log-likelihood ratio (LLR) of two hypotheses:

• H1....both recordings were uttered by the same speaker (target hypothesis)

• H2....each recording was uttered by different speaker (nontarget hypothesis)

The score can be calculated by 2.1. Note, that when both hypotheses are equally likely,
the fraction will have a value of 1, resulting for score = log(1) = 0.
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Figure 2.1: Target and nontarget score distributions
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H1 = target hypothesis (2.1a)

H2 = nontarget hypothesis (2.1b)

score = log(
p(H1)

p(H2)
) (2.1c)

Following section describes an SRE system and its components.

2.2 SRE system

An SRE system is understood as a software system, which can take two waveform files as
input and is supposed to yield a decision about whether both provided recordings were
uttered by the same speaker. In this section, the recognition process and used techniques
will be described. SRE system scheme is depicted in 2.2.

First, each recording is split into frames of 20 ms length (frames are overlapping by 10
ms, see [2]). Following operations are run per-frame.

The system needs to decide, whether a frame contains actual speech. This technique
is known as VAD (Voice Activity Detection). There are two typical approaches to VAD.
First of them is energy-based detection, where the log-spectrum of the signal is thresholded
or directly classified, second is use of higher level classifiers, such as phoneme recognizer
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Figure 2.2: SRE system scheme

(as described in [2]), which transform the signal into sequence of speech and silence frames.
Frames not containing speech are discarded, the rest of them are processed further.

For each frame, system computes so-called features. Todays systems use Mel-frequency
cepstral coefficients (MFCCs) and their dynamic coefficients called deltas and double-deltas.
Deltas are obtained by differentiating adjacent MFCC vectors (numerical approximation
of their derivative). The formula is given at 2.2, equation taken from [7]. Double-deltas
are computed using the same formula from deltas. This step results in a sequence of low-
dimensional (60 dimensions) feature vectors.

dt =

∑Θ
θ=1 θ ∗ (ct+θ − ct−θ)

2 ∗
∑Θ

θ=1 θ
2

(2.2)

2.2.1 UBM

Universal Background Model (UBM) is SRE system’s statistical model (GMM - Gaussian
Mixture Model) to represent the distribution of feature vectors in the acoustic space. It is
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represented by many1 components, which are multidimensional (the dimensionality must be
equal to feature vector dimensionality) normal probability distributions. For each feature
vector from the recording, the degree of its contribution to each component may be evalu-
ated, thus allowing to convert arbitrarily long sequence of feature vectors to the fixed-size
vector of the Baum–Welch statistics2 collected with the given UBM.

2.2.2 i-vectors

The recording, after being split into frames, derived features from and evaluated through
UBM, is represented by one vector of numbers. This vector’s dimensionality is given by

|v| = CUBM ∗ |f | (2.3)

where CUBM denotes count of UBM components and |f | denotes feature vector size. With
2048 UBM components and 60-dimensional feature vector, the resulting vector has more
than 120 000 dimensions and contains redundant information. In order to extract as much
diversity as possible from such vectors with significantly reducing their dimensionality, i-
vectors are used. The origin of the i-vectors is described in [2]. The process of generating
them may be viewed as lossy compression and may be taken as low-dimensional 3 vector
representing the recording in low-dimensional acoustic subspace.

2.2.3 PLDA

The remaining part in the system is converting the pair of i-vectors to the score (called
i-vector scoring. In order to compensate i-vectors’ different size and bias, usually mean
normalization (2.4a) and L2 normalization (2.4b) are performed. We denote the original
i-vector as x, i-vectors’ mean as µ, mean-normalized i-vector as xn. |x|2 represents the
L2-normalized vector, and xr denotes single elements of the i-vector.

xn = x− µ (2.4a)

|x|2 =
√∑

N
r=1|xr|2 (2.4b)

Scoring with PLDA (Probabilistic Linear Discriminant Analysis) understands the i-
vector as φ = µ + V y + Ux + ε, where µ is i-vector mean (zero if normalized), U and
V are matrices derived (see 2.5) from system’s within-class (Σwc) and across-class (Σac)
covariance matrices respectively, y and x are hidden variables describing the speaker and
the channel respectively and ε is the residual variability. The portion µ+V y describes the
speaker, the latter (Ux+ ε) describes the channel.

Σac = UU ′

Σwc = V V ′
(2.5)

The covariance matrices are subject to adaptation (see 2.3).
As stated by [2], with the above assumptions the SRE task may be reinterpreted as

whether the y might be the same for both i-vectors. The score can be calculated as (taken
from [2])

12048 in used system
2see [3, p. 2] for definition
3600 in used system
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Figure 2.3: PLDA intra-speaker and inter-speaker distributions
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s(φ1,φ2) =

∫
p(φ1|y)p(φ2|y)p(y) dy

p(φ1)p(φ2)
, (2.6)

where φ1 and φ2 denote compared i-vectors and y denotes certain speaker factor.

2.3 Adaptation

Each recording (or a waveform) can be understood as a mix of two signals. The signal
actually produced by the speaker, and the environmental influence referred to as a channel.
The channel consists of the background noise, microphone quality effects, transmission
signal changes, etc. The channel effect decreases SRE performance as it includes information
not related to speaker identification to the signal. The SRE system can to some level
compensate the channel, if it was provided data with that channel during training. When
an SRE system is to be used on another type of data, that it was trained on, it is advisable
to run system adaptation to eliminate the channel’s distortion.

When an SRE system is being developed, several of its components (UBM, i-vector
extractor, PLDA) must be provided with train data. UBM and i-vector extractor can
be trained with unlabeled data; PLDA, however, requires significant amount of labeled
recordings (labeled recordings are recordings with known speaker) to be trained. The train
data, however, may not come from the same domain as the application data. In order to
adjust themselves to new conditions, SRE systems may allow their users to retrain their
components (change PLDA covariance matrices) on labeled data from the target domain.
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This process is called SRE system adaptation.4 Although it is possible to train a system on
target data directly, there may not be enough labeled data available, as SRE system training
requires several thousands of recordings. For adaptation, few hundreds of recordings may
be sufficient. The impact of the count of adaptation recordings to system’s performance
improvement is evaluated by experiments.

I will use the term
”
adaptation“ to refer to PLDA adaptation only, as it is the only

kind of adaptation provided by used SRE system (Phonexia production SID system). 5

2.4 Calibration

For this work, SRE system calibration is considered as the process of finding its optimal6

threshold value and shifting it to zero. For each application, different requirements may be
laid upon the system in terms of desired percentage of misses or false alarms. Also, when
trained on data from certain domain and run (evaluated) on data from another domain,
the system may return higher or lower scores. Even a system, which is well trained and
adapted to the target domain, will provide bad results, if not calibrated.

Calibration requires several dozens of labeled recordings, being much less demanding in
this way than training a new system and adaptation. The process of calibration consists of
running the system on known trials and trying to find a threshold value, which is optimal
for desired application.

SRE system calibration provides two numerical values, scale and shift. For well cali-
brated system, if produced score is scaled and shifted by calibration values, the optimal
threshold will be zero. The figure 2.4 depicts a calibrated system, where the false-alarm
cost

2.5 System accuracy evaluation

In order to evaluate system’s performance and quality, several metrics are used. All of them
expect the system to be run on a labeled set of data. The dataset consists of

• list of speakers

• list of trials with results

The system runs the trials from the list and provides its results. Comparison to the
correct result from the dataset list provides lists of scores produced by the system for both
target and nontarget trials. The overall quality of the system (disregarding calibration) is
given by separability of those two lists. Multiple system’s operating points can be evaluated
by setting the decision value to such, that provides given percentage of false alarms / misses
(e.g. to get 10% FA operating point, a value, which classifies 10 percent of trials from target
list as nontargets, is chosen). Interpolation of all operating points determines a function to
describe system’s quality. This function’s graphical representation is called DET (Detection
Error Tradeoff) graph, and it is often used to graphically represent system’s quality at given
operating points. Examples of DET curves are depicted in figure 2.5. Because of their
low resolution in the area of interest and rather bad ability to visualize operating points

4The Phonexia SRE system used in the experiments, allows only this kind of adaptation
5Development SRE systems may provide other ways for adaptation
6for the given metric
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Figure 2.4: Nontarget and target score distributions with threshold moved to certain value
due to the calibration.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

Score Value

H
y
p

o
th

e
s
is

 P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

 

 

nontarget scores probability density

target scores probability density

misses

false alarms

H
1

H
2

9



and differences between single DET curves, linear axes are discouraged. Instead, probit7

function is used for the axes, providing high resolution in the area of interest and linearizing
the DET curve.

For more exact (numerical) evaluation, either an operating point may be chosen, or a
specific value called EER may be calculated. EER (Equal Error Rate) is the operating
point, where the probability of false alarm and miss are equal. Let us denote arbitrary
threshold values xk. The threshold value for EER shall be denoted by v. PFA(xk) and
Pmiss(xk) denote false alarm probability and miss probability for the selected threshold
value xk, respectively.

x1 > x2 => PFA(x1) < PFA(x2) ∧ Pmiss(x1) > Pmiss(x2) (2.7a)

v = xn|PFA(xn) = Pmiss(xn) (2.7b)

EER = PFA(v) (2.7c)

Both DET curve and EER only describe system’s ability to separate target and non-
target trials. They do not use system’s hard decision; instead they take into account all
possible threshold values. In order to represent system’s performance with current thresh-
old, Detection Cost Function - DCF metric was established. We can obtain its value using
8

CDet = CMiss × PMiss|Target × PTarget + CFA × PFA|NonTarget × (1− PTarget) (2.8)

CMiss and CFA are miss and false-alarm costs, respectively. In some applications, one
type of error may be more negative than other type. For basic evaluations, both can be
set to 1. PTarget denotes prior probability of target trial and PMiss|Target and PFA|NonTarget
are conditional probabilities of miss occurring for target trial and false alarm occurring
on nontarget trial, respectively. Target prior and detection error costs are set for desired
application, conditional probabilities arise from system’s performance.

DCF’s value is usually normalized by

CNorm = CDet/CDefault , (2.9)

where CDefault is the best cost that could be reached without observing the data, that
is the cost received by either claiming all trials target or claiming all trials nontarget.

CDefault = min

{
CMiss × PTarget,
CFA × (1− PTarget)

}
(2.10)

For a system, usually two DCF values are calculated. actDCF is DCF value for cur-
rent system’s hard decisions, taking zero as threshold value. DCF value for theoretically
optimally calibrated system is called minDCF. Note that minDCF ≤ actDCF and quotient
actDCF
minDCF can be used to estimate system’s calibration.

7inverse cumulative distribution function of normal probability distribution
8Formulas taken from [1]
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Figure 2.5: Examples of DET curves for both linear and probit axes
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Chapter 3

Voice over IP (VoIP)

V oice over IP, a technology for communicating over computer networks, is widely used
throughout the world. Companies utilize its ability for central management and reduced
need for cabling, end users choose it for its cost. VoIP devices allow their users to commu-
nicate by encoding audio signals produced by them to network packets and sending them
to the other participant over the IP network (usually Internet).

Unlike the classical telephony network, which is circuit-switched, IP networks are packet-
switched. This fact allows multiple logical connections to share one physical connection, but
it brings quality problems. In the classical telephony network, the physical link is dedicated
to one call at a time. This allows the analog voice signal data to be transmitted as-is. VoIP
technology, where a media is shared among many users, needs to search ways to reduce
required bandwidth (amount of data transferred in a time unit).

3.1 VoIP call

When a VoIP user wants to communicate, he uses his VoIP phone and dials the other one’s
number. Before the communication starts, the caller’s phone needs to do two things:

• locate the callee’s phone on the network

• negotiate transferred voice data format

As both devices need to transmit and receive digital data and interpret it as voice, they
need to negotiate the data format, along with codec (see 3.3) used to encode it. There are
several internationally standardized codecs (described in 3.3) and each device may support
a different set. Both devices inform each other about their format capabilities and negotiate
a common format best suiting their requirements. This process is called codec negotiation
and is depicted on figure 3.1. When codec negotiation is finished, devices start transmitting
data and communicate.

3.2 Encoding

In order to represent a continuous audio signal in digital environment (such as computers
or VoIP phones), the signal needs to be encoded in a digital form. Usually, a sequence
of numbers representing signal’s actual amplitude is used. To achieve this, two operations
must be run on the signal: sampling and quantization.

12



Figure 3.1: VoIP codec negotiation

Sampling is the process of converting continuous audio signal into the digital form.
This is achieved by periodically evaluating original signal’s instantaneous amplitude. The
signal may be sampled at various frequencies, but, according to the Nyquist theorem (see
[6]), sampling frequency must be at least double of sampled signal’s frequency (maximal
frequency in case of compound signals) in order to allow perfect signal reconstruction.

fsampling ≥ 2 ∗ fsignal (3.1)

The minimal requested frequency is called Nyquist frequency. Sampling a signal at
frequency below Nyquist frequency results in signal aliasing. Low-pass filters are used to
eliminate high frequencies from the signal before sampling is done to avoid aliasing. Human
voice is an audio signal with most of the energy within 400 – 3500 Hz range. Subsequently,
in VoIP applications, which aim to encode human voice, signal is usually sampled at 8 kHz.
There are so-called

”
wideband“ encoders sampling at 16 kHz to receive better quality, but

in this work, only 8 kHz sampled audio is used.
Quantization is the process of constraining real value of signal’s amplitude to limited

discrete range. Size of the range determines digital signal’s quality -
”
smoothness“. In

computer environment, data sizes are usually chosen to fit whole bytes. For audio, usually
16bit (2byte) sample size is used. This gives 65536 possible values of amplitude while
preserving low sample size.

As a result, required bandwidth for described audio is 128 kbps (8 000 samples / second
* 16 bits / samples).

Bandwidth = sample rate ∗ sample size (3.2)

13



3.3 VOIP codecs

The word codec stands for coder-decoder. Codecs are pairs of algorithms designed for en-
coding and decoding data from/to desired formats. The VoIP technology utilizes codecs for
encoding audio data to a representation suitable for being transferred via packet-switched
networks. Each VoIP device is equipped with several codecs - they define the device’s sup-
port for audio data formats. This section will describe VoIP codecs’ requirements, benefits
and limitations. N ote: I will use the word ’codec’ for VoIP codecs.

VoIP codecs are designed to meet two contradictory requirements: audio quality and
low bandwidth. There are various codecs, each combining those requirements differently,
therefore suitable for different environments. Audio quality for the codec is often measured
by MOS1 metrics, which scores codec on 1–5 scale, where 5 means excellent audio and 1
means very bad quality.

There are two basic codec implementations. Waveform coders compress the audio signal
and transmit it as such, vocoders derive speech parameters and spectral characteristics and
transmit those only, which can result in bandwidth save.

3.3.1 Silence transmission

When two people talk to each other on the phone, usually one of them is silent, when
the other one speaks. Therefore, there is a lot of silence in the signal, which need not be
transmitted. Several codecs allow to transmit special SID (Silence Insertion Descriptor)
packet instead of the actual signal. As the SID packet can be very short, the required
bandwidth can be significantly decreased.

For the hearing side, absolute silence is uncomfortable, as one can always hear at least
background noise, even though the talker is silent. To emulate this, codecs use module
called CNG (Comfort Noise Generator) to play low-level noise to the hearing side when
SID packets are received.

3.3.2 ITU-T G.711

G.711 is a waveform coder with 64 kbit/s bandwidth and MOS 4.11. It uses 12 most
significant bits of each speech sample and converts those into 8-bit logarithmic scale. With
human hearing being logarithmic as well, the codec saves one third of the bandwidth without
significant audio quality decrease. Its bandwidth determines it to be used for high-speed
networks and/or where audio quality is crucial. Several enhancement were introduced,
including wideband version of the codec.

Two different encodings are used with G.711. µ-law encoding is used primarily in USA
and Japan. It is optimized for better audio quality. The A-law is computationally simpler
form of encoding used in the rest of the world. Both encodings show similar characteristics,
subsequently only more common A-law encoding is used in this work.

3.3.3 ITU-T G.723.1

G.723.1 is a multi-rate vocoder with two available operating modes, 5,3 kbit/s with MOS
3.62 and 6,3 kbit/s with MOS 3.9. It provides very good performance in low-bandwidth
spectrum of codecs, so it is usually used in conditions, where very low bandwidth is a
requirement. In this work, 6,3 kbit/s mode is used.

1See [5] for closer information
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Figure 3.2: TCP/IP and ISO/OSI network models

3.3.4 ITU-T G.729

G.729 is code-excited linear prediction (CS-ACELP) vocoder with 8 kbit/s bandwidth and
MOS of 3.92. There are many extensions; ITU-T has defined 10 annexes (Annex A - Annex
J) and two appendices, which define other transmission rates (6,4 kbit/s and 11,8 kbit/s),
floating point implementation or DTX (discontinuous transmission, see 3.3.1). G.729 offers
slightly better audio quality then G.723.1 with small trade in bandwidth, it is therefore
broadly used as low-bandwidth codec. In this work, ITU-T G.729 codec without any
annexes or appendices is considered.

3.3.5 GSM AMR

AMR is multi-rate vocoder, operating at various bandwidths from 4,75 to 12,2 kbit/s. It
was developed for mobile phone networks, but for its performance in low bandwidths, it
is utilized in low-bandwidth VoIP applications. In this work, AMR codec operating at 4,7
kbit/s (with MOS 2.59) is considered.

3.4 Networking

Most of today’s network devices implement the TCP/IP network model (a simplified version
of the ISO/OSI model), see 3.4. This model divides network protocols and services to layers,
where each layer is based on the services of the lower one and provides services to the upper
one.

In TCP/IP stack, protocols of the transport layer are responsible for delivering data to
specific application. Two protocols, called TCP2 and UDP3 are commonly used.

TCP protocol implements connection-oriented communication. This means, that com-
municating processes have to establish a connection, transfer data and close it. This type
of connection provides reliable connection — TCP protocol ensures all packets are received

2Transmission Control Protocol
3User Datagram Protocol
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Figure 3.3: VoIP network example

Figure 3.4: TCP communication example

and they are correctly ordered. Lower layers ensure packet transmission and routing, but
since the packets can take various paths (see figure 3.3) and they may get lost, receiving
side is not guaranteed to have received all the packets. TCP protocol utilizes sequence num-
bers encoded in packets to deal with packet reordering and response packets from target to
source confirming accepting the data. When a packet is sent, its sender starts a timer for
awaiting the response (acknowledgment) packet confirming, that given packet was received.
If the acknowledgment is not received back in time (timer expires), the packet is considered
lost and it is resent. Figure 3.4 shows simplified example of TCP communication.

TCP protocol has some drawbacks, though. The need for acknowledgment packets and
big size of TCP header (20 bytes compared to 8-byte UDP header) increase bandwidth
requirements (although TCP acknowledgment may be included in data packets sent by
the other side). Transmission of VoIP data requires more bandwidth than used codec’s
bandwidth. This is cause by need to encapsulate VoIP data to network protocols (see figure
3.5. However, the bandwidth increase is not the biggest issue in VoIP. The biggest problem
is the delay. TCP provides data in correct order. That means, if a packet is missing, no
data is delivered to the application (VoIP process), it is rather stored by receiving side’s
TCP layer until missing packet is retransmitted and received; data from both packets are
provided to the VoIP application after that. This behaviour would result in VoIP calls
being interrupted (when packet was not received and sender’s timer has not expired yet).
For this reason, UDP protocol is used in VoIP applications. UDP protocol was designed
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Figure 3.5: Packet encapsulation

Payload of each protocol contains header and payload of higher level protocol

for applications which do not require reliable connection or prefer real-time delivery over
ensuring everything was delivered. It only provides checksum to ensure packet was not
damaged.

Utilizing UDP enables VoIP transmission to keep the real-time requirements, but bring
s problems in form of possibly missing or reordered packets. The RTP4 protocol used for
VoIP at the application level uses sequence numbers, which provides VoIP application with
information about missing or reordered packets, but leaves the application to process the
data and choose action without waiting or all preceding packets.

When a packet is missing during VoIP call, the receiving side VoIP application cannot
wait for its retransmission as it needs to play data contained in it in real-time. It may deal
with this situation by either playing silence or generated noise instead of the audio from
missing packet, or try to extrapolate the waveform from previous packets (e.g. repeat the
last accepted packet).

For SRE, however, the audio, that is played for the missing packet, has no relevance;
either way it has been generated by software, not produced by actual human speech and
therefore contains no valuable information. In this work I assume, that the receiver ignores
missing packets and considers two subsequently accepted packets to be subsequent; this
may result in output audio being shorter than input audio.

Wrong order of packets is not considered. There is no need for the SRE to be done
real-time, so the packets may be reorganized before passed to the decoder.

4Real-time Transport Protocol
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Chapter 4

Evaluations & Experiments

The aim of this work is to evaluate chosen system’s performance on VoIP data, to analyze
aspects, that may decrease system’s performance and to discuss approaches of eliminating
those aspects. In this chapter, I will describe used SRE system and its interface, used data
set, VoIP traffic simulation environment and results of conducted experiments.

For the experiments, MathWorks MATLAB software was used, along with the BOSARIS
Toolkit1 and non-public evaluation scripts by Ing. Oldřich Plchot for computing the eval-
uation metrics.

4.1 SRE system

Throughout this work, Phonexia SID system2 is used, particularly version 2.4.0, command-
line interface for Linux 64-bit. The SID system provides two executable files: vpcompare
and vpextract. vpextract can be used for creating so-called voice-prints, which are
file-formatted i-vectors (described in section 2.2). vpcompare can be used for comparing
voice-prints and producing score (PLDA). It provides ways to conduct system adaptation
(creation of so-called model — set of parameters, which modify internal PLDA covariance
matrices) and allows to specify adaptation constant to set the weight of newly trained model
against built-in one.

The vpextract program accepts a single file, list of files or a directory as an input
and provides single file or directory of files (voice-prints) as an output. The input files are
audio files in RAW format, 16-bit signed linear encoded PCM. I decided to use directory to
directory, as I wanted voice-prints created from all audio files (audio data will be described in
section 4.2). vpcompare accepts (as input) two filenames, two lists of files or two directories
(voice-prints in either case). In the first case, it compares given files and produces single
score. The latter cases are considered ’enroll list (directory) to test list (directory)’, all
comparisons for Cartesian product of the lists are run and evaluated. The result is written
into a matrix file. This file will be referred to as SCOREFILE, it is subject to further
processing and evaluation.

For adaptation, vpcompare accepts list of training voice-prints with speaker information
(either by dividing them into subfolders or by supplying a file with speaker name in first
column and voice-print name in second one. Adaptation provides results in the form of

1https://sites.google.com/site/bosaristoolkit
2http://phonexia.cz/technologies/sid
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”
model directory“. This directory may be used in subsequent vpcompare calls - this is

equivalent to using adapted system.

4.2 Audio data set

I have used NIST SRE 2010 audio data set. This data set contains 14270 audio files from
both male and female speakers. NIST has defined several evaluation conditions. A condition
is a triplet of enroll files, test files and trial definitions. For each condition, there are only
some trials defined along with their true result. Subsequently, one can evaluate system’s
performance by having it score trials defined by the condition and compare those results to
trial definitions.

I have chosen condition 2 for its sufficient size and non-difficult evaluation environ-
ment. This condition consists of interview recordings, where the speakers were recorded
using different set of microphones. Subsequently, the data is rather clean, without distor-
tions caused by telephone transmission. As SRE system’s modifications (adaptation and
calibration) cannot be evaluated correctly on the same data it was trained on, there was a
need to extract rather small held out development set for training calibration and adapta-
tion and leave the rest of the files as evaluation set to perform system evaluation on. The
selection was random with keeping several restrictions.

According to Phonexia SID developers, several dozen speakers with multiple recordings
(preferably >10 recordings per speaker) are needed to train system adaptation, 129 speakers
(limited to speakers with >10 recordings) were chosen for the development set. There are
2 223 recordings uttered by those speakers, 1 508 of them are 3 minutes long, the rest
are 8 minutes. 1 166 of them were uttered by female speakers, 1 057 by male. In some
cases, development set was further cut in order to simulate very small amount of labeled
data available for system modifications. There are 658 enroll recordings and 1 889 test
recordings3, trial definitions for the development set contains 188 546 trials (3 994 target
and 184 552 nontarget trials).

The evaluation set consists of 6 157 recordings uttered by 394 speakers. 3 332 recordings
were uttered by female speakers and 2 825 were uttered by male speakers. 3 949 of recordings
are 3 minutes long, 2 208 are 8 minutes long. The evaluation set has 1 733 enroll recordings,
5 297 test recordings and 1 536 503 trials in trial definitions (10 609 target and 1 526 066
nontarget). Brief statistics are shown in table 4.1.

The trial definitions for both sets were created as a subset of condition 2 trial definitions
in the following way. Let D = (ED, TD, rD) denote a trial definition, where ED denotes
its enroll segment (recording), TD denotes test segment and rD denotes trial result. Let us
further denote set of development segments as SDev, set of evaluation segments as SEval
and the whole condition 2 trial definitions as Φ. Resulting development and evaluation trial
definitions will be denoted as ΦDev and ΦEval, respectively. Then

ΦDev = {D|D ∈ Φ, ED ∈ SDev, TD ∈ SDev} (4.1)

ΦEval = {D|D ∈ Φ, ED ∈ SEval, TD ∈ SEval} (4.2)

3A recording may be in both enroll and test lists
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Development Set Evaluation Set
Count of recordings 2 223 6 157
Count of speakers 129 394
Enroll recordings 658 1 733
Test recordings 1 889 5 297
Target trials 3 994 10 609
Nontarget trials 184 552 1 526 066

Table 4.1: Basic information about development and evaluation sets

Codec Options Bitrate Download URL
G.711 A-law 64 kbps http://www.itu.int/rec/T-REC-G.191/
G.729 No Annexes 8 kbps http://www.itu.int/rec/T-REC-G.729/
G.723.1 Annex A 6.3 kbps http://www.itu.int/rec/T-REC-G.723.1/
AMR MR475 4.75 kbps http://www.3gpp.org/DynaReport/26073.htm

Table 4.2: List of codecs with parameters and modes used in the experiments

4.3 VoIP and network simulation

In order to evaluate influence of VoIP factors on system’s performance, VoIP traffic simu-
lating environment was created. VoIP simulation consists of

• encoding audio files with selected codec

• transferring encoded data over (lossy) network

• decoding received data with selected codec

ITU-T codecs were obtained from ITU-T web pages. AMR codec was obtained from
3GPP, version Rel-8. For download web page, codec settings and bitrates (referred to as
codec bandwidths previously), see table 4.2.

All of the codecs provide reference implementation of both encoder and decoder. All
provide the same function — with proper parameters, input file name and output file
name, they encode input audio to a bitstream file or decode the bitstream file to audio.
The bitstream file contains audio data, that would be sent over network in real VoIP
application (although most of the codecs create bigger files, e.g. by encoding each bit of
the bitstream into a word (two bytes)).

The network is considered to drop packets by random. Bursts of dropped packets may
be observed when routers along the path start to drop packets massively due to network
congestion or when the packets are rerouted by errors in the routing tables.

Instead of separating bitstream files into packets and sending them over the network,
which would be set to discard some of them, I chose to simulate network errors directly on
the data. Since packet corruption is not considered, the packet may only be received and
valid, or not received at all. All of the codecs generate fixed-size portions of bitstream files
— those portions are considered to be packets to real application. Subsequently, network
error simulation is performed by cutting out these portions from the bitstream file. Packets
can be cut either by random, in bursts of predefined size or by time marks defined by
external file.
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Condition Name Network Quality Burst size
clean 100% N/A
95 95% 1
90 90% 1
90 burst5 90% 5
90 burst20 90% 20
80 80% 1
80 burst5 80% 5

Table 4.3: List of used network conditions

Cutting is done by random, keeping preset network quality (percentage of packets re-
ceived). For burst cutting, packet count is computed from file length and packet length,
proper count of discarded packets is computed from preset network quality and discarded
packet indexes are chosen by random. Time marks of cut packets can be exported to a file
in any mode, using following syntax

STARTTIME1 ENDTIME1

STARTTIME2 ENDTIME2

...

...

where STARTTIMEx and ENDTIMEx are integer time marks in milliseconds for the beginning
and end of x-th cut packet (or packet burst). Time marks are derived from cut packet’s
index in file and duration of packets (duration of audio information they contain). The
duration for specific codec was derived by inspection of codec code (by examining the
count of samples read in the process of creating a single packet), it ranges from 10 to 30
milliseconds.

Exporting time marks into external file allowed me to cut out packets representing
the same time portion of audio files for different codecs, even though the packets were of
different duration. This was done in order to eliminate possible differences between codecs
produced by having them process different random portions of files.

Encoding all the audio files with all (4) the codecs, subsequent processing of the encoded
data with network simulator (cutter) using several (7) conditions (described in table 4.3)
and their decoding with their codec produced 28 audio files sets, further referred to as
sets. They will be denoted <codec>.<condition> (g711.clean) or <CODEC>, <QUALITY>
(G.711, 100%).

4.4 Performance Evaluation

One of the goals of this work was to determine VoIP distortions’ impact on SRE system’s
performance. Using tools and setup described above, untouched SRE system was used to
evaluate the same set of data under several VoIP conditions. From the results, EERs are
shown in table 4.5 and minDCF statistics are shown in table 4.6. For DCF computing,

”
old“ SRE parameters (described in [1, Table 3]) were used. For clean data, all collected

statistics are in table 4.4
These results indicate, that used codec and compression has far greater importance

for SRE performance, than percentage of data missing. Conditions with bursts of missing
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Metric Value Description
miss10 9.21% Miss percentage at 10% FA rate
fa2p5 17.76% FA percentage at 2.5% miss rate
actDCF 3.3527 Actual DCF (hard decisions)
minDCF 0.3487 Minimal possible DCF (see 2.5)
EER 9.64% Equal Error Rate (see 2.5)

Table 4.4: SRE performance metrics for clean data

clean 95 90 90 burst5 90 burst20 80 80 burst5
G.711 10.06% 10.10% 10.28% 10.65% 10.37% 10.93% 11.05%
G.729 13.90% 14.33% 14.72% 14.38% 14.10% 16.12% 15.08%
G.723.1 15.52% 15.71% 16.47% 16.11% 15.89% 17.74% 16.92%
AMR 18.13% 18.82% 18.95% 18.84% 18.80% 20.99% 19.64%

Table 4.5: EERs of unmodified (original) SRE system for all network conditions

clean 95 90 90 burst5 90 burst20 80 80 burst5
G.711 0.7032 0.6965 0.6982 0.7062 0.7204 0.7003 0.7191
G.729 0.8098 0.8351 0.8472 0.8184 0.8225 0.8871 0.8510
G.723.1 0.8747 0.8758 0.8922 0.8854 0.8809 0.9154 0.8978
AMR 0.9153 0.9247 0.9311 0.9278 0.9217 0.9475 0.9342

Table 4.6: minDCFs of unmodified (original) SRE system for all network conditions

clean 95 90 90_burst5 90_burst20 80 80_burst5
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20%
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Figure 4.1: Comparison of EERs for used codecs (default system)

packets show worse results, than their random counterparts for waveform codec G.711. For
other codecs (all vocoders), they show slightly better results.

Next section will describe SRE system adaptation and its impact on the performance
improvement. In order for the system to provide good results, system calibration should
be performed after the system is well-adapted.
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4.5 Adaptation Impact

The system adaptation was trained on each VoIP condition data set. As the training
provides model directories (described in 4.1), a condition may be evaluated using system
adapted on another condition. This will be referred to as

”
cross-adaptation“.

The table 4.7 shows EERS for both untouched system and system adapted on full
development set for the given condition.

G.711 G.729 G.723.1 AMR
def. adp. def. adp. def. adp. def. adp.

clean 10.06% 8.26% 13.90% 10.24% 15.52% 10.20% 18.13% 11.94%
95 10.10% 8.19% 14.33% 10.44% 15.71% 10.63% 18.82% 12.64%
90 10.28% 8.21% 14.72% 10.42% 16.47% 10.75% 18.95% 12.32%
90 burst5 10.65% 8.44% 14.38% 10.64% 16.11% 10.69% 18.84% 12.71%
90 burst20 10.37% 8.58% 14.10% 10.31% 15.89% 10.49% 18.80% 12.47%
80 10.93% 8.62% 16.12% 11.36% 17.74% 11.55% 20.99% 13.76%
80 burst5 11.05% 9.04% 15.08% 11.00% 16.92% 11.16% 19.64% 13.21%

Table 4.7: EERs for both unmodified (default, def.) and fully adapted (adp.) system,
AC = 0.9

Adaptations with AC (adaptation constants, see 4.1) from 0.3 to 0.95 were run on
selected conditions g711.80, amr.clean and g729.90 burst5 to find its optimal value.
The results (EERs) of those runs are in table 4.8. The best results were achieved with
the constant 0.9 for most of the conditions and that value was subsequently used for all
conditions.

Adaptation const. 0.5 0.6 0.7 0.8 0.9 0.95
g729.90 burst5 11.29% 11.05% 10.89% 10.75% 10.64% 10.70%
g711.80 9.12% 8.96% 8.83% 8.69% 8.62% 8.72%
amr.clean 13.11% 12.77% 12.49% 12.19% 11.94% 11.92%

Table 4.8: EERs of chosen conditions for different values of the adaptation constant

The adaptation causes the SRE performance to improve significantly (over 7% EER
at amr.80 condition. However, these results were achieved with adaptation run on full
development set - that means 2 223 labeled recordings. In many situations, however, such
amount of labeled recordings may not be available. Following limited development sets
were created by randomly selecting desired count of speakers and selecting all recordings
uttered by those speakers (approx. 17 recordings per speaker)

• adp20 with 20 speakers and 352 recordings,

• adp40 with 40 speakers and 711 recordings,

• adp80 with 80 speakers and 1386 recordings.

The optimal adaptation constant has been searched (using the same procedure as for
the AC for the full development set, except changing the range to 0.2 - 0.9) for all of the
limited sets. Chosen conditions EERs for various values of AC for adp80 are depicted on
figure 4.2. ACs chosen for the limited development sets are in table 4.9.
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Figure 4.2: EERs for chosen conditions in searching the optimal value of AC for adp80

Development Set Chosen AC
adp20 0.5
adp40 0.6
adp80 0.75

Table 4.9: Chosen ACs for limited development sets

The results of evaluating the performance of the SRE system adapted with the limited
development sets are shown in tables 4.10, 4.11, 4.12 and 4.13. Comparison of improvements
for each network condition and limited development set can be viewed at figures 4.3 (G.711)
and 4.4 (AMR). The graphical representation of the performance is given at figures 4.3 and
??.

none adp20 adp40 adp80 full
clean 10.06% 9.59% 9.28% 8.90% 8.26%
95 10.10% 9.60% 9.31% 8.84% 8.19%
90 10.28% 9.76% 9.38% 8.80% 8.22%
90 burst5 10.65% 10.10% 9.69% 9.25% 8.44%
90 burst20 10.37% 9.95% 9.60% 9.16% 8.58%
80 10.93% 10.50% 9.95% 9.46% 8.62%
80 burst5 11.05% 10.47% 10.04% 9.60% 9.04%

Table 4.10: G.711 EERs for all adaptation sets, including original system’s performance
(column ’none’)

The results indicate, that the improvement of the performance is strongly dependent
on the size of the adaptation set. However, even a relatively small set (adp20) was able to
improve system’s performance for as much as 3.5% for AMR, 80% condition. Generally,
the improvement is greater for the conditions, which show generally worse results (0.42%
difference between non-adapted and adp20-adapted g711.90 burst20 compared to 3.78%
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none adp20 adp40 adp80 full
clean 13.90% 12.23% 11.85% 11.18% 10.24%
95 14.33% 12.50% 11.98% 11.17% 10.44%
90 14.72% 13.00% 12.24% 11.27% 10.42%
90 burst5 14.38% 12.90% 12.23% 11.58% 10.64%
90 burst20 14.10% 12.78% 12.14% 11.24% 10.31%
80 16.12% 13.99% 13.05% 12.41% 11.36%
80 burst5 15.08% 13.35% 12.88% 11.93% 11.00%

Table 4.11: G.729 EERs for all adaptation sets, including original system’s performance
(column ’none’)

none adp20 adp40 adp80 full
clean 15.52% 13.02% 12.12% 11.28% 10.21%
95 15.71% 13.35% 12.45% 11.85% 10.63%
90 16.47% 13.97% 12.93% 12.02% 10.75%
90 burst5 16.11% 13.81% 12.88% 11.91% 10.69%
90 burst20 15.89% 13.57% 12.49% 11.64% 10.49%
80 17.74% 14.85% 13.96% 13.00% 11.55%
80 burst5 16.92% 14.51% 13.44% 12.44% 11.16%

Table 4.12: G.723.1 EERs for all adaptation sets, including original system’s performance
(column ’none’)

between the same adaptation sets for amr.80.
In all previous adaptation experiments, systems were evaluated on the data from the

condition their adaptation was trained on. However, when there are not enough data from
the target domain or the codec or network condition of the adaptation data are unknown,
the system can only be adapted on data from the condition other than the target. Results
of evaluations of this kind of adaptation is shown in figures 4.5, 4.6 and 4.7. Models trained
from full development set were used.

The results indicate that, at least with large enough development set, performance im-
proves significantly even for other codecs. The network condition used for cross-adaptation
is of lesser importance than the codec, although cross-adaptation from models trained on
bad network conditions (80, 80 burst5) show generally better results. When evaluating on
one of good network conditions, the system cross-adapted on bad network condition can
even outperform the system adapted on the evaluated condition. G.711 models provide only
slight improvement for the tested G.729 and AMR conditions, other combinations give the
improvement rather close to the classic adaptation.
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none adp20 adp40 adp80 full
clean 18.13% 15.04% 14.07% 13.15% 11.94%
95 18.82% 15.67% 14.88% 13.78% 12.64%
90 18.95% 15.76% 14.75% 13.58% 12.32%
90 burst5 18.84% 15.76% 14.96% 13.77% 12.71%
90 burst20 18.80% 15.52% 14.65% 13.51% 12.47%
80 20.99% 17.21% 16.33% 15.21% 13.76%
80 burst5 19.64% 16.51% 15.66% 14.45% 13.21%

Table 4.13: AMR EERs for all adaptation sets, including original system’s performance
(column ’none’)
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   8%

 8.5%

   9%

 9.5%

  10%

10.5%

  11%

11.5%

Development Set

E
E

R

EER for various development sets, G.711

 

 

clean

80

80_burst5

90

90_burst20

90_burst5

95

Figure 4.3: SRE system performances for G.711 with various network conditions and adap-
tation sets
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Figure 4.4: SRE system performances for AMR with various network conditions and adap-
tation sets
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Figure 4.5: EERs of system evaluated on amr.clean when cross-adapted for all conditions
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Figure 4.6: EERs of system evaluated on g711.80 when cross-adapted for all conditions
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Figure 4.7: EERs of system evaluated on g729.90 burst5 when cross-adapted for all condi-
tions
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4.6 Calibration Impact

The experiments in the previous section showed the potential in system adaptation to
increase its ability to separate target and nontarget trials. Without proper calibration,
though, results provided by such a system are of little value. In this section, experiments will
be conducted for chosen conditions amr.clean, g729.90 burst5 and g711.80. Unmodified
(non-adapted) system will be used.

The calibration will be designed to optimize the actDCF metric. Let me remind the
formula for computing DCF.

CDet = CMiss × PMiss|Target × PTarget + CFA × PFA|NonTarget × (1− PTarget) (4.3)

The costs (CMiss and CFA) and the prior probability of target trial (PTarget, also denoted

”
prior“) are the parameters of target VoIP application, the conditional probabilities are

obtained from the system running the evaluation. Parameters used in the experiments
are NIST

”
old“ parameters (see [1]) and are given in table 4.14. Note, that the values of

actDCF and minDCF are normalized (see section 2.5 for explanation).

PTarget CMiss CFA
0.01 10 1

Table 4.14: Application parameters for the calibration

For running and evaluating the calibration, I have created scripts to train the calibration
parameters, apply them to the score files and evaluate actDCF and minDCF values for the
score files.

In table 4.15, counts and probabilities of misses and false-alarms are shown. Note, that
the uncalibrated system yields over a million of wrong decisions (amr.clean) in million-
and-a-half trials.

Misses PMiss|Tgt False Alarms PFA|Non actDCF minDCF
amr.clean 279 2.67% 1 184 072 77.59% 7.7081 0.6019
g711.80 290 2.78% 680 008 45.08% 4.4911 0.3835
g729.90 burst5 394 3.78% 869 723 56.99% 5.6799 0.4863

Table 4.15: Misses, False Alarms and DCFs for uncalibrated system

After the system has been properly calibrated, those numbers change greatly, see table
4.16. There are 50 times less wrong decisions in the calibrated system and the actDCF
metric has decreased 10 times.

Misses PMiss|Tgt False Alarms PFA|Non actDCF shift
amr.clean 5 177 49.60% 16 417 1.08% 0.6025 -8.53
g711.80 3 232 30.97% 11 592 0.76% 0.3849 -6.49
g729.90 burst5 4 128 39.55% 14 427 0.95% 0.4891 -7.05

Table 4.16: Misses, False Alarms, actDCF and trained threshold shift for calibrated system
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Chapter 5

Conclusion

In this work, I acquainted myself with the SRE systems architecture, their usage and the
ways to modify them. I explored the VoIP technology and described codecs and features
used in the VoIP. I have also studied and described the metrics used to evaluate SRE
system’s performance.

In order to simulate VoIP environment, I have created tools to generate VoIP audio
data. These tools were subsequently used to prepare multiple data sets simulating various
VoIP traffic to evaluate the SRE system on. I acquainted myself with the production SRE
system developed by Phonexia and used it, along with the prepared data sets, to evaluate
VoIP influence on the system’s performance.

The experiments conducted has shown, that the performance of SRE system on the
VoIP data depends greatly on the codec used to encode the data. The data from the codecs
with lower bitrate (especially G.723.1 and AMR) result in worse system performance, than
high bitrate (G.711) codec data. The fact, that some data gets lost during the network
transmission does further decrease the performance, but the degradation of performance is
much smaller than the degradation, when more compressing codec is used. The influence
of packets getting lost in bursts decreases the performance of system for waveform codec
G.711, vocoders (G.729, G.723.1 and AMR) perform slightly better.

The performance of the SRE system can be significantly improved by running system
adaptation. The adaptation requires significant amount of labeled data, the size of it
affects achieved performance improvement. The experiments show, that the data used for
training the adaptation should be originated from the same codec and possibly even the
same (or worse) network condition; however, systems adapted on large amount of data from
similar codecs show great performance improvement, too. The necessity of running system
calibration was showed.

I find the greatest benefit in the results of limited development sets adaptation and
cross-adaptation, which can provide those interested with information about performance
improvement, various types and sizes of labeled data may provide.

Further work on the topic may include training the whole SRE system directly on VoIP
data, fusion of such systems or exploring the possibility to train the system directly on
vocoder transmitted data instead of the audio. Another related field is the examination
of signal distortions, possibly introduced when a packet was missing and two non-adjacent
signal portions became adjacent.
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