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Abstrakt 
Tato práce popisuje použití systémů pro rozpoznávání mluvčího v prostředí VoIP, úspěšnost 
systému a přístupy k jejímu zlepšení. Popisuje architekturu těchto systémů, metriky pro 
vyhodnocení jejich úspěšnosti a klíčové komponenty VoIP z hlediska rozpoznávání mlu
včího. Je zde popsáno vytvoření simulace VoIP prostředí, úspěšnost systému je vyhodno
cena na datech pocházejících z různých druhů VoIP prostředí a výsledky jsou demostrovány. 
Adaptace a kalibrace systému je provedena a jejich přínosy zhodnoceny. 

Abstract 
This work describes using speaker recognition systems in the VoIP environment, system 
performance and approaches to improving it. System architecture, evaluation metrics and 
VoIP technology key components from the view of speaker recognition are described. VoIP 
environment simulation is described. Speaker recognition system's performance is evaluated 
on data sets from various kinds of VoIP environments and the results are demonstrated. 
System adaptation and calibration is performed and their benefits are discussed. 
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Chapter 1 

Introduction 

Speaker recognition (SRE) is a technology widely used in today's world. It finds its use 
in bank and financial sector (remote authentication in general), security applications, and 
audio data indexing. The quality of SRE technology, in terms of percentage of wrong trials 
(false-positives and false-negatives referred to as misses) is of great importance to everyone 
using this technology. There are many software products for running SRE, and each may 
provide different results. A l l of them, however, depend strictly on the quality of the data 
provided. 

In many applications, the data of interest come from a phone call (be it lawful intercep
tion, remote authentication or call history search). As more and more organizations and 
people tend to use VoIP technology (so-called „Internet-telephony") instead of the classical 
phones, there is a need for SRE technology to adapt to these conditions. 

This work describes current state of S R E technology, VoIP technology and problems 
arising from it for SRE, and metrics for evaluating S R E systems' performance. S R E system 
performance is measured for both 'ordinary' data and their VoIP counterparts. Issues 
leading to their difference are described and possible solutions are suggested. Results of 
conducted experiments are provided. 

In chapter 2, the S R E system and metrics designed to evaluate its performance are 
described. Chapter 3 deals with the VoIP technology, describes VoIP codecs and features 
with focus on properties, which may influence SRE performance. In chapter 4, software 
setup and data used to conduct experiments are described and the results of the experiments 
are shown. Chapter 5 brings the summary of the work and suggests possible ways of further 
extensions. 
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Chapter 2 

Speaker Recognition 

Speaker recognition (SRE) is a classification process, where automatic software systems 
extract information from audio recordings and identify their speakers. As described by [4], 
the process may be viewed either as an identification task, where the system's goal is to 
determine, to whom in a given set of speakers given recording belongs; or as a verification 
task, where two recordings are given and the system must decide, whether they have been 
uttered by the same speaker, or not. For the identification task, the set of potential speakers 
may either be closed (the recording must have been uttered by a speaker from the set; or 
open, where previous condition does not hold. The fact, that the speaker may not be 
present in the considered set (which is true for most of the applications), can make the 
identification task results difficult to interpret. The identification task, however, can be 
reinterpreted as a series of verification tasks for each speaker in the considered set. This 
fact allows SRE systems to provide the verification task capabilities only without removing 
their ability to perform the identification. The tasks are presented to the system in the 
form of trials. A trial is defined by pair of recordings. Each trial is either target (both 
recordings were uttered by the same speaker) or nontarget (each recording was uttered by 
different speaker). 

2.1 Score 

SRE systems return their decision in the form of numerical value called score. The higher 
the score, the more likely is the trial target. There is a threshold value (usually zero) defined 
for the system. Trials with score above the threshold are considered target, the ones with 
score below the threshold are considered nontarget. The system may even produce the 
threshold value when it cannot reach the decision (e. g. recordings contain too little speech 
to be processed). Wi th threshold set to zero, system's decision may be simply reached by 
examining score sign; the absolute value of the score then indicates system's „certainty" 
over the result. 

Usually, the score is system's log-likelihood ratio (LLR) of two hypotheses: 

• i7i....both recordings were uttered by the same speaker (target hypothesis) 

• i?2---each recording was uttered by different speaker (nontarget hypothesis) 

The score can be calculated by 2.1. Note, that when both hypotheses are equally likely, 
the fraction will have a value of 1, resulting for score = log{l) = 0. 
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Figure 2.1: Target and nontarget score distributions 

Hi = target hypothesis (2.1a) 
B.2 = nontarget hypothesis (2.lb) 

Following section describes an S R E system and its components. 

score = loq(^, ) (2.1c) 

2.2 SRE system 

A n S R E system is understood as a software system, which can take two waveform files as 
input and is supposed to yield a decision about whether both provided recordings were 
uttered by the same speaker. In this section, the recognition process and used techniques 
will be described. S R E system scheme is depicted in 2.2. 

First, each recording is split into frames of 20 ms length (frames are overlapping by 10 
ms, see [2]). Following operations are run per-frame. 

The system needs to decide, whether a frame contains actual speech. This technique 
is known as V A D (Voice Activity Detection). There are two typical approaches to V A D . 
First of them is energy-based detection, where the log-spectrum of the signal is thresholded 
or directly classified, second is use of higher level classifiers, such as phoneme recognizer 
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Figure 2.2: SRE system scheme 
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(as described in [2]), which transform the signal into sequence of speech and silence frames. 
Frames not containing speech are discarded, the rest of them are processed further. 

For each frame, system computes so-called features. Todays systems use Mel-frequency 
cepstral coefficients (MFCCs) and their dynamic coefficients called deltas and double-deltas. 
Deltas are obtained by differentiating adjacent M F C C vectors (numerical approximation 
of their derivative). The formula is given at 2.2, equation taken from [7]. Double-deltas 
are computed using the same formula from deltas. This step results in a sequence of low-
dimensional (60 dimensions) feature vectors. 

E ? = i 0 * (ct+0 ~ ft-

2 * E t i 0 2 
d t = ^ = i ; ^ e ^ ( 2- 2) 

2.2.1 U B M 

Universal Background Model (UBM) is SRE system's statistical model ( G M M - Gaussian 
Mixture Model) to represent the distribution of feature vectors in the acoustic space. It is 
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represented by many 1 components, which are multidimensional (the dimensionality must be 
equal to feature vector dimensionality) normal probability distributions. For each feature 
vector from the recording, the degree of its contribution to each component may be evalu
ated, thus allowing to convert arbitrarily long sequence of feature vectors to the fixed-size 
vector of the Baum-Welch statistics2 collected with the given U B M . 

2 . 2 . 2 i - v e c t o r s 

The recording, after being split into frames, derived features from and evaluated through 
U B M , is represented by one vector of numbers. This vector's dimensionality is given by 

| « | = C U B M * | / | (2-3) 

where C U B M denotes count of U B M components and | / | denotes feature vector size. Wi th 
2048 U B M components and 60-dimensional feature vector, the resulting vector has more 
than 120 000 dimensions and contains redundant information. In order to extract as much 
diversity as possible from such vectors with significantly reducing their dimensionality, i-
vectors are used. The origin of the i-vectors is described in [2]. The process of generating 
them may be viewed as lossy compression and may be taken as low-dimensional 3 vector 
representing the recording in low-dimensional acoustic subspace. 

2 . 2 . 3 P L D A 

The remaining part in the system is converting the pair of i-vectors to the score (called 
i-vector scoring. In order to compensate i-vectors' different size and bias, usually mean 
normalization (2.4a) and L2 normalization (2.4b) are performed. We denote the original 
i-vector as x, i-vectors' mean as fi, mean-normalized i-vector as xn. \x\2 represents the 
L2-normalized vector, and xr denotes single elements of the i-vector. 

xn = x — fi (2.4a) 

\X\2 = yf£iLi\Xr\2 (2.4b) 

Scoring with P L D A (Probabilistic Linear Discriminant Analysis) understands the i -
vector as cf) = fi + Vy + Ux + e, where \x is i-vector mean (zero if normalized), U and 
V are matrices derived (see 2.5) from system's within-class ( S w c ) and across-class ( S a c ) 
covariance matrices respectively, y and x are hidden variables describing the speaker and 
the channel respectively and e is the residual variability. The portion fj, + Vy describes the 
speaker, the latter (Ux + e) describes the channel. 

(2.5) 
s w c = vv 

The covariance matrices are subject to adaptation (see 2.3). 
As stated by [2], with the above assumptions the SRE task may be reinterpreted as 

whether the y might be the same for both i-vectors. The score can be calculated as (taken 
from [ ]) 

12048 in used system 
2see [3, p. 2] for definition 
3600 in used system 
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Figure 2.3: P L D A intra-speaker and inter-speaker distributions 

P{<Pl)P{<p2) 

where <p1 and <j>2 denote compared i-vectors and y denotes certain speaker factor. 

2.3 Adaptation 

Each recording (or a waveform) can be understood as a mix of two signals. The signal 
actually produced by the speaker, and the environmental influence referred to as a channel. 
The channel consists of the background noise, microphone quality effects, transmission 
signal changes, etc. The channel effect decreases S R E performance as it includes information 
not related to speaker identification to the signal. The S R E system can to some level 
compensate the channel, if it was provided data with that channel during training. When 
an SRE system is to be used on another type of data, that it was trained on, it is advisable 
to run system adaptation to eliminate the channel's distortion. 

When an SRE system is being developed, several of its components ( U B M , i-vector 
extractor, P L D A ) must be provided with train data. U B M and i-vector extractor can 
be trained with unlabeled data; P L D A , however, requires significant amount of labeled 
recordings (labeled recordings are recordings with known speaker) to be trained. The train 
data, however, may not come from the same domain as the application data. In order to 
adjust themselves to new conditions, S R E systems may allow their users to retrain their 
components (change P L D A covariance matrices) on labeled data from the target domain. 
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This process is called SRE system adaptation.4 Although it is possible to train a system on 
target data directly, there may not be enough labeled data available, as S R E system training 
requires several thousands of recordings. For adaptation, few hundreds of recordings may 
be sufficient. The impact of the count of adaptation recordings to system's performance 
improvement is evaluated by experiments. 

I will use the term „adaptat ion" to refer to P L D A adaptation only, as it is the only 
kind of adaptation provided by used S R E system (Phonexia production SID system). 5 

2.4 Calibration 

For this work, S R E system calibration is considered as the process of finding its optimal 6 

threshold value and shifting it to zero. For each application, different requirements may be 
laid upon the system in terms of desired percentage of misses or false alarms. Also, when 
trained on data from certain domain and run (evaluated) on data from another domain, 
the system may return higher or lower scores. Even a system, which is well trained and 
adapted to the target domain, will provide bad results, if not calibrated. 

Calibration requires several dozens of labeled recordings, being much less demanding in 
this way than training a new system and adaptation. The process of calibration consists of 
running the system on known trials and trying to find a threshold value, which is optimal 
for desired application. 

SRE system calibration provides two numerical values, scale and shift. For well cali
brated system, if produced score is scaled and shifted by calibration values, the optimal 
threshold will be zero. The figure 2.4 depicts a calibrated system, where the false-alarm 
cost 

2.5 System accuracy evaluation 

In order to evaluate system's performance and quality, several metrics are used. A l l of them 
expect the system to be run on a labeled set of data. The dataset consists of 

• list of speakers 

• list of trials with results 

The system runs the trials from the list and provides its results. Comparison to the 
correct result from the dataset list provides lists of scores produced by the system for both 
target and nontarget trials. The overall quality of the system (disregarding calibration) is 
given by separability of those two lists. Multiple system's operating points can be evaluated 
by setting the decision value to such, that provides given percentage of false alarms / misses 
(e.g. to get 10% F A operating point, a value, which classifies 10 percent of trials from target 
list as nontargets, is chosen). Interpolation of all operating points determines a function to 
describe system's quality. This function's graphical representation is called D E T (Detection 
Error Tradeoff) graph, and it is often used to graphically represent system's quality at given 
operating points. Examples of D E T curves are depicted in figure 2.5. Because of their 
low resolution in the area of interest and rather bad ability to visualize operating points 

4The Phonexia SRE system used in the experiments, allows only this kind of adaptation 
5 Development SRE systems may provide other ways for adaptation 
6for the given metric 
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and differences between single D E T curves, linear axes are discouraged. Instead, probit 7 

function is used for the axes, providing high resolution in the area of interest and linearizing 
the D E T curve. 

For more exact (numerical) evaluation, either an operating point may be chosen, or a 
specific value called E E R may be calculated. E E R (Equal Error Rate) is the operating 
point, where the probability of false alarm and miss are equal. Let us denote arbitrary 
threshold values Xk- The threshold value for E E R shall be denoted by v. PFA(%k) and 
Pmiss(xk) denote false alarm probability and miss probability for the selected threshold 
value Xk, respectively. 

xi > x2 => PFA(XI) < PFA(X2) A 
Pmiss{x\) ^ Pmiss{x2) (2.7a) 

v = xn\PFA{xn) = Pmiss{xn) (2-7b) 

EER = PFA{V) (2.7C) 
Both D E T curve and E E R only describe system's ability to separate target and non-

target trials. They do not use system's hard decision; instead they take into account all 
possible threshold values. In order to represent system's performance with current thresh
old, Detection Cost Function - DCF metric was established. We can obtain its value using 

CDet — CMiss x ^Miss|Target X -^Target + CFA x ^FA|NonTarget X (1 ~~ -^Target) (2-8) 

Cjviiss and C F A are miss and false-alarm costs, respectively. In some applications, one 
type of error may be more negative than other type. For basic evaluations, both can be 
set to 1. ^Target denotes prior probability of target trial and -P]viiss|Target and ^FAINonTarget 
are conditional probabilities of miss occurring for target trial and false alarm occurring 
on nontarget trial, respectively. Target prior and detection error costs are set for desired 
application, conditional probabilities arise from system's performance. 

DCF 's value is usually normalized by 

CNorm = CDet/Coefault , (2-9) 

where Coefauit is the best cost that could be reached without observing the data, that 
is the cost received by either claiming all trials target or claiming all trials nontarget. 

. J CMiss X P Target, 1 . . 
^Default = mm < > (2.10) 

[ CFA X (1 - P Target) J 

For a system, usually two D C F values are calculated. actDCF is D C F value for cur
rent system's hard decisions, taking zero as threshold value. D C F value for theoretically 
optimally calibrated system is called minDCF. Note that minDCF < actDCF and quotient 
minDCF c a n ^ e use<^ *° estimate system's calibration. 

7inverse cumulative distribution function of normal probability distribution 
8Formulas taken from [11 
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Figure 2.5: Examples of D E T curves for both linear and probit axes 
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Chapter 3 

Voice over IP (VoIP) 

Voice over IP, a technology for communicating over computer networks, is widely used 
throughout the world. Companies utilize its ability for central management and reduced 
need for cabling, end users choose it for its cost. VoIP devices allow their users to commu
nicate by encoding audio signals produced by them to network packets and sending them 
to the other participant over the IP network (usually Internet). 

Unlike the classical telephony network, which is circuit-switched, IP networks are packet-
switched. This fact allows multiple logical connections to share one physical connection, but 
it brings quality problems. In the classical telephony network, the physical link is dedicated 
to one call at a time. This allows the analog voice signal data to be transmitted as-is. VoIP 
technology, where a media is shared among many users, needs to search ways to reduce 
required bandwidth (amount of data transferred in a time unit). 

3.1 VoIP call 

When a VoIP user wants to communicate, he uses his VoIP phone and dials the other one's 
number. Before the communication starts, the caller's phone needs to do two things: 

• locate the callee's phone on the network 

• negotiate transferred voice data format 

As both devices need to transmit and receive digital data and interpret it as voice, they 
need to negotiate the data format, along with codec (see 3.3) used to encode it. There are 
several internationally standardized codecs (described in 3.3) and each device may support 
a different set. Both devices inform each other about their format capabilities and negotiate 
a common format best suiting their requirements. This process is called codec negotiation 
and is depicted on figure 3.1. When codec negotiation is finished, devices start transmitting 
data and communicate. 

3.2 Encoding 

In order to represent a continuous audio signal in digital environment (such as computers 
or VoIP phones), the signal needs to be encoded in a digital form. Usually, a sequence 
of numbers representing signal's actual amplitude is used. To achieve this, two operations 
must be run on the signal: sampling and quantization. 
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Figure 3.1: VoIP codec negotiation 
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Sampling is the process of converting continuous audio signal into the digital form. 
This is achieved by periodically evaluating original signal's instantaneous amplitude. The 
signal may be sampled at various frequencies, but, according to the Nyquist theorem (see 
[6]), sampling frequency must be at least double of sampled signal's frequency (maximal 
frequency in case of compound signals) in order to allow perfect signal reconstruction. 

The minimal requested frequency is called Nyquist frequency. Sampling a signal at 
frequency below Nyquist frequency results in signal aliasing. Low-pass filters are used to 
eliminate high frequencies from the signal before sampling is done to avoid aliasing. Human 
voice is an audio signal with most of the energy within 400 - 3500 Hz range. Subsequently, 
in VoIP applications, which aim to encode human voice, signal is usually sampled at 8 kHz. 
There are so-called „wideband" encoders sampling at 16 kHz to receive better quality, but 
in this work, only 8 kHz sampled audio is used. 

Quantization is the process of constraining real value of signal's amplitude to limited 
discrete range. Size of the range determines digital signal's quality - „smoothness". In 
computer environment, data sizes are usually chosen to fit whole bytes. For audio, usually 
16bit (2byte) sample size is used. This gives 65536 possible values of amplitude while 
preserving low sample size. 

As a result, required bandwidth for described audio is 128 kbps (8 000 samples / second 
* 16 bits / samples). 

/sampling ^ 2 * /signal (3-1) 

Bandwidth = sample rate * sample size (3-2) 
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3.3 VOIP codecs 

The word codec stands for coder-decoder. Codecs are pairs of algorithms designed for en
coding and decoding data from/to desired formats. The VoIP technology utilizes codecs for 
encoding audio data to a representation suitable for being transferred via packet-switched 
networks. Each VoIP device is equipped with several codecs - they define the device's sup
port for audio data formats. This section will describe VoIP codecs' requirements, benefits 
and limitations. Note: I will use the word 'codec' for VoIP codecs. 

VoIP codecs are designed to meet two contradictory requirements: audio quality and 
low bandwidth. There are various codecs, each combining those requirements differently, 
therefore suitable for different environments. Audio quality for the codec is often measured 
by M O S 1 metrics, which scores codec on 1-5 scale, where 5 means excellent audio and 1 
means very bad quality. 

There are two basic codec implementations. Waveform coders compress the audio signal 
and transmit it as such, vocoders derive speech parameters and spectral characteristics and 
transmit those only, which can result in bandwidth save. 

3.3.1 Silence transmission 

When two people talk to each other on the phone, usually one of them is silent, when 
the other one speaks. Therefore, there is a lot of silence in the signal, which need not be 
transmitted. Several codecs allow to transmit special SID (Silence Insertion Descriptor) 
packet instead of the actual signal. As the SID packet can be very short, the required 
bandwidth can be significantly decreased. 

For the hearing side, absolute silence is uncomfortable, as one can always hear at least 
background noise, even though the talker is silent. To emulate this, codecs use module 
called C N G (Comfort Noise Generator) to play low-level noise to the hearing side when 
SID packets are received. 

3.3.2 ITU-T G.711 

G.711 is a waveform coder with 64 kbit/s bandwidth and M O S 4.11. It uses 12 most 
significant bits of each speech sample and converts those into 8-bit logarithmic scale. Wi th 
human hearing being logarithmic as well, the codec saves one third of the bandwidth without 
significant audio quality decrease. Its bandwidth determines it to be used for high-speed 
networks and/or where audio quality is crucial. Several enhancement were introduced, 
including wideband version of the codec. 

Two different encodings are used with G.711. fi-law encoding is used primarily in USA 
and Japan. It is optimized for better audio quality. The A-law is computationally simpler 
form of encoding used in the rest of the world. Both encodings show similar characteristics, 
subsequently only more common A-law encoding is used in this work. 

3.3.3 ITU-T G.723.1 

G.723.1 is a multi-rate vocoder with two available operating modes, 5,3 kbit/s with MOS 
3.62 and 6,3 kbit/s with M O S 3.9. It provides very good performance in low-bandwidth 
spectrum of codecs, so it is usually used in conditions, where very low bandwidth is a 
requirement. In this work, 6,3 kbit/s mode is used. 

1See [5] for closer information 
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Figure 3.2: T C P / I P and ISO/OSI network models 

3.3.4 ITU-T G.729 

G.729 is code-excited linear prediction (CS-ACELP) vocoder with 8 kbit/s bandwidth and 
MOS of 3.92. There are many extensions; ITU-T has defined 10 annexes (Annex A - Annex 
J) and two appendices, which define other transmission rates (6,4 kbit/s and 11,8 kbit/s), 
floating point implementation or D T X (discontinuous transmission, see 3.3.1). G.729 offers 
slightly better audio quality then G.723.1 with small trade in bandwidth, it is therefore 
broadly used as low-bandwidth codec. In this work, ITU-T G.729 codec without any 
annexes or appendices is considered. 

3.3.5 GSM A M R 

A M R is multi-rate vocoder, operating at various bandwidths from 4,75 to 12,2 kbit/s. It 
was developed for mobile phone networks, but for its performance in low bandwidths, it 
is utilized in low-bandwidth VoIP applications. In this work, A M R codec operating at 4,7 
kbit/s (with MOS 2.59) is considered. 

3.4 Networking 

Most of today's network devices implement the T C P / I P network model (a simplified version 
of the ISO/OSI model), see 3.4. This model divides network protocols and services to layers, 
where each layer is based on the services of the lower one and provides services to the upper 
one. 

In T C P / I P stack, protocols of the transport layer are responsible for delivering data to 
specific application. Two protocols, called T C P 2 and U D P 3 are commonly used. 

T C P protocol implements connection-oriented communication. This means, that com
municating processes have to establish a connection, transfer data and close it. This type 
of connection provides reliable connection — T C P protocol ensures all packets are received 

2 Transmission Control Protocol 
3User Datagram Protocol 

Application 

Transport 

Internet 

Link 
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Figure 3.3: VoIP network example 

and they are correctly ordered. Lower layers ensure packet transmission and routing, but 
since the packets can take various paths (see figure 3.3) and they may get lost, receiving 
side is not guaranteed to have received all the packets. T C P protocol utilizes sequence num
bers encoded in packets to deal with packet reordering and response packets from target to 
source confirming accepting the data. When a packet is sent, its sender starts a timer for 
awaiting the response (acknowledgment) packet confirming, that given packet was received. 
If the acknowledgment is not received back in time (timer expires), the packet is considered 
lost and it is resent. Figure 3.4 shows simplified example of T C P communication. 

T C P protocol has some drawbacks, though. The need for acknowledgment packets and 
big size of T C P header (20 bytes compared to 8-byte U D P header) increase bandwidth 
requirements (although T C P acknowledgment may be included in data packets sent by 
the other side). Transmission of VoIP data requires more bandwidth than used codec's 
bandwidth. This is cause by need to encapsulate VoIP data to network protocols (see figure 
3.5. However, the bandwidth increase is not the biggest issue in VoIP. The biggest problem 
is the delay. T C P provides data in correct order. That means, if a packet is missing, no 
data is delivered to the application (VoIP process), it is rather stored by receiving side's 
T C P layer until missing packet is retransmitted and received; data from both packets are 
provided to the VoIP application after that. This behaviour would result in VoIP calls 
being interrupted (when packet was not received and sender's timer has not expired yet). 
For this reason, U D P protocol is used in VoIP applications. U D P protocol was designed 
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Figure 3.5: Packet encapsulation 

IP header 
20 bytes 

UDP header 
8 bytes 

RTP header 
12 bytes 

RTP payload (VoIP data) 
160 bytes (G.711) 

Payload of each protocol contains header and payload of higher level protocol 

for applications which do not require reliable connection or prefer real-time delivery over 
ensuring everything was delivered. It only provides checksum to ensure packet was not 
damaged. 

Utilizing U D P enables VoIP transmission to keep the real-time requirements, but bring 
s problems in form of possibly missing or reordered packets. The R T P 4 protocol used for 
VoIP at the application level uses sequence numbers, which provides VoIP application with 
information about missing or reordered packets, but leaves the application to process the 
data and choose action without waiting or all preceding packets. 

When a packet is missing during VoIP call, the receiving side VoIP application cannot 
wait for its retransmission as it needs to play data contained in it in real-time. It may deal 
with this situation by either playing silence or generated noise instead of the audio from 
missing packet, or try to extrapolate the waveform from previous packets (e.g. repeat the 
last accepted packet). 

For SRE, however, the audio, that is played for the missing packet, has no relevance; 
either way it has been generated by software, not produced by actual human speech and 
therefore contains no valuable information. In this work I assume, that the receiver ignores 
missing packets and considers two subsequently accepted packets to be subsequent; this 
may result in output audio being shorter than input audio. 

Wrong order of packets is not considered. There is no need for the S R E to be done 
real-time, so the packets may be reorganized before passed to the decoder. 

4Real-time Transport Protocol 
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Chapter 4 

Evaluations & Experiments 

The aim of this work is to evaluate chosen system's performance on VoIP data, to analyze 
aspects, that may decrease system's performance and to discuss approaches of eliminating 
those aspects. In this chapter, I will describe used S R E system and its interface, used data 
set, VoIP traffic simulation environment and results of conducted experiments. 

For the experiments, Math Works M A T L A B software was used, along with the BOSARIS 
Toolkit 1 and non-public evaluation scripts by Ing. Oldřich Plchot for computing the eval
uation metrics. 

4.1 SRE system 

Throughout this work, Phonexia SID system 2 is used, particularly version 2.4.0, command-
line interface for Linux 64-bit. The SID system provides two executable files: vpcompare 
and vpextract. vpextract can be used for creating so-called voice-prints, which are 
file-formatted i-vectors (described in section 2.2). vpcompare can be used for comparing 
voice-prints and producing score (PLDA) . It provides ways to conduct system adaptation 
(creation of so-called model — set of parameters, which modify internal P L D A covariance 
matrices) and allows to specify adaptation constant to set the weight of newly trained model 
against built-in one. 

The vpextract program accepts a single file, list of files or a directory as an input 
and provides single file or directory of files (voice-prints) as an output. The input files are 
audio files in R A W format, 16-bit signed linear encoded P C M . I decided to use directory to 
directory, as I wanted voice-prints created from all audio files (audio data will be described in 
section 4.2). vpcompare accepts (as input) two filenames, two lists of files or two directories 
(voice-prints in either case). In the first case, it compares given files and produces single 
score. The latter cases are considered 'enroll list (directory) to test list (directory)', all 
comparisons for Cartesian product of the lists are run and evaluated. The result is written 
into a matrix file. This file will be referred to as S C O R E F I L E , it is subject to further 
processing and evaluation. 

For adaptation, vpcompare accepts list of training voice-prints with speaker information 
(either by dividing them into subfolders or by supplying a file with speaker name in first 
column and voice-print name in second one. Adaptation provides results in the form of 

1https://sites.google.com/site/bosaristoolkit  
2 http: //phonexia. cz / technologies / sid 
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„model directory". This directory may be used in subsequent vpcompare calls - this is 
equivalent to using adapted system. 

4.2 Audio data set 

1 have used NIST S R E 2010 audio data set. This data set contains 14270 audio files from 
both male and female speakers. NIST has defined several evaluation conditions. A condition 
is a triplet of enroll files, test files and trial definitions. For each condition, there are only 
some trials defined along with their true result. Subsequently, one can evaluate system's 
performance by having it score trials defined by the condition and compare those results to 
trial definitions. 

I have chosen condition 2 for its sufficient size and non-difficult evaluation environ
ment. This condition consists of interview recordings, where the speakers were recorded 
using different set of microphones. Subsequently, the data is rather clean, without distor
tions caused by telephone transmission. As S R E system's modifications (adaptation and 
calibration) cannot be evaluated correctly on the same data it was trained on, there was a 
need to extract rather small held out development set for training calibration and adapta
tion and leave the rest of the files as evaluation set to perform system evaluation on. The 
selection was random with keeping several restrictions. 

According to Phonexia SID developers, several dozen speakers with multiple recordings 
(preferably >10 recordings per speaker) are needed to train system adaptation, 129 speakers 
(limited to speakers with >10 recordings) were chosen for the development set. There are 
2 223 recordings uttered by those speakers, 1 508 of them are 3 minutes long, the rest 
are 8 minutes. 1 166 of them were uttered by female speakers, 1 057 by male. In some 
cases, development set was further cut in order to simulate very small amount of labeled 
data available for system modifications. There are 658 enroll recordings and 1 889 test 
recordings3, trial definitions for the development set contains 188 546 trials (3 994 target 
and 184 552 nontarget trials). 

The evaluation set consists of 6 157 recordings uttered by 394 speakers. 3 332 recordings 
were uttered by female speakers and 2 825 were uttered by male speakers. 3 949 of recordings 
are 3 minutes long, 2 208 are 8 minutes long. The evaluation set has 1 733 enroll recordings, 
5 297 test recordings and 1 536 503 trials in trial definitions (10 609 target and 1 526 066 
nontarget). Brief statistics are shown in table 4.1. 

The trial definitions for both sets were created as a subset of condition 2 trial definitions 
in the following way. Let D = (Eo,To,rD) denote a trial definition, where ED denotes 
its enroll segment (recording), TJJ denotes test segment and TD denotes trial result. Let us 
further denote set of development segments as Snev, set of evaluation segments as SEVOI 

and the whole condition 2 trial definitions as $. Resulting development and evaluation trial 
definitions will be denoted as &Dev and <&Evah respectively. Then 

'ev {D\D G <£, ED g S D E V , T D e S D E V } (4.1) 

®Eval {D\D e$,EDe SEvahTD e SEval} (4.2) 

3 A recording may be in both enroll and test lists 
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Development Set Evaluation Set 
Count of recordings 2 223 6 157 
Count of speakers 129 394 
Enroll recordings 658 1 733 
Test recordings 1 889 5 297 
Target trials 3 994 10 609 
Nontarget trials 184 552 1 526 066 

Table 4.1: Basic information about development and evaluation sets 

Codec Options Bitrate Download U R L 
G.711 A-law 64 kbps http:/ /www.itu.int/rec/T-REC-G.191/ 
G.729 No Annexes 8 kbps http: //www.itu.int / r e c / T - R E C - G . 729/ 
G.723.1 Annex A 6.3 kbps http: //www.itu.int / r e c / T - R E C - G . 723.1 / 
A M R MR475 4.75 kbps http://www.3gpp.org/DynaReport/26073.htm 

Table 4.2: List of codecs with parameters and modes used in the experiments 

4.3 VoIP and network simulation 

In order to evaluate influence of VoIP factors on system's performance, VoIP traffic simu
lating environment was created. VoIP simulation consists of 

• encoding audio files with selected codec 

• transferring encoded data over (lossy) network 

• decoding received data with selected codec 

ITU-T codecs were obtained from ITU-T web pages. A M R codec was obtained from 
3GPP, version Rel-8. For download web page, codec settings and bitrates (referred to as 
codec bandwidths previously), see table 4.2. 

A l l of the codecs provide reference implementation of both encoder and decoder. A l l 
provide the same function — with proper parameters, input file name and output file 
name, they encode input audio to a bitstream file or decode the bitstream file to audio. 
The bitstream file contains audio data, that would be sent over network in real VoIP 
application (although most of the codecs create bigger files, e.g. by encoding each bit of 
the bitstream into a word (two bytes)). 

The network is considered to drop packets by random. Bursts of dropped packets may 
be observed when routers along the path start to drop packets massively due to network 
congestion or when the packets are rerouted by errors in the routing tables. 

Instead of separating bitstream files into packets and sending them over the network, 
which would be set to discard some of them, I chose to simulate network errors directly on 
the data. Since packet corruption is not considered, the packet may only be received and 
valid, or not received at all. A l l of the codecs generate fixed-size portions of bitstream files 

- those portions are considered to be packets to real application. Subsequently, network 
error simulation is performed by cutting out these portions from the bitstream file. Packets 
can be cut either by random, in bursts of predefined size or by time marks defined by 
external file. 
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Condition Name Network Quality Burst size 
clean 100% N / A 
95 95% 1 
90 90% 1 
90_burst5 90% 5 
90_burst20 90% 20 
80 80% 1 
80_burst5 80% 5 

Table 4.3: List of used network conditions 

Cutting is done by random, keeping preset network quality (percentage of packets re
ceived). For burst cutting, packet count is computed from file length and packet length, 
proper count of discarded packets is computed from preset network quality and discarded 
packet indexes are chosen by random. Time marks of cut packets can be exported to a file 
in any mode, using following syntax 

STARTTIME1 ENDTIME1 
STARTTIME2 ENDTIME2 

where STARTTIMEx and ENDTIMEx are integer time marks in milliseconds for the beginning 
and end of x-th cut packet (or packet burst). Time marks are derived from cut packet's 
index in file and duration of packets (duration of audio information they contain). The 
duration for specific codec was derived by inspection of codec code (by examining the 
count of samples read in the process of creating a single packet), it ranges from 10 to 30 
milliseconds. 

Exporting time marks into external file allowed me to cut out packets representing 
the same time portion of audio files for different codecs, even though the packets were of 
different duration. This was done in order to eliminate possible differences between codecs 
produced by having them process different random portions of files. 

Encoding all the audio files with all (4) the codecs, subsequent processing of the encoded 
data with network simulator (cutter) using several (7) conditions (described in table 4.3) 
and their decoding with their codec produced 28 audio files sets, further referred to as 
sets. They will be denoted <codec>. <condition> (g711. clean) or <C0DEC>, <QUALITY> 
(G.711, 1007,). 

4.4 Performance Evaluation 

One of the goals of this work was to determine VoIP distortions' impact on S R E system's 
performance. Using tools and setup described above, untouched S R E system was used to 
evaluate the same set of data under several VoIP conditions. From the results, E E R s are 
shown in table 4.5 and minDCF statistics are shown in table 4.6. For D C F computing, 
„old" S R E parameters (described in [ , Table 3]) were used. For clean data, all collected 
statistics are in table 4.4 

These results indicate, that used codec and compression has far greater importance 
for S R E performance, than percentage of data missing. Conditions with bursts of missing 

21 



Metrie Value Description 
miss 10 9.21% Miss percentage at 10% F A rate 
fa2p5 17.76% F A percentage at 2.5% miss rate 
actDCF 3.3527 Actual D C F (hard decisions) 
minDCF 0.3487 Minimal possible D C F (see 2.5) 
E E R 9.64% Equal Error Rate (see 2.5) 

Table 4.4: S R E performance metrics for clean data 

clean 95 90 90_burst5 90_burst20 80 80_burst5 
G.711 10.06% 10.10% 10.28% 10.65% 10.37% 10.93% 11.05% 
G.729 13.90% 14.33% 14.72% 14.38% 14.10% 16.12% 15.08% 
G.723.1 15.52% 15.71% 16.47% 16.11% 15.89% 17.74% 16.92% 
A M R 18.13% 18.82% 18.95% 18.84% 18.80% 20.99% 19.64% 

Table 4.5: EERs of unmodified (original) S R E system for all network conditions 

clean 95 90 90_burst5 90_burst20 80 80_burst5 
G.711 0.7032 0.6965 0.6982 0.7062 0.7204 0.7003 0.7191 
G.729 0.8098 0.8351 0.8472 0.8184 0.8225 0.8871 0.8510 
G.723.1 0.8747 0.8758 0.8922 0.8854 0.8809 0.9154 0.8978 
A M R 0.9153 0.9247 0.9311 0.9278 0.9217 0.9475 0.9342 

Table 4.6: minDCFs of unmodified (original) S R E system for all network conditions 
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Figure 4.1: Comparison of EERs for used codecs (default system) 

packets show worse results, than their random counterparts for waveform codec G.711. For 
other codecs (all vocoders), they show slightly better results. 

Next section will describe S R E system adaptation and its impact on the performance 
improvement. In order for the system to provide good results, system calibration should 
be performed after the system is well-adapted. 
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4.5 Adaptation Impact 

The system adaptation was trained on each VoIP condition data set. As the training 
provides model directories (described in 4.1), a condition may be evaluated using system 
adapted on another condition. This will be referred to as „cross-adaptation". 

The table 4.7 shows E E R S for both untouched system and system adapted on full 
development set for the given condition. 

G.711 G.729 G.723.1 A M R 
def. adp. def. adp. def. adp. def. adp. 

clean 10.06% 8.26% 13.90% 10.24% 15.52% 10.20% 18.13% 11.94% 
95 10.10% 8.19% 14.33% 10.44% 15.71% 10.63% 18.82% 12.64% 
90 10.28% 8.21% 14.72% 10.42% 16.47% 10.75% 18.95% 12.32% 
90_burst5 10.65% 8.44% 14.38% 10.64% 16.11% 10.69% 18.84% 12.71% 
90_burst20 10.37% 8.58% 14.10% 10.31% 15.89% 10.49% 18.80% 12.47% 
80 10.93% 8.62% 16.12% 11.36% 17.74% 11.55% 20.99% 13.76% 
80_burst5 11.05% 9.04% 15.08% 11.00% 16.92% 11.16% 19.64% 13.21% 

Table 4.7: E E R s for both unmodified (default, def.) and fully adapted (adp.) system, 
A C = 0.9 

Adaptations with A C (adaptation constants, see 4.1) from 0.3 to 0.95 were run on 
selected conditions g711.80, amr.clean and g729.90_burst5 to find its optimal value. 
The results (EERs) of those runs are in table 4.8. The best results were achieved with 
the constant 0.9 for most of the conditions and that value was subsequently used for all 
conditions. 

Adaptation const. 0.5 0.6 0.7 0.8 0.9 0.95 
g729.90_burst5 11.29% 11.05% 10.89% 10.75% 10.64% 10.70% 
g711.80 9.12% 8.96% 8.83% 8.69% 8.62% 8.72% 
amr. clean 13.11% 12.77% 12.49% 12.19% 11.94% 11.92% 

Table 4.8: EERs of chosen conditions for different values of the adaptation constant 

The adaptation causes the SRE performance to improve significantly (over 7% E E R 
at amr.80 condition. However, these results were achieved with adaptation run on full 
development set - that means 2 223 labeled recordings. In many situations, however, such 
amount of labeled recordings may not be available. Following limited development sets 
were created by randomly selecting desired count of speakers and selecting all recordings 
uttered by those speakers (approx. 17 recordings per speaker) 

• adp20 with 20 speakers and 352 recordings, 

• adp40 with 40 speakers and 711 recordings, 

• adp80 with 80 speakers and 1386 recordings. 

The optimal adaptation constant has been searched (using the same procedure as for 
the A C for the full development set, except changing the range to 0.2 - 0.9) for all of the 
limited sets. Chosen conditions EERs for various values of A C for adp80 are depicted on 
figure 4.2. ACs chosen for the limited development sets are in table 4.9. 
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Figure 4.2: EERs for chosen conditions in searching the optimal value of A C for adp80 

Development Set Chosen A C 
adp20 0.5 
adp40 0.6 
adp80 0.75 

Table 4.9: Chosen ACs for limited development sets 

The results of evaluating the performance of the S R E system adapted with the limited 
development sets are shown in tables 4.10, 4.11, 4.12 and 4.13. Comparison of improvements 
for each network condition and limited development set can be viewed at figures 4.3 (G.711) 
and 4.4 ( A M R ) . The graphical representation of the performance is given at figures 4.3 and 
??. 

none adp20 adp40 adp80 full 
clean 10.06% 9.59% 9.28% 8.90% 8.26% 
95 10.10% 9.60% 9.31% 8.84% 8.19% 
90 10.28% 9.76% 9.38% 8.80% 8.22% 
90_burst5 10.65% 10.10% 9.69% 9.25% 8.44% 
90_burst20 10.37% 9.95% 9.60% 9.16% 8.58% 
80 10.93% 10.50% 9.95% 9.46% 8.62% 
80_burst5 11.05% 10.47% 10.04% 9.60% 9.04% 

Table 4.10: G.711 EERs for all adaptation sets, including original system's performance 
(column 'none') 

The results indicate, that the improvement of the performance is strongly dependent 
on the size of the adaptation set. However, even a relatively small set (adp20) was able to 
improve system's performance for as much as 3.5% for A M R , 80% condition. Generally, 
the improvement is greater for the conditions, which show generally worse results (0.42% 
difference between non-adapted and adp20-adapted g711.90_burst20 compared to 3.78% 
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none adp20 adp40 adp80 full 
clean 13.90% 12.23% 11.85% 11.18% 10.24% 
95 14.33% 12.50% 11.98% 11.17% 10.44% 
90 14.72% 13.00% 12.24% 11.27% 10.42% 
90_burst5 14.38% 12.90% 12.23% 11.58% 10.64% 
90_burst20 14.10% 12.78% 12.14% 11.24% 10.31% 
80 16.12% 13.99% 13.05% 12.41% 11.36% 
80_burst5 15.08% 13.35% 12.88% 11.93% 11.00% 

Table 4.11: G.729 EERs for all adaptation sets, including original system's performance 
(column 'none') 

none adp20 adp40 adp80 full 
clean 15.52% 13.02% 12.12% 11.28% 10.21% 
95 15.71% 13.35% 12.45% 11.85% 10.63% 
90 16.47% 13.97% 12.93% 12.02% 10.75% 
90_burst5 16.11% 13.81% 12.88% 11.91% 10.69% 
90_burst20 15.89% 13.57% 12.49% 11.64% 10.49% 
80 17.74% 14.85% 13.96% 13.00% 11.55% 
80_burst5 16.92% 14.51% 13.44% 12.44% 11.16% 

Table 4.12: G.723.1 EERs for all adaptation sets, including original system's performance 
(column 'none') 

between the same adaptation sets for amr.80. 
In all previous adaptation experiments, systems were evaluated on the data from the 

condition their adaptation was trained on. However, when there are not enough data from 
the target domain or the codec or network condition of the adaptation data are unknown, 
the system can only be adapted on data from the condition other than the target. Results 
of evaluations of this kind of adaptation is shown in figures 4.5, 4.6 and 4.7. Models trained 
from full development set were used. 

The results indicate that, at least with large enough development set, performance im
proves significantly even for other codecs. The network condition used for cross-adaptation 
is of lesser importance than the codec, although cross-adaptation from models trained on 
bad network conditions (80, 80_burst5) show generally better results. When evaluating on 
one of good network conditions, the system cross-adapted on bad network condition can 
even outperform the system adapted on the evaluated condition. G.711 models provide only 
slight improvement for the tested G.729 and A M R conditions, other combinations give the 
improvement rather close to the classic adaptation. 
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none adp20 adp40 adp80 full 
clean 18.13% 15.04% 14.07% 13.15% 11.94% 
95 18.82% 15.67% 14.88% 13.78% 12.64% 
90 18.95% 15.76% 14.75% 13.58% 12.32% 
90_burst5 18.84% 15.76% 14.96% 13.77% 12.71% 
90_burst20 18.80% 15.52% 14.65% 13.51% 12.47% 
80 20.99% 17.21% 16.33% 15.21% 13.76% 
80_burst5 19.64% 16.51% 15.66% 14.45% 13.21% 

Table 4.13: A M R EERs for all adaptation sets, including original system's performance 
(column 'none') 

EER for various development sets, G.711 

none adp20 adp40 adp80 full 
Development Set 

Figure 4.3: S R E system performances for G.711 with various network conditions and adap
tation sets 
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EER for various development sets, AMR 

adp20 adp40 
Development Set 

Figure 4.4: S R E system performances for A M R with various network conditions and adap
tation sets 

EER for amr.clean cross-adapted on all models 

-G.711 

G.723 
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- A M R 
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Figure 4.5: EERs of system evaluated on amr.clean when cross-adapted for all conditions 
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EER for g711.80 cross-adapted on all models 
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Figure 4.6: EERs of system evaluated on g711.80 when cross-adapted for all conditions 

EER for g729.90_burst5 cross-adapted on all models 
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Figure 4.7: EERs of system evaluated on g729.90_burst5 when cross-adapted for all condi
tions 
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4.6 Calibration Impact 

The experiments in the previous section showed the potential in system adaptation to 
increase its ability to separate target and nontarget trials. Without proper calibration, 
though, results provided by such a system are of little value. In this section, experiments will 
be conducted for chosen conditions amr. clean, g729.90_burst5 and g711.80. Unmodified 
(non-adapted) system will be used. 

The calibration will be designed to optimize the actDCF metric. Let me remind the 
formula for computing D C F . 

CDet = Cfrfiss X PMiss\Target x ^Target + CFA X PFA\NonTarget x (1 — ^Target) (4-3) 

The costs (CMISS and CFA) and the prior probability of target trial (Prarget, also denoted 
„prior") are the parameters of target VoIP application, the conditional probabilities are 
obtained from the system running the evaluation. Parameters used in the experiments 
are NIST „old" parameters (see [1]) and are given in table 4.14. Note, that the values of 
actDCF and minDCF are normalized (see section 2.5 for explanation). 

PTarget CMiss CFA 
0.01 10 1 

Table 4.14: Application parameters for the calibration 

For running and evaluating the calibration, I have created scripts to train the calibration 
parameters, apply them to the score files and evaluate actDCF and minDCF values for the 
score files. 

In table 4.15, counts and probabilities of misses and false-alarms are shown. Note, that 
the uncalibrated system yields over a million of wrong decisions (amr. clean) in million-
and-a-half trials. 

Misses PMiss\Tgt False Alarms PFA\Non actDCF minDCF 
amr.clean 279 2.67% 1 184 072 77.59% 7.7081 0.6019 
g711.80 290 2.78% 680 008 45.08% 4.4911 0.3835 
g729.90_burst5 394 3.78% 869 723 56.99% 5.6799 0.4863 

Table 4.15: Misses, False Alarms and DCFs for uncalibrated system 

After the system has been properly calibrated, those numbers change greatly, see table 
4.16. There are 50 times less wrong decisions in the calibrated system and the actDCF 
metric has decreased 10 times. 

Misses PMiss\Tgt False Alarms PFA\Non actDCF shift 
amr.clean 5 177 49.60% 16 417 1.08% 0.6025 -8.53 
g711.80 3 232 30.97% 11 592 0.76% 0.3849 -6.49 
g729.90_burst5 4 128 39.55% 14 427 0.95% 0.4891 -7.05 

Table 4.16: Misses, False Alarms, actDCF and trained threshold shift for calibrated system 
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Chapter 5 

Conclusion 

In this work, I acquainted myself with the S R E systems architecture, their usage and the 
ways to modify them. I explored the VoIP technology and described codecs and features 
used in the VoIP. I have also studied and described the metrics used to evaluate S R E 
system's performance. 

In order to simulate VoIP environment, I have created tools to generate VoIP audio 
data. These tools were subsequently used to prepare multiple data sets simulating various 
VoIP traffic to evaluate the SRE system on. I acquainted myself with the production SRE 
system developed by Phonexia and used it, along with the prepared data sets, to evaluate 
VoIP influence on the system's performance. 

The experiments conducted has shown, that the performance of SRE system on the 
VoIP data depends greatly on the codec used to encode the data. The data from the codecs 
with lower bitrate (especially G.723.1 and A M R ) result in worse system performance, than 
high bitrate (G.711) codec data. The fact, that some data gets lost during the network 
transmission does further decrease the performance, but the degradation of performance is 
much smaller than the degradation, when more compressing codec is used. The influence 
of packets getting lost in bursts decreases the performance of system for waveform codec 
G.711, vocoders (G.729, G.723.1 and A M R ) perform slightly better. 

The performance of the S R E system can be significantly improved by running system 
adaptation. The adaptation requires significant amount of labeled data, the size of it 
affects achieved performance improvement. The experiments show, that the data used for 
training the adaptation should be originated from the same codec and possibly even the 
same (or worse) network condition; however, systems adapted on large amount of data from 
similar codecs show great performance improvement, too. The necessity of running system 
calibration was showed. 

I find the greatest benefit in the results of limited development sets adaptation and 
cross-adaptation, which can provide those interested with information about performance 
improvement, various types and sizes of labeled data may provide. 

Further work on the topic may include training the whole S R E system directly on VoIP 
data, fusion of such systems or exploring the possibility to train the system directly on 
vocoder transmitted data instead of the audio. Another related field is the examination 
of signal distortions, possibly introduced when a packet was missing and two non-adjacent 
signal portions became adjacent. 
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