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DISERTAČNÍ PRÁCE
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Abstract

Fractals generated by iterated function systems are systematically studied
from 1981 (see [Hu]). The theory of multivalued fractals is developed from 2001
(see [AG1]) almost separately. In the thesis, we treat multivalued fractals and
structures supported by them by means of hyperfractals. We deal with structure,
self-similarity of multivalued fractals and their visualization. We discuss relation-
ship of multivalued fractals to fractals generated by iterated function systems.
We also extend the theory of hyperfractals.

We proceed in the following way. First, we review hyperspaces, maps and
hypermaps, since fractals are fixed points of hypermaps in hyperspaces. We also
remind iterated function systems and related notions of code space, self-similarity
and invariant measure.

Although we usually construct fractals by means of the Banach theorem, we
discuss other fixed point theorems, which can be applied in hyperspaces. We
describe generalizations of the Banach (metric) and Schauder (topological) fixed
point theorems. Existence results for metric and topological multivalued fractals
and hyperfractals are supplied. We study multivalued fractals and associated
hyperfractals generated by the same iterated multifunction system. We prove
that they possess the same address structure.

Since we can also regard fractals generated by iterated function systems as
attractors of chaotic dynamical systems, we can draw them by means of the chaos
game. We remind the theory related to the chaos game, particularly the ergodic
theory and chaos.

Next, we investigate visualization and dimension of hyperfractals. Hyperfrac-
tals lie in hyperspaces, which are nonlinear and infinite-dimensional spaces. For
a particular class of hyperfractals, we construct projections of their structure by
means of support functions. We apply the Moran formula to calculate dimension
of self-similar hyperfractals. We also show that self-similar fractals form a subset
of shadows of self-similar hyperfractals.

Since hyperfractals are attractors of iterated function systems, we visualize
also an invariant measure. Moreover, we construct a shadow of the invariant
measure supported by the underlying multivalued fractal by means of ergodic
theorem.

Finally, our results are generalized to spaces of fuzzy sets. We remind the
theory of fuzzy sets. Then, we define fuzzy fractals and fuzzy hyperfractals, which
are related in the same way as multivalued fractals and hyperfractals. We find
their address structure, which helps us to visualize these fractals and calculate
their Hausdorff dimension.

4



1. Introduction

1.1. Current state of the art

Fractals are extensively studied objects without an exact definition (see [Ma1],
[Ma2], [Ma3]). However, fractals have usually some of the following features [Fa1]

• Fractals have a “natural” appearance.

• Fractals have a fine structure, that is irregular detail at arbitrarily small
scales.

• Fractals are too irregular to be described by calculus or traditional geomet-
rical language, either locally or globally.

• Fractals have often some sort of self-similarity or self-affinity, perhaps in a
statistical or approximate sense.

• The “fractal dimension” (defined in some way) is strictly greater than the
topological dimension of a fractal.

• In many cases of interest, fractals have a very simple, perhaps recursive,
definition.

We will meet all the features of fractals but the last three are crucial for
us. We will consider self-similar fractals with a noninteger Hausdorff (=fractal)
dimension generated by iterated function systems (cf. [Hu], [Ba1]). An iterated
function system (IFS) is usually a system of a finite number of contractions
on a complete metric space {X; fi, i = 1, 2, . . . , n}. Then the transformation
F : K(X) → K(X) defined by

F (B) :=
n⋃

i=1

fi(B),

for all B ∈ K(X), is a contraction mapping on the complete metric space
(K(X), dH), i.e. the space of compact subsets of X. Its unique fixed point
A∗ ∈ K(X) obeys

A∗ =
n⋃

i=1

fi(A
∗).

The fixed point A∗ is called an attractor of the IFS and it is a union of its
contracted copies. If the copies are separated and contractions are in addition
similitudes, we talk about self-similarity of an attractor. For self-similar attrac-
tors, the Hausdorff dimension can be calculated by means of the Moran formula.
These results were stated by Hutchinson [Hu] (see also [B], [BG], [BK], [E], [Fa1],
[Fa2], [PJS], [Sc], [Wc] and [Wi]).
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Barnsley explores more ways of drawing fractals and invariant measures (see
[Ba1], [BD]). He also came out with the idea of fractal image compression. It-
erated function systems enable us to store image-like data in a few parameters
of functions comprising the IFS whose attractor is close to the image. Barns-
ley developed techniques for image encoding and decoding by means of IFS (cf.
[BEHL], [BH]). His method provides a great compression ratio but it is very time
consuming. Jacquin developed the approach based on the idea of IFS which use
domain and range blocks of a picture (cf. [Ja1]–[Ja4]). See also [F] or [WJ] for
further references.

Iterated function systems were extended in many ways, for instance to R∞

in [CR]. Infinite IFS were described in [GJ] and [L3]. One of the most signifi-
cant generalizations of fractals generated by IFSs are multivalued fractals. They
are generated by iterated multifunction systems (shortly IMSs). By multivalued
fractals, we understand the fixed points of operators F : K(X) → K(X), such
that

F (A) =
n⋃

i

Fi(A),

where Fi are induced by continuous multivalued maps Fi : X → K(X) from an
IMS {(X, d), F1, F2, . . . , Fn}.

Multivalued fractals were extensively investigated in the last ten years. They
were developed independently by three groups. Andres and co-workers repre-
sent one group which also introduced the terminology [A1], [A2], [AF], [AFGL],
[AG1], [AG2], [AV], [Fi]. Their work was inspired by relationships between maps,
multivalued maps and hypermaps. Problems in differential inclusions motivated
Petruşel and co-workers ([LPY], [P1], [P2], [PR1], [PR2]). For the similar ap-
proach see also [BBP], [CP], [CL], [GG], [KLV1], [KLV2], [LtM], [Mh], [MM],
[Ok], [SPK]. The articles are devoted mainly to existence results by means of the
fixed point theorems and structure of attractors. Drawing and approximation of
attractors is also investigated. Lasota and Myjak studied the related notion of
semifractals in [L1]-[L4], [LM1]–[LM4].

Our work was inspired by superfractals [Ba2] (see also [BHS1]–[BHS4]). Barns-
ley found out that it is more effective to treat some sets like sets of fractal sets.
Thus, he investigated iterated function systems of iterated function systems. In
the easiest case, he considered IFSs F1, F2, . . . , Fm,

Fi = {(X, d), f i
1, f

i
2, . . . , f

i
in},

where f i
j : X → X are contractions. The operators Fi : K(X) → K(X),

Fi(A) =
⋃

j

f i
j(A),
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comprise the IFS {(K(X), dH), F1, F2, . . . , Fm} and generate the contracting
operator φ : K(K(X)) → K(K(X)),

φ(α) =
⋃

j

⋃

A∈α
{Fj(A)}.

The fixed point of φ in a hyperhyperspace is called a superfractal.
At the end of [BHS1], it is suggested to investigate the previous case with

multivalued mappings f i
j . Attractors of such systems will be called hyperfractals

(see [AR1] and [AR2]). Hyperfractals are fixed points of operators φ inK(K(X)).
Given a system {(X, d), F1, F2, . . . , Fn}, of multivalued maps Fi : X → K(X)
we induce the maps to Fi : K(X) → K(X),

Fi(A) =
⋃

x∈A
Fi(x).

The mappings Fi : K(X) → K(X) comprise an IFS φ = {(K(X), dH), F1, F2, . . . ,
Fn}, like in the case of superfractals. Then we obtain the contracting operator
φ : K(K(X)) → K(K(X)),

φ(α) =
n⋃

i=1

φi(α) =
n⋃

i=1

⋃

A∈α
{Fi(A)}.

If Fi are contractions in a complete metric space, φ is also a contraction. The
fixed point of the contraction is called a hyperfractal.

Hyperfractals are attractors of IFS in hyperspaces. Generalizing IFS to fuzzy
sets, fuzzy fractals can be obtained (see e.g. [CFMV], [FLV], [FMV] and [DK]).
This research is also motivated by image compression.

1.2. Aims of the thesis

The aim of the thesis is to understand multivalued fractals in a better way
and to explore structures supported by them. Multivalued fractals and fractals
generated by iterated function systems were developed separately. We are con-
cerned with the address structure, self-similarity and dimension when talking
about attractors of IFSs. On the other hand, we mention the existence, draw-
ing and structure of attractors of IMS. We need to investigate the relationship
between multivalued fractals and classical fractals.

We also want to explain self-similarity and complexity of multivalued fractals.
In the book [PJS], authors discuss different types of self-similarity (see Figure 1).
Only the first set called the Sierpiński triangle is self-similar according to the
classical Hutchinson theory (see [Hu]). The Sierpiński triangle consists of its
three contracted copies. These copies are images of the Sierpiński triangle in
three similitudes. These three similitudes comprise an IFS in a complete metric
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Figure 1: Sets with different kinds of self-similarity

space (R2, dEucl). Observe also that in a neighbourhood of each point of the
Sierpiński triangle, we can find small copies of the whole set.

Remaining two sets in Figure 1 contain their copies but they do not consist
only of them. We say that sets like these are visually self-similar. We distinguish
in addition a kind of visual self-similarity. We can find copies of the tree only
in neighbourhoods of its leafs and copies of the embedded squares only in neigh-
bourhoods of the middle point. We see self-similarity in infinite number of points
and in one point.

Figure 2: Examples of multivalued fractals

The sets in Figure 1 can be regarded as multivalued fractals (further examples
can be found in the Figure 2). This means we are interested in self-similarity of
multivalued fractals.

Since we treat the complexity and structure of multivalued fractals by means
of hyperfractals, we would also like to extend our results on hyperfractals (cf.
[AR2]), particularly their dimension and visualization.

Moreover, we would like to process images with grey levels which are repre-
sented in a better way by measures or fuzzy sets. Therefore, we want to develop
suitable structures supported by multivalued fractals, i.e. measures on multival-
ued fractals, fuzzy fractals and fuzzy hyperfractals generated by iterated function
systems.
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1.3. Theoretical framework

There are two approaches to fractals generated by means of iterated systems.
Fractals can be obtained as fixed points of maps or invariant sets of chaotic dy-
namical systems. We prefer the fixed point approach to investigate the existence
of fractals. On the other hand, chaotic approach enables us to draw fractals and
approximate integrals on them in a simple way. Multivalued fractals have been
studied only by means of the fixed point theory. Having developed the address
structure of multivalued fractals, we apply chaotic approach to draw them and
construct a measure on them.

1.4. Applied methods

We employ a wide range of the mathematical theory in the work. The first
part of the thesis is devoted to the existence results. We apply fixed point theo-
rems. Since we treat fixed points in hyperspaces, we exploit properties of maps,
hypermaps and structure of hyperspaces. Except of the theory of IFS and the
measure theory, we need basics of dynamical systems, the ergodic theory and
chaos. These enable us to draw fractals and invariant measures. Moreover, the
theory of convex sets and the R̊adström results turn out to be necessary for visu-
alization of hyperfractals and calculation of their dimension. Since fuzzy fractals
and fuzzy hyperfractals are only generalization of multivalued fractals and hy-
perfractals, we apply still the theory of fuzzy sets.

1.5. Main results

The thesis are based on our article [AR2], where we supply the existence
results on multivalued fractals and hyperfractals and results following from their
address structure. In the article, we studied mainly the existence results on
multivalued fractals and hyperfractals. In addition, the Hausdorff dimension of
hyperfractals was calculated there. We adopted a part of the article in the thesis.
Sections 2 and 4 were written by Professor Andres and completed with a few
remarks here. A part of subsection 5.1 was also developed by Professor Andres
and it differs slightly in the notation from the article.

Then, we restrict ourselves to compact fractals and study mainly properties of
multivalued fractals and hyperfractals related to their address structure. We show
the relationship between multivalued fractals and hyperfractals. Self-similarity
of multivalued fractals is explained. We plot multivalued fractals by means of
the chaos game for hyperfractals. We extend our results on the Hausdorff dimen-
sion of hyperfractals. The properties of support functions help us to visualize
structure of hyperfractals. Next, we construct a shadow of an invariant mea-
sure on hyperfratals with the help of the ergodic theorem. These results are also
generalized for spaces of fuzzy sets.
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For a better comprehension and a general picture, we state the basic results
of the related theory. In order to distinguish our own results, we mark them out
with *.
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2. Spaces and hyperspaces, maps and hypermaps

Remark 1. Let us note that the most of the section can be found in [AR2] and
it was collected and developed by Professor Andres.

In the entire text, all topological spaces will be at least metric. Hence, let
(X, d) be a metric space. By the hyperspace (H(X), dH), we will understand as
usual a certain class H(X) of nonempty subsets of X endowed with the induced
Hausdorff metric dH , i.e.

1

dH(A, B) := inf{r > 0|A ⊂ Or(B) and B ⊂ Or(A)},

where Or(A) := {x ∈ X|∃a ∈ A : d(x, a) < r)} and A, B ∈ H(X). The second
possible definition is

dH(A,B) := max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}

= max{sup
a∈A

(inf
b∈B

d(a, b)), sup
b∈B

( inf
a∈A

d(a, b))}.

Remark 2. The Hausdorff metric is described in a neat way with the help of
indistinguishability in [Wc]. For A, B ∈ K(X) and δ ∈ [0,∞) we will say A and
B are δ−indistinguishable if every element of A is within a distance δ of some
element of B and every element of B is within distance of some element of A.
You can think of this as meaning that if cannot resolve points distance ≤ δ apart
then A and B are visually indistinguishable. The Hausdorff distance between A
and B is going to be the least such δ, hence the critical resolution level beyond
which A and B can be distinguished.

The following lemma will be frequently used.

Lemma 1. ([Hu, p. 719]) Let Ai, Bi ∈ B(X) for all i ∈ J. Then

dH (∪i∈JAi, ∪i∈JBi) ≤ sup
i∈J

dH(Ai, Bi).

The following typical classes

C(X) := {A ⊂ X|A is nonempty and closed},
B(X) := {A ⊂ X|A is nonempty, closed and bounded},
K(X) := {A ⊂ X|A is nonempty and compact}

satisfy the obvious inclusions

X ⊂ K(X) ⊂ B(X) ⊂ C(X).

1For the hyperspace (C(X), dH), we in fact often employ the metric min{1, dH} (cf. e.g.
[BV]) but, for the sake of simplicity, we will use the same notation here.

11



K(X)X K(K(X))

Figure 3: Structure of hyperspaces

If (X, ||.||) is a Banach space, then we can also consider their subclasses,
namely

CCo(X) := C(X) ∩ Co(X),

BCo(X) := B(X) ∩ Co(X),

KCo(X) := K(X) ∩ Co(X),

where
Co(X) := {A ⊂ X|A is nonempty and convex},

and obviously

X ⊂ KCo(X) ⊂ BCo(X) ⊂ CCo(X) ⊂ Co(X).

The hyperspace (B(X), dH) is a closed subset of (C(X), dH) (cf. e.g. [HP,
Proposition 1.7]) and if (X, d) is complete, then also (K(X), dH) is a closed
subset of (C(X), dH) (cf. e.g. [KT, Theorem 4.3.9], [HP, Proposition 1.6], [Be,
Exercise 3.2.4 (b)]). Thus, for a complete (X, d), (C(X), dH) is complete (cf.
e.g. [Be, Theorem 3.2.4]), and (K(X), dH) ⊂ (B(X), dH) are both complete
subspaces of (C(X), dH) (cf. e.g. [HP, Propositions 1.6 and 1.7]).

If (X, ||.||) is a normed space, then

(KCo(X), dH) ⊂ (BCo(X), dH) ⊂ (CCo(X), dH)

12



(X, d) (K(X), dH) references

compact compact [Be], [KT], [Mi]
complete complete [Be], [HP], [KT]
separable separable [HP], [KT]
Polish Polish [HP]

locally compact locally compact [Mi]
connected connected [Mi]

locally connected locally connected [Mi]
locally continuum-connected ANR [Cu]
locally continuum-connected

and connected AR [Cu]

Table 1: Induced properties of (K(X), dH) from (X, d).

are all closed subsets of (C(X), dH) (cf. e.g. [HP, Corollary 1.9]), and subse-
quently, for a Banach space (X, ||.||), all the above subsets are complete subspaces
of (C(X), dH) (cf. e.g. [HP, Remark 1.10]).

If X ⊂ En is nonempty, compact convex subset of En = E × · · · × E︸ ︷︷ ︸
n−times

, where

(E, ||.||) is a Banach space, then (KCo(X), dH) is, according to [HH] and [LFKU],
a compact and convex subspace of (K(X), dH).

Besides the mentioned completeness, the list of some further induced prop-
erties of (K(X), dH) by those of (X, d) can be found in Table 1. Except last
two properties in Table 1, the implications hold in both directions, i.e. these
properties are in fact equivalent on the lines.

Remark 3. Since the Vietoris topology, called a finite topology in [Mi], coincides
in K(X) with the Hausdorff metric topology (cf. e.g. [HP, Theorem 1.30 on p.
14], [Be, Exercise 3.2.9]), we could also employ for Table 1 the equivalences proved
in [Mi].

Let us recall that, by a Polish space, we understand as usual a complete
and separable metric space and that X is an AR (ANR) if, for each Y and
every closed A ⊂ Y, every continuous mapping f : A → X is extendable over
Y (a neighbourhood of A in Y ). Furthermore, a metric space (X, d) is locally
continuum-connected if, for each neighbourhood U of each point x ∈ X, there is
a neighbourhood V ⊂ U of x such that each point of V can be connected with x
by a subcontinuum (i.e. a compact, connected subset) of U.

In locally compact (e.g. Euclidean) spaces (X, d), the local continuum-connect-
edness can be simply replaced by the local connectedness in Table 1. Since the
ANRs and ARs are locally continuum-connected and the ARs are still connected,
for (K(X), dH) to be an ANR (AR), it is obviously enough to assume that so
are (X, d), respectively.
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(X, d) (C(X), dH) references

compact compact [Be], [HP]
complete complete [Be], [HP]

relatively compact relatively compact [Be]

Table 2: Equivalent properties of (X, d) and (C(X), dH).

For more details concerning the ANRs and ARs, see e.g. [AG2], [AV], [Cu].
It will be also convenient to recall some equivalent properties of (X, d) and

(C(X), dH) in Table 2. However, let us note that, unlike in Table 1, many
properties are not induced here from spaces to hyperspaces. For instance, because
of a counter-example in [KSY], (C(Rn), dH) was shown there to be non-separable
and, in particular, not Polish. More precisely, (C(Rn), dH) has according to
[KSY, Proposition 7.2] uncountably many components (i.e. maximal connected
subsets) and (K(Rn), dH) is the only separable (connected, closed and open)
component of (C(Rn), dH). In particular, (C(Rn), dH) is disconnected. It is also
not locally compact (cf. [CLP]). This demonstrates that connectedness and local
compactness are not induced.

On the other hand, according to [BV, Corollary 3.8], a metric locally convex
space (X, d) is normable if and only if its hyperspace (C(X), dH) is an ANR.
This implies that (C(Rn), dH) is an ANR and, in view of its just mentioned
disconnectedness, it cannot be an AR. In particular, (C(Rn), dH) is only locally
(path-)connected. Furthermore, e.g. the hyperspace (C(R∞), dH), where R∞

is the countable product of lines, is not an ANR (despite (R∞, |.|) is an AR)
and, equivalently (see the comments to Diagram 1 in [BV]), it is even not locally
connected. Similarly, non-normable Fréchet spaces (X, d) do not induce, unlike
Banach spaces, (C(X), dH) to be locally connected. In [BV], sufficient and nec-
essary conditions were established, for both (C(X), dH) and (B(X), dH), to be
ANR (AR). Thus, for instance, (B(X), dH), where X ⊂ E is a convex subset of
a normed linear space (E, ||.||) is an AR (cf. [AC]). Moreover, every component
of (C(En), dH), where (E, ||.||) is a Banach space, was shown in [KSY] to be a
complete AR.

Hyperspaces of compact convex spaces (in our caseKCo(R
m)) were extensively

studied in [NQS1], [NQS2] and main results were summed up in [IML]. Let us
remind two theorems [IML, Theorems 23, 24, p. 27].

Theorem 1. If Y is compact and convex and dim(Y ) ≥ 2), then KCo(Y ) is
homeomorphic to the Hilbert cube.

Theorem 2. If Y is either the open unit ball in Rn or Rn itself (n ≥ 2), then
KCo(R

n) is homeomorphic to Hilbert cube minus a point.

Remark 4. Since, dim(KCo(R)) = 2 (see [IML]), we will be able to visualize
isometrically hyperfractals in KCo(R).
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For more details concerning the relationship between spaces and hyperspaces
see e.g. [AC], [Be], [BV], [CLP], [Cu], [HP], [IML], [IN], [KSY], [KT], [Mi], [N1],
[NQS1], [NQS2], [Wi].

Now, we proceed to maps. Let us remind at least notions related to contrac-
tions.

Definition 1. ([Ba1, Definition 6.1, p. 74]) A transformation f : X → X on
a metric space (X, d) is called contractive or a contraction mapping if there is a
constant 0 ≤ r < 1 such that

d(f(x), f(y)) ≤ rd(x, y), ∀x, y ∈ X.

Any such number r is called a contractivity factor for f.

We will meet often a particular contraction called a similitude.

Definition 2. A transformation f : X → X on a metric space (X, d) is called
a similitude if there is a constant 0 ≤ r < 1 such that

d(f(x), f(y)) = rd(x, y) ∀x, y ∈ X.

Proposition 1. [Hu, p. 717] A mapping f : Rm → Rm is a similitude if and
only if

f = gr ◦ gb ◦ Q,

for some homothety gr, translation gb and orthonormal transformation Q.

Remark 5. This means that we can write for a similitude f : Rm → Rm,

f(x) = rQx+ b,

where r ∈ [0, 1), Q ∈ Rm×m is orthonormal, b ∈ Rm.
In R2, each orthonormal transformation Q can be expressed as rotation (and

reflection if det(Q) = −1),
Q = O · R,

where

O =

(
cosφ − sinφ
sinφ cosφ

)
, R =

(
1 0
0 det(Q)

)
.

Theorem 3. (Banach theorem [Ba1, Theorem 6.1, p. 75]) Let f : X → X
be a contraction mapping on a complete metric space (X, d). Then f possesses
exactly one fixed point xf ∈ X and, moreover, for any point x ∈ X, the sequence
{f 0(x), f 1(x), f 2(x), . . . } converges to xf .

Remark 6. We can also estimate the distance d(x, xf ) of any x ∈ X,

d(x, xf ) ≤
d(x, f(x))

1− r
.

These are three crucial properties of fractals generated by IFSs. We will obtain
a unique fractal for each IFS, every orbit will converge to it and we will be able
to estimate the distance of any iteration from the fractal.
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Next, let us study multivalued maps and the induced (in hyperspaces) hyper-
maps.

Definition 3. ([AFGL]) Let (X, d) and (Y, d′) be two metric spaces. A multi-
valued map from X to Y is a map

F : X → 2Y /{∅}.
All multivalued maps will have at least closed values. By a fixed point of a

multivalued map F : X → 2X/{∅}, we mean xF ∈ X with xF ∈ F(xF).
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Figure 4: Contraction and similitude in R
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Figure 5: Multivalued contraction and similitude in R

Let us also remind induction of a map. A map f : X → X is induced to a
hypermap F : 2X/{∅} → 2X/{∅},

F (A) =
⋃

x∈A
{f(x)}.
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Remark 7. We will often induce contractions f : X → X to F : K(X) → K(X),

F (A) =
⋃

x∈A
{f(x)}.

Note that F : K(X) → K(X) is also a contraction. If f : X → X is a similitude
then F : K(X) → K(X) is also a similitude.

A multivalued map F : X → 2X/{∅} is induced to a hypermap F : 2X/{∅} →
2X/{∅},

F (A) =
⋃

x∈A
F(x).

In view of applications in Section 4, we would like to have at least continuous
hypermaps. There are examples (see e.g. [AF]) that the upper semicontinuity of
multivalued maps is insufficient for this aim. It is well-known (see e.g. [AG2],
[HP]) that compact-valued upper semicontinuous maps F : X → K(Y ) induce
the (single-valued) hypermaps F : K(X) → K(Y ) which are continuous only
w.r.t. the upper-Vietoris topology, and subsequently the upper-Hausdorff topol-
ogy, but not necessarily continuous w.r.t. the Hausdorff metric topology. On the
other hand, if a compact-valued F : X → K(Y ) is continuous w.r.t. a metric
in X and the Hausdorff metric topology in K(Y ), then the induced hypermap is
also continuous w.r.t the Hausdorff metric topology. If (X, d1) and (Y, d2) are,
in particular, compact metric spaces (by which (K(X), dH1) and (K(Y ), dH2)
become compact as well, see Table 1), then F : K(X) → K(Y ) with closed
(=compact) values is continuous if and only if

F(clX(∪A∈K(X)A)) = clY (∪A∈K(X)F(A)).

Since continuous w.r.t. dH2 in C(Y ) multivalued maps F : X → C(Y ) with
closed but not necessarily compact values are only lower semicontinuous (for the
definition, see below) in general (see e.g. [AG2]), i.e. continuous only w.r.t. d1 in
X and the lower-Vietoris topology in C(X), the induced hypermaps are obviously
again not necessarily continuous w.r.t. dH1 and dH2 . Thus, in order to preserve
continuity by induction from spaces to hyperspaces, its concept must be different
here.

Hence, a map F : X → C(Y ) with closed values is said to be upper semicon-
tinuous (u.s.c.) if, for every open U ⊂ Y, the set {x ∈ X| F(x) ⊂ U} is open in
X. It is said to be lower semicontinuous (l.s.c.) if, for every open U ⊂ Y, the set
{x ∈ X| F(x)∩U 6= ∅} is open in X. If it is both u.s.c. and l.s.c., then it is called
continuous.

Remark 8. Unlike for multivalued maps with noncompact values, for compact-
valued multivalued maps, this continuity concept coincides with the continuity
w.r.t. d1 in X and the Hausdorff metric topology induced by dH2 in K(Y ) (cf.
e.g. [AG2], [HP]).
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The following implications hold for continuous multivalued maps and the in-
duced hypermaps (cf. [AF], [AG2, Appendix 3], [HP]):

F : X → C(X) ⇒ F : C(X) → C(X),
Lipschitz F : X → B(X) ⇒ F : B(X) → B(X),

F : X → K(X) ⇒ F : K(X) → K(X),

where F means that

F(A) :=
⋃

x∈A
F(x) = clX(

⋃

x∈A
F(x)), for all A ∈ C(X),

but obviously
F : E → CCo(E)��⇒F : CCo(E) → CCo(E),

where (E, ||.||) is a Banach space.
Nevertheless, for special maps of the form

F0 : E
n → CCo(E

n), F0(x) := A x+ C,

where A is a real n× n−matrix, C ∈ CCo(E
n), En = E × · · · × E︸ ︷︷ ︸

n−times

and (E, ||.||)

is a Banach space, we also have

F0 : E
n → CCo(E

n) ⇒ F0 : CCo(E
n) → CCo(E

n).

Let us note that although, in vector spaces, the linear combinations of convex
sets are convex (see e.g. [Be, Theorem 1.4.1]), they need not be closed (see e.g.
[AB, Example 5.3.]) which justifies to use F0 instead of F0. On the other hand,
in vector spaces, scalar multiples of closed sets are closed and the algebraic sum
of a compact set and a closed set is closed (see e.g. [AB, Lemma 5.2]). Thus, if
C ∈ KCo(E

n), then the bar need not be used for F0, in order the last implication
to be satisfied. Moreover, an affine function image of a convex set is convex (see
e.g. [Be, Theorem 1.4.1]).

Since F0 is Lipschitz continuous, in view of the above implications, we get
still

F0 : E
n → BCo(E

n) ⇒ F0 : BCo(E
n) → BCo(E

n),

F0 : E
n → KCo(E

n) ⇒ F0 : KCo(E
n) → KCo(E

n),

provided C ∈ BCo(E
n) and C ∈ KCo(E

n), respectively. If C ∈ KCo(E
n), then

we can also simply write

F0 : E
n → CCo(E

n) ⇒ F0 : CCo(E
n) → CCo(E

n),

F0 : E
n → BCo(E

n) ⇒ F0 : BCo(E
n) → BCo(E

n).
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map hypermap references

continuous continuous [AF],
F : X → K(X) F : K(X) → K(X) [AG2, Prop. A 3.43]

compact compact [AF],
F : X → K(X) F : K(X) → K(X) [AG2, Prop. A 3.47]

(weakly) contractive (weakly) contractive
F : X → C(X) F : C(X) → C(X) [AF],
F : X → B(X) F : B(X) → B(X)
F : X → K(X) F : K(X) → K(X) [AG2, Prop. A 3.20]
contraction contraction trivial

F0 : E
n → CCo(E

n) F0 : CCo(E
n) → CCo(E

n) consequences
F0 : E

n → BCo(E
n) F0 : BCo(E

n) → BCo(E
n) of the upper

F0 : E
n → KCo(E

n) F0 : KCo(E
n) → KCo(E

n) equivalences

Table 3: Some equivalent properties of maps and hypermaps.

Now, let us recall that a multivalued mapping F : X → C(X) is said to be
weakly contractive (cf. [AF], [AG2]) if, for any x, y ∈ X, dH(F(x), F(y)) ≤
h(d(x, y)), where h : [0, ∞) → [0, ∞) is a continuous, nondecreasing function
such that h(0) = 0 and 0 < h(t) < t, for t > 0. For h(t) := rt, t ∈ [0,∞), (⇒
r ∈ [0, 1)), the mapping F is obviously a contraction. For weakly contractive
single-valued maps F : X → X, it is enough to replace dH by d.

Remark 9. As pointed out in [AFGL, Remark 1] and [KS, Remark on p. 8], the
notion of a weak contraction can be weaken, namely that the function h need not
be monotonic and it also suffices to take a right upper semicontinuous (in a single-
valued sense) h. The equivalences for weakly contractive maps and hypermaps
were proved in [AF], [AG2, Proposition A 3.20], provided still lim

t→∞
t− h(t) = ∞,

but this condition does not play any role.

The implications in Table 3 concerning the properties of hypermaps induced
by those of maps were proved in [AF], [AG2, Appendix 3]. Because of the trivial
reverse implications these properties are, in fact, equivalent. The last equiva-
lences, for the map F0 defined above, follow directly from the preceding ones, on
the basis of the above arguments.

Remark 10. As already pointed out, the bar can be omitted for F0 in Table 3,
provided C ∈ KCo(E

n) in the definition of F0.

Remark 11. Because of counter-examples (see e.g. [L4, Examples 1 and 2]),
compact hypermaps F and F0 (even F and F0 or Lipschitz F and F0), on the
hyperspaces C(X), B(X) and CCo(E

n), BCo(E
n), need not imply the compact-

ness of the related maps F and F0, on the spaces X and En. Nevertheless,
compact maps F and F0 imply there the compact induced hypermaps F and F0.
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Remark 12. In view of the above arguments, we can still add one more assertion.
Let X ⊂ En be a nonempty, compact, convex subset of En such that F0 : X →
KCo(X). Since F0 is (Lipschitz-)continuous, so must be F0 : KCo(X) → KCo(X)
as well, and vice versa. Observe that, in this case, the Lipschitz constant L need
not necessarily satisfy L ∈ [0, 1).

In the following sections, we will define the hyperspaces (H1(H2(X)), dHH
)

as certain classes of nonempty subsets of H2(X), endowed with the Hausdorff
metric dHH

, induced by the metric dH . Obviously, many properties of these
new spaces can be directly induced from the supporting spaces. For instance,
K(KCo(X), dHH

) is compact if and only if so is (X, d). Similarly, many proper-
ties of hypermaps on these new hyperspaces can be induced by those of maps
on the supporting spaces. For instance, F : K(K(X)) → K(K(X)) is compact
continuous if and only if so is F : X → K(X) or F : K(X) → K(K(X))
and F0 : K(KCo(E

n)) → K(KCo(E
n)) is a contraction if and only if so is

F0 : X → KCo(E
n) or F0 : KCo(E

n) → K(KCo(E
n)).

3. Iterated function systems and invariant mea-

sures

Iterated function systems (IFSs) provide the simplest tool to produce frac-
tals. Their attractors are often self-similar and we can calculate their Hausdorff
dimension by means of the Moran formula. Moreover, attractors of IFSs are sup-
ports of invariant measures for IFSs with probabilities. Since attractors are fully
described by parameters of functions comprising IFSs, Barnsley (cf. [BEHL],
[BH]) used IFSs for data compression. Moreover, many current methods of data
compression are based on his results.

3.1. Iterated function systems

Let us remind the crucial results for us given mainly by Barnsley [Ba1] and
Hutchinson [Hu].

Definition 4. [Ba1, Definition 7.1, p. 80] A (hyperbolic) iterated function sys-
tem consists of a complete metric space (X, d) together with a finite set of
contraction mappings fi : X → X, with respective contractivity factors ri, for
i = 1, 2, . . . , n. The abbreviation “IFS” is used for “iterated function system.”
The notation for the IFS just announced is {X; fi, i = 1, 2, . . . , n} and its con-
tractivity factor is r = max{ri : i = 1, 2, . . . , n}.
Remark 13. We often drop hyperbolic.

Theorem 4. [Ba1, Theorem 7.1, p. 81] Let {X; fi, i = 1, 2, . . . , n} be a hyper-
bolic IFS with contractivity factor r. Then the transformation F : K(X) → K(X)
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defined by

F (B) :=
n⋃

i=1

fi(B),

for all B ∈ K(X), is a contraction mapping on the complete metric space (K(X), dH)
with contractivity factor r. That is

dH(F (B), F (C)) ≤ rdH(B, C),

for all B, C ∈ K(X). Its unique fixed point A∗ ∈ K(X) obeys

A∗ =
n⋃

i=1

fi(A
∗)

and is given by
A∗ = lim

k→∞
F k(B)

for any B ∈ K(X).

Proof. Contractivity of F follows from Lemma 1.

dH(F (A), F (B)) = dH(∪m
i=1fi(A), ∪m

i=1fi(B)) ≤

≤ max
i∈1, 2, ...,m

dH(fi(A), fi(B)) ≤ max
i∈1, 2, ...,m

ridH(A, B) = rdH(A, B).

Remark 14. The operator F is called the Hutchinson-Barnsley operator. Some-
times, the multivalued map F : X → K(X),

F(x) =
⋃

i

{fi(x)},

is considered. It is called the Hutchinson-Barnsley map. Inducing it to a hyper-
space, we obtain the Hutchinson-Barnsley operator F.

Definition 5. [Ba1, Definition 7.2, p. 81] The fixed point A ∈ K(X) described
in the theorem is called an attractor of the IFS.

Contractions in K(X) need not to be induced only by single-valued mappings.

Definition 6. [Ba1, Definition 9.1, p. 91] Let (X, d) be a metric space and let
C ∈ K(X). Define a transformation f0 : K(X) → K(X) by

f0(B) = C for all B ∈ K(X).

Then f0 is called a condensation transformation and C is called the associated
condensation set.
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Observe that a condensation transformation f0 : K(X) → K(X) is a contrac-
tion mapping on the metric space (K(X), dH), with contractivity factor equal to
zero, and that it possesses a unique fixed point, namely the condensation set.

Definition 7. [Ba1, Definition 9.2, p. 91] Let {X; fi, i = 1, 2, . . . , n} be a
hyperbolic IFS with contractivity factor r. Let f0 : K(X) → K(X) be a conden-
sation transformation. Then {X; fi, i = 0, 1, 2, . . . , n} is called a hyperbolic IFS
with condensation, with contractivity factor r.

Theorem 5. [Ba1, Theorem 9.1, p. 91] Let {X; fi, i = 0, 1, 2, . . . , n} be a
hyperbolic IFS with condensation, with contractivity factor r. Then the transfor-
mation F : K(X) → K(X) defined by

F (B) := ∪i=0, 1, ..., nfi(B), ∀B ∈ K(X),

is a contraction mapping on the complete metric space (K(X), dH) with a con-
tractivity factor r. That is

dH(F (B), F (C)) ≤ r · dH(B, C), ∀B, C ∈ K(X).

Its unique fixed point, A∗ obeys

A∗ = F (A∗) = ∪i=0, 1, ..., nfi(A
∗)

and is given by
A∗ = lim

n→∞
F n(B)

for any B ∈ K(X).

Let us introduce the code space (see [Ba1], [Ba2], [BK], [BKS]), which helps us
to describe fractals. We denote by Σ′

A the space which consists of all finite strings
of symbols from the alphabet A. We denote by ΣA the space which consists of all
infinite strings of symbols from the alphabet A.

Definition 8. [Ba2, Definition 1.4.1, p. 17] Let φ : Σ → X be a mapping from
Σ ⊂ Σ′

A ∪ ΣA onto a space X. Then φ is called an address function for X, and
points in Σ are called addresses. Σ is called a code space. Any point σ ∈ Σ such
that φ(σ) = x is called an address of x ∈ X. The set of all addresses of x ∈ X is
φ−1({x}).
Remark 15. Σ′

A is countable ΣA is uncountable.

Remark 16. We denote by |σ| the length of σ ∈ Σ′
A and σ|k := σ1 . . . σk. From

now on, Σ = ΣA.

We will use the code space to build the address structure for points and subsets
of an attractor of an IFS. We can write for each attractor of an IFS

A∗ = f1(A
∗) ∪ f2(A∗) ∪ · · · ∪ fm(A∗).
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Let us continue and express each A∗ on the right side of the equation by this
right side. We obtain

A∗ = f1(A
∗) ∪ f2(A∗) ∪ · · · ∪ fm(A∗) =

f1(f1(A
∗) ∪ f2(A∗) ∪ · · · ∪ fm(A∗)) · · · ∪ fm(f1(A∗) ∪ f2(A∗) ∪ · · · ∪ fm(A∗)) =

= f1(f1(A
∗)) ∪ f1(f2(A∗)) ∪ · · · ∪ f1(fm(A∗)) ∪ . . . fm(fm(A∗)).

We see that the attractor consists of its contracted images. We assign an address
to each of these sets according to applied contractions. Thus, A∗

1 := f1(A
∗), or

A∗
σ := fσ1(. . . fσm

(A∗)), σ = σ1σ2 . . . σm. If we continue this process to infinity,
we obtain addresses of the points of the attractor.

Definition 9. [Ba1, Definition 2.1, p. 122] Let {X, f1, f2, . . . , fm} be a hyper-
bolic IFS. The code space associated with the IFS, (Σ, dΣ), is defined to be the
code space on m symbols {1, 2, . . . , m}, with the metric given by

dΣ(σ, ω) =
∞∑

i=1

|σi − ωi|
(m+ 1)i

, ∀ω, σ ∈ Σ.

After the introduction to addresses, let us provide a few simple facts about
attractors of IFSs ([Hu, 3.1 (3), p. 10]).

Proposition 2. 1. A∗
i1i2...ip

= ∪m
ip+1=1A

∗
i1i2...ipip+1

.

2. A∗ ⊃ A∗
i1

⊃ · · · ⊃ A∗
i1i2...ip

⊃ . . . , and ∩∞
p=1A

∗
i1i2...ip

is a singleton whose
member is denoted a∗i1i2...ip.... A

∗ is union of these singletons.

3. A∗ is the closure of the set of fixed points of the fi1i2...ip .

4. fi1i2...ip(A
∗
j1j2...jq

) = A∗
i1i2...ipj1j2...jq

.
fi1i2...ip(a

∗
j1j2...jq ...

) = a∗i1i2...ipj1j2...jq ....

5. If B is a nonempty bounded set, then d(Bi1i2...ip , a
∗
i1i2...ip...

) → 0 uniformly
as p→ ∞. In particular, F p(B) → A∗ in the Hausdorff metric.

Remark 17. Notice that A∗
σ is a set for |σ| = k, k ∈ N, and a∗σ is a point for

|σ| = ∞.

Barnsley proves a very similar claim to 2. Before we state it, let us give
supporting proposition and lemmas.

Proposition 3. [Ba1, Theorem 7.1, p. 35] Let (X, d) be a complete metric
space. Then (K(X), dH) is a complete metric space. Moreover, if {An}, where
An ∈ K(X) ∀n ∈ N, is a Cauchy sequence, then

A = lim
n→∞

An ∈ K(X)

can be characterized as follows:

A = {x ∈ X, there is a Cauchy sequence {xn ∈ An} that converges to x}.
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Lemma 2. [Ba1, Lemma 2.1, p. 122] Let {X, fi, i = 1, 2, . . . , n} be an IFS,
where (X, d) is a complete metric space. Let C ∈ K(X). Then there exists

C̃ ∈ K(X) such that C ∈ C̃ and fi : C̃ → C̃ for i = 1, 2, . . . , n. In other words,

{C̃, fi, i = 1, 2, . . . , n} is an IFS where the underlying space is compact.

Lemma 3. [Ba1, Lemma 2.2, p. 123] Let {X, fi, i = 1, 2, . . . , n} be an IFS
of contractivity factor s, where (X, d) is a complete metric space. Let (Σ, dΣ)
denote the code space associated with the IFS. For each σ ∈ Σ, n ∈ N, and x ∈ X,
define

φ(σ, n, x) := fσ1 ◦ fσ2 ◦ · · · ◦ fσn
.

Let C denote a compact nonempty subset of X. Then there is a real constant D
such that

d(φ(σ, m, x1), φ(σ, n, x2)) ≤ Dsm∧n,

for all σ ∈ Σ, m, n ∈ N, and x1, x2 ∈ C.

Theorem 6. [Ba1, Theorem 2.1, p. 123] Let (X, d) be a complete metric space.
Let {X, f1, f2, . . . , fN} be an IFS. Let A∗ denote the attractor of the IFS. Let
(Σ, dΣ) denote the code space associated with the IFS. For each σ ∈ Σ, n ∈ N,
and x ∈ X, let

φ(σ, n, x) = fσ1 ◦ fσ2 ◦ · · · ◦ fσn
(x).

Then
φ(σ) = lim

n→∞
φ(σ, n, x)

exists, belongs to A∗ and is independent of x ∈ X. If C is a compact subset of
X, then the convergence is uniform over x ∈ C. The function φ : Σ → A∗ is
continuous and onto.

Proof. Let x ∈ X. Let C ∈ K(X) be such that x ∈ C. Employing [Ba1, Lemma
2.1, p. 122], we can define F : K(X) → K(X) in the usual way. F is a contraction
mapping on the metric space (K(X), dH); and we have

A = lim
n→∞

F n(C).

In particular, {F n(C)} is a Cauchy sequence in (K(X), dH).Notice that φ(σ, n, x) ∈
F n(C). It follows from ([Ba1, Theorem 7.1, p. 81]) that if limn→∞ φ(σ, n, x) ex-
ists, then it belongs to A∗.

That the latter limit does exist, follows from the fact that, for fixed σ ∈ Σ,
{φ(σ, n, x)}∞n=1 is a Cauchy sequence: by Lemma 2.2 ([Ba1, p.123])

d(φ(σ, m, x), φ(σ, n, x)) ≤ Dsm∧n,

for all x ∈ C, and the right hand side here tends to zero asm and n tend to infinity.
The uniformity of this convergence follows from the fact that the constant D is
independent of x ∈ C.
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Next, we prove that φ : Σ → A∗ is continuous. Let ǫ > 0 be given. Choose n
so that snD < ǫ, and let σ, ω ∈ Σ obey

dΣ(σ, ω) <
∞∑

m=n+2

N

(N + 1)m
=

1

(N + 1)n+1
.

Then one can verify that σ must agree with ω through n terms: that is, σ1 =
ω1, σ2 = ω2, . . . , σn = ωn. It follows that, for each m ≥ n, we can write

d(φ(σ, m, x), φ(ω, m, x)) = d(φ(σ, n, x1), φ(σ, n, x2)),

for some pair x1, x2 ∈ C̃. By Lemma 2.2 [Ba1, p. 123], the right hand side here
is smaller than snD which is smaller than ǫ. Taking the limit as m→ ∞, we find

d(φ(σ), φ(ω)) < ǫ.

Finally, we prove that φ is onto. Let a ∈ A∗. Then, since

A∗ = lim
n→∞

F n({x}),

it follows from Theorem 7.1 ([Ba1, p. 35]) that there is a sequence {ω(n) ∈ Σ, n =
1, 2, 3, . . . } such that

lim
n→∞

φ(ω(n), n, x) = a.

Since (Σ, dΣ) is compact, it follows that {ω(n)} possesses a convergent subse-
quence with a limit ω ∈ Σ.Without loss of generality, assume that limn→∞ ω(n) =
ω. Then the number of successive initial agreements between components of ω(n)

and ω increases without limit. That is, if

α(n) = card{j ∈ N : ω
(n)
k = ωk for 1 ≤ k ≤ j},

then α(n) → ∞ as n→ ∞. It follows that

d(φ(ω, n, x), φ(ω(n), n, x) ≤ Dsα(n).

By taking the limit on both sides as n → ∞, we find d(φ(ω), a) = 0, which
implies φ(ω) = a. Hence, φ : Σ → A∗ is onto. This completes the proof.

3.2. Measure

In the following subsection, we will introduce invariant measures for IFSs
with probabilities. The space of normalized Borel measures on a complete metric
space equipped with the Hutchinson metric is according to Barnsley [Ba1] “the
space where fractals really live”. Before defining a measure, let us remind basic
notions.
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Definition 10. ([Ba1, Definition 2.1 p. 337]) Let X be a space. Let M denote
a nonempty class of subsets of a space X such that

1. A, B ∈ M ⇒ A ∪ B ∈ M;

2. A ∈ M ⇒ X/A ∈ M.

Then M is called a field.

Definition 11. ([Ba1, Definition 2.3]) Let M be a field such that

Ai ∈ M for i ∈ {1, 2, 3 . . . } ⇒ ∪∞
i=1Ai ∈ M.

Then M is called σ−field.

Given any field there is always a minimal σ−field which contains it.

Theorem 7. [Ba1, Theorem 2.2 p. 340]) Let X be a space and let G be a set
of subsets of X. Let {Mα : α ∈ I} denote the set of all σ−fields on X which
contain G. Then M = ∩αMα is a σ−field.

Definition 12. ([Ba1, Definition 2.4]) Let G be a set of subsets of a space X.
The minimal σ−field which contains G from the last theorem is called σ−field
generated by G.
Definition 13. ([Ba1, Definition 2.5]) Let (X, d) be a metric space. Let B(X)
denote the σ−field generated by the open subsets of X. B(X) is called the Borel
field associated with the metric space X. An element of B(X) is called a Borel
subset of X.

Theorem 8. ([Ba1, Theorem 2.3]) Let (X, d) be a compact metric space. Then
the associated Borel field is generated by a countable set of balls.

In order to develop the measure theory, we combine [Ba1], [Hu], [Fa1].

Definition 14. Let X be a metric space. We call µ a measure on X if µ assigns
a non-negative number, possibly ∞, to each subset of X such that

1. µ(∅) = 0,

2. if A ⊂ B then µ(A) ≤ µ(B), and

3. if A1, A2, . . . is a countable sequence of sets then

µ

( ∞⋃

i=1

Ai

)
≤

∞∑

i=1

µ(Ai).

Given a measure µ, there is a family of subsets of X on which µ behaves in
a nice additive way: a set A ⊂ X is called µ−measurable (or just measurable it
the measure in use is clear) if

µ(E) = µ(E ∩ A) + µ(E/A),
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for all E ⊂ X.
We write M for the family of measurable sets which always form a σ−field,

that is ∅ ∈ M, X ∈ M, and if A1, A2, · · · ∈ M then ∪∞
i=1Ai ∈ M, ∩∞

i=1Ai ∈ M
and A1/A2 ∈ M. For reasonably defined measures, M will be a very large family
of sets, and in particular will contain the σ−field of Borel sets.

Remark 18. What is termed a ‘measure’ here is often referred to as an outer
measure in general texts on the measure theory (see Technical note in [Fa1, p. 8]).
Such texts define measure µ only on some σ−field M, with (1), (2), (3) holding
for sets of M, with equality in (3) if the Ai are disjoint sets in M. However, µ
can then be extended to all A ⊂ X by setting

µ(A) = inf{
∑

i

µ(Ai), A ⊂ ∪iAi, Ai ∈ M}.

We will consider only Borel measures.

Definition 15. Let (X, d) be a metric space. Let B(X) denote the Borel subsets
of X. Let B(X) be µ−measurable. Then µ is called a Borel measure.

We can find out whether a measure is a Borel measure by means of the
Carathéodory criterion (see [Fa1]).

Proposition 4. A measure µ is a Borel measure on X ⊂ Rn if and only if

µ(A ∪ B) = µ(A) + µ(B),

for all A, B ∈ X and dist(A, B) > 0.

Example 1. [Fa1, Example 1.4, p. 14] One of the most useful measures is the
Lebesgue measure Lm. It extends the notion of n−dimensional volume to a large
collection of subsets in Rm that includes the Borel sets. IfA = {(x1, x2, . . . , xm) ∈
Rn : ai ≤ xi ≤ bi} is a “coordinate parallelepiped”(we will also use “blocks”) in
Rm, the m−dimensional volume of A is given by

volm(A) = (b1 − a1)(b2 − a2) · · · (bm − am).

We obtain a measure on Rm by defining

Lm(A) = inf

{ ∞∑

i=1

volm(Ai) : A ⊂
∞⋃

i=1

Ai

}
,

where the infimum is taken over all coverings of A by coordinate parallelepipeds
Ai. We get that Lm(A) =volm(A) if A is a coordinate parallelepiped or, indeed,
any set for which the volume can be determined by the usual rules of mensuration.
Sometimes, we need to define “k−dimensional” volume on a k−dimensional plane
X in Rm; this can be done by identifying X with Rk and using Lk on subsets of
X in the obvious way.
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Let us also supply the definition of the Hausdorff measure and the related
Hausdorff dimension (cf. [Hu, p. 720]). In a complete metric space (X, d), for
every s ≥ 0, δ > 0 and S ⊂ X, we can define the s−dimensional Hausdorff
measure of S by

Hs(S) := lim
δ→0

Hs
δ (S), (1)

where Hs
δ (A) := inf{

∞∑
i=1

(diamAi)
s|A ⊂

∞⋃
i=1

Ai, diamAi ≤ δ}, and the Hausdorff

dimension dimH(A) of A by

dimH(A) := inf{s ≥ 0|Hs(A) = 0} = sup{s ≥ 0|Hs(A) = ∞}. (2)

the Hausdorff measure is also a Borel measure.

Theorem 9. ([Ba2, Theorem 2.3.19, p. 111]) Let ν ∈ P(X) be a Borel measure
and let f : X → X be continuous. Then there exists on X Borel measure µ ∈
P(X) such that

µ(B) = ν(f−1(B)) for all B ∈ B(X).

We denote this measure µ by f(ν) and also by f ◦ ν.
Definition 16. ([Ba2, Definition 2.3.20, p. 111]) The measure f(ν) is called
the transformation of the measure ν by the function f or the transformation f
applied to the measure ν.

Definition 17. ([Ba1, Definition 3.3, p. 344]) Let (X, d) be a metric space,
and let µ be a Borel measure. Then the support of µ is the set supp(µ) of
points x ∈ X such that µ(O(x, ǫ)) > 0, for all ǫ > 0 (where O(x, ǫ) = {y ∈ X :
d(x, y) < ǫ}).
Theorem 10. ([Ba1, Theorem 3.4, p. 344]) Let (X, d) be a metric space, and let
µ be a Borel measure. Then the support of µ is closed. Let (X, d) be a compact
metric space and µ(X) > 0, then suppµ ∈ K(X)

Definition 18. ([Ba1, Definition 5.1, p. 349]) Let (X, d) be a compact metric
space, and let µ be a Borel measure on X. If µ(X) = 1, then µ is said to be
normalized.

Definition 19. ([Ba1, Definition 5.2, p. 349]) Let (X, d) be a compact metric
space. Let P(X) denote the set of normalized Borel measures on X. The Monge-
Kantorovich (Hutchinson) metric dMK on P(X) is defined by

dMK(µ, ν) := sup
f∈L (X,R)

[∫

X

f(x)dµ−
∫

X

f(x)dν

]
,

where L (X, R) := {f : X → R| |f(x)− f(y)| ≤ d(x, y), for all x, y ∈ X}.
Let us supply a brief information about the related space of probability mea-

sures and the Markov operators acting on it. An operator M : P(X) → P(X) is
called the Markov operator if it satisfies
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1. M(λ1µ + λ2ν) = λ1M(µ) + λ2M(ν), for all λ1, λ2 ∈ [0, ∞) and µ, ν ∈
P(X),

2. M(µ(X)) = µ(X), for all µ ∈ P(X).

If there is still a dual operator U : C(X) → C(X), where C(X) denotes
the space of continuous functions f : X → R endowed with the sup-norm
on X such that

3.
∫
X
Uf(x)dµ =

∫
X
f(x)Mdµ, for every f ∈ C(X) and µ ∈ P(X), then M is

called the Markov-Feller operator.

It can be proved that every nonexpansive Markov operator is Markov-Feller.
For more details and properties of Markov operators, see e.g. [LM1]-[LM4], [MS].

Theorem 11. ([Ba1, Theorem 5.1, p. 349]) Let (X, d) be a compact met-
ric space. Let P(X) denote the set of normalized Borel measures on X. Then
(P(X), dMK) is a compact metric space.

Remark 19. In the same way as we define the hyperspaces (H1(H2(X)), dHH
)

as certain classes of nonempty subsets of H2(X), endowed with the Hausdorff
metric dHH

, induced by the metric dH , we can define (P(H(X)), dMKH
) as the

space of probability measures on H(X), endowed with the Monge-Kantorovich
metric dMKH

defined as follows

dMKH
(µ, ν) := sup

f∈L (H(X),R)

[∫

H(X)

f(x)dµ−
∫

H(X)

f(x)dν

]
,

where

L (H(X), R) := {f : H(X) → R| |f(x)−f(y)| ≤ dH(x, y), for all x, y ∈ H(X)}.

Definition 20. ([Ba1, Definition 6.1, p. 350]) Let (X, d) be a compact metric
space, and let P(X) denote a space of normalized Borel measures on X. Let
{X, f1, f2, . . . , m; p1, p2, . . . , pm} be a hyperbolic IFS with probabilities. The
Markov operator associated with the IFS is the function M : P(X) → P(X)
defined by

M(ν) := p1ν ◦ f−1
1 + p2ν ◦ f−1

2 + · · ·+ pmν ◦ f−1
m ,

for all ν ∈ P(X).

Theorem 12. ([Ba1, Theorem 6.1, p. 351]) Let (X, d) be a compact metric
space. Let {X, f1, f2, . . . , m; p1, p2, . . . , pm} be a hyperbolic IFS with probabili-
ties. Let r ∈ (0, 1) be a contractivity factor for the IFS. Let M : P(X) → P(X)
be the associated Markov operator. Then M is a contraction mapping, with the
contractivity factor r, with respect to the Monge-Kantorovich metric on P(X).
That is

dH(M(ν), M(µ)) ≤ rdH(ν, µ).
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Definition 21. ([Ba1, Definition 6.2, p. 352]) Let µ denote the fixed point of the
Markov operator, promised by the preceding theorem. µ is called the invariant
measure of the IFS with probabilities.

Theorem 13. ([Ba1, Theorem 6.2, p. 359]) Let (X, d) be a compact metric
space. Let {X, f1, f2, . . . , m; p1, p2, . . . , pm} (pi > 0) be a hyperbolic IFS with
probabilities. Let µ be the associated invariant measure. Then the support of µ is
the attractor of the IFS.

In order to calculate measure defined by an IFS with probabilities, let us
consider the special IFS [BD] {Σ, si, i = 1, 2, . . . , n}, where si : Σ → Σ is
defined by

si(σ) := iσ for σ ∈ Σ.

It means σ is shifted right by one place and the symbol i is placed as the first
component. Note that si, i = 1, 2, . . . , n, are contractions w.r.t. the code space
metric dΣ.We will use the notation B(Σ) for the Borel subsets of Σ. This σ−field
is generated by the cylinders

{σ; σl = il, o ≤ l < o+ k},

where each il ∈ {1, 2, . . . , n}. We will define measure ρ for the IFS {Σ, si, i =
1, 2, . . . , n} with pi, i = 1, 2, . . . , n,

ρ({σ ∈ Σ : σl = il, o ≤ l < o+ k}) =
o+k−1∏

l=o

pil .

We will denote T ∗ an analogue of the operatorM on P(X) for the space P(Σ).
In particular, we have

(T ∗ν)(B) :=
n∑

i=1

piν(s
−1
i (B)),

for any measure ν ∈ P(Σ) and B ∈ B(Σ).

Remark 20. ([BD, p. 256]) Let us remind that for σ ∈ Σ, s−1
i (σ) = ∅ for σ1 6= i

and s−1
i (σ) = ω for σ1 = i, where ωj = σj + 1. For a subset B of Σ, we have

s−1
i (B) = {s−1

i (σ); σ ∈ B}.
The following theorem summarizes properties of the IFS {Σ, si, pi, i = 1, . . . , n}.

Theorem 14. ([BD, Theorem 4]) The IFS {Σ, si, pi, i = 1, 2, . . . , n} with the
probability measure defined above have the following properties:

1. {Σ, si, i = 1, 2, . . . , n} is a hyperbolic IFS, with attractor Σ;

2. ρ is the unique measure for the IFS, in particular, it is the fixed point in
P(Σ) of T ∗, obeying T ∗(ρ) = ρ;
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3. ρ is attractive for any probability measure ρ̂ on Σ, namely

lim
n→∞

T ∗n(ρ̂) = ρ, for all ρ̂ ∈ P(Σ);

4. the support of ρ is Σ, independently of pi, pi > 0, i = 1, 2, . . . , n;

5. for all B ∈ B(Σ),

ρ(si(B)) = piρ(B), i = 1, 2, . . . , n.

Using the measure ρ, we can calculate invariant measures for other IFSs.

Theorem 15. ([BD, Theorem 5]) Let {X, fi, pi, i = 1, 2, . . . , n} be a hyperbolic
IFS. Then there is a unique measure µ, given by µ(E) = ρ(φ−1(E)) for E ∈ B(X);
µ is attractive for any probability measure ν on X and the support of µ is the
attractor A∗ independently of pi > 0, i = 1, 2, . . . , n.

3.3. Dimension and self-similarity

Let us introduce the essential notions for IFSs. Self-similarity and the open
set condition were defined firstly by Hutchinson [Hu]. They are closely related to
calculation of the Hausdorff dimension. We will also remind results of Barnsley
[Ba1] and Schief [Sc].

Now, let us describe connectedness of fractals applying the open set condition.

Definition 22. [Ba1, Definition 2.2, p. 125] The IFS is said to be totally dis-
connected if each point of its attractor possesses a unique address. The IFS is
said to be just-touching if it is not totally disconnected yet there exists an open
set O such that

1. fi(O) ∩ fj(O) = ∅, ∀i, j ∈ {1, 2, . . . , n}, i 6= j,

2. ∪n
i=1fi(O) ⊂ O.

The IFS whose attractor obeys 1. and 2. is said to obey the open set condition.
The IFS is said to be overlapping if it is neither just-touching nor disconnected.

Theorem 16. [Ba1, Theorem 2.2, p. 125] Let F = {X; f1, f2, . . . , fm} be an
IFS with an attractor A∗. The IFS is totally disconnected if and only if

fi(A
∗) ∩ fj(A∗) = ∅, ∀i, j ∈ {1, 2, . . . , m}, i 6= j.

Next, let us introduce self-similarity, which is a characteristic property of
attractors of IFSs.

Definition 23. [Hu, 5.1 (1), p. 18] A is self-similar (with respect to F ) if

1. A is invariant with respect to F, and
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2. Hk(A) > 0, Hk(Ai ∩ Aj) = 0 for i 6= j, where k = dimH K.

Self-similarity and the open set condition mean a separation of tiles A∗
i of an

attractor A∗, which is essential for the calculation of the Hausdorff dimension of
A∗. When talking about dimension of a fractal we always mean the Hausdorff
dimension here. Hutchinson considered IFSs consisting of similitudes in Rm

{(Rm, dEucl), fi, i = 1, 2, . . . , n}

with contraction factors 0 ≤ ri < 1, i = 1, 2, . . . , n. In [Hu, Convention 5.1 (2)],
it is proved:

Lemma 4. There is a unique D such that
∑n

i=1 r
D
i = 1.

Proof. Let γ(t) =
∑n

i=1 r
t
i . Then γ(0) = n and γ(t) → 0 as t→ ∞. The function

γ is continuous which implies the statement.

Definition 24. [Hu, 5.1 (3)] If
∑
rDi = 1, D is called the similarity dimension

of F.

Remark 21. The formula
∑
rDi = 1 is called the Moran or Moran-Hutchinson

formula (see also [Mo]).

Hutchinson showed that D is often equal the Hausdorff dimension of fractals.

Proposition 5. [Hu, 5.1 (4), p. 19] Let A∗ be an attractor of IFS and dimH(A
∗) =

k. Then

1. HD(A∗) <∞ and so k ≤ D (this is true for arbitrary contractions fi),

2. 0 < Hk(A∗) <∞ implies (A∗ is self-similar iff k = D).

The easiest way to calculate the Hausdorff dimension follows from the next
proposition.

Proposition 6. [Hu, 5.3 (1), p. 19] Suppose F = {Rn, f1, f2, . . . , fm} satisfies
the open set condition. Then 0 < HD(A∗) < ∞ and A∗ is self-similar. In
particular, dimH(A

∗) = D.

It means the Hausdorff dimension of an attractor in Rm equals the self-
similarity dimension if the open set condition is fulfilled.

Remark 22. It is not easy to find a feasible open set generally. A lot of work in
this field was done by Bandt (see e.g. [B], [BG]).

Hutchinson’s approach in Rm was generalized by Schief [Sc] to general com-
plete metric spaces. We need in addition a stronger version of the OSC.

Definition 25. Let F = {X; f1, f2, . . . , fm} be an IFS where fi are similitudes.
We say that F (or for brevity, A∗) fulfills the open set condition (OSC) if there
exists a nonempty open set O such that the sets fi(O), 1 ≤ i ≤ m, are pairwise
disjoint and all contained in O. If O ∩ A∗ 6= ∅, the strong open set condition is
fulfilled.
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Figure 6: Behavior of the Hausdorff measure of a set

Proposition 7. [Sc, p. 481] In Rn and generally in Euclidean case, the following
chain of implications holds

SOSC ⇔ OSC ⇔ HD(A∗) > 0 ⇒ dimH A
∗ = D.

Proposition 8. [Sc, p. 490] The following chain of implications is valid in
complete metric spaces:

A∗
i ∩ A∗

j = ∅, i 6= j ⇒ HD(A∗) > 0 ⇒ SOSC ⇒ dimH A
∗ = D.

We will also use the following proposition to calculate the Hausdorff dimension
of fractals.

Proposition 9. (cf. [CR] or [Fa2, Corollary 2.4, p. 32]) Assume that (X, d)
and (Y, d′) are metric spaces, S ⊂ X and f : S → Y satisfies the inequalities

a · d(x, y) ≤ d′(f(x), f(y)) ≤ b · d(x, y), for all x, y ∈ S,

with suitable constants a > 0 and b > 0. Then

asHs(E) ≤ Hs(f(E)) ≤ bsHs(E)

holds, for every s ≥ 0.

Remark 23. [Fa2, p. 33] This proposition reveals a fundamental property of
the Hausdorff dimension: the Hausdorff dimension is invariant under bi-Lipschitz
transformations. Note that two sets are regarded topologically the same if there
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is a homeomorphism between them. We can regard two fractal sets as the same
if there is a bi-Lipschitz mapping between them. Note also that each bi-Lipschitz
transformation is a homeomorphism. Therefore, the Hausdorff dimension pro-
vides us further distinguishing characteristics between sets.

Remark 24. In other words, metrically equivalent spaces have the same Haus-
dorff dimension. Note that the graph of the Hausdorff measure (see Figure 6) of
metrically equivalent spaces jumps from ∞ to 0 in the same value of s.

For the sake of completeness let us give two definitions.

Definition 26. [Ba1, Definition 2.2, p. 12] Two metrics d1 and d2 on a space
X are equivalent if there exist constants 0 < c1 < c2 <∞ such that

c1d1(x, y) ≤ d2(x, y) ≤ c2d1(x, y) ∀x, y ∈ X.

Definition 27. [Ba1, Definition 2.3, p. 12] Two metric spaces (X1, d1) and
(X2, d2) are equivalent if there is a function h : X1 → X2 that is bijective, such
that the metric d̂1 on X1 defined by

d̂1(x, y) := d2(h(x), h(y)), ∀x, y ∈ X1

is equivalent to d1.

We can find more different definitions of self-similarity, for example [Sc, p.
482].

Remark 25. Let F = {X; f1, f2, . . . , fm} be an IFS, where fi are similitudes.
The self-similar set A∗ is the unique compact nonempty set such that

A∗ =
m⋃

i=1

fi(A
∗).

However, the majority of definitions of self-similarity come from authors, who
studied Euclidean spaces. Since we will consider general complete metric spaces,
we will use the following definition.

Definition 28. Let F = {X; f1, f2, . . . , fm}, where fi are similitudes, fulfills
SOSC. The self-similar set A∗ is the unique compact nonempty set such that

A∗ =
m⋃

i=1

fi(A
∗).

Remark 26. We define self-similarity in the way that self-similar sets correspond
to sets whose dimension can be found by means of the Moran formula.

3.4. Lifted IFS and superfractals

Lifted IFS and superfractals serve as an inspiration how to think of mul-
tivalued fractals. Barnsley developed lifted IFS in [Ba1, p. 154], but we will
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give its more general version from [Ba2, p. 338]. We start with the IFS F =
{(X, d), f1, f2, . . . , fn}, where fi are contractions, and define the lifted IFS

F̂ = {X × Σ, f̂1, f̂2, . . . , f̂n},

where
f̂i(x, σ) := (fi(x), si(σ))

and si(σ) := iσ := ω, with ω1 = i and ωi+1 = σi, for i = 1, 2, . . . Then F̂ is an
IFS consisting of contractions with respect to the metric

dX×Σ((x, σ), (y, θ)) := dX(x, y) + dΣ(σ, θ),

for all (x, σ), (y, θ) ∈ X × Σ. Notice that

dΣ(si(σ), si(θ)) ≤
1

2
dΣ(σ, θ),

for each i = 1, 2, . . . , n, and so it follows that

dX×Σ(f̂i(x, σ), f̂i(y, θ)) ≤ max

{
1

2
, r

}
dX×Σ((x, σ), (y, θ)).

Let Â denote the set attractor of F̂ . Then the projections of Â onto X and Σ are
A∗ and Σ, respectively.

We can decompose a fractal and also an invariant measure supported on it.

Theorem 17. [Ba2, Theorem 4.9.3, p. 340] Let µ ∈ P(X) denote the measure
attractor of the IFS F = {X, fi, pi, i = 1, 2, . . . , n} and let µΣ ∈ P(Σ) denote the
measure attractor of the IFS S = {Σ, si, pi, i = 1, 2, . . . , n}, where si : Σ → Σ is
the transformation defined by si(σ) := iσ, for all σ ∈ Σ. Let µ̂ ∈ P(X×Σ) denote
the measure attractor of the IFS F̂ = {X × Σ, f̂1, f̂2, . . . , f̂n, p1, p2, . . . , pn},
where f̂i = (fi, si), for i = 1, 2, . . . , n. Then the projections of µ̂ ∈ P(X × Σ)
onto P(X) and P(Σ) are µ and µ(Σ), respectively. Moreover,

µ = φ(µΣ).

Example 2. The Sierpiński triangle is an attractor of the IFS F = {[0, 1]2, f1, f2, f3},

fi(x) =
x+ ai

2
,

where a1 = (0, 1)′, a2 = (1, 0)′, a3 = (0, 0)′. The attractor of the lifted IFS is
shown in Figure 7.

Barnsley developed superfractals in [Ba2] and [BHS1]-[BHS4]. We define
a compact metric space X with a collection of hyperbolic IFSs {Fm : m =
1, 2, . . . , M} with probabilities, where

Fm =
{
X; fm

1 , f
m
2 , . . . , f

m
Lm

; pm1 , p
m
2 , . . . , p

m
Lm

}
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Figure 7: Lifted IFS for the Sierpiński triangle

and M ≥ 1 is an integer, to be a superIFS. It is denoted in [Ba2] by

{X; F1, F2, . . . , FM} or {X; F1, F2, . . . , FM ; P1, P2, . . . , PM} ,

where the Pm are probabilities, with

M∑

m=1

Pm = 1, for all m ∈ {1, 2, . . . , M}.

The system is not an IFS but it can be used to define the hyperbolic IFS

F (1) = {K(X); F1, F2, . . . , FM ; P1, P2, . . . , PM} .

Here, each of the IFSs acts as a transformation

Fm : K(X) → K(X)

defined by
Fm(B) := ∪Lm

l=1f
m
l (B) for m = 1, 2, . . . , M.

We denote its attractor by α(1).

Remark 27. Observe that

α(1) = {Aσ : σ ∈ Ω1, 2, ...,M} ,

where
Fσ(A) = Aσ ∀A ∈ K(X).
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Definition 29. [Ba2, p. 396] The superIFS {X; F1, F2, . . . , FM ; P1, P2, . . . , PM}
is said to obey the uniform open set condition if there exists a nonempty open
set O ⊂ X such that

Fm(O) ⊂ O

and
fm
k (O) ∩ fm

l (O) = ∅ if k 6= l, for all k, l ∈ {1, 2, . . . , Lm}
and for all m ∈ {1, 2, . . . , M}.
Proposition 10. [Ba2, p, 397] Let N > 1 be a positive integer. Let the superIFS

{
RN ; F1, F2, . . . , FM ; P1, P2, . . . , PM

}

obey the uniform open set condition. Let the functions that comprise the IFS Fm

be similitudes of the form

fm
l (x) = sml O

m
l x+ tml ,

where Om
l is an orthonormal transformation, sml ∈ (0, 1) and tml ∈ RN , for all

l ∈ {1, 2, . . . , Lm} and m ∈ {1, 2, . . . , M}. Then, for almost all Aσ ∈ α(1),

dimH Aσ = D,

where D is the unique solution of

M∑

m=1

Pm ln
Lm∑

l=1

(sml )
D = 0.

Next, let us introduce some notation related to the IFS

Funderlying =
{
X; f 1

1 , f
1
2 , . . . , f

1
L1
, f 2

1 , f
2
2 , . . . , f

2
L2
, . . . , fM

1 , fM
2 , . . . , fM

LM

}

which we call the underlying IFS. Its attractor is denoted Aunderlying and we have
Aunderlying = ∪Aσ∈α(1)Aσ.

Example 3. Let us consider the superIFS

F = {R2, f 1
1 , f

1
2 , f

2
1 , f

2
2}

such that f i
j(x) = Qi

jx+ bij, i, j = 1, 2

Q1
1 =

(
0.5 −0.2887

0.2887 0.5

)
, Q1

2 =

(
0.5 0.2887

−0.2887 0.5

)
,

Q2
1 =

(
0.5 0.4410

−0.4410 0.5

)
, Q2

2 =

(
0.5 −0.4410

0.4410 0.5

)
,

b11 = (−0.5, 0.2887), b12 = (0.5, 0.2887), b21 = (−0.5, −0.4410), b22 = (0.5, −0.4410).
We distinguished different sets of the superfractal in Figure 8 by colours.
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Figure 8: Superfractal from Example 3

4. Fixed point theory in hyperspaces

Remark 28. Let us note first that the most of the section can be found in [AR2]
and it was collected and developed by Professor Andres.

The fixed point theory (in spaces) is one of the mostly developed parts of
nonlinear analysis. For the metric (Banach-like) theory, see e.g. the handbook
[KS] and for the topological (Schauder-like) theory, see e.g. the handbook [BFGJ].
On the other hand, the results concerning the fixed point theory in hyperspaces
are rather rare (cf. [A3], [AV], [D1], [D2], [DG], [Ha], [HF], [HH], [IN, Chapter
VI], [LFKU], [N2], [RN], [RS] and [Se]).

Everybody knows Banach’s (see e.g. [GD, Theorem 1.1]) and Schauder’s (see
e.g. [GD, Theorem 3.2]) fixed point theorems. In applications, we will need also
their generalizations.

The following generalization is a particular case of the Boyd-Wong version of
the Banach Theorem (see e.g. [KS, Theorem 3.2, pp. 7–8]).

Lemma 5. (Boyd-Wong) Let (X, d) be a complete metric space and f : X → X
be a weakly contractive map. Then f has exactly one fixed point.

The Covitz-Nadler multivalued version of the Banach theorem (see e.g. [GD,
Theorem 3.1, p. 28], [KS, Theorem 5.1, pp. 15–16]) reads as follows.

Lemma 6. Let (X, d) be a complete metric space and F : X → B(X) be a
contraction. Then F admits a fixed point, i.e. there exists x0 ∈ X such that
x0 ∈ F(x0).
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The following Granas version of the Lefschetz fixed point theorem (see e.g.
[GD, Theorem 4.3, p. 425]) is a far reaching generalization of the Schauder
theorem.

Lemma 7. (Granas) Let X be an ANR-space and f : X → X be a compact
map. Then the generalized Lefschetz number Λ(f) is defined and if Λ(f) 6= 0,
then f has a fixed point. In particular, if X is an AR-space, then Λ(f) = 1, and
subsequently a compact map f : X → X has a fixed point.

Since the space of probability measures (P(X), dMK) is compact if and only
if so is (X, d), as a direct consequence of the Banach fixed point theorem, we can
immediately give the following lemma.

Lemma 8. Let (X, d) be a complete metric space and (P(X), dMK) be the space
of probability Borel measures on X. If the Markov operator M : P(X) → P(X) is
a contraction with a constant r ∈ [0, 1), i.e.

dMK(M(µ), M(ν)) ≤ rdMK(µ, ν), for all µ, ν ∈ P(X),

then there exists a unique fixed point µ0 ∈ P(X), µ0 =M(µ0), called the invariant
measure w.r.t. M.

The first statement for hypermaps is a slight improvement of its analogy in
[AF] (see also [AG2, Appendix 3]) in the sense of Remark 9.

Proposition 11. Let (X, d) be a complete metric space and F1 : X → C(X), F2 :
X → B(X), F3 : X → K(X) be (weak) contractions. Then each hypermap
F1 : C(X) → C(X), F2 : B(X) → B(X), F3 : K(X) → K(X) has exactly one
fixed point Xi, i = 1, 2, 3. Moreover, each of multivalued maps F1, F2, F3 with
bounded values possesses fixed points in X1, X2, X3 ⊂ X.

Proof. By the above arguments, (C(X, dH)), (B(X, dH)) and (K(X, dH)) are
complete hyperspaces (see Table 1 and Table 2) and the induced (single-valued)
hypermaps F1, F2, F3 are self-maps. Moreover, F1, F2, F3 are (weak) con-
tractions (see Table 3). Hence, applying Lemma 5, resp. Banach’s theorem,
they have exactly one fixed point Xi, i = 1, 2, 3, representing, up to its bound-
ary, positively invariant subset in X. Since X1, X2, X3 are closed subsets of
a complete space X, they are also complete. Applying Lemma 6, the multi-
valued maps F1|X1 , F2|X2 , F3|X3 with bounded values possess fixed point in
X1, X2, X3 ⊂ X.

By the same arguments, we can give the second metric statement.

Proposition 12. Let (E, ||.||) be a Banach space. Assume that |||A ||| < 1, for
the matrix norm of A , and C1 ∈ C(En), C2 ∈ B(En), C3 ∈ K(En), at the affine
maps F01 : En → CCo(E

n), F02 : En → BCo(E
n), F03 : En → KCo(E

n). Then
each hypermap F01 : CCo(E

n) → CCo(E
n), F02 : BCo(E

n) → BCo(E
n), F03 :

KCo(E
n) → KCo(E

n) has exactly one fixed point Xi, i = 1, 2, 3. Moreover, each
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of multivalued maps F01, F02, F03 with bounded values admits a fixed point in
Xi ⊂ Rn, i = 1, 2, 3.

Proof. By the above arguments, (CCo(E
n), dH), (BCo(E

n), dH), (KCo(E
n), dH)

are complete hyperspaces. One can readily check that the multivalued maps
F01, F02, F03 are contractions. Thus, the induced (single-valued) hypermaps
F01, F02, F03, which are by the above arguments self-maps, must be contrac-
tions as well (see Table 3). Hence, applying the Banach fixed point theorem,
they have exactly one fixed point Xi, i = 1, 2, 3, representing, up to its bound-
ary, a positively invariant subset in En. Since X1, X2, X3 are closed subsets of a
Banach space En, they are also complete. Applying Lemma 6, the multivalued
maps F01|X1 , F02|X2 , F03|X3 with closed bounded values possess fixed points in
X1, X2, X3 ⊂ En.

Remark 29. Propositions 11 and 12 can be naturally extended to suitable hyper-
hyperspaces H1(H2(X)), when considering the multivalued (weak) contractions
F : H2(X) → H1(H2(X)). On the other hand, if we consider multivalued (weak)
contractions on the supporting space X, as in Propositions 11 and 12, then the
unique fixed points of the induced hyper-hypermaps F : H(H(X)) → H(H(X))
must be the same as those of hypermaps F : H(X) → H(X).

Remark 30. Condition |||A ||| < 1 in Proposition 12 is certainly not necessary.
Let, for instance, E = R and C ∈ Rn. Then the map F0 : Rn → Rn has a
unique fixed point x0 ∈ Rn if and only if (A − I ) is regular2, i.e. 1 /∈ σ(A ).
The induced hypermap F0 : K(Rn) → K(Rn) has exactly the same unique fixed
point which can be explicitly calculated as a solution of the algebraic system
(A − I )x = −C.

The first topological statement in hyperspaces generalizes its analogy in [AF]
(cf. also [AG2, Appendix 3]).

Proposition 13. Let (X, d) be a locally continuum-connected metric space and
F : X → K(X) be a compact continuous mapping. Then the induced hypermap
F : K(X) → K(X) admits a fixed point.

Proof. If (X, d) is still connected, then (K(X), dH) is an AR (see Table 1). The
induced hypermap F : K(X) → K(X) is compact and continuous as well (see
Table 3). Thus, applying Lemma 7, there is a fixed point.

If (X, d) is disconnected then, unlike in the supporting space, in the hyper-
space (K(X), dH) which is an ANR (see Table 1), K(X) consists of a finite
number of disjoint ARs, and subsequently Λ(F) ≥ 1 (for more details see [AV]).
Applying Lemma 7, F admits also in this case a fixed point.

Remark 31. Since in (K(X), dH), where (X, d) is locally continuum-connected,
we get even N(F) = Λ(F) ≥ 1, where N(F) denotes the Nielsen number for the
lower estimate of fixed points of F , we have in fact to our disposal a multiplicity

2I is the identity matrix and σ(A ) means a set of eigenvalues of A
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result. The problem of calculation of N(F) namely reduces there to a simple
combinatorical situation on a finite set (see [AV]).

Remark 32. Propositions 11 and 13 can be extended, by means of degree argu-
ments, to hyperspace continuation principles, where the induced hypermaps and
hyperhomotopies need not be self-maps (see [A1], [A2], [AFGL], [RS]). There
also exists a fixed point theorem for condensing hypermaps (cf. [L4]), but the
nontrivial induction of condesity seems to be a difficult task. On the other hand,
there is no direct way for obtaining the hyperspace analogy of the Schauder fixed
point theorem, because the hyperspaces of linear spaces have never a linear struc-
ture. Despite it, using a R̊adström theorem which allows us the embedding of the
hyperspace as a positively semilinear subspace, some analogies of the Schauder
theorem in terms of the Hausdorff topology were obtained in [D1], [D2], [DG].

Remark 33. We already know from Section 2 that (B(X), dH) is an AR, pro-
vided e.g. X ⊂ E is a convex subset of a normed space (E, ||.||) (cf. [AC]).
In general, it is according to [BV, Theorem 3.5] an AR if and only if a metric
space (X, d) is uniformly locally chain equi-connected on each bounded subset
of X and that each bounded subset of X lies in a bounded chain equi-connected
subspace of X. For the definitions and more details, see [BV]. Proposition 13 can
be, therefore, also partially extended to multivalued compact continuous maps
F : X → B(X). Analogous criteria can be also found, in view of [BV, Theo-
rem 3.2], for multivalued compact continuous maps F : X → C(X) and their
inductions on (C(X), dH).

Since (KCo(X), dH) is, according to [HH], [LFKU], a compact convex subset
of (K(X), dH), provided X ⊂ En is a compact, convex subset of a Banach space
En, the following statement can be also regarded as a particular hyperspace
version of the Schauder-type theorem.

Proposition 14. Let (En, ||.||) be a Banach space and X ⊂ En be a nonempty,
compact, convex, subset of En. Let C ∈ KCo(X) be at the affine map F0 :
X → KCo(X), defined in the foregoing section. Then the induced hypermap
F0 : KCo(X) → KCo(X) admits a fixed point X0. If still |||A ||| < 1 holds, for
the matrix norm of A at F0, then the fixed point X0 is unique. Moreover, the
multivalued map F0 : X → KCo(X) admits a fixed point in a convex, compact,
positively invariant subset X0 ⊂ X ⊂ En.

Proof. Since (KCo(X), dH) is convex and compact, it must be also a compact
AR. By the above arguments (see Remark 11), the induced hypermap F0 is a
Lipschitz-continuous self-map, i.e. F0 : KCo(X) → KCo(X), which is compact.
Applying Lemma 7, there is a fixed point X0 ∈ KCo(X). For |||A ||| < 1, one can
alternatively apply the Banach fixed point theorem to obtain the uniqueness of
X0. The point X0 ∈ KCo(X) is at the same time a convex, compact, positively
invariant subset of X ⊂ En such that F0|X0 : X0 → KCo(X0) is Lipschitz-
continuous. Applying a suitable Kakutani-type fixed point theorem whose all
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assumptions are satisfied (see e.g. [GD, Theorem 8.4, pp. 168–169]), the multi-
valued map F0 has a fixed point in X0 ⊂ X ⊂ En.

Remark 34. Similarly as for metric statements, Proposition 13 can be nat-
urally extended to the hyperspace K(K(X)), when considering the multival-
ued compact continuous maps F : K(X) → K(K(X)), provided (X, d) is a
locally continuum-connected metric space. Proposition 14 can be extended to
the hyper-hyperspace K(KCo(X)), when considering the multivalued affine maps
F0 : KCo(X) → K(KCo(X)), provided X ⊂ En is a nonempty, compact, convex
subset of a Banach space En.

5. Multivalued fractals and hyperfractals

We are ready to introduce multivalued fractals and hyperfractals. First, we
will prove their existence by means of fixed point theorems. Next, we will gen-
eralize Barnsley’s results ([Ba1]) to multivalued fractals. Finally, we will apply
the chaos game to draw multivalued fractals. However, hyperfractals will play a
crucial role in our derivations.

5.1. Existence results

Remark 35. Let us note that the most of the subsection can be found in [AR2]
and the results were partially developed by Professor Andres.

In our approach to fractals, we follow the classical ideas of J. E. Hutchinson
[Hu] and M. F. Barnsley [Ba1] concerning the iterated function systems (IFSs)
{(X, d), fi : X → X, i = 1, 2, . . . n}, where (X, d) is a complete metric space
and fi, i = 1, 2, . . . n, are contractions. The prehistory of this approach can be
already detected in the paper [Wi] of R. F. Williams.

Replacing single-valued contractions fi by multivalued ones, we talk about
iterated multifunction systems (IMSs). This name was used for the first time in
the paper [AG1]. In [A1], it was also used for the first time the term multivalued
fractals for the attractors of IMS. Later on, in [AF], [AFGL], [AG2, Appendix 3],
this notion was extended to fixed points in hyperspaces of the related Hutchinson-
Barnsley operators determined by multivalued maps. It was also distinguished
there between metric and topological multivalued fractals, according to the ap-
plied metric (Banach-like) and topological (Schauder-like) fixed point theorems.
Of course, because of identical images of sets, every set would be a topological
fractal, but we always implicitly assumed that there are at least two maps in the
generating systems under consideration. Let us note that this terminology seems
to be nowadays standard (cf. e.g. [BBP], [CL], [CP], [Fi], [KLV1], [KLV2], [Mh].)

Multivalued fractals were considered for the first time in 2001 in [A1], [AG1]
and, independently, by A. Petruşel and I. A. Rus in [P1], [PR1]. At the same
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time, the similar ideas were also implicitly present in the papers [LM1], [LM2] of
A. Lasota and J. Myjak, where an alternative approach was used leading to the
notion of semifractals (cf. also [LM3], [LM4], [MS] and the references therein).

In Introduction, we already indicated the relationship between hyperfractals,
defined as fixed points in hyper-hyperspaces of the Hutchinson-Barnsley hyper-
operators and determined by a rather general class of multivalued maps, to su-
perfractals (cf. [Ba2], [BHS1]–[BHS4], [SJM]) and to multivalued fractals. We
also would like to clarify in this section the relationship between hyperfractals
and invariant measures, defined on hyperspaces, of the Markov hyperoperators.

Hence, both multivalued fractals and hyperfractals will be investigated here
in terms of the fixed point theory from the foregoing section.

We start with a theorem for metric multivalued fractals.

Theorem 18. Let (X, d) be a complete metric space and F1i : X → C(X), F2i :
X → B(X), F3i : X → K(X) be, for all i = 1, 2, . . . , n, weak contractions.
Then each Hutchinson-Barnsley operator

F1 : C(X) → C(X), F1(A) :=
n⋃

i=1

clC(X)(
⋃
x∈A

F1i(x)),

F2 : B(X) → B(X), F2(A) :=
n⋃

i=1

clB(X)(
⋃
x∈A

F2i(x)),

F3 : K(X) → K(X), F3(A) :=
n⋃

i=1

⋃
x∈A

F3i(x)





(3)

has exactly one fixed point Aj, j = 1, 2, 3, which is at the same time a positively
invariant (for j = 1, 2, up to its boundary) set w.r.t. the related Hutchinson-
Barnsley maps

F1 : X → C(X), F1(x) :=
n⋃

i=1

F1i(x),

F2 : X → B(X), F2(x) :=
n⋃

i=1

F2i(x),

F3 : X → K(X), F3(x) :=
n⋃

i=1

F3i(x).





(4)

Moreover, each of the maps F1, F2, F3 possesses fixed points in A1, A2, A3 ⊂ X,
provided F1i have bounded values, for all i = 1, 2, . . . , n.

Proof. Since a finite union of closed sets is closed, of bounded sets is bounded
and of compact sets is compact, we can define the maps F1, F2, F3 as in (4).
Since the operators F1, F2, F3 in (3) can be equivalently defined as F1(A) :=
clC(X)(

⋃
x∈A

F1(x)), F2(A) := clB(X)(
⋃
x∈A

F2(x)), F3(A) :=
⋃
x∈A

F3(x), they have the

same properties as the induced (single-valued) hypermaps F1, F2, F3 in Proposi-
tion 11. Hence, the application of Proposition 11 completes the proof.

Remark 36. Because of a weaker notion of a weak contractivity (see Remark
9), the first part of Theorem 18 is slightly more general than its analogies in
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[AF], [AG2, Appendix 3]. It is also a generalization for F3, with multivalued
contractions F3i, of the analogous results in [AG1], [KLV1], [P1], [PR1] and for
F3, with single-valued contractions F3i, of the classical results in [Hu], [Ba1].

Remark 37. Since the completeness of (X, d) implies the completeness of (C(X),
dH), (B(X), dH), (K(X), dH), and subsequently of (C(C(X)), dHH

), (B(B(X)),
dHH

), (K(K(X)), dHH
), and since weak contractions are induced on these spaces,

the following statement can be regarded as a corollary of Theorem 18 (cf. Remark
29).

Corollary 1. Let (X, d) be a complete metric space and F1i : X → C(X),
F2i : X → B(X), F3i : X → K(X) be, for all i = 1, 2, . . . , n, weak contractions.
Then each Hutchinson-Barnsley hyperoperator

φ1 : C(C(X)) → C(C(X)), φ1(α) :=
⋃
A∈α

n⋃
i=1

{
clC(X)(

⋃
x∈A

F1i(x))

}
,

φ2 : B(B(X)) → B(B(X)), φ2(α) :=
⋃
A∈α

n⋃
i=1

{
clB(X)(

⋃
x∈A

F2i(x))

}
,

φ3 : K(K(X)) → K(K(X)), φ3(α) :=
⋃
A∈α

n⋃
i=1

{ ⋃
x∈A

F3i(x)

}

has exactly one fixed point α∗
j , j = 1, 2, 3, which is at the same time a positively

invariant (for j = 1, 2, up to its boundary) set w.r.t. the related Hutchinson-
Barnsley hypermaps

F 1 : C(X) → C(C(X)), F1(A) :=
n⋃

i=1

clC(X)

{
(
⋃
x∈A

F1i(x))

}
,

F 2 : B(X) → B(B(X)), F2(A) :=
n⋃

i=1

{
clB(X)(

⋃
x∈A

F2i(x))

}
,

F3 : K(X) → K(K(X)), F3(A) :=
n⋃

i=1

{ ⋃
x∈A

F3i(x)

}
.

Moreover, each of the hypermaps F1, F2, F3 possesses fixed points in α∗
1 ⊂

C(X), α∗
2 ⊂ B(X), α∗

3 ⊂ K(X), provided F1i have bounded values, for all i =
1, 2, . . . , n.

Definition 30. Fixed points α∗
j , j = 1, 2, 3 of operators φ∗

j , j = 1, 2, 3 from
the previous corollary are called hyperfractals.

Remark 38. Corollary 1 is a generalization for φ3, with special multivalued
contractions F3i, of Theorem 8 in [KLV2].

Since the union of convex sets need not be convex, Proposition 12 cannot be
applied as Proposition 11 above. Despite this impossibility, Corollary 1 can be
still specified as follows.

Theorem 19. Let (E, ||.||) be a Banach space. Consider the affine maps

F1i : E
n → CCo(E

n), F1i(x) := A1ix+ C1i, C1i ∈ CCo(E
n),

F2i : E
n → BCo(E

n), F2i(x) := A2ix+ C2i, C2i ∈ BCo(E
n),

F3i : E
n → KCo(E

n), F3i(x) := A3ix+ C3i, C3i ∈ KCo(E
n),

44



where Aji, j = 1, 2, 3, i = 1, 2, . . . , n, are real n × n−matrices. If |||Aij||| <
1 holds for the matrix norms of Aji, j = 1, 2, 3, i = 1, 2, . . . , n, then each
Hutchinson-Barnsley hyperoperator

φ01 : C(CCo(E
n)) → C(CCo(E

n)),

φ01(α) :=
⋃
A∈α

n⋃
i=1

{
clCCo(En)(

⋃
x∈A

F1i(x))

}
,

φ02 : B(BCo(E
n)) → B(BCo(E

n)),

φ02(α) :=
⋃
A∈α

n⋃
i=1

{
clBCo(En)(

⋃
x∈A

F2i(x))

}
,

φ03 : K(KCo(X)) → K(KCo(X)),

φ03(α) :=
⋃
A∈α

n⋃
i=1

{ ⋃
x∈A

F3i(x)

}





(5)

has exactly one fixed point α∗
j , j = 1, 2, 3.

Proof. Since (En, ||.||) is a Banach space, the hyperspaces (CCo(E
n), dH),

(BCo(E
n), dH), (KCo(E

n), dH), are, by the above arguments, complete as well as
the hyper-hyperspaces (C(CCo(E

n)), dHH
), (B(BCo(E

n)), dHH
), (K(KCo(E

n)),
dHH

) (cf. Tables 1 and 2). Since the affine multivalued maps Fji are, for
|||Aji||| < 1, obviously contractions, so are the induced (single-valued) hypermaps
clCCo(En)F1i, clBCo(En)F2i, F3i, i = 1, 2, . . . , n, (cf. Table 3). Furthermore, since a
finite union of these contractions in (5) is a contraction (cf. [AF], [AG2, Appendix
3]), the hyperoperators in (5) must be also contractions (cf. Table 3). Thus, these
hyperoperators in (5) have the same properties as the induced (single-valued)
hypermaps F1, F2, F3 in Proposition 11 which completes the proof.

Remark 39. The unique fixed points α∗
j , j = 1, 2, 3, can be only regarded

as closed or bounded, closed or compact subsets of closed, convex or bounded,
closed, convex or compact, convex subsets of En which are positively invariant
(for j = 1, 2, up to their boundaries) w.r.t. the related Hutchinson-Barnsley
hypermaps

F01 : C(E
n) → C(C(En)), F01(A) :=

n⋃

i=1

{
clC(En)(

⋃

x∈A
F1i(x))

}
,

F02 : B(En) → B(B(En)), F02(A) :=
n⋃

i=1

{
clB(En)(

⋃

x∈A
F2i(x))

}
,

F03 : K(En) → K(K(En)), F03(A) :=
n⋃

i=1

{
⋃

x∈A
F3i(x)

}
.

Moreover, each of the hypermaps F01, F02, F03 possesses fixed points in
α∗
1 ⊂ C(En), α∗

2 ⊂ B(En), α∗
3 ⊂ K(En), provided C1i ∈ BCo(E

n), for all i =
1, 2, . . . , n.
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Proposition 13 can be applied to obtain the following topological result.

Theorem 20. Let (X, d) be a locally continuum-connected metric space and Fi :
X → K(X) be, for all i = 1, 2, . . . , n, compact continuous mappings. Then the
Hutchinson-Barnsley operator

F : K(X) → K(X), F (A) :=
n⋃

i=1

{
⋃

x∈A
Fi(x)

}
(6)

admits a fixed point which is at the same time a positively invariant set w.r.t. the
Hutchinson-Barnsley map

F : X → K(X), F(x) :=
n⋃

i=1

Fi(x). (7)

Proof. Since a finite union of compact sets is compact, we can define the map F

as in (7). Since the operator F in (6) can be equivalently defined as

F (A) :=
⋃

x∈A
F(x),

it has the same properties as the induced (single-valued) hypermap F in Propo-
sition 13. Hence, the application of Proposition 13 completes the proof.

Remark 40. Since (X, d) can be disconnected, it generalizes its analogies in
[AF], [AG2, Appendix 3]. In view of Remark 31, we can even obtain in an
extremely simple way the lower estimate of the number of fixed points of F in
(6). On the other hand, since e.g. (C(R), dH) is, according to [BV], only an
ANR, but not an AR, it is a difficult task to find sufficient conditions in order
(C(C(X)), dHH

) or (B(B(X)), dHH
) to be ARs. Thus, it seems to be also difficult

to extend Theorem 20 to the Hutchinson-Barnsley operators on (C(X), dH) and
(B(X), dH).

Since the compactness of (X, d) implies the one of (K(X), dH), and subse-
quently of (K(K(X)), dHH

), and since a continuity is induced on these spaces,
the following statement can be regarded as a corollary of Theorem 18 (cf. Remark
29).

Corollary 2. Let (X, d) be a locally continuum-connected metric space and
Fi : X → K(X) be, for all i = 1, 2, . . . , n, compact continuous mappings. Then
the Huchinson-Barnsley hyperoperator

φ : K(K(X)) → K(K(X)), φ(α) :=
⋃

A∈α

n⋃

i=1

{
⋃

x∈A
Fi(x)

}

admits a fixed point which is at the same time a positively invariant set w.r.t. the
Hutchinson-Barnsley hypermap

F : K(X) → K(K(X)), F (A) :=
n⋃

i=1

{
⋃

x∈A
Fi(x)

}
.
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Despite the impossible application of Proposition 14, Corollary 2 can be still
specified as follows.

Theorem 21. Let (E, ||.||) be a Banach space and X ∈ En be a nonempty,
convex, compact subset of En. Consider the affine maps

F0i := X → KCo(X), F0i(x) := Aix+ Ci,

where Ai are real n× n−matrices and Ci ∈ KCo(X), for all i = 1, 2, . . . , n. The
Hutchinson-Barnsley hyperoperator

φ0 : K(KCo(X)) → K(KCo(X)), φ0(α) :=
⋃

A∈α

n⋃

i=1

{
⋃

x∈A
F0i(x)

}
(8)

admits always a fixed point α∗
0. If still |||Ai||| < 1 holds for the matrix norms of

Ai, i = 1, 2, . . . , n, then the fixed point α∗
0 is unique.

Proof. Since X ⊂ En is convex and compact, so is by the above arguments (cf.
[HH], [LFKU]) the hyperspace (KCo(X), dH), by which the hyper-hyperspace
(K(KCo(X)), dHH

) is a compact AR (cf. Table 1). Furthermore, since the mul-
tivalued affine maps F0i are evidently (Lipschitz-) continuous, so are the induced
(single-valued) hypermaps F0i : KCo(X) → KCo(X) (cf. Remark 12). Moreover,
since a finite union of these hypermaps is also (Lipschitz-) continuous (cf. [AF],
[AG2, Appendix 3]), the induced Hutchinson-Barnsley hyperoperator in (8) must
be (Lipschitz-) continuous as well (cf. Table 3). Thus, the hyperoperator in (8)
has the same properties as the induced (single-valued) hypermap F in Proposition
13 which completes the first (topological) part of the proof.

For |||Ai||| < 1, the multivalued affine maps F0i are obviously contractions, for
all i = 1, 2, . . . , n, and so are the induced (single-valued) hypermaps (cf. Table
3). Furthermore, since a finite union of these contractions in (8) is a contraction
(cf. [AF], [AG2, Appendix 3]), so must also be the hyperoperator φ0 in (8) (cf.
Table 3) which has in this way the same properties as the induced (single-valued)
hypermap F3 in Proposition 11. This completes the second (metric) part of the
proof.

Remark 41. Similarly as in Remark 38, the fixed points α∗
0 can be only regarded

as compact subsets of compact, convex subsets of X ⊂ En which are positively
invariant w.r.t. the related Hutchinson-Barnsley hypermap

F0 : K(X) → K(K(X)), F0(A) :=
n⋃

i=1

{
⋃

x∈A
Foi(x)

}
.

Moreover, for |||Ai||| < 1, i = 1, 2, . . . , n, the hypermap F0 possesses fixed
points in α∗

0 ⊂ K(X). Observe that, unlike in Theorem 20, here the matrices
Ai, i = 1, 2, . . . , n, can be without restrictions.
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Now, let (X, d) be a compact metric space and (P(X), dMK) be the space
of probability Borel measures on X. Let, for all i = 1, 2, . . . , n, fi : X → X
be contractions with factors ri ∈ [0, 1) and pi : X → [0, 1] be the associated

continuous probability functions such that
n∑

i=1

pi(x) = 1, for all x ∈ X.

We can define theMarkov-Feller operators as follows (cf. e.g. [LM1]–[LM4],[MS]):

M : P(X) → P(X), M(µ)(A) :=
n∑

i=1

∫

f−1
i (A)

pi(x)dµ(x), (9)

for all µ ∈ P(X) and A ∈ B(X), where B(X) denotes the σ−algebra of Borel sub-
sets ofX. In a particular case of constant probabilities pi(x) ≡ pi, i = 1, 2, . . . , n,
the formula (9) obviously simplifies into

M(µ)(A) :=
n∑

i=1

piµ(f
−1
i (A)), µ ∈ P(X), A ∈ B(X). (10)

It can be proved (see e.g. [Ba1, Theorem 6.1, p. 351]) that under the above
assumptions, M defined by (10) is a contraction, i.e.

dMK(M(µ), M(ν)) ≤ rdMK(µ, ν),

for all µ, ν ∈ P(X), where (1 >)r := max
i=1, 2, ..., n

{ri}. Thus, applying Lemma 8,

there exists a unique fixed point µ0 ∈ P(X), µ0 = M(µ0), called the invariant
measure w.r.t. M.

In this light, for compact metric spaces, a particular case of contractions in
Corollary 1 can be extended as follows.

Theorem 22. Let (X, d) be a compact metric space and Fi : X → K(X) be
Lipschitz-continuous multivalued maps with factors ri ≥ 0, for i = 1, 2, . . . , n
(like e.g. F3i, i = 1, 2, . . . , n, in Theorem 19). Let pi ∈ (0, 1] be the associated

probabilities such that
n∑

i=1

pi = 1 and
n∑

i=1

ripi < 1. Then the Markov hyperoperator

M : P(K(X)) → P(K(X)), M(µ)(A) :=
n∑

i=1

piµ(F−1
i (A)), (11)

for all µ ∈ P(K(X)) and A ∈ B(K(X)), where B(K(X)) denotes the σ−algebra
of Borel subsets of K(X), has exactly one fixed point µ0 ∈ P(K(X)) such that
supp(µ0) := {x ∈ K(X)|µ0(B(x, r)) > 0, for every r > 0} is the smallest posi-
tively invariant set w.r.t. the Hutchinson-Barnsley hypermap

F :=
n⋃

i=1

Fi : K(X) → K(K(X)). (12)
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Proof. In view of Table 1, (K(X), d) and (K(K(X)), dH) are compact. More-
over, by the above arguments, Lipschitz-continuous multivalued maps induce
(single-valued) Lipschitz hypermaps with the same factors ri ≥ 0, i = 1, 2, . . . , n.
Therefore, if

∑
i=1 nripi < 1, then the Markov hyperoperator M in (11), on the

hyperspace (P(K(X)), dMKH
), has exactly one fixed point µ0 ∈ P(K(X)) such

that supp(µ0) is a semiattractor of the hyperIFS {(K(X), dH), Fi : K(X) →
K(X), i = 1, 2, . . . , n} (see [LM3, Theorem 3.1], [MS, Fact 3.2 and Corollary
5.6]). At the same time, it is the smallest positively invariant set w.r.t. the
hypermap F in (12) (see e.g. [LM3, Theorem 2.1], [MS, Theorem 5.2]).

Remark 42. Observe that the factors ri in Theorem 22 can be greater than 1,
for some i = 1, 2, . . . , n. On the other hand, for non-unique positively invariant
sets A ⊂ K(X) w.r.t. F in (12), we only have that supp(µ0) ⊂ A, but not the
equality, as for a uniqueness. Nevertheless, the relationship between invariant
measures and topological hyperfractals can be clarified in this way. More pre-
cisely, we know from Corollary 2 that if a compact X is still locally connected,
then there is always a positively invariant set A ⊂ K(X) w.r.t. F in (12).
Now, we also know that, under the assumptions of Theorem 22 supp(µ0) ⊂ A.
Moreover, in the case of uniqueness, we have that supp(µ0) = A.

In order to avoid handicap mentioned in Remark 42, we can give the following
corollary of Theorem 22 which already concerns a unique positively invariant set
w.r.t. F in (12).

Corollary 3. Let (X, d) be a compact space and Fi : X → K(X) be, for all
i = 1, 2, . . . , n, weak contractions. Moreover, let at least one Fi, say F1, be
a contraction with factor r1 < 1. Let pi ∈ (0, 1] be the associated probabilities

such that
n∑

i=1

pi = 1. Let (P(K(X)), dMKH
) be the hyperspace of probability Borel

measures on (K(X), dH). Then the Markov-Feller hyperoperatorM : P(K(X)) →
P(K(X)), which takes the same form as in (11), has exactly one fixed point
µ0 ∈ P(K(X)), called the invariant measure w.r.t. the hyperoperator M such
that supp(µ0) = A3, where A3 comes from Corollary 1.

Proof. Since compact-valued weak contractions are, by definition, nonexpansive,
the induced (single-valued) maps must be weakly contractive (see Table 3), and

subsequently nonexpansive. Thus, we always have that
n∑

i=1

ripi ≤
n∑

i=1

pi = 1. Since

F1 is still a contraction with a constant r1 < 1, so must be the induced (single-

valued) map (cf. Table 3), by which
n∑

i=1

ripi < 1. Applying Theorem 22, there

is a unique invariant measure µ0 of the related Markov hyperoperator M whose
support is the smallest positively invariant set w.r.t. the Hutchinson-Barnsley
hypermap F in (12). Since this set is, according to Corollary 1 unique, we have
that supp(µ0) = A3, where A3 comes from Corollary 1, as claimed.
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Remark 43. Corollary 3 is a generalization of its analogy in [KLV1], [KLV2],
where all Fi, i = 1, 2, . . . n, were strict special contractions. In this case, the
proof can be done in a more straightforward way by means of Lemma 8 and
multivalued contractions with compact values need not be of a special type as in
[KLV1], [KLV2].

Remark 44. In [LM3], [MS] (cf. also the references therein), the authors con-
sidered, for the invariant measures, the supporting Polish space (X, d), the hy-
perspace (C(X), dH) and the space (P(X), dMK) of probability Borel measures
on X. Although completeness is implied by (X, d) to (C(X), dH) (cf. Table 2),
separability is not preserved in this way, by the arguments explained in Section
2. Thus, we could not directly extend Theorem 22 and Corollary 3, when just
replacing a compact (X, d) by a Polish space. Moreover, since the supports of
invariant measures in [LM3], [MS] can be noncompact, it follows that, in Theo-
rem 22 and Corollary 3, a compact (X, d) cannot be replaced by a Polish space,
when considering the hyperspace (K(X), dH).

The metric part of Theorem 21 can be generalized in a probabilistic way as
follows.

Theorem 23. Let (En, ||.||) be a real Banach space and X ⊂ En be a nonempty,
convex, compact subset of En. Consider the affine maps

F0i : X → KCo(X), F01(x) := Aix+ Ci,

where Ai are real n× n−matrices and Ci ∈ KCo(X), for all i = 1, 2, . . . , n. Let

pi ∈ [0, 1], i = 1, 2, . . . , n, be the associated probabilities such that
n∑

i=1

pi = 1 and

P(KCo(X), dMKH
) be the hyperspace of probability Borel measures on (KCo(X), dH).

If |||Ai||| < 1 holds, for the matrix norms of Ai, for all i = 1, 2, . . . , n, then the
Markov-Feller hyperoperator

M0 : P(KCo(X)) → P(KCo(X)), M0(µ)(A) :=
n∑

i=1

piµ(F
−1
0i (A)), (13)

for all µ ∈ P(KCo(X)) and A ∈ B(KCo(X)), has exactly one fixed point µ0 ∈
P(KCo(X)), called the invariant measure w.r.t. the hyperoperator M0.

Proof. Since X ⊂ En is compact, so is by the above arguments (cf. [HH])
(KCo(X), dH), and subsequently (P(KCo(X)), dMKH

). Furthermore, because of
|||Ai||| < 1, the affine multivalued maps F0i are obviously contractions, and so are
(cf. Table 3) the induced (single-valued) hypermaps F0i : KCo(X) → KCo(X),
for all i = 1, 2, . . . , n. Thus, the Markov-Feller hyperoperator defined in (13)
is, by the above arguments, a contraction as well. The application of Lemma 8,
therefore, completes the proof.
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Remark 45. For regular matrices Ai, i = 1, 2, . . . , n, the formula (12) takes
the more explicit form.

M0 : P(KCo(X)) → P(KCo(X)), M0(µ)(A) :=
n∑

i=1

piµ[(A− Ci)A
−1
i ], (14)

for all µ ∈ P(KCo(X)) and A ∈ B(KCo(X)), where B(KCo(X)) denotes the
σ−algebra of Borel subsets of KCo(X). Besides this advantage, the only improve-
ment of Corollary 3 consists in fact that the space of probability Borel measures
and the invariant measure µ0 from it are on (KCo(X), dH), i.e. on convex, com-
pact subsets of X. Otherwise, Theorem 23 can be only regarded as a consequence
of Corollary 3. On the other hand, we still have that supp(µ0) = A0, where A0

comes from Theorem 21, provided pi > 0, for all i = 1, 2, . . . , n.

We conclude this section by indicating the relationship of the obtained results
in terms of fractals.

Remark 46 (terminological). Fixed points in Theorems 18 and 20 are called
fractals, while the other fixed points are called hyperfractals. To distinguish
them still by means of the applied fixed point theorems, we speak about fixed
points in Theorems 18, 19 and, for |||Ai||| < 1, i = 1, 2, . . . , n, in Theorem 21
and Corollary 1 as metric, while about those in Theorems 20, 21 and Corollary
2 as topological. Thus, the unique fixed points in Corollary 1 represent metric
hyperfractals whose “shadows” (called the underlying fractals in [Ba2]) on the
supporting space (X, d) coincide with respective metric multivalued fractals rep-
resented by fixed points in Theorem 18. The fixed points in Corollary 2 represent
topological hyperfractals whose “shadows” on (X, d) coincide with topological
multivalued fractals represented by the fixed points in Theorem 20. The topolog-
ical hyperfractal supp(µ0) in Theorem 22 can be also called a hyper-semifractal,
in the lines of [LM3], [MS]. Furthermore, the support of the unique invariant
measure in Corollary 3 coincides, for pi > 0, i = 1, 2, . . . , n, with a metric hy-
perfractal in a particular case of Corollary 1 and the support of the invariant
measure in Theorem 23 coincides, for pi > 0 and |||Ai||| < 1, i = 1, 2, . . . , n,
with a metric hyperfractal in Theorem 21. The metric hyperfractals in Theorem
19 as well as, for |||Ai||| < 1, i = 1, 2, . . . , n, in Theorem 21, and the topological
hyperfractals in Theorem 21 are rather exceptional (cf. Remarks 14 and 16), but
their “shadows” on the supporting spaces coincide with special metric multival-
ued fractals in Theorem 18 and topological multivalued fractals in Theorem 20,
respectively.

5.2. Address structure of multivalued fractals

Address structure of multivalued fractals enables us to draw multivalued frac-
tals and measures supported by them efficiently. It is the same as the address
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structure of associated hyperfractals. We describe the address structure of mul-
tivalued fractals in a similar way as the address structure of fractals generated
by ordinary IFSs. From

A∗ =
m⋃

i=1

Fi(A
∗),

we will obtain
A∗ =

⋃

σ∈Σ
Fσ(A

∗).

Remark 47. In the previous sections we needed to distinguish multivalued maps,
hypermaps, multivalued hypermaps and hyper-hypermaps. We used different
fonts. From now on, we will immediately induce multivalued maps to hyper-
maps. Therefore, let us use the same font for a multivalued map and the induced
hypermap, for instance, F for F and F.

Remark 48. Notice that the address structure is usually treated for compact
fractals. Hence, from now on, let us restrict ourselves to contractions Fi : X →
K(X).

We need only a slight modification of Barnsley results ([Ba1, Theorem 2.1, p.
123]).

*Proposition 15. Let (X, d) be a complete metric space. Let {K(X), F1, . . . , FN}
be a hyperIFS. Let α∗ denote the attractor of the hyperIFS. Let (Σ, dΣ) denote the
code space associated with the hyperIFS. For each σ ∈ Σ, n ∈ N, and A ∈ K(X),
define

φ(σ, n, A) := Fσ1 ◦ Fσ2 ◦ · · · ◦ Fσn
(A).

Then
φ(σ) = lim

n→∞
φ(σ, n, A)

exists, belongs to A∗ and is independent of A ∈ K(X). If γ is a compact subset
of K(X), then the convergence is uniform over A ∈ γ. The function φ : Σ → α∗

is continuous and onto.

Remark 49. In order to understand the address structure of multivalued frac-
tals, let us study the formula

F (A) =
n⋃

i=1

Fi(A), A ∈ K(X).

If Fi are contractions for all i, F is also a contraction and it has a fixed point.
However, we do not need Fi : K(X) → K(X) to be induced by single-valued
mappings. Let us discuss other two cases. Fi can be induced by multivalued maps
Fi : X → K(X) or general hypermaps Fi : K(X) → K(X), i = 1, 2, . . . , n. For
general contractions Fi : K(X) → K(X), we can prove only the existence of a
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fixed point A∗,

A∗ = F (A∗) =
n⋃

i=1

Fi(A
∗).

Therefore, we will consider mainly contractions Fi : K(X) → K(X), induced by
Fi : X → K(X). It assures that

Fi(A ∪B) = Fi(A) ∪ Fi(B)

which is essential for describing the address structure of fractals.

*Theorem 24. Let (X, d) be a complete metric space. Let {(X, d), F1, . . . , FN}
be such that Fi : X → K(X), i = 1, 2, . . . , N, be an IMS and φ = {(K(X), dH),
F1, F2, . . . , FN} the associated hyperIFS. Let A∗ denote an attractor of the IMS.
Let (Σ, dΣ) denote the code space associated with the hyperIFS. For each σ ∈
Σ, n ∈ N, and A ∈ K(X) let

φ(σ, n, A) := Fσ1 ◦ Fσ2 ◦ · · · ◦ Fσn
(A).

Then
φ(σ) = lim

n→∞
φ(σ, n, A)

is a compact subset of A∗ and is independent of A ∈ K(X). If a ∈ A∗, then there
exists σ ∈ Σ such that a ∈ φ(σ).

Proof. Let us define F : K(X) → K(X),

F (A) := ∪iFi(A).

F is a contraction mapping on the metric space (K(X), dH). We have

A∗ = lim
n→∞

F n(A0).

In particular, {F n(A0)} is a Cauchy sequence in (K(X), dH). Notice that

φ(σ, n, A0) ⊂ F n(A0), ∀σ ∈ Σ.

Since limits
φ(σ) = lim

n→∞
φ(σ, n, A0)

and
A∗ = lim

n→∞
F n(A0)

exist, it follows that
φ(σ) ⊂ A∗, ∀σ ∈ Σ.

Next, we prove that each a ∈ A∗ has an address. Consider A0 ∈ K(X) and a
sequence {An}, An = F n(A0), n = 0, 1, 2, . . . From [Ba1, Theorem 7.1, p. 35],
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it follows that we can find a sequence {an}, an ∈ An, such that an → a. There
exists a sequence {ω(n) ∈ Σ, n = 1, 2, 3, . . . } such that

lim
n→∞

φ(ω(n), n, A0) ∋ a.

(Notice that a1 ∈ ∪Fi(A0) ⇒ ∃i1 ∈ {1, 2, . . . , N} : a1 ∈ Fi1(A0), a2 ∈
∪ijFij(A0) ⇒ ∃i′1, i′2 : a2 ∈ Fi′1i

′

2
(A0).)

Since (Σ, dΣ) is compact, it follows that {ω(n)} possesses a convergent subse-
quence with a limit ω ∈ Σ.Without loss of generality, assume that limn→∞ ω(n) =
ω. Then the number of successive initial agreements between components of ω(n)

and ω increases without limit. That is, if

α(n) = card{j ∈ N : ω
(n)
k = ωk for 1 ≤ k ≤ j},

then α(n) → ∞ as n→ ∞. It follows that

d(φ(ω, n, A0), φ(ω
(n), n, A0)) → 0.

From
a ∈ lim

n→∞
φ(ω(n), n, A0),

it follows that
a ∈ lim

n→∞
φ(ω, n, A0).

The theorem implies the following corollary. Each address point of a hyper-
fractal equals an address set of the underlying multivalued fractal.

*Corollary 4. Let {(X, d), F1, F2, . . . , FN} be an IMS and {(K(X), dH), F1,
F2, . . . , FN} the induced hyperIFS. Attractors A∗ and α∗ of these iterated systems
possess the same address structure,

A∗ =
⋃

σ∈Σ
A∗

σ,

α∗ =
⋃

σ∈Σ
{A∗

σ}.

We can visualize address sets of multivalued fractals by means of lifted IMSs.
We will construct lifted IMSs in the similar way as lifted IFSs. Let {(X, d), F1,
F2, . . . , Fm} be an IMS where Fi : X → K(X) are contractions. We define an
IMS

F̂ = {(X × Σ, dX×Σ), F̂1, F̂2, . . . , F̂n},
where F̂i : (X × Σ, dX×Σ) → (K(X × Σ), dX×ΣH

),

F̂i(x, σ) = Fi(x)× {si(σ)}, (15)
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Figure 9: Lifted IMS

and si(σ) := iσ := ω, with ω1 = i and ωi+1 = σi, for i = 1, 2, . . . We have
already used

dX×Σ((x, σ), (y, θ)) = dX(x, y) + dΣ(σ, θ).

In order to show that F̂i are contractions i = 1, 2, . . . , m, we need not consider
general compact subsets of X×Σ. It suffices to treat A×{σ}, σ ∈ Σ, A ∈ K(X).
Therefore, let us write (A, σ) for A× {σ}.

For the distance dX×ΣH
((A, σ), (B, θ)), we have

dX×ΣH
((A, σ), (B, θ)) = max{ sup

(a, σ)∈(A,σ)

( inf
(b, θ)∈(B, θ)

dX×Σ((a, σ), (b, θ))),

sup
(b, θ)∈(B, θ)

( inf
(a, σ)∈(A,σ)

dX×Σ((a, σ), (b, θ))}.

We will prove that F̂i are contractions. For any (x, σ) and (y, θ) ∈ X × Σ,
we can write

dX×ΣH
(F̂i(x, σ), F̂i(y, θ)) =

max{ sup
(a, η)∈F̂i(x, σ)

{ inf
(b, ω)∈F̂i(y, θ)

dX×Σ((a, η), (b, ω))},

sup
(b, ω)∈F̂i(y, θ)

{ inf
(a, η)∈F̂i(x, σ)

dX×Σ(a, η), (b, ω)}}.

Our calculation is easy because of (15). Thus,

dX×ΣH
(F̂i(x, σ), F̂i(y, θ)) =

max{ sup
(a, iσ)∈F̂i(x, σ)

( inf
(b, iθ)∈F̂i(y, θ)

dX×Σ((a, iσ), (b, iθ)),
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sup
(b, iθ)∈F̂i(y, θ)

( inf
(a, iσ)∈F̂i(x, σ)

dX×Σ(a, iσ), (b, iθ))} =

max{ sup
(a, iσ)∈F̂i(x, σ)

( inf
(b, iθ)∈F̂i(y, θ)

dX(a, b) + dΣ(iσ, iθ),

sup
(b, iθ)∈F̂i(y, θ)

( inf
(a, iσ)∈F̂i(x, σ)

dX(a, b) + dΣ(iσ, iθ))} =

dΣ(iσ, iθ) + max{ sup
(a, iσ)∈Fi(x)

( inf
b∈Fi(y)

dX(a, b)),

sup
(b, iθ)∈Fi(y)

( inf
(a, iσ)∈Fi(x)

dX(a, b))} =

dΣ(iσ, iθ) + dH(Fi(x), Fi(y)) ≤
1

2
dΣ(σ, θ) + rid(x, y) ≤

max

{
1

2
, ri

}
dX×Σ((x, σ), (y, θ)).

*Theorem 25. The system F̂ = {(X × Σ, dX×Σ), F̂1, F̂2, . . . , F̂n} is an IMS
consisting of contractions with respect to the metrics dX×Σ and dX×ΣH

. The pro-

jections of Â onto X and Σ are A∗ and Σ, respectively.

Proof. Since F̂i : X × Σ → K(X × Σ) are contractions in a complete metric
space, we obtain the first part of the theorem from Theorem 18. The second part
follows from Â =

⋃
σ∈Σ(A

∗
σ, σ) and Corollary 4.

Example 4. The Fat Sierpiński triangle is an attractor of the IMS F = {[0, 1]2, Fi :
[0, 1]2 → K([0, 1]2), i = 1, 2, 3},

F1

(
x
y

)
:=

{(
1
2

0
0 1

2

) (
x
y

)
+

(
0
1
2

)}
,

F2

(
x
y

)
:=

( [
1
3
, 1

2

]
0

0
[
1
3
, 1

2

]
)(

x
y

)
+

{(
1
2

0

)}
,

F3

(
x
y

)
:=

{(
1
2

0
0 1

2

) (
x
y

)
+

(
0
0

)}
,

where ([
1

3
,
1

2

]
· x,

[
1

3
,
1

2

]
· y
)

:=
([x

3
,
x

2

]
,
[y
3
,
y

2

])
.

For the lifted Fat Sierpiński triangle, see Figure 9.

Remark 50. In further examples, we will consider the contractions in a different
order (see e.g. Example 6).
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5.3. Ergodic approach

In this section, we will give basic theorems of the ergodic theory. They will
enable us to draw fractal measures and estimate integrals of functions defined on
fractals. First, we will introduce dynamical systems.

Definition 31. [Ba1, Definition 3.1, p. 130] A dynamical system is a transfor-
mation f : X → X on a metric space (X, d). It is denoted by {X, f}. The orbit
of a point x ∈ X is the sequence {fk(x)}∞k=0.

Definition 32. [Ba1, Definition 3.3, p. 132] Let {X, f} be dynamical system
and let xf be a fixed point of f. The point xf is called an attractive fixed point
of f if there is a number ǫ > 0 so that f maps the ball O(xf , ǫ) into itself,
and moreover f is a contraction mapping on O(xf , ǫ). The point xf is called a
repulsive fixed point of f if there are numbers ǫ > 0 and C > 1 such that

d(f(xf ), f(y)) ≥ Cd(xf , y), for all y ∈ O(xf , ǫ).

Definition 33. [Ba1, Definition 4.1, p. 140] Let (X, f1, f2, . . . , fm) be a hy-
perbolic IFS with totally disconnected attractor A∗. The associated shift trans-
formation on A∗ is the transformation S : A∗ → A∗ defined by

S(a) := f−1
i (a) for a ∈ fi(A

∗),

where fi is viewed as transformation on A∗. The dynamical system {A∗, S} is
called the shift dynamical system associated with the IFS.

Definition 34. [Ba1, Definition 5.2, p. 146] Two dynamical systems {X1, f1}
and {X2, f2} are said to be equivalent, or topologically conjugate, if there is a
homeomorphism θ : X1 → X2 such that

f1(x1) = θ−1 ◦ f2 ◦ θ(x1), for all x1 ∈ X1,

f2(x2) = θ ◦ f1 ◦ θ−1(x2), for all x2 ∈ X2.

In other words, the two dynamical systems are related by the commutative
diagram (see Figure 10).

Remark 51. The only dynamical system we meet here, is the shift dynamical
system.

Theorem 26. [Ba1, Theorem 5.1, p. 147] Let {X, f1, f2, . . . fm} be a totally
disconnected hyperbolic IFS and let {A∗, S} be the associated shift dynamical
system. Let Σ be the associated code space of m symbols and let T : Σ → Σ be
defined by

T (σ1σ2σ3 . . . ) := σ2σ3σ4 . . . , for all σ = σ1σ2σ3 · · · ∈ Σ.

Then the two dynamical systems {A∗, S} and {Σ, T} are equivalent. The home-
omorphism that provides this equivalence is φ : Σ → A∗, defined in Definition 34.
Moreover, φ protects repulsive, attractive cycles and periodic points, too.

57



X
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X
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Figure 10: Commutative diagram

From now on, we will consider in addition a measure. We will estimate it on
measurable subsets by means of special dynamical systems.

Definition 35. [BKS, Definition 2.1 p. 22] Let (X, A, µ) be a fixed mea-
sure space. Then a measure-preserving transformation T of the measure space
(X, A, µ) is a mapping

T : X → A
of the underlying set X of the measure space to itself, which satisfies the following
properties:

1. T is measurable, i.e. if A is any element of the σ−algebra A of the measure
space (that is A is a measurable subset of X) then the subset

T−1(A) := {x ∈ X : T (x) ∈ A}

also belongs to the σ algebra A (that is T−1(A) is also a measurable subset
of X).

2. T preserves the measure µ, i.e. for any A ∈ A, not only is T−1(A) ∈ A as
in 1), but also

µ(T−1(A)) = µ(A),

where µ(·) denotes the measure of an element · of A.

Theorem 27. [BKS, Theorem 2.2, p. 41] Let T be a measure-preserving trans-
formation of the probability space (X, A, µ), and let B be any element of A.
Set

Sn(x) := card{i : 0 ≤ i < n, T i(x) ∈ B}
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and

An(x) :=
1

n
Sn(x) (x ∈ X).

Then for µ−almost every x ∈ X,

A(x) := lim
n→∞

An(x)

exists.

Let µ(X) = 1. It seems logical that the time the orbit of a measure preserving
transformation T spends in the set B relates to the measure of B. It is tempting to
estimate the measure µ(B) by A(x). However, our assumptions are not sufficient.
Transformation T : X → X, T (x) = x, is always measure-preserving and we can
not obviously get measure µ(B) from A(x). We need in addition ergodicity.

Definition 36. [BKS, Definition 2.3, p. 41] A measure preserving transforma-
tion T is ergodic if whenever f : X → R is a measurable function such that

f(T (x)) = f(x)

for µ−almost all x ∈ X, then f is µ−almost everywhere equal to constant.

We will use that isomorphism of dynamical systems preserves ergodicity.

Definition 37. [BKS, Definition 2.7, p. 45] Let

S = (X, A, µ, T )

and let
S ′ = (X ′, A′, µ′, T ′)

be two dynamical systems (i.e. T and T ′ are measure preserving transformations
of the respective measure spaces (X, A, µ) and (X ′, A′, µ′)). Then S and S ′ are
isomorphic if there exists a mapping

φ : X → X ′

(an isomorphism) such that

1. φ is measurable,

2. for each A′ ∈ A′, µ(φ−1(A′)) = µ′(A′),

3. for µ−almost all x ∈ X,φ(T (x)) = T ′(φ(x)),

4. φ is invertible, i.e. there exists a mapping

ψ : X ′ → X,

measure preserving, such that ψ(φ(x)) = x for µ−almost all x ∈ X and
φ(ψ(x′)) = x for µ−almost all x ∈ X and φ(ψ(x′)) = x′ for µ−almost all
x′ ∈ X ′.

59



If only properties 1), 2) and 3) are required, φ is called a homomorphism and S ′

is said to be a factor of S.

The following theorem tells us implicitly that the shift dynamical system is
ergodic. We will use it to find a measure of subsets of attractors of IFSs or to
calculate integrals on these attractors.

Theorem 28. ([BD, Theorem 6, p. 261]) Let {X, fi, pi, pi > 0, i = 1, 2, . . . , n}
be a hyperbolic IFS with an attractor A∗ and invariant measure µ such that fi
is one-to-one on A∗ for i = 1, 2, . . . , n and fi(A

∗) ∩ fj(A
∗) = ∅, i 6= j. Then

a measurable function T : A∗ → A∗ is given by T (x) = f−1
i (x) for x ∈ fi(A

∗).
It is such that (A∗, B(A∗), µ, T ) is a measure-preserving system, in the sense
of Billingsley (cf. [Bi]), isomorphic to (Σ, B(Σ), ρ, s), where s : Σ → Σ is the
Bernoulli shift operator

s(σ1, σ2, σ3, . . . ) = σ2, σ3, . . .

In particular, (X, B(X), µ, T ) is ergodic, mixing, and has entropy

h(T ) = −
n∑

i=1

pi ln pi.

The Birkhoff ergodic theorem gives us a prescription how to calculate and
approximate integrals on fractals.

Theorem 29. (Birkhoff’s ergodic theorem)[Fa2, Theorem 6.1, p. 98] Let T :
X → X, let µ be a finite measure on X that is invariant under T, and let φ ∈
L1(µ). Then the limit

Φ(x) = lim
n→∞

1

n

n−1∑

j=0

φ(T j(x))

exists for µ−almost all x. Moreover, if µ is ergodic then

Φ(x) =
1

µ(X)

∫
φdµ

for µ−almost all x.

Corollary 5. [Fa2, Corollary 6.2, p. 100] If µ is ergodic then

Φ(x) = lim
n→∞

1

n

n−1∑

j=0

φ(T j(x))

is almost everywhere constant.

This means that we can estimate

1

µ(X)

∫
φdµ
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by

lim
n→∞

1

n

n−1∑

j=0

φ(T j(x)).

Corollary 6. [BKS, p. 41] Let T be an ergodic measure-preserving transfor-
mation of the probability space (X, A, µ), and let B be any element of A. Then
µ(B) = A(x) for almost all x ∈ X. Particularly, it means

µ(B) = lim
n→∞

1

n

n−1∑

t=0

χB(T
t(x)).

We will need theorems with a more general function f : X → X than χB.
The following corollary of Birkhoff’s ergodic theorem enables us to draw measures
induced by IFS and their supports-fractals and estimate integrals.

Theorem 30. (Elton’s theorem)[Ba1, Theorem 7.1, p. 364] Let (X, d) be a
compact metric space. Let (X, f1, f2, . . . , fm; p1, p2, . . . , pm) be a hyperbolic
IFS with probabilities. Let (X, d) be a compact metric space. Let {xn}∞n=0 denote
an orbit of the IFS produced by the random iteration algorithm starting at x0.
That is

xn = fσn
◦ fσn−1 ◦ . . . fσ1(x0),

where the maps are chosen independently according to probabilities p1, p2, . . . , pm,
for n = 1, 2, . . . Let µ be the unique invariant measure for the IFS. Then with
probability one (that is, for all code sequences σ1, σ2, . . . except for a set of se-
quences having probability zero),

lim
n→∞

1

n+ 1

n∑

k=0

f(xk) =

∫

X

f(x)dµ(x),

for all continuous functions f : X → R and all x0.

Remark 52. The theorem holds for more general cases than we treat (cf. [E]).
The space can be locally compact, p′is can be functions of x and f ′

is can be
contraction mappings “on average” (

∑
i piri < 1).

The following corollary gives a prescription how to draw fractals and fractal
measures by means of Elton’s theorem.

Corollary 7. [Ba1, Corollary 7.1, p. 365] Let B be a Borel subset of X and
let µ(∂B) = 0. Let N(B, n) = card{x0, x1, x2, . . . , xn} ∩ B, for n = 0, 1, 2, . . .
Then with probability one,

µ(B) = lim
n→∞

{
N(B, n)

n+ 1

}
,

for all starting points x0. That is the “mass” of B is the proportion of iteration
steps when running the random iteration algorithm, which produces points in B.
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5.4. Chaos game

This subsection is devoted to the chaos game. It is the most popular way to
image fractals and invariant measures. In order to understand how it works, we
will introduce necessary notions from the theory of chaos. In addition, we will
apply the chaos game to hyperIFSs to visualize attractors of underlying IMSs.

Fractals were developed together with computers and ability to draw them.
The first pictures and the theory can be found in [Ma3], [Ba1], [BD] and [PJS].
For fractals generated by IFSs, we have two basic possibilities how to draw attrac-
tors. The first one follows from the Banach theorem. Let F = {(X, d), f1, . . . , fm}
be an IFS, F : K(X) → K(X) induced operator and A∗ the attractor (X is usu-
ally R2). We draw n−th iterate F n(A), where A ∈ K(X) is arbitrary, instead of
A∗. These sets are close for n great enough due to the Banach theorem, which
implies

dH(A, A
∗) ≤ dH(F (A), A)

1− r

and

dH(F
n(A), A∗) ≤ rndH(F (A), A)

1− r
.

Since multivalued fractals are fixed point of contracting operator F : K(X) →
K(X), we can image attractors of IMS in the same way. However, this approach
may not be effective. We need to store and process complicated sets and count
with errors (for multivalued case see [AFGL], [Fi]).

Barnsley (cf. [BD], [Ba1]) introduced the chaos game for IFS. It demands less
memory and process less complicated objects. Therefore, the chaos game is the
most popular way to draw fractals. Given an IFS with probabilities {X, fi, pi, i =
1, 2, . . . , m}, we construct a sequence

{xi}ni=1, xi ∈ X,

where
xi+1 = fσi

(xi), σi ∈ {1, 2, . . . , m}.
Contractions fj are taken with given probability P (σi = j) = pj, j ∈ {1, 2, . . . , m}.
We divide the space X, usually R2, to small squares-pixels and calculate the ratio
of points xi which lie in each pixel. In this way we obtain measures of any pixel.
The fractal is approximated by the pixels which have a positive ratio.

Barnsley describes extensively the chaos game and its relationship to the shift
dynamical system in [Ba1, pp. 168–169].

Consider the hyperbolic IFS {R2, f1, f2} with an attractor A∗. Let a ∈ A∗;
suppose that the address of a is σ ∈ Σ the associated code space. That is

a = φ(σ).
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With the aid of a random-number generator, a sequence of one million ones and
twos is selected. For example, suppose that the actual sequence produced is the
following one, which has been written from right to left,

21 . . . 12122211

By this we mean that the first number chosen is a 1, then a 1, then three 2’s,
and so on. Then the following sequence of points on the attractor is computed:

a = φ(σ)
f1(a) = φ(1σ)

f1 ◦ f1(a) = φ(11σ)
f2 ◦ f1 ◦ f1(a) = φ(112σ)

f2 ◦ f2 ◦ f1 ◦ f1(a) = φ(2211σ)
f2 ◦ f2 ◦ f2 ◦ f1 ◦ f1(a) = φ(22211σ)

f1 ◦ f2 ◦ f2 ◦ f2 ◦ f1 ◦ f1(a) = φ(122211σ)
f2 ◦ f1 ◦ f2 ◦ f2 ◦ f2 ◦ f1 ◦ f1(a) = φ(2122211σ)

f1 ◦ f2 ◦ f1 ◦ f2 ◦ f2 ◦ f2 ◦ f1 ◦ f1(a) = φ(12122211σ)
...

f2 ◦ f1 ◦ · · · f1 ◦ f2 ◦ f1 ◦ f2 ◦ f2 ◦ f2 ◦ f1 ◦ f1(a) = φ(21 · · · 12122211σ)
We imagine that instead of plotting the points as they are computed, we keep
a list of the one million computed points. This done, we plot the points in the
reverse order from the order in which they were computed. That is, we begin
by plotting the point φ(21 · · · 12122211σ) and we finish by plotting the point
φ(σ). What we will see? We will see one million points on the orbit of the shift
dynamical system {A∗, S}, namely, {Sn(φ(21 · · · 12122211σ))}1000000n=0 .

Remark 53. We have not mentioned probabilities yet. For example, the chaos
game for the IFS {X, f1, f2, f3, p1 = 0.1, p2 = 0.3, p3 = 0.6} with an attractor
A∗ produces points in A∗

1 with probability 0.1, in A∗
2 with probability 0.3, A∗

3 with
probability 0.6 and A∗

33 with probability 0.36. Then orbits of the shift dynamical
system spend 0.1 of time in A∗

1 and 0.36 of time in A∗
33 for almost all sequences

generated by the chaos game.

We will show that the shift dynamical system is also chaotic, which means
that almost all orbits of the chaos game are dense in the attractor.

Definition 38. ([Ba1, Definition 8.2, p. 167]) A dynamical system {X, f} is
transitive if, whenever U and V are open subsets of the metric space (X, d), there
exists a finite integer n such that

U ∩ fn(V ) 6= ∅.
Definition 39. ([Ba1, Definition 8.3, p. 167]) A dynamical system {X, f} is
sensitive to initial conditions if there exists δ > 0 such that, for any x ∈ X and
any neighbourhood O(x, ǫ), there is y ∈ O(x, ǫ) and integer n ≥ 0 such that
d(f(x), f(y)) > δ.
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Figure 11: Chaos game for the Sierpiński triangle
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Figure 12: Shift dynamical system for the Sierpiński triangle
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µ(A)≈ 88/4000=0.022

Figure 13: Approximation of a measure of a set using chaos game

We are ready to give a definition of chaos.

Definition 40. ([Ba1, Definition 8.4, p. 167]) A dynamical system {X, f} is
chaotic if

1. it is transitive;

2. it is sensitive to initial conditions;

3. the set of periodic points is dense in X.

Theorem 31. ([Ba1, Theorem 8.1, p. 167]) The shift dynamical system associ-
ated with a totally disconnected hyperbolic IFS of two or more transformations is
chaotic.

Running the chaos game, we almost always produce small errors. Since the
shift dynamical system is chaotic, the orbit with errors diverges from the exact
one. However, the following theorem assures us that there is another orbit which
is close to the one with errors.

Theorem 32. [Ba1, Theorem 7.1, p. 159] Let {X; f1, f2, . . . , fn} be a hyperbolic
IFS of contractivity r, where 0 < r < 1. Let A∗ denote the attractor of the IFS
and suppose that each of the transformations fi : A∗ → A∗ is invertible. Let
{A∗, S} denote the associated shift dynamical system in the case that the IFS is
totally disconnected. Let {x̃i}∞i=0 ∈ A∗ be an approximate orbit of S, such that

d(x̃i+1, S(x̃i)) ≤ θ, for all i = 1, 2, 3, . . . ,

for some fixed constant θ with 0 ≤ θ ≤ diam(A∗). Then there is an exact orbit
{xi = Si(x0)}∞i=0 for some x0 ∈ A∗, such that

d(x̃i+1, xi+1) ≤
rθ

(1− r)
, for all i = 1, 2, 3, . . .
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Now, we proceed to hyperIFSs. Since hyperIFSs are IFSs, we can run the
chaos game for any hyperIFS. Moreover, we will use the chaos game for hyperIFSs
to draw attractors of underlying IMSs. Notice that the set of address sets of a
multivalued fractal forms a hyperfractal.

*Theorem 33. Let us consider a hyperIFS generated by the IMS F = {(X, d), F1,
F2, . . . , Fn}, where Fi : X → K(X), A∗ is an attractor of the IMS and α∗ is an
attractor of the associated hyperIFS. Let us also consider an orbit of the chaos
game α̂ = {Âi}ki=1, Âi ∈ K(X), where k ∈ N ∪ {∞}, such that dHH

(α̂, α∗) ≤ ǫ.

Then dH(∪iÂi, A
∗) ≤ ǫ, which can be written

dH

(
⋃

i

Âi,
⋃

σ∈Σ
A∗

σ

)
≤ ǫ.

Proof. dHH
(α̂, α∗) ≤ ǫ implies that, for each A∗

σ ∈ α∗, there exists Âi ∈ α̂ such
that

dH(A
∗
σ, Âi) ≤ ǫ.

It follows that, for each x ∈ A∗
σ, there exists y ∈ Âi such that d(x, y) ≤ ǫ. In the

same way, for each Âi ∈ α̂, there exists A∗
σ ∈ α∗ such that

dH(Âi, A
∗
σ) ≤ ǫ.

This implies that, for each x ∈ Âi, there exists y ∈ A∗
σ such that d(x, y) ≤ ǫ. We

arrive to

dH

(
⋃

i

Âi,
⋃

σ∈Σ
A∗

σ

)
=

max{ sup
x∈⋃i Âi

{ inf
y∈A∗

{d(x, y)}}, sup
x∈A∗

{ inf
y∈⋃i Âi

{d(x, y)}}} ≤ ǫ.

Hence, one can use the chaos game for hyperfractals to draw underlying mul-
tivalued fractals with the same accuracy.

Remark 54. The preceding derivations also follow from the fact, that the metric
dHH

is “stronger” than the metric dH , which is stated in the next theorem.

Theorem 34. ([Ba2, Theorem 1.13.8]) Let (X, d) be a metric space. Let α, β ∈
K(K(X)) be such that

{a ∈ A : A ∈ α}, {b ∈ B : B ∈ β} ∈ K(X).

Then
dH({a ∈ A : A ∈ α}, {b ∈ B : B ∈ β}) ≤ dHH

(α, β).

Remark 55. We will also use the chaos game for hyperfractals to image a mea-
sure on multivalued fractals, but we will need in addition the theory from the
following section.
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Figure 14: Chaos game for hyperIFS

6. Visualization and dimension of hyperfractals

Since hyperfractals are attractors of IFS, we can explore their self-similarity
and dimension. We will also visualize their structure. The theory of convex sets
provides us an effective tool.

6.1. Convex sets and support functions

Convex sets will play a key role in investigation of dimension and visualization
of hyperfractals. Let us remind notions related to convex sets, convex hulls and
support functions.

Let (E, ||.||) be a real Banach space and A ⊂ E, B ⊂ E its subsets. Defining,
as usual (cf. e.g. [AB], [AG2])

A+ B := {x| x = a+ b, a ∈ A, b ∈ B},

c · A := {x| x = c · a, a ∈ A}, c ∈ R,

we can say the following. If A and B are convex subsets of E, then A + B, and
c · A are convex (cf. e.g. [Be], [DS]). In the special case E = Rm, we have also
that (cf. e.g. [Be, Theorem 1.4.1]) QA is convex for A ∈ KCo(R

m), Q ∈ Rm×m.
Defining still the convex hull conv(A) of A ∈ K(E) as (see e.g. [DS, Chapter

V.2]

conv(A) := {x ∈ E| x =

p∑

i=1

αiai,

n+1∑

i=1

αi = 1, αi ≥ 0, ai ∈ A, i = 1, . . . , p},

p = 1, 2, . . . , it is obviously the smallest convex set containg A ⊂ E. Let us note
that, in Rm, we can simply fix p = m+ 1.

Lemma 9. For any A, B ⊂ E, it holds (see e.g. [DS, Lemma V.2.4]):
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1. conv(A+ B) = conv(A) + conv(B),

2. conv(c · A) = c · conv(A), c ∈ R.

In the special case E = Rm, we have also that

3. conv(QA) = Qconv(A), Q ∈ Rm×m.

We can describe compact convex sets in Rm with closed halfspaces [MV]

F := {x ∈ Rm; x′a ≤ c, a ∈ Rm, c ∈ R}.

The intersection of such halfspaces defines a compact convex subset

K ∼
⋂

α∈A
Fα.

For polygons, A is finite.
We need not consider all a′s but it suffices to take {a ∈ Rm, |a| = 1} and we

get c′s as values of a support function (see [MV, p. 328], [Sch, p. 37]).

Definition 41. A support function suppM(x) of a compact set M ∈ Rm is
defined

suppM(x) := max(m′x, m ∈M, x ∈ Rm, ||x|| = 1).

Let us remind basic properties of support functions (see [DK]).

Lemma 10. Let M1, M2 ∈ KCo(R
m). Then

suppM1+M2
= suppM1

+ suppM2
,

suppλM = λsuppM , λ ≥ 0.

Lemma 11. Let M1, M2 ∈ KCo(R
m). Then

dH(M1, M2) = max
x

|suppM1
(x)− suppM2

(x)|.

Let us denote by S(KCo(R
m)) the set of all support functions for sets in

KCo(R
m).

Remark 56. The correspondence between KCo(R
m) and S(KCo(R

m)) is one to
one.

The metric spaces (KCo(R
m), dH) and (S(KCo(R

m)), dH) are identical. Hence,
(S(KCo(R

m)), dH) is complete.

Lemma 12. ([DK, p. 13]) Let A, B, C ∈ (KCo(R
m), dH), then

dH(A+ C, B + C) = dH(A, B). (16)

As a consequence of the previous lemma, we obtain the following lemma.
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Lemma 13. A map F : KCo(R
m) → KCo(R

m),

F (A) = rQA+ C,

where r ∈ [0, 1), Q ∈ Rm×m is orthonormal and C ∈ KCo(R
n), is a similitude.

Proof. Since A, B ⊂ KCo(R
m) are convex sets, so must be, for each rQA and

rQB. Furthermore, since it is well-known (see e.g. [Hu]) that, in Euclidean spaces
(Rm, dEucl), Q acts as an isometry, we obtain in view of (16) that

dH(F (A), F (B)) = dH(rQA+ C, rQB + C) = rdH(QA, QB) =

rmax{ sup
a∈QA

inf
b∈QB

dEucl(a, b), sup
b∈QB

inf
a∈QA

dEucl(a, b)} =

rmax{sup
a∈A

inf
b∈B

dEucl(Qa, Qb), sup
b∈B

inf
a∈A

dEucl(Qa, Qb)} =

rmax{sup
a∈A

inf
b∈B

dEucl(a, b), sup
b∈B

inf
a∈A

dEucl(a, b)} =

rdH(A, B),

i.e. F is similitude, as required.

We will compare the Hausdorff distance of compact sets and their convex
hulls. Hence, let us state three more lemmas.

Lemma 14. [DK, p. 13] Let A, B ∈ K(Rm). Then A ⊂ B ⇒ suppA(x) ≤
suppB(x).

We discussed and proved the following lemma in [AR2].

Lemma 15. For A, B, C ∈ K(E), we have that

dH(A,B) ≥ dH(conv(A), conv(B)) (17)

and
dH(conv(A+ C), conv(B + C)) = dH(conv(A), conv(B)). (18)

Lemma 16. Let B ∈ Rm be a compact set. It has the same support function as
its convex hull.

Proof. We can prove two inequalities instead of equality suppB(x) = suppconv(B)(x).
First, it follows from Lemma 14 that suppB(x) ≤ suppconv(B)(x).
Second, let a ∈ Rm be such that |a| = 1. Let us assume that for some y ∈

conv(B), y′a = c. Then we can write

y = α1y1 + α2y2 + · · ·αn+1yn+1,

where yi ∈ B, i = 1, 2, . . . , n + 1,
∑n+1

i=1 αi = 1. Using properties of scalar
product, we have

y′a = α1y
′
1a+ α2y

′
2a+ · · ·αn+1y

′
n+1a = c.

Observe that at least one ymax ∈ {y1, . . . yn+1} fulfills ymaxa ≥ c. It implies
suppB(x) ≥ suppconv(B)(x).
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We are ready to give a theorem which will help us to calculate the Hausdorff
dimension of hyperfractals and visualize their particular class.

*Theorem 35. Let us consider two IMS F = {Rm, Fi, i = 1, 2, . . . , n} and
F c = {Rm, F c

i , i = 1, 2, . . . , n}, where

Fi : R
m → K(Rm), Fi(x) = {riQix}+ Ci, i = 1, 2, . . . , n,

and

F c
i : Rm → K(Rm), Fi(x) = {riQix}+ conv(Ci), i = 1, 2, . . . , n,

Ci ∈ K(Rm), ri ∈ [0, 1) are reals, Qi are orthonormal m × m−matrices. Let
us also consider the associated hyperIFS φ = {(K(Rm), dH), Fi, i = 1, 2, . . . , n}
and φc = {(KCo(R

m), dH), F
c
i , i = 1, 2, . . . , n} with attractors α∗ and αc. Then

address sets A∗
σ and Ac

σ of α∗ and αc have the same set of support functions. This
means

suppA∗
σ
= suppAc

σ
, ∀σ ∈ Σ

and also
convA∗

σ = Ac
σ, ∀σ ∈ Σ.

Proof. We will prove that supp(Aσ) = supp(Ac
σ), σ ∈ Σ.We can see from Lemma

9 that conv(A+ B) = conv(A) + conv(B). Let A ∈ K(Rm) then

conv(Fj(A)) = F c
j (conv(A)), ∀j ∈ {1, 2, . . . , n}, A ∈ K(Rm),

follows from

conv(Fj(A)) = conv(rjQj(A) + Cj) = rjQjconv(A) + conv(Cj) = F c
j (conv(A)).

Thus, we have from mathematical induction

conv(Fi1i2...in(A)) = F c
i1i2...in

(conv(A)), ∀n ∈ N.

Since the space KCo(R
m) is complete, the sequences have the same limit,

lim
n→∞

conv(Fσ1σ2...σn
(A)) = lim

n→∞
F c
σ1σ2...σn

(conv(A)).

It follows
conv(A∗

σ) = Ac
σ

and from Lemma 16 also

suppA∗
σ
= suppAc

σ
, ∀σ ∈ Σ.

Remark 57. The theorem could be generalized for affine mappings.
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6.2. Visualization of hyperfractals

Hyperfractals lie in a hyperspace which is complicated infinite-dimensional
nonlinear space. However, the space KCo(R

m) can be embedded in a linear space
due to R̊adström [Ra]. We will make at least projections of hyperfractals. We
will use support functions of compact sets.

We know that

suppA(x) = sup
u
{u′x, u ∈ A, |x| = 1} (19)

and (cf. Figure 24)

dH(A, B) = max
x∈Rn, |x|=1

|suppA(x)− suppB(x)|. (20)

In order to draw, for instance, a three dimensional projection of sets A, B ∈
KCo(R

m), we choose xi ∈ Rm, |xi| = 1, i = 1, 2, 3. We draw a three dimensional
graph, where each axis corresponds to one xi. Thus, suppA(xi)(= supu{u′xi, u ∈
A}) and suppB(xi)(= supu{u′xi, u ∈ B}) will be coordinates of A and B. In
other words, we create the map

V : (KCo(R
n), dH) → (Rd, dmax),

V (M) =




suppM(x1)
suppM(x2)

...
suppM(xd)


 ,

where d = 3. Thus, A ∈ K(Rn) is represented by coordinates (suppA(x1), suppA(x2),
suppA(x3)) in our graph. We consider the space Rd with the metric dmax, because
the Hausdorff distance between A and B is greater or equal than the maximum of
differences in coordinates in this coordinate system (cf. equation (20)). Usually,
we get only projections of the metric structure of fractals in hyperspaces.

Remark 58. We can naturally generalize the map V to

V : (K(Rn), dH) → (Rd, dmax),

since
suppA = suppconv(A)

and
V (A) = V (conv(A)).

Let us show the easiest cases. We will discuss visualizing of hyperfractals
in KCo(R), KCo(R

2) and the behaviour of the visualization of a fractal set of
singletons.
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There are only two vectors of length 1 in R1 (x1 = 1, x2 = −1). Therefore,
we can draw hyperfractals from KCo(R

1) in two-dimensional pictures. For A =
[a, b] ∈ KCo(R

1), we have suppA(−1) = supy{−1y, y ∈ A} = −a, suppA(1) =
supy{y, y ∈ A} = b. We arrive to V ([a, b]) = (−a, b).
Example 5. Let us consider an attractor α∗ of the hyperIFS φ = {(KCo([0, 1]), dH),
F1, F2, F3} induced by an IMS {([0, 1], dEucl), F1, F2, F3}, where Fi : [0, 1] →
KCo([0, 1]), i = 1, 2, 3,

F1(x) = {rx},
F2(x) = {rx+ 1− r},
F3(x) = [rx, rx+ 1− r] = {rx}+ [0, 1− r],

for r = 1
2
. Running the chaos game for the hyperIFS, we obtain a sequence of

intervals {Ai}ki=1, which can be easily visualized by means of the map V (see
Figure 15). Note that we get the same picture as for the attractor B∗ of the IFS
F = {([−1, 0]× [0, 1], dEucl), g1, g2, g3},

gi(x) =
x+ ci
2

,

where c1 = (0, 0)′, c2 = (−1, 1)′, c3 = (0, 1)′. This follows from

gi(x) = V FiV
−1(x), x ∈ [−1, 0]× [0, 1].

Although the structures of the attractors α∗ and B∗ differ in metrics, the
Hausdorff dimension of the attractors is the same (D = log 3

log 2
). Since the maximum

metric and Euclidean metric are equivalent,

dmax(x1, x2) ≤ dEucl(x1, x2) ≤
√
2dmax(x1, x2), x1, x2 ∈ R2,

it follows from Proposition 9.

Remark 59. Note that the shadow of α∗ is [0, 1].

Now, we turn our attention to the case of hyperIFS in K(R2). Let us remind
the definition of a support function

suppM(x) = sup
m

{m′x, m ∈M, |x| = 1}. (21)

It is much more comfortable to consider one angle θ instead of two coordinates
x ∈ R2, |x| = 1 in supp(x). Hence, we write, for x ∈ R2, |x| = 1, and m ∈
M, M ∈ K(R2),

x = (cos θ, sin θ), m = rm(cosφ, sinφ).

Then
suppM(θ) = sup

m∈M
{rm(cos θ cosφ+ sin θ sinφ)}
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Figure 15: Sierpiński hypertriangle

and it follows
suppM(θ) = sup

m∈M
{rm(cos(θ − φ)}.

Example 6. We will consider a hyperIFS associated with an IMS F = {[0, 1]2, Fi :
[0, 1]2 → K([0, 1]2), i = 1, 2, 3},

F1

(
x
y

)
:=

{(
1
2

0
0 1

2

) (
x
y

)
+

(
0
0

)}
,

F2

(
x
y

)
:=

{(
1
2

0
0 1

2

) (
x
y

)
+

(
0
1
2

)}
,

F3

(
x
y

)
:=

( [
1
3
, 1

2

]
0

0
[
1
3
, 1

2

]
)(

x
y

)
+

{(
1
2

0

)}
,

where ([
1

3
,
1

2

]
· x,

[
1

3
,
1

2

]
· y
)

:=
([x

3
,
x

2

]
,
[y
3
,
y

2

])
.

The attractor of the underlying IMS is called the fat Sierpiński triangle.
Let x1 = (1

2
,

√
3
2
), x2 = (−1

2
,

√
3
2
) and x3 = (−1

2
, −

√
3
2
) which corresponds

to θ1 = π
3
, θ2 = 2π

3
and θ3 = 4π

3
, respectively. We run the chaos game for the

hyperIFS and obtain a sequence of compact convex sets {Ai}ki=1. We show, for
k = 10, sets Ai, i = 1, . . . , k, their support functions and projections to R3 in
Figure 21. For k = 500, the structure of the hyperfractal can be seen in Figure
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Figure 16: Support function of a one-point set
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Figure 17: Support function of a one-point set
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Figure 19: Fat Sierpiński triangle
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Figure 20: Support functions of 10 sets from Example 6

22. Finally, we visualize the structure of the fat Sierpiński hypertriangle in Figure
23.

We will find out that a hyperIFS in KCo(R
2) consisting of similitudes has an

elegant interpretation in the space of support functions. Let us discuss how sup-
port functions of images of convex sets in similitudes look like. Similitudes in R2

are compositions of homotheties, translations, and orthonormal transformations
(reflections and rotations). Similitudes in KCo(R

2) are generalization of simili-
tudes in R2. Furthermore, addition of convex sets is involved. Moreover, we can
regard translation as addition of a one-point set (see [DK, p. 14]). We reviewed
the behaviour of support functions of homotheties and translations in Lemma 10.
It remains to show the support functions of reflected and rotated sets.

For Q ∈ Rn×n, M ∈ K(Rn), we can write

suppQM(x) = max(n′x, n ∈ QM) =

= max(m′
Q

′x, m ∈M) = suppM(Q′x).

In the particular case of n = 2, x = (cos θ, sin θ)′ and matrix of rotation Q,

Q =

(
cosφ − sinφ
sinφ cosφ

)
,

we obtain

Q
′x =

(
cosφ sinφ
− sinφ cosφ

)
·
(

cos θ
sin θ

)
=

=

(
cosφ cos θ + sinφ sin θ
− sinφ cos θ + cosφ sin θ

)
=

(
cos(θ − φ)
sin(θ − φ)

)
.
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Figure 21: Visualization of sets
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Figure 22: Visualization of sets of the fat Sierpiński triangle
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Figure 23: Structure of the hyperfractal associated to the fat Sierpiński triangle
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Figure 24: Support function and the Hausdorff distance
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Figure 25: Support function and homothety

Thus,
suppQM(θ) = suppM(θ − φ)

means only translation of support function.
In the same way, we obtain, for the matrix of reflection

Q =

(
1 0
0 −1

)
,

that
suppQM(θ) = suppM(−θ).

This means reflection of support function. Hence, similitudes in KCo(R
2) have a

natural explanation in the set of support functions S(KCo(R
2)).

Let us consider the hyperIFS

{KCo(R
2), Fi, i = 1, 2, . . . , n}, (22)

Fi : KCo(R
2) → KCo(R

2), Fi(x) = riQiA+ Ci, i = 1, 2, . . . , n,

Ci ∈ KCo(R
2), ri are reals, Qi are orthonormal 2× 2−matrices. Thus,

Qi = Ri · Oi(φ),

where Ri are matrices of reflection or identity and Oi(φ), det(Oi(φ)) = 1,matrices
of rotation for i = 1, 2, . . . , n. Let us consider the operators

Ti : S(KCo(R
2)) → S(KCo(R

2)),

Ti(f)(θ) = ri · f(det(Ri)(θ − φ)) + suppCi
(θ).
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Figure 28: Support function and addition of sets

*Theorem 36. The IFS (22) and

{S(KCo(R
2)), dH), Ti, i = 1, 2, . . . , n}

are equivalent.

We will prove that our approach behaves well to hyperfractals with a known
structure. Therefore, we will study the behaviour of the operator V to hyperfrac-
tals consisting of singletons. Let us consider the IFS {Rn, fi, i = 1, 2, . . . , m}
and the IMS {Rn, Fi, i = 1, 2, . . . , m}, where Fi(x) = {fi(x)}. Let us consider
also an attractor α∗ of an associated hyperIFS {(K(Rn), Fi), i = 1, 2, . . . , m}.
Calculation of support functions of address sets (singletons) and visualization of
α∗ is easy. If A = {a}, a ∈ Rn, then

suppA(x) = a′x.

We obtain

V (A) =




suppA(x1)
suppA(x2)

...
suppA(xd)


 =




a′x1
a′x2
...

a′xd


 =




x′1
x′2
...
x′d


 a =: V a,

which is a linear mapping.
It is worth using n points xi in our case. We obtain V : K(Rn) → Rn. Since

we consider only singletons, let us simplify our notation and write V (a) instead
of V ({a}). Thus, we consider V : Rn → Rn with V (n×n). If xi, i = 1, 2, . . . , n,
are linearly independent, det(V ) 6= 0 and it holds

|λi| > 0
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Figure 29: Possible visualizations of the Sierpiński triangle

for eigenvalues of V .
We will show that V : (Rn, dEucl) → (Rn, dmax) is a bi-Lipschitz transforma-

tion. If we had
V : (Rn, dEucl) → (Rn, dEucl),

transformation V would be bi-Lipschitz with constants λmin and λmax,

|λmin|dEucl(a1, a2) ≤ dEucl(V (a1), V (a2)) ≤ |λmax|dEucl(a1, a2).
Metrics dEucl and dmax are equivalent, i.e.

dmax(a1, a2) ≤ dEucl(a1, a2) ≤
√
ndmax(a1, a2) ∀a1, a2 ∈ Rn.

We arrive to

|λmin|√
n
dEucl(a1, a2) ≤ dmax(V (a1), V (a2)) ≤ |λmax|dEucl(a1, a2).

Thus, V is a bi-Lipschitz transformation (see also Figure 29). Moreover, it follows
from Proposition 9 that

dimH V (α∗) = dimH(α
∗).

Remark 60. In this case, we probably choose

xi = ei = (0, 0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0), i = 1, 2, . . . , n.

However, for every n−tuple of linearly independent xi, we obtain detV 6= 0.

Remark 61. This kind of visualization is suitable for fractals of lower dimension
(for class of hyperfractals from the following theorem) not for hyperfractals from
[AR1] (see Example 8).
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6.3. Dimension and self-similarity of hyperfractals

It is not easy to calculate the Hausdorff dimension of hyperfractals, but we
can succeed in the case of almost similitudes and fulfilling a separation condition.
We will also discuss relationship between self-similar fractals and hyperfractals.

First, let us supply a theorem which is a stronger version of Theorem 7 in
[AR2] and a few examples on the calculation of the Hausdorff dimension of hy-
perfractals.

*Theorem 37. Consider the hyperIFS φ = {(K(Rm), dH), Fi, i = 1, 2, . . . , n},

Fi : K(Rm) → K(Rm), Fi(A) = riQiA+ Ci, i = 1, 2, . . . , n,

Ci ∈ K(Rm), ri ∈ [0, 1) are reals, Qi are orthonormal m×m−matrices. Consider
also the hyperIFS φc = {(KCo(R

m)), dH), F
c
i , i = 1, 2, . . . , n},

F c
i : KCo(R

m) → KCo(R
m), F c

i (A) = riQiA+ conv(Ci), i = 1, 2, . . . , n.

Assume that the attractor αc of φc is totally disconnected. Then the Hausdorff
dimension of the attractor α∗ of φ can be calculated by means of the Moran
formula and dimH(α

∗) = dimH(α
c).

Proof. Let us consider the hyperIFS φ = {(KCo(R
m), dH), Fi, i = 1, 2, . . . , n}

with attractor α∗ and φc = {(KCo(R
m), dH), F

c
i , i = 1, 2, . . . , n}, where F c

i (A) =
riQiA+ conv(Ci), A ∈ KCo(R

m) with a totally disconnected attractor αc.
Firstly, φc is a hyperIFS consisting of similitudes and its attractor is totally

disconnected. Therefore, its Hausdorff dimension D can be calculated by means
of the Moran formula. We will prove that α∗ has a similar metric structure.

We know from Theorem 35 that

conv(α∗
σ) = αc

σ, ∀σ ∈ Σ.

Since αc is totally disconnected, there exists dmin
H > 0 such that

dH(Fi(A
c
σ), Fj(A

c
σ′)) ≥ dmin

H , i 6= j, σ, σ′ ∈ Σ.

Lemma 15 implies

dH(Fi(A
∗
σ), Fj(A

∗
σ′)) ≥ dH(Fi(A

c
σ), Fj(A

c
σ′)) ≥ dmin

H .

In order to calculate the Hausdorff dimension of α∗, we will find a bi-Lipschitz
mapping of αc onto α∗.

For any j ∈ N, we can write:

Ac
i1i2...ij ...

= F c
i1...ij−1

(Aijij+1...)

and
Ac

i1i2...i′j ...
= F c

i1...ij−1
(Ai′ji

′

j+1...
).
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Let us estimate the distance dH(A
c
i1i2...ij ...

, Ac
i1i2...i′j ...

). Since Fi are similitudes,

dH(A
c
i1i2...ij ...

, Ac
i1i2...i′j ...

) =

= dH(F
c
i1...ij−1

(Ac
ijij+1...

), F c
i1...ij−1

(Ac
i′ji

′

j+1...
))

= ri1i2...ij−1
· dH(Ac

ijij+1...
, Ac

i′ji
′

j+1...
)

≥ ri1i2...ij−1
· dmin

H .

Moreover, Lemma 15 and Lemma 35 imply

dH(A
∗
ijij+1...

, A∗
i′ji

′

j+1...
) ≥ dH(A

c
ijij+1...

, Ac
i′ji

′

j+1...
).

On the other hand, since Fi are contractions with factors ri, i = 1, 2, . . . , n,

dH(A
∗
i1i2...ij ...

, A∗
i1i2...i′j ...

) ≤ ri1i2...ij−1
diam(α∗).

Observe that α∗ ∈ K(K(Rm)) implies diam(α∗) <∞.
We obtain from these inequalities

dH(A
c
i1i2...ij−1ij ...

, Ac
i1i2...ij−1i′j ...

) ≤

dH(A
∗
i1i2...ij−1ij ...

, A∗
i1i2...ij−1i′j ...

) ≤ diam(α∗)

dmin
H

dH(A
c
i1i2...ij−1ij ...

, Ac
i1i2...ij−1i′j ...

).

Applying Proposition 9, for f : αc → α, f(Ac
i1i2...ij−1ij ...

) = Ai1i2...ij−1ij ..., the
Hausdorff dimension of α∗ is really D.

*Corollary 8. If the assumptions of Theorem 37 are fulfilled by the hyperIFS
φ = {(K(Rm), dH), Fi, i = 1, 2, . . . , n}, then they are fulfilled by any other
hyperIFS φ′ = {(K(Rm), dH), F

′
i , i = 1, 2, . . . , n}, where Qi = Q′

i, ri = r′i and
conv(Ci) =conv(C ′

i).

Proof. There exists one hyperIFS φc for both the hyperIFSs φ and φ′.

Example 7. Let us consider the IMS F = {([0, 1]2, dEucl), Fi, i = 1, 2, . . . , 5},
where Fi : [0, 1]

2 → K([0, 1]2),

Fi(x) = {fi(x)}, i = 1, 2, 3, 4,
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f1

(
x
y

)
:=

(
1
3

0
0 1

3

)(
x
y

)
+

(
0
0

)
,

f2

(
x
y

)
:=

(
1
3

0
0 1

3

)(
x
y

)
+

(
0
2
3

)
,

f3

(
x
y

)
:=

(
1
3

0
0 1

3

)(
x
y

)
+

(
2
3

0

)
,

f4

(
x
y

)
:=

(
1
3

0
0 1

3

)(
x
y

)
+

(
2
3
2
3

)
,

F5

(
x
y

)
:=

(
1
4

0
0 1

4

)(
x
y

)
+

( [
17
48
, 19

48

]
[
17
48
, 19

48

]
)
.

Let us also consider a hyperIFS φ = {(KCo([0, 1]
2), dH), Fi, i = 1, 2, . . . , 5}

induced by the IMS F. Since its attractor α∗ is a set of convex sets and it fulfills
the assumptions of Theorem 37, we can calculate its Hausdorff dimension in
KCo([0, 1]

2).
Let us consider the IMS F ′ = {([0, 1]2, d), F ′

i , i = 1, 2, . . . , 5}, where F ′
i =

Fi, i = 1, 2, 3, 4,

F ′
5

(
x
y

)
:=

{(
1
4

0
0 1

4

) (
x
y

)}
+ C ′

5,

C ′
5 =

{(
17

48
,
17

48

)′
,

(
17

48
,
19

48

)′
,

(
19

48
,
17

48

)′
,

(
19

48
,
17

49

)′}
.

Let us denote by α′ an attractor of the associated hyperIFS φ′ = {(KCo([0, 1]
2), dH),

F ′
i , i = 1, 2, . . . , 5}. Since the assumptions of Theorem 37 are fulfilled by the

hyperIFS φ and conv(C ′
i) = Ci, the Hausdorff dimension of attractors α∗ and α′

is the same. The support functions of sets with the same addresses are the same,
too. It follows from Theorem 35 that visualizations of these hyperfractals are the
same.

Remark 62. The hyperIFS φ′ is equal to a superIFS {(K([0, 1]2), dH), Gi, i =
1, 2, 3, 4, 5}, where

Gi(A) =
⋃

j

⋃

x∈A
{gij(x)},

gi1 = fi, i = 1, 2, 3, 4,

g5i

(
x
y

)
:=

(
1
4

0
0 1

4

)(
x
y

)
+ ai.

a1 =

(
17

48
,
17

48

)′
, a2 =

(
17

48
,
19

48

)′
, a3 =

(
19

48
,
17

48

)′
, a4 =

(
19

48
,
19

48

)′
.
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We call α′ a hyperfractal here because we are interested in the dimension of
α∗ ⊂ K(R2), not in the dimension of A∗

σ ⊂ R2 as Barnsley (see [Ba2]).

Example 8. Stimulated from quantitative linguistics, we gave another example
of a fractal on the boundary between superfractals and hyperfractals in [AR1].
We called it Cantor-like hyperset. It consists of Cantor sets and it is self-similar
in K([0, 1]). Denoting

Cm := {x ∈ [0, 1]| x =
l

m
, l = 0, 1, . . . , m− 1, m ∈ N, m ≥ 2},

let us consider the system {K([0, 1]), Fj = 1, 2, . . . , 2m − 1} of contractions
Fj : K([0, 1]) → K([0, 1]),

Fj(B) := r ·B + Cj, j = 1, 2, . . . , 2m − 1, (23)

where r < 1
m
, Cj ⊂ Cm, Cj 6= ∅, Ci 6= Cj, i 6= j. Observe that although the

hyperspaceK([0, 1], dH) has not a linear structure, the sum as well as the product
in (23) is well (point-wise) induced from [0, 1].

We will prove that, for each j = 1, 2, . . . , 2m − 1, the contractions Fj are
similitudes. Let us denote

jmin := min(Cj), jmax := max(Cj)

and

Dj := {i ∈ N| i
m

∈ Cj}, j = 1, 2, . . . , 2m − 1.

Let us, furthermore, denote

Ii :=

[
i− 1

m
,
i− 1

m
+ r

]
, i = 1, 2, . . . , m,

and, for an arbitrary A ∈ K([0, 1]), jAk such that

jAk := Fj(A) ∩ Ik, k = 1, 2, . . . , m.

We can see that

Fj(A) =
m⋃

k=1

jAk (24)

and
dH(jAk, jBk) = r · dH(A, B), for all k ∈ Dj. (25)

We must guarantee that, for all A, B ∈ K([0, 1]), we have

dH(Fj(A), Fj(B)) = r · dH(A, B), j = 1, 2, . . . , 2m − 1. (26)
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Figure 30: Attractor of underlying IMS for hyperfractal

Figure 31: Attractor of underlying IMS for hyperfractal
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Figure 32: Structure of the hyperfractal in a hyperspace

If the set Cj is a singleton, the proof is trivial. Otherwise, we will prove two
reverse inequalities implying equality (26). It follows from (24), (25) and Lemma
1 that

dH(Fj(A), Fj(B)) ≤ r · dH(A,B), for all A, B ∈ K([0, 1]). (27)

We will also prove

dH(Fj(A), Fj(B)) ≥ r · dH(A, B), for all A, B ∈ K([0, 1]). (28)

Since the sets A, B are compact, we can find jx ∈ A such that

d(jx, B) = dH(A, B); (29)

otherwise, we can interchange the sets. Denoting jxk := Fj(jx) ∩ Ak, it satisfies

d(jxk, jBk) = dH(jAk, jBk), for all k ∈ Dj.

In order (28) to be satisfied, there must exist at least one l ∈ N such that

d(jxl, jBl) ≤ d(jxl, jBi), for every i ∈ Dj.

Let us show that
l = jmin or l = jmax.

If it is not so, jxjmin
must be located behind the centre of Ijmin

(to be closer to
Bjmin+1 than Bjmin

) and jxjmax must be located at the same time in front of the
centre of Ijmax which is impossible. Thus,

dH(Fj(A), Fj(B)) ≥ d(jxl, Fj(B)) = d(jxl, jBl) = dH(jAl, jBl),

88



where (cf. (29))
dH(jAl, jBl) = r · dH(A, B),

i.e. Fj are similitudes, for every j = 1, 2, . . . , 2m − 1, as claimed.
Since

Fi(K([0, 1])) ∩ Fj(K([0, 1])) = ∅, for all i 6= j; i, j = 1, 2, . . . , 2m − 1,

it follows from Lemma 8 that the dimension of the associated hyperattractor
(obtained as a unique fixed point in K(K([0, 1]))) can be calculated by means of
the Moran-Hutchinson formula as

D =
log (2m − 1)

log 1
r

, where
1

r
> m. (30)

Let us return our attention to the motivation examples from Introduction. We
will show that their visual self-similarity follows from the fact that all of them
are shadows of self-similar fractals.

Let us consider the picture with embedded squares. Let F = {[−0.5, 0.5]2, F1,
F2}, be an IMS such that

F1(x) = �,
F2(x) = {rQ(x)} ,

where � = ∂([−0.5, 0.5]2), r = 0.75,

Q =

(
cos( π

12
) sin( π

12
)

− sin( π
12
) cos( π

12
)

)
.

Instead of the IMS F, we can study the associated hyperIFS φ = {K([−0.5, 0.5]2),
F1, F2}. Mappings F1 and F2 are similitudes and they satisfy the strong open set
condition. The embedded squares are a shadow of the self-similar attractor α∗ of
φ (cf. Figure 33). Applying our method of visualization, we get a projection of
a structure of the hyperfractal α∗ in the hyperspace in Figure 34. We obtain the
Hausdorff dimension of the hyperfractal α∗ by means of the Moran formula,

dimH(α
∗) = 0.

Let us look at the picture of a tree similarly. It suffices to define a hyperIFS
φ = {(KCo([0, 1]

2), dH), F1, F2, F3}, containing three mappings. The hyperIFS
is induced by the IMS F = {[0, 1]2, F1, F2, F3},

F1

(
x
y

)
=

{( √
2
2

−
√
2
2√

2
2

√
2
2

) (
x
y

)
+

(
1
2
−

√
2r
2

1
2
−

√
2r
2

)}
,

F2

(
x
y

)
=

{( √
2
2

√
2
2

−
√
2
2

√
2
2

) (
x
y

)
+

(
1
2
−

√
2r
2

1
2
+

√
2r
2

)}
,
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Figure 33: Embedded squares

F3

(
x
y

)
=

(
{0.5}
[0, 0.5]

)
,

where r = 0.45. All the induced maps F1, F2, F3 are similitudes and the SOSC
is satisfied. The tree is again a shadow of a self-similar hyperfractal. For the
projection of the structure of the hyperfractal, see Figure 36. We obtain the
non-trivial Hausdorff dimension D of the hyperfractal from the Moran formula,

D =
log 2

log 1
0.45

.

The Sierpiński triangle is a shadow of a hyperfractal, too. Instead of the IFS
F = {I2, f1, f2, f3}, it suffices to consider the hyperIFS φ = {K(I2), F1, F2, F3},
where Fi(A) = ∪x∈A{fi(x)}. The shadow of the hyperfractal is the Sierpiński
triangle.

In the same way, we can regard all the attractors of classical IFSs as shadows
of hyperfractals.

*Theorem 38. Self-similar subsets of Rm form a subset of shadows of self-
similar hyperfractals.

Proof. Let us consider the IFS F = {Rm, f1, f2, . . . , fn}, the IMS F = {Rm, F1,
F2, . . . , Fn} and an associated hyperIFS φ = {(K(Rm), dH), f1, f2, . . . , fn},
where Fi(x) = {fi(x)}. Let us denote by A∗ and α∗ the attractors of F and
φ, respectively. Note that

F (A) =
n⋃

i=1

⋃

x∈A
{fi(A)}

is the same operator for the IFS and IMS. It implies that A∗ is the attractor of
the IFS and IMS. Moreover, it is a shadow of α∗.
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Figure 35: Tree

Figure 36: Structure in a hyperspace
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Let us show that if A∗ is self-similar then α∗ is self-similar, too. Suppose that
A∗ is self-similar. Let us remind that the OSC and SOSC are equivalent in Rm.
Thus, self-similarity of A∗ implies that there exists open V ⊂ Rm such that

1. fi(V ) ⊂ V,

2. fi(V ) ∩ fj(V ) = ∅, 1 ≤ i, j ≤ n, i 6= j,

3. V ∩ A∗ 6= ∅.
We will prove that φ fulfills SOSC, too. Let us consider the set of sets K(V ). We
need to prove

1. K(V ) is open,

2. Fi(K(V )) ⊂ K(V ),

3. Fi(K(V )) ∩ Fj(K(V )) = ∅, 1 ≤ i, j ≤ n, i 6= j,

4. K(V ) ∩ α∗ 6= ∅.

1. Consider A ∈ K(V ). Since V is open, we have

∀x ∈ A∃ǫ > 0 : O(x, ǫ) ⊂ V.

Compactness of A implies

∃ǫmin = min
x∈A

{sup
ǫ
{ǫ, O(x, ǫ) ⊂ V }}.

It follows that

{A′ ∈ K(Rm) : dH(A
′, A) < ǫmin} ⊂ K(V ).

Hence, K(V ) is open.

2. Note that Fi(A) = fi(A), ∀A ∈ K(Rm). Consider B ∈ Fi(K(V )). It follows
that

∃C ∈ K(V ) : Fi(C) = B

and
B ⊂ Fi(V ).

Since Fi(V ) ⊂ V, we have B ∈ K(V ) and Fi(K(V )) ⊂ K(V ).

3. Assume that B ∈ Fi(K(V )) and B′ ∈ Fj(K(V )), 1 ≤ i, j ≥ n, i 6= j. We
have shown that B ⊂ Fi(V ) and B′ ⊂ Fj(V ). From

Fi(V ) ∩ Fj(V ) = ∅, 1 ≤ i, j ≤ n, i 6= j,

we have B ∩ B′ = ∅ and also Fi(K(V )) ∩ Fj(K(V )) = ∅.
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4. Denote σ ∈ Σ, where a∗σ ∈ V ∩ A∗. Observe that {a∗σ} ∈ α∗ follows from

Fσ({x}) = {fσ(x)}.

We have also {a∗σ} ∈ K(V ).

We proved that the attractor of the hyperIFS φ is also self-similar.

Moreover, the metric structure (and also the Hausdorff dimension) of such
hyperattractors is naturally the same as the structure of attractors of original
IFSs. This means that the space of fractals generated by IFS is isometrically
embedded in the space of hyperfractals.

7. Measure on multivalued fractals

We will use ergodic theorems to construct a measure on multivalued fractals.
Particularly, we will find a shadow of an invariant measure on a hyperfractal,
which will be supported on an underlying multivalued fractal.

Let us denote by

F = {Rn, Fi : R
n → K(Rn), pi > 0, i = 1, 2, . . . , m,

∑

i

pi = 1}

an IMS with probabilities. It is an underlying IMS for the hyperIFS with prob-
abilities

φ = {K(Rn), Fi : K(Rn) → K(Rn), pi > 0, i = 1, 2, . . . , m}.

We will treat a special case

φ = {KCo(R
n), Fi : KCo(R

n) → KCo(R
n)},

where Fi(A) = riQi(A)+Ci, A ∈ KCo(R
n).We can easily construct the attractor

α∗ and the invariant measure µ for the hyperIFS φ. We have

A∗ =
⋃

σ∈Σ
A∗

σ

for the attractor A∗ (a shadow of α∗) of the underlying IMS. In a similar way, we
would like to find an underlying measure (i.e. a shadow of a measure µ) µS for
µ. Hence, its support will be A∗.

We will calculate and visualize how often a Borel subset of the embedding
space of A∗ is visited during the chaos game for φ. Therefore, we need to evaluate
how significant part of sets from an orbit of the chaos game visited the Borel set.
We use a characteristic function χB(x) to distinguish whether a point x ∈ Rn
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belongs to a set B ⊂ Rn. In order to evaluate how significant part of a set A ⊂ Rn

is contained in B ⊂ Rn, we apply the formula

χB(A) :=
volA(B ∩ A)
volA(A)

, ∀A, B ∈ KCo(R
n).

In Theorem 39, we will consider a hyperfractal α∗ ⊂ KCo(R
n) such that

dimH(A
∗
σ) = n for almost all σ ∈ Σ (w.r.t an invariant measure). The following

lemma concerns the kind of hyperIFS which we often treat.

*Lemma 17. Let a hyperIFS φ = {KCo(R
n), Fi, pi > 0}, Fi(A) = riQiA + Ci

be such that ri > 0, det(Qi) 6= 0. Let A∗
ω ∈ α∗, ω ∈ Σ be such that dimA∗

ω = n.
Then dimA∗

σ = n for almost all σ ∈ Σ.

Proof. It is obvious, for ri > 0, det(Qi) 6= 0, that

dimFi(A) ≥ dimA.

It follows

dimA = n⇒ Fi(A) = n, ∀A ∈ KCo(R
n), i = i1i2 . . . ip.

Let us consider a singleton {x}, x ∈ Rn, and ω ∈ Σ. It follows from Theorem
3 that Fω({x}) = A∗

ω and we assume that dim(A∗
ω) = n. Let us show that there

exists an integer k such that dim(Fω|k({x})) = n. If it did not, we would have a
sequence of sets {Fω|k({x})}∞k=0 with

dim(A∗
ω|k) < n,

which converge to a set A∗
ω of dimension n. Note that the integer k (if we take

the least one) does not depend on x, since

Fω|k({x}) = rω|kQω|k{x}+D,

where D ∈ KCo(R
n). Thus, we have found an integer k and a mapping Fω|k :

KCo(R
n) → KCo(R

n) which maps every element of KCo(R
n) to a compact convex

set of dimension n.
In order to keep our notation simple, let i = σ|k and p = pi1pi2 · · · pik . Note

that p = µ(α∗
i ). We will calculate µ(∪j∈Σ′α∗

ji), where |j| < ∞, a measure of a
subset of sets α∗ of dimension n. Let us denote

α∗l =
⋃

α∗
j1j2...jl−1i

,

where |jq| = k, jq 6= i, q ∈ {1, 2, . . . , l − 1}. It holds
µ(α∗l) = (1− p)l−1p.

Note that α∗l1 , α∗l2 are disjoint for l1 6= l2. Finally,

µ(∪l∈Nα
∗l) =

∑

l∈N
µ(α∗l) =

∑

l∈N
(1− p)lp = 1.
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Remark 63. Let F = {(KCo(R
n), dH), fi, pi, i = 1, 2, . . . , m} be a hyperIFS

with an attractor α∗. Let us remind here a corresponding IFS on a code space
S = {(Σ, dΣ), si, pi, i = 1, 2, . . . , m}, where si(σ) = iσ, with an attractor Σ
and invariant measure ρ. Note that µ(β) = ρ({σ ∈ Σ, A∗

σ ∈ β}), where β ∈
B(KCo(R

n)).

Lemma 18. [Gr, Theorem 7.5] Volume of a compact convex set in Rn is contin-
uous with respect to the Hausdorff distance.

Remark 64. Let us consider A, B, A1, A2, · · · ∈ KCo(R
n), A∩B 6= ∅, Ai∩B 6=

∅, such that
lim
i→∞

dH(Ai, A) = 0.

Observe that
lim
i→∞

dH(Ai ∩B, A ∩ B) = 0

and also
lim
i→∞

|Ln(Ai ∩ B)− Ln(A ∩ B)| = 0.

Hence, Ln(A∩B) is also continuous in A on the set {A ∈ KCo(R
n), Ln(A∩B) 6=

∅} w.r.t. the Hausdorff metric.

In the next step, we will define a set function

f(B) :=

∫

σ∈Σ

Ld(σ)(B ∩ A∗
σ)

Ld(σ)(A∗
σ)

dρ(σ),

for blocks B ∈ KCo(R
n), B = [a1, b1] × [a2, b2] × · · · × [an, bn], where d(σ) =

dimH(A
∗
σ).

Since µ({A∗
σ ∈ α∗, dimH(A

∗
σ) = n}) = 1, we have ρ({σ ∈ Σ, dimH(A

∗
σ) =

n}) = 1. Thus, it suffices to consider n instead of d(σ).
In order to apply the ergodic theorem to the shift dynamical system, we will

prove integrability of Ln(B∩A∗
σ)

Ln(A∗
σ)

. Let us denote

ΣB = {σ ∈ Σ, Ln(A∗
σ ∩ B) > 0}.

Lemma 18 and Remark 24 imply that Ln(A∗
σ) and Ln(A∗

σ ∩ B) are continuous
w.r.t. the Hausdorff metric. Since the address function

φ(σ) = A∗
σ

is continuous w.r.t. the metrics dΣ and dH , Ln(A∗
σ) and Ln(A∗

σ∩B) are continuous
w.r.t. dΣ. Moreover, ΣB is open, which follows from continuity of Ln(A∗

σ ∩ B).
Hence, we integrate a continuous function on an open set,

∫

σ∈Σ

Ln(A∗
σ ∩ B)

Ln(A∗
σ)

dρ(σ) =

∫

σ∈ΣB

Ln(A∗
σ ∩ B)

Ln(A∗
σ)

dρ(σ).
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Note that
Ln(A∗

σ ∩B)

Ln(A∗
σ)

is continuous (and positive) on ΣB since Ln(A∗
σ) > 0 for all σ ∈ ΣB.

This integral exists and can be approximated by means of the ergodic theorem
(Theorem 29). The dynamical system is (Σ, B(Σ), T, ρ), where T is the shift
operator (ergodic, ρ preserving) on (totally disconnected) Σ.

It remains to define an outer measure for all Borel subsets and show that it
is a Borel measure. Let us define, for all B ⊂ Rn,

µS(B) := inf{
∑

i

f(Bi), B ∈ ∪Bi, Bi is a block}. (31)

It is easy to prove that

1. µS(∅) = 0,

2. µS(A) ≤ µS(B) for A ⊂ B,

3. µS(∪iBi) ≤
∑

i µS(Bi).

In order to prove that µS is a Borel measure, we use the Carathéodory crite-
rion. We will show that µS is a metric measure, that is

µS(A ∪B) = µS(A) + µS(B), ∀A, B ∈ B(Rn),

such that dist(A, B) > 0. First, let us note that, for all δ > 0, block B can be
divided into finite number of subblocks {Bi} with diameter less than δ. Next, we
will show that

f(B) =
∑

i

f(Bi).

Since Ln is a Borel measure, it holds

Ln(A∗
σ ∩ B)

Ln(A∗
σ)

=
Ln(∪iBi ∩ A∗

σ)

Ln(A∗
σ)

=
∑

i

Ln(Bi ∩ A∗
σ)

Ln(A∗
σ)

,

for all σ ∈ Σ. Hence,

f(B) =

∫

Σ

Ln(A∗
σ ∩B)

Ln(A∗
σ)

dρ =

∫

Σ

∑

i

Ln(Bi ∩ A∗
σ)

Ln(A∗
σ)

dρ =

=
∑

i

∫

Σ

Ln(Bi ∩ A∗
σ)

Ln(A∗
σ)

dρ =
∑

i

f(Bi).

Finally, from the previous, it follows that a decomposition of blocks Bi into
subblocks leaves the sum in (31) unaltered. It suffices to consider only δ−coverings
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in (31). Since the sets A, B are δ−separated, no set from δ−covering of A ∪ B
can intersect both A and B. Hence,

µS(A ∪ B) = µS(A) + µS(B).

We arrive to the following theorem.

*Theorem 39. Let us consider the hyperIFS φ = {KCo(R
n), Fi, pi > 0} such

that dimα∗
σ = n, for almost all σ ∈ Σ. The set function µS defined in (31) is a

Borel measure.

Remark 65. Notice that there exist more IFSs with the same attractor [Hu,
4.1 Motivation, p. 16]. If we know an invariant measure, we can distinguish the
related IFS. In the same way, a shadow of a measure can help us to find the
related IMS for a multivalued fractal.

Example 9. Let us consider the hyperIFS φ = {(KCo([0, 1]), dH), Fi, pi, i =
1, 2, 3} induced by an IMS {([0, 1], dH), Fi, i = 1, 2, 3}, where Fi : [0, 1] →
KCo([0, 1]), i = 1, 2, 3,

F1(x) = {rx},
F2(x) = {rx+ 1− r},
F3(x) = [rx, rx+ 1− r] = {rx}+ [0, 1− r]},

for r = 1
2.1

and p1 = 0.43, p2 = 0.43, p3 = 0.14. We find a measure (Figure 41) on
the multivalued fractal (Figure 37) constructing the associated hyperfractal and
the invariant measure on it (Figure 38).

Figure 37: Multivalued fractal from Example 9

Let us also visualize a shadow of a measure for two IMS we have met.

Example 10. We will consider the hyperIFS from Example 7 φ = {KCo([0, 1]
2), Fi,

i = 1, 2, . . . , 5} with probabilities p1 = 0.21, p2 = 0.19, p3 = 0.19, p4 =
0.21, p5 = 0.2.

Example 11. Let us also image a shadow of a measure for the hyperIFS from
Example 6 φ = {KCo([0, 1]

2), Fi, i = 1, 2, 3} with probabilities p1 = 0.3, p2 =
0.4, p3 = 0.3.
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Figure 38: Hyperfractal and invariant measure from Example 9
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Figure 39: Graphs of functions Ld(σ)(A∗
σ) and Ld(σ)(A∗

σ ∩ B) for B = [0.2, 0.4]
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Figure 40: Function χB(A
∗
σ) =

Ld(σ)(A∗
σ∩B)

Ld(σ)(A∗
σ)
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Figure 41: The “shadow” of the measure from Example 9

Figure 42: Attractor of the IMS from Example 10.

Figure 43: Structure of the hyperattractor from Example 10.
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Figure 44: Invariant measure from Example 10 (its support is light).

Figure 45: The “shadow” of the invariant measure from Example 10 (its support
is light).
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Figure 46: Fat Sierpiński’s triangle.

Figure 47: Sierpiński’s hypertriangle.
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Figure 48: Invariant measure from Example 11 (its support is light).

Figure 49: The “shadow” of the invariant measure from Example 11 (its support
is light).
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8. Fuzzy approach

We can extend our results for multivalued fractals and hyperfractals to par-
ticular spaces of fuzzy sets. First, we will remind the basic theory of fuzzy sets.
Secondly, we will construct fuzzy fractals and associated fuzzy hyperfractals.
Last, we will discuss visualization of these fractals and measures supported on
them.

8.1. Fuzzy sets

During introduction to fuzzy sets, we will use notation and results from [DK].
See also [PR]. Fuzzy sets originated with Zadeh’s 1965 paper [Z]. Fuzzy sets
are considered with respect to a nonempty base set X of elements of interest.
The essential idea is that each element x ∈ X is assigned a membership grade
u(x) taking values in [0, 1], with u(x) = 0 corresponding to non-membership,
0 < u(x) < 1 to partial membership, and u(x) = 1 to full membership. According
to Zadeh a fuzzy subset ofX is a nonempty subset {(x, u(x)) : x ∈ X} ofX×[0, 1]
for some function u : X → [0, 1]. The function u itself is often used synonymously
for the fuzzy set.

The only membership possibilities for an ordinary or crisp subset A of X are
non-membership and full membership. Such a set can thus be identified with the
fuzzy set on X given by its characteristic function χA : X → [0, 1], that is with

χA(x) =

{
1 for x ∈ A
0 for x /∈ A.

The α−level set [u]α of a fuzzy set u on X is defined as

[u]α := {x ∈ X : u(x) ≥ α}, for each α ∈ (0, 1],

while its support [u]0 is the closure in the topology of X of the union of all of the
level sets, that is

[u]0 =
⋃

α∈(0, 1]
[u]α.

An inclusion property follows immediately from the above definitions.

Proposition 16. For all 0 ≤ α ≤ 1

[u]β ⊆ [u]α ⊆ [u]0.

The union, intersection and complement of fuzzy sets can be defined pointwise
in terms of their membership grades without using the extension principle (cf.
Lemma 19). Consider a function u : X → [0, 1] as a fuzzy subset of a nonempty
base space X and denote the totality of all such functions or fuzzy sets by F(X).
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The union u∨v and the intersection u∧v of u, v ∈ F(X) are defined, respectively,
as

u ∨ v(x) = u(x) ∨ v(x) := max{u(x), v(x)},
u ∧ v(x) = u(x) ∧ v(x) := min{u(x), v(x)},

for each x ∈ X. Clearly, u ∨ v and u ∧ v ∈ F(X).
Let us extend the definition of union for more than two fuzzy sets ui

∨
i ui(x) := supi{ui(x)},

for each x ∈ X. It is obvious that supi{ui(x)} ∈ [0, 1]. Hence,
∨

i ui ∈ F(X).
The Zadeh extension principle allows a crisp mapping f : X1 × X2 → Y,

where X1, X2 and Y are nonempty sets, to be extended to a mapping on fuzzy
sets f̃ : F(X1)×F(X2) → F(Y ), where

f̃(u1, u2)(y) :=

{
sup(x1, x2)∈f−1(y)(u1(x1), u2(x2)) if f−1(y) 6= 0
0 if f−1(y) = 0

for y ∈ Y. Here, f−1(y) = {(x1, x2) ∈ X1 × x2 : f(x1, x2) = y} may be empty
or contain one or more points. The obvious generalization holds for mappings
defined on an N−tuple X1 ×X2 × · · · ×XN where N ≥ 1, with the ∧ operator
being superfluous when N = 1.

The definitions of addition and scalar multiplication of fuzzy sets in F(X)
involve the extension principle and require the base set X to be a linear space.
For the addition of two fuzzy sets u, v ∈ F(X) the Zadeh extension principle is
applied to the function f : X ×X → X defined by f(x1, x2) = x1 + x2, to give

˜(u+ v)(x) = sup
x1+x2=x

(u(x1) + v(x2)),

for all x ∈ X, while for scalar multiplication of u ∈ F(X) by a nonzero scalar c
the function f : X → X defined by f(x) = cx is extended to

c̃u(x) = u(x/c),

for all x ∈ X. Obviously both ũ+ v and c̃u belong to F(X).
The totality of fuzzy sets F(X) on a base space X is often too broad and

general to allow strong or specific enough results to be established, so various
restrictions are often imposed on the fuzzy sets. In particular, a fuzzy set u ∈
F(X) is called normal fuzzy set if there exists at least one point x0 ∈ X for which
u(x0) = 1, so the 1-level set [u]1 and hence every other level set [u]α for 0 < α < 1
and the support [u]0 are all nonempty subsets of X. For technical reasons, the
level sets are often assumed to be compact and, when X is a linear space, also
convex. In fact, the convexity of the level sets of a fuzzy set u is equivalent to its
being a fuzzy convex fuzzy set, that is satisfying

u(λx1 + (1− λ)x2) ≥ u(x1) ∧ u(x2) ≥ u(x1) ∧ u(x2),
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for all x1, x2 ∈ X, λ ∈ [0, 1].
In latter likewise in [DK], we will consider fuzzy subsets of the n−dimensional

Euclidean space Rn for which the level sets are all nonempty, compact, and often
also convex, subsets of Rn.

Let us denote by Fn the set of all fuzzy sets of Rn. Their membership function
is

u : Rn → [0, 1].

In general, some level sets of a fuzzy set can be empty. Indeed, in the trivial
case of u(x) ≡ 0, for all x ∈ Rn, even the support is empty, than u here is called
empty fuzzy set. We shall restrict our attention to the normal fuzzy sets which
satisfy

1. u maps Rn onto I=[0, 1]. Obviously then [u]1 6= ∅, which is often as an
alternative definition of a normal fuzzy set. It follows

[u]α 6= ∅, for all α ∈ I.

2. [u]0 is a bounded subset of Rn.

3. u is upper semicontinuous.

Hence, each level set [u]α, and also [u]0 by definition, is a closed subset of Rn.
Moreover, they are all bounded since they are subsets of [u]0, which is bounded,
and so

Proposition 17. [u]α is a compact subset of Rn, for all α ∈ I.

Proposition 18. For any non-decreasing sequence αi → α in I

[u]α =
⋂

i≥1

[u]αi .

The totality of fuzzy sets satisfying three assumptions above will be denoted
by Dn.

Remark 66. For the sake of completeness, if we use instead of Rn in the defini-
tion of Dn(= D(Rn)) a metric space X it will be denoted by D(X).

Remark 67. [RF, Remark 2.2, p. 14]

(i) u = v ⇔ [u]α = [v]α, for all α ∈ I.

(ii) We can define a partial order ⊆ on Dn by setting u ⊆ v ⇔ u(x) ≤
v(x), ∀x ∈ Rn (⇔ [u]α ⊆ [v]α).

However, we will often restrict our attention to fuzzy convex sets.

4. u is fuzzy convex.
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Hence, [u]α is convex subset of Rn for any α ∈ [0, 1].
We denote by En the space of all fuzzy subsets u of Rn which satisfy all

the four assumptions above, that is, normal, fuzzy convex upper semicontinuous
fuzzy sets with bounded supports.

We can state

Proposition 19. Let u ∈ En and write Cα = [u]α for α ∈ I. Then

1. Cα is a nonempty compact convex subset of Rn for each α ∈ I;

2. Cβ ⊆ Cα for 0 ≤ α ≤ β ≤ 1;

3. Cα = ∩∞
i=1Cαi

for any nondecreasing αi → α in I. Or, equivalently,
dH(Cαi

, Cα) → 0 as αi 1 α.

The converse of Proposition 19 holds.

Proposition 20. Let C = {Cα, α ∈ I} be a family of subsets of Rn satisfying
1., 2. and 3. of Proposition 19, and define u : Rn → I by

u(x) :=

{
0 if x /∈ C0,
sup(α∈I:x∈Cα) if x ∈ C0.

Then u ∈ En with [u]α = Cα ∈ (0, 1] and

[u]0 =
⋃

α∈(0, 1]
Cα ⊆ C0.

Compact (convex) sets in Rn belong to Dn (En) due to the upper semiconti-
nuity in assumption (3).

Proposition 21. If A ∈ KCo(R
n) then χA ∈ En.

Definition 42. The endograph

end(u) = {(x, α) ∈ Rn × I : u(x) ≤ α}.
It is a nonempty closed subset of Rn×I. Restricting to those points that lie above
the support set, we obtain supported endograph, or sendograph for short, of u

send(u) = end(u) ∩ ([u]0 × I),

which is a nonempty compact subset of Rn × I. In fact,

send(u) =
⋃

{[u]α × {α}, α ∈ I}.
We shall define addition and scalar multiplication of fuzzy sets in En levelset-

wise, that is, for u, v ∈ En and c ∈ R− {0},
[u+ v]α := [u]α + [v]α (32)

and
[cu]α := c[u]α (33)

for each α ∈ I.
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Proposition 22. En is closed under addition (32) and scalar multiplication (33).

Proof. We use Proposition 19 to families of subsets {[u+v]α, α ∈ I} and {[cu]α, α ∈
I}. Properties (1) and (2) follow from these properties for {[u]α}, {[v]α}, defini-
tions (32) and (33) and the closedness of KCo(R

n) under addition and scalar
multiplication. In order to prove (3), let {αi} be a nondecreasing sequence in I
with αi → α− ∈ I. Then by (32) and (33), by property (3) for {[u]α, α ∈ I} and
{[v]α, α ∈ I}.

dH([u+ v]αi , [u+ v]α) ≤ dH([u]
αi , [u]α) + dH([v]

αi , [v]α) → 0.

dH([cu]
αi , [cu]α) = |c|dH([u]αi , [u]α) → 0.

Hence, property (3) of Proposition 19 is satisfied by both families.

Here, we shall also define multiplication of fuzzy sets in En by orthonormal
matrix levelsetwise, that is, for u ∈ En and c ∈ R− {0}

[Qu]α = Q[u]α. (34)

Proposition 23. En is closed under orthonormal matrix multiplication (34).

Proof. The proof is the same as for [cu]α. We use Proposition 19 to family of
subsets {[Qu]α, α ∈ I}. Properties (1) and (2) follow from these properties for
{[u]α} and the closedness of KCo(R

n) under matrix multiplication. In order to
prove (3), let {αi} be a nondecreasing sequence in I with αi → α− ∈ I. Then by
Proposition 13

dH([Qu]
αi , [Qu]α) = dH([u]

αi , [u]α) → 0.

Hence, property (3) is satisfied.

Remark 68. Note that we can state the previous two propositions for Dn instead
of for En.

We used Zadeh’s extension principle to define the addition and scalar multi-
plication of fuzzy sets. That is,

˜[u+ v](z) = sup
z=x+y

(u(x), v(y)) (35)

and
[̃cu](x) = u(x/c). (36)

Lemma 19. In En, definitions in equations (35) and (36) are equivalent to the
level set definitions (32) and (33), respectively.

107



Proof. Let α ∈ (0, 1]. Then

{x ∈ Rn, c̃u(x) ≥ α} = {x ∈ Rn, u(x/c) ≥ α} =

{cx̄ ∈ Rn, u(x̄) ≥ α} = c{x̄ ∈ Rn, u(x̄) ≥ α} = c[u]α = [cu]α

and so definitions (33) and (36) coincide. Now, suppose that

c̃u(z) ≥ α.

By the definition of the supremum, there exist xk ∈ [u]α(1−1/k), yk ∈ [v]α(1−1/k)

for k = 1, 2, . . . such that xk + yk = z and so

ũ+ ṽ(z) ≥ min{u(xk), v(yk)} ≥ α(1− 1/k).

Since [u]α(1−1/k) → [u]α, [v]α(1−1/k) → [v]α with respect to the Hausdorff metric
dH , by the compactness of all these sets, there exist xkj ∈ [u]α(1−1/k), ykj ∈
[v]α(1−1/k), x̄ ∈ [u]α and ȳ ∈ [v]α such that xkj → x̄ and ykj → ȳ. Hence, xkj +

ykj → x̄+ ȳ ∈ [u]α + [v]α and {z ∈ Rn, ˜(u+ v)(z) ≥ α} ∈ [u]α + [v]α.
Conversely, if x̄ ∈ [u]α and ȳ ∈ [v]α, so that u(x̄) ≥ α and v(ȳ) ≥ α, then

with z = x̄+ ȳ
˜(u+ v)(z) ≥ min{u(x̄), v(ȳ)} ≥ α

and so [u]α+[v]α ⊆ {z ∈ Rn, ˜(u+ v)(z) ≥ α} = [u]α+[v]α. Thus, we have shown
that

{z ∈ Rn, ˜(u+ v)(z) ≥ α} = [u]α + [v]α = [u+ v]α,

so definitions (32) and (35) coincide.

We shall define, for an orthonormal matrix Q and u ∈ En,

(Q̃u)(z) := u(Q−1(x)).

In En, this definition coincide with level set definition.

Remark 69. Since there is no need of convexity, this definition coincides also
with level set definition in Dn.

Lemma 20. Let α ∈ I. Then

[Q̃u]α = Q[u]α.

Proof. We can derive as in the case of [̃cu]α(x)

[Q̃u]α = {x, Qu(x) ≥ α} = {x, u(Q−1(x)) ≥ α}

= {Qy, u(y) ≥ α} = Q{y, u(y) ≥ α} = Q[u]α.
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The concept of support function of a nonempty compact (convex) subset of
Rn can be usefully generalized to the fuzzy sets in En. Let u ∈ E and define

suppu(α, p) := supp[u]α(p) = sup{p′a, a ∈ [u]α} (37)

Proposition 24. Let u ∈ En. Then the support function su is

1. uniformly bounded on I × Sn−1,

2. Lipschitz in p ∈ Sn−1 uniformly on I,

3. for each α ∈ I

dH([u]
α, [v]α) = supp{|su(α, p)− sv(α, p)|, p ∈ Sn−1}.

Proposition 25. Let u ∈ En. Then su(α, p) is nonincreasing in α ∈ I for each
p ∈ Sn−1.

The subset Gn of convex-sendograph fuzzy sets consists of those fuzzy sets
u ∈ En for which the sendograph send(u) is a convex subset of Rn × I. Hence,
u ∈ G if and only if u : Rn → I is a concave function over its support [u]0, that
is if and only if

u(λx+ (1− λ)y) ≥ λu(x) + (1− λ)u(y),

for all x, y ∈ [u]0 and λ ∈ I. Note that a fuzzy convex fuzzy set is not necessarily
a convex-sendograph fuzzy set.

We will use the supremum metric d∞ on Dn defined [DK] by

d∞(u, v) := sup{dH([u]α, [v]α), α ∈ I},

for all u, v ∈ Dn.
Let us supply basic properties of the metric d∞.

Lemma 21. Let u, un ∈ Dn, ∀n ∈ N. Then

lim
n→∞

d∞(un, u) = 0

if and only if
lim
n→∞

dH([un]
α, [u]α) = 0 ∀α ∈ I.

Proof. The claim follows from the definition of d∞.

Remark 70. [RF, Remark 2.4, p. 14] It is easy to see that

(X, d) → (K(X), dH) → (D(X), d∞)

are isometric embeddings (by mean x→ {x} and A→ χA, respectively).
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In this work, the completeness of spaces turns out to be crucial. The following
propositions enable us to construct fractals in particular spaces and hyperspaces
of fuzzy sets.

Proposition 26. [RF, Theorem 3.3, p. 15] (D(X), d∞) is a complete metric
space if and only if X is a complete metric space.

Proposition 27. [DK, Prop. 7.2.3] (En, d∞) is a complete metric space.

Lemma 22. Let u, v ∈ Gn. Then d∞(u, v) ≥ dH(send(u), send(v)).

Proof. Let u, v ∈ Gn. We know that send(u) = ∪α∈I [u]
α × α for any u ∈ Gn.

From
dH(∪αAα, ∪αBα) ≤ max

α
dH(Aα, Bα),

we obtain
dH(send(u), send(v)) ≤ max

α∈I
dH([u]

α × α, [v]α × α)

= max
α∈I

dH([u]
α, [v]α) = d∞(u, v).

Proposition 28. (Gn, d∞) is a complete metric space.

Proof. Let un ∈ Gn be a Cauchy sequence. From

d∞(un, um) → 0

and the previous lemma, we obtain

dH(send(un), send(um)) → 0.

Sets send(un), send(um) are nonempty compact convex. Since En is complete,
the sequence un converge to u ∈ En. Space KCo(R

n) is complete, too, therefore
send(u) is convex. We obtain u ∈ Gn.

We will often deal with compact sets of fuzzy sets. Let us finish the subsection
with a lemma concerning their level sets.

*Lemma 23. Let U be a compact set of fuzzy sets ui ∈ Dn. Then

[
∨

ui∈U
ui

]α
=
⋃

ui∈U
[ui]

α

for any α ∈ I.
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Proof. For a given α ∈ I, we have

[
∨

ui∈U
ui

]α
=

{
x ∈ Rn, sup

ui∈U
{ui(x)} ≥ α

}
.

Let x ∈ R be such that supui∈U{u(x)} ≥ α, then there exists uk ∈ U , k ∈ N

such that for any β < α, there exists k0, uk(x) ≥ β, for any k > k0. Due to
compactness of U ∈ K(Dn), we can find subsequence, for the sake of simplicity
uk, which converges to u ∈ U . Since x ∈ [uk]

β, for all β ≤ α for some k > k0
(where [uk]

β are compact), it follows x ∈ [u]β, for all β > α. From the upper
semicontinuity of u, we obtain x ∈ [u]α. Hence, we can write

[
∨

ui∈U
ui

]α
=

{
x ∈ Rn, max

ui∈U
{ui(x)} ≥ α

}
=

{x ∈ Rn, ui(x) ≥ α, ui ∈ U} =
⋃

ui∈U
[ui]

α.

8.2. Fuzzy fractals

Single-valued contractions are extended to construct fuzzy fractals, for ex-
ample, in [CFMV], [FLV], [FMV] and [DK]. These fuzzy fractals are supported
on skinny fractals. We will generalize our results on multivalued fractals and
hyperfractals in a fuzzy way. Fuzzy fractals are shadows of associated fuzzy
hyperfractals. It is not surprising that their address structures correspond.

Remark 71. In order to find the address structure of multivalued fractals, we
need contractions Fi to be induced from multivalued mappings. The contractions
Fi satisfy

F (A ∪ B) = F (A) ∪ F (B), ∀A, B ∈ K(X).

Then we can write
Fi(∪jFj(A)) = ∪jFi(Fj(A)).

Similarly, when looking for the address structure of fuzzy fractals, we need con-
tractions fi to satisfy

fi(u ∨ v) = fi(u) ∨ fi(v), ∀u, v ∈ Dn.

Then we can write

fi(
∨

j

fj(u)) =
∨

j

fi(fj(u)), u ∈ Dn.
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Thus, we will consider only the contractions f : Dn → Dn

f(u ∨ v) = f(u) ∨ f(v), ∀u, v ∈ Dn.

in the following text.

*Lemma 24. Let fi : Dn → Dn, i = 1, 2, . . . , m, be contractions with factors of
contractions ri. Then f : Dn → Dn,

f(u) =
∨

i

fi(u)

is a contraction with factor r = maxi{ri}.

Proof. Let u ∈ Dn. First, it follows from Lemma 23 that

[f(u)]α =
m⋃

i=1

[fi(u)]
α.

Secondly, we will prove that f : Dn → Dn is a contraction. Note that the
following holds for [f(u)]α :

1. it is a compact nonempty set, for each α ∈ I,

2. [f(u)]β ⊂ [f(u)]α, for 0 ≤ α ≤ β ≤ 1,

3. [f(u)]α = limi→∞[f(u)]αi , for any nondecreasing αi → α ∈ I.

Since these properties are satisfied by each [fi(u)]
α, they are satisfied by [f(u)]α =

∪i[fi(u)]
α. Using α−level sets, it is easy to show that f is a contraction,

d∞(f(u), f(v)) = max
α∈I

{dH([f(u)]α, [f(v)]α)} =

= max
α∈I

{dH(
m⋃

i=1

[fi(u)]
α,

m⋃

i=1

[fi(v)]
α)}

≤ max
α∈I

{ max
i=1, 2, ...,m

{dH([fi(u)]α, [fi(v)]α)}}

= max
i=1, 2, ...,m

{max
α∈I

{dH([fi(u)]α, [fi(v)]α)}}

= max
i=1, 2, ...,m

{d∞(fi(u), fi(v))}

= max
i=1, 2, ...,m

{rid∞(u, v)}

≤ rd∞(u, v).
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*Theorem 40. Let fi : Dn → Dn be contractions for i = 1, 2, . . . , m. There
exists a unique u∗ ∈ Dn such that

f(u∗) = u∗.

Proof. It follows directly, since f is a contraction in a complete metric space
Dn.

Definition 43. The above attractor u∗ is called a fuzzy fractal. The system
f = {(Dn, d∞), fi, i = 1, 2, . . . , m} is called a fuzzy IFS.

*Theorem 41. Let fi : Dn → Dn be contractions for i = 1, 2, . . . , m. Let
F = {(Dn, d∞), fi} be an IFS. There exists a unique U∗ ∈ K(Dn) such that

F (U∗) = U∗,

where F : K(Dn) → K(Dn),

F (U) =
m⋃

i=1

fi(U),

fi(U) =
⋃

u∈U
{fi(u)}.

Proof. It follows directly since F is an IFS in a complete metric space Dn.

Definition 44. The above attractor U∗ is called a fuzzy hyperfractal. The sys-
tem F = {(Dn, d∞), fi, i = 1, 2, . . . , m} is called a fuzzy hyperIFS.

Let us proceed to the address structures of fuzzy fractals and fuzzy hyperfrac-
tals. We will treat them in the same way as the ones of multivalued fractals and
hyperfractals. We can state the following proposition (see [Ba1, Theorem 2.1, p.
123]).

*Proposition 29. Let {Dn, f1, f2, . . . , fm} be a fuzzy hyperIFS. Let U∗ denote
the attractor of the fuzzy hyperIFS. Let (Σ, dΣ) denote the code space associated
with the fuzzy hyperIFS. For each σ ∈ Σ, n ∈ N, and u ∈ Dn, let

φ(σ, n, u) = fσ1 ◦ fσ2 ◦ · · · ◦ fσn
(u).

Then
φ(σ) = lim

n→∞
φ(σ, n, u)

exists, belongs to U∗ and is independent of u ∈ Dn. The function φ : Σ → U∗ is
continuous and onto.
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*Theorem 42. Let {Dn, fi, i = 1, 2, . . . , m} be a fuzzy IFS and u∗ its attractor.
Let

φ(σ) = lim
n→∞

φ(σ, n, u),

where
φ(σ, n, u) = fσ1 ◦ fσ2 ◦ · · · ◦ fσn

(u), σ ∈ Σ, n ∈ N, u ∈ Dn.

Then φ(σ) ≤ u∗. Let a ∈ Rn, u∗(a) = α. Then there exists ω ∈ Σ such that
φ(ω)(a) = α.

Proof. We know that
u∗ = lim

n→∞
fn(u),

for any u ∈ Dn, where f(u) =
∨m

i=1 fi(u). Notice that

φ(σ, n, u) ≤ fn(u).

Since limits
lim
n→∞

φ(σ, n, u) = φ(σ)

and
lim
n→∞

fn(u) = u∗

exist, it follows that
φ(σ) ≤ u∗.

On the other hand, let a ∈ Rn be such that u∗(a) = α. Consider u ∈ Dn and
a sequence {un}, un = fn(u). Notice that

lim
n→∞

un = u∗.

Since [un]
α → [u∗]α follows from Lemma 21, we can find a sequence {an} such

that an ∈ [un]
α

lim
n→∞

an = a.

Moreover, for each an, there exists {ω(n)} such that

an ∈ [φ(ω(n), n, u)]α.

Notice that

a1 ∈
[

m∨

i=1

fi(u)

]α
⇒ ∃i1 : a1 ∈ [fi1(u)]

α ,

a2 ∈
[

m∨

i, j=1

fij(u)

]α
⇒ ∃i1, i2 : a2 ∈ [fi1i2(u)]

α ,

etc.
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Since (Σ, dΣ) is compact, it follows that {ω(n)} possesses a convergent subse-
quence with a limit ω ∈ Σ.Without loss of generality, assume that limn→∞ ω(n) =
ω. Then the number of successive initial agreements between components of ω(n)

and ω increases without limit. That is, if

α(n) = card{j ∈ N : ω
(n)
k = ωk for 1 ≤ k ≤ j},

then α(n) → ∞ as n→ ∞. It follows that

d(φ(ω, n, u), φ(ω(n), n, u) → 0.

From
a ∈ lim

n→∞

[
φ(ω(n), n, u)

]α

it follows that
a ∈ lim

n→∞
[φ(ω, n, u)]α .

Hence, φ(ω) ≤ u∗ implies φ(ω)(a) = α.

We obtain the following corollary.

*Corollary 9. Let us consider the system {Dn, fi, i = 1, 2, . . . , m}. Attrac-
tors u∗ and U∗ of the fuzzy IFS and fuzzy hyperIFS, respectively, have the same
address structure,

u∗ =
∨

σ∈Σ
fσ(u),

U∗ =
⋃

σ∈Σ
{fσ(u)},

for any u ∈ Dn.

Definition 45. Let us call u∗ an underlying fuzzy fractal to U∗.

Next, we will calculate the Hausdorff dimension of fuzzy hyperfractals. Let
us give some notation and supporting lemmas. From now on, we will consider
fi : Dn → Dn, i = 1, 2, . . . , m, such that

fi(u) = riQiu+ vi, (38)

where ri ∈ [0, 1), Qi is an orthonormal matrix and vi ∈ Dn. These mappings can
be described levelsetwise. Let us denote for any α ∈ I

fα
i (C) := riQiC + [vi]

α,

where C ∈ KCo(R
n).

*Lemma 25. Let fi be as in (38), then [fi(u)]
α = fα

i ([u]
α) for any α ∈ I.

Proof. It follows from equations (32), (33) and (34).
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This implies the following lemma, which enables us to treat effectively level
sets of fuzzy hyperfractals as hyperfractals.

*Lemma 26. Let F = {(Dn, d∞), fi, i = 1, 2, . . . , m},

fi(u) = riQiu+ vi,

where ri ∈ [0, 1), Qi is an orthonormal matrix and vi ∈ Dn be a fuzzy hyper-
IFS with an attractor U∗. Let F α = {(K(Rn), dH), f

α
i , i = 1, 2, . . . , m} be a

hyperIFS with an attractor β∗. Then

[uσ]
α = B∗

σ.

Proof. We know that
[fi(u)]

α = fα
i ([u]

α),

for any u ∈ Dn and α ∈ I. Note that fσ1σ2...σp
(u) = rσ1σ2...σp

Qσ1σ2...σp
(u) + D,

D ∈ Dn. This implies

[fσ1σ2...σp
(u)]α = fα

σ1σ2...σp
([u]α),

for p ∈ N. For p → ∞, we obtain convergent sequences in K(Rn) on both sides
of the equation. We arrive to [u∗σ]

α = B∗
σ.

*Lemma 27. Let fi : En → En be such that

fi(u) := riQiu+ vi,

where vi ∈ En, r ∈ [0, 1). Then fi is a similitude.

Proof. The claim follows from the previous lemma and the convexity of level sets.
For any u, w ∈ E ,

d∞(fi(u), fi(w)) = max
α∈I

dH([fi(u)]
α, [fi(w)]

α)

= max
α∈I

ridH([u]
α, [w]α) = rid∞(u, w).

*Theorem 43. Let F = {(En, d∞), fi, i = 1, 2, . . . , m} be a fuzzy hyperIFS
such that fi : En → En,

fi(u) := riQiu+ vi,

where vi ∈ En, r ∈ [0, 1), Qi are orthonormal. If its attractor is totally discon-
nected, its Hausdorff dimension can be calculated by means of the Moran formula.

Proof. This follows from the previous lemma and Proposition 8.

We will need a generalization of a convex hull for fuzzy sets. Let us write
vc ∈ En for v ∈ Dn, where [vc]α := conv[v]α.
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*Lemma 28. For any v ∈ Dn, it holds that vc ∈ En.

Proof. It follows directly that [vc]α are nonempty compact convex sets for any
α ∈ I. Observe also that [v]αi → [v]α implies [vc]αi → [vc]α for αi → α.

Let F = {(Dn, d∞), fi, i = 1, 2, . . . , m} be a fuzzy hyperIFS such that
fi : Dn → D,

fi(u) := riQiu+ vi,

where vi ∈ Dn, r ∈ [0, 1). Let us define a fuzzy hyperIFS F c = {(En, d∞), f c
i , i =

1, 2, . . . , m} such that f c
i : En → En,

f c
i (u) := riQiu+ vci ,

where vci ∈ En, r ∈ [0, 1).
We will calculate the Hausdorff dimension of the attractor U∗ of the fuzzy

hyperIFS F with the help of the attractor U c of F c. We will state a few lemmas
before.

*Lemma 29. Let u ∈ Dn then

conv[fi(u)]
α = [f c

i (u
c)]α.

Proof. We obtain the claim directly from Lemma 25.

*Lemma 30. Let σ ∈ Σ then

conv[u∗σ]
α = [ucσ]

α.

Proof. Observe that
u∗σ = fσ(u)∀u ∈ Dn.

Lemma 26 implies that
[fσ(u)]

α = [fα
σ ([u]

α).

From Theorem 35, we obtain

conv(fα
σ ([u]

α)) = fαc
σ ([uc]α) = [f c

σ(u
c)]α.

*Lemma 31. Let u, v ∈ Dn, then

d∞(u, v) ≥ d∞(uc, vc).

Proof. Note that

dH([u]
α, [v]α) ≥ dH(conv[u]

α, conv[v]α),

for each α ∈ I.
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*Theorem 44. Let F = {(Dn, d∞), fi, i = 1, 2, . . . , m} be a fuzzy hyperIFS
such that fi : Dn → D,

fi(u) := riQiu+ vi,

where ri ∈ [0, 1), Qi ∈ Rn×n is orthonormal vi ∈ Dn, i = 1, 2, . . . , m. If
the attractor U c of F c is totally disconnected, then the Hausdorff dimension of
the attractor U∗ of F can be calculated by means of the Moran formula and
dimH(U∗) = dimH(U c).

Proof. We will proceed in the same way as in the proof of Theorem 37. Since
U c is totally disconnected and f c

i are similitudes, we can obtain the Hausdorff
dimension D of U c (see Theorem 43). In order to calculate the Hausdorff dimen-
sion of U∗, we will find a bi-Lipschitz mapping of U c onto U∗. Thus, we need to
compare d∞(u∗σ, u

∗
σ′) and d∞(ucσ, u

c
σ′).

We know from Lemma 30 that

conv([u∗σ]
α) = [ucσ]

α, ∀α ∈ I, σ ∈ Σ.

Since U c is totally disconnected, there exists dmin
∞ > 0 such that

d∞(fi(u
c
σ), fj(u

c
σ′)) ≥ dmin

∞ , i 6= j, σ, σ′ ∈ Σ.

Lemma 15 implies

d∞(fi(u
∗
σ), fj(u

∗
σ′)) ≥ d∞(fi(A

c
σ), fj(A

c
σ′)) ≥ dmin

∞ .

Let us find a bi-Lipschitz mapping of U c onto U∗. For any j ∈ N, we can write:

uci1i2...ij ... = f c
i1...ij−1

(uijij+1...)

and
uci1i2...i′j ... = f c

i1...ij−1
(ui′ji′j+1...

).

Let us estimate the distance d∞(uci1i2...ij ..., u
c
i1i2...i′j ...

). Since f c
i are similitudes,

d∞(uci1i2...ij ..., u
c
i1i2...i′j ...

) =

= d∞(f c
i1...ij−1

(ucijij+1...
), f c

i1...ij−1
(uci′ji′j+1...

))

= ri1i2...ij−1
· d∞(ucijij+1...

, uci′ji′j+1...
)

≥ ri1i2...ij−1
· dmin

∞ .

Moreover, Lemma 31 implies

d∞(u∗ijij+1...
, u∗i′ji′j+1...

) ≥ d∞(ucijij+1...
, uci′ji′j+1...

).
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On the other hand, since fi are contractions with a factor ri, i = 1, 2, . . . , n,

d∞(u∗i1i2...ij ..., u
c
i1i2...i′j ...

) ≤ ri1i2...ij ...diam(U∗).

Note that U∗ ∈ K(En) implies diam(U∗) <∞.
We obtain from these inequalities

d∞(uci1i2...ij−1ij ...
, uci1i2...ij−1i′j ...

) ≤

d∞(u∗i1i2...ij−1ij ...
, u∗i1i2...ij−1i′j ...

) ≤ diam(U∗)

dmin
∞

d∞(uci1i2...ij−1ij ...
, uci1i2...ij−1i′j ...

).

Applying Proposition 9 for f : U c → U∗, f(uci1i2...) = u∗i1i2..., we obtain that
the Hausdorff dimension of U∗ is really D (cf. Proposition 9).

*Corollary 10. If the assumptions of Theorem 44 are fulfilled by the fuzzy
hyperIFS F = {(Dn, d∞), fi, i = 1, 2, . . . , m}, fi(u) = riQiu+ vi, then they are
fulfilled by any other fuzzy hyperIFS F ′ = {(Dn, d∞), f ′

i , i = 1, 2, . . . , m}, where
f ′
i(u) = riQiu+ v′i Qi = Q′

i, ri = r′i and v
c
i = v′ci .

Proof. There exists one fuzzy hyperIFS F c for both the fuzzy hyperIFSs F and
F ′.

8.3. Visualization of fuzzy fractals and measures

Let us generalize our approach of visualization of multivalued fractals and
hyperfractals to fuzzy fractals and fuzzy hyperfractals. We will also construct a
measure on fuzzy fractals. We will proceed similarly as in the case of hyperfrac-
tals.

When drawing fuzzy sets here, we express levels of membership by levels
of a grey colour. It is certainly more complicated to draw fuzzy fractals than
multivalued fractals by means of the Banach theorem. Let f = {(Dn, d∞), fi, i =
1, 2, . . . , m} be a fuzzy IFS with an attractor u∗. Let us denote the attractor of
the associated fuzzy hyperIFS U∗. In order to avoid storing and processing fn(u),
we use the chaos game.

We know that fuzzy fractals and fuzzy hyperfractals are related in a similar
way as multivalued fractals and hyperfractals. Therefore, we can use the chaos
game for fuzzy hyperIFS to draw attractors of fuzzy IFSs. Almost all orbits of
the chaos game are dense in attractors of fuzzy hyperIFS. Let us give an analogy
of Theorem 33.

*Theorem 45. Let f be a fuzzy IFS and F an associated fuzzy hyperIFS with
attractors u∗ and U∗, respectively. Let Û = {ûi, i ∈ ι, ûi ∈ Dn} be such that
d∞H

(Û , U∗) ≤ ǫ. Then

d∞

(
∨

i∈ι
ûi,

∨

σ∈Σ
u∗σ

)
≤ ǫ.
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Proof. Observe that, d∞H
(Û , U∗) ≤ ǫ implies that, for each u∗σ ∈ U∗, there exists

ûi ∈ Û such that
d∞(u∗σ, ûi) ≤ ǫ.

Let α ∈ I be given. It follows that, for each x ∈ [u∗σ]
α, there exists y ∈ [ûi]

α such
that d(x, y) ≤ ǫ. In the same way, for each ûi ∈ Û , there exists u∗σ ∈ U∗ such that

d∞(ûi, u
∗
σ) ≤ ǫ.

It follows that, for each x ∈ [ûi]
α, there exists y ∈ [u∗σ]

α such that d(x, y) ≤ ǫ.
We arrive to

d∞

(
∨

i∈ι
ûi,

∨

σ∈Σ
u∗σ

)
=

max
α

{max{ sup
x∈⋃i∈ι[ûi]α

{ inf
y∈[u∗]α

{d(x, y)}}, sup
x∈[u∗]α

{ inf
y∈

⋃
i∈ι[ûi]α

{d(x, y)}}}} ≤ ǫ.

Thus, we can use the chaos game for fuzzy hyperfractals to draw underlying
fuzzy fractals with the same accuracy.

Let us start with a visualization of fuzzy hyperfractals. We define a mapping
V∞,

V∞ : (Dn, d∞) → (Rd, dmax),

V∞(u) :=




supp[u]α1 (x1)
supp[u]α2 (x2)

...
supp[u]αd (xd)


 ,

where xi ∈ Rn, |xi| = 1, and αi ∈ I for i = 1, . . . , d.
It is not difficult to prove that dmax(V∞(u), V∞(v)) ≤ d∞(u, v). This follows

from
d∞(u, v) ≥ max

α∈I
{ max
i∈{1, ..., d}

|supp[u]αi (xi)− supp[v]αi (xi)|}.

Let us proceed to measure on fuzzy fractals. Notice that fuzzy hyperfractals
are attractors of ordinary IFSs and we can easily construct an invariant measure
for a fuzzy hyperIFS {Gn, fi, pi}.
*Lemma 32. Let r ∈ [0, 1), Q ∈ Rn×n is orthonormal and v ∈ Gn, then

f(u) = rQu+ v (39)

is a contraction in Gn.

Proof. Let u, v ∈ Gn, r ∈ [0, 1), Q ∈ Rn×n. We will prove that ru, Qu, u + v ∈
Gn. Let us remind that, for u ∈ Gn, we have

u(λx+ (1− λ)y) ≥ λu(x) + (1− λ)u(y).
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1. Let r ∈ R, then

ru(λx+ (1− λ)y) = u(r−1(λx+ (1− λ)y))

= u(λr−1x+ (1− λ)r−1y) ≥ λu(r−1x) + (1− λ)u(r−1y)

= λru(x) + (1− λ)ru(y).

We arrive to ru ∈ Gn.

2. Let Q ∈ Rn×n, then we can proceed in the same way,

Qu(λx+ (1− λ)y) = u(Q−1(λx+ (1− λ)y))

= u(λQ−1x+ (1− λ)Q−1y) ≥ λu(Q−1x) + (1− λ)u(Q−1y)

= λQu(x) + (1− λ)Qu(y).

We arrive to Qu ∈ Gn.

3. Note that
u(λx+ (1− λ)y) ≥ λu(x) + (1− λ)u(y)

is equivalent with

λx+ (1− λ)y ∈ [u]λα1+(1−λ)α2 ,

where u(x) = α1, u(y) = α2. Hence, we can write

λ[u]α1 + (1− λ)[u]α2 ⊂ [u]λα1+(1−λ)α2 .

Let us consider u+ v :

λ[u+ v]α1 + (1− λ)[u+ v]α2 = λ[u]α1 + λ[v]α1 + (1− λ)[u]α2 + (1− λ)[v]α2

= λ[u]α1 +(1−λ)[u]α2 +λ[v]α1 +(1−λ)[v]α2 ⊂ [u]λα1+(1−λ)α2 +[v]λα1+(1−λ)α2

= [u+ v]λα1+(1−λ)α2 .

This is equivalent with

(u+ v)(λx+ (1− λ)y) ≥ λ(u+ v)(x) + (1− λ)(u+ v)(y).

In order to construct a shadow of an invariant measure on fuzzy hyperfractals,
we use a similar approach as for a measure on multivalued fractals. (It will be
a measure on a multivalued fractal.) We will calculate and visualize how often
a Borel subset of embedding space Rn is visited during the chaos game for the
IFS F. Moreover, we need to evaluate how significant part of fuzzy sets from
an orbit of the chaos game visited the Borel set. The easiest way is to measure
a volume of intersections of sendographs. We will consider a fuzzy hyperIFS
{Gn, fi, pi, pi > 0, i = 1, 2, . . . , m} such that dim[u∗σ]

0 = n for almost all σ ∈ Σ.
Lemma 17 implies
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*Lemma 33. Let {Gn, fi, pi, pi > 0, i = 1, 2, . . . , m} be a fuzzy hyperIFS, where
fi, i = 1, 2, . . .m are as in (39). Let ω ∈ Σ be such that dim[uω]

0 = n, then
dim[u∗σ]

0 = n for almost all σ ∈ Σ.

*Lemma 34. Let u ∈ Gn be such that dim([u]0) = n then dim(send(u) = n+ 1.

Proof. The claim follows from the convexity of the sendograph send(u) and [u]1 6=
∅.

Thus, let us consider such a fuzzy hyperIFS that dim(send(u∗σ)) = n + 1 for
almost all σ ∈ Σ.We define a set function f on the set of blocks [a1, b1]×[a2, b2]×
· · · × [an, bn],

f(B) :=

∫

σ∈Σ

Ln+1(send(u∗σ) ∩ send(B))

Ln+1(send(u∗σ))
dρ(σ).

Observe that we can treat a set B ∈ KCo(R
n) as a fuzzy set in Gn.

In order to use the ergodic theorem, we prove integrability of Ln+1(send(u∗
σ)∩send(B))

Ln+1(send(u∗
σ))

.
Let us denote

ΣB = {σ ∈ Σ, Ln(send(u∗σ) ∩ send(B)) > 0}.

Let us remind three facts. Volume of convex sets is continuous w.r.t. the
Hausdorff metric (see Lemma 18), but we deal with d∞ and dΣ. Note that

dH(send(u), send(v)) ≤ max(dH([u]
α, [v]α)) = d∞(u, v), ∀u, v ∈ Gn,

follows from Lemma 22. The address function

φ(σ) = u∗σ, σ ∈ Σ,

is continuous w.r.t. the metrics d∞ and dΣ. These imply, for any σ ∈ Σ,

∀ǫ > 0∃δ1 > 0 : dH(send(u
∗
σ), send(u

∗
σ′) < δ1 ⇒

⇒ |vol(send(u∗σ))− vol(send(u∗σ′))| < ǫ,

∀δ1 > 0∃δ2 > 0 : d∞(u∗σ, u
∗
σ′) < δ2 ⇒ dH(send(u

∗
σ), send(u

∗
σ′)) < δ1,

∀δ2 > 0∃δ > 0 : d∞(u∗σ, u
∗
σ′) < δ ⇒ dΣ(σ, σ

′) < δ2.

We obtain continuous dependence of Ln(send(u∗σ)) w.r.t. dΣ. From Remark 64,
we have also that Ln+1(send(u∗σ) ∩ send(B)) is continuous in u∗σ w.r.t. and dΣ.
Since ΣB is a preimage (in Ln+1(send(u∗σ)∩send(B))) of the open interval (0,∞),
it is open.

Hence, we integrate a continuous function on the open set ΣB. It follows that

f(B) =

∫

σ∈Σ

Ln+1(send(u∗σ) ∩ send(B))

Ln+1(send(u∗σ))
dρ(σ)
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=

∫

σ∈ΣB

Ln+1(send(u∗σ) ∩ send(B))

Ln+1(send(u∗σ))
dρ(σ)

exists and it can be approximated by means of the ergodic theorem. It remains
to define an outer measure, for all Borel sets of Rn,

µS(B) := inf{
∑

f(Bi), B ⊂ ∪iBi, Bi are blocks}. (40)

µS satisfies three conditions for an outer measure

1. µS(∅) = 0,

2. µS(A) ≤ µS(B) for A ⊂ B,

3. µS(∪iBi) ≤
∑

i µS(Bi).

In the same way as in the case of a measure on multivalued fractals, we can prove
that it is a Borel measure by means of the Carathéodory criterion.

We obtain the following theorem.

*Theorem 46. Let us consider the fuzzy hyperIFS F = {Gn, fi, pi > 0}, such
that dim([u∗σ]

0) = n for almost all σ ∈ Σ. The set function µS defined in (40) is
a Borel measure.

Example 12. Consider the fuzzy IFS f = {(G2, d∞), fi, pi, i = 1, 2, 3} and
corresponding fuzzy hyperIFS F = {(G2, d∞), fi, pi, i = 1, 2, 3}, where p1 =
p2 = p3 =

1
3
,

[f1(u)]
α =

1

2
[u]α ,

[f2(u)]
α =

1

2
[u]α +

{(
0,

1

2

)′}
,

[f3(u)]
α =

{(
1

2
+ ax, by

)′
, (x, y)′ ∈ [u]α, a, b ∈

[
1

3
+

1

6
α,

1

2

]}
.

For the images of the fuzzy fractal and measure on it, see Figure 50. Images of
the structure of fuzzy hyperfractal and the invariant measure are in Figure 51.
Notice that the 0-level set of the fuzzy attractor corresponds to the fat Sierpiński
triangle and the 1-level set to the Sierpiński triangle.
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Figure 50: Fuzzy fat Sierpiński triangle and a measure from Example 12

Figure 51: Projection of metric structure of the fuzzy fat Sierpiński triangle and
invariant measure from Example 12
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9. Summary

Let us briefly sum up our contribution to the theory of fractals and discuss
open problems. The thesis connects the theories of multivalued fractals, fractals
generated by iterated function systems and superfractals. We come up with the
term hyperfractal. It answers the question set in [BHS1] about a multivalued
analogy of attractors of super iterated function systems. Hyperfractals are at-
tractors of iterated function systems and multivalued fractals are their shadows.
Hyperfractals enable us to discuss the address structure of multivalued fractals,
which is to our knowledge only implicitly present in [KLV2] and [KLMV]. We
explain visual self-similarity and complexity of multivalued fractals by means of
hyperfractals. We show that the set of self-similar attractors of IFSs is a subclass
of shadows of self-similar hyperfractals. We also visualize structure of hyper-
fractals by means of support functions. Since we treat the hyperfractals as the
first, their application for drawing multivalued fractals and measures supported
by them applying the chaos game seems to be new. We generalized the theory to
spaces of fuzzy sets. Fuzzy fractals were studied rarely. However, these fractals
were not a direct generalization of multivalued fractals or hyperfractals like ours.

Thousands of articles were written about fractals but only few about this
field. Hence, there is a lot of problems to investigate. Let us suggest a few.

• We found the address structure of multivalued fractals. It arises a ques-
tion, which conditions are necessary to recognize the address structure of
topological multivalued fractals.

• A degree of self-similarity of trees is usually found in a topological way (see
e.g. [FGP]). It is worth considering also metric ways. We can regard a tree
as a shadow of a hyperfractal and look for its degree of self-similarity.

• In order to apply our results to image compression, the inverse problem
should be solved. It means efficient searching for an IMS or hyperIFS
whose attractors are close to an original image.

• Our approach to fuzzy fractals has a disadvantage that all address fuzzy sets
have nonempty levels. Therefore, generalizations should be investigated.
Considering fuzzy sets as functions, the metric d∞ does not seem natural.
There are other metrics which can be applied (see [DK]).

• In the last years, hyperchaos was extensively studied. We have also treated
the simplest case of hyperchaos, particularly shift dynamical system for
hyperfractals. Our approach can be generalized to estimate dimension and
visualize chaotic orbits in hyperspace.
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11 Chaos game for the Sierpiński triangle . . . . . . . . . . . . . . . 64
12 Shift dynamical system for the Sierpiński triangle . . . . . . . . . 64
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iteration algorithm and fractal hierarchy, Fractals 13, 2 (2005), 111–146.

[BHS2] Barnsley, M. F., Hutchinson, J. E. and Stenflo, Ö., V-variable fractals:
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