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Abstract

Fractals generated by iterated function systems are systematically studied
from 1981 (see [Hu]). The theory of multivalued fractals is developed from 2001
(see [AG1]) almost separately. In the thesis, we treat multivalued fractals and
structures supported by them by means of hyperfractals. We deal with structure,
self-similarity of multivalued fractals and their visualization. We discuss relation-
ship of multivalued fractals to fractals generated by iterated function systems.
We also extend the theory of hyperfractals.

We proceed in the following way. First, we review hyperspaces, maps and
hypermaps, since fractals are fixed points of hypermaps in hyperspaces. We also
remind iterated function systems and related notions of code space, self-similarity
and invariant measure.

Although we usually construct fractals by means of the Banach theorem, we
discuss other fixed point theorems, which can be applied in hyperspaces. We
describe generalizations of the Banach (metric) and Schauder (topological) fixed
point theorems. Existence results for metric and topological multivalued fractals
and hyperfractals are supplied. We study multivalued fractals and associated
hyperfractals generated by the same iterated multifunction system. We prove
that they possess the same address structure.

Since we can also regard fractals generated by iterated function systems as
attractors of chaotic dynamical systems, we can draw them by means of the chaos
game. We remind the theory related to the chaos game, particularly the ergodic
theory and chaos.

Next, we investigate visualization and dimension of hyperfractals. Hyperfrac-
tals lie in hyperspaces, which are nonlinear and infinite-dimensional spaces. For
a particular class of hyperfractals, we construct projections of their structure by
means of support functions. We apply the Moran formula to calculate dimension
of self-similar hyperfractals. We also show that self-similar fractals form a subset
of shadows of self-similar hyperfractals.

Since hyperfractals are attractors of iterated function systems, we visualize
also an invariant measure. Moreover, we construct a shadow of the invariant
measure supported by the underlying multivalued fractal by means of ergodic
theorem.

Finally, our results are generalized to spaces of fuzzy sets. We remind the
theory of fuzzy sets. Then, we define fuzzy fractals and fuzzy hyperfractals, which
are related in the same way as multivalued fractals and hyperfractals. We find
their address structure, which helps us to visualize these fractals and calculate
their Hausdorff dimension.



1. Introduction

1.1. Current state of the art

Fractals are extensively studied objects without an exact definition (see [Mal],
[Ma2], [Ma3]). However, fractals have usually some of the following features [Fal]

e Fractals have a “natural” appearance.

e Fractals have a fine structure, that is irregular detail at arbitrarily small
scales.

e Fractals are too irregular to be described by calculus or traditional geomet-
rical language, either locally or globally.

e Fractals have often some sort of self-similarity or self-affinity, perhaps in a
statistical or approximate sense.

e The “fractal dimension” (defined in some way) is strictly greater than the
topological dimension of a fractal.

e In many cases of interest, fractals have a very simple, perhaps recursive,
definition.

We will meet all the features of fractals but the last three are crucial for
us. We will consider self-similar fractals with a noninteger Hausdorff (=fractal)
dimension generated by iterated function systems (cf. [Hul, [Bal]). An iterated
function system (IFS) is usually a system of a finite number of contractions
on a complete metric space {X; f;;i = 1,2, ..., n}. Then the transformation
F: K(X)— K(X) defined by

for all B € K(X), is a contraction mapping on the complete metric space
(K(X), dy), i.e. the space of compact subsets of X. Its unique fixed point
A* € K(X) obeys

A= hA).
i=1

The fixed point A* is called an attractor of the IFS and it is a union of its
contracted copies. If the copies are separated and contractions are in addition
similitudes, we talk about self-similarity of an attractor. For self-similar attrac-
tors, the Hausdorff dimension can be calculated by means of the Moran formula.
These results were stated by Hutchinson [Hu] (see also [B], [BG|, [BK], [E], [Fal],
[Fa2], [PJS], [Sc], [Wc] and [Wi]).



Barnsley explores more ways of drawing fractals and invariant measures (see
[Bal], [BD]). He also came out with the idea of fractal image compression. It-
erated function systems enable us to store image-like data in a few parameters
of functions comprising the IFS whose attractor is close to the image. Barns-
ley developed techniques for image encoding and decoding by means of IFS (cf.
[BEHL], [BH]). His method provides a great compression ratio but it is very time
consuming. Jacquin developed the approach based on the idea of IF'S which use
domain and range blocks of a picture (cf. [Jal]-[Jad]). See also [F] or [WJ] for
further references.

Iterated function systems were extended in many ways, for instance to R>
in [CR]. Infinite IFS were described in [GJ] and [L3]. One of the most signifi-
cant generalizations of fractals generated by IFSs are multivalued fractals. They
are generated by iterated multifunction systems (shortly IMSs). By multivalued
fractals, we understand the fixed points of operators F' : K(X) — K(X), such
that

F(A) = UE(AL

where F; are induced by continuous multivalued maps F; : X — K(X) from an
IMS {(X, d), F1, Fa, .-, Fu}

Multivalued fractals were extensively investigated in the last ten years. They
were developed independently by three groups. Andres and co-workers repre-
sent one group which also introduced the terminology [A1], [A2], [AF], [AFGL],
[AG1], [AG2], [AV], [Fi]. Their work was inspired by relationships between maps,
multivalued maps and hypermaps. Problems in differential inclusions motivated
Petrusel and co-workers ([LPY], [P1], [P2], [PR1], [PR2]). For the similar ap-
proach see also [BBP], [CP|, [CL], [GG], [KLV1], [KLV2], [LtM], [Mh], [MM],
[Ok], [SPK]. The articles are devoted mainly to existence results by means of the
fixed point theorems and structure of attractors. Drawing and approximation of
attractors is also investigated. Lasota and Myjak studied the related notion of
semifractals in [L1]-[L4], [LM1]-[LM4].

Our work was inspired by superfractals [Ba2| (see also [BHS1]-[BHS4]). Barns-
ley found out that it is more effective to treat some sets like sets of fractal sets.
Thus, he investigated iterated function systems of iterated function systems. In
the easiest case, he considered IFSs Fi, Fs, ..., F,,

Fi - {(Xa d)v f{a f;: BRI ;n}a

where f? : X — X are contractions. The operators F; : K(X) — K(X),

F(4) = J £,



comprise the IFS {(K(X), dy), F1, F,, ..., F,,} and generate the contracting
operator ¢ : K(K(X)) - K(K(X)),

o(a) =J U{FA)})

j Aca

The fixed point of ¢ in a hyperhyperspace is called a superfractal.

At the end of [BHS1], it is suggested to investigate the previous case with
multivalued mappings f; Attractors of such systems will be called hyperfractals
(see [AR1] and [AR2]). Hyperfractals are fixed points of operators ¢ in K (K (X)).
Given a system {(X, d), F1, Fa, ..., Fn}, of multivalued maps F; : X — K(X)
we induce the maps to F; : K(X) — K(X),

F(A) = | Fila).

r€A

The mappings F; : K(X) — K(X) comprise an IFS ¢ = {(K(X), du), F\, F, ...,
F,}, like in the case of superfractals. Then we obtain the contracting operator
¢ K(K(X)) = K(K(X)),

¢(a) = U¢i(a) = U U {Fi(A)}

=1 Aca

If F; are contractions in a complete metric space, ¢ is also a contraction. The
fixed point of the contraction is called a hyperfractal.
Hyperfractals are attractors of IF'S in hyperspaces. Generalizing IF'S to fuzzy

sets, fuzzy fractals can be obtained (see e.g. [CFMV], [FLV], [FMV] and [DK]).
This research is also motivated by image compression.

1.2. Aims of the thesis

The aim of the thesis is to understand multivalued fractals in a better way
and to explore structures supported by them. Multivalued fractals and fractals
generated by iterated function systems were developed separately. We are con-
cerned with the address structure, self-similarity and dimension when talking
about attractors of IFSs. On the other hand, we mention the existence, draw-
ing and structure of attractors of IMS. We need to investigate the relationship
between multivalued fractals and classical fractals.

We also want to explain self-similarity and complexity of multivalued fractals.
In the book [PJS], authors discuss different types of self-similarity (see Figure 1).
Only the first set called the Sierpinski triangle is self-similar according to the
classical Hutchinson theory (see [Hu]). The Sierpiniski triangle consists of its
three contracted copies. These copies are images of the Sierpinski triangle in
three similitudes. These three similitudes comprise an IFS in a complete metric

7



k.

Figure 1: Sets with different kinds of self-similarity

d4dd

space (R?, dgya). Observe also that in a neighbourhood of each point of the
Sierpinski triangle, we can find small copies of the whole set.

Remaining two sets in Figure 1 contain their copies but they do not consist
only of them. We say that sets like these are visually self-similar. We distinguish
in addition a kind of visual self-similarity. We can find copies of the tree only
in neighbourhoods of its leafs and copies of the embedded squares only in neigh-
bourhoods of the middle point. We see self-similarity in infinite number of points
and in one point.

Figure 2: Examples of multivalued fractals

The sets in Figure 1 can be regarded as multivalued fractals (further examples
can be found in the Figure 2). This means we are interested in self-similarity of
multivalued fractals.

Since we treat the complexity and structure of multivalued fractals by means
of hyperfractals, we would also like to extend our results on hyperfractals (cf.
[AR2]), particularly their dimension and visualization.

Moreover, we would like to process images with grey levels which are repre-
sented in a better way by measures or fuzzy sets. Therefore, we want to develop
suitable structures supported by multivalued fractals, i.e. measures on multival-
ued fractals, fuzzy fractals and fuzzy hyperfractals generated by iterated function
systems.



1.3. Theoretical framework

There are two approaches to fractals generated by means of iterated systems.
Fractals can be obtained as fixed points of maps or invariant sets of chaotic dy-
namical systems. We prefer the fixed point approach to investigate the existence
of fractals. On the other hand, chaotic approach enables us to draw fractals and
approximate integrals on them in a simple way. Multivalued fractals have been
studied only by means of the fixed point theory. Having developed the address
structure of multivalued fractals, we apply chaotic approach to draw them and
construct a measure on them.

1.4. Applied methods

We employ a wide range of the mathematical theory in the work. The first
part of the thesis is devoted to the existence results. We apply fixed point theo-
rems. Since we treat fixed points in hyperspaces, we exploit properties of maps,
hypermaps and structure of hyperspaces. Except of the theory of IFS and the
measure theory, we need basics of dynamical systems, the ergodic theory and
chaos. These enable us to draw fractals and invariant measures. Moreover, the
theory of convex sets and the Radstrom results turn out to be necessary for visu-
alization of hyperfractals and calculation of their dimension. Since fuzzy fractals
and fuzzy hyperfractals are only generalization of multivalued fractals and hy-
perfractals, we apply still the theory of fuzzy sets.

1.5. Main results

The thesis are based on our article [AR2]|, where we supply the existence
results on multivalued fractals and hyperfractals and results following from their
address structure. In the article, we studied mainly the existence results on
multivalued fractals and hyperfractals. In addition, the Hausdorff dimension of
hyperfractals was calculated there. We adopted a part of the article in the thesis.
Sections 2 and 4 were written by Professor Andres and completed with a few
remarks here. A part of subsection 5.1 was also developed by Professor Andres
and it differs slightly in the notation from the article.

Then, we restrict ourselves to compact fractals and study mainly properties of
multivalued fractals and hyperfractals related to their address structure. We show
the relationship between multivalued fractals and hyperfractals. Self-similarity
of multivalued fractals is explained. We plot multivalued fractals by means of
the chaos game for hyperfractals. We extend our results on the Hausdorff dimen-
sion of hyperfractals. The properties of support functions help us to visualize
structure of hyperfractals. Next, we construct a shadow of an invariant mea-
sure on hyperfratals with the help of the ergodic theorem. These results are also
generalized for spaces of fuzzy sets.



For a better comprehension and a general picture, we state the basic results
of the related theory. In order to distinguish our own results, we mark them out
with *.
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2. Spaces and hyperspaces, maps and hypermaps

REMARK 1. Let us note that the most of the section can be found in [AR2] and
it was collected and developed by Professor Andres.

In the entire text, all topological spaces will be at least metric. Hence, let
(X, d) be a metric space. By the hyperspace (H(X), dy), we will understand as
usual a certain class H(X) of nonempty subsets of X endowed with the induced
Hausdorff metric dy, i.e.!

dy(A, B) :=inf{r > 0|A C O,(B) and B C O,(A)},

where O,(A) :={z € X|Jda € A :d(x,a) <r)} and A, B € H(X). The second
possible definition is

dy(A, B) := max{supd(a, B),supd(b, A)}

acA beB

= max{ilelg(;gg d(a, b)), ggg(;gg d(a,0))}.

REMARK 2. The Hausdorff metric is described in a neat way with the help of
indistinguishability in [Wc|. For A, B € K(X) and ¢ € [0, 00) we will say A and
B are d—indistinguishable if every element of A is within a distance § of some
element of B and every element of B is within distance of some element of A.
You can think of this as meaning that if cannot resolve points distance < ¢ apart
then A and B are visually indistinguishable. The Hausdorff distance between A
and B is going to be the least such 0, hence the critical resolution level beyond
which A and B can be distinguished.

The following lemma will be frequently used.
LEMMA 1. ([Hu, p. 719]) Let A;, B; € B(X) for alli € J. Then

di (UiesAs, Uics B;) < supdy(A;, B;).

icJ
The following typical classes

C(X) :={A C X]A is nonempty and closed},
B(X) :={A C X|A is nonempty, closed and bounded},
K(X):={A C X|A is nonempty and compact}

satisfy the obvious inclusions

X Cc K(X) C B(X) C C(X).

'For the hyperspace (C(X), d), we in fact often employ the metric min{1, dg} (cf. e.g.
[BV]) but, for the sake of simplicity, we will use the same notation here.

11



X K(X) K(K(X))

Figure 3: Structure of hyperspaces

If (X, |].|]) is a Banach space, then we can also consider their subclasses,

namely
Ceo(X) = C(X) N Co(X),

Beo(X) = B(X) N Co(X),
Keo(X) = K(X) N Co(X),

where
Co(X) :={A C X|A is nonempty and convex},

and obviously
X C Keo(X) C Beo(X) C Coo(X) C Co(X).

The hyperspace (B(X), dy) is a closed subset of (C(X), dy) (cf. e.g. [HP,
Proposition 1.7]) and if (X, d) is complete, then also (K(X), dy) is a closed
subset of (C(X), dy) (cf. e.g. [KT, Theorem 4.3.9], [HP, Proposition 1.6], [Be,
Exercise 3.2.4 (b)]). Thus, for a complete (X, d), (C(X),dy) is complete (cf.
e.g. [Be, Theorem 3.2.4]), and (K(X), dg) C (B(X), dg) are both complete
subspaces of (C(X), dy) (cf. e.g. [HP, Propositions 1.6 and 1.7]).

If (X, ||.||) is a normed space, then

(KCO<X)7dH) C (BCO(X)adH) C (CCO(X)vdH)
12



(X, d) | (K(X),dy) | references |

compact compact [Be], [KT], [Mi]
complete complete [Be], [HP], [KT]
separable separable [HP], [KT]
Polish Polish [HP]
locally compact locally compact | [Mi]
connected connected [Mi]
locally connected locally connected | [Mi]
locally continuum-connected ANR [Cu]
locally continuum-connected
and connected AR [Cu]

Table 1: Induced properties of (K(X), dy) from (X, d).

are all closed subsets of (C(X), dg) (cf. e.g. [HP, Corollary 1.9]), and subse-
quently, for a Banach space (X, ||.||), all the above subsets are complete subspaces
of (C(X), di) (cf. e.g. [HP, Remark 1.10]).

If X C E™ is nonempty, compact convex subset of E” = E X --- x E, where

\—',—/
n—times

(E, ||.]]) is a Banach space, then (K¢o(X), dy) is, according to [HH] and [LFKU],
a compact and convex subspace of (K (X), dy).

Besides the mentioned completeness, the list of some further induced prop-
erties of (K(X), dy) by those of (X, d) can be found in Table 1. Except last
two properties in Table 1, the implications hold in both directions, i.e. these
properties are in fact equivalent on the lines.

REMARK 3. Since the Vietoris topology, called a finite topology in [Mi], coincides
in K (X) with the Hausdorff metric topology (cf. e.g. [HP, Theorem 1.30 on p.
14], [Be, Exercise 3.2.9]), we could also employ for Table 1 the equivalences proved
in [Mi].

Let us recall that, by a Polish space, we understand as usual a complete
and separable metric space and that X is an AR (ANR) if, for each Y and
every closed A C Y, every continuous mapping f : A — X is extendable over
Y (a neighbourhood of A in Y'). Furthermore, a metric space (X, d) is locally
continuum-connected if, for each neighbourhood U of each point z € X, there is
a neighbourhood V' C U of z such that each point of V' can be connected with x
by a subcontinuum (i.e. a compact, connected subset) of U.

In locally compact (e.g. Euclidean) spaces (X, d), the local continuum-connect-
edness can be simply replaced by the local connectedness in Table 1. Since the
ANRs and ARs are locally continuum-connected and the ARs are still connected,
for (K(X), dg) to be an ANR (AR), it is obviously enough to assume that so
are (X, d), respectively.

13



| (X, d) \ (C(X), di) | references |
compact compact [Bel, [HP]
complete complete [Be], [HP]

relatively compact | relatively compact | [Be]

Table 2: Equivalent properties of (X, d) and (C(X), dg).

For more details concerning the ANRs and ARs, see e.g. [AG2], [AV], [Cu].

It will be also convenient to recall some equivalent properties of (X, d) and
(C(X), dg) in Table 2. However, let us note that, unlike in Table 1, many
properties are not induced here from spaces to hyperspaces. For instance, because
of a counter-example in [KSY], (C(R™), dg) was shown there to be non-separable
and, in particular, not Polish. More precisely, (C'(R"), dy) has according to
[KSY, Proposition 7.2] uncountably many components (i.e. maximal connected
subsets) and (K(R™), dy) is the only separable (connected, closed and open)
component of (C(R"), dy). In particular, (C(R"™), dg) is disconnected. It is also
not locally compact (cf. [CLP]). This demonstrates that connectedness and local
compactness are not induced.

On the other hand, according to [BV, Corollary 3.8], a metric locally convex
space (X, d) is normable if and only if its hyperspace (C(X), dg) is an ANR.
This implies that (C(R"), dy) is an ANR and, in view of its just mentioned
disconnectedness, it cannot be an AR. In particular, (C(R"), dg) is only locally
(path-)connected. Furthermore, e.g. the hyperspace (C(R*), dy), where R*
is the countable product of lines, is not an ANR (despite (R*, |.|) is an AR)
and, equivalently (see the comments to Diagram 1 in [BV]), it is even not locally
connected. Similarly, non-normable Fréchet spaces (X, d) do not induce, unlike
Banach spaces, (C(X), dy) to be locally connected. In [BV], sufficient and nec-
essary conditions were established, for both (C(X), dy) and (B(X), dg), to be
ANR (AR). Thus, for instance, (B(X), dg), where X C E is a convex subset of
a normed linear space (E, ||.||) is an AR (cf. [AC]). Moreover, every component
of (C(E™), dy), where (E, ||.||) is a Banach space, was shown in [KSY] to be a
complete AR.

Hyperspaces of compact convex spaces (in our case K¢,(R™)) were extensively
studied in [NQS1], [NQS2] and main results were summed up in [IML]. Let us
remind two theorems [IML, Theorems 23, 24, p. 27].

THEOREM 1. If Y is compact and convexr and dim(Y) > 2), then Kgo(Y) is
homeomorphic to the Hilbert cube.

THEOREM 2. If Y is either the open unit ball in R™ or R" itself (n > 2), then
Kco(R™) is homeomorphic to Hilbert cube minus a point.

REMARK 4. Since, dim(K¢o(R)) = 2 (see [IML]), we will be able to visualize
isometrically hyperfractals in K¢,(R).

14



For more details concerning the relationship between spaces and hyperspaces
see e.g. [AC], [Be], [BV], [CLP], [Cu], [HP], [IML], [IN], [KSY], [KT], [Mi], [N1],
INQS1], [NQS2], [Wi].

Now, we proceed to maps. Let us remind at least notions related to contrac-
tions.

DEFINITION 1. ([Bal, Definition 6.1, p. 74]) A transformation f : X — X on
a metric space (X, d) is called contractive or a contraction mapping if there is a
constant 0 < r < 1 such that

d(f(x), f(y)) < rd(z, y), Vo, y € X.

Any such number r is called a contractivity factor for f.
We will meet often a particular contraction called a similitude.

DEFINITION 2. A transformation f: X — X on a metric space (X, d) is called
a simalitude if there is a constant 0 < r < 1 such that

d(f(x), f(y)) =rd(z, y) Yz, y € X.

PROPOSITION 1. [Hu, p. 717] A mapping f : R™ — R™ is a similitude if and
only if

f=g090°2,
for some homothety g,, translation g, and orthonormal transformation 2.

REMARK 5. This means that we can write for a similitude f : R™ — R™,
f(x) =r2x+0,

where r € [0, 1), 2 € R™™ is orthonormal, b € R™.
In R?, each orthonormal transformation 2 can be expressed as rotation (and
reflection if det(2) = —1),
2=0 %,

[ cos¢p —sing (1 0
0= ( sing cos ¢ )’ 7= <O det(Q))'
THEOREM 3. (Banach theorem [Bal, Theorem 6.1, p. 75]) Let f : X — X

be a contraction mapping on a complete metric space (X, d). Then f possesses
exactly one fized point vy € X and, moreover, for any point x € X, the sequence

{F%x), fH(x), f2(x), ...} converges to x;.
REMARK 6. We can also estimate the distance d(x, xy) of any = € X,
d(z, f(z))

1—r

These are three crucial properties of fractals generated by IFSs. We will obtain
a unique fractal for each IF'S, every orbit will converge to it and we will be able
to estimate the distance of any iteration from the fractal.

where

d(r, vy) <

15



Next, let us study multivalued maps and the induced (in hyperspaces) hyper-
maps.

DEFINITION 3. ([AFGL]) Let (X, d) and (Y, d') be two metric spaces. A multi-
valued map from X to Y is a map

F X =2V /{0}.

All multivalued maps will have at least closed values. By a fized point of a
multivalued map F : X — 2%/{0}, we mean zr € X with xz € F(zr).

Figure 4: Contraction and similitude in R

Figure 5: Multivalued contraction and similitude in R

Let us also remind induction of a map. A map f : X — X is induced to a
hypermap F : 2% /{0} — 2X/{0},

F(A) = [J{f (@)}

z€EA

16



REMARK 7. We will often induce contractions f : X — X to F': K(X) — K(X),

F(A) = [J{f (@)}

T€EA

Note that F': K(X) — K(X) is also a contraction. If f: X — X is a similitude
then F': K(X) — K(X) is also a similitude.

A multivalued map F : X — 2% /{0} is induced to a hypermap F': 2% /{0} —

2% /{0},
F(A) =] F(x).
€A

In view of applications in Section 4, we would like to have at least continuous
hypermaps. There are examples (see e.g. [AF]) that the upper semicontinuity of
multivalued maps is insufficient for this aim. It is well-known (see e.g. [AG2],
[HP]) that compact-valued upper semicontinuous maps F : X — K(Y) induce
the (single-valued) hypermaps F : K(X) — K(Y') which are continuous only
w.r.t. the upper-Vietoris topology, and subsequently the upper-Hausdorff topol-
ogy, but not necessarily continuous w.r.t. the Hausdorff metric topology. On the
other hand, if a compact-valued F : X — K(Y) is continuous w.r.t. a metric
in X and the Hausdorff metric topology in K (Y'), then the induced hypermap is
also continuous w.r.t the Hausdorff metric topology. If (X, dy) and (Y, ds) are,
in particular, compact metric spaces (by which (K(X), dy,) and (K(Y), dg,)
become compact as well, see Table 1), then F : K(X) — K(Y) with closed
(=compact) values is continuous if and only if

Flelx (Uack(x)A)) = cly (Uackx)F(A)).

Since continuous w.r.t. dg, in C(Y) multivalued maps F : X — C(Y) with
closed but not necessarily compact values are only lower semicontinuous (for the
definition, see below) in general (see e.g. [AG2]), i.e. continuous only w.r.t. d; in
X and the lower-Vietoris topology in C'(X), the induced hypermaps are obviously
again not necessarily continuous w.r.t. dg, and dg,. Thus, in order to preserve
continuity by induction from spaces to hyperspaces, its concept must be different
here.

Hence, a map F : X — C(Y) with closed values is said to be upper semicon-
tinuous (u.s.c.) if, for every open U C Y, the set {x € X|F(z) C U} is open in
X. It is said to be lower semicontinuous (L.s.c.) if, for every open U C Y, the set
{z € X|F(x)NU # 0} is open in X. If it is both u.s.c. and l.s.c., then it is called
continuous.

REMARK 8. Unlike for multivalued maps with noncompact values, for compact-
valued multivalued maps, this continuity concept coincides with the continuity
w.r.t. dy in X and the Hausdorff metric topology induced by dp, in K(Y) (cf.
e.g. [AG2], [HP]).
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The following implications hold for continuous multivalued maps and the in-
duced hypermaps (cf. [AF], [AG2, Appendix 3], [HP]):

F: X —=CX)=F:CX)—C(X),
Lipschitz F : X — B(X) = F : B(X) — B(X),
F: X KX)=F:KX)— K(X),

where F means that

F(A) = F@) =cx (| F(x)), forall A€ C(X),

z€A €A

but obviously

F:E— CCO(E);’/.F: CCO(E) — CCO(E),

where (E, ||.]|) is a Banach space.
Nevertheless, for special maps of the form

Fo: E" — Coo(E"), Fo(x) := Adx+ C,

where o7 is a real n x n—matrix, C' € Cgo(E"), E" = E x --- x E and (E, ||.||)
—_—

n—times
is a Banach space, we also have

Fo: E" = Coo(E™) = Fo: Coo E™) — Coo(E™).

Let us note that although, in vector spaces, the linear combinations of convex
sets are convex (see e.g. [Be, Theorem 1.4.1]), they need not be closed (see e.g.
[AB, Example 5.3.]) which justifies to use Fy instead of Fy. On the other hand,
in vector spaces, scalar multiples of closed sets are closed and the algebraic sum
of a compact set and a closed set is closed (see e.g. [AB, Lemma 5.2]). Thus, if
C € Ko E™), then the bar need not be used for Fy, in order the last implication
to be satisfied. Moreover, an affine function image of a convex set is convex (see
e.g. [Be, Theorem 1.4.1]).

Since JFy is Lipschitz continuous, in view of the above implications, we get
still

fo BT — BCO(En) = TO . BCO(En) — BCO(EH),
Fo: E" — KCO(En) = Fo: KCO(En) — KCO(En),

provided C' € B, (E™) and C' € Kgo(E™), respectively. If C' € Koo(E™), then
we can also simply write

Fo: E" — CCO(En) = Fo: CGO(En) — CCO(EH),
Fo: E" — BCO(En) = Fo: BCO(En) — BCO(En).

18



’ map hypermap references
continuous continuous [AF],
F: X — K(X) F:K(X)— K(X) [AG2, Prop. A 3.43]
compact compact [AF],
F: X — K(X) F:K(X)— K(X) [AG2, Prop. A 3.47]
(weakly) contractive (weakly) contractive
F:X — C(X) F:C(X)— C(X) [AF],
F:X — B(X) F:B(X) — B(X)
F: X — K(X) F:K(X)— K(X) [AG2, Prop. A 3.20]
contraction contraction trivial
Fo: E" = Coo(E™) | Fo: Coo(E™) = Ceo(E™) consequences
Fo: E" = Boo(E™) | Fo: Beo(E™) — Beo(E™) of the upper
Fo: E" = Koo(E™) | Fo: Koo E™) — Koo E™) equivalences

Table 3: Some equivalent properties of maps and hypermaps.

Now, let us recall that a multivalued mapping F : X — C(X) is said to be
weakly contractive (cf. [AF|, [AG2]) if, for any x,y € X, dy(F(z), F(y)) <
h(d(z, y)), where h : [0, co) — [0, 00) is a continuous, nondecreasing function
such that ~(0) = 0 and 0 < h(t) < t, for t > 0. For h(t) := rt, t € [0,00), (=
r € [0, 1)), the mapping F is obviously a contraction. For weakly contractive
single-valued maps F : X — X, it is enough to replace dy by d.

REMARK 9. As pointed out in [AFGL, Remark 1] and [KS, Remark on p. 8], the
notion of a weak contraction can be weaken, namely that the function A need not
be monotonic and it also suffices to take a right upper semicontinuous (in a single-
valued sense) h. The equivalences for weakly contractive maps and hypermaps
were proved in [AF], [AG2, Proposition A 3.20], provided still tlgglo t—h(t) = oo,
but this condition does not play any role.

The implications in Table 3 concerning the properties of hypermaps induced
by those of maps were proved in [AF], [AG2, Appendix 3|. Because of the trivial
reverse implications these properties are, in fact, equivalent. The last equiva-
lences, for the map Fy defined above, follow directly from the preceding ones, on
the basis of the above arguments.

REMARK 10. As already pointed out, the bar can be omitted for Fy in Table 3,
provided C € K¢,(E™) in the definition of Fy.

REMARK 11. Because of counter-examples (see e.g. [L4, Examples 1 and 2]),
compact hypermaps F and F, (even F and Fy or Lipschitz F and F), on the
hyperspaces C(X), B(X) and Ceo(E™), Beo(E™), need not imply the compact-
ness of the related maps F and Fy, on the spaces X and E"™. Nevertheless,
compact maps F and Fy imply there the compact induced hypermaps F and F.
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REMARK 12. In view of the above arguments, we can still add one more assertion.
Let X C E™ be a nonempty, compact, convex subset of £ such that Fy : X —
Keo(X). Since Fy is (Lipschitz-)continuous, so must be Fy : Koo(X) = Keo(X)
as well, and vice versa. Observe that, in this case, the Lipschitz constant L need
not necessarily satisfy L € [0, 1).

In the following sections, we will define the hyperspaces (Hy(H2(X)),dn,,)
as certain classes of nonempty subsets of Hy(X), endowed with the Hausdorff
metric dp,,, induced by the metric dy. Obviously, many properties of these
new spaces can be directly induced from the supporting spaces. For instance,
K(Keo(X), diy,) is compact if and only if so is (X, d). Similarly, many proper-
ties of hypermaps on these new hyperspaces can be induced by those of maps
on the supporting spaces. For instance, F : K(K (X)) — K(K(X)) is compact
continuous if and only if so is F : X — K(X) or F : K(X) — K(K(X))
and Fy : K(Kco(E™) — K(Keo(E™)) is a contraction if and only if so is
Fo: X = Koo E™) or Fo: Koo E™) = K(Koo(E™)).

3. Iterated function systems and invariant mea-
sures

Iterated function systems (IFSs) provide the simplest tool to produce frac-
tals. Their attractors are often self-similar and we can calculate their Hausdorff
dimension by means of the Moran formula. Moreover, attractors of IF'Ss are sup-
ports of invariant measures for IFSs with probabilities. Since attractors are fully
described by parameters of functions comprising IFSs, Barnsley (cf. [BEHL],
[BH]) used IFSs for data compression. Moreover, many current methods of data
compression are based on his results.

3.1. Iterated function systems

Let us remind the crucial results for us given mainly by Barnsley [Bal] and
Hutchinson [Hul].

DEFINITION 4. [Bal, Definition 7.1, p. 80] A (hyperbolic) iterated function sys-
tem consists of a complete metric space (X, d) together with a finite set of
contraction mappings f; : X — X, with respective contractivity factors r;, for

1 =1, 2, ..., n. The abbreviation “IFS” is used for “iterated function system.”
The notation for the IFS just announced is {X; fi,i =1, 2, ..., n} and its con-
tractivity factor is r = max{r; :i =1, 2, ..., n}.

REMARK 13. We often drop hyperbolic.

THEOREM 4. [Bal, Theorem 7.1, p. 81| Let {X; fi,i =1, 2, ..., n} be a hyper-
bolic IFS with contractivity factor r. Then the transformation F' : K(X) — K(X)
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defined by
F(B) = £(B),

i=1
forall B € K(X), is a contraction mapping on the complete metric space (K (X), dg)
with contractivity factor r. That is

dy(F(B), F(C)) <rdy(B, C),
for all B, C € K(X). Its unique fized point A* € K(X) obeys
i=1

and is given by

A* = lim F¥(B)
for any B € K(X).
Proof. Contractivity of F' follows from Lemma 1.

du(F(A), F(B)) = du(UL, fi(A), UL, fi(B)) <
S | max du(fi(A), fi(B)) < . max ridu(A, B) =rdu(A, B).
O

REMARK 14. The operator F' is called the Hutchinson-Barnsley operator. Some-
times, the multivalued map F : X — K(X),

Fa) = U@},

is considered. It is called the Hutchinson-Barnsley map. Inducing it to a hyper-
space, we obtain the Hutchinson-Barnsley operator F.

DEFINITION 5. [Bal, Definition 7.2, p. 81] The fixed point A € K(X) described
in the theorem is called an attractor of the IFS.

Contractions in K (X) need not to be induced only by single-valued mappings.

DEFINITION 6. [Bal, Definition 9.1, p. 91] Let (X, d) be a metric space and let
C € K(X). Define a transformation fy : K(X) — K(X) by

fo(B) = C for all B € K(X).

Then fy is called a condensation transformation and C' is called the associated
condensation set.
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Observe that a condensation transformation fy : K(X) — K(X) is a contrac-
tion mapping on the metric space (K (X), dy), with contractivity factor equal to
zero, and that it possesses a unique fixed point, namely the condensation set.
DEFINITION 7. [Bal, Definition 9.2, p. 91] Let {X; f;,i = 1,2, ..., n} be a
hyperbolic IFS with contractivity factor r. Let fy : K(X) — K(X) be a conden-
sation transformation. Then {X; f;;i =0, 1, 2, ..., n} is called a hyperbolic IFS
with condensation, with contractivity factor r.

THEOREM 5. [Bal, Theorem 9.1, p. 91| Let {X; fi,i = 0,1,2,...,n} be a
hyperbolic IFS with condensation, with contractivity factor r. Then the transfor-
mation F: K(X) — K(X) defined by

F(B) :=U=,1,...nfi(B), VB € K(X),

is a contraction mapping on the complete metric space (K(X), dy) with a con-
tractivity factor r. That is

dy(F(B), F(C)) <r-dy(B, C),VB, C € K(X).
Its unique fixed point, A* obeys
A" = F(A") = Uio,1,...nfi(A")

and is given by
A* = lim F"(B)

n—oo
for any B € K(X).

Let us introduce the code space (see [Bal], [Ba2], [BK], [BKS]), which helps us
to describe fractals. We denote by ', the space which consists of all finite strings
of symbols from the alphabet A. We denote by ¥4 the space which consists of all
infinite strings of symbols from the alphabet A.

DEFINITION 8. [Ba2, Definition 1.4.1, p. 17] Let ¢ : ¥ — X be a mapping from
¥ C ¥, U, onto a space X. Then ¢ is called an address function for X, and
points in X are called addresses. ¥ is called a code space. Any point o € > such
that ¢(o) = z is called an address of © € X. The set of all addresses of = € X is
¢~ ({=}).

REMARK 15. ¥/, is countable ¥4 is uncountable.

REMARK 16. We denote by |o| the length of o € ¥/, and o|k := 0 ... 0. From
NOW On, X = Xiy4.

We will use the code space to build the address structure for points and subsets
of an attractor of an IFS. We can write for each attractor of an IFS

A" = fi(AT) U fo(AT) U - U fin (A7),
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Let us continue and express each A* on the right side of the equation by this
right side. We obtain

A= fil(A) U fo(A) U U frn(A) =

JilHhi(A)U fa(A") U= U frn (A7) - U frn(f1(AT) U fo(AT) U - U £ (A7) =
= filfi(A)) U fi(fo(A) U~ U fi(fm (A7) U fn(fn(AT)).

We see that the attractor consists of its contracted images. We assign an address
to each of these sets according to applied contractions. Thus, A} := f1(A*), or
Ar = fo, (oo [ (A%), 0 = 0109 ... 0., If we continue this process to infinity,
we obtain addresses of the points of the attractor.

DEFINITION 9. [Bal, Definition 2.1, p. 122] Let {X, fi, fo, ..., fm} be a hyper-
bolic IFS. The code space associated with the IFS, (X, dx), is defined to be the

code space on m symbols {1, 2, ..., m}, with the metric given by
o |oi — wil
ds (o, w) = —, Yw, 0 e X.
20, @) ; (m+ 1)

After the introduction to addresses, let us provide a few simple facts about
attractors of IFSs ([Hu, 3.1 (3), p. 10]).

PROPOSITION 2. 1. A* = yUmr A

11%2...9p Ipt1=17"i192.. ipipt1”

2. A* D A;, D DA}

11%2...0p
member is denoted a’ ;
192...0p...

3. A* is the closure of the set of fived points of the fi,..i,-
4' f’LllQZp(A_)]kl]Q]q) = A;;Z'Q...ipjljz...jq‘

* _ *
f1,112..-'1»p Uj1ja.gg) = Qivig..ipjijo-.jg...”

o0 * ; ;
D .y and M2 A, ) is a singleton whose

. A* is union of these singletons.

5. If B is a nonempty bounded set, then d(Bii,. i, s, ;) — 0 uniformly
as p — 00. In particular, F?(B) — A* in the Hausdorff metric.
REMARK 17. Notice that A} is a set for |o] = k, k € N, and «a} is a point for
lo| = 0.
Barnsley proves a very similar claim to 2. Before we state it, let us give
supporting proposition and lemmas.

PROPOSITION 3. [Bal, Theorem 7.1, p. 35] Let (X, d) be a complete metric
space. Then (K(X), dy) is a complete metric space. Moreover, if {A,}, where
A, € K(X)Vn € N, is a Cauchy sequence, then

A= lim A, € K(X)

n—oo

can be characterized as follows:

A ={x € X, there is a Cauchy sequence{x,, € A,} that converges to x}.
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LEMMA 2. [Bal, Lemma 2.1, p. 122] Let {X, f;,i = 1,2, ..., n} be an IFS,
where (X, d) is a complete metric space. Let C € K(X). Then there exists
Ce K(X) such that C € C and fi: C — 6’f07’z’ =1,2,...,n. In other words,
{CN', fi»i=1,2, ..., n} is an IFS where the underlying space is compact.
LeEmMA 3. [Bal, Lemma 2.2, p. 123| Let {X, f;, 1 = 1,2, ..., n} be an IFS
of contractivity factor s, where (X, d) is a complete metric space. Let (%, dy)
denote the code space associated with the IFS. For eacho € ¥, n € N, andx € X,
define
¢(07 n, :C) = f01 © f0'2 ©---0 fan-

Let C' denote a compact nonempty subset of X. Then there is a real constant D
such that

d(¢(a, m, x1), ¢(o, n, x3)) < D™

forallo € ¥, m,n €N, and zq, v € C.
THEOREM 6. [Bal, Theorem 2.1, p. 123] Let (X, d) be a complete metric space.
Let {X, f1, fa, ..., fn} be an IFS. Let A* denote the attractor of the IFS. Let
(3, dx) denote the code space associated with the IFS. For each o € 3, n € N,
and x € X, let

¢(07 n, :L‘) = fo0 fop 00 fan(x)'
Then

¢(o) = 11_)111 ¢(o, n, x)

exists, belongs to A* and is independent of x € X. If C' is a compact subset of
X, then the convergence is uniform over x € C. The function ¢ : ¥ — A* is
continuous and onto.

Proof. Let v € X. Let C' € K(X) be such that x € C. Employing [Bal, Lemma
2.1, p. 122], we can define F': K(X) — K(X) in the usual way. F'is a contraction
mapping on the metric space (K (X), dy); and we have
A= lim F"(C).
n—oo

In particular, { F*(C)} is a Cauchy sequence in (K (X), dy). Notice that ¢(o, n, z) €
F(C). It follows from ([Bal, Theorem 7.1, p. 81]) that if lim, . ¢(0, n, ) ex-
ists, then it belongs to A*.

That the latter limit does exist, follows from the fact that, for fixed o € ¥,
{p(o, n, x)}>°, is a Cauchy sequence: by Lemma 2.2 ([Bal, p.123])

d(o(o, m, z), ¢(o, n, x)) < Ds™",

for all x € C| and the right hand side here tends to zero as m and n tend to infinity.
The uniformity of this convergence follows from the fact that the constant D is
independent of = € C.
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Next, we prove that ¢ : ¥ — A* is continuous. Let € > 0 be given. Choose n
so that s"D < ¢, and let o, w € X obey

= N 1
ds(o, w) < ) — = —.
= (N+1) (N + 1)+t

Then one can verify that ¢ must agree with w through n terms: that is, o; =
w1, Oy = Wy, ..., 0, = wy. It follows that, for each m > n, we can write

d(gb(d, m, J}), ¢(w7 m, l’)) = d(gb(d, n, xl)? ¢<0-’ n, $2)>,

for some pair x1, 75 € C. By Lemma 2.2 [Bal, p. 123], the right hand side here
is smaller than s” D which is smaller than e. Taking the limit as m — oo, we find

d(¢(0), p(w)) <e.

Finally, we prove that ¢ is onto. Let a € A*. Then, since

A" = lim F"({z}),
it follows from Theorem 7.1 ([Bal, p. 35]) that there is a sequence {w™ € ¥, n =
1,2, 3, ...} such that

lim ¢(w™, n, z) = a.
n—oo

Since (X, dy) is compact, it follows that {w(™} possesses a convergent subse-
quence with a limit w € 3. Without loss of generality, assume that lim,,_,., w™ =
w. Then the number of successive initial agreements between components of w™
and w increases without limit. That is, if

a(n) = card{j € N: w{™ = w, for 1 < k < j},
then a(n) — oo as n — oo. It follows that
d(p(w, n, ), p(w™, n, z) < Ds*™.
By taking the limit on both sides as n — oo, we find d(¢(w), a) = 0, which

implies ¢(w) = a. Hence, ¢ : X — A* is onto. This completes the proof. O]

3.2. Measure

In the following subsection, we will introduce invariant measures for IFSs
with probabilities. The space of normalized Borel measures on a complete metric
space equipped with the Hutchinson metric is according to Barnsley [Bal] “the
space where fractals really live”. Before defining a measure, let us remind basic
notions.
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DEFINITION 10. ([Bal, Definition 2.1 p. 337]) Let X be a space. Let M denote
a nonempty class of subsets of a space X such that

1. A, BeM=AUBe M,
2. Ae M= X/Ae M.

Then M is called a field.
DEFINITION 11. ([Bal, Definition 2.3]) Let M be a field such that

AZ'EMfOl"iG{l,Q,3...}:>U321Ai€./\/l.

Then M is called o—field.
Given any field there is always a minimal o—field which contains it.

THEOREM 7. [Bal, Theorem 2.2 p. 340]) Let X be a space and let G be a set
of subsets of X. Let {M, : « € I} denote the set of all o—fields on X which
contain G. Then M =N, M, is a o—field.

DEFINITION 12. ([Bal, Definition 2.4]) Let G be a set of subsets of a space X.
The minimal o—field which contains G from the last theorem is called o—field
generated by G.

DEFINITION 13. ([Bal, Definition 2.5]) Let (X, d) be a metric space. Let B(X)
denote the o—field generated by the open subsets of X. B(X) is called the Borel
field associated with the metric space X. An element of B(X) is called a Borel
subset of X.

THEOREM 8. ([Bal, Theorem 2.3]) Let (X, d) be a compact metric space. Then
the associated Borel field is generated by a countable set of balls.

In order to develop the measure theory, we combine [Bal|, [Hu], [Fal].

DEFINITION 14. Let X be a metric space. We call u a measure on X if y assigns
a non-negative number, possibly oo, to each subset of X such that

L p(0) =0,
2. if A C B then u(A) < u(B), and
3. if Ay, Ay, ... is a countable sequence of sets then
p (U Az‘) < D u(A).
i=1 i=1

Given a measure u, there is a family of subsets of X on which p behaves in
a nice additive way: a set A C X is called p—measurable (or just measurable it
the measure in use is clear) if

W(E) = p(E 1 A) + p(E/A),
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for all £ C X.

We write M for the family of measurable sets which always form a o—field,

that is ) € M, X € M, and if Ay, Ay, --- € M then U2, A, € M, N2, A, € M
and A;/As € M. For reasonably defined measures, M will be a very large family
of sets, and in particular will contain the o—field of Borel sets.
REMARK 18. What is termed a ‘measure’ here is often referred to as an outer
measure in general texts on the measure theory (see Technical note in [Fal, p. 8]).
Such texts define measure p only on some o—field M, with (1), (2), (3) holding
for sets of M, with equality in (3) if the A; are disjoint sets in M. However, u
can then be extended to all A C X by setting

p(A) = inf{> " u(A;), A CUA;, A € M}

We will consider only Borel measures.

DEFINITION 15. Let (X, d) be a metric space. Let B(X) denote the Borel subsets
of X. Let B(X) be p—measurable. Then p is called a Borel measure.

We can find out whether a measure is a Borel measure by means of the
Carathéodory criterion (see [Fal]).

PROPOSITION 4. A measure p is a Borel measure on X C R" if and only if
n(AU B) = pu(A) + p(B),

for all A, B € X and dist(A, B) > 0.

ExXAMPLE 1. [Fal, Example 1.4, p. 14] One of the most useful measures is the
Lebesgue measure £™. It extends the notion of n—dimensional volume to a large
collection of subsets in R™ that includes the Borel sets. If A = {(z1, z2, ..., T,) €
R™: a; < z; < b;} is a “coordinate parallelepiped” (we will also use “blocks”) in
R™, the m—dimensional volume of A is given by

vol™(A) = (by — a1)(by — az) -+ (b, — am)-

We obtain a measure on R™ by defining

L™(A) = inf {ivolm(Ai) A C [OJAl} :

where the infimum is taken over all coverings of A by coordinate parallelepipeds
A;. We get that L™(A) =vol™(A) if A is a coordinate parallelepiped or, indeed,
any set for which the volume can be determined by the usual rules of mensuration.
Sometimes, we need to define “k—dimensional” volume on a k—dimensional plane
X in R™; this can be done by identifying X with R* and using £* on subsets of
X in the obvious way.
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Let us also supply the definition of the Hausdorff measure and the related
Hausdorff dimension (cf. [Hu, p. 720]). In a complete metric space (X, d), for
every s > 0,60 > 0 and S C X, we can define the s—dimensional Hausdorff
measure of S by

H*(S) := lim H(S), (1)

6—0

where Hi(A) := 1nf{Z(d1amA) |A C U A;, diamA; < 0}, and the Hausdorff
i=1
dimension dimg (A) of A by

dimpg(A) :=inf{s > 0|H*(A) = 0} = sup{s > 0|H*(A) = oo}. (2)

the Hausdorfl measure is also a Borel measure.

THEOREM 9. ([Ba2, Theorem 2.3.19, p. 111]) Let v € P(X) be a Borel measure
and let f : X — X be continuous. Then there exists on X Borel measure | €
P(X) such that

w(B) =v(f1(B)) for all B € B(X).
We denote this measure p by f(v) and also by f ov.
DEFINITION 16. ([Ba2, Definition 2.3.20, p. 111]) The measure f(v) is called
the transformation of the measure v by the function f or the transformation f
applied to the measure v.
DEFINITION 17. ([Bal, Definition 3.3, p. 344]) Let (X, d) be a metric space,

and let u be a Borel measure. Then the support of pu is the set supp(p) of
points € X such that p(O(z, €)) > 0, for all € > 0 (where O(z, €¢) = {y € X :
d(z, y) < €}).

THEOREM 10. ([Bal, Theorem 3.4, p. 344]) Let (X, d) be a metric space, and let
i be a Borel measure. Then the support of v is closed. Let (X, d) be a compact
metric space and p(X) > 0, then supp p € K(X)

DEFINITION 18. ([Bal, Definition 5.1, p. 349]) Let (X, d) be a compact metric
space, and let u be a Borel measure on X. If u(X) = 1, then p is said to be
normalized.

DEFINITION 19. ([Bal, Definition 5.2, p. 349]) Let (X, d) be a compact metric
space. Let P(X) denote the set of normalized Borel measures on X. The Monge-
Kantorovich (Hutchinson) metric dyx on P(X) is defined by

)= [ s [ o]

where Z(X, R) :={f: X = R||f(z) — f(y)| < d(z, y), forall z,y € X}.

Let us supply a brief information about the related space of probability mea-
sures and the Markov operators acting on it. An operator M : P(X) — P(X) is
called the Markov operator if it satisfies
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Lo M(Ap+ Aav) = MM () + XAoM(v), for all Ay, Ay € [0, 00) and u, v €
P(X),

2. M(p(X)) = pu(X), for all p € P(X).

If there is still a dual operator U : C'(X) — C(X), where C(X) denotes
the space of continuous functions f : X — R endowed with the sup-norm
on X such that

3. [y Uf(x)dp = [ f(x)Mdp, for every f € C(X) and p € P(X), then M is
called the Markov-Feller operator.

It can be proved that every nonexpansive Markov operator is Markov-Feller.

For more details and properties of Markov operators, see e.g. [LM1]-[LM4], [MS].
THEOREM 11. ([Bal, Theorem 5.1, p. 349]) Let (X, d) be a compact met-
ric space. Let P(X) denote the set of normalized Borel measures on X. Then
(P(X), dyk) is a compact metric space.
REMARK 19. In the same way as we define the hyperspaces (Hy(H2(X)), dn,,)
as certain classes of nonempty subsets of Hs(X), endowed with the Hausdorff
metric dp,,, induced by the metric dy, we can define (P(H (X)), dyk,, ) as the
space of probability measures on H(X), endowed with the Monge-Kantorovich
metric dys,, defined as follows

dursey (1, V) = sup U F(e)du— / f(x)du],
feZ(H(X),R) LJH(X) H(X)

where
L(H(X),R):={f: HX) = R||f(z)-f(y)| < du(z,y), foralz, ye H(X)}

DEFINITION 20. ([Bal, Definition 6.1, p. 350]) Let (X, d) be a compact metric
space, and let P(X) denote a space of normalized Borel measures on X. Let
{X, fi, fo, .-y, m; D1, P2, ..., pm} be a hyperbolic IFS with probabilities. The
Markov operator associated with the IFS is the function M : P(X) — P(X)
defined by

M) :=pwo fi' +pwo fy' +-+puvo [l
for all v € P(X).
THEOREM 12. ([Bal, Theorem 6.1, p. 351]) Let (X, d) be a compact metric
space. Let {X, f1, fay ..., m; p1, D2, - ., Pm} be a hyperbolic IFS with probabili-
ties. Let r € (0, 1) be a contractivity factor for the IFS. Let M : P(X) — P(X)
be the associated Markov operator. Then M is a contraction mapping, with the

contractivity factor r, with respect to the Monge-Kantorovich metric on P(X).
That is

du(M(v), M(p)) < rdp(v, p).

29



DEFINITION 21. ([Bal, Definition 6.2, p. 352]) Let 1 denote the fixed point of the
Markov operator, promised by the preceding theorem. p is called the invariant
measure of the IFS with probabilities.

THEOREM 13. ([Bal, Theorem 6.2, p. 359]) Let (X, d) be a compact metric
space. Let {X, f1, fo, ..., m; D1, P2y -, Pm} (Pi > 0) be a hyperbolic IFS with
probabilities. Let y be the associated invariant measure. Then the support of i s
the attractor of the IFS.

In order to calculate measure defined by an IFS with probabilities, let us
consider the special IFS [BD] {X%, s;, i = 1, 2, ..., n}, where s; : ¥ — ¥ is
defined by

si(o) :=io for o € X.

It means o is shifted right by one place and the symbol i is placed as the first
component. Note that s;, 2 =1, 2, ..., n, are contractions w.r.t. the code space
metric dy. We will use the notation B(X) for the Borel subsets of . This o—field
is generated by the cylinders

{o;00=14;,0<l<o+k},
where each i; € {1, 2, ..., n}. We will define measure p for the IFS {X, s;, i =
1,2, ...,n}withp,i1=1,2, ..., n,

o+k—1
p{oeX:o=iuy,0<l<o+k}) = H Di-
l=o0

We will denote 7™ an analogue of the operator M on P(X) for the space P(3).
In particular, we have

(T"v)(B) = ZPW(SZl(B)%

for any measure v € P(X) and B € B(X).

REMARK 20. ([BD, p. 256]) Let us remind that for o € 3, s; (o) = 0 for oy # i
and s;'(0) = w for oy = i, where w; = 0; + 1. For a subset B of %, we have
s;|(B) ={s;'(0);0 € B}.

The following theorem summarizes properties of the IFS {X, s;, p;, i = 1,..., n}.

THEOREM 14. ([BD, Theorem 4]) The IFS {%, s;, p;, i = 1, 2, ..., n} with the
probability measure defined above have the following properties:

1. 4%, s;, i =1, 2, ..., n} is a hyperbolic IFS, with attractor %;

2. p is the unique measure for the IFS, in particular, it is the fixed point in
P(X) of T*, obeying T*(p) = p;
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3. p is attractive for any probability measure p on 3, namely

lim T*"(p) = p, for all p € P(X);
n—oo

4. the support of p is X, independently of p;, p; > 0,1 =1,2, ..., n;
5. for all B € B(Y),

p(si(B)) =pip(B), i =1,2, ..., n.

Using the measure p, we can calculate invariant measures for other IFSs.

THEOREM 15. ([BD, Theorem 5]) Let { X, f;, pi, i =1, 2, ..., n} be a hyperbolic
IFS. Then there is a unique measure p, given by u(E) = p(¢~1(E)) for E € B(X);
1 s attractive for any probability measure v on X and the support of u is the
attractor A* independently of p; > 0,i=1,2, ..., n.

3.3. Dimension and self-similarity

Let us introduce the essential notions for IFSs. Self-similarity and the open
set condition were defined firstly by Hutchinson [Hu]. They are closely related to
calculation of the Hausdorff dimension. We will also remind results of Barnsley
[Bal] and Schief [Sc].

Now, let us describe connectedness of fractals applying the open set condition.

DEFINITION 22. [Bal, Definition 2.2, p. 125] The IFS is said to be totally dis-
connected if each point of its attractor possesses a unique address. The IFS is
said to be just-touching if it is not totally disconnected yet there exists an open
set O such that

L fi(O)N£(0) =0, Vi, je{1,2, ..., n},i#j
2. U™, f:(0) C O.

The IFS whose attractor obeys 1. and 2. is said to obey the open set condition.
The IFS is said to be overlapping if it is neither just-touching nor disconnected.

THEOREM 16. [Bal, Theorem 2.2, p. 125] Let F = {X; f1, fa, ..., fm} be an
IES with an attractor A*. The IFS is totally disconnected if and only if

Li(AY N fi(AY) =0,Vi, j €{1,2, ..., m}, i # .

Next, let us introduce self-similarity, which is a characteristic property of
attractors of IFSs.

DEFINITION 23. [Hu, 5.1 (1), p. 18] A is self-similar (with respect to F) if
1. A is invariant with respect to F, and
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2. H*(A) >0, H*(A; N A;) =0 for i # j, where k = dimy K.

Self-similarity and the open set condition mean a separation of tiles A} of an
attractor A*, which is essential for the calculation of the Hausdorff dimension of
A*. When talking about dimension of a fractal we always mean the Hausdorff
dimension here. Hutchinson considered IFSs consisting of similitudes in R™

{<Rm7 dEuCl)a fi7 Z — 1, 27 N TL}

with contraction factors 0 <r; < 1,7 =1, 2, ..., n. In [Hu, Convention 5.1 (2)],
it is proved:
LEMMA 4. There is a unique D such that >_"  rP =1.

i=1"1

Proof. Let v(t) = Y"1, rf. Then v(0) = n and ~(t) — 0 as t — oo. The function
7 is continuous which implies the statement. O]

DEFINITION 24. [Hu, 5.1 (3)] If Y. 7P =1, D is called the similarity dimension
of F.

REMARK 21. The formula Y rP = 1 is called the Moran or Moran-Hutchinson
formula (see also [Mo]).

Hutchinson showed that D is often equal the Hausdorff dimension of fractals.

PROPOSITION 5. [Hu, 5.1 (4), p. 19] Let A* be an attractor of IFS and dimpy(A*) =
k. Then

1. HP(A*) < 0o and so k < D (this is true for arbitrary contractions f;),
2. 0 < H*(A*) < oo implies (A* is self-similar iff k = D).

The easiest way to calculate the Hausdorff dimension follows from the next
proposition.
PROPOSITION 6. [Hu, 5.3 (1), p. 19] Suppose F = {R", f1, fo, ..., fm} satisfies
the open set condition. Then 0 < HP(A*) < oo and A* is self-similar. In
particular, dimy(A*) = D.

It means the Hausdorff dimension of an attractor in R™ equals the self-
similarity dimension if the open set condition is fulfilled.

REMARK 22. It is not easy to find a feasible open set generally. A lot of work in
this field was done by Bandt (see e.g. [B], [BG]).

Hutchinson’s approach in R™ was generalized by Schief [Sc| to general com-
plete metric spaces. We need in addition a stronger version of the OSC.

DEFINITION 25. Let F' = {X; f1, fo, ..., fm} be an IFS where f; are similitudes.
We say that F' (or for brevity, A*) fulfills the open set condition (OSC) if there
exists a nonempty open set O such that the sets f;(O), 1 < i < m, are pairwise

disjoint and all contained in O. If O N A* # 0, the strong open set condition is
fulfilled.
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HP(A) o
0 D=dim(A) s

Figure 6: Behavior of the Hausdorff measure of a set

PROPOSITION 7. [Sc, p. 481] In R™ and generally in Euclidean case, the following
chain of implications holds

SOSC = 0SC < HP(A*) > 0= dimy A* = D.

PROPOSITION 8. [Sc, p. 490] The following chain of implications is valid in
complete metric spaces:

ATNA=0,i#j= HP(A") > 0= SOSC= dimy A* = D.

We will also use the following proposition to calculate the Hausdorff dimension
of fractals.

PROPOSITION 9. (¢f. [CR| or [Fa2, Corollary 2.4, p. 32|) Assume that (X,d)
and (Y,d') are metric spaces, S C X and f : S — 'Y satisfies the inequalities

a-d(z,y) <d(f(x), fly) <b-d(x,y), foralx,yeS,
with suitable constants a > 0 and b > 0. Then
o H*(E) < H*(f(E)) < b H*(E)

holds, for every s > 0.

REMARK 23. [Fa2, p. 33] This proposition reveals a fundamental property of
the Hausdorff dimension: the Hausdorff dimension is invariant under bi-Lipschitz
transformations. Note that two sets are regarded topologically the same if there
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is a homeomorphism between them. We can regard two fractal sets as the same
if there is a bi-Lipschitz mapping between them. Note also that each bi-Lipschitz
transformation is a homeomorphism. Therefore, the Hausdorff dimension pro-
vides us further distinguishing characteristics between sets.

REMARK 24. In other words, metrically equivalent spaces have the same Haus-
dorff dimension. Note that the graph of the Hausdorff measure (see Figure 6) of
metrically equivalent spaces jumps from oo to 0 in the same value of s.

For the sake of completeness let us give two definitions.

DEFINITION 26. [Bal, Definition 2.2, p. 12] Two metrics d; and dy on a space
X are equivalent if there exist constants 0 < ¢; < ¢y < 0o such that

Cldl('r? y) < d2('r7 y) < Cle('xv y) vxa y e X.

DEFINITION 27. [Bal, Definition 2.3, p. 12] Two metric spaces (X, d;) and
(Xs, dy) are equivalent if there is a function h : X; — X, that is bijective, such
that the metric d; on X; defined by

A

dl(xv y) = dg(h(l’), h<y))7 vxa y e Xl

is equivalent to d;.

We can find more different definitions of self-similarity, for example [Sc, p.
482].

REMARK 25. Let F' = {X; f1, fo, ..., [} be an IFS, where f; are similitudes.
The self-similar set A* is the unique compact nonempty set such that

A* = Ufi(A*).

However, the majority of definitions of self-similarity come from authors, who
studied Euclidean spaces. Since we will consider general complete metric spaces,
we will use the following definition.

DEFINITION 28. Let F' = {X; f1, f2, ..., fm}, where f; are similitudes, fulfills
SOSC. The self-similar set A* is the unique compact nonempty set such that

A= fi(an.

REMARK 26. We define self-similarity in the way that self-similar sets correspond
to sets whose dimension can be found by means of the Moran formula.

3.4. Lifted IFS and superfractals

Lifted IFS and superfractals serve as an inspiration how to think of mul-
tivalued fractals. Barnsley developed lifted IFS in [Bal, p. 154], but we will
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give its more general version from [Ba2, p. 338]. We start with the IFS F =
{(X, d), f1, fa, ..., fu}, where f; are contractions, and define the lifted IF'S

F:{XXE, fla f?a"'afn}7

where

fi(z, o) == (fi(z), si(0))
and s;(0) :=i0 := w, with w; = ¢ and w;;1 = 0y, for i =1, 2, ... Then Fis an
IF'S consisting of contractions with respect to the metric

dXXE((x70->7 (yu 0)) = dX(xu y) +d2<0-7 0)7
for all (z, o), (y, 8) € X x 3. Notice that

ds(s:(0), 5:(0)) < %dg(a, ).

for each 2 =1, 2, ..., n, and so it follows that

dyrs(Fi(x,0), Ti(y, 0)) < max {% r} dyvs((z,0), (1, 0)).

Let A denote the set attractor of . Then the projections of A onto X and ¥ are
A* and X, respectively.

We can decompose a fractal and also an invariant measure supported on it.
THEOREM 17. [Ba2, Theorem 4.9.3, p. 340] Let u € P(X) denote the measure
attractor of the IFS F = {X, f;, pi, i =1,2, ..., n} and let us, € P(X) denote the
measure attractor of the IFS S ={X, s;, pi;, 1t =1, 2, ..., n}, where s; : X — X is
the transformation defined by s;(c) :=io, for all o € . Let i € P(X x X) denote
the measure attractor of the IFS F' = {X x X, fi, fo, ..., fu, D1, P2, -+ s Pn},s
where f; = (fi, s;), fori = 1,2, ..., n. Then the projections of i € P(X x %)
onto P(X) and P(X) are p and pu(X), respectively. Moreover,

1= o(us).
EXAMPLE 2. The Sierpiriski triangle is an attractor of the IFS F' = {[0, 1], fi1, fo, f3},
T+ a,

where a; = (0, 1)/, ay = (1, 0)’, a3 = (0, 0)". The attractor of the lifted IFS is
shown in Figure 7.

Barnsley developed superfractals in [Ba2] and [BHS1]-[BHS4]. We define
a compact metric space X with a collection of hyperbolic IFSs {F,, : m =
1,2, ..., M} with probabilities, where

Fo =X 11 f5 o ol o ol )
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Figure 7: Lifted IFS for the Sierpinski triangle

and M > 1 is an integer, to be a superlF'S. It is denoted in [Ba2] by
{X, Fl, FQ, ,FM} or {X, Fl,FQ, ,FM, Pb PQ, ...,PM},

where the P, are probabilities, with

M
Zszl, forallme {1, 2, ..., M}.

m=1

The system is not an IF'S but it can be used to define the hyperbolic IFS
FY ={K(X); F\, Fy, ..., Fy;; P, Py, ..., Py}
Here, each of the IFSs acts as a transformation
F,:K(X)— K(X)

defined by
F(B) = U f™(B) form=1,2, ..., M.

We denote its attractor by oV,
REMARK 27. Observe that

oV ={A,:0€ M.  u},

where

F,(A) = A, VA € K(X).
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DEFINITION 29. [Ba2, p. 396] The superlFS{X; Fy, Fs, ..., Fa; Pi, P, ..., Py}
is said to obey the uniform open set condition if there exists a nonempty open
set O C X such that

F,.(0)CO

and
FHO)N fMO)=0if k#1, forall k, 1 € {1,2, ..., Ly}

and for all m € {1, 2, ..., M}.
PROPOSITION 10. [Ba2, p, 397] Let N > 1 be a positive integer. Let the superlF'S

{RY; B\, Fy, ..., Fas; Pr, Pa, ..., Pur}

obey the uniform open set condition. Let the functions that comprise the IFS F,,
be similitudes of the form

Sl (@) = 8O +177,

where O is an orthonormal transformation, s* € (0, 1) and t* € RY, for all
1e{1,2,..., Ly} andm € {1,2, ..., M}. Then, for almost all A, € o),

dlmH AU = D,

where D is the unique solution of

M Lim
> Pulnd (s7)” =0.
m=1 =1

Next, let us introduce some notation related to the IFS

Funderlying: {Xa f117 f217 tty f[l/lv f127 f227 cr f[2/27 cty flA/Iu fQZ\/lu ct f[]/\{w}

which we call the underlying IFS. Its attractor is denoted A, ndertying and we have
Aunderlying = UAO.EQ(I)AO"
EXAMPLE 3. Let us consider the superlF'S

F= {Rza f117 f21a f127 f22}
such that f;(x) = Q;:p + bé,’ i,j=1,2

o — (05 08T\ o (05 02887
17 \02887 05 ) 27\ —02887 05 )

Q2 = 0.5 0.4410 Q2 = 0.5 —0.4410
7\ —0.4410 0.5 $ 27004410 05 ’

bl = (0.5, 0.2887), b) = (0.5, 0.2887), b? = (—0.5, —0.4410), b3 = (0.5, —0.4410).
We distinguished different sets of the superfractal in Figure 8 by colours.
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Figure 8: Superfractal from Example 3

4. Fixed point theory in hyperspaces

REMARK 28. Let us note first that the most of the section can be found in [AR2]
and it was collected and developed by Professor Andres.

The fixed point theory (in spaces) is one of the mostly developed parts of
nonlinear analysis. For the metric (Banach-like) theory, see e.g. the handbook
[KS] and for the topological (Schauder-like) theory, see e.g. the handbook [BFGJ].
On the other hand, the results concerning the fixed point theory in hyperspaces
are rather rare (cf. [A3], [AV], [D1], [D2], [DG]|, [Ha|, [HF], [HH], [IN, Chapter
VI], [LFKU], [N2], [RN], [RS] and [Se]).

Everybody knows Banach’s (see e.g. [GD, Theorem 1.1]) and Schauder’s (see
e.g. [GD, Theorem 3.2]) fixed point theorems. In applications, we will need also
their generalizations.

The following generalization is a particular case of the Boyd-Wong version of
the Banach Theorem (see e.g. [KS, Theorem 3.2, pp. 7-8]).

LEMMA 5. (Boyd-Wong) Let (X, d) be a complete metric space and f: X — X
be a weakly contractive map. Then f has exactly one fixed point.

The Covitz-Nadler multivalued version of the Banach theorem (see e.g. [GD,
Theorem 3.1, p. 28], [KS, Theorem 5.1, pp. 15-16]) reads as follows.

LEMMA 6. Let (X, d) be a complete metric space and F : X — B(X) be a
contraction. Then F admits a fized point, i.e. there exists xo € X such that

To € f(l‘o)
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The following Granas version of the Lefschetz fixed point theorem (see e.g.
[GD, Theorem 4.3, p. 425]) is a far reaching generalization of the Schauder
theorem.

LEMMA 7. (Granas) Let X be an ANR-space and f : X — X be a compact
map. Then the generalized Lefschetz number A(f) is defined and if A(f) # 0,
then f has a fized point. In particular, if X is an AR-space, then A(f) =1, and
subsequently a compact map f: X — X has a fized point.

Since the space of probability measures (P(X), dyx) is compact if and only
if so is (X, d), as a direct consequence of the Banach fixed point theorem, we can
immediately give the following lemma.

LEMMA 8. Let (X, d) be a complete metric space and (P(X), dyr) be the space
of probability Borel measures on X. If the Markov operator M : P(X) — P(X) is
a contraction with a constant r € [0, 1), i.e.

Ay (M(p), M(v)) < rdyx(p, v), forall p, v e P(X),

then there exists a unique fized point py € P(X), o = M (10), called the invariant
measure w.r.t. M.

The first statement for hypermaps is a slight improvement of its analogy in
[AF] (see also [AG2, Appendix 3]) in the sense of Remark 9.

PROPOSITION 11. Let (X, d) be a complete metric space and Fy : X — C(X), Fa :
X — B(X), F3: X — K(X) be (weak) contractions. Then each hypermap
Fi:C(X) = C(X), F: B(X) = B(X), F3: K(X)— K(X) has ezactly one
fizxed point X;, 1 = 1, 2, 3. Moreover, each of multivalued maps Fy, Fo, F3 with
bounded values possesses fixed points in X1, Xo, X3 C X.

Proof. By the above arguments, (C(X, dy)), (B(X, dy)) and (K (X, dy)) are
complete hyperspaces (see Table 1 and Table 2) and the induced (single-valued)
hypermaps Fi, F,, JF3 are self-maps. Moreover, F;, F, F3 are (weak) con-
tractions (see Table 3). Hence, applying Lemma 5, resp. Banach’s theorem,
they have exactly one fixed point X;, ¢« = 1, 2, 3, representing, up to its bound-
ary, positively invariant subset in X. Since X, X5, X3 are closed subsets of
a complete space X, they are also complete. Applying Lemma 6, the multi-

valued maps Fi|x,, Fa2|x,, Fslx; with bounded values possess fixed point in
X,, X, X5 C X, 0

By the same arguments, we can give the second metric statement.

PROPOSITION 12. Let (E, ||.||) be a Banach space. Assume that |||.<7||| < 1, for
the matriz norm of <, and Cy € C(E™), Cy € B(E™), C3 € K(E™), at the affine
maps For 1 E" — Coo(E™), Foz : E™ — Beo(E™), Foz : E" — Kco(E™). Then
each hypermap Fo1 : Coo(E™) — Ceo(E™), Foa : Boo(E™) — BeolE™), Fos -
Keo(E™) = Keoo(E™) has exactly one fized point X;, i =1, 2, 3. Moreover, each
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of multivalued maps Fo1, Fo2, Foz with bounded values admits a fized point in
X, CR" i=1,2, 3.

Proof. By the above arguments, (Cco(E™), dy), (Beo(E™), du), (Kco(E™), dp)
are complete hyperspaces. One can readily check that the multivalued maps
Fo1, Foz, Fos are contractions. Thus, the induced (single-valued) hypermaps
Foi, Foz, Fos, which are by the above arguments self-maps, must be contrac-
tions as well (see Table 3). Hence, applying the Banach fixed point theorem,
they have exactly one fixed point X;, i = 1, 2, 3, representing, up to its bound-
ary, a positively invariant subset in E”. Since X7, X5, X3 are closed subsets of a
Banach space E™, they are also complete. Applying Lemma 6, the multivalued

maps Fo1|x,, Foz2|x,, Fos|xs with closed bounded values possess fixed points in
X1, Xy, X5 C E™. 0

REMARK 29. Propositions 11 and 12 can be naturally extended to suitable hyper-
hyperspaces Hi(H2(X)), when considering the multivalued (weak) contractions
F : Hy(X) — Hi(H2(X)). On the other hand, if we consider multivalued (weak)
contractions on the supporting space X, as in Propositions 11 and 12, then the
unique fixed points of the induced hyper-hypermaps . : H(H (X)) — H(H (X))
must be the same as those of hypermaps F': H(X) — H(X).

REMARK 30. Condition [||<7||| < 1 in Proposition 12 is certainly not necessary.
Let, for instance, £ = R and C' € R". Then the map Fy : R® — R" has a
unique fixed point xy € R" if and only if (& — .#) is regular?, i.e. 1 ¢ o(&).
The induced hypermap Fy : K(R") — K(R") has exactly the same unique fixed
point which can be explicitly calculated as a solution of the algebraic system
(o — F)x =—C.

The first topological statement in hyperspaces generalizes its analogy in [AF]
(cf. also [AG2, Appendix 3]).

PROPOSITION 13. Let (X, d) be a locally continuum-connected metric space and

F X — K(X) be a compact continuous mapping. Then the induced hypermap
F: K(X)— K(X) admits a fized point.

Proof. 1f (X, d) is still connected, then (K (X), dy) is an AR (see Table 1). The
induced hypermap F : K(X) — K(X) is compact and continuous as well (see
Table 3). Thus, applying Lemma 7, there is a fixed point.

If (X, d) is disconnected then, unlike in the supporting space, in the hyper-
space (K (X), dy) which is an ANR (see Table 1), K(X) consists of a finite
number of disjoint ARs, and subsequently A(F) > 1 (for more details see [AV]).
Applying Lemma 7, F admits also in this case a fixed point. ]

REMARK 31. Since in (K(X), dy), where (X, d) is locally continuum-connected,
we get even N(F) = A(F) > 1, where N(F) denotes the Nielsen number for the
lower estimate of fixed points of F, we have in fact to our disposal a multiplicity

2.7 is the identity matrix and o (/) means a set of eigenvalues of A
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result. The problem of calculation of N(F) namely reduces there to a simple
combinatorical situation on a finite set (see [AV]).

REMARK 32. Propositions 11 and 13 can be extended, by means of degree argu-
ments, to hyperspace continuation principles, where the induced hypermaps and
hyperhomotopies need not be self-maps (see [Al], [A2], [AFGL], [RS]). There
also exists a fixed point theorem for condensing hypermaps (cf. [L4]), but the
nontrivial induction of condesity seems to be a difficult task. On the other hand,
there is no direct way for obtaining the hyperspace analogy of the Schauder fixed
point theorem, because the hyperspaces of linear spaces have never a linear struc-
ture. Despite it, using a Radstrom theorem which allows us the embedding of the
hyperspace as a positively semilinear subspace, some analogies of the Schauder
theorem in terms of the Hausdorff topology were obtained in [D1], [D2], [DG].

REMARK 33. We already know from Section 2 that (B(X), dg) is an AR, pro-
vided e.g. X C E is a convex subset of a normed space (E, ||.||) (cf. [AC]).
In general, it is according to [BV, Theorem 3.5] an AR if and only if a metric
space (X, d) is uniformly locally chain equi-connected on each bounded subset
of X and that each bounded subset of X lies in a bounded chain equi-connected
subspace of X. For the definitions and more details, see [BV]. Proposition 13 can
be, therefore, also partially extended to multivalued compact continuous maps
F : X — B(X). Analogous criteria can be also found, in view of [BV, Theo-
rem 3.2|, for multivalued compact continuous maps F : X — C(X) and their
inductions on (C'(X), dp).

Since (Koo(X), dy) is, according to [HH], [LFKU], a compact convex subset
of (K(X), dy), provided X C E™ is a compact, convex subset of a Banach space
E™, the following statement can be also regarded as a particular hyperspace
version of the Schauder-type theorem.

PROPOSITION 14. Let (E™, ||.||) be a Banach space and X C E™ be a nonempty,
compact, convez, subset of E". Let C € K¢o(X) be at the affine map Fo :
X — Keo(X), defined in the foregoing section. Then the induced hypermap
Fo 1 Keo(X) = Keoo(X) admits a fized point Xo. If still |||</||| < 1 holds, for
the matriz norm of </ at Fy, then the fized point Xy is unique. Moreover, the
multivalued map Fo : X — Keoo(X) admits a fized point in a convex, compact,
positively invariant subset Xo C X C E™.

Proof. Since (Kco(X), dy) is convex and compact, it must be also a compact
AR. By the above arguments (see Remark 11), the induced hypermap Fj is a
Lipschitz-continuous self-map, i.e. Fy : Koo(X) — Keoo(X), which is compact.
Applying Lemma 7, there is a fixed point X € K¢,(X). For |||.<7||| < 1, one can
alternatively apply the Banach fixed point theorem to obtain the uniqueness of
Xo. The point Xy € K¢o(X) is at the same time a convex, compact, positively
invariant subset of X C E" such that Fo|x, : Xo — Kco(Xo) is Lipschitz-
continuous. Applying a suitable Kakutani-type fixed point theorem whose all
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assumptions are satisfied (see e.g. [GD, Theorem 8.4, pp. 168-169]), the multi-
valued map Fy has a fixed point in Xqg C X C E™. m

REMARK 34. Similarly as for metric statements, Proposition 13 can be nat-
urally extended to the hyperspace K (K (X)), when considering the multival-
ued compact continuous maps F : K(X) — K(K(X)), provided (X,d) is a
locally continuum-connected metric space. Proposition 14 can be extended to
the hyper-hyperspace K (K¢,(X)), when considering the multivalued affine maps
Fo i Keo(X) = K(Keo(X)), provided X C E™ is a nonempty, compact, convex
subset of a Banach space E".

5. Multivalued fractals and hyperfractals

We are ready to introduce multivalued fractals and hyperfractals. First, we
will prove their existence by means of fixed point theorems. Next, we will gen-
eralize Barnsley’s results ([Bal]) to multivalued fractals. Finally, we will apply
the chaos game to draw multivalued fractals. However, hyperfractals will play a
crucial role in our derivations.

5.1. Existence results

REMARK 35. Let us note that the most of the subsection can be found in [AR2]
and the results were partially developed by Professor Andres.

In our approach to fractals, we follow the classical ideas of J. E. Hutchinson
[Hu] and M. F. Barnsley [Bal] concerning the iterated function systems (IFSs)
{(X,d), fi : X - X,i=1,2,...n}, where (X, d) is a complete metric space
and f;, 1 =1, 2, ... n, are contractions. The prehistory of this approach can be
already detected in the paper [Wi] of R. F. Williams.

Replacing single-valued contractions f; by multivalued ones, we talk about
iterated multifunction systems (IMSs). This name was used for the first time in
the paper [AG1]. In [A1], it was also used for the first time the term multivalued
fractals for the attractors of IMS. Later on, in [AF], [AFGL], [AG2, Appendix 3],
this notion was extended to fixed points in hyperspaces of the related Hutchinson-
Barnsley operators determined by multivalued maps. It was also distinguished
there between metric and topological multivalued fractals, according to the ap-
plied metric (Banach-like) and topological (Schauder-like) fixed point theorems.
Of course, because of identical images of sets, every set would be a topological
fractal, but we always implicitly assumed that there are at least two maps in the
generating systems under consideration. Let us note that this terminology seems
to be nowadays standard (cf. e.g. [BBP], [CL], [CP], [Fi], [KLV1], [KLV2], [Mh].)

Multivalued fractals were considered for the first time in 2001 in [A1], [AG1]
and, independently, by A. Petrusel and I. A. Rus in [P1], [PR1]. At the same
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time, the similar ideas were also implicitly present in the papers [LM1], [LM2] of
A. Lasota and J. Myjak, where an alternative approach was used leading to the
notion of semifractals (cf. also [LM3], [LM4], [MS] and the references therein).

In Introduction, we already indicated the relationship between hyperfractals,
defined as fixed points in hyper-hyperspaces of the Hutchinson-Barnsley hyper-
operators and determined by a rather general class of multivalued maps, to su-
perfractals (cf. [Ba2|, [BHS1]-[BHS4], [SIM]) and to multivalued fractals. We
also would like to clarify in this section the relationship between hyperfractals
and invariant measures, defined on hyperspaces, of the Markov hyperoperators.

Hence, both multivalued fractals and hyperfractals will be investigated here
in terms of the fixed point theory from the foregoing section.

We start with a theorem for metric multivalued fractals.

THEOREM 18. Let (X, d) be a complete metric space and Fy; : X — C(X), Fo; :
X — B(X), Fsi : X = K(X) be, for alli = 1,2, ..., n, weak contractions.
Then each Hutchinson-Barnsley operator

Fl : C(X) — C’()()7 ﬁ(A) = iLZJl Clc(X)(xLeJAfli(l’)), \
7 B(X) = B(X), Fy(A) = ZQ el (U Fule)), (3)
Fy: K(X) = K(X), Fy(A) = ifjl U Fula)

has exactly one fized point A;, j =1, 2, 3, which is at the same time a positively
invariant (for j = 1,2, up to its boundary) set w.r.t. the related Hutchinson-
Barnsley maps

Fi: X = C(X), Fi(z) = Lij Fri(x), \

Fy: X = B(X), Fa(x) = 7;01 Fai(x), (4)
Fz3: X = K(X), F(z) = LnJ Fai(w).

=1 /

Moreover, each of the maps Fi, Fo, F3 possesses fized points in Ay, As, Az C X,
provided Fi; have bounded values, for all i =1,2, ..., n.

Proof. Since a finite union of closed sets is closed, of bounded sets is bounded

and of compact sets is compact, we can define the maps Fi, Fa, F3 as in (4).

Since the operators Fy, Fy, F3 in (3) can be equivalently defined as Fj(A) :=

clex)( UAfl(x)), Fy(A) =l (U Fa(w)), F5(A) :== |J Fs(x), they have the
re

€A €A
same properties as the induced (single-valued) hypermaps Fi, Fy, F3 in Proposi-
tion 11. Hence, the application of Proposition 11 completes the proof. O

REMARK 36. Because of a weaker notion of a weak contractivity (see Remark
9), the first part of Theorem 18 is slightly more general than its analogies in
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[AF], [AG2, Appendix 3]. It is also a generalization for Fj3, with multivalued
contractions Fs;, of the analogous results in [AG1], [KLV1], [P1], [PR1] and for
F3, with single-valued contractions Fj;, of the classical results in [Hul, [Bal].
REMARK 37. Since the completeness of (X, d) implies the completeness of (C'(X),
dy), (B(X), dy), (K(X), dg), and subsequently of (C(C(X)), du,,), (B(B(X)),
duy,), (K(K(X)), du,,), and since weak contractions are induced on these spaces,
the following statement can be regarded as a corollary of Theorem 18 (cf. Remark
29).

COROLLARY 1. Let (X, d) be a complete metric space and Fy; : X — C(X),
Foi 0 X = B(X), Fzi : X = K(X) be, foralli=1, 2, ..., n, weak contractions.
Then each Hutchinson-Barnsley hyperoperator

611 C(C(X)) » C(CX)), i) = U U {cm)(u Fule >>},

Acai=1 z€A
G BECO) > BECO) 30) = U U {daen(U 7ate) ),
- K(K(X)) = KIKX)) nle) = U U{U Falo)}

has ezactly one fized point o, j =1, 2, 3, which is at the same time a positively
invariant (for j = 1,2, up to its bounda,ry) set w.r.t. the related Hutchinson-
Barnsley hypermaps

Cs
o

F1:0(X) = C(C(X)), F1(A) == U clox {(U Fui( ))},

i=1 z€A
F9:B(X) = B(B(X)), %(A) = L:Jl clpx LEJA}_zz ))},
7ok 00 > KEX), A = 0{U Ao

Moreover, each of the hypermaps %y, %o, F35 possesses fized points in of C
C(X), a5 C B(X), af C K(X), provided Fy; have bounded values, for all i =
1,2, ..., n

DEFINITION 30. Fixed points o, j = 1, 2, 3 of operators ¢}, j = 1, 2, 3 from
the previous corollary are called hyperfractals.

REMARK 38. Corollary 1 is a generalization for ¢z, with special multivalued
contractions Fj;, of Theorem 8 in [KLV2].

Since the union of convex sets need not be convex, Proposition 12 cannot be
applied as Proposition 11 above. Despite this impossibility, Corollary 1 can be
still specified as follows.

THEOREM 19. Let (E, ||.||) be a Banach space. Consider the affine maps

b
Fiit E" = Coo(E™), Fri(z) = @z + Chy, Cri € Coo(E™),
Foi t E™ = Beo(E"), Foi(x) = ez + Oy, Cy; € Beo(E™),
Fait E™ = Koo E™), Fsi(x) := abyiw + Cs;, Csi € Koo E™),
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where <, j = 1,2,3, 1 =1,2,...,n, are real n X n—matrices. If |||<;||| <
1 holds for the matriz norms of Givd = 1,2,3, 1 = 1,2, ..., n, then each
Hutchinson-Barnsley hyperoperator

a%; : (7(C%70(l;n>> — (j(clfo< n) ) )
o) = U U {cz%wn(u Fule >}

Aceai=1 z€A

)
)
G ¢ B(Boo(E) - B(Bou(E")
Foae) = U U {ccho<En (U Fule)

Acai= z€A

dos ¢ K(Keo(X)) = K(Ken(X)),
doa() == U U{u fgi<x>}

Acai=1 z€A J

>} (5)

has exactly one fized point o, j =1, 2, 3.

Proof. Since (E™, ||.||) is a Banach space, the hyperspaces (Coo(E™), dg),
(Boo(E™), dy), (Kco(E™), dy), are, by the above arguments, complete as well as
the hyper-hyperspaces (C(Coo(E")). duy), (B(Beo(E™)), iy ). (K(KcolE™)),
dmy,) (cf. Tables 1 and 2). Since the affine multivalued maps F;; are, for
|||.97;;||| < 1, obviously contractions, so are the induced (single-valued) hypermaps
cleg,(gmyFiis Clpoy,(emyFais Fsin i =1, 2, ..., n, (cf. Table 3). Furthermore, since a
finite union of these contractions in (5) is a contraction (cf. [AF], [AG2, Appendix
3]), the hyperoperators in (5) must be also contractions (cf. Table 3). Thus, these
hyperoperators in (5) have the same properties as the induced (single-valued)
hypermaps Fi, Fa, F3 in Proposition 11 which completes the proof. O

REMARK 39. The unique fixed points o}, j = 1, 2, 3, can be only regarded
as closed or bounded, closed or compact subsets of closed, convex or bounded,
closed, convex or compact, convex subsets of £" which are positively invariant
(for j = 1, 2, up to their boundaries) w.r.t. the related Hutchinson-Barnsley
hypermaps

Fo1 : C(E™) = C(C(E™), Foi(A) :

I

{Clcw")( U fh-(m»} ,

Fy - B(E") — B(B(E")), Zp(A) = U {czB(En)(U f%(a;))} :

3 |l

Fo3 : K(E") = K(K(E")), Fo3(A) :=

-
-
n

Moreover, each of the hypermaps %y, o2, Fo3 possesses fixed points in
af C C(E™), ab € B(E"), af C K(E™), provided Cy; € Beo(E™), for all i =
1,2,...,n
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Proposition 13 can be applied to obtain the following topological result.

THEOREM 20. Let (X, d) be a locally continuum-connected metric space and F;
X — K(X) be, foralli =1, 2, ..., n, compact continuous mappings. Then the
Hutchinson-Barnsley operator

F:K(X)— K(X), F(4) =/ { U E-(x)} (6)
i=1 \z€A
admits a fixed point which is at the same time a positively invariant set w.r.t. the
Hutchinson-Barnsley map

PX%KM%H@:UE@. (7)

Proof. Since a finite union of compact sets is compact, we can define the map %
as in (7). Since the operator F' in (6) can be equivalently defined as

F(A) =] Fx),
€A
it has the same properties as the induced (single-valued) hypermap F in Propo-
sition 13. Hence, the application of Proposition 13 completes the proof. O]

REMARK 40. Since (X, d) can be disconnected, it generalizes its analogies in
[AF], [AG2, Appendix 3]. In view of Remark 31, we can even obtain in an
extremely simple way the lower estimate of the number of fixed points of F in
(6). On the other hand, since e.g. (C(R), dg) is, according to [BV], only an
ANR, but not an AR, it is a difficult task to find sufficient conditions in order
(C(C(X)), du,,) or (B(B(X)), du,,) to be ARs. Thus, it seems to be also difficult
to extend Theorem 20 to the Hutchinson-Barnsley operators on (C'(X), dg) and
Since the compactness of (X, d) implies the one of (K (X), dy), and subse-
quently of (K (K (X)), dy, ), and since a continuity is induced on these spaces,
the following statement can be regarded as a corollary of Theorem 18 (cf. Remark
29).
COROLLARY 2. Let (X, d) be a locally continuum-connected metric space and
Fi: X = K(X) be, foralli=1,2, ..., n, compact continuous mappings. Then
the Huchinson-Barnsley hyperoperator

¢KWWD%MMM%WW=UU{UE@}

Acai=1 \z€A
admits a fixed point which is at the same time a positively invariant set w.r.t. the
Hutchinson-Barnsley hypermap

ﬁﬂ%@%ﬁﬁﬂ%ﬁm:U{UE@}

=1
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Despite the impossible application of Proposition 14, Corollary 2 can be still
specified as follows.

THEOREM 21. Let (E, ||.||) be a Banach space and X € E™ be a nonempty,
convex, compact subset of E™. Consider the affine maps

./T"Oi =X - KCO(X), Fol<£L‘> = JZZ.T + Ci7

where <f; are real n X n—matrices and C; € Kcoo(X), for alli=1,2, ..., n. The
Hutchinson-Barnsley hyperoperator

90 : K(Kco(X)) = K(Keo( X)), do(e) = | J { U fm(l‘)} (8)

Acai=1 \z€A

admits always a fived point of. If still |||||| < 1 holds for the matriz norms of
i, 1 =1,2, ..., n, then the fived point of is unique.

Proof. Since X C E™ is convex and compact, so is by the above arguments (cf.
[HH], [LFKU]J) the hyperspace (Kco(X), di), by which the hyper-hyperspace
(K(Kco(X)), duy,) is a compact AR (cf. Table 1). Furthermore, since the mul-
tivalued affine maps Fo; are evidently (Lipschitz-) continuous, so are the induced
(single-valued) hypermaps Fo; : Koo(X) = Kco(X) (cf. Remark 12). Moreover,
since a finite union of these hypermaps is also (Lipschitz-) continuous (cf. [AF],
[AG2, Appendix 3]), the induced Hutchinson-Barnsley hyperoperator in (8) must
be (Lipschitz-) continuous as well (cf. Table 3). Thus, the hyperoperator in (8)
has the same properties as the induced (single-valued) hypermap F in Proposition
13 which completes the first (topological) part of the proof.

For ||| 4;||| < 1, the multivalued affine maps Fy, are obviously contractions, for
alli=1,2, ..., n, and so are the induced (single-valued) hypermaps (cf. Table
3). Furthermore, since a finite union of these contractions in (8) is a contraction
(cf. [AF], [AG2, Appendix 3]), so must also be the hyperoperator ¢y in (8) (cf.
Table 3) which has in this way the same properties as the induced (single-valued)
hypermap F3 in Proposition 11. This completes the second (metric) part of the
proof. ]

REMARK 41. Similarly as in Remark 38, the fixed points af, can be only regarded
as compact subsets of compact, convex subsets of X C E™ which are positively
invariant w.r.t. the related Hutchinson-Barnsley hypermap

Fo: K(X) = K(K(X)), Zo(4) = { U fm»(a:)} .

i=1 \z€A
Moreover, for |||<Z]|] < 1,7 = 1,2, ..., n, the hypermap .%, possesses fixed
points in afy C K(X). Observe that, unlike in Theorem 20, here the matrices
g, 1=1,2,...,n, can be without restrictions.
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Now, let (X, d) be a compact metric space and (P(X), dyx) be the space
of probability Borel measures on X. Let, for all s = 1,2, ..., n, f; : X - X
be contractions with factors r; € [0, 1) and p; : X — [0, 1] be the associated

continuous probability functions such that > p;(z) = 1, for all z € X.
i=1
We can define the Markov-Feller operators as follows (cf. e.g. [LM1]-[LM4],[MS]):

MR S POO, MEA =Y [ @, 0

for all p € P(X) and A € B(X), where B(X) denotes the c—algebra of Borel sub-
sets of X. In a particular case of constant probabilities p;(z) = p;, i =1, 2, ..., n,
the formula (9) obviously simplifies into

M(p)(A) = me(ffl(fl)% peP(X), AeB(X). (10)

It can be proved (see e.g. [Bal, Theorem 6.1, p. 351]) that under the above
assumptions, M defined by (10) is a contraction, i.e.

Ay (M (1), M(v)) < rdyr(p, v),

for all p, v € P(X), where (1 >)r = _ Inax {r;}. Thus, applying Lemma 8§,
there exists a unique fixed point py € P(X), po = M (1), called the invariant
measure w.r.t. M.

In this light, for compact metric spaces, a particular case of contractions in
Corollary 1 can be extended as follows.

THEOREM 22. Let (X, d) be a compact metric space and F; : X — K(X) be
Lipschitz-continuous multivalued maps with factors r; > 0, fori =1,2, ..., n
(like e.g. Fsiyi=1,2, ..., n, in Theorem 19). Let p; € (0, 1] be the associated

probabilities such that > p; =1 and Y rip; < 1. Then the Markov hyperoperator
i=1 i=1

M P(K(X)) = P(K(X)), M(p)(A) = Zpiu(ﬁl(fl)), (11)

Jor all p € P(K (X)) and A € B(K(X)), where B(K(X)) denotes the c—algebra
of Borel subsets of K(X), has exactly one fized point py € P(K (X)) such that
supp(po) == {x € K(X)|uo(B(x, r)) > 0, for every r > 0} is the smallest posi-
tively invariant set w.r.t. the Hutchinson-Barnsley hypermap

F = OE L K(X) = K(K(X)). (12)

=1
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Proof. In view of Table 1, (K(X), d) and (K(K(X)), dy) are compact. More-
over, by the above arguments, Lipschitz-continuous multivalued maps induce
(single-valued) Lipschitz hypermaps with the same factorsr; > 0,i=1, 2, ..., n.
Therefore, if Y, nr;p; < 1, then the Markov hyperoperator M in (11), on the
hyperspace (P(K (X)), dyk, ), has exactly one fixed point py € P(K(X)) such
that supp(po) is a semiattractor of the hyperlFS {(K(X), dg), F; : K(X) —
K(X),i=1,2,...,n} (see [LM3, Theorem 3.1], [MS, Fact 3.2 and Corollary
5.6]). At the same time, it is the smallest positively invariant set w.r.t. the
hypermap % in (12) (see e.g. [LM3, Theorem 2.1], [MS, Theorem 5.2]). O

REMARK 42. Observe that the factors r; in Theorem 22 can be greater than 1,
for some ¢ = 1, 2, ..., n. On the other hand, for non-unique positively invariant
sets A C K(X) wr.t. % in (12), we only have that supp(u) C A, but not the
equality, as for a uniqueness. Nevertheless, the relationship between invariant
measures and topological hyperfractals can be clarified in this way. More pre-
cisely, we know from Corollary 2 that if a compact X is still locally connected,
then there is always a positively invariant set A C K(X) w.ort. % in (12).
Now, we also know that, under the assumptions of Theorem 22 supp(ug) C A.
Moreover, in the case of uniqueness, we have that supp(uy) = A.

In order to avoid handicap mentioned in Remark 42, we can give the following
corollary of Theorem 22 which already concerns a unique positively invariant set
w.r.t. n (12).

COROLLARY 3. Let (X, d) be a compact space and F; : X — K(X) be, for all
= 1, 2, ..., n, weak contractions. Moreover, let at least one F;, say Fi, be
a contraction with factor r1 < 1. Let p; € (0, 1] be the associated probabilities

such that Y p; = 1. Let (P(K(X)), dyk,,) be the hyperspace of probability Borel

=1
measures on (K(X), dy). Then the Markov-Feller hyperoperator M : P(K (X)) —
P(K(X)), which takes the same form as in (11), has exactly one fized point
po € P(K(X)), called the invariant measure w.r.t. the hyperoperator M such
that supp(po) = Az, where Ag comes from Corollary 1.

Proof. Since compact-valued weak contractions are, by definition, nonexpansive,
the induced (single-valued) maps must be weakly contractive (see Table 3), and
subsequently nonexpansive. Thus, we always have that Z rip; < Z p; = 1. Since

i=1 =
JF is still a contraction with a constant r1 < 1, so must be the 1nduced (single-

valued) map (cf. Table 3), by which anl < 1. Applying Theorem 22, there

is a unique invariant measure o of the related Markov hyperoperator M whose
support is the smallest positively invariant set w.r.t. the Hutchinson-Barnsley
hypermap .% in (12). Since this set is, according to Corollary 1 unique, we have
that supp(po) = As, where Az comes from Corollary 1, as claimed. m
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REMARK 43. Corollary 3 is a generalization of its analogy in [KLV1], [KLV2],
where all F;, ¢ = 1, 2, ...n, were strict special contractions. In this case, the
proof can be done in a more straightforward way by means of Lemma 8 and
multivalued contractions with compact values need not be of a special type as in

[KLV1], [KLV2].

REMARK 44. In [LM3], [MS] (cf. also the references therein), the authors con-
sidered, for the invariant measures, the supporting Polish space (X, d), the hy-
perspace (C(X), dy) and the space (P(X), dyi) of probability Borel measures
on X. Although completeness is implied by (X, d) to (C(X), dy) (cf. Table 2),
separability is not preserved in this way, by the arguments explained in Section
2. Thus, we could not directly extend Theorem 22 and Corollary 3, when just
replacing a compact (X, d) by a Polish space. Moreover, since the supports of
invariant measures in [LM3], [MS] can be noncompact, it follows that, in Theo-
rem 22 and Corollary 3, a compact (X, d) cannot be replaced by a Polish space,
when considering the hyperspace (K(X), dy).

The metric part of Theorem 21 can be generalized in a probabilistic way as
follows.

THEOREM 23. Let (E™, ||.||) be a real Banach space and X C E™ be a nonempty,
convex, compact subset of E™. Consider the affine maps

Fm X = KCO(X), fm(l’) = %$ =+ Ci,

where <; are real n X n—matrices and C; € Kgo(X), for alli=1,2, ..., n. Let

pi €10, 1], i =1,2, ..., n, be the associated probabilities such that Y  p; =1 and
i=1

P(Kco(X), dyky,) be the hyperspace of probability Borel measures on (Kco(X), dp).

If |||“%]|| < 1 holds, for the matriz norms of <, for alli =1, 2, ..., n, then the

Markov-Feller hyperoperator
My : P(Kgo(X)) = P(Koo(X)), Mo(u)(A) =) pin(Fy'(A),  (13)
i=1

for all p € P(Keo(X)) and A € B(Keo(X)), has exactly one fized point py €
P(Kco(X)), called the invariant measure w.r.t. the hyperoperator M.

Proof. Since X C E™ is compact, so is by the above arguments (cf. [HH])
(Kcoo(X), dir), and subsequently (P(K¢o(X)), dak,, ). Furthermore, because of
||.«%]||] < 1, the affine multivalued maps Fo; are obviously contractions, and so are
(cf. Table 3) the induced (single-valued) hypermaps Fpy; : Kco(X) — Keoo(X),
for all ¢ = 1, 2, ..., n. Thus, the Markov-Feller hyperoperator defined in (13)
is, by the above arguments, a contraction as well. The application of Lemma 8,
therefore, completes the proof. O]
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REMARK 45. For regular matrices <7, i = 1, 2, ..., n, the formula (12) takes
the more explicit form.

My : P(Kco(X)) = P(Kco(X)), Mo(p)(A) := Zpiu[(A —C)e ], (14)

for all u € P(K¢o(X)) and A € B(K¢o(X)), where B(K¢o(X)) denotes the
o—algebra of Borel subsets of K¢,(X). Besides this advantage, the only improve-
ment of Corollary 3 consists in fact that the space of probability Borel measures
and the invariant measure g from it are on (K¢o(X), dg), i.e. on convex, com-
pact subsets of X. Otherwise, Theorem 23 can be only regarded as a consequence
of Corollary 3. On the other hand, we still have that supp(uy) = Ao, where Ay
comes from Theorem 21, provided p; > 0, for alli =1, 2, ..., n.

We conclude this section by indicating the relationship of the obtained results
in terms of fractals.

REMARK 46 (terminological). Fixed points in Theorems 18 and 20 are called
fractals, while the other fixed points are called hyperfractals. To distinguish
them still by means of the applied fixed point theorems, we speak about fixed
points in Theorems 18, 19 and, for |||A||| < 1,7 =1, 2, ..., n, in Theorem 21
and Corollary 1 as metric, while about those in Theorems 20, 21 and Corollary
2 as topological. Thus, the unique fixed points in Corollary 1 represent metric
hyperfractals whose “shadows” (called the underlying fractals in [Ba2]) on the
supporting space (X, d) coincide with respective metric multivalued fractals rep-
resented by fixed points in Theorem 18. The fixed points in Corollary 2 represent
topological hyperfractals whose “shadows” on (X, d) coincide with topological
multivalued fractals represented by the fixed points in Theorem 20. The topolog-
ical hyperfractal supp(uo) in Theorem 22 can be also called a hyper-semifractal,
in the lines of [LM3], [MS]. Furthermore, the support of the unique invariant
measure in Corollary 3 coincides, for p; > 0, ¢ = 1, 2, ..., n, with a metric hy-
perfractal in a particular case of Corollary 1 and the support of the invariant
measure in Theorem 23 coincides, for p; > 0 and |||<]|| < 1,7 = 1,2, ..., n,
with a metric hyperfractal in Theorem 21. The metric hyperfractals in Theorem
19 as well as, for |||“%]||| < 1,i =1, 2, ..., n, in Theorem 21, and the topological
hyperfractals in Theorem 21 are rather exceptional (cf. Remarks 14 and 16), but
their “shadows” on the supporting spaces coincide with special metric multival-
ued fractals in Theorem 18 and topological multivalued fractals in Theorem 20,
respectively.

5.2. Address structure of multivalued fractals

Address structure of multivalued fractals enables us to draw multivalued frac-
tals and measures supported by them efficiently. It is the same as the address

ol



structure of associated hyperfractals. We describe the address structure of mul-
tivalued fractals in a similar way as the address structure of fractals generated
by ordinary IFSs. From

A = R(a"),
i=1
we will obtain
A= F, (4.
oex
REMARK 47. In the previous sections we needed to distinguish multivalued maps,
hypermaps, multivalued hypermaps and hyper-hypermaps. We used different
fonts. From now on, we will immediately induce multivalued maps to hyper-
maps. Therefore, let us use the same font for a multivalued map and the induced
hypermap, for instance, F' for F and F.

REMARK 48. Notice that the address structure is usually treated for compact
fractals. Hence, from now on, let us restrict ourselves to contractions F; : X —
K(X).

We need only a slight modification of Barnsley results ([Bal, Theorem 2.1, p.
123]).

*PROPOSITION 15. Let (X, d) be a complete metric space. Let {K(X), Fy, ..., Fx}
be a hyperlF'S. Let o denote the attractor of the hyperlF'S. Let (X, dsx) denote the
code space associated with the hyperlFS. For each o € ¥, n € N, and A € K(X),
define

¢(o,n, A):==F, oF, o---0F, (A).

Then
4(0) = lim 6(o. n. 4)

exists, belongs to A* and is independent of A € K(X). If v is a compact subset
of K(X), then the convergence is uniform over A € . The function ¢ : ¥ — o*
18 continuous and onto.

REMARK 49. In order to understand the address structure of multivalued frac-
tals, let us study the formula

F(A) = J Fi(A4), A € K(X).
i=1
If F; are contractions for all 7, F' is also a contraction and it has a fixed point.
However, we do not need F; : K(X) — K(X) to be induced by single-valued
mappings. Let us discuss other two cases. F; can be induced by multivalued maps
F;: X — K(X) or general hypermaps F; : K(X) — K(X),i=1,2, ..., n. For
general contractions F; : K(X) — K(X), we can prove only the existence of a
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fixed point A*,
A" =F(A7) = JF(AY).
=1

Therefore, we will consider mainly contractions F; : K(X) — K(X), induced by
Fi: X — K(X). It assures that

F(AU B) = F(A) U Fi(B)

which is essential for describing the address structure of fractals.

*THEOREM 24. Let (X, d) be a complete metric space. Let {(X, d), Fy, ..., Fy}
be such that F; : X — K(X),1=1,2,..., N, be an IMS and ¢ = {(K(X), du),
Fy, F5, ..., Fy} the associated hyperlFS. Let A* denote an attractor of the IMS.
Let (X, ds) denote the code space associated with the hyperIFS. For each o €
Y,neN and A e K(X) let

¢(o,n, A):==F, oF, o---0F, (A).

Then
¢(o) = lim ¢(o, n, A)

n—o0

is a compact subset of A* and is independent of A € K(X). If a € A*, then there
exists o € 3 such that a € ¢(0).

Proof. Let us define F': K(X) — K(X),
F'is a contraction mapping on the metric space (K(X), dg). We have

A* = lim F"(Ay).

n—o0

In particular, { F"(Ap)} is a Cauchy sequence in (K (X), dy). Notice that
o(o, n, Ag) C F"(Ayp), Yo € X.

Since limits

¢(0) = lim ¢(o, n, Ag)

n—oo

and
A* = lim F"(Ap)

n—o0

exist, it follows that
¢(o) C A", Vo € ¥.

Next, we prove that each a € A* has an address. Consider Ay € K(X) and a
sequence {A,}, A, = F"(Ap), n =0, 1, 2, ... From [Bal, Theorem 7.1, p. 35],

23



it follows that we can find a sequence {a,}, a, € A,, such that a,, — a. There
exists a sequence {w™ € ¥, n =1, 2,3, ...} such that

lim ¢(w™, n, Aq) 3 a.

n—ro0
(Notice that a1 € UF;(Ag) = iy € {1,2,..., N} : a1 € F,(Ay), as €
Uiszij<A0) = Elle, 2,2 Dag € EIIZ/Q(A()))

Since (¥, dy) is compact, it follows that {w(™} possesses a convergent subse-

quence with a limit w € . Without loss of generality, assume that lim,, . wm =

w. Then the number of successive initial agreements between components of w™
and w increases without limit. That is, if

a(n) = card{j € N : w,g") =wy, for 1 <k <j},
then a(n) — oo as n — oo. It follows that
d(¢(w, n, Ao), $(w™, n, A)) = 0.

From
a € lim ¢(w™, n, Ay),

n—oo

it follows that
a € lim ¢(w, n, Ap).

n—o0

]

The theorem implies the following corollary. Each address point of a hyper-
fractal equals an address set of the underlying multivalued fractal.

*COROLLARY 4. Let {(X, d), [y, Fy, ..., Fx} be an IMS and {(K(X), dg), Fi,
Fy, ..., Fy} the induced hyperIFS. Attractors A* and o* of these iterated systems
possess the same address structure,

A= 4;,

oeY

o = J{4:}
oEY
We can visualize address sets of multivalued fractals by means of lifted IMSs.
We will construct lifted IMSs in the similar way as lifted IFSs. Let {(X, d), F1,
Fy, ..., F,} be an IMS where F; : X — K(X) are contractions. We define an
IMS

A

F = {(X X 27 dxxz), Fl, ng cee Fn}7
where F} : (X x X, dxxs) = (K(X X X), dyxsy),

A

Fi(x, 0) = Fi(x) x {si(0)}, (15)
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Figure 9: Lifted IMS

and s;(0) = i0 := w, with w; = ¢ and w41 = oy, for i = 1,2, ... We have
already used
dXXZ]((I,O'), (y7 6)) - dX<I7 y) + d2(07 6)

In order to show that F}; are contractions i = 1, 2, ..., m, we need not consider
general compact subsets of X x X. It suffices to treat Ax {o}, 0 € ¥, A € K(X).
Therefore, let us write (A, o) for A x {o}.

For the distance dxxx, ((4, o), (B, 0)), we have

dXxZH((A,O')7 (B, 9)) - maX{ sup ( inf dsz((a, U)’ (b, Q))))
(a,0)€(A,0) (b,0)E(B,0)

sup ( inf dXxE((Cl, 0-)’ <b7 9))}
(b,0)(B,0) (a,0)€(A0)

We will prove that F} are contractions. For any (z, 0) and (y, §) € X x %,
we can write

~ ~

dXXZH(E(Ia O'), E(yv 0)) =
max{ sup { inf dx.=((a,n), (b, w))},

(av ﬁ)eﬁi(m, 0') (b7 w)eﬁi (y7 9)

sup  { inf  dx.s(a, n), (b, w)}}.

(b,w)E€F(y,0) (a:mEFi(z,a)

Our calculation is easy because of (15). Thus,
dxsy (Fi(z, 0), Fi(y, 0)) =

max{ sup ( inf  dx«=((a, io), (b, 10)),
(a,ic)eF;(z, o) (b,10)€Fi(y, 0)
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sup  ( inf  dyus(a, io), (b, i6))} =
(b,i0)€F;(y,0) (a:i0)EFi(z,0)

max{ sup ( inf  dx(a, b) + ds(io, if),
(a,i0)€F;(z, o) (b10)EFi(y,0)
sup ( inf dx(a, b) + dx(io, i0))} =
(b,i0)€Fi(y,0) (a:i0)EFi(z,0)

ds(io, i0) + max{ sup ( inf dx(a, b)),
(a,ic)eF;(z) bEFi(y)

sup (inf dx(a, D))} =

(b,i0)€F;(y) (a,i0)EF;(z)

ds(io, i) + du(Fi(z), Fi(y)) <

1
5d2<0’, 0) + rid(x, y) <

max{%, } dxxs((2,0), (y, 0)).

*THEOREM 25. The system F = {(X x X, dxxx), Fl, FQ, - Fn} 18 an IMS
consisting of contractions with respect to the metrics dxxx, and dxxx,,. The pro-
jections of A onto X and X are A* and X, respectively.

Proof. Since F; : X x ¥ — K(X x ) are contractions in a complete metric
space, we obtain the first part of the theorem from Theorem 18. The second part
follows from A = J_ . (A%, o) and Corollary 4. O

oey

EXAMPLE 4. The Fat Sierpinski triangle is an attractor of the IMS F' = {[0, 1]?, F} :

0, 11> — K([0, 1]?), 1 = 1, 2, 3},
Aly) =) ) ()

= O
= O

(e ) (B2 )

For the lifted Fat Sierpinski triangle, see Figure 9.

REMARK 50. In further examples, we will consider the contractions in a different
order (see e.g. Example 6).
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5.3. Ergodic approach

In this section, we will give basic theorems of the ergodic theory. They will
enable us to draw fractal measures and estimate integrals of functions defined on
fractals. First, we will introduce dynamical systems.

DEFINITION 31. [Bal, Definition 3.1, p. 130] A dynamical system is a transfor-
mation f: X — X on a metric space (X, d). It is denoted by {X, f}. The orbit
of a point z € X is the sequence {f*(z)}32,.

DEFINITION 32. [Bal, Definition 3.3, p. 132] Let {X, f} be dynamical system
and let z; be a fixed point of f. The point z; is called an attractive fized point
of f if there is a number ¢ > 0 so that f maps the ball O(xy, €) into itself,
and moreover f is a contraction mapping on O(zy, €). The point z; is called a
repulsive fized point of f if there are numbers € > 0 and C' > 1 such that

d(f(xg), f(y)) = Cd(zy, y), for all y € O(xy, €).

DEFINITION 33. [Bal, Definition 4.1, p. 140] Let (X, fi1, fo, ..., fm) be a hy-
perbolic IFS with totally disconnected attractor A*. The associated shift trans-
formation on A* is the transformation S : A* — A* defined by

S(a) := f;*(a) for a € fi(A*),

where f; is viewed as transformation on A*. The dynamical system {A* S} is
called the shift dynamical system associated with the IFS.

DEFINITION 34. [Bal, Definition 5.2, p. 146] Two dynamical systems {Xi, f1}
and {Xs, fo} are said to be equivalent, or topologically conjugate, if there is a
homeomorphism 0 : X; — X5 such that

fl(xl) = 971 o f2 o 0(]}1), for all xr1 € Xl,

fao(x9) = 00 f1 00 (), for all 7y € Xy.
In other words, the two dynamical systems are related by the commutative
diagram (see Figure 10).
REMARK 51. The only dynamical system we meet here, is the shift dynamical
system.
THEOREM 26. [Bal, Theorem 5.1, p. 147] Let {X, fi, fo, ... fm} be a totally
disconnected hyperbolic IFS and let {A*, S} be the associated shift dynamical

system. Let 3 be the associated code space of m symbols and let T : ¥ — 3 be
defined by

T(010905...) := 090304 ..., for all 0 = 010905+ € 3.

Then the two dynamical systems {A*, S} and {¥, T} are equivalent. The home-
omorphism that provides this equivalence is ¢ : X — A*, defined in Definition 34.
Moreover, ¢ protects repulsive, attractive cycles and periodic points, too.
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X1 06— X2
f1 f2
v ]

X, 0 — > X,

Figure 10: Commutative diagram

From now on, we will consider in addition a measure. We will estimate it on
measurable subsets by means of special dynamical systems.
DEFINITION 35. [BKS, Definition 2.1 p. 22| Let (X, A, u) be a fixed mea-
sure space. Then a measure-preserving transformation T of the measure space
(X, A, p) is a mapping
T:-X—->A

of the underlying set X of the measure space to itself, which satisfies the following

properties:

1. T is measurable, i.e. if A is any element of the o—algebra A of the measure
space (that is A is a measurable subset of X) then the subset

T YA):={zx e X: T(zx)c A}

also belongs to the o algebra A (that is T7!(A) is also a measurable subset
of X).

2. T preserves the measure y, i.e. for any A € A, not only is T7!(A) € A as
in 1), but also
(T A)) = u(A),

where p(-) denotes the measure of an element - of A.
THEOREM 27. [BKS, Theorem 2.2, p. 41] Let T' be a measure-preserving trans-
formation of the probability space (X, A, p), and let B be any element of A.

Set
Sp(x) :=card{i: 0 <i<n, T'(x) € B}
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and
A(z) = %Sn(x) (x € X).

Then for p—almost every x € X,
A(z) := lim A,(z)

n—o0

exists.

Let pu(X) = 1. It seems logical that the time the orbit of a measure preserving
transformation 7" spends in the set B relates to the measure of B. It is tempting to
estimate the measure p(B) by A(z). However, our assumptions are not sufficient.
Transformation 7' : X — X, T'(x) = z, is always measure-preserving and we can
not obviously get measure p(B) from A(x). We need in addition ergodicity.

DEFINITION 36. [BKS, Definition 2.3, p. 41] A measure preserving transforma-
tion 1" is ergodic if whenever f : X — R is a measurable function such that

for p—almost all x € X, then f is p—almost everywhere equal to constant.
We will use that isomorphism of dynamical systems preserves ergodicity.
DEFINITION 37. [BKS, Definition 2.7, p. 45] Let

S:(X7 ‘AJ 22 T)

and let

S/ — (X/, A/7 /,L/, T/>
be two dynamical systems (i.e. T and 7" are measure preserving transformations
of the respective measure spaces (X, A, p) and (X', A, 1/)). Then S and S’ are
isomorphic if there exists a mapping

b X = X'
(an isomorphism) such that
1. ¢ is measurable,
2. for each A" € A, u(¢p1(A") = u/'(A"),
3. for p—almost all x € X, ¢(T'(z)) = T"(¢(x)),
4. ¢ is invertible, i.e. there exists a mapping
X' = X,

measure preserving, such that ¥(¢(x)) = = for p—almost all z € X and
o(Y(2')) = z for p—almost all z € X and ¢(¢p(2')) = 2’ for p—almost all
e X'
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If only properties 1), 2) and 3) are required, ¢ is called a homomorphism and 5’
is said to be a factor of S.

The following theorem tells us implicitly that the shift dynamical system is
ergodic. We will use it to find a measure of subsets of attractors of IFSs or to
calculate integrals on these attractors.

THEOREM 28. ([BD, Theorem 6, p. 261]) Let { X, fi, pi;, pi > 0,i=1,2, ..., n}
be a hyperbolic IFS with an attractor A* and invariant measure p such that f;
is one-to-one on A* fori =1,2,...,n and fi(A*) N fj(A*) = 0,7 # j. Then
a measurable function T : A* — A* is given by T(z) = f;*(x) for v € fi(A¥).
It is such that (A*, B(A*), u, T) is a measure-preserving system, in the sense
of Billingsley (cf. [Bi]), isomorphic to (X, B(X), p, s), where s : ¥ — X is the
Bernoulli shift operator

s(oy, 09, 03, ...) = 09, 03, ...

In particular, (X, B(X), u, T) is ergodic, mixing, and has entropy

n
- sz‘ In p;.
i=1

The Birkhoff ergodic theorem gives us a prescription how to calculate and
approximate integrals on fractals.

THEOREM 29. (Birkhoff’s ergodic theorem)[Fa2, Theorem 6.1, p. 98] Let T :
X — X, let p be a finite measure on X that is invariant under T, and let ¢ €
LY(u). Then the limit

B(x) = lim = 3 o(T(2)

exists for u—almost all x. Moreover, if pu is ergodic then

1
= —— d
X) / pdp
for u—almost all x.

COROLLARY 5. [Fa2, Corollary 6.2, p. 100] If u is ergodic then

Jﬂn2¢w

18 almost everywhere constant.

This means that we can estimate
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n—1
1 .
m = j
Jim > 6(T(x)).
=0
COROLLARY 6. [BKS, p. 41] Let T be an ergodic measure-preserving transfor-
mation of the probability space (X, A, ), and let B be any element of A. Then
w(B) = A(x) for almost all x € X. Particularly, it means

1 n—1

— Tm o t
p(B) = lim ~ ;XB(T ().

We will need theorems with a more general function f : X — X than yp.
The following corollary of Birkhoft’s ergodic theorem enables us to draw measures

induced by IFS and their supports-fractals and estimate integrals.

THEOREM 30. (Elton’s theorem)[Bal, Theorem 7.1, p. 364] Let (X, d) be a
compact metric space. Let (X, fi, fo, ..., fm; P1, P2y -+, Dm) be a hyperbolic
IFS with probabilities. Let (X, d) be a compact metric space. Let {x,}5°, denote

an orbit of the IFS produced by the random iteration algorithm starting at x.
That is

Ty = fon © fan_1 O... fal(x0)7
where the maps are chosen independently according to probabilities p1, pa, ..., Pm,
formn =1,2,... Let u be the unique invariant measure for the IFS. Then with
probability one (that is, for all code sequences oy, 09, ... except for a set of se-
quences having probability zero),

lim nilgf@:k) _ /X f(@)d(),

for all continuous functions f : X — R and all xy.

REMARK 52. The theorem holds for more general cases than we treat (cf. [E]).
The space can be locally compact, pis can be functions of x and f/s can be
contraction mappings “on average” (>, pir; < 1).

The following corollary gives a prescription how to draw fractals and fractal
measures by means of Elton’s theorem.

COROLLARY 7. [Bal, Corollary 7.1, p. 365| Let B be a Borel subset of X and
let w(0B) = 0. Let N(B, n) = card{zy, x1, 2, ..., T,} N B, formn=0,1,2, ...

Then with probability one,
. N(B, n)
B)=1 —
#B) n:n;o{ — }

for all starting points xo. That is the “mass” of B is the proportion of iteration
steps when running the random iteration algorithm, which produces points in B.
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5.4. Chaos game

This subsection is devoted to the chaos game. It is the most popular way to
image fractals and invariant measures. In order to understand how it works, we
will introduce necessary notions from the theory of chaos. In addition, we will
apply the chaos game to hyperlFSs to visualize attractors of underlying IMSs.

Fractals were developed together with computers and ability to draw them.
The first pictures and the theory can be found in [Ma3], [Bal], [BD] and [PJS].
For fractals generated by IFSs, we have two basic possibilities how to draw attrac-
tors. The first one follows from the Banach theorem. Let F' = {(X, d), fi1, ..., fm}
be an IFS, F': K(X) — K(X) induced operator and A* the attractor (X is usu-
ally R?). We draw n—th iterate F"(A), where A € K(X) is arbitrary, instead of
A*. These sets are close for n great enough due to the Banach theorem, which
implies

A, 47 < .

and
rdg(F(A), A)

1—r

du(F"(A), A7) <

Since multivalued fractals are fixed point of contracting operator F' : K(X) —
K(X), we can image attractors of IMS in the same way. However, this approach
may not be effective. We need to store and process complicated sets and count
with errors (for multivalued case see [AFGL], [Fi]).

Barnsley (cf. [BD], [Bal]) introduced the chaos game for IFS. It demands less
memory and process less complicated objects. Therefore, the chaos game is the
most popular way to draw fractals. Given an IFS with probabilities { X, f;, p;, i =
1,2, ..., m}, we construct a sequence

{xi}zn:h T; € Xa

where
Tiv1 = fo-i<.’ll‘i), o; € {1, 2, cey m}

Contractions f; are taken with given probability P(o; = j) = p;, 7 € {1, 2, ..., m}.
We divide the space X, usually R?, to small squares-pixels and calculate the ratio
of points x; which lie in each pixel. In this way we obtain measures of any pixel.
The fractal is approximated by the pixels which have a positive ratio.

Barnsley describes extensively the chaos game and its relationship to the shift
dynamical system in [Bal, pp. 168-169].

Consider the hyperbolic IFS {R?, fi, fo} with an attractor A*. Let a € A*;
suppose that the address of a is 0 € ¥ the associated code space. That is

a=¢(o).
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With the aid of a random-number generator, a sequence of one million ones and
twos is selected. For example, suppose that the actual sequence produced is the
following one, which has been written from right to left,

21...12122211

By this we mean that the first number chosen is a 1, then a 1, then three 2’s,
and so on. Then the following sequence of points on the attractor is computed:

a= ¢(0)
fila) = ¢(10)
fro fi(a) = ¢(110)
fao fio fi(a) = ¢(1120)
fao fao fio fi(a) = ¢(22110)
fao fao fyo fio fi(a) = ¢(222110)
fiofao fao fyo fio fi(a) = ¢(1222110)
fao fiofao fao fao fio fi(a) = ¢(21222110)
fiofaofiofao fyo foo fio fi(a) = ¢(121222110)

fzoflo---flonOflofgofgoféoflofl(a):gb(21---121222110)

We imagine that instead of plotting the points as they are computed, we keep
a list of the one million computed points. This done, we plot the points in the
reverse order from the order in which they were computed. That is, we begin
by plotting the point ¢(21---121222110) and we finish by plotting the point
¢(0). What we will see? We will see one million points on the orbit of the shift
dynamical system {A*, S}, namely, {S™(¢(21---121222110))}1000000,

REMARK 53. We have not mentioned probabilities yet. For example, the chaos
game for the IFS {X, fi, f2, f3, pr = 0.1, po = 0.3, p3 = 0.6} with an attractor
A* produces points in A} with probability 0.1, in A} with probability 0.3, A% with
probability 0.6 and Aj; with probability 0.36. Then orbits of the shift dynamical
system spend 0.1 of time in A} and 0.36 of time in Aj; for almost all sequences
generated by the chaos game.

We will show that the shift dynamical system is also chaotic, which means
that almost all orbits of the chaos game are dense in the attractor.

DEFINITION 38. ([Bal, Definition 8.2, p. 167]) A dynamical system {X, f} is
transitive if, whenever U and V' are open subsets of the metric space (X, d), there
exists a finite integer n such that

Uunf(v) #0.

DEFINITION 39. ([Bal, Definition 8.3, p. 167]) A dynamical system {X, f} is
sensitive to initial conditions if there exists 9 > 0 such that, for any x € X and
any neighbourhood O(z, €), there is y € O(x, €) and integer n > 0 such that

d(f(z), f(y)) > 0.
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Figure 11: Chaos game for the Sierpinski triangle
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Figure 12: Shift dynamical system for the Sierpinski triangle
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Figure 13: Approximation of a measure of a set using chaos game

We are ready to give a definition of chaos.

DEFINITION 40. ([Bal, Definition 8.4, p. 167]) A dynamical system {X, f} is
chaotic if

1. it is transitive;
2. it is sensitive to initial conditions;

3. the set of periodic points is dense in X.

THEOREM 31. ([Bal, Theorem 8.1, p. 167]) The shift dynamical system associ-
ated with a totally disconnected hyperbolic IFS of two or more transformations is
chaotic.

Running the chaos game, we almost always produce small errors. Since the

shift dynamical system is chaotic, the orbit with errors diverges from the exact
one. However, the following theorem assures us that there is another orbit which
is close to the one with errors.
THEOREM 32. [Bal, Theorem 7.1, p. 159] Let {X; fi, fa, ..., fn} be a hyperbolic
IF'S of contractivity r, where 0 < r < 1. Let A* denote the attractor of the IFS
and suppose that each of the transformations f; : A* — A* is invertible. Let
{A*, S} denote the associated shift dynamical system in the case that the IFS is
totally disconnected. Let {Z;}2, € A* be an approximate orbit of S, such that

d(i’iJrl, S(Zi’l)) S 9, fOT all 1= 1, 2, 3, Cey

for some fized constant 0 with 0 < 0 < diam(A*). Then there is an exact orbit
{z; = S"(x0)}32, for some xg € A*, such that

rd
(L—r)
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Now, we proceed to hyperlFSs. Since hyperIFSs are IFSs, we can run the
chaos game for any hyperIF'S. Moreover, we will use the chaos game for hyperIFSs
to draw attractors of underlying IMSs. Notice that the set of address sets of a
multivalued fractal forms a hyperfractal.

*THEOREM 33. Let us consider a hyperlF'S generated by the IMS F = {(X, d), F,
Fy, ..., B}, where F; : X — K(X), A* is an attractor of the IMS and o* is an
attractor of the associated hyperIFS. Let us also consider an orbit of the chaos
game & = {AY_ A, € K(X), where k € NU {0}, such that dg,, (&, a*) < €.
Then dH(Ul-/li, A*) <€, which can be written

dy (UAi, U A;;) <e.

ceY

Proof. dp,, (&, a*) < e implies that, for each A% € a*, there exists A; € & such
that )
dy(As, Ay) <e.

It follows that, for each x € A%, there exists y € A; such that d(z, y) <e. In the
same way, for each A; € &, there exists A’ € a* such that

d[-](lel7 A:;) S €.

This implies that, for each x € A;, there exists y € A% such that d(z, y) <e. We

arrive to
di (UAi, U Aj;) =

ceY

max{_sup { nf {d(z. p)}}. sup{ inf {d(z. p}}} <

zelJ; A Y zeA* yel, A;

]

Hence, one can use the chaos game for hyperfractals to draw underlying mul-
tivalued fractals with the same accuracy.

REMARK 54. The preceding derivations also follow from the fact, that the metric
dp,, is “stronger” than the metric dy, which is stated in the next theorem.

THEOREM 34. ([Ba2, Theorem 1.13.8]) Let (X, d) be a metric space. Let o, 3 €
K(K(X)) be such that

{acA:Aca},{be B:Bep}e K(X).

Then
du({a€ A: Aca}, {be B: Bep}) <dy,(a, p).

REMARK 55. We will also use the chaos game for hyperfractals to image a mea-
sure on multivalued fractals, but we will need in addition the theory from the
following section.
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Figure 14: Chaos game for hyperIFS

6. Visualization and dimension of hyperfractals

Since hyperfractals are attractors of IFS, we can explore their self-similarity
and dimension. We will also visualize their structure. The theory of convex sets
provides us an effective tool.

6.1. Convex sets and support functions

Convex sets will play a key role in investigation of dimension and visualization
of hyperfractals. Let us remind notions related to convex sets, convex hulls and
support functions.

Let (E, ||.||) be a real Banach space and A C E, B C FE its subsets. Defining,
as usual (cf. e.g. [AB], [AG2])

A+ B:={zlr=a+b,ac A be B},

c-A={zlx=c-a,a € A}, ceR,

we can say the following. If A and B are convex subsets of F, then A + B, and
c- A are convex (cf. e.g. [Be|, [DS]). In the special case E = R™, we have also
that (cf. e.g. [Be, Theorem 1.4.1]) 2A is convex for A € K¢,(R™), 2 € R™*™,

Defining still the convez hull conv(A) of A € K(FE) as (see e.g. [DS, Chapter
V.2]

P n+1
conv(A) := {xEE\x:Zaiai, Zai: l,a; >0,a, € Ayi=1, ..., p},

i=1 =1

p=1,2, ..., it is obviously the smallest convex set containg A C E. Let us note
that, in R™, we can simply fix p = m + 1.
LEMMA 9. For any A, B C E, it holds (see e.g. [DS, Lemma V.2.4]):
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1. conv(A + B) = conv(A) + conv(B),

2. conv(c-A) = c- conv(A), c € R.

In the special case E = R™, we have also that
3. conv(2A) = Qeonv(A), 2 € R™*™,

We can describe compact convex sets in R” with closed halfspaces [MV]
F:={xeR" 2a<c,aeR" ceR}

The intersection of such halfspaces defines a compact convex subset

K ~ ﬂFa.

acA

For polygons, A is finite.
We need not consider all a’s but it suffices to take {a € R™, |a| = 1} and we
get s as values of a support function (see [MV, p. 328], [Sch, p. 37]).

DEFINITION 41. A support function suppy(x) of a compact set M € R™ is
defined
supp,(z) := max(m'z, m € M, z € R™, ||z|]| = 1).

Let us remind basic properties of support functions (see [DK]).

LEMMA 10. Let My, My € Kco(R™). Then

SUPPAL + My = SUPPNg, T SUPPg,

suppyyr = Asuppys, A > 0.
LEMMA 11. Let My, My € Kco(R™). Then

du (M, M) = max |suppy, () — suppyy, ()]

Let us denote by S(K¢co(R™)) the set of all support functions for sets in
KCO(]Rm)‘
REMARK 56. The correspondence between K¢,(R™) and S(K¢,(R™)) is one to
one.

The metric spaces (K¢o(R™), di) and (S(K¢o(R™)), dg) are identical. Hence,
(S(Kco(R™)), dp) is complete.
LEMMA 12. (DK, p. 13]) Let A, B, C € (Kco(R™), dy), then

du(A+C, B+ C)=du(A, B). (16)

As a consequence of the previous lemma, we obtain the following lemma.
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LEMMA 13. A map F : Koo(R™) — Keo(R™),
F(A)=r2A+C,
where r € [0, 1), 2 € R™™ 4s orthonormal and C' € Kco(R™), is a similitude.

Proof. Since A, B C K¢o(R™) are convex sets, so must be, for each r2A and
rZ2B. Furthermore, since it is well-known (see e.g. [Hu]) that, in Euclidean spaces
(R™, dgua), £ acts as an isometry, we obtain in view of (16) that

dy(F(A), F(B)) = dy(r@A + C, r2B + C) = rdy(2A, 2B) =

r max{ sup mf dEud(a b), sup inf dEud(a, b)} =
ac2Ab

r max{sup mf dEud(Qa, 2b), sup mf dEud(Qa 2b)} =

beB @

r max{sup inf dEucl(a b), sup mf dEud(a b)} =
acA be beB @

TdH(Aa B)v
i.e. F'is similitude, as required. O

We will compare the Hausdorff distance of compact sets and their convex
hulls. Hence, let us state three more lemmas.

LEMMA 14. [DK, p. 13] Let A, B € K(R™). Then A C B = suppy(z) <
Supp().

We discussed and proved the following lemma in [AR2].
LEMMA 15. For A, B, C € K(F), we have that

dy(A, B) > dy(conv(A), conv(B)) (17)

and

dy(conv(A+ C), conv(B + C)) = dg(conv(A), conv(B)). (18)

LEMMA 16. Let B € R™ be a compact set. It has the same support function as
its convex hull.

Proof. We can prove two inequalities instead of equality supp () = SUpPp ony (5 (7)-
First, it follows from Lemma 14 that suppp () < Suppeony(s)(7)-
Second, let a € R™ be such that |a| = 1. Let us assume that for some y €
conv(B), y'a = ¢. Then we can write

Y=oy + Yy + - 1 Ynt1,

where y; € B,1 = 1,2, ..., n+ 1, Z"H a; = 1. Using properties of scalar
product, we have

/ / / /
ya=ao1y;a + QolYsl + -+ - Qp1Y, 110 = C.

Observe that at least one Ymax € {¥1, ... Yns1} fulfills ymaxa > c. It implies
Suppp (I,E) > Suppconv(B) (.Z') u
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We are ready to give a theorem which will help us to calculate the Hausdorff
dimension of hyperfractals and visualize their particular class.

*THEOREM 35. Let us consider two IMS F = {R™, F;; 1 =1,2,...,n} and
Fe={R™ Ff i=1,2,..., n}, where

F,:R™ = K(R™),Fi(z) ={r;Zuxz}+C;,i=1,2, ..., n,
and
FfR™ - K(R™), Fy(z) = {r;2x} + conv(C;), i =1, 2, ..., n,

C; € K(R™), r; € [0, 1) are reals, 2; are orthonormal m X m—matrices. Let
us also consider the associated hyperlFS ¢ = {(K(R™), dg), F;,i=1,2, ..., n}
and ¢¢ = {(Kco(R™), dy), Ff, i =1,2, ..., n} with attractors o* and ac. Then
address sets A% and A% of o and af have the same set of support functions. This
means

SUPP s = SUPP e, VO € X

and also
convAl = A;, Vo € X.

Proof. We will prove that supp(A,) = supp(AS), o € X. We can see from Lemma
9 that conv(A + B) = conv(A) + conv(B). Let A € K(R™) then

conv(Fj(A)) = Fi(conv(A)), Vj € {1, 2, ..., n}, Ae K(R"),
follows from
conv(Fj(A)) = conv(r; 2;(A) + C;) = r;2conv(A) + conv(Cj) = Fj(conv(A)).
Thus, we have from mathematical induction

Conv<ﬂli2~~-in (A)) = Iy,

1112...0n

(conv(A)), Vn € N.
Since the space Koo(R™) is complete, the sequences have the same limit,

lim conv(Fy, . 0,(A)) = lim Fy (conv(A)).
n—oo

0103...0
n—00 102:--9n

It follows
conv(AZ) = AS

and from Lemma 16 also

SUPP 4x = SUPP 4, VO € X.

REMARK 57. The theorem could be generalized for affine mappings.
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6.2. Visualization of hyperfractals

Hyperfractals lie in a hyperspace which is complicated infinite-dimensional
nonlinear space. However, the space K¢,(R™) can be embedded in a linear space
due to Radstrom [Ra]. We will make at least projections of hyperfractals. We
will use support functions of compact sets.

We know that

supp4(z) = sup{u'z, u € A, |z| =1} (19)
and (cf. Figure 24)
dn(A, B) = pethax |supp4(z) — suppg(z)]. (20)

In order to draw, for instance, a three dimensional projection of sets A, B €
Kco(R™), we choose x; € R™, |z;] = 1,1 =1, 2, 3. We draw a three dimensional
graph, where each axis corresponds to one z;. Thus, suppa(x;)(= sup,{v'z;, u €
A}) and suppgp(z;)(= sup,{u'z;, u € B}) will be coordinates of A and B. In
other words, we create the map

Ve (KCO(Rn% dH) — (Rd7 dmax);

sSupp (37 1 )
sSupp s (5’32)

V(M) = : :
supp s (7a)

where d = 3. Thus, A € K(R") is represented by coordinates (supp 4(z1), supp 4(z2),

supp 4(73)) in our graph. We consider the space R? with the metric dyax because
the Hausdorff distance between A and B is greater or equal than the maximum of
differences in coordinates in this coordinate system (cf. equation (20)). Usually,
we get only projections of the metric structure of fractals in hyperspaces.

REMARK 58. We can naturally generalize the map V' to
Vi (K(RY), di) — (R, dax),

since

SUpp 4 = SUPPconv(A)
and

V(A) = V(conv(A)).

Let us show the easiest cases. We will discuss visualizing of hyperfractals
in Koo(R), Keo(R?) and the behaviour of the visualization of a fractal set of
singletons.
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There are only two vectors of length 1 in R! (z; = 1, o = —1). Therefore,
we can draw hyperfractals from K¢,(R!) in two-dimensional pictures. For A =
[a, b] € K¢o(R'), we have suppa(—1) = sup,{—1y, y € A} = —a, suppa(l) =
sup,{y, y € A} = b. We arrive to V([a, b]) = (—a, b).

EXAMPLE 5. Let us consider an attractor a* of the hyperlF'S ¢ = {(K¢,([0, 1)), dg),
Fi, F5, F3} induced by an IMS {([0, 1], dgya), F1, Fs, F3}, where F; : [0, 1] —
Keo([0,1]), i =1, 2, 3,

F1(17> {7’1’},
Fy(z) ={rz+1—-r},
F3(z) = [re, ra+1—r]={ra} +[0,1 —r],

for r = % Running the chaos game for the hyperIFS, we obtain a sequence of
intervals {A;}¥_,, which can be easily visualized by means of the map V (see
Figure 15). Note that we get the same picture as for the attractor B* of the IFS

F= {([_170] X [07 1]7 dEucl)a g1, 92, 93}7
T+ ¢

where ¢; = (0, 0)’, co = (—1, 1), ¢5 = (0, 1)’. This follows from

gi(x) = VEV z), r € [-1,0] x [0,1].

Although the structures of the attractors o and B* differ in metrics, the
Hausdorff dimension of the attractors is the same (D = igig) Since the maximum
metric and Euclidean metric are equivalent,

dmax(xla xZ) S dEucl(xla x2) S \/idmax(xlv ZL'Q), Ty, T2 S R27
it follows from Proposition 9.
REMARK 59. Note that the shadow of o* is [0, 1].

Now, we turn our attention to the case of hyperIFS in K (R?). Let us remind
the definition of a support function

supp,,(x) = sup{m'z, m € M, |z| = 1}. (21)
It is much more comfortable to consider one angle 6 instead of two coordinates
r € R? |z| = 1 in supp(z). Hence, we write, for x € R? |z| = 1, and m €
M, M € K(R?),

x = (cos@, sinf), m = r,,(cos @, sin ).

Then

supp,; () = sup {7, (cosd cos ¢ + sinfsin @)}
meM
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Figure 15: Sierpinski hypertriangle

and it follows
supp,,(0) = sup {rm(cos(0 —¢)}.
me

EXAMPLE 6. We will consider a hyperIFS associated with an IMS F = {[0, 1], F; :

[O, 1]2 — K([O, 1]2), 1=1, 2, 3},
D)+ (o))

s
Y
< R
N——

Il
—N—
N
O N
N |+

where
11 11 <[m x} [y y])
P il I O S5y 5l Y = o5 ol 97 o .
32 32 372 372
The attractor of the underlying IMS is called the fat Sierpinski triangle.

Let z1 = (3, \/75), Ty = (—3, \/75) and z3 = (—3, —\/75) which corresponds
to 01 = %, 0, = %” and 3 = 4{, respectively. We run the chaos game for the
hyperIFS and obtain a sequence of compact convex sets {A;}¥_,. We show, for
k = 10, sets A;, i = 1, ..., k, their support functions and projections to R? in
Figure 21. For k = 500, the structure of the hyperfractal can be seen in Figure
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supp{m)(e):mx
=rcos(6-¢)

.0
_-7 M={m}

x=[cos8, sin@]. - ~ - m=[rcos, rsing]

Zal

0

Figure 16: Support function of a one-point set

supp‘m)(e):rcos(ef(p)

2 1

Figure 17: Support function of a one-point set
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Figure 18: Set and its support function

Figure 19: Fat Sierpinski triangle
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Figure 20: Support functions of 10 sets from Example 6

22. Finally, we visualize the structure of the fat Sierpinski hypertriangle in Figure
23.

We will find out that a hyperIFS in K¢,(R?) consisting of similitudes has an
elegant interpretation in the space of support functions. Let us discuss how sup-
port functions of images of convex sets in similitudes look like. Similitudes in R?
are compositions of homotheties, translations, and orthonormal transformations
(reflections and rotations). Similitudes in K¢,(R?) are generalization of simili-
tudes in R?. Furthermore, addition of convex sets is involved. Moreover, we can
regard translation as addition of a one-point set (see [DK, p. 14]). We reviewed
the behaviour of support functions of homotheties and translations in Lemma 10.
It remains to show the support functions of reflected and rotated sets.

For 2 € R™" M € K(R™), we can write

Supp gy () = max(n'z, n € 2M) =

= max(m'2'x, m € M) = supp,,(2'x).

In the particular case of n = 2, x = (cos#, sinf)" and matrix of rotation 2,
[ cos¢ —sing
<z = ( sing coso ) ’
;o cos¢ sing \ [ cosf) _
2w = < —sin¢cos¢) ( sin9>_
~( cos¢cosf+singsing \ [ cos(d — o)
~ \ —singcosf +cosgsing |\ sin(d —¢) )
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Figure 21: Visualization of sets
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Figure 22: Visualization of sets of the fat Sierpinski triangle
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Figure 23: Structure of the hyperfractal associated to the fat Sierpinski triangle
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Figure 24: Support function and the Hausdorff distance
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Figure 25: Support function and homothety

Thus,
Supp gy (#) = suppy (0 — ¢)
means only translation of support function.
In the same way, we obtain, for the matrix of reflection

10
2= (05),

supp g (0) = supp,, (—6).
This means reflection of support function. Hence, similitudes in K¢,(R?) have a

natural explanation in the set of support functions S(Kc¢,(R?)).
Let us consider the hyperIF'S

that

{KCO<]R2>) Ea 1= ]-7 27 SR n}) (22>
Fi: Koo(R?) = Keo(R?), Fy(z) =, 2A+Cy,i=1,2, ..., n,

C; € Kgo(R?), 1; are reals, 2; are orthonormal 2 X 2—matrices. Thus,
2L =% Oi(0),

where %; are matrices of reflection or identity and @;(¢), det(;(¢)) = 1, matrices
of rotation for ¢ = 1, 2, ..., n. Let us consider the operators

Ty S(Kco(R2) — S(Keo(R?)),
Ti(f)(0) = 7: - [(det(Z:)(6 — ¢)) + suppc, (6)-
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Figure 26: Support function of reflected set

QM

Figure 27: Support function of rotated set
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Figure 28: Support function and addition of sets

*THEOREM 36. The IFS (22) and
{S(Kco(R?)), du), Ty, i =1,2, ..., n}

are equivalent.

We will prove that our approach behaves well to hyperfractals with a known
structure. Therefore, we will study the behaviour of the operator V' to hyperfrac-

tals consisting of singletons. Let us consider the IFS {R", f;; i = 1,2, ..., m}
and the IMS {R", F;, i = 1, 2, ..., m}, where Fi(z) = {fi(x)}. Let us consider
also an attractor a* of an associated hyperIFS {(K(R"), F}), 1 = 1,2, ..., m}.

Calculation of support functions of address sets (singletons) and visualization of
a* is easy. If A= {a}, a € R", then

suppy(z) = d'z.

We obtain
supp 4 (1) a'ry Ty
supp 4 (x a'x x
V(A) = A( 2 = ) = P la= Ya,
supp 4(zq) a'zy x,

which is a linear mapping.

It is worth using n points z; in our case. We obtain V' : K(R") — R”". Since
we consider only singletons, let us simplify our notation and write V'(a) instead
of V({a}). Thus, we consider V : R — R™ with ™™ If z;,i = 1,2, ..., n,
are linearly independent, det(?") # 0 and it holds
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Figure 29: Possible visualizations of the Sierpinski triangle

for eigenvalues of 7.
We will show that V' : (R™, dgya) — (R™, dimax) is a bi-Lipschitz transforma-
tion. If we had
Ve (Rn’ dEuCl) — (Rnu dEucl)7

transformation V' would be bi-Lipschitz with constants A, and Ajax,
| Amin|dEuei (a1, a2) < dgaa(V(ar), V(az)) < [Anax|deua(ar, az).
Metrics dgua and dy., are equivalent, i.e.
dinax (a1, a2) < dpa(ar, a2) < Vndmax(ar, az) Vay, az € R™.

We arrive to

)\min
Pminl - (ar, 42) < duae(V(a1), V(02)) < [Dmael dinet(a1, a2).
NG

Thus, V' is a bi-Lipschitz transformation (see also Figure 29). Moreover, it follows
from Proposition 9 that

dimy V(a*) = dimy (™).
REMARK 60. In this case, we probably choose
331‘:61':(0, 0, ...,O, 1,0, ey 0),221, 2, ey N
i—1
However, for every n—tuple of linearly independent x;, we obtain det ¥ # 0.

REMARK 61. This kind of visualization is suitable for fractals of lower dimension

(for class of hyperfractals from the following theorem) not for hyperfractals from
[AR1] (see Example 8).
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6.3. Dimension and self-similarity of hyperfractals

It is not easy to calculate the Hausdorff dimension of hyperfractals, but we
can succeed in the case of almost similitudes and fulfilling a separation condition.
We will also discuss relationship between self-similar fractals and hyperfractals.

First, let us supply a theorem which is a stronger version of Theorem 7 in
[AR2] and a few examples on the calculation of the Hausdorff dimension of hy-
perfractals.

*THEOREM 37. Consider the hyperlFS ¢ = {(K(R™), dg), F;, i =1, 2, ..., n},

C; € K(R™), r; € [0, 1) are reals, 2; are orthonormal mxm—matrices. Consider

also the hyperlFS ¢¢ = {(Kco(R™)), di), Ff,i=1,2, ..., n},
Ff o Koo(R™) = Keoo(R™), Ff(A) =1, 2;A+conv(Cy), i =1, 2, ..., n.

Assume that the attractor af of ¢¢ is totally disconnected. Then the Hausdorff
dimension of the attractor o* of ¢ can be calculated by means of the Moran
formula and dimpy(o*) = dimpy(a©).

Proof. Let us consider the hyperIFS ¢ = {(K¢o(R™), dy), F;, i = 1,2, ..., n}
with attractor o and ¢° = {(K¢o(R™), di), Ff,i=1, 2, ..., n}, where Ff(A) =
r;i2; A+ conv(C;), A € Koo(R™) with a totally disconnected attractor ac.
Firstly, ¢¢ is a hyperIFS consisting of similitudes and its attractor is totally
disconnected. Therefore, its Hausdorff dimension D can be calculated by means
of the Moran formula. We will prove that a* has a similar metric structure.
We know from Theorem 35 that

conv(al) = at, Yo € X.
Since a¢ is totally disconnected, there exists dm™ > 0 such that
A (F(AS), Fy(AS) > A i £, 0,0 € 5.
Lemma 15 implies
dn(FA(AS), Fy(A2)) > dg(Fi(AS), Fy(A%)) > dij™.

In order to calculate the Hausdorff dimension of o*, we will find a bi-Lipschitz
mapping of a¢ onto a*.
For any 5 € N, we can write:

c N nle o
A’ilig...ij... B S Y] <A1j1j+1---)
and

A¢ _ Fc

.y, -
11920050 11051
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Let us estimate the distance dp(A¢ , A ). Since F; are similitudes,

110255 ... zlig.”ig.“
C C —
dH(Ailz'z..Aij...a Aiﬂg...i}...) -
_ c c c c
_dH(‘F;,j...ij,l(Aijij+1...)7 ‘F;,'L..ij,l( Z;Z;+l))

= Tiyig..ij_y ° dy(AS ASo )

25054107 ijj+1...
min
2 ri1i2...ij,1 . dH .

Moreover, Lemma 15 and Lemma 35 imply

’Lji]url...’ Z;l;+1... Zj’ijJrl...’ ijj+1"‘
On the other hand, since F; are contractions with factors r;, i =1, 2, ..., n,

di (A

7,1i2...ij...

s Abigr ) S Tigig.;_ diam(a”).

.y
11421}

Observe that o* € K(K(R™)) implies diam(a*) < oo.
We obtain from these inequalities

C (&
dH(Az'liQ...z'j,lij...a Ailig‘..ij_li;-...) <
diam(a*)
* * c c
dH(Ailiz...ij_lij...7 Ailig...ijfli;...) S dmin dH(AiliQ...ij_lij...7 Ail’iQ...ijfli;.‘.)'
H

Applying Proposition 9, for f : a“ — «a, f(Afli2_._ij71ij.._) = Aiiy.i;_rij.., the
Hausdorff dimension of a* is really D.
]

*COROLLARY 8. If the assumptions of Theorem 37 are fulfilled by the hyperIFS
¢ = {(K(R™),dy), Fi,i = 1,2, ..., n}, then they are fulfilled by any other
hyperIF'S ¢' = {(K(R™), dy), F,i=1,2, ..., n}, where 2; = 2., r; = r} and
conv(C;) =conv(CY).

Proof. There exists one hyperIFS ¢° for both the hyperIFSs ¢ and ¢'. m

EXAMPLE 7. Let us consider the IMS F' = {([0, 1)?, dgwa), F}, i =1, 2, ..., 5},
where F; : [0, 1]* — K([0, 1]?),

Fi(x) ={fi(=)}, i =1, 2,34,
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() =) (0)+(0)
()= (60 ()+(5):
() =) () +(8):
s =)+,
() = (63) () ().

Let us also consider a hyperlF'S ¢ = {(K¢,([0, 1)?),dg), F;,i=1,2, ..., 5}
induced by the IMS F. Since its attractor a* is a set of convex sets and it fulfills
the assumptions of Theorem 37, we can calculate its Hausdorff dimension in
Keo([0, 1]2).

Let us consider the IMS F' = {([0, 1]?, d), F!,i = 1,2, ..., 5}, where F =

E’i:17273747
L x
n(5) =105 ) (7)f+o
5 y 0%1 y 5
17 17\ (17 19)' (19 17\ (19 17
48748 ) '\ 48748 ) "\ 48748 ) "\ 487 49 '

Let us denote by o/ an attractor of the associated hyperIFS ¢/ = {(K¢,([0, 1]?), dy),
F/.i=1,2,...,5}. Since the assumptions of Theorem 37 are fulfilled by the

hyperIFS ¢ and conv(C}) = C;, the Hausdorff dimension of attractors a* and o

is the same. The support functions of sets with the same addresses are the same,

too. It follows from Theorem 35 that visualizations of these hyperfractals are the
same.

REMARK 62. The hyperIFS ¢' is equal to a superIFS {(K ([0, 1]?),dg), Gy, i =

1,2, 3,4, 5}, where
=UUlg @)

j xzEA
4
X
+CL7;.
)

:fivl.:]-) a37
(1Y 17 19 (191" /19 19Y
M agras) T\ ag) B T \ugras ) M T g a8 )
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We call o a hyperfractal here because we are interested in the dimension of
a* C K(R?), not in the dimension of A% C R? as Barnsley (see [Ba2]).

ExXaAMPLE 8. Stimulated from quantitative linguistics, we gave another example
of a fractal on the boundary between superfractals and hyperfractals in [AR1].
We called it Cantor-like hyperset. It consists of Cantor sets and it is self-similar
in K ([0, 1]). Denoting

l
Cmi={xel0,1]]lr=—,1=0,1,...,m—1, meN, m>2}
m
let us consider the system {K([0, 1]), F; = 1,2,...,2™ — 1} of contractions
Fy - K([0, 1]) = K([0, 1]),
Fi(B)=r-B+Cj, j=1,2,...,2"—1, (23)

where r < %, C; c C™ C; #0,C; # Cj, 1 # j. Observe that although the
hyperspace K ([0, 1], dy) has not a linear structure, the sum as well as the product
in (23) is well (point-wise) induced from [0, 1].

We will prove that, for each 7 = 1, 2, ..., 2™ — 1, the contractions Fj are
similitudes. Let us denote

Jmin = min(C}), Jmax := max(C})

and )
Dj={ieN—eC}, j=1,2 .., 2"—1.
m

Let us, furthermore, denote

—1 1—1
Ii::{l ,Z +r],z’:1,2,...,m,
m m

and, for an arbitrary A € K([0, 1]), ;Ax such that
jAk: :F3<A)m[k, k’zl, 2, e, .
We can see that

Fi(4) = 4 (24)

and
dH(jAlm ]Bk) =7r- dH(A, B), for all k € Dj. (25)

We must guarantee that, for all A, B € K ([0, 1]), we have

dp(Fi(A), Fy(B)) =r-dy(A, B), j=1,2, ..., 2" — 1. (26)
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Figure 30: Attractor of underlying IMS for hyperfractal
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Figure 31: Attractor of underlying IMS for hyperfractal
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Figure 32: Structure of the hyperfractal in a hyperspace

If the set C; is a singleton, the proof is trivial. Otherwise, we will prove two
reverse inequalities implying equality (26). It follows from (24), (25) and Lemma
1 that

du(Fj(A), F;(B)) <r-du(A, B), for all A, B € K([0, 1]). (27)

We will also prove
di(Fj(A), F;(B)) > r-dy(A, B), for all A, B € K([0, 1]). (28)
Since the sets A, B are compact, we can find ;7 € A such that
d(;7, B) = dy(A, B); (29)
otherwise, we can interchange the sets. Denoting ;T := F;(;7) N Ay, it satisfies
d(;Tk, jBr) = du(; Ak, jBy), for all k € D;.
In order (28) to be satisfied, there must exist at least one [ € N such that
d(;z1, ;B) < d(;zy, jB;), for every i € Dj.

Let us show that

L= jmin orl = jmax-
Jmin (to be ClOSel" tO
B, ..+1 than B; ) and ,;7; . must be located at the same time in front of the

J
centre of I,  which is impossible. Thus,

Jmax

If it is not so, ;7;, ., must be located behind the centre of I;

diu(Fi(A), F;(B)) = d(;z;, Fy(B)) = d(;71, jBi) = du (A1, jB),
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where (cf. (29))
dH(jAla jBl) =T dH<A7 B);

i.e. Fj are similitudes, for every j =1, 2, ..., 2™ — 1, as claimed.
Since

Fi(K(0, 1)) N F;(K([0, 1)) =0, for all i # j:i,j=1,2, ..., 2" —1,

it follows from Lemma 8 that the dimension of the associated hyperattractor
(obtained as a unique fixed point in K (K ([0, 1]))) can be calculated by means of
the Moran-Hutchinson formula as
= w, where ! > m. (30)
log = r

Let us return our attention to the motivation examples from Introduction. We
will show that their visual self-similarity follows from the fact that all of them
are shadows of self-similar fractals.

Let us consider the picture with embedded squares. Let F' = {[—0.5, 0.5], F},
F5}, be an IMS such that

Fl(ZE) = |:|,
Fy(x) = {r2(2)},

where O = 9([—0.5, 0.5]?), r = 0.75,

Instead of the IMS F, we can study the associated hyperIFS ¢ = {K([—0.5, 0.5]?),
Fy, F»}. Mappings I} and F, are similitudes and they satisfy the strong open set
condition. The embedded squares are a shadow of the self-similar attractor o of
¢ (cf. Figure 33). Applying our method of visualization, we get a projection of
a structure of the hyperfractal a* in the hyperspace in Figure 34. We obtain the
Hausdorff dimension of the hyperfractal a* by means of the Moran formula,

dimH(oz*) = 0.

Let us look at the picture of a tree similarly. It suffices to define a hyperlFS
¢ = {(Kco([0, 1)%), dy), Fi, F, F3}, containing three mappings. The hyperIFS
is induced by the IMS F = {[0, 1)?, F|, Fy, F3},

. V2 V3N /g 1 o
F<>= v ()+ VNS
Yy ¥ oxe Yy s — X

2 2 2 2

5
N
< r
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I
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7N
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Figure 33: Embedded squares

z\ ([ {0.5}
F3<y> B ( [0, 0.5])’
where r = 0.45. All the induced maps F}, F5, F3 are similitudes and the SOSC
is satisfied. The tree is again a shadow of a self-similar hyperfractal. For the
projection of the structure of the hyperfractal, see Figure 36. We obtain the
non-trivial Hausdorff dimension D of the hyperfractal from the Moran formula,
log 2

1ogﬁ'

D—

The Sierpinski triangle is a shadow of a hyperfractal, too. Instead of the IFS
F ={I% fi, fa, f3}, it suffices to consider the hyperIFS ¢ = { K(I?), Fy, F,, F3},
where F;(A) = Ugzea{fi(x)}. The shadow of the hyperfractal is the Sierpinski
triangle.

In the same way, we can regard all the attractors of classical [FSs as shadows
of hyperfractals.
*THEOREM 38. Self-similar subsets of R™ form a subset of shadows of self-
similar hyperfractals.

Proof. Let us consider the IFS F' = {R™, fi, fo, ..., fn}, the IMS F = {R™, F},
Fy, ..., F,} and an associated hyperlFS ¢ = {(K(R™), dy), fi, fo, .-+, fu},
where Fj(z) = {fi(x)}. Let us denote by A* and o* the attractors of F' and
¢, respectively. Note that

n

FA) = J U@y

i=1lxz€A

is the same operator for the IFS and IMS. It implies that A* is the attractor of
the IF'S and IMS. Moreover, it is a shadow of o*.
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Figure 35: Tree
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Let us show that if A* is self-similar then «o* is self-similar, too. Suppose that
A* is self-similar. Let us remind that the OSC and SOSC are equivalent in R™.
Thus, self-similarity of A* implies that there exists open V' C R™ such that

L. f;(V)cCV,
2. (V)N f:(V)=0,1<i,j<n,i#j,
3. VN A*£0.

We will prove that ¢ fulfills SOSC, too. Let us consider the set of sets K (V). We
need to prove

1. K(V) is open,
F(K(V)) € K(V),
F(E(WV) N E(K(V) =0, 1<, j <ni#]
KV)na* #0.
1. Consider A € K(V). Since V is open, we have
Vee AJe>0: O(z,¢) C V.
Compactness of A implies

Jemin = mig{sup{e, O(x, e) C V}}
Te €

It follows that
{A, € K(Rm) : dH<A,, A) < Emin} C K(V)
Hence, K (V) is open.

2. Note that F;(A) = fi(A), VA € K(R™). Consider B € F;(K(V)). It follows
that
IC e K(V): F(C) =B

and
B cC F;(V).

Since F;(V) C V, we have B € K(V) and F;(K(V)) C K(V).

3. Assume that B € F;(K(V)) and B’ € F;(K(V)),1<14,j>mn,i# j. We
have shown that B C F;(V) and B’ C F;(V). From

E(V)NF;(V)=0,1<4,j<n,i#j,
we have BN B’ = () and also F;(K(V)) N EF;(K(V)) = 0.
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4. Denote o € 3, where a’ € V' N A*. Observe that {a’} € a* follows from

Fo({a}) = {fo(x)}
We have also {a’} € K(V).

We proved that the attractor of the hyperlFS ¢ is also self-similar. O]

Moreover, the metric structure (and also the Hausdorff dimension) of such
hyperattractors is naturally the same as the structure of attractors of original
[F'Ss. This means that the space of fractals generated by IFS is isometrically
embedded in the space of hyperfractals.

7. Measure on multivalued fractals

We will use ergodic theorems to construct a measure on multivalued fractals.
Particularly, we will find a shadow of an invariant measure on a hyperfractal,
which will be supported on an underlying multivalued fractal.

Let us denote by

F={R" F:R" 5 KR"),p;>0i=1,2...,m Y p=1}

an IMS with probabilities. It is an underlying IMS for the hyperIF'S with prob-
abilities

o={KR"), F;: K(R") - K(R"), p; >0,1=1,2, ..., m}.
We will treat a special case
¢ = {KCO(Rn), Fz . Kco(Rn> — KCO(Rn>}7

where F;(A) = 1,2;(A)+C;, A € Kco(R™). We can easily construct the attractor
o and the invariant measure p for the hyperIFS ¢. We have

A=A

ceY

for the attractor A* (a shadow of o*) of the underlying IMS. In a similar way, we
would like to find an underlying measure (i.e. a shadow of a measure u) pg for
1. Hence, its support will be A*.

We will calculate and visualize how often a Borel subset of the embedding
space of A* is visited during the chaos game for ¢. Therefore, we need to evaluate
how significant part of sets from an orbit of the chaos game visited the Borel set.
We use a characteristic function xp(z) to distinguish whether a point z € R”
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belongs to a set B C R™. In order to evaluate how significant part of a set A C R"
is contained in B C R", we apply the formula

xB(A) = —Voij)gf(fjl)A)

In Theorem 39, we will consider a hyperfractal a* C Kgo(R™) such that

dimpy (A%) = n for almost all ¢ € ¥ (w.r.t an invariant measure). The following
lemma concerns the kind of hyperIF'S which we often treat.

*LEMMA 17. Let a hyperlFS ¢ = {Kco(R"™), F;, p; > 0}, Fi(A) = r,2;A + C;
be such that r; > 0, det(2;) # 0. Let AX, € a*, w € ¥ be such that dim Af = n.
Then dim A} = n for almost all o € X.

Proof. 1t is obvious, for r; > 0, det(2;) # 0, that
dim F;(A) > dim A.

VA, B € K¢,(R").

It follows
dimA =n= Fi(A) =n, VA € Kco(R"), i=t1iz...10,.

Let us consider a singleton {z}, x € R", and w € X. It follows from Theorem
3 that F,({z}) = Af and we assume that dim(A}) = n. Let us show that there
exists an integer k such that dim(F,,({z})) = n. If it did not, we would have a
sequence of sets {F,i({x})}72, with
dim (A7) <n,

which converge to a set A’ of dimension n. Note that the integer k (if we take
the least one) does not depend on z, since

For({z}) = ropLop{z} + D,

where D € K¢o(R"). Thus, we have found an integer k& and a mapping F, :
Kcoo(R") — Keo(R™) which maps every element of K¢,(R™) to a compact convex
set of dimension n.

In order to keep our notation simple, let i = o|k and p = p;,p;, - - - p;,.- Note
that p = p(ay). We will caleulate ji(Ujesraj;), where |j| < oo, a measure of a
subset of sets a* of dimension n. Let us denote

wl *
@ = Uo‘jljg..ljlfm
where |j,| =k, j, #1, ¢ € {1,2, ..., [ —1}. It holds
pla*) = (1-p)'p.
Note that a*t, o2 are disjoint for [; # l5. Finally,

(Uiena™) = Zu(a*’) = Z(l —-p)p=1

leN leN
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REMARK 63. Let F' = {(K¢o(R"), dg), fi, piyi = 1,2, ..., m} be a hyperIFS
with an attractor a*. Let us remind here a corresponding IFS on a code space
S =A{(X%, dy), si,pi, i = 1,2, ..., m}, where s;(0) = io, with an attractor X
and invariant measure p. Note that u(5) = p({o € 3, AL € B}), where § €
B(Kco(R™)).

LEMMA 18. [Gr, Theorem 7.5] Volume of a compact convex set in R"™ is contin-
uous with respect to the Hausdorff distance.

REMARK 64. Let us consider A, B, Ay, Ay, -+ € Kgo(R™), ANB # 0, A;NB #
(), such that

1— 00
Observe that

1— 00

and also

lim [£"(A; N B) — L"(AN B)| = 0.

1—00
Hence, L"(AN B) is also continuous in A on the set {A € K¢,(R"), L"(ANB) #
0} w.r.t. the Hausdorff metric.

In the next step, we will define a set function

LY (BN A;
1) = [ S e ),

for blocks B € K¢o(R"™), B = [ay, b1] X [ag, bs] X -+ X [a,, b,], where d(o) =
dlIIlH(A;)

Since p({A: € oF, dimy(A%) = n}) = 1, we have p({c € X, dimy(A%) =
n}) = 1. Thus, it suffices to consider n instead of d(o).

In order to apply the ergodic theorem to the shift dynamical system, we will

prove integrability of 52(52‘;;’ ). Let us denote

Sp={o €, LY(ALNB) >0}

Lemma 18 and Remark 24 imply that £"(A%) and L"(A% N B) are continuous
w.r.t. the Hausdorfl metric. Since the address function

¢(o) = A;

is continuous w.r.t. the metrics dy, and dy, L"(A%) and L"(AZNB) are continuous
w.r.t. dyx. Moreover, Xp is open, which follows from continuity of £"(A% N B).
Hence, we integrate a continuous function on an open set,

LM(A% N B) L"(A% N B)
/aez Lr(Az) dp(a):/aEZB Lr(Az) dp(c).
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Note that
L'(A* N B)
Lr(A3)
is continuous (and positive) on ¥ since L"(A%) > 0 for all o € Y.

This integral exists and can be approximated by means of the ergodic theorem
(Theorem 29). The dynamical system is (X, B(X), T, p), where T is the shift
operator (ergodic, p preserving) on (totally disconnected) .

It remains to define an outer measure for all Borel subsets and show that it
is a Borel measure. Let us define, for all B C R",

mf{z f(B;), B € UB;, B is a block}. (31)

It is easy to prove that
L pus(0) =0,
2. ps(A) < ps(B) for A C B,
3. us(UiB;) < 32, pus(Bi).

In order to prove that ug is a Borel measure, we use the Carathéodory crite-
rion. We will show that g is a metric measure, that is

ps(AU B) = pus(A) + ps(B), VA, B € B(R"),

such that dist(A, B) > 0. First, let us note that, for all § > 0, block B can be
divided into finite number of subblocks {B;} with diameter less than §. Next, we

will show that
=> f(B

Since L™ is a Borel measure, it holds

LMA;NB)  LM(UB;iNAy) Z LM(B; N A%)
Lr(Az) LAy A LAy

for all o € 3. Hence,
L’" A* N B B LM(B; N A7) A
B) = E =

"(B;NAY)
—z/ S =321
Finally, from the previous, it follows that a decomp051t10n of blocks B; into
subblocks leaves the sum in (31) unaltered. It suffices to consider only §—coverings
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n (31). Since the sets A, B are d—separated, no set from d—covering of AU B
can intersect both A and B. Hence,

ns(AU B) = ps(A) + ps(B).
We arrive to the following theorem.

*THEOREM 39. Let us consider the hyperlFS ¢ = {Kco(R™), F;, p; > 0} such
that dim o = n, for almost all o € 3. The set function ug defined in (31) is a
Borel measure.

REMARK 65. Notice that there exist more IFSs with the same attractor [Hu,
4.1 Motivation, p. 16]. If we know an invariant measure, we can distinguish the
related IFS. In the same way, a shadow of a measure can help us to find the
related IMS for a multivalued fractal.

EXAMPLE 9. Let us consider the hyperlFS ¢ = {(K¢o([0, 1]),dn), F;, pi, i =
1, 2, 3} induced by an IMS {([0, 1],dgy), F;, i = 1, 2, 3}, where F; : [0, 1] —
Keo([0, 1)), 1 =1, 2, 3,

Fl(x) = {TZE},
Fy(z) ={rz+1—r},
F3(z) = [rz, re+1—r]={ra} +[0,1 —r]},

for r = i and p; = 0.43, py = 0.43, p3 = 0.14. We find a measure (Figure 41) on
the multivalued fractal (Figure 37) constructing the associated hyperfractal and
the invariant measure on it (Figure 38).

Figure 37: Multivalued fractal from Example 9

Let us also visualize a shadow of a measure for two IMS we have met.

EXAMPLE 10. We will consider the hyperIFS from Example 7 ¢ = { K¢, ([0, 1]?), F},
i = 1,2,..., 5} with probabilities p; = 0.21, po = 0.19, p3 = 0.19, p, =
0.21, ps = 0.2,

ExAMPLE 11. Let us also image a shadow of a measure for the hyperlFS from
Example 6 ¢ = {Kc,([0, 1]?), F}, i = 1, 2, 3} with probabilities p; = 0.3, p, =
0.4, p3 = 0.3.
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Figure 41: The “shadow” of the measure from Example 9
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Figure 42: Attractor of the IMS from Example 10.
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Figure 43: Structure of the hyperattractor from Example 10.
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Figure 44: Invariant measure from Example 10 (its support is light).

b

Figure 45: The “shadow” of the invariant measure from Example 10 (its support

is light).
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Figure 46: Fat Sierpinski’s triangle.

Figure 47: Sierpinski’s hypertriangle.
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Figure 48: Invariant measure from Example 11 (its support is light).

Figure 49: The “shadow” of the invariant measure from Example 11 (its support
is light).
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8. Fuzzy approach

We can extend our results for multivalued fractals and hyperfractals to par-
ticular spaces of fuzzy sets. First, we will remind the basic theory of fuzzy sets.
Secondly, we will construct fuzzy fractals and associated fuzzy hyperfractals.
Last, we will discuss visualization of these fractals and measures supported on
them.

8.1. Fuzzy sets

During introduction to fuzzy sets, we will use notation and results from [DK].
See also [PR]. Fuzzy sets originated with Zadeh’s 1965 paper [Z]. Fuzzy sets
are considered with respect to a nonempty base set X of elements of interest.
The essential idea is that each element z € X is assigned a membership grade
u(z) taking values in [0, 1], with u(z) = 0 corresponding to non-membership,
0 < u(z) < 1 to partial membership, and u(x) = 1 to full membership. According
to Zadeh a fuzzy subset of X is a nonempty subset {(z, u(z)) : x € X} of X x[0, 1]
for some function u : X — [0, 1]. The function u itself is often used synonymously
for the fuzzy set.

The only membership possibilities for an ordinary or crisp subset A of X are
non-membership and full membership. Such a set can thus be identified with the
fuzzy set on X given by its characteristic function y4 : X — [0, 1], that is with

() = 1 forze A
XA =00 forx ¢ A.

The a—Ilevel set [u]* of a fuzzy set u on X is defined as
[u]* :={z € X :u(x) > a}, for each a € (0, 1],

while its support [u]° is the closure in the topology of X of the union of all of the
level sets, that is

ae(0,1]
An inclusion property follows immediately from the above definitions.
PROPOSITION 16. For all0 < a <1

[u]” € [u]” C [u]’.

The union, intersection and complement of fuzzy sets can be defined pointwise
in terms of their membership grades without using the extension principle (cf.
Lemma 19). Consider a function v : X — [0, 1] as a fuzzy subset of a nonempty
base space X and denote the totality of all such functions or fuzzy sets by F(X).
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The union Vv and the intersection uAv of u, v € F(X) are defined, respectively,
as
uVo(r) =u(z)Vu(r) :=max{u(z), v(z)},
uNv(z) = u(z) Av(z) = min{u(x), v(z)},
for each x € X. Clearly, u Vv and u Av € F(X).
Let us extend the definition of union for more than two fuzzy sets u;

Viui(x) = sup{ui(r)},

for each z € X. It is obvious that sup,{w;(x)} € [0, 1]. Hence, \/, u; € F(X).

The Zadeh extension principle allows a crisp mapping f : X; x Xy — Y]
where X;, X, and Y are nonempty sets, to be extended to a mapping on fuzzy
sets f: F(Xy) x F(X2) — F(Y), where

0
0

[l N

- i f-l

Jlur, ug)(y) = {?)up(m,xz})ef (o), uale) i ;—18;
for y € Y. Here, f~'(y) = {(z1, 12) € X1 X 3 : f(x1, 7o) = y} may be empty
or contain one or more points. The obvious generalization holds for mappings
defined on an N—tuple X; x X5 X -+ x Xy where N > 1, with the A operator
being superfluous when N = 1.

The definitions of addition and scalar multiplication of fuzzy sets in F(X)
involve the extension principle and require the base set X to be a linear space.
For the addition of two fuzzy sets u, v € F(X) the Zadeh extension principle is
applied to the function f: X x X — X defined by f(x, x2) = z1 + x9, to give

(u+v)(@)= sup (u(z1)+v(22)),
xr1+Tro=2
for all x € X, while for scalar multiplication of uw € F(X) by a nonzero scalar ¢
the function f : X — X defined by f(x) = cz is extended to

cu(r) = u(z/c),

for all € X. Obviously both &+ v and éu belong to F(X).

The totality of fuzzy sets F(X) on a base space X is often too broad and
general to allow strong or specific enough results to be established, so various
restrictions are often imposed on the fuzzy sets. In particular, a fuzzy set u €
F(X) is called normal fuzzy set if there exists at least one point xy € X for which
u(xg) = 1, so the 1-level set [u]' and hence every other level set [u]® for 0 < a < 1
and the support [u]? are all nonempty subsets of X. For technical reasons, the
level sets are often assumed to be compact and, when X is a linear space, also
convex. In fact, the convexity of the level sets of a fuzzy set u is equivalent to its
being a fuzzy convex fuzzy set, that is satisfying

u(Azy + (1 — Nag) > u(xy) Au(xe) > u(zy) Aul(xs),
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for all z1, x5 € X, XA € [0, 1].

In latter likewise in [DK], we will consider fuzzy subsets of the n—dimensional
Euclidean space R" for which the level sets are all nonempty, compact, and often
also convex, subsets of R”.

Let us denote by F™ the set of all fuzzy sets of R”. Their membership function
is

u:R"™ — [0, 1].

In general, some level sets of a fuzzy set can be empty. Indeed, in the trivial
case of u(x) =0, for all x € R", even the support is empty, than u here is called
empty fuzzy set. We shall restrict our attention to the normal fuzzy sets which
satisfy

1. w maps R" onto I=[0,1]. Obviously then [u]' # @, which is often as an
alternative definition of a normal fuzzy set. It follows

[u]* # 0, for all « € I.

2. [u]" is a bounded subset of R™.
3. u is upper semicontinuous.

Hence, each level set [u]®, and also [u]® by definition, is a closed subset of R™.
Moreover, they are all bounded since they are subsets of [u]°, which is bounded,
and so

PROPOSITION 17. [u]® is a compact subset of R"™, for all a € 1.
PROPOSITION 18. For any non-decreasing sequence cy; — o in I

[u]* = (Yfu]™

i>1

The totality of fuzzy sets satisfying three assumptions above will be denoted
by D™.
REMARK 66. For the sake of completeness, if we use instead of R™ in the defini-
tion of D" (= D(R")) a metric space X it will be denoted by D(X).

REMARK 67. [RF, Remark 2.2, p. 14]
(i) u=ve [u*=[v* foral aecl.

(ii) We can define a partial order C on D" by setting v C v < u(z) <
v(z), Vo € R (& [u]* C [v]).

However, we will often restrict our attention to fuzzy convex sets.

4. w is fuzzy convex.
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Hence, [u]* is convex subset of R™ for any a € [0, 1].

We denote by £" the space of all fuzzy subsets u of R™ which satisfy all
the four assumptions above, that is, normal, fuzzy convex upper semicontinuous
fuzzy sets with bounded supports.

We can state

PROPOSITION 19. Let u € " and write C,, = [u]® for o € I. Then
1. C, is a nonempty compact convex subset of R™ for each o € I
2. Cg CC, for0<a< <1,
3. Co =N2,Cy, for any nondecreasing a; — o in 1. Or, equivalently,
dg(Ca,y Co) — 0 as a; ' a.
The converse of Proposition 19 holds.

PROPOSITION 20. Let C' = {C,, o € I} be a family of subsets of R" satisfying
1., 2. and 3. of Proposition 19, and define u : R"™ — I by

) 0 ’Lf X ¢ Co,
u<x) o {Sup(aelzxéc’a) Zf (S CO'
Then u € E™ with [u]* = C, € (0, 1] and
W= |J C.<Co.
a€e(0,1]

Compact (convex) sets in R™ belong to D™ (£™) due to the upper semiconti-
nuity in assumption (3).
PROPOSITION 21. If A € K¢o(R™) then x4 € E™.
DEFINITION 42. The endograph

end(u) = {(z, a) € R" x I 1 u(x) < a}.

It is a nonempty closed subset of R™ x I. Restricting to those points that lie above
the support set, we obtain supported endograph, or sendograph for short, of u

send(u) = end(u) N ([u]® x I,
which is a nonempty compact subset of R™ x I. In fact,
send(u) = | J{[u]” x {a}, a € I}.

We shall define addition and scalar multiplication of fuzzy sets in £ levelset-
wise, that is, for u, v € €™ and ¢ € R — {0},

L el (U Ul (32)

and
[cu]® := c[u]” (33)

for each a € 1.
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PROPOSITION 22. E™ is closed under addition (32) and scalar multiplication (33).

Proof. We use Proposition 19 to families of subsets {[u+v]*, a € I'} and {[cu]®, a €
I}. Properties (1) and (2) follow from these properties for {[u]*}, {[v]*}, defini-
tions (32) and (33) and the closedness of K¢,o(R™) under addition and scalar
multiplication. In order to prove (3), let {c;} be a nondecreasing sequence in [
with a; — o~ € 1. Then by (32) and (33), by property (3) for {[u]*, o € I} and
{[v]*, v € T}.

dp([u+ )™, [u+0]*) < dg([u]™, [u]*) + da([0]*, [v]*) = 0.
dp([cu]™, [eu]®) = |eldu([u]™, [u]*) — 0.
Hence, property (3) of Proposition 19 is satisfied by both families. ]

Here, we shall also define multiplication of fuzzy sets in £€" by orthonormal
matrix levelsetwise, that is, for u € £" and ¢ € R — {0}

[Qu]* = Q[u]". (34)
PROPOSITION 23. E&" is closed under orthonormal matriz multiplication (34).

Proof. The proof is the same as for [cu]*. We use Proposition 19 to family of
subsets {[Qu|*, « € I}. Properties (1) and (2) follow from these properties for
{[u]*} and the closedness of K¢,(R™) under matrix multiplication. In order to
prove (3), let {«;} be a nondecreasing sequence in I with a; — = € I. Then by
Proposition 13

du([Qu]™, [Qu]") = du([u]™, [u]") — 0.
Hence, property (3) is satisfied. ]
REMARK 68. Note that we can state the previous two propositions for D" instead
of for &™.

We used Zadeh’s extension principle to define the addition and scalar multi-
plication of fuzzy sets. That is,

—_——

et el(z) = sup (u(e), v(y)) (35)
and -
[cu)(z) = u(z/c). (36)

LEMMA 19. In E", definitions in equations (35) and (36) are equivalent to the
level set definitions (32) and (33), respectively.
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Proof. Let o € (0, 1]. Then
{z eR", cu(r) 2 a} = {z € R", u(z/c) = a} =

{cz e R", u(Z) > a} = {7 € R", u(z) > a} = c[u]® = [cu]®

and so definitions (33) and (36) coincide. Now, suppose that
cu(z) > a.

By the definition of the supremum, there exist z; € [u|*(V/*) 4 € [p]e0=1/F)
for k=1, 2, ... such that x; +y = 2z and so

a+ 9(z) > min{u(xy), v(ye)} > a(l —1/k).

Since [u]*I=VR) — [u]®, [v]*0=1/8) — [v]* with respect to the Hausdorff metric
dpg, by the compactness of all these sets, there exist zy, € [u]a(l_l/ k). Uk, €
[w]*0=VR 7 € [u]* and § € [v]* such that z, — T and yx, — §. Hence, x4, +

Yk, = T+ 7 € [u]*+ [v]* and {z € R", (u +v)(2) > a} € [u]* + [v]*.
Conversely, if z € [u]* and § € [v]%, so that u(Z) > « and v(y) > «, then
with z =2+ 79

—_—

(u+v)(2) =2 min{u(z), v(y)} > a

and so [u]*+[v]* C {z € R", (ﬁ)(z) > a} = [u]*+ [v]*. Thus, we have shown
that

{z € R (utv)(2) 2 af = [u]* + [v]* = [u+ )%,
so definitions (32) and (35) coincide. O

We shall define, for an orthonormal matrix 2 and u € £,
(2u)(2) = u(2 (z)).

In £™, this definition coincide with level set definition.

REMARK 69. Since there is no need of convexity, this definition coincides also
with level set definition in D".

LEMMA 20. Let o € I. Then
[2u]” = 2[u]".

—_~—

Proof. We can derive as in the case of [cu]*(z)
[2u)" = {z, 2u(x) > a} = {z, u(27'(x)) > o}

= {2y, u(y) > a} = Qy, uly) > a} = 2[u".
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The concept of support function of a nonempty compact (convex) subset of
R"™ can be usefully generalized to the fuzzy sets in £". Let u € £ and define
supp, (@, p) := suppy,j«(p) = sup{p'a, a € [u]*} (37)
PROPOSITION 24. Let u € E". Then the support function s, is
1. uniformly bounded on I x S™ 1,
2. Lipschitz in p € S~ uniformly on I,
3. for each a € 1

dp([u]”, [v]") = supp{|su(, p) — su(e, p)|, p € S" 7'}

PROPOSITION 25. Let uw € E™. Then s,(«, p) is nonincreasing in o € I for each
pe St
The subset G" of convex-sendograph fuzzy sets consists of those fuzzy sets
u € E™ for which the sendograph send(u) is a convex subset of R™ x I. Hence,
u € G if and only if u : R® — I is a concave function over its support [u]°, that
is if and only if
u(ha+ (1= N)y) > du(z) + (1 Nu(y),

for all z, y € [u]° and X\ € I. Note that a fuzzy convex fuzzy set is not necessarily
a convex-sendograph fuzzy set.
We will use the supremum metric do, on D" defined [DK] by

doo(uv U) = Sup{quu]av [U]a)a a € [}7

for all u, v € D™.
Let us supply basic properties of the metric d.

LEMMA 21. Let u, u, € D", Vn € N. Then

nh_}r{)lo Aoo(Up, u) =0

iof and only of
lim dy([u,]®, [u]*) =0Va € I.

n—oo

Proof. The claim follows from the definition of d. O

REMARK 70. [RF, Remark 2.4, p. 14] It is easy to see that
(X, d) = (K(X), dg) = (D(X), do)

are isometric embeddings (by mean = — {2} and A — x4, respectively).
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In this work, the completeness of spaces turns out to be crucial. The following
propositions enable us to construct fractals in particular spaces and hyperspaces
of fuzzy sets.

PROPOSITION 26. [RF, Theorem 3.3, p. 15] (D(X), dx) is a complete metric
space if and only if X is a complete metric space.

ProrosITION 27. [DK, Prop. 7.2.3] (£", dx) is a complete metric space.
LEMMA 22. Let u, v € G". Then dy(u, v) > dy(send(u), send(v)).

Proof. Let u, v € G". We know that send(u) = Uyes[u]* X « for any u € G".
From
dH<Uo<Aa7 UaBa) S max dH(Aom Ba)7

we obtain

dy(send(u), send(v)) < rgg;(dH([u]o‘ X a, [v]* x «)

= made([u]a, [V]Y) = doo(u, v).
ac
PROPOSITION 28. (G", d..) is a complete melric space.

Proof. Let u,, € G" be a Cauchy sequence. From
oo (Upy Up,) — 0
and the previous lemma, we obtain
dy(send(uy,), send(u,,)) — 0.

Sets send(u,,), send(u,,) are nonempty compact convex. Since £" is complete,
the sequence u,, converge to u € E". Space Koo(R™) is complete, too, therefore
send(u) is convex. We obtain u € G". O

We will often deal with compact sets of fuzzy sets. Let us finish the subsection
with a lemma concerning their level sets.

*LEMMA 23. Let U be a compact set of fuzzy sets u; € D™. Then

u; EU u; EU

for any a € 1.

110



Proof. For a given o € I, we have

[\/ uir = {x e R", sup{u;(x)} > Oz} .

u; €U ui €U

Let z € R be such that sup, o, {u(x)} > «, then there exists uy € U, k € N
such that for any § < «, there exists ko, up(x) > [, for any k > ky. Due to
compactness of U € K(D"), we can find subsequence, for the sake of simplicity
ug, which converges to u € U. Since x € [u,]?, for all B < a for some k > ko
(where [ug]? are compact), it follows z € [u)?, for all B > «a. From the upper
semicontinuity of u, we obtain z € [u|*. Hence, we can write

[\/w

u; €U

(07

B {x € R", max{ui(x)} = a} _

{r e R", u(x) >, u; €U} = U [u;]“.

u; €U

8.2. Fuzzy fractals

Single-valued contractions are extended to construct fuzzy fractals, for ex-
ample, in [CFMV], [FLV], [FMV] and [DK]. These fuzzy fractals are supported
on skinny fractals. We will generalize our results on multivalued fractals and
hyperfractals in a fuzzy way. Fuzzy fractals are shadows of associated fuzzy
hyperfractals. It is not surprising that their address structures correspond.
REMARK 71. In order to find the address structure of multivalued fractals, we
need contractions F; to be induced from multivalued mappings. The contractions
F; satisfy

F(AUB)=F(A)UF(B), VA, B e K(X).
Then we can write
FAU;F5(A)) = U F(Fy(A)).
Similarly, when looking for the address structure of fuzzy fractals, we need con-
tractions f; to satisfy

filuV )= fi(u)V f;(v), Yu, v € D"
Then we can write

1V £5w) =\ fif(w), v D"
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Thus, we will consider only the contractions f : D" — D"

fluvo)= f(u)V f(v), Vu, v e D".

in the following text.

*LEMMA 24. Let f; : D" — D", i =1, 2, ..., m, be contractions with factors of
contractions r;. Then f: D" — D",

= \/fi(u)

is a contraction with factor r = max;{r;}.

Proof. Let u € D™. First, it follows from Lemma 23 that

[f ()} :U[fz( )

i=1

Secondly, we will prove that f : D* — D" is a contraction. Note that the
following holds for [f(u)]* :

1. it is a compact nonempty set, for each o € I,
2. [f(w)]? C [f(u)]®, for 0 <a< B <1,
3. [f(u)]® = limy_yo0[f (w)]*, for any nondecreasing a; — o € I.

Since these properties are satisfied by each [f;(u)]?, they are satisfied by [f(u)]* =
Ui[fi(u)]*. Using a—level sets, it is easy to show that f is a contraction,

doo(f(u), f(v)) = maxidu ([f ()], [f(0)]")} =

m m

= maldu (U, Ul

i=1 =

<max{ max {dH([fz(u)] [ ()] )}}

acl i=1,2,.

= _max {maX{dH([fz( % Li@)%)3)

i=1,2,...,

= max {doo( filu), fi(v))}

i=1,2,.

—_

= mmax {'rZ doo(u, v)}
i=1,2,.

< rdoo(u, v).
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*THEOREM 40. Let f; : D™ — D™ be contractions for i = 1,2, ..., m. There
exists a unique u* € D" such that

flu) =

Proof. Tt follows directly, since f is a contraction in a complete metric space
D, O
DEFINITION 43. The above attractor u* is called a fuzzy fractal. The system
f=A{(D" dw), fi,1=1,2, ..., m} is called a fuzzy IFS.

*THEOREM 41. Let f; : D™ — D™ be contractions for i = 1,2, ..., m. Let
F ={(D", dw), fi} be an IFS. There exists a unique U* € K(D"™) such that

FU) =ur,

where F' : K(D") — K(D"),
Fa = s,

fied) = [ J{fiw)}-

ueld

Proof. 1t follows directly since F'is an IF'S in a complete metric space D*. [

DEFINITION 44. The above attractor U* is called a fuzzy hyperfractal. The sys-
tem F' = {(D", dw), fi, i =1,2, ..., m} is called a fuzzy hyperIFS.

Let us proceed to the address structures of fuzzy fractals and fuzzy hyperfrac-
tals. We will treat them in the same way as the ones of multivalued fractals and
hyperfractals. We can state the following proposition (see [Bal, Theorem 2.1, p.
123]).

*PROPOSITION 29. Let {D", fi, fa, ..., fm} be a fuzzy hyperlFS. Let U* denote
the attractor of the fuzzy hyperIFS. Let (X, dsx) denote the code space associated
with the fuzzy hyperlFS. For each o € ¥, n € N, and u € D", let

¢(0-7 n, u) - fol o f02 ©---0 fUn(u)'

Then
¢(o) = 1Lm ¢(o, n, u)

exists, belongs to U* and is independent of u € D". The function ¢ : X — U* is
continuous and onto.
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*THEOREM 42. Let {D", f;, 1 =1, 2, ..., m} be a fuzzy IFS and u* its attractor.
Let

(o) = lim ¢(o, n, u),

n—0o0
where
d(o, n, u) = fo, 0 foy0---0 fy (u),c €38, neN, ue D"
Then ¢(o) < u*. Let a € R", u*(a) = a. Then there exists w € ¥ such that
¢(w)(a) = a.

Proof. We know that

u* = lim f"(u),
n—oo

for any u € D", where f(u) = /", fi(u). Notice that

(o, n, u) < f*(u).

Since limits

lim ¢(o, n, u) = ¢(o0)

n—oo
and
lim f™(u) = u"
n—oo
exist, it follows that
(o) <u”.

On the other hand, let @ € R™ be such that u*(a) = . Consider u € D™ and
a sequence {u,}, u, = f™(u). Notice that

lim u, = u"*.
n—oo

Since [u,]* — [u*]* follows from Lemma 21, we can find a sequence {a,} such
that a, € [u,]*

lim a,, = a.
n—o0

Moreover, for each a,, there exists {w™} such that
an € [p(w™, n, u)]®.

Notice that N
ay € [\/ fz(u)] = iy ¢ a1 € [fi, (u)]”,

as € [ \7 fz‘j(u)] = Jiy, dg : ag € [fii(w)]”,

i,7=1

ete.
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Since (¥, ds) is compact, it follows that {w(™} possesses a convergent subse-
quence with a limit w € ¥. Without loss of generality, assume that lim,, ., w™ =
w. Then the number of successive initial agreements between components of w™
and w increases without limit. That is, if

a(n) = card{j € N : w,i”) =wy for 1 <k < j},
then a(n) — oo as n — oo. It follows that
d(¢(wa n, U), ¢<w(n), n, U) — 0.

From
«

a € lim [d)(w("), n, u)]

n—oo

it follows that
a € lim [¢(w, n, u)]”.

n—oo

Hence, ¢(w) < u* implies ¢p(w)(a) = a. O

We obtain the following corollary.

*COROLLARY 9. Let us consider the system {D", fi, i = 1,2, ..., m}. Attrac-
tors w* and U* of the fuzzy IFS and fuzzy hyperlF'S, respectively, have the same
address structure,

for any u € D".
DEFINITION 45. Let us call u* an underlying fuzzy fractal to U*.

Next, we will calculate the Hausdorff dimension of fuzzy hyperfractals. Let
us give some notation and supporting lemmas. From now on, we will consider
fi:D*—=D" i=1,2,..., m,such that

where r; € [0, 1), 2; is an orthonormal matrix and v; € D". These mappings can
be described levelsetwise. Let us denote for any o € [

f-a<0) = TZQZC + [Ui]a,

(2

where C' € K¢o(R"™).
*LEMMA 25. Let f; be as in (38), then [fi(u)]* = f*([u]®) for any o € 1.

Proof. Tt follows from equations (32), (33) and (34). O
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This implies the following lemma, which enables us to treat effectively level
sets of fuzzy hyperfractals as hyperfractals.

*LEMMA 26. Let F = {(D", dw), fi,i=1,2,..., m},
filu) = ri2iu+ v,

where r; € [0, 1), 2; is an orthonormal matriz and v; € D" be a fuzzy hyper-
IFS with an attractor U*. Let F* = {(K(R"), dg), f&,i = 1,2, ..., m} be a
hyperlF'S with an attractor 5*. Then

[us|* = B;.

Proof. We know that

[fi(u)]® = f([u]*),
for any w € D" and o € I. Note that fo 5y .0,(4) = T0105..0, Lo10s...0, (1) + D,
D € D". This implies

[for10.0, (W] = f510, 0, ([U]%),
for p € N. For p — oo, we obtain convergent sequences in K (R™) on both sides
of the equation. We arrive to [uf]* = BZ. O

*LEMMA 27. Let f; : E" — E™ be such that
filu) == riZiu+v;,
where v; € E*, r € [0, 1). Then f; is a similitude.

Proof. The claim follows from the previous lemma and the convexity of level sets.
For any u, w € &,

doo(fiu), fiw)) = maxdp([fi(w)]*, [fi(w)])

= Iglg;(nd;]([u]a, [W]*) = ridoo(u, w).

]

*THEOREM 43. Let F' = {(E", dw), fi, i = 1,2, ..., m} be a fuzzy hyperlFS
such that f; : E™ — E",
fi(u) == r; 2+ v,

where v; € E™, r € [0, 1), Z; are orthonormal. If its attractor is totally discon-
nected, its Hausdorff dimension can be calculated by means of the Moran formula.

Proof. This follows from the previous lemma and Proposition 8. O]

We will need a generalization of a convex hull for fuzzy sets. Let us write
v e & for v € D", where [v°]* := conv[v]*.
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*LEMMA 28. For any v € D", it holds that v° € E™.

Proof. 1t follows directly that [v°]* are nonempty compact convex sets for any
a € I. Observe also that [v]* — [v]* implies [v¢]* — [v°]* for o — . O

Let FF = {(D", dw), fi,i = 1,2,..., m} be a fuzzy hyperIFS such that
f’i D" — D,
fl(’U/) = ria@iu -+ Vi,
where v; € D", r € [0, 1). Let us define a fuzzy hyperIFS F¢ = {(E", dy), ff, i =
1,2, ..., m} such that ff:&" — &,

fi(u) == r; 2+ v,

1

where vf € ", r € [0, 1).

We will calculate the Hausdorff dimension of the attractor U* of the fuzzy
hyperIF'S F' with the help of the attractor U¢ of F°. We will state a few lemmas
before.

*LEMMA 29. Let u € D" then
conv[fi(u)]* = [fi(u)]".
Proof. We obtain the claim directly from Lemma 25. [

*LEMMA 30. Let o € X then

Proof. Observe that
uy = fo(u)Vu € D".

Lemma 26 implies that
[fo(u)]® =[5 ([u]®).

From Theorem 35, we obtain

conv ([ ([u]”)) = f5([u]") = [f5 ()]

O
*LEMMA 31. Let u, v € D", then
doo(, V) > doo (U, v°).
Proof. Note that
dy ([u]®, [v]*) > dg(conv]u]®, convlv]®),
for each o € I. O
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*THEOREM 44. Let F' = {(D", d), fi, i = 1,2, ..., m} be a fuzzy hyperlFS
such that f; : D" — D,

fi(w) == r; 2+ v,
where r; € [0, 1), 2; € R™™ is orthonormal v; € D", i = 1,2, ..., m. If
the attractor U¢ of F€ is totally disconnected, then the Hausdorff dimension of
the attractor U* of F can be calculated by means of the Moran formula and

Proof. We will proceed in the same way as in the proof of Theorem 37. Since
U° is totally disconnected and f{ are similitudes, we can obtain the Hausdorff
dimension D of U¢ (see Theorem 43). In order to calculate the Hausdorff dimen-
sion of U*, we will find a bi-Lipschitz mapping of U¢ onto U*. Thus, we need to
compare doo(u, u’,) and dyo(us, us,).

We know from Lemma 30 that

conv([ur]®) = [us]*, Va € I, 0 € 3.
Since U° is totally disconnected, there exists d™" > 0 such that
doo(fi(ug), fi(ug)) 2 d3™, i # j, 0, 0" € B.
Lemma 15 implies
doo(filuy), fi(ug)) > doo(fi(A5), fi(A7)) = dig™

Let us find a bi-Lipschitz mapping of ¢ onto U*. For any 5 € N, we can write:

C — ¢ ..
i1igeige. il...z‘j_l(uzj-zj-ﬂ...)
and
c _ rc
Wirig..ily... = z‘l...ij,l(ui;-i;+1...)-
. . . . . . o
Let us estimate the distance doo(uilizl_.ij__, ulml;) Since ff are similitudes,

c c J—
doo(uiliz...ij...7 uilig...i;“.) =

= dOO( icl...ij,l (ugjijJrl...)’ ’Lclljfl<uf;2;+1))

c c
= Tiyigiiy * Aoo(US (I
2122...75-1 oo 15j41---) UTREE

min
> Tigig.ij_y oy -

Moreover, Lemma 31 implies

doo (u* ’LL*/' i’ ) 2 doo (Ufjij+1._., U?/. i’ )

iti+1 Y1 Y41
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On the other hand, since f; are contractions with a factor r;, 1 =1, 2, ..., n,

doo (U ug ) < Tigig..i,...diam(U”).

iliz...ij...’ 21127/;

Note that U* € K(E™) implies diam(U*) < oo.
We obtain from these inequalities

(& (&
doo(uilig...ij,lij...:uilz'z..ij,lz';....> <
3 *
1 (0 . diam(U*) . .
oo(uiliz...z'j,lij...aUz'liz...z‘]-_lz‘;...) =T gmin oo ilig...ij,lz'j...a“ilig...ij_lz';....)-
o0

Applying Proposition 9 for f : U® — U*, f(uf,;, ) = uj,, , we obtain that

the Hausdorff dimension of &/* is really D (cf. Proposition 9). O

*COROLLARY 10. If the assumptions of Theorem /44 are fulfilled by the fuzzy
hyperlFS F = {(D", d), fi,i=1, 2, ..., m}, fi(u) = r;2;u+v;, then they are
fulfilled by any other fuzzy hyperlFS F' = {(D", dv), fl,i =1, 2, ..., m}, where
fllu) =riQu+v, 2, =2 r; =rl and vf = V.

Proof. There exists one fuzzy hyperlF'S F¢ for both the fuzzy hyperlFSs F' and
F'. O

8.3. Visualization of fuzzy fractals and measures

Let us generalize our approach of visualization of multivalued fractals and
hyperfractals to fuzzy fractals and fuzzy hyperfractals. We will also construct a
measure on fuzzy fractals. We will proceed similarly as in the case of hyperfrac-
tals.

When drawing fuzzy sets here, we express levels of membership by levels
of a grey colour. It is certainly more complicated to draw fuzzy fractals than
multivalued fractals by means of the Banach theorem. Let f = {(D", d), fi, i =
1,2, ..., m} be a fuzzy IFS with an attractor v*. Let us denote the attractor of
the associated fuzzy hyperIFS U*. In order to avoid storing and processing f™(u),
we use the chaos game.

We know that fuzzy fractals and fuzzy hyperfractals are related in a similar
way as multivalued fractals and hyperfractals. Therefore, we can use the chaos
game for fuzzy hyperlFS to draw attractors of fuzzy IFSs. Almost all orbits of
the chaos game are dense in attractors of fuzzy hyperIFS. Let us give an analogy
of Theorem 33.

*THEOREM 45. Let f be a fuzzy IFS and F an associated fuzzy hyperIFS with
attractors u* and U*, respectively. Let U = {t;, i € v, u; € D"} be such that
dooy (U, U*) < €. Then



Proof. Observe that, do,, (Z;l , U*) < e implies that, for each u’ € U*, there exists
u; € U such that
doo (U}, ;) < €.

Let o € I be given. It follows that, for each = € [uf]*, there exists y € [4;]* such

~

that d(z, y) < e. In the same way, for each @; € U, there exists u’ € U* such that
doo(ﬁza uj;) S €.

It follows that, for each z € [4;]*, there exists y € [u}]* such that d(z, y) < e.

We arrive to
doo (\/ﬁ,,, \/ uj}) =

1€L oeY

mgx{max{ sup { inf {d(z, y)}}, sup { inf {d(z,y)}}}} <e

eriEL[ﬂi]a ye[u*]a IE[’U/*}Q yEUiEL[ﬁ‘i]a

]

Thus, we can use the chaos game for fuzzy hyperfractals to draw underlying
fuzzy fractals with the same accuracy.
Let us start with a visualization of fuzzy hyperfractals. We define a mapping
Voo,
Vo 1 (D", doo) = (RY, dinax),

SUPPiyjer (z1)
SUPPjy ez (T2
Voo(u) — [ ] 2( ) 7
SUpPpyjea (a)
where x; € R", |z;] =1, and o, € [ fori =1, ..., d.

It is not difficult to prove that dpax(Veo(u), Veo(v)) < doo(u, v). This follows
from

dOO ) > [e%3 1) — a; i .
(u, v) 2 max{ _max  [Suppiye; (7:) = Supplje: (:)]}

Let us proceed to measure on fuzzy fractals. Notice that fuzzy hyperfractals
are attractors of ordinary IFSs and we can easily construct an invariant measure

for a fuzzy hyperlF'S {G", f;, pi}.
*LEMMA 32. Let r € [0, 1), 2 € R™™ is orthonormal and v € G", then

fu)=r2u+wv (39)
1s a contraction in G".

Proof. Let u, v e G", r € |0, 1), 2 € R"™". We will prove that ru, Qu, u+v €
G". Let us remind that, for u € G", we have

u(Az + (1 = N)y) > Au(z) + (1 — Nu(y).
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1. Let r € R, then
ru(dz + (1= Ny) =ulr 'Oz + (1 - Ny))
=uM e+ (1=Nrty) > du(r2) + (1 = Nu(r'y)
= Aru(x) + (1 — N)ru(y).
We arrive to ru € G".

2. Let 2 € R™™, then we can proceed in the same way,
QuAr + (1= N)y) =u(2 ' (A\r + (1 - N\)y))
=u A2 'z + (1 - N2 y) > (2 '2) + (1 - Nu(2'y)
= A2u(z) + (1 — \)2u(y).
We arrive to Qu € G".

3. Note that
u(Ar + (1= N)y) > Mu(z) + (1 — Nu(y)

is equivalent with
Az + (1= Ay € [yt
where u(z) = a1, u(y) = as. Hence, we can write
Al + (L= Al € [
Let us consider u 4 v :

Alu+ 0] + (1= Nu~+ 0] = Au]™ + A[v]** + (1 = ) [u]*® + (1 — X)[v]*?
= Au]™ + (1= N [u]*2 + M) + (1= \)[v]*2 C [urer Moz 4 [y]rertI=Aa:
= [u 4 vPeati—Naz,

This is equivalent with

(u+v) Az + (1= Ny) > AMu+v)(z) + (1 =) (u+v)(y).

O

In order to construct a shadow of an invariant measure on fuzzy hyperfractals,
we use a similar approach as for a measure on multivalued fractals. (It will be
a measure on a multivalued fractal.) We will calculate and visualize how often
a Borel subset of embedding space R" is visited during the chaos game for the
IFS F. Moreover, we need to evaluate how significant part of fuzzy sets from
an orbit of the chaos game visited the Borel set. The easiest way is to measure
a volume of intersections of sendographs. We will consider a fuzzy hyperlF'S
{G™, fi, pi, pi > 0,1=1,2, ..., m} such that dim[u?]° = n for almost all ¢ € 3.
Lemma 17 implies
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*LEMMA 33. Let {G™, fi, pi, pi > 0,i=1,2, ..., m} be a fuzzy hyperIFS, where
fi,i=1,2,...m are as in (39). Let w € ¥ be such that dim[u,)® = n, then
dim[uz]® = n for almost all o € X.

*LEMMA 34. Let u € G" be such that dim([u]®) = n then dim(send(u) = n + 1.

Proof. The claim follows from the convexity of the sendograph send(u) and [u]' #
0. O

Thus, let us consider such a fuzzy hyperIFS that dim(send(u’)) = n + 1 for
almost all ¢ € 3. We define a set function f on the set of blocks [a;, b1] X [ag, ba] X
- X [am bn]a

dp(o).

o L (send(uf) N send(B))
10 = | e

Observe that we can treat a set B € K¢,(R™) as a fuzzy set in G".

In order to use the ergodic theorem, we prove integrability of LMIES”TE((SZ%?Z?;?(B))

Let us denote

Yp={oceX L%send(u)Nsend(B)) > 0}.

Let us remind three facts. Volume of convex sets is continuous w.r.t. the
Hausdorff metric (see Lemma 18), but we deal with d., and dx. Note that

dy(send(u), send(v)) < max(dg([u]®, [v]*)) = dw(u, v), Yu, v € G",

follows from Lemma 22. The address function
olo)=u,, o€,
is continuous w.r.t. the metrics d,, and dsx.. These imply, for any o € X2,
Ve > 036; > 0 : dy(send(u), send(uy,) < 6; =
= |vol(send(u,)) — vol(send(u},))| < e,
Yoy > 0305 > 0@ doo(uy,, uly) < 09 = dp(send(u)), send(u,)) < dy,
Vo > 030 > 0 : doo(ul, ul) < 6 = ds(o, o) < da.

We obtain continuous dependence of L£"(send(u’)) w.r.t. dyx. From Remark 64,
we have also that £"™!(send(u}) N send(B)) is continuous in v} w.r.t. and dy.
Since X is a preimage (in £" (send(u’)Nsend(B))) of the open interval (0, 0o),
it is open.

Hence, we integrate a continuous function on the open set X g. It follows that

B L (send(u?) Nsend(B))
R e T e
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dp(o)

_ / L (send(u}) N send(B))
cesp L+ (send (ug )

exists and it can be approximated by means of the ergodic theorem. It remains
to define an outer measure, for all Borel sets of R”,

1nf{Zf , B C U;B;, B; are blocks}. (40)

11 satisfies three conditions for an outer measure

L. /“LS(Q)) = 07
2. pus(A) < ps(B) for A C B,

3. ps(UiBi) <32, ps(By).

In the same way as in the case of a measure on multivalued fractals, we can prove
that it is a Borel measure by means of the Carathéodory criterion.
We obtain the following theorem.

*THEOREM 46. Let us consider the fuzzy hyperIFS F = {G", f;, p; > 0}, such
that dim([uz]?) = n for almost all o € 3. The set function ug defined in (40) is
a Borel measure.

ExaMPLE 12. Consider the fuzzy IFS f =
correspondlng fuzzy hyperlFS F = {(G?, d

P2 = P3 =

{(g? ) fis piy i = 1,2, 3} and
%) fz, pi, i = 1,2, 3}, where p; =

) =5 [,

e =3+ {(0.3) 1.

e ={ (5 +ar) s oy el ave [ ga ]}

For the images of the fuzzy fractal and measure on it, see Figure 50. Images of
the structure of fuzzy hyperfractal and the invariant measure are in Figure 51.
Notice that the O-level set of the fuzzy attractor corresponds to the fat Sierpinski
triangle and the 1-level set to the Sierpinski triangle.
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Figure 50: Fuzzy fat Sierpinski triangle and a measure from Example 12
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Figure 51: Projection of metric structure of the fuzzy fat Sierpinski triangle and
invariant measure from Example 12
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9. Summary

Let us briefly sum up our contribution to the theory of fractals and discuss
open problems. The thesis connects the theories of multivalued fractals, fractals
generated by iterated function systems and superfractals. We come up with the
term hyperfractal. It answers the question set in [BHS1] about a multivalued
analogy of attractors of super iterated function systems. Hyperfractals are at-
tractors of iterated function systems and multivalued fractals are their shadows.
Hyperfractals enable us to discuss the address structure of multivalued fractals,
which is to our knowledge only implicitly present in [KLV2] and [KLMV]. We
explain visual self-similarity and complexity of multivalued fractals by means of
hyperfractals. We show that the set of self-similar attractors of IFSs is a subclass
of shadows of self-similar hyperfractals. We also visualize structure of hyper-
fractals by means of support functions. Since we treat the hyperfractals as the
first, their application for drawing multivalued fractals and measures supported
by them applying the chaos game seems to be new. We generalized the theory to
spaces of fuzzy sets. Fuzzy fractals were studied rarely. However, these fractals
were not a direct generalization of multivalued fractals or hyperfractals like ours.

Thousands of articles were written about fractals but only few about this
field. Hence, there is a lot of problems to investigate. Let us suggest a few.

e We found the address structure of multivalued fractals. It arises a ques-
tion, which conditions are necessary to recognize the address structure of
topological multivalued fractals.

e A degree of self-similarity of trees is usually found in a topological way (see
e.g. [FGP]). It is worth considering also metric ways. We can regard a tree
as a shadow of a hyperfractal and look for its degree of self-similarity.

e In order to apply our results to image compression, the inverse problem
should be solved. It means efficient searching for an IMS or hyperIFS
whose attractors are close to an original image.

e Our approach to fuzzy fractals has a disadvantage that all address fuzzy sets
have nonempty levels. Therefore, generalizations should be investigated.
Considering fuzzy sets as functions, the metric d., does not seem natural.
There are other metrics which can be applied (see [DK]).

e In the last years, hyperchaos was extensively studied. We have also treated
the simplest case of hyperchaos, particularly shift dynamical system for
hyperfractals. Our approach can be generalized to estimate dimension and
visualize chaotic orbits in hyperspace.
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