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Abstract 

Deep learning is a subfield of machine learning where algorithms can learn autonomously from 

provided examples, refining their performance over time. Using this technology in medical 

imaging could be helpful in the detection of disorders such as diabetic retinopathy (DR) and 

diabetic macular edema. This study is aimed to develop and explore an automated system using 

deep convolutional neural networks to detect DR from retinal fundus photographs so that the 

time and cost can be minimized while screening. I have explored the potential of transfer 

learning for training models with various preprocessing techniques. The model was trained 

using a publicly accessible dataset consisting of 35,126 retinal fundus images. The training 

phase faced an obstacle due to the imbalanced dataset. The dataset primarily consisted of 

images classified as normal, without any signs of disease. This presented a significant challenge 

that needed to be addressed in order to achieve accurate and reliable results. The dataset was 

subjected to training using both pre-trained and non-pre-trained models. Three experiments 

were performed utilizing the ResNet18, EfficientNet-B3, and Xception models, all initialized 

with pre-trained weights. Additionally, a comparative analysis was performed in the fourth 

experiment using the EfficientNet-B3 model, with and without pre-trained weights. To address 

the challenge of an imbalanced dataset, oversampling was implemented. The proposed solution 

achieved an accuracy of 0.92 and a quadratic kappa score of 0.96. These results indicate a 

significant improvement over other experiments conducted in this study. Overall, the findings 

highlight the potential of deep learning in automating the detection of DR, providing promising 

prospects for efficient and accurate screening. 

Keywords: Diabetic Retinopathy, Deep learning, Transfer learning, Convolutional neural 

network, Image classification, medical imaging, diabetic macular edema, retinal fundus 

photographs, comparative analysis, oversampling, accuracy, quadratic kappa score 

  



1. Introduction 

Diabetic retinopathy (DR) is a leading cause of blindness among millions of individuals 

throughout the world. It is estimated that diabetes affects 382 million people, with the number 

anticipated to rise to 592 million by 2035 (Safi et al. 2018). DR is caused by high blood sugar 

levels and damages the blood vessels in the retina, resulting in vision loss or blindness if not 

addressed. Everyone with type 1 or type 2 diabetes can develop DR, and the longer a person 

has diabetes, the more likely they are to acquire DR. Additional risk factors for DR include 

high blood pressure, high cholesterol, pregnancy, and smoking. DR usually progresses through 

stages, with early stages often showing no symptoms. Diabetic retinopathy has four stages: 

mild, moderate, severe non-proliferative, and proliferative (Wang, W. et al. 2018). The 

condition progresses from minor swelling in the blood vessels to the growth of abnormal blood 

vessels, which can lead to severe vision loss and blindness (Figure 1). 

 

Figure. 1 Illustrates DR in various stages from normal to proliferative, indicating the severity class 4. 

In this final stage most, patients experience vision loss. 

0 – No diabetic retinopathy. 

1 – Mild non-proliferative retinopathy: Usually occurs when small areas of balloon-like 

swelling in the retina’s blood vessel, called microaneurysms can be observed in the earliest 

stage of this disease. These areas may leak fluid or blood, results in distortion (Padhy, S. K. et 

al. 2019) 

2 – Moderate non-proliferative retinopathy: If stage 1 is left untreated, a greater number of 

microaneurysms may form and block the blood arteries causing them to lose their ability to 

transport blood. This can result in growth of new blood vessels on the surface of retina. Some 

patients may experience difficulties seeing in dim light. 



3 – Severe non-proliferative retinopathy: Significant amount of damage is done at this 

advanced stage where blood flow is less than the previous stage. This stage is characterized by 

hemorrhages or bleeding in the retina, and widespread swelling and fluid leakage. Patients 

might experience symptoms such as blind spot in their visual field. 

4 – Proliferative retinopathy: When the new blood vessels leak blood or fluid, they cause 

scarring and damage to the retina (Khalifa et al., 2019). Proliferative retinopathy may lead to 

the formation of scar tissue which can cause the retina to detach from the back of the eye, a 

leading cause of blindness.  

Medication such as injections into the eye may also be utilized in some circumstances to 

minimize swelling and inflammation. Controlling blood sugar levels, blood pressure, and 

cholesterol levels, on the other hand, can help lower the likelihood of developing DR and stop 

its progression. Machine learning-based automated DR detection systems have the potential to 

be a more efficient and cost-effective alternative to manual screening. The advancement of 

digital imaging technologies and machine learning algorithms have created new opportunities 

for automated identification and diagnosis of DR.  

2. Aim 

In the past, diabetic retinopathy was mostly detected after severe damage was already done to 

the eye had already affected the eye. This was primarily due to a lack of awareness regarding 

the disease or the symptoms being less noticeable. Prior to the availability of advanced 

technology, medical professionals relied on ophthalmoscopy as a method to examine the fundus 

and detect any potential abnormalities in the eye. This method was not very effective in 

detecting the early stages of retinopathy, as the disease often progresses without causing visible 

changes until it reaches an advanced stage. Currently more than 170 million people worldwide 

are affected, and it is estimated to increase by 366 million by year 2030 (Palavalasa & 

Sambaturu, 2018). Nowadays, the treatment of DR is often made with fundus images. Doctors 

use a specialized camera to take pictures of the back of the eye to see the abnormalities. Several 

studies have aimed to confirm the effectiveness of deep learning technologies in screening DR 

(Bhaskaranand et al., 2019; Gulshan et al., 2016a; Ruamviboonsuk et al., 2019; Ting et al., 

2017a). There are three issues regarding DR treatment (Khalifa et al., 2019; Yu et al., 2018). 

Firstly, limited resources affect the screening uptake and accuracy of results. Secondly, delayed 

diagnosis due to the need for a second opinion and finally, poor tracking of patient follow-up 



and treatment referrals. Addressing the first issue, deep learning models can automate the 

process of screening which reduces the burden on the limited resources and manpower. 

Additionally, better accuracy and faster screening time can be ensured (Gulshan et al., 2016b). 

On the other hand, these machine learning models can reduce the need for a second opinion as 

they can accurately classify the images for signs of DR. As the whole process can be done 

within hours, overall management of patients with DR is easier and automatically generated 

reports can ensure timely treatment and follow-up care. One study by Ting et al. showed that a 

deep learning method achieved a high accuracy of 97.4% for DR detection Ting et al., (2017b). 

In several circumstances, the method outperformed human specialists, according to the study. 

In another study, Gulshan et al., (2016b) they examined the performance of a deep learning 

system on a large dataset of retinal pictures, attaining an area under the receiver operating 

characteristic (ROC) curve of 0.99. Most of these studies are binary classifications where the 

model can predict between ‘DR’ and ‘No DR’ (Pires et al., 2019; Quellec et al., 2017a; Xu et 

al., 2017). The objective of this thesis is to explore existing automated DR detection algorithms 

and investigate the potential of transfer learning in improving the accuracy of multi-class 

classification, which involves categorizing all five classes of DR. By conducting a comparative 

analysis between pre-trained and non-pre-trained convolutional neural network models, the 

aim of this study is to identify an effective approach that can achieve optimal accuracy for the 

screening of a large number of individuals for diabetic retinopathy, enabling early detection 

and treatment by ophthalmologists. Moreover, this research aims to demonstrate the potential 

of machine learning methods in the field of medical imaging analysis, while also highlighting 

the strengths and limitations of different pre-trained convolutional neural network models for 

the detection of diabetic retinopathy. 

  



 

3. Methodology 

3.1 Dataset 

The Kaggle diabetic retinopathy dataset is a publicly available retina fundus dataset which was 

released in 2015 as a competition on Kaggle. This competition was hosted by EyePACS, a non-

profit organization who provides cloud-based platforms for retinopathy screenings. The dataset 

contains 35,126 retinal fundus images. Each patient has two images of their left and right eyes.  

The dataset used in this study includes a set of images for training, as well as a corresponding 

CSV file containing the names of the images and the corresponding severity levels for each 

patient, ranging from 0 to 4. It should be noted that this problem is a multi-class classification 

task that involves the classification of images into five distinct categories, namely 0, 1, 2, 3, 

and 4, as illustrated in Figure 1. Furthermore, the distribution of images across each class is 

presented in Figure 2. 

 

 

Figure 2. Distribution of severity class (bottom to top) in the dataset. x axis represents the number of 

images and y axis represents severity class (0-4.) 73.5% of the images are non-diabetic retinopathy 

patients. 7% of patients are diagnosed with class level 1 and 15% of the patients are diagnosed with 

moderate severity. Finally, the severity class 3 and 4 has 2.5% and 2% respectively. 
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In Figure 3 a visual representation of the fundus images for each of the five distinct classes can 

be observed. If class 0 is compared with class 4 then the cotton wool like structures can be 

observed without any image preprocessing.  

 

 

 

 

 

Figure 3. Sample images from the dataset for each class severity levels (from top to bottom): (a) No 

DR, (b) Mild DR, (c) Moderate (DR), (d) Severe DR, (e) Proliferative DR. 

Due to the limitations of the dataset, which includes only the availability of the training CSV 

file, this study exclusively works with the training dataset by splitting it into training and testing 

sets. Despite the widespread use of this dataset for retinopathy detection, it is crucial to 

acknowledge its limitations, such as potential bias, class imbalance, and poor image quality. 

Therefore, it is important to interpret the results with these limitations in mind and to continue 

to refine and improve the dataset for more accurate and unbiased detection of diabetic 

retinopathy.  



3.2 Data Pre-processing 

To optimize the training process and improve the quality of results, two approaches will be 

implemented. The first approach involves training models using raw image data with minimal 

preprocessing to ensure compatibility with the input format of models, while another one is to 

use highly preprocessed data to facilitate more effective feature extraction. Considering diverse 

sizes of the images used for training, which can reach up to 4000x4000 pixels, it is essential to 

resize them before inputting them to the network. This resizing is not only to improve the 

training speed but also prevent memory allocation issues.  

3.2.1 Splitting dataset into train and test sets 

The dataset was split into two sets, namely “Train” and “Test”. The data was partitioned in an 

80:20 ratio, with 80% of the images being designated for training and 20% for testing. To 

facilitate a streamlined workflow, the raw data files were stored separately from the 

preprocessed images. Finally, the preprocessed images were stored in another directory.  

3.2.2 Five characteristics 

Important features to consider when detecting diabetic retinopathy in fundus images include 

microaneurysms, hemorrhages, exudates, neovascularization, and macular edema. 

Figure 4: After conducting a brief analysis of the data in the pictures, it is observed that Hemorrhages, 

hard exudates, and cotton wool like spots are easily identifiable. However, the other two instances of 

Aneurysm or abnormal blood vessels growth are not very observable in the pictures. These two cases 

could be crucial for classification the disease.   

Figure adapted from Nneji GU et. Al (2022) Identification of Diabetic Retinopathy Using Weighted 

Fusion Deep Learning Based on Dual-Channel Fundus Scans. 



3.2.3 Cropping and drawing circle 

Cropping the extra dark parts of retinal images is a useful technique for improving accuracy 

during training. In gray images, cropping the dark images might help to reduce noise and 

improve the signal to noise ratio, while cropping RGB images might help the network to 

improve feature extraction by focusing only on the relevant parts of the image. Finally, by 

drawing a circle around the edges we can select relevant parts of the images.  

3.2.4 Applying Gaussian filter and blur 

Adding Gaussian blur on the cropped images before feeding them to the neural network 

smooths out the image by reducing high-frequency components such as noise or sharp edges. 

This process can enhance feature extraction by allowing the network to focus on the important 

image features rather than noise or artifacts. The results of applying preprocessing functions 

are presented in Figure 5. The Gaussian blur function, which is an important preprocessing 

step, is configured using a parameter called sigmaX. In this study, a sigmaX value of 8 was 

found to be relatively more effective, as it allowed the blood vessels to be more visible 

compared to other values, such as 14, 40, or 50, as demonstrated in Figure 5. 

 

 

Figure 5. In the top row, Filter applied on the raw images and adding Gaussian blur to the images in 

different sigmaX values. Increasing the value of sigmaX leads to a degradation of image details. 

Therefore, the value 8 seems to be reasonable for this task. In the bottom row, Visual representation of 

preprocessing steps. For this study, two different datasets were employed: one containing data up to 

step 3 and another one including step 4. This allowed effective comparison of the training results.  



3.3 Network architecture 

After preprocessing was completed and the background noise was removed, the blood vessels 

were more visible. Utilizing a neural network helps with examination of each individual pixel 

and train system to find abnormalities. In the following section, I have explained in detail the 

functioning of deep neural networks and outlined their advantages. 

3.3.1 CNN 

A Convolutional Neural Network (CNN) is a type of neural network that is commonly used for 

image classification and image and video recognition. For instance, CNN can be used to 

classify images of different animals, detect faces in images, or identify handwritten digits in 

images. CNNs are designed to recognize patterns in visual data by using filters, or "kernels," 

to scan through the input image and identify relevant features. These features are then fed into 

a series of convolutional and pooling layers, where the network learns to extract increasingly 

complex features from the image. The first layer of a CNN applies a set of filters to the input 

image to identify relevant features, such as edges, corners, and curves. Each filter produces an 

output known as an activation map, which highlights areas of the image that are the most 

relevant to the task. The output from the convolutional layer is then passed through a pooling 

layer, which reduces the spatial dimension of the feature maps by down-sampling them. The 

convolutional and pooling layers are repeated multiple times in the network, with each 

subsequent layer learning more complex features by combining lower-level features from 

previous layers. The final layer of the network is typically a fully connected layer that takes the 

features learned from the previous layers and uses them to make a prediction about the input 

(Figure 6). The activation maps then are sampled down by pooling or stride convolutions. The 

final output consists of one or more fully connected layers which generate predictions of the 

input data. This innovation in the field of computer vision assists with tasks such as image 

classification, object detection, and image segmentation. 

 



 

Figure 6. A convolutional neural network operates by taking an input and sliding a filter across each 

pixel block. The dot product is computed, and the result is then passed to the next layer. This process is 

repeated across multiple convolutional layers. As the network deepens, it becomes capable of detecting 

increasingly complex patterns. 

Image: A comprehensive guide to convolutional neural networks by Sumit Saha (Sumit et al. 2018) 

3.3.2 Transfer learning 

Transfer learning enhances the learning process of a new task by using the knowledge gained 

from a related task that has already been successfully learned (Torrey & Shavlik, 2010). This 

approach enables systems to learn a new task by using pre-trained models. For instance, if 

someone can ride a bicycle then riding a motorcycle is easier because the knowledge is 

transferred here. Therefore, if a model is trained on a task, it can be used for another task which 

can reduce the amount of training data and computational power to achieve a better 

performance. A commonly employed strategy for utilizing a pre-trained model is to fine-tune 

to suit a desired task. For example, in image classification, a pre-trained model like ResNet (He 

et al., 2015) can be fine-tuned on a smaller dataset for different classification task such as 

identifying different types of animals or object. One of the main benefits of using transfer 

learning is that it can reduce the time and resources required to train a model from scratch. By 

starting with a pre-trained model that has already learned relevant features from a large dataset, 

transfer learning can significantly speed up the training process for a new task with similar 

features. However, it is important to note that the performance of transfer learning depends on 

the similarity between the source task and the target task, and the availability and quality of the 

pre-trained models. In this study, I have used several pre-trained models such as ResNet18, 

Xception, EfficientNet-B3, EfficientNet-B0. (Condori et al., 2021; Tan & Le, 2019a, 2019b).  



3.3.3 Basics of the pretrained models 

There are a few ways to scale a convolutional network, the most common way is by increasing 

the depth of the network which is done by adding more layers. Another popular method to scale 

up the model is by image resolution (G. Huang et al., 2017; K.-K. Huang et al., 2021) Increasing 

the number of pixels can lead to better accuracy of model. Scaling up baseline models with 

different width, depth or resolution improves accuracy (Mingxing Tan, Quoc V. Le et al., 2019). 

However, as the size of the model increases, the accuracy gain starts to diminish after reaching 

around 80%. This indicates that while larger models may demonstrate enhanced performance, 

the extent to which accuracy improves in relation to the size of the model diminishes. As a 

result, the incremental gain in accuracy becomes less significant as the model size increases. I 

have used the EfficientNet-B3 pre-trained on ImageNet (Deng et al., 2009) which is a large-

scale image recognition database used for training and evaluating computer vision models. I 

choose EfficientNet-B0 without prior pre-training on ImageNet to compare performance.  

ResNet (He et al., 2015), short for “Residual Network” was introduced in 2015 and it is 

composed of several “Residual blocks”. ResNet typically has between 50 to over 100 layers. 

The key point of this architecture is that it uses residual connections to address the vanishing 

gradient problem that can occur in very deep networks. By incorporating skip connections 

between the layers, this approach enables efficient flow of gradients throughout the network, 

resulting in improved performance. During the training process, the weights of the model are 

updated proportionally to the partial derivative of the error function with respect to the current 

weight. When the gradient is very small, the weights in the neural network may no longer be 

effectively updated during training, resulting in a phenomenon known as vanishing gradients. 

This can occur when the gradient signal decreases as it spreads through the layers of the 

network, causing weight to update and become increasingly small and less effective. Therefore, 

the information in the data may "disappear" as it passes through the layers, leading to poor 

performance in the trained model. ResNet came up with a solution to this problem by breaking 

down a deep plain network into smaller chunks of network connected through skip or shortcut 

connections.  

Xception (Extreme inception) is another example of deep convolutional neural network, a 

model based on the idea of separating the cross-channel correlations and spatial correlation in 

the convolutional layer. It uses depth wise separable convolutions, which perform a spatial 

convolution on each channel of the input tensor separately, followed by a point-wise 



convolution that mixes the resulting feature maps. This depth wise separable convolution 

reduces the number of parameters and computation resulting an efficient and faster network 

(Chollet, 2016). 

3.4 Experiments 

Four experiments were conducted in this study. The first Experiment involves using ResNet18 

on raw datasets with pre-trained weights on ImageNet. The second Experiment is extensions 

of the first Experiment, using EfficientNet-B3 with pre-trained weights on ImageNet. The third 

Experiment involves using model Xception on down sampled datasets with pre-trained weights 

on ImageNet. The fourth experiment utilizes a balanced and oversampled dataset, employing 

the identical methodology as Experiments 2. Specifically, it employs the EfficientNet-B3 

model with two distinct training runs: one with pre-training on ImageNet and the other without. 

For all Experiments, except Experiment 3, the raw images were normalized using a mean of 

[0.3199, 0.2240, 0.1609] and a standard deviation of [0.3020, 0.2183, 0.1741]. Images with 

filters applied were normalized with a mean of [0.502, 0.501, 0.501] and a deviation of [0.121, 

0.116, 0.097]. This normalization step is crucial as images can have varying pixel values due 

to differences in lighting conditions, camera settings, or image resolution. Failure to normalize 

the pixels can prevent the network's ability to learn from the data. To standardize the pixel 

values across all images in the dataset, the normalization process includes subtracting the mean 

value of pixel intensities and dividing it by the standard deviation. This procedure ensures that 

the pixel values are consistent and comparable throughout the dataset. Each model was 

evaluated using different hyper-parameters and augmentation techniques, mentioned in detail 

in each experiment section. Furthermore, to keep the initializations constant I have tested 

different seed values including 42, 31415, 8854 before running the experiments. In order to 

effectively resolve the problem of class imbalance in classification task, I have conducted 

Experiment 4 as a comprehensive and decisive solution. This experiment aimed to compare the 

performance of models. The purpose of including these additional experiments with non-pre-

trained models was to assess the impact of pre-trained weights. 

 



3.4.1 Experiment 1 

The first experiment involves the models ResNet18 where I have set the loss function to mean 

squared error which outputs a scaler value that represents the error of the current set of model 

parameters. The aim of MSE is to minimize this difference or error between the predicted and 

actual values during the training of a neural network. After I modified the final layers of the 

ResNet18 to have an input size of 512 and an output size of 1. Additional hyper-parameters are 

shown in Table 1. The prediction of output was a continuous float value which was then used 

by a function to classify each output value as belonging to one of the five possible classes by 

converting from float values to integer using a threshold of 0.5. For example, if the output is 

less than .50 then the integer prediction will be 0, meaning No DR. Similarly, if the prediction 

is between 0.5 and 1.5 then it will convert to 1, meaning mild DR and so on. This model is 

trained for 40 epochs and the pre-trained weights used for this network is ImageNet. The dataset 

used for this experiment is the raw dataset without gaussian filter and blur. However, the images 

were lightly preprocessed and augmented as shown in Table 2. 

Hyper-parameters ResNet18 

Loss Function MSE 

Optimizer Adam 

Learning Rate 3e-5 

Batch Size 8 

Epoch 40 

Input size 728x728 

Preprocessed Resized 

Pre-trained Weights ImageNet 

Table 1 Overview of the network hyperparameters that are used in ResNet18.  

A comprehensive data augmentation technique was implemented for the ResNet18 model 

(Table 2). The transformation types include resizing the images to dimensions of 728 pixels in 

height and width, followed by random cropping to achieve a final size of 680 pixels in both 

dimensions. The augmentation also involves horizontal and vertical flipping with a probability 

of 50%, facilitating increased diversity in the training data. Furthermore, a random rotation of 

90 degrees is applied with a probability of 50% to introduce additional variability. Additionally, 

a blurring effect is applied with a probability of 30% to enhance robustness against noise and 

improve the model's ability to generalize. These augmentation techniques collectively 

contribute to the training process of the ResNet18 model, enhancing its capacity to handle 

various image variations and improve overall performance. 



Transformation Type   Description 

Resize  Height = 728, Width = 728 

Random Crop  Height = 680, Width = 680 

Horizontal flip  Probability of 50% 

Vertical Flip  Probability of 50% 

Random Rotate 90 degrees  Probability of 50% 

Blur  Probability of 30% 

     

Table 2. Data augmentation for ResNet18 model.  

3.4.2 Experiment 2 

Experiments 2 was based on Experiment 1 with changes in hyperparameters such as batch size 

or number of epochs (Table 3). However, the methods are mostly the identical. Modifications 

to the model design, such as my selection of EfficientNet-B3 with a (1536,1) fully connected 

layer. The learning rate, loss function, optimizer, and other hyper-parameters as well as 

augmentation were set to identical as in Experiment 1 (Table 3).  

Hyper-parameters EfficientNet -B3 

Loss Function MSE 

Optimizer Adam 

Learning Rate 3e-5 

Batch Size 4 

Epoch 15 

Input size 728x728 

Preprocessed Yes 

Pre-trained Weights ImageNet 

Table 3. Overview of model hyperparameters of model EfficientNet-B3. The key difference between the 

two models is in training with pre-trained weights and without pre-trained weights. 

  



3.4.3 Experiment 3 

In contrast, Xception was trained on an under-sampled balanced dataset where I selected the 

minority class and took the same number of images for other classes to train in this architecture. 

The input size was kept to the minimum of 512x512 pixels to prevent memory allocation issues. 

In addition, while preprocessing the images I changed the sigmaX value to 10. Additional 

hyper-parameters are shown in Table 4.  

Hyper-parameters Xception 

Loss Function Categorical Cross Entropy 

Optimizer Adam 

Learning Rate 1e-4 

Batch Size 4 

Epoch 20 

Input size 512x512 

Preprocessed Yes 

Weight ImageNet 

Table 4. Overview of network hyper-parameter of model Xception.  

For data augmentation I used ImageDataGenerator (Chollet, 2015). Before splitting data to 

train and test I changed the classes to categorical values and set the training and test size to 

80% and 20% respectively. In addition, transformation such as horizontal, vertical flip, rotation 

range to 180 degrees, sample wise center, zoom range to 20% were set to introduce variability 

to data (Table 5). 

 

Transformation Type   Description 

Horizontal flip  TRUE 

Vertical Flip  TRUE 

Rotation Range  180 degrees 

Zoom Range  20% 

Sample-wise Center  TRUE 

Sample-wise Standard Normalization   TRUE 

Table 5. Data augmentation parameters for Model Xception. 

 

A global average pooling layer was added to the model to reduce the number of parameters and 

improve the model’s generalization capabilities. Additionally, a drop out layer was included to 

prevent overfitting and a dense layer with softmax activation function was added to produce 



probability distribution over 5 target classes. Since the model has multi class output, the loss 

function used is categorical cross entropy. It is one of the suitable loss-functions for multi-class 

classification problems. Categorical cross entropy calculates the dissimilarity between the 

predicted probability distribution and the true probability distribution across all classes. Finally, 

the model is trained using Adam optimizer and the learning rate was set to 1e-4 to minimize the 

loss. 

3.4.4 Experiment 4 

To address the issue of imbalanced data sets, where there are significant differences in the 

number of instances between the classes, a unique strategy was implemented. Oversampling 

was used to create random images for the minority class based on length of majority class, 

while down sampling was applied to the majority class, with each class then combined to create 

a single dataset out of original dataset. The resulting dataset is then finally split into train (80%) 

and test (20%) ratio. This balanced dataset was then used to train the EfficientNet-B3 model. 

The hyper-parameters as well as the augmentations used in this experiment were shown in 

Table 6 and Table 7. 

 

Hyper-parameters EfficientNet -B3 EfficientNet-B3 scratch 

Loss Function Cross-Entropy loss Cross-Entropy loss 

Optimizer Adam Adam 

Learning Rate 1e-3 1e-3 

Batch Size 16 16 

Epoch 20 20 

Input size 512x512 512x512 

Preprocessed Yes Yes 

Weight decay 1e-5 1e-5 

Pre-trained Weights ImageNet No 

Table 6. Overview of model hyperparameters of model EfficientNet-B3 on up sampled dataset. 

 

Transformation Type   Description 

Random Horizontal flip  Default 

Rotation Range  -270, 270 

Normalization   True 

Table 7. Data augmentation parameters for the model EfficientNet-B3 on up sampled dataset. 



To address the memory allocation issue associated with the dataset, the utilization of the Apex 

library (Nvidia Apex, n.d.) was employed, as the dataset had been oversampled. This library is 

specifically designed to optimize the performance of deep learning models using mixed-

precision training techniques that combine single-precision and half-precision floating-point 

numbers for efficient training on modern hardware such as GPUs. It provides various tools, 

including automatic mixed-precision training, optimized memory management, and more 

efficient data loading, to enhance the scalability and performance of deep learning models. The 

newly created dataset was then resized, preprocessed, and compressed in hdf5 

compression='gzip' (Delaunay et al., 2019). During the model definition process, the Model 

Freezer technique was used to freeze specific layers. This approach was adopted with the aim 

of expediting the training process, potentially mitigating overfitting, and stabilizing the model's 

performance. Additionally, an initial learning rate of 1e-3 was set, accompanied by the 

implementation of a learning rate scheduler. This scheduler dynamically adjusts the learning 

rate throughout the training procedure by gradually decreasing it over time. Finally, the model 

was trained twice: once with pre-trained weights and once without pre-trained weights, while 

maintaining the same augmentation techniques and hyperparameters throughout the training 

process. 

4. Results 

4.1 Performance measures 

There are several metrics used to evaluate the performance of deep learning models in 

classification tasks. Accuracy measures the overall correctness of the model's predictions. 

Sensitivity, also known as recall or true positive rate, measures the model's ability to correctly 

identify positive cases. Specificity measures the model's ability to correctly identify negative 

cases. These metrics are important for assessing the performance of a deep learning model in 

a given task and can help to identify areas for improvement. 

Specificity = TN / (TN + FP)         (1) 

Sensitivity = TP/ (TP + FN)        (2) 

Accuracy = TN + TP/(TN + TP + FN + FP)      (3) 

https://www.sciencedirect.com/topics/computer-science/true-positive
https://www.sciencedirect.com/topics/computer-science/false-negative


True positive (TP) refers to the number of images that are classified as positive (e.g., having a 

disease) and are actually positive according to ground truth labels. True negative (TN) refers 

to the number of images that are classified as negative (e.g., not having a disease) and are 

actually negative according to ground truth labels. False positive (FP) refers to the number of 

images that are classified as positive but are actually negative according to ground truth labels. 

False negative (FN) refers to the number of images that are classified as negative but are 

actually positive according to ground truth labels. Precision is calculated as the number of 

correct positive predictions divided by the total number of positive predictions. It is also called 

positive predictive value. The best precision is 1.0, whereas the worst is 0.0. 

4.1.1 Cohen’s Kappa 

Cohen’s kappa measures the degree of agreement between two classifiers beyond what would 

be expected by chance ranging from -1 to +1, where value of -1 is complete disagreement and 

+1 is complete agreement. It is used to measure the degree of agreement between raters for 

categorical data (Banerjee et al., 1999; Chicco et al., 2021; Fleiss & Cohen, 1973; Sim & 

Wright, 2005). Cohen’s kappa is an extension of accuracy where it finds the simple percent 

agreement calculation (True prediction/ Total predictions). Kappa score makes it more robust 

by considering the agreement occurring by chance.  

The Cohen’s Kappa score is defined as, 

 

where P0 is observed agreement (same as accuracy) and Pe is expected agreement by chance. 

This expected agreement is calculated as the product of the marginal proportions of agreement 

for each label, assuming the two annotators assign labels independently of each other.  

4.1.2 Quadratic Cohen’s Kappa 

An extension of Cohen’s Kappa that considers the degree of disagreement between annotators 

or classifiers for ordinal or continuous variables where variables such as severity or intensity 

are measured on a scale rather than as discrete categories. The weighted kappa allows 

disagreement to be weighted differently and it is useful in ordinal data. It makes use of three 

matrices: Observed scores, expected scores and weight matrix. 



The quadratic Cohen’s Kappa is defined as, 

 

where, Wij is an element in weight matrix, Xij is element in observed matrix, Mij is element in 

expected matrix. In contrast, the prediction is penalized quadratically depending on the distance 

between the prediction and actual value. In that way, if the model is not predicting the true 

value of the class, at least it will try to be close to the true value. For the following reasons, it 

is useful to use quadratic kappa in life science. 

For example, the penalty score will be higher if the true prediction is 3 and model predicted as 

2 but the score will be lower if the model prediction is 4. In medical diagnosis, if the model 

predicts a higher severity level than expected, it may not necessarily be bad because there is 

room for correction. However, if the model predicts 2 but severity level is 3 or 4 such that a 

lower severity level than expected, it can be problematic because in that way patient’s condition 

is not properly addressed.  

4.1.3 Balanced Accuracy 

Balanced accuracy is used when we have an imbalanced dataset with a large number of samples 

in one class. In this case we have the class 0 which is almost 73.5% of the whole dataset. 

Therefore, accuracy alone can be a misleading metric as it does not consider the class 

distribution of the data. Balance accuracy is calculated by taking the average of the recall for 

each class (Buitinck et al., 2013). The formula for balanced accuracy is defined as 

Balanced accuracy = (Sensitivity + Specificity) / 2      (4) 

4.2 Results of Experiment 1 

After training for 40 epochs the best accuracy of quadratic kappa was found in 36th epoch. 

Based on the classification report in Table 8 ResNet18 model achieved an overall accuracy of 

0.74 with balanced accuracy of 0.488 and a quadratic kappa score of 0.791. However, it showed 

low performance for the classification of class 1 and class 3 with F1 scores below 0.3. Class 0, 

2 and 4 had F1-scores of 0.91, 0.41 and 0.44 respectively.  



  ResNet18 

  Precision Recall F1-score 

Class 0 0.92 0.9 0.91 

Class 1 0.19 0.42 0.26 

Class 2 0.74 0.29 0.41 

Class 3 0.21 0.37 0.27 

Class 4 0.41 0.46 0.44 

Accuracy 0.74 

Balanced Accuracy 0.488 

Quadratic Kappa 0.791 

Parameters 11,177,025 

Table 8. The results of experiment 1, which were conducted on the raw dataset without any balancing 

of dataset. The F1 score is significantly higher for class 1 compared to the other classes, while the 

performance of the other classes is poor.  

Figure 7. Confusion matrix generated by the best checkpoint of ResNet18. The matrix highlights the 

model’s low performance of class 1,3 and 4 with misclassified samples while model performs well to 

classify the class 0. 

  



4.3 Results of Experiment 2 

EfficientNet-B3 performs the best among the other models therefore, I have run this model to 

train for different seed values (seeds = 42, 31415, 8854) to find optimal results. Although the 

difference in results did not differ much between different seed values, seed = 31415 had the 

quadratic kappa score 0.81. The mean quadratic kappa score of three different seeds runs was 

0.79 ± 0.06. Furthermore, this model had limitation on classifying class and lowest F1-score 

0.26 among other classes. Performance of Classes 0, 2, 3, and 4 were relatively better than 

other models with F1 scores 0.92, 0.51, 0.42 and 0.63 respectively. The confusion matrix also 

indicated that class 1 is poorly predicted (Figure 8). While training this model for 15 epochs, 

each iteration took approximately 30 minutes to complete. 

  EfficientNet-B3 

  Precision Recall F1-score 

Class 0 0.9 0.94 0.92 

Class 1 0.23 0.3 0.26 

Class 2 0.76 0.38 0.51 

Class 3 0.29 0.74 0.42 

Class 4 0.76 0.54 0.63 

Accuracy 0.8 

Balanced Accuracy 0.578 

Quadratic Kappa 0.818 

Parameters 10,697,769 

Table 9. The model is performing well on the preprocessed, unbalanced dataset. The F1 score of class 

0 is notable. However, while class 4 is also performing well, the scores for the other classes are 

comparatively low. 



 

Figure 8. Confusion matrix generated by the best checkpoint of EfficientNet-B3. The matrix highlights 

the model’s low performance of class 1 and 3 while model performs well to classify the class 0, 2 and 

4. 

 

4.4 Results of Experiment 3 

Xception model was trained on a under sampled balanced dataset where all the classes had 

similar number of samples. This model achieved an accuracy of 0.54 on the validation set, with 

a weighted F1-score of 0.53. The model has the highest precision for class 4, which is 0.86 and 

the highest recall for class 0 is 0.82, while classes 1 and 2 had the lowest performance 0.30 and 

0.45 respectively. The confusion matrix generated by the best checkpoint also indicates that the 

model is struggling to learn classification of class 1 and 2. The quadratic kappa score is 

relatively high at 0.77 indicating moderate agreement between the predicted and actual labels. 

The factors that may have contributed to the lower performance of these classes are the 

complexity of their features or the quality of the training data for corresponding classes. It may 

be worthwhile to investigate these factors further to improve the model’s performance. 



 

  Xception 

  Precision Recall F1-score 

Class 0 0.51 0.82 0.63 

Class 1 0.35 0.27 0.3 

Class 2 0.45 0.45 0.45 

Class 3 0.66 0.55 0.6 

Class 4 0.86 0.52 0.65 

Accuracy 0.54 

Balanced Accuracy 0.521 

Quadratic Kappa 0.765 

Parameters 20,871,725 

Table 10. The results of experiment 2, which was conducted on the preprocessed down sampled dataset. 

Each class consists of 700 images. Unlike experiment 1, the F1 score is considerable for class 0, 3 and 

4 compared to the other classes, while the performance of the other classes are poor.  

 

Figure 9. Confusion matrix generated by the best checkpoint of Xception. The matrix highlights the 

model’s low performance of class 1 and 2 while model performs well to classify the class 0, 3 and 4. 

 



It is important to highlight that the model was trained on an under-sampled dataset, where a 

significant number of samples were not considered during the training process. This approach 

can lead to various challenges and potential issues that need to be considered. Training a model 

on an under-sampled dataset can result in biased predictions. Since certain classes or instances 

have been underrepresented in the training data, the model may not adequately learn the 

patterns and characteristics of these underrepresented samples. As a result, when the model 

encounters such instances during inference or testing, it may struggle to make accurate 

predictions or provide reliable insights. 

4.5 Results on Experiment 4 

4.5.1 With pre-trained weights on ImageNet: 

To mitigate with the class imbalance and the issue of under sampling I have conducted another 

sampling strategy by oversampling the minority class according to the majority class to balance 

the dataset. The model's performance was assessed on a test dataset of 20,648 instances and 

evaluated using a classification matrix and various performance metrics, including Balanced 

Accuracy, Quadratic Kappa Score, precision, recall, and F1-score. The confusion matrix 

presented in Figure 10 shows the true positives, false positives, true negatives, and false 

negatives for each class. The Balanced Accuracy of the model was 0.9392, indicating a high 

level of overall performance in correctly classifying instances across all classes. The Quadratic 

Kappa Score predicted a value of 0.9640. The average quadratic kappa score from three 

different runs with varying seed values was determined to be 0.93±0.03. 

  EfficientNet-B3 on Up sampled dataset (Pre-trained) 

  Precision Recall F1-score 

Class 0 0.89 0.84 0.86 

Class 1 0.88 0.95 0.91 

Class 2 0.94 0.91 0.93 

Class 3 1.00 1.00 1.00 

Class 4 1.00 1.00 1.00 

Accuracy 0.94 

Balanced Accuracy 0.933 

Quadratic Kappa 0.963 

Parameters 10,697,769 

Table 11. The model achieved an accuracy of 0.94, which means that it is correctly classified 94% of 

the instances in the dataset. The precision, recall, and F1-score metrics are reported for each class 

separately, with class 0 achieving an F1-score of 0.86, class 1 achieving an F1-score of 0.91, class 2 

achieving an F1-score of 0.93, and classes 3 and 4 achieving perfect scores of 1.00. 



 

Figure 10. In this confusion matrix, the model predicted class 0 correctly 3509 times, but misclassified 

431 instances as class 1, 224 instances as class 2, and 3 instances as class 3. Similarly, the model 

predicted class 1 correctly 3871 times, but misclassified 205 instances as class 0 and 17 instances as 

class 2. The same pattern is seen for classes 2, 3, and 4, with misclassifications occurring in various 

directions. 

This score suggests that the model's predictions are in strong agreement with the true classes. 

The model demonstrated high precision, recall, and F1-scores across all five classes. 

Particularly strong performance is prominent in classes 3 and 4, where it achieved perfect 

scores. However, it should be noted that classes 3 and 4 had the lowest number of samples in 

the original dataset, and oversampling techniques were employed to balance the data. This 

could potentially lead to an overestimation of the model's performance in these classes, as it 

may be more prone to overfitting on the smaller sample sizes. The overall accuracy of the 

model was 0.94, which highlights its effectiveness in detecting diabetic retinopathy stages. 

Further research and validation with larger, balanced datasets are needed to confirm its 

effectiveness in these stages of diabetic retinopathy.  



4.5.2 Without Pre-trained weights on ImageNet: 

The confusion matrix reveals the distribution of predicted labels against the actual labels. The 

model achieved a balanced accuracy of approximately 71.42%, indicating reasonable overall 

performance (Table 12). In contrast to pre-trained on ImageNet, the performance decline is 

significant. 

  EfficientNet-B3 on Up sampled dataset (Not Pre-trained) 

  Precision Recall F1-score 

Class 0 0.58 0.75 0.66 

Class 1 0.57 0.47 0.52 

Class 2 0.64 0.51 0.57 

Class 3 0.82 0.85 0.84 

Class 4 0.94 0.98 0.96 

Accuracy 0.71 

Balanced Accuracy 0.714 

Quadratic Kappa 0.878 

Parameters 10,697,769 

Table 12. The model attained an accuracy of 0.71, indicating that it accurately classified 71% of the 

instances within the dataset. Precision, recall, and F1-score metrics were calculated for individual 

classes, revealing class 3 and 4 to exhibit a respectable performance compared to the ImageNet 

pretrained model. However, classes 0, 1, and 2 demonstrated lower performance, with F1-scores 

ranging from 0.52 to 0.66. 

The quadratic kappa score, measuring the agreement between predicted and actual labels 

beyond chance, yielded a high value of 0.88. This signifies a substantial agreement between 

the model's predictions and the true labels. The confusion matrix provides valuable insights 

into the model's misclassifications, aiding in understanding the specific areas where 

improvement may be needed. In Figure 11 the confusion matrix highlights the number of 

instances that are misclassified in each direction. For example, the model misclassified 899 

instances of class 0 as class 1, 2078 instances of class 1 as class 0, and 853 instances of class 2 

as class 1. Additionally, the matrix shows that class 4 achieved the highest accuracy, with only 

92 instances misclassified, while class 0 had the highest number of misclassifications with 1292 

instances misclassified. 



 

Figure 11. The confusion matrix illustrates the classification results obtained by the model, showcasing 

the distribution of predicted labels against the actual labels. The matrix provides a visual representation 

of the number of instances classified correctly and misclassified across different classes. In class 0, 899 

instances were misclassified as class 1, 292 as class 2, 29 as class 3, and 62 as class 4. In class 1, 2078 

instances were misclassified as class 0, 561 as class 2, 36 as class 3, and 14 as class 4 so on for other 

classes.  

Analyzing the precision, recall, and F1-score for each class, it was observed that class 4 

achieved the highest scores, indicating excellent performance. Classes 0, 1, 2, and 3 also 

achieved moderate scores, showing reasonable accuracy in their predictions. The overall 

weighted average of precision, recall, and F1-score is approximately 71%, consistent with the 

balanced accuracy.  

The primary observation from these two training results is that the utilization of a pre-trained 

model yields more precise feature capturing compared to training the model from scratch. 

When using pre-trained weights, the model benefits from the knowledge gained from a large 

dataset, such as ImageNet, which helps in learning generalized and discriminative features. 

This transfer of knowledge enhances the model's ability to recognize patterns and distinguish 



between different classes. On the other hand, training a model from scratch requires learning 

features solely from the provided dataset. This process may be more challenging as the model 

has to start from random weights and iterate through numerous training iterations to develop 

effective features. 

5. Discussion 

A comparison of Experiment 1 and Experiment 2 reveals that Experiment 2 achieved a 

noteworthy accuracy improvement of over 0.06. This improvement can be attributed to the 

utilization of a preprocessed dataset specifically designed for EfficientNet-B3. However, the 

quadratic kappa score improved only by 0.01 for these two experiments. Nonetheless, the F1-

Score improved significantly within these two experiments among class 2, 3, and 4. Overall, 

in experiments 1, 2 and 3 the models have varying performance across different classes, with 

some models performing better in certain classes than others. However, the performance for 

class 1 is generally the lowest among experiments mentioned, indicating this class may be more 

difficult to classify accurately. Comparative analysis of the models trained from scratch and 

with pre-trained weights reveals that the pre-trained models exhibit faster feature learning on 

this dataset than the models trained from scratch. Nonetheless, by solving the imbalance data 

in Experiment 5 I have achieved the highest accuracy of 0.94 and kappa score of 0.964. The 

reference standard used for the study was the majority decision of ophthalmologist graders 

(Quellec et al., 2017b). The dataset is manually labeled by professional ophthalmologists. 

However, there may be small details in the images that even the doctors didn't notice, so 

training based on that dataset, the model might struggle to tell the difference between two 

classes.  Another possible limitation is the nature of the neural networks because the network 

was provided with only the images and associated level of disease without explicit definitions 

of features. Therefore, the network learned those features that were most predictive for 

referability implicitly, which could include features unknown or be ignored by 

ophthalmologists. In future, retinopathy detection could involve several areas of research. One 

possible area of focus is to use multimodal data sources, such as combining retinal images with 

other clinical data, for instance, blood sugar level or patient medical history to improve 

accuracy and reliability. Finally, research efforts could also focus on deploying and testing the 

effectiveness of diabetic retinopathy detection models in real-world clinical settings, such as in 

telemedicine or remote patient care scenarios, to ensure that these tools are practical and useful 

for healthcare providers. 



6. Conclusion 

Automated screening systems have been proving as an effective tool in reducing the time and 

costs associated with diagnosing patients, especially in the field of ophthalmology. By 

leveraging deep learning systems, Ophthalmologists can discover potential diagnoses and start 

therapy on time. Extensive research is essential in the field of detecting DR at an early stage, 

as these systems significantly contribute to the process. In this thesis I have explored issues 

related to screening of this disease and proposed possible solutions using deep learning 

techniques. Furthermore, I investigated the effects of image preprocessing techniques, as well 

as data oversampling and down-sampling methods, on the accuracy of the models. 

Additionally, I compared the impact of using pre-trained versus non-pretrained weights on the 

models' performance. Through this process, one transfer learning solution emerged that 

performs the best when combined with image preprocessing technique. Where, the best 

accuracy 0.94 and quadratic kappa score 0.964 was reported on multi-label classification 

method with EfficientNet-B3 pretrained model. Furthermore, I have included potential 

explanations for a failure to detect certain classes accurately and highlighted areas that would 

benefit from future research and development. 
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