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Abstract

Digital Elevation Models (DEMs) play an important role in a wide
range of environmental applications. Nowadays, remote sensing consti-
tutes the most common source of data for the generation of elevation
models. One of the techniques widely used in remote sensing, airborne
photogrammetry, is a standard method for the acquisition of such data.
Especially with the current boom of unmanned aerial vehicles (UAVs),
the potential of this method is growing. Still, laser altimetry, commonly
referred to as airborne laser scanning (ALS) or light detection and
ranging (LiDAR) remains the most popular technique. Both ALS and
airborne photogrammetry result in the point clouds that need to be fur-
ther processed to obtain DEMs. The first step of point cloud processing
is called ground filtering – a process separating points that represent
bare ground from non-ground points. Ground filtering represents an
essential step of point cloud processing. The aim of this thesis is to
evaluate the performance of commonly used ground filtering algorithms
of point clouds in a complex artificial terrain for the purpose of creat-
ing an accurate digital terrain model. Specifically, in this thesis was
assessed: 1) the effect of vegetation and terrain characteristics on the
performance of individual algorithms in a complex non-natural terrain
overgrown with forest, steppe, and grass vegetation; 2) sensitivity of
parameters and differences in performance between algorithms applied
to both types of point clouds (i.e., derived from both ALS and UAV
photogrammetry); and 3) we evaluated whether DEMs accuracy can be
improved by acquisition of images under leaf-off conditions and, hence,
potentially used in combination with leaf-on conditions to estimate
vegetation cover characteristics. The results of this thesis showed a



great potential of ground filtering of point cloud data. All tested algo-
rithms behaved consistently when filtering LiDAR point clouds, with
problems typically more common when filtering low vegetation and/or
with increasing slope; however, when filtering photogrammetric point
clouds, this was not completely true; hence, caution is needed when
choosing algorithms for ground filtering of photogrammetric data. Some
algorithms were more susceptible to Type I error while others tended
rather to the Type II error; future research should evaluate whether
these tendencies are universal and how they relate to the vegetation
and terrain character. In addition, the combination of UAV imagery
from leaf-off and leaf-on conditions have a potential to replace expen-
sive airborne LiDAR surveys for applications requiring information on
vegetation cover or vegetation height.



Abstrakt (Czech)

Digitální výškové modely hrají důležitou roli v široké škále environmen-
tálních aplikací. V dnešní době je dálkový průzkum Země nejběžnějším
zdrojem dat pro tvorbu digitálních výškových modelů. Jedna z široce
využívaných technik v dálkovém průzkumu Země, letecká fotogramme-
trie, je standardní metodou pro získávání těchto dat. Zejména se součas-
ným rozmachem bezpilotních leteckých prostředků (UAV) potenciál této
metody roste. Nejvíce využívanou technikou však stále zůstává laserová
altimetrie, běžně označována jako letecké laserové skenování (LLS) nebo
LiDAR. Výsledkem LLS i letecké fotogrammetrie jsou mračna bodů,
jež je třeba pro získání digitálních výškových modelů dále zpracovat.
Prvním krokem ve zpracovávání bodových mračen je tzv. ground filter-
ing – proces, při kterém se filtrují body reprezentující zemský povrch od
bodů, které představují objekty nad ním. Ground filtetring je základ-
ním procesem v analyzování bodových mračen. Cílem této práce je vy-
hodnotit výkonnost běžně používaných filtračních algoritmů bodových
mračen v komplexním terénu post-těžebních oblastí za účelem vytvoření
přesného digitálního modelu reliéfu (DMR). Konkrétně se tato disertační
práce zabývá: 1) hodnocením vlivu vegetačních a terénních charakter-
istik na výkonnost jednotlivých algoritmů v komplexním nepřírodním
terénu porostlém lesní, stepní a travnatou vegetací; 2) citlivostní analý-
zou parametrů a rozdílností ve výkonnosti algoritmů aplikovaných na
oba typy bodových mračen (tj. získaných z LLS i UAV fotogramme-
trie); 3) vyhodnocením, zda lze přesnost digitálních výškových modelů
zlepšit při pořizování UAV snímků v období bez olistění a tudíž po-
tenciálně využít syntézu s daty z olistěného obdobím k následnému
odhadu charakteristik vegetačního krytu. Výsledky této práce ukázaly



velký potenciál ground filtering procesu při zpracování bodových mračen.
Všechny testované algoritmy se při filtrování bodových mračen získaných
z LLS chovaly konzistentně, přičemž docházelo častěji k problémům při
filtraci nízké vegetace a/nebo rostoucí sklonitosti terénu, nicméně při
filtraci fotogrammetrických mračen bodů tento jev zcela neplatil. Proto
je nezbytné postupovat obezřetně při výběru algoritmů pro ground
filtering fotogrammetrických dat. Z výsledků dále plyne, že některé
algoritmy byly náchylnější k chybě I. druhu, zatímco jiné inklinovaly
spíše k chybě II. druhu. Následný výzkum by měl proto zhodnotit,
zda jsou tyto tendence univerzální a jakou mají souvislost s charak-
terem vegetace a terénu. Kombinace snímkování bezpilotními leteckými
prostředky v období bez olistění a s olistěním má navíc potenciál nahra-
dit nákladné LLS pro aplikace vyžadující informace o vegetačním krytu
nebo výšce vegetace.
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Chapter 1

Thesis Preface

1.1 Foreword

Digital Elevation Models (DEMs) play an important role in a wide
range of environmental applications. Historically, ground surveys and
digitizing of existing topographic maps constituted the most common
source of data for generation of elevation models. Nowadays, however,
their place was taken by remote sensing. One of the popular techniques
widely used in remote sensing, photogrammetry, is a standard method
that has been used for several decades and keeps improving. Radar is
another often used remote sensing technique for DEM acquisition. Last
but not least, laser altimetry, commonly referred to as light detection
and ranging (LiDAR) or airborne laser scanning (ALS), has become
increasingly available since mid-nineties. ALS uses laser to collect height
information. Laser is an active sensor capable of penetrating through
gaps in vegetation, allowing acquisition of information about the ground
even under the vegetation canopy, which used to be extremely difficult
with aerial photogrammetry or radar. This, along with the fact that it
provides very accurate information about terrain elevation, caused the
boom of its popularity.

The use of ALS-derived accurate elevation models in various fields
such as landscape modeling, forest inventory, city modeling, visualiza-
tion applications, flood or drainage modeling, landslides monitoring,
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land-use studies, and geological applications (to name but a few) keeps
increasing. ALS is undoubtedly an excellent method for any applications
requiring accurate models of areas from tens up to tens of thousands of
square kilometers. However, relatively high acquisition costs of ALS
have nourished the interest to find alternative techniques for obtaining
surface elevation and, therefore, left the door open for photogrammetry.
Current advances in computer processing and algorithm development
powered the progress in photogrammetric techniques facilitating faster
data processing and higher accuracy of elevation models than twenty
years ago.

Both ALS and airborne photogrammetry produce point clouds that
need to be further processed. The first step of point cloud processing
is called ground filtering – a process separating points that represent
bare ground from non-ground points representing objects above it, such
as trees. Dozens of algorithms automatically distinguishing the bare
earth in point clouds have been developed, generally referred to as
filtering algorithms. However, despite the large efforts invested into
the development of filtering algorithms, accurate filtering remains a
challenge, particularly in landscapes with dense vegetation and rugged
terrain. In this thesis, I assess the performance of several filtering
algorithms in complex terrain and provide guidelines for their use.

1.2 Research Motivation

I work as a pilot of unmanned aerial vehicles (UAVs). It is, therefore, not
surprising that my PhD research is in a related field, mainly focusing on
the use of various point cloud data and their processing to obtain DEMs.
At the end of the last century, the availability of DEMs was limited
due to their difficult acquisition. However, techniques and technologies
are evolving every day and I am personally interested in how to use
them and what progress can be made in acquiring information about
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the environment and the Earth. Airborne laser scanning may be
at present the preferred way of obtaining point clouds; nevertheless,
photogrammetry, especially in combination with UAVs, can undoubtedly
be considered a modern method of obtaining information about the
Earth’s surface.

Ground filtering is the most crucial and critical step of point cloud data
processing. Indeed, countless algorithms based on different principles
were developed for ALS point clouds filtering. I have been always curious
to learn how they work and to look for ways to improve their perfor-
mance. When I saw a point cloud from the UAV aerial photogrammetry
for the first time, several questions occurred to me. Firstly, whether
ground filtering algorithms designed for point clouds obtained from ALS
are able to work with photogrammetry-derived point clouds; secondly,
how the filtering will be affected by environmental characteristics such
as the vegetation cover or terrain slope that are well known to affect
ALS point clouds filtering. Motivated by curiosity and (being a UAV
pilot) frequent queries by users on how to generate bare earth models
for various applications, I immersed myself in this issue.
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1.3 Thesis Structure

The thesis consists of three published studies and is divided into two
parts and seven chapters. The Part I contains a preface and general
introduction into the field of ground filtering algorithms of point clouds.
The Part II consists of individual published studies:

• Study I: Assessment of LiDAR ground filtering algorithms for
determining ground surface of non-natural terrain overgrown with
forest and steppe vegetation.

• Study II: Sensitivity analysis of parameters and contrasting
performance of ground filtering algorithms with UAV photogram-
metry-based and LiDAR point clouds.

• Study III: Comparison of leaf-off and leaf-on combined UAV
imagery and airborne LiDAR for assessment of a post-mining
site terrain and vegetation structure: Prospects for monitoring
hazards and restoration success.
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Chapter 2

Objectives of the Thesis

The aim of this thesis is to evaluate the performance of commonly used
ground filtering algorithms of point clouds in complex artificial terrains
for the purpose of creating an accurate digital terrain model. Specifically,
we assessed: 1) the effect of vegetation and terrain characteristics on the
performance of individual algorithms in a complex non-natural terrain
overgrown with forest, steppe, and grass vegetation; 2) sensitivity of
parameters and differences in performance between algorithms applied
on both types of point clouds (i.e., derived from both ALS and UAV
photogrammetry); and 3) we evaluated whether DEMs accuracy can
be improved by the acquisition of images under leaf-off conditions
and, hence, potentially used in combination with leaf-on conditions to
estimate vegetation cover characteristics.
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Chapter 3

Theoretical Background

3.1 Introduction

Many definitions of remote sensing can be found in the literature;
in general, it can be defined as a method of obtaining information
about objects without physical contact with them (Fischer et al. 1976).
A more specific definition is provided in the UN General Assembly
Resolutions(UN General Assembly 1986), where remote sensing is
described as sensing the Earth’s surface from space using the properties
of electromagnetic waves emitted, reflected, or refracted by the scanned
objects for the purpose of improving the use of terrestrial resources,
land use, and environmental protection. The term "remote sensing"
describes the complete process from data acquisition, processing to the
final visualization and interpretation.

Elevation data are a critical element in any geoscience application,
from the fundamentals of landscape mapping to more advanced three-
dimensional (3D) environmental modeling. A large amount of digital
elevation data exist, from large-scale global datasets to smaller-scale
regional datasets. For each application, a decision must be made on
the suitability of particular elevation datasets. This depends on many
factors, in particular the cost, resolution, and accuracy of the data.
The most common representation of the mapped Earth structure for
research applications comes in the form of products such as Digital
Terrain Models (DTMs) or Digital Surface Models (DSMs).
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3.2 Digital Terrain and Surface Models

Digital elevation models are a superset of both digital terrain and surface
models, which constitute the most important spatial datasets in many
geographical information systems (GIS). If both of them are available,
other products, such as normalized digital surface models (nDSM) or
canopy height models (CHMs) can be derived. The above-mentioned
terms are defined as follows (Figure 3.1).

• A DSM is an elevation model that includes the uppermost layer
of the Earth’s surface including the buildings, vegetation/trees, and
ground (where it is empty of both vegetation and other objects).

• A DTM is a "bare ground" surface model, which is supposedly free
of trees, buildings, or other non-ground objects.

• An nDSM is the difference between the DSM and DTM describing
all off-terrain objects.

• A CHM is an nDSM showing a certain distinguishable strata of the
vegetation.

3.3 Point Cloud Data and Processing

Point cloud data constitute an important source for the assessment
of the 3D structure of the environment. Point clouds are extensive,
disordered sets of points with X, Y, Z coordinates (and, possibly with
other properties, such as the color of the point). A point cloud is
typically a product of laser scanning or photogrammetry and becomes
a commonplace data source for DTMs production. Data is most com-
monly acquired by aircraft equipped with LiDAR and UAVs equipped
with RGB cameras. Raw point cloud data need to be further processed,
the most critical part of which is, again, the identification of ground
points (i.e., points representing bare ground; Figure 3.2).
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Figure 3.1: A schematic illustration of the most common elevation (DSM,
DTM) and height (nDSM, CHM) datasets derived from the LiDAR point
clouds.

3.3.1 Aircraft Equipped With LiDAR

The word "laser" is an acronym in itself, standing for Light Amplification
by Stimulated Emission of Radiation. A laser is an optical device pro-
ducing, upon activation by an external energy source, monochromatic
radiation – a laser beam. Laser is used for measurement of distances
due to its unique characteristics such as the coherence and capability of
emitting a huge number of photons in a defined direction in very short
pulses of a pre-defined wavelength (Heritage and Large 2009).

A LiDAR system uses laser beams to measure distances between the
sensor and a target surface and, in effect, to determine the positions
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Figure 3.2: An example of a point cloud classified into several different
classes.

of objects (Wehr and Lohr 1999). Typically, LiDAR system mounted
on the aircraft (airborne LiDAR) is a complex multisensory system
consisting most importantly of the control, monitoring and recording
units, position and orientation system, and laser scanner (May and
Toth 2007). The laser scanner produces a wide swath of pulses and
thanks to the known speed of transmission of these pulses, it is possible
to calculate the distance of the scanner from the point that caused
the reflection of the beam. The distances are computed from the time
delay between the laser pulse transmission and detection. The onboard
Global Navigation Satellite System (GNSS) components provide the
position and orientation of the aircraft movement. Subsequently, all
these data are used in post-processing to calculate the coordinates of
each point in the point cloud (Vosselman and Mass 2010). In order
to calculate the geographical coordinates of the reflected beam, it is
necessary to know, in addition to the distance itself, the direction in
which the beam was sent from the scanner, the angles of rotation of
the scanning device, and the position of that device in the required
coordinates. Changing the scanning direction in a plane perpendicular
to the direction of flight of the carrier is most commonly provided by
a rotating mirror or prism, but other devices - such as optical fibers -
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can also be used. The resulting point tracing on the Earth’s surface
varies, depending on the mechanism used (Slatton et al. 2007). The
angles of rotation of the scanning device in three axes are measured
by an inertial measurement unit (IMU) and, as mentioned above, the
position of the whole system is obtained by the device receiving the
GNSS signal (Wehr and Lohr 1999). A typical LiDAR scanning output
is represented by an irregular distribution of the returns (e.g., echoes,
points) in the three-dimensional space, commonly referred to as a point
cloud. Point clouds contain reflections from various features such as
ground, vegetation, and buildings (see Figure 3.3).

Figure 3.3: A schematic drawing of data acquisition based on the aircraft
equipped with LiDAR (a) and UAV equipped with RGB camera (b). Grey
areas indicate occlusion, i.e., areas where the respective technique cannot
provide reliable data (Mandlburger et al. 2017).

3.3.2 Unmanned Aerial Vehicle Equipped With
RGB Camera

UAV is generally defined as an aircraft without an onboard crew that
can be operated remotely or fly alone using pre-programmed flight plans
or more complex dynamic autonomous systems. The Civil Aviation
Authority (CAA) defines it as "aircraft intended to operate without a
pilot" (CAA 2017).

The current greater availability of UAVs has led to their use in a
wide range of disciplines. The main advantage of UAVs, compared
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to traditional airborne methods, is the relatively affordable price, the
ability to obtain spatial data of detailed scales, and, most importantly,
the fact that anyone can fly them (following certain rules). They are
usually used in combination with digital cameras and acquired images
are processed using a combination of Structure from Motion (SfM) and
Multi-View Stereo (MVS) approaches (Westoby et al. 2012, Javernick
et al. 2014), which facilitates the extraction of 3D point clouds similar
to those produced by laser scanning (Nex and Remondino 2014). UAVs
introduced new possibilities for photogrammetric projects thanks to
their flexibility of flight planning, onboard GNSS navigation devices,
and inertial data synchronization with photo shooting. Various UAV
platforms can be used for data acquisition, such as kites, balloons,
airships, helicopters, multi-rotor systems, fixed-wing aircraft, and other
devices. Individual unmanned aerial vehicles differ in their capabilities
and their performance often depends on the quality of used components
and payload (Ritter 2014). In recent years, however, fixed-wing aircraft
is clearly the most widely used type. Fixed-wing aircraft are an excellent
tool with a relatively long flight time, enabling the acquisition of high-
quality photogrammetric data for a larger area (tens of hectares or
even more) during a single flight mission. Easy handling with a pre-
programmed flight path, stability, wind resistance, etc., count among
its principal advantages. The eBee fixed-wing by the Swiss company
SenseFly is a typical present-day representative of this technology. It is
able to map up to 12 km2 per one flight while acquiring data with the
highest possible resolution (Ground sample distance, GSD) of approx.
1.5 cm. The pixel size of GSD and the resulting size of the scanned
area are determined by the selected flight level (altitude above ground)
and camera chip size (Mesas-Carrascosa et al. 2016).
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3.4 Structure from Motion

The Structure from Motion (SfM) method is widely used in photogram-
metric data processing and for efficient management of imagery captured
by sensors onboard the UAVs (Figure 3.4). It is, for example, used by
commercial software such as Pix4Dmapper (Pix4D S.A., Switzerland)
and Agisoft Metashape (Agisoft LLC, Russia), with the latter being,
due to its simplicity, the most widely used SfM software (Smith et al.
2016). Besides, it is implemented in several free open source software
solutions such as VisualSFM (Wu 2011) or MicMac (Rupnik et al.
2017).

Figure 3.4: Point cloud data processing in Pix4Dmapper software.

It is based on the principle of the photogrammetric intersection. The
object is photographed from multiple positions and angles so that the
characteristics of the object are captured in several images simulta-
neously (Figure 3.5). The software mainly uses the SIFT algorithm
(Scale Invariant Feature Transform) to find significant points (so-called
Features) based on the determination of local extremes in the image
(Lowe 2004). From these points, located in several images, the algo-
rithm automatically calculates the parameters and relative positions
of the camera, i.e., parameters of the internal orientation. In the next
step, the Bundle Adjustment method is used to balance all parameters,
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i.e., coordinates of points, position, and rotation of cameras, so-called
parameters of the external orientation. Thanks to the obtained geo-
metric relationships between images, it is then possible to estimate the
structure of the surfaces present in the images, and thus to create a
3D representation of identical points with coordinates in the relative
coordinate system, which are referred to as sparse point clouds (Snavely
et al. 2008, Smith et al. 2016).

Figure 3.5: Structure from Motion (SfM) photogrammetric principle
(Sweeney 2016).

The parameters of internal orientation are directly related to the cap-
tured image; they define the geometry of the bundle inside the camera
or the position of the projection center in the image coordinate system.
These parameters are the key to image alignment and are usually given
in the form of three parameters, namely the camera constant (focal
length), the position of the main point, and the radial (and tangential)
distortion parameters (Bao and Savarese 2011). All images entering
SfM processing must have identical internal orientation parameters.
This basically means that the focal length must not be changed, the
camera must have the motion blur reduction systems turned off (ei-
ther by moving the chip or by moving the lens internals). Ideally,
neither the focusing distance nor the aperture value should change,
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either; in addition, the images must not be subsequently cropped or
geometrically adjusted (e.g., sharpened). In the case of metric cameras,
these internal parameters are known in advance and enter the image
alignment process. In the case of conventional UAV cameras, these
parameters are usually estimated during alignment. The parameters
of UAV cameras can be determined by calibration in special software
(Civera et al. 2009, Toldo et al. 2015). Most SfM software solutions
support entering parameters determined in this way. It is also recom-
mended to keep identical lighting conditions on all images that enter the
alignment. Optimally, the photos should be taken in diffused lighting,
i.e., under continuous cloud cover to ensure equal lighting conditions
for the entire recorded area. When obtaining images in direct sunlight,
the entire campaign should be managed to avoid shifts in the lighting
angle, and no part of the captured area should be temporarily obscured
(e.g., by trees or clouds) (Tonkin and Midgley 2016). The best option
is to use a lens with a fixed focal length which, in addition, usually also
provides better image quality than a zoom lens. The type of camera
does not determine the accuracy of the result as long as it is able to
provide sufficient resolution (e.g., exceeding 10 Mpx). More modern
cameras and cameras with larger chips have the advantage of lower
noise at higher ISO values and are therefore usable even in poor lighting
conditions. Ideally, calibration of the scanning assembly providing basic
information about the achievable accuracy of the photogrammetric
output should be performed before the acquisition itself.

The parameters of external orientation are related to the platform that
captures the images, i.e., carries a sensor. The position of the bundle is
usually expressed by six parameters – three coordinates of the center
of the optical system x, y, z, and the orientation of the sensor in three
rotations ω, φ, κ (see Figure 3.6). External orientation elements may be
unknown before image alignment but often enter the alignment process
as parameters acquired automatically by GNSS and IMU units onboard
the UAV.
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Figure 3.6: Elements of the external orientation (Leica Geosystems 2003).

3.5 Multi-View Stereo

Multi-View Stereo (MVS) technique is used for sparse point cloud
densification. Unlike other stereo approaches, MVS has been designed
to handle a very large number of images and images taken from differ-
ent angles. However, this requires an ability to scale the input data
(i.e., the ability to switch between image scales). The aim of MVS is
to reconstruct a complete scene of the object of interest using input
images of a known position. In contrast to SfM, the formation of a
point cloud using MVS presupposes the already known internal and
external orientation of the input images. MVS generally works poorly
for Lambert surfaces, i.e., those with perfect light scattering without
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specular reflection. In such a case, it is difficult for MVS to reconstruct
the scene (typically interiors, reflective materials, homogeneous pat-
terns). The geometry of the scene can be reconstructed, for example,
using depth maps, sparse point clouds, or triangular meshes.

The whole MVS process usually consists of several sub-algorithms, and
the principle is always similar. The surface of the object is reconstructed
through expansion from a sparse point cloud, where new points are
iteratively added to those already existing, and this process is repeated
until complete coverage of the captured scene is achieved (Fuhrmann
et al. 2014). The resulting surfaces are then subjected to filtering,
which removes incorrectly placed points and increases the continuity
of the resulting surface (Yang et al. 2013). The algorithms proposed
by Furukawa and Ponce (2010) known as CMVS-PMVS are typical
examples of this step. Clustering Views for Multi-View Stereo (CMVS)
builds upon the output from SfM and mediates the selection of images
with similar scenes, creating a multi-stereo projection into clusters.
This step is mainly used to reduce computing capacity requirements.
Subsequently, Patch-based Multi-View Stereo (PMVS) generates ad-
ditional points, adding them into the point cloud. The advantage of
that algorithm is that it reconstructs only rigid objects; it filters out
obscure, e.g., moving, objects. Filtering non-rigid objects out is usually
referred to as ghost-filtering.

3.6 Filtering Methods

As already mentioned, the filtering algorithms separate points that
represent bare ground from non-ground points representing above-
ground objects, such as trees and buildings. The accurate classification
provides the basis for the generation of high-quality DTMs. There
are dozens of different types of filters; however, the main ones can be
classified into the slope-based, morphology-based, and interpolation-
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based categories. Each category uses different assumptions of filtering,
resulting in the strengths and weaknesses of each category (Favorskaya
and Jain 2017).

3.6.1 Slope-Based Filtering Methods

In the slope-based approaches, the slope value for each point is computed
using its adjacent points. Points with high slope value are potentially
non-ground. Hence, considering the slope value in a constant distance
can be a suitable criterion for detecting the non-ground points (Vossel-
man 2000). However, specifying the slope threshold in these approaches
is a challenging issue because the use of a single constant threshold is
not appropriate in complex regions (Meng et al. 2010). In other words,
the threshold should be slope-adaptive and should be set individually,
taking the slope range of the area into account (Susaki 2012). As the
height differences even between neighboring ground points can some-
times be similar to those of non-ground points, employing only the
slope parameter in the steep and complex terrain with dense coverage
is not enough and does not lead to acceptable results (Sithole and
Vosselman 2004).

3.6.2 Morphology-Based Filtering Methods

The morphology-based approaches assume that the ground points are
associated with the relatively lower points of the point cloud, while the
non-ground objects are described by points that are relatively higher.
Mathematical morphology is a technique for geometrical structure pro-
cessing based on the set theory. It is widely used to process digital
images but can be also utilized in graphs, surface meshes, and many
other spatial structures. Morphology-based filters transform the point
cloud data into digital images before performing actual filtering (Zhang
et al. 2003). The main idea of this approach is based on the approxi-
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mation of a terrain surface using the opening and closing operations
built on the dilation and erosion operators (Mongus et al. 2014, Hui
et al. 2016).

3.6.3 Interpolation-Based Filtering Methods

The interpolation-based approaches are based on iterative algorithms
which work by fitting a surface on the data and iteratively filtering
points based on their residuals from the fitted surface. In the first
iteration, an averaging surface is fit onto the data and the residuals of
the data points relative to the surface are computed. Ground points
are more likely to have negative residuals, so they are given more
weight in subsequent iterations. The procedure of generating the
surface, computing the residuals, weighing the points, and updating
the surface is repeated until the surface does not change and remains
stable (Kraus and Pfeifer 1998). For example, this approach is used in
the algorithm developed by Axelsson (2000) who used a Triangulated
Irregular Network (TIN) to generate a surface with the lowest points
and, subsequently, gradually increased the number of terrain points
based on their angles and distances to the generated surface. In each
iteration, the points that met the specified criteria are added to the
ground points.
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Abstract

Ground filtering is an inevitable step of processing the Light detection
and ranging-acquired point clouds. Our objective was to evaluate the
performance of six filtering algorithms. The point clouds filtering and
vertical accuracy were evaluated qualitatively, quantitatively and by
comparison with a GNSS survey. All tested algorithms achieved good
results but their performance was affected by the terrain slope and
vegetation cover. Algorithms performed better in forests than in steppes
with a high density of low vegetation. The performance of all algorithms
decreased with slopes over 15°. Our results show that some algorithms
tended to cause Type I error while others tended more to the Type II
error. Furthermore, for some algorithms this tendency depended on
the vegetation and terrain character. The Progressive Triangulated
Irregular Network algorithm provided overall well-balanced results in
all environments. We propose that software developers should pro-
vide users with recommendations of optimal parameters for individual
environments.

Keywords: Classification, Digital terrain model, Ground, LAStools,
LiDAR, Open-source
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4.1 Introduction

Creating an accurate representation of the Earth surface has been
a fundamental goal of researchers in many environmental disciplines
(Moore et al. 1991). The most widely used representations of the
Earth’s surface are the Digital Surface Models (DSMs) and Digital
Terrain Models (DTMs). DSMs represent the Earth surface including
vegetation, buildings and other natural or man-made objects and can
be used, for example, for viewshed analyses (Klouček et al. 2015, Lagner
et al. 2018), solar potential estimates (Fogl and Moudrý 2016, Moudrý
et al. 2019a), or improvement of vegetation classification (Komárek
et al. 2018, Prošek and Šímová 2019). In contrast, DTMs provide a
bare earth representation of terrain topography and are frequently used
for hydrological modelling (Sangireddy et al. 2016), species distribution
modelling (Bazzichetto et al. 2018, Moudrý et al. 2018, 2019c), digital
soil mapping (Penížek et al. 2016, Baltensweiler et al. 2017), or yield
prediction (Kumhálová and Moudrý 2014).

The ways of acquisition of accurate information on the 3D structure of
the environment have greatly expanded over the past two decades. In
particular, laser altimetry, commonly referred to as light detection and
ranging (LiDAR) or airborne laser scanning (ALS) has revolutionized
the quality of 3D representation of the environment and has become
the primary method for acquisition of accurate terrain information
(Wehr and Lohr 1999). LiDAR pulses can penetrate through gaps in
vegetation canopies and register multiple returns representing both
above ground objects and terrain. The point clouds generated in
this way hence contain reflections from various features (e.g., ground,
vegetation, buildings). The acquisition costs of LiDAR data per unit
area have decreased considerably over the last decades and the use
of LiDAR is therefore on the rise, especially for large scale projects
(Johansen et al. 2010). Furthermore, ALS data are increasingly available
and provided free of charge through government agencies in many
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countries (e.g., Denmark, Poland, Estonia, Finland, Slovenia), which in
turn leads to a greater use of the data in many disciplines such as forestry
(Chen et al. 2017a), hydrology (Yang et al. 2014), geomorphology
(Chalupa et al. 2018), and ecology (Bakx et al. 2019).

Regardless of the application and a final product needed, an inevitable
and the most critical step of the point cloud processing is ground
filtering (i.e., the process when points that represent bare ground are
separated from non-ground points representing objects above the bare
ground such as trees). The correct filtering (sometimes referred to as
classification) of ground points is essential to the subsequent creation
of DSMs, DTMs or other derived products (Jakubowski et al. 2013,
Guo et al. 2017, Indirabai et al. 2019, Szostak et al. 2019).

The point cloud filtering, besides being a crucial component of any
LiDAR dedicated software, is also available in some more complex
geographic information systems (GIS) software solutions such as ArcGIS
(Esri, CA, USA). An overwhelming number of choices of algorithms and
their implementations in various software solutions can easily leave an
inexperienced practitioner daunted. On the other hand, most software
products implement only a single algorithm, which can lead users to
select a solution that is readily available but sub-optimal for a particular
environment. Furthermore, some algorithms require cautious tuning of
parameters, giving the users an option to influence the results while on
the other hand posing higher demands on their experience. In contrast,
other algorithms try to be as simple as possible and require minimal
number of input parameters or allow only a few predefined options
(Wan et al. 2018, Cai et al. 2019).

4.1.1 Related Works

Algorithms for ground filtering of ALS data are usually designed with
some specific environment in mind (e.g., forests, steppes, or urban areas)
and their efficiency varies across environments as each environment
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poses specific challenges (Shan and Aparajithan 2005, Meng et al. 2009,
Tinkham et al. 2011, Susaki 2012, Maguya et al. 2014, Rashidi and
Rastiveis 2017). For example, a dense forest canopy tends to block
LiDAR pulses and therefore to introduce gaps in the data. On the other
hand, low vegetation can confound ground filtering algorithms and be
misclassified as a ground surface. In addition, ground filtering tends
to be challenging in regions with a complex topography (Sithole and
Vosselman 2004, Leitold et al. 2015). The first comparison of ground
filtering algorithms was performed by Sithole and Vosselman (2004).
More recently, Meng et al. (2010) reviewed critical issues of ground
filtering algorithms and criteria for their selection. With the increasing
availability of ALS data and consequent implementations of ground
filtering algorithms in various software solutions, the attention focused
on the performance of individual algorithms has increased (see Table
7.1 in Chapter 7 for overview of existing comparative studies; Gonçalves
and Pereira 2010, Tinkham et al. 2011, Julge et al. 2014, Korzeniowska
et al. 2014, Montealegre et al. 2015, Polat and Uysal 2015, Silva et al.
2018).

Existing comparative studies used collections of different algorithms
(Sithole and Vosselman 2004) or focused on the implementation of
multiple algorithms into an open source software (Montealegre et al.
2015). Several authors evaluated algorithms implemented to commercial
software (Korzeniowska et al. 2014). For such evaluations, some studies
used datasets prepared solely for such purposes by the International
Society for Photogrammetry and Remote Sensing (ISPRS) (Sithole
and Vosselman 2004, Meng et al. 2009, Pingel et al. 2013, Zhang
et al. 2016), others used their own datasets (Korzeniowska et al. 2014,
Montealegre et al. 2015, Stereńczak et al. 2016). The ISPRS data
consist of several LiDAR datasets with varying degree of vegetation,
terrain character and density and the nature of man-made structures
(e.g., buildings, bridges). The undisputed advantage of the use of the
same input data in all experiments and a consequent creation of a
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large database of results lies in a better comparability of results among
individual studies. This is particularly beneficial when a new algorithm
is developed and an assessment of its performance, together with its
comparison with existing algorithms, is needed (Pingel et al. 2013). On
the other hand, many studies tested existing algorithms with their own
data, particularly due to the fact that landscapes are often very specific
in their terrain, presence of man-made objects and vegetation character
and such individual approach is therefore necessary (Stereńczak et al.
2016). Such studies can be motivated by the need of accurate DTMs for
specific purposes (e.g., application in forestry; Montealegre et al. 2015)
and expand our understanding of behaviour of filtering algorithms in
different environments. Similarly, our study was motivated by a project
that required accurate terrain models for analysis of post-mining sites,
the character of which is very specific with respect to both terrain and
vegetation (Moudrý et al. 2019b,d).

4.1.2 Study goals

With the ongoing development of new algorithms (Pingel et al. 2013,
Zhang et al. 2016, Tan et al. 2018) evaluation of their performance in a
variety of terrains and vegetation conditions is needed. The presented
study evaluated the performance of six ground filtering algorithms
contained in five frequently used software solutions. In particular, we:
(1) evaluated the filtering error; (2) assessed the accuracy of generated
DTMs using field measurements as reference data; and (3) assessed
the effect of vegetation and terrain characteristics on the performance
of individual algorithms in a complex non-natural terrain (i.e., a spoil
heap) overgrown with forest, steppe and grass vegetation.
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4.2 Material and Methods

4.2.1 Study Area

The study area is located at Hornojiřetínská spoil heap (north-west
Bohemia, Czech Republic, 50°34’N, 13°34’E) covering an area of approx-
imately 450 ha. The spoil heap served as a deposit of the overburden
from brown coal mining. It has never been technically reclaimed and
the terrain morphology thus remained rugged, with areas of steep slopes

Figure 4.1: Details of the study area. Five areas with different character
of vegetation and terrain including the location of validation buffers and
checkpoints (a); Hillshaded model (b); Slope (c); Ortophoto (d).
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resulting from heaping and with developing successional heterogeneous
vegetation (Vymazal and Sklenicka 2012, Frouz et al. 2018). To be able
to cover the entire study area with reference GNSS measurements (see
below), we limited the study area to a fraction of the spoil heap – 30 ha
representative of different conditions on the spoil heap (Figure 4.1). In
general, the terrain in the study area changes especially in the south-
north direction, from a flat area outside of the spoil heap to slopes and
the rugged terrain of the actual spoil heap (Figure 4.1). The vegetation
includes grass, aquatic vegetation, steppes and forests. Five areas with
different vegetation and terrain character were manually vectorised over
an orthophoto, combining the orthophoto with our knowledge of the
area (Figure 4.1, Table 4.1). Area I is outside the actual spoil heap
and is dominated by low grass with only a few scattered trees. The
terrain is flat with ditches alongside the gravel roads. Areas II and III
are dominated by low vegetation, especially bush grass Calamagrostis
epigejos and tall oat grass Arrhenatherum elatius, with dense shrubs
and scattered trees such as elder Sambucus, rosehip Rosa, common
snowberry Symphoricarpos albus, birch Betula, or hawthorn Crataegus.
Area II also includes several terrain depressions overgrown with common
reed Phragmites australis and common cattail Typha latifolia. Area IV
is a forest dominated by willow (Salix spp.) and alder (Alnus spp.) while
Area V is a forest dominated by birch Betula pendula. All Areas (except
Area I) have undulated terrain with steep slopes, small depressions and
ridges (Figure 4.1, Table 4.1).

4.2.2 LiDAR and Reference Data Acquisition

4.2.2.1 ALS Data Acquisition

A Riegl full-waveform laser scanner (LMS-Q780) was used for ALS
data acquisition over the study area. The data were acquired by the
Flying Laboratory of Imaging Spectroscopy (FLIS) in May 2017. The
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aircraft flight altitude was 1030 m above the ground level with a ground
speed of 110 knots. The scanner is based on a rotating mirror and
scans in parallel lines with a field of view of 60°, the wavelength is 1064
nm. The point density of the resulting point cloud was 8 points per
square meter. ALS data were processed using a proprietary software of
the CAS Global Change Research Institute (CzechGlobe), referenced
to the European Terrestrial Reference System, Universal Transverse
Mercator projection (ETRS UTM33N), and provided with elevations
as ellipsoidal heights.

Table 4.1: General characteristics of the study area.

Area Num. of Slope [°] Height [m] Maximum

[ha] checkpoints Mean ± S.D. Mean ± S.D. height [m]

Area I grass 3.3 107 2.6 ± 3.6 5.9 ± 3.0 18.1

Area II shrub 10.9 437 4.8 ± 4.1 6.9 ± 4.0 24.2

Area III shrub 6.5 395 8.9 ± 5.4 5.8 ± 3.2 19.4

Area IV forest 5.2 170 5.7 ± 4.8 10.3 ± 4.3 23.8

Area V forest 5.0 330 9.6 ± 4.6 9.8 ± 3.6 21.5

Canopy Dens. of ground Density of Density of Density of

cover [%] & low veg. [%] shrubs [%] low trees [%] high trees [%]

(< 0.3 m) (0.3–3 m) (3–15 m) (> 15 m)

Area I grass 5.8 92.3 2.7 4.8 0.1

Area II shrub 22.8 72.7 8.3 18.0 0.9

Area III shrub 31.6 64.5 11.4 23.9 0.2

Area IV forest 70.4 29.1 6.5 54.9 9.5

Area V forest 60.2 40.5 3.1 52.8 3.7

Maximum, mean and standard deviations of height are calculated from a pit free
Canopy Height Model. Other characteristics are calculated directly from the LiDAR
point cloud. Canopy cover is calculated as the number of first returns above breast
height (1.37 m) divided by the number of all first returns. Densities of ground,
shrubs and trees are derived as numbers of returns in each height interval divided
by a total number of returns. Slope is represented by a mean value ± standard
deviation.
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4.2.2.2 Manual Classification of Point Clouds and Survey of
Checkpoints

A perfect assessment of filtering accuracy would require comparison
of all individual points. This would be however impractical due to a
large number of points recorded; a frequently utilized approach using
randomly sampled points was therefore used in our study (Montealegre
et al. 2015). To properly assess classification success, reference data
are necessary. We randomly generated 50 point locations (10 point
locations in each of the Areas I-V); all points within a 5 mdistance
(hereafter buffers) from those locations were selected as test points
and manually classified as ground and non-ground, which resulted in
14,102 non-ground and 16,683 ground points used for the validation,
respectively.

Compared to pre-existing studies, the areas manually classified in our
study for assessment of the filtering performance are relatively large
(Montealegre et al. 2015); this on the one hand improves the overall
validity of the study, it however on the other hand also increases the
risk of manual filtering errors that can still be present in our evaluation
dataset. Therefore, we also evaluated the vertical accuracy of DTMs
using independent data obtained through a RTK GNSS survey. The
RTK GNSS survey was conducted during early spring under leaf-off
conditions in 2017 and 2018 using Leica GPS1200 system. In total, 1439
checkpoints distributed throughout the study area (Table 4.1,Figure 4.1)
were used. All checkpoints were measured in ETRS89 with ellipsoidal
heights and projected to UTM33N.

4.2.3 Ground Point Classification Algorithms

In this study, we compared six algorithms implemented in two open
source and three commercial software products that have been increas-
ingly used for ground point classification (Table 4.2).
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Table 4.2: List of evaluated software solutions, algorithms and parameters
fine-tuned in this study.

Software Algorithm Author Number of Parameters modified

evaluated in individual

settings algorithms

CloudCompare CSF Zhang et al. (2016) 12

General settings: Steep slope, Relief, Flat; Cloth res.; Slope processing: enabled/disabled

LAStools PTIN Isenburg (2018) 38

Step; Spike; Offset

ArcGIS ARC Esri Inc., USA 3

Predefined options: Aggressive, Standard, Conservative

PDAL PMF Zhang et al. (2003) 30

Initial distance; Max distance; Max window size; Slope

SMRF Pingel et al. (2013) 36

Scalar; Slope; Threshold; Window

RealWorks RW Trimble Inc., USA 1 –

CSF – Cloth Simulation Filter; PTIN – Progressive Triangulated Irregular Network;
PMF – Progressive Morphological Filter; SMRF – Simple Morphological Filter; Note
that ARC and RW are only abbreviations used for black-box algorithms implemented
in ArcGIS, and RealWorks, respectively. While other abbreviations are commonly
used.

One of the currently most popular software solutions for point cloud
processing is Rapidlasso LAStools (rapidlasso.com), which has a unique
position among the tested programs – it is a commercial software
but the limitations of its free version are kept to a minimum. Open
source programs CloudCompare (danielgm.net/cc) and PDAL (pdal.io)
have also become quite popular. Of the commercial software, we
tested the ground classification algorithms implemented in the widely
used programs ArcGIS (esri.com) and Trimble Realworks (geospa-
tial.trimble.com). In each software, we started from default settings
and through expert tuning of the parameters (based on our experi-
ence with the tested algorithms and our knowledge of the terrain and
vegetation in the study area) progressed to the best achievable results
for each individual algorithm. The algorithms implemented in ArcGIS
(hereafter ARC) and Trimble Realworks (hereafter RW) are grey-box
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algorithms with default settings only. The basic principles underlying
the remaining algorithms evaluated in this study are briefly described
below.

CloudCompare (danielgm.net/cc) uses a newly proposed algorithm
based on the cloth simulation filter (CSF; Zhang et al. 2016). In
this technique, the original point cloud is at first rotated by 180°
(upside-down) and a simulated cloth is subsequently "dropped" on the
inverted surface. Before running the algorithm itself, the outliers have
to be removed. The resolution of the initiating grid (Cloth resolution)
determines the number of cloth particles that are placed above the
highest point of inverted point cloud. Subsequently, the position of
each particle (shape of the cloth) is calculated analysing interactions
between the cloth particles and corresponding points in the cloud under
the influence of simulated gravity, intersections and internal forces.
The simulation is terminated when it exceeds the maximum iteration
number (default 500). Finally, distances between the cloth particles
and points in the cloud are computed and points with distance lower
than specified threshold (default 0.5 m) are classified as ground. We
tested all options available for different terrain characters (Steep slope,
Relief and Flat) in combination with several values of an initial grid
resolution. We also tested the post-processing method for a sharply
changing terrain (Zhang et al. 2016).

Rapidlasso LAStools (rapidlasso.com/lastools) uses a progressive tri-
angulated irregular network (PTIN) densification algorithm (Axelsson
2000). This algorithm identifies the ground points with respect to the
distance between each point and a generated triangulated irregular
network of the lowest points. We used a LASground new tool allowing
modification of several settings. In addition to the initial Step parame-
ter, we also modified Spike (the vertical threshold at which spikes are
removed) and Offset (the maximum offset up to which points above
the ground are included). First, the point cloud is overlapped with a
user-defined grid (Step parameter), the lowest points in each grid cell
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are then selected and serve as initial ground points. Subsequently, a
triangulated irregular network (TIN) is built from these selected ground
points (reference surface) and the remaining points are used iteratively
for a TIN densification. In the next iteration, suitable selected points
are used as ground points of TIN and iteration continues until all points
are classified as ground or non-ground (Axelsson 2000, Isenburg 2018).

Two morphological filters are available in PDAL (pdal.io). The Pro-
gressive Morphological Filter (PMF; Zhang et al. 2003) generates an
initial elevation grid from the point cloud by selecting the points with
minimum elevation in each cell. If the cell contains no points, the near-
est neighbor interpolation is used to derive the elevation. Subsequently,
the morphological operation of opening (erosion followed by dilation)
is used to filter the grid surface. This operation is repeated iteratively
(each time with a different window size and a different height threshold).
Detection of non-ground points is based on the elevation difference
threshold which grows with each iteration and is calculated based on
the difference in window size between the current and last iteration,
slope (Slope) based on the average slope in study area, cell size and
initial elevation difference threshold (Initial distance). If the difference
in elevations between original grid and result of opening exceeds the
elevation difference threshold, it is treated as non-ground. Window size
and elevation difference threshold calculation are increased iteratively
until window size is greater than user defined maximum window size
(Max window size). We kept increasing the window size exponentially
and as there are no buildings in the study area, we used a default
maximum elevation difference threshold (Zhang et al. 2003).

The other morphological filter available in PDAL is the Simple Mor-
phological Filter (SMRF; Pingel et al. 2013). It differs from PMF by
using "painting technique" to interpolate empty cells in initial elevation
grid, it only allows a linearly increasing window size up to a specified
maximum (Window size), and the change of the elevation difference
threshold for classifying the points as non-ground is controlled by a
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single parameter (Slope) which simplifies exploratory analysis (Pingel
et al. 2013). When the iteration process is finished, a binary grid
where each cell is determined as ground or non-ground is produced.
This grid is used as a mask for identification of non-ground cells in
the initial elevation grid– these are interpolated using the "painting
technique" and the resulting grid is used in the final step to identify
ground points. Ground points are identified by applying a user defined
threshold (Threshold) to vertical distances between each point and the
grid. An additional parameter (Scalar) can be used to increase the
threshold on the steep slopes (Pingel et al. 2013).

4.2.4 Quantitative and Qualitative Validation

The classified point clouds were compared with manually classified
reference data to quantify the performance of individual classification
methods. We calculated the Type I error (omission error), represent-
ing the percentage of ground points that are incorrectly classified as
non-ground as:

𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 = 𝑏

𝑎 + 𝑏
(4.1)

where 𝑎 is the number of correctly classified ground points and 𝑏 is the
number of ground points misclassified as non-ground points.

Type II error representing non-ground points incorrectly classified as
ground points was calculated as:

𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟 = 𝑐

𝑐 + 𝑑
(4.2)

where 𝑐 represents the number of non-ground points misclassified as
ground points and 𝑑 stands for the number of correctly classified
non-ground points.
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In addition, we calculated the success rate, i.e., the ratio between the
number of correctly classified points and the total number of points.

𝑆𝑢𝑐𝑐𝑒𝑠 𝑟𝑎𝑡𝑒 = 𝑎 + 𝑑

𝑒
(4.3)

where 𝑒 stands for total number of all points.

In addition, points classified as ground were used to generate DTMs
with a cell size of 0.5 m. We used a bin-average method calculating
the elevation for each cell by assigning the average value of all points
within that cell. Areas containing no ground points were triangulated
across and linearly interpolated to determine their cell values. We used
several accuracy measures to assess the vertical accuracy of DTMs.
The GNSS survey, representing the most accurate data, was used as
the reference dataset (true elevation) for DTMs evaluation. We first
calculated vertical differences among the 1439 surveyed point elevations
and the corresponding DTMs. Those differences were subsequently used
to calculate the mean error (ME) and root mean square error (RMSE).
We also calculated the normalized absolute deviation (NMAD), which
is a robust metric less sensitive to the presence of outliers (Höhle and
Höhle 2009).

A common approach in existing studies is to compare algorithms based
on results obtained using parameters that resulted in the highest filtering
accuracy (Korzeniowska et al. 2014, Montealegre et al. 2015). Parameter
tuning, however, is greatly dependent on the user’s experience and
the parameters are not always optimally tuned (but see Wan et al.
2018 for automated tuning of ground filtering algorithms). Therefore,
we calculated above mentioned quantitative metrics for all evaluated
parametrizations to assess whether the algorithms tend to cause Type I
or Type II error regardless of a parameters set. In other words, the
"within algorithm variability" based on different parametrizations was
evaluated. In addition to the above, we selected the best ground
filtering setting for each algorithm and performed both qualitative
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and quantitative "between algorithms" comparison. The qualitative
assessment consisted of a visual examination and comparison of a shaded
relief of the generated DTMs. Note that a more complex qualitative
validation (e.g., through the number of properly preserved terrain
features) would require a larger study area (Sithole and Vosselman
2004, Montealegre et al. 2015). This would however be incompatible
with our efforts to cover the whole area with GNSS measurements.

To study the effect of the character of the environment (i.e., the com-
bined effect of vegetation and terrain), the assessment was performed
separately for each area (I–V, Figure 4.1). These areas differ mainly in
vegetation character (i.e., grass, shrub, forest); however, they also differ
in terrain complexity (Table 4.1). Therefore, the effect of terrain on the
results of filtering algorithms was also evaluated using the terrain slope
calculated from the national DTM of the Czech Republic (see Moudrý
et al. 2019d for more details about this dataset) and divided into four
categories (0°–5°, 5°–10°, 10°–15° and >15°). We investigated differ-
ences in the Type I error, Type II error, and Success rate between areas
(I–V) and between classification algorithms using linear mixed models,
with an identifier of 50 randomly distributed buffers as a random effect.
We thus fitted three different models (one for each error measure as
a response variable) with algorithm and area as predictors, including
their interaction. Similarly, we tested whether the elevation difference
measured in the 1439 checkpoints differed between areas and algorithms,
again using a linear mixed model with interactions. Statistical analysis
was performed using the R statistical software (R Core Team 2018),
the models were fitted using lme4 package for R (Bates et al. 2015a),
and statistical significance of fixed effects of the model was evaluated
using Wald chi-square tests (function Anova in the package car for R;
Fox and Weisberg 2011).
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4.3 Results and Discussion

4.3.1 Algorithms’ Tendency to Cause Type I or
Type II Error

In total, 120 classifications were performed (Table 4.2). Different set-
tings produce different Type I and Type II errors even within individual
algorithms (Figure 4.2), a general tendency of the algorithms to Type I
or Type II errors can however be observed. SMRF, CSF and RW
successfully identified most of the ground points. However, they often
classified non-ground points as ground (i.e., they have lower Type I
error than Type II error). In contrast, ARC, PTIN, and PMF showed a
lower tendency to classify non-ground points as ground, but failed more
frequently in successful identification of ground points (i.e., they have
lower Type II error than Type I error). Note however that we only used
a few parameters and their settings, which in general performed well
in the study area (see Figure 4.2 for variability in RMSE) and more
extensive evaluation of settings is needed to comprehensively evaluate
the algorithms’ tendency to cause Type I or Type II error. For example,
Sithole and Vosselman (2004) found that most algorithms produced
Type I errors rather than Type II errors.

In every analysis, researchers must accept some level of tradeoff between
resulting Type I and Type II errors, all the more due to the fact that
usually, one of those two types of error is considered (depending on the
application) more serious than the other. For most applications, Type I
error is less costly and not a serious handicap as the point clouds are
processed further. It can be assumed that gaps caused by misclassified
ground points are filled by interpolation and hence do not create an
issue (but this might not be true in case of complete failure at the
ridges or depressions). Therefore, it makes sense to generally fine-tune
algorithms towards the reduction of Type II error. This may be the
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Figure 4.2: Comparison of individual ground filtering algorithms’ perfor-
mance (RMSE) and their tendency to cause Type I and Type II error. The
boxplots show the extent of variability in RMSE, Type I error and Type II
errors with respect to different settings of individual algorithms. The central
vertical line in the box marks the median. The boxes show interquartile range
(25𝑡ℎ to 75𝑡ℎ percentile) and the whiskers show 1.5 times the interquartile
range. Note that CSF, SMRF and RW tends to cause Type II error while
PTIN, ARC and PMF tend to Type I error.

case for example for applications in forestry at plot and larger scales
that do not require DTMs with sub-meter resolution (Frazer et al. 2011,
Hawryło et al. 2017). However, Sithole and Vosselman (2004) proposed
that from the practical point of view, fine-tuning towards the reduction
of Type I errors might be beneficial even if this is at the expense of an
increase in Type II error, as Type II errors are considered conspicuous
and therefore easy to remove by manual editing. This is however true
for small areas only. For large areas such as states, manual editing
would be extremely time demanding.

4.3.2 Quantitative Assessment of the Best Results

In the following sections, point clouds acquired with parameters achiev-
ing the best results for the individual algorithms will be compared. The
optimal set of parameters in this respect was a set that resulted in a
terrain model with the minimum number of visually apparent errors
(evaluated using shaded relief) and the lowest RMSE in combination
with the highest success rate for each algorithm. Where similar RMSEs
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and success rates were obtained, parameters resulting in a lower Type II
error were selected. The summary of optimal combinations of parame-
ters for our study area and their validation metrics are presented in the
Table 4.3 and Figure 4.3, respectively. The RMSE ranged from 0.15 m
to 0.21 m. PTIN yielded the best result with the RMSE of 0.15 m.
The success rate of point clouds filtered using the optimal parameters
for each algorithm ranged from 79.2% to 90.8%. Success rates of all
software solutions (with the exception of ARC) were higher than 85%.
CSF yielded the highest success rate (90.8%) closely followed by RW
(90.6%), both however have a notably high Type II error (>15%). On
the other hand, ARC yielded the lowest success rate (79.2%), particu-
larly due to the highest Type I error of all algorithms (32.4%). The
Type II error ranged from 0.5% to 19.2%. The lowest Type II error
was observed for PTIN (<1%) while the highest for CSF (19.2%) and
RW (15.3%). The lowest Type I error, on the other hand, was obtained
by the CSF (<1%).

Table 4.3: Optimal settings of individual algorithms in our study area.

Algorithm Optimal parameters
CSF General settings: Flat; Slope processing: enabled; Cloth

resolution: 0.2
PTIN Predefined parameters for Nature setting
ARC Ground detection method: Standard
PMF Exponential: true; Initial distance: 0.15 ; Maximum difference

elevation threshold: 2.5 ; Max window size: 10 ; Slope: 1
SMRF Scalar: 1.25 ; Slope: 0.15 ; Threshold: 0.05 ; Window size: 18
RW –

4.3.3 Qualitative Assessment of the Best Results

In our study area, we identified three problematic circumstances under
which classification algorithms were likely to fail: (i) sharp ridge/steep
slope; (ii) very dense vegetation and (iii) vegetation on slopes or in
ditches. The most notable deterioration of the classification results
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Figure 4.3: Best results achieved by evaluated algorithms.

caused by dense vegetation and vegetation on steep slopes was ob-
served for PMF and CSF algorithms (Figure 4.4 b, e). The terrain
derived from both PMF and CSF filters showed obvious erroneous
peaks throughout the study area that were caused by the vegetation
and present even in the area with prevailing grass vegetation (some
shrubs and dense vegetation in ditches were misclassified as ground;
Figure 4.4 b, e). RW filter tended to eliminate ground points excessively
and result in omission of many terrain features such as ditches and
steep slopes in densely vegetated areas (Figure 4.4 g). PTIN, ARC and
SMRF preserved the terrain relatively well; they however excessively
eliminated ground points, partly omitted some of the steep slopes and
they failed where dense vegetation was present. (Figure 4.4 c, d, f). It
should be however noted that in places, the dense vegetation formed
an impenetrable surface and only very few LiDAR pulses penetrated it;
in other words, in such places, almost no ground points were present in
the raw data. Where this was the case, any failures were more due to
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the problematic character of the data itself than due to a problem with
the algorithm. For some algorithms, we were able to filter out even the
dense vegetation during a manual fine-tuning of the algorithms, it was
however only at the cost of failure at the ridges, the convex shape of
which was then not preserved (results not presented here).

Figure 4.4: Hillshaded surface models generated from unfiltered point
cloud (a) and ground points filtered using CSF (b), PTIN (c), ARC (d),
PMF (e), SMRF (f), RW (g) algorithm. Highlighted areas represent prob-
lematic circumstances as follows: (i) sharp ridge/steep slope; (ii) very dense
vegetation and (iii) vegetation on slopes or in ditches. Note the problem-
atic area (right bottom corner) with very dense vegetation that formed an
impenetrable surface and only very few LiDAR pulses penetrated it.

4.3.4 Effect of Vegetation Cover and Terrain Slope

The results show obvious differences between the performances of
ground filtering algorithms in five areas with different vegetation cover
(i.e., grass, shrub, forest) and terrain complexity (i.e., slope). The effects
of the area, algorithm and their interaction on elevation difference,
Success rate, Type I and Type II error were statistically significant
(Table 4.4). This corroborates findings of previous studies that also
highlighted that vegetation and terrain character have a serious effect on
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the success of filtering algorithms (Tinkham et al. 2011, Korzeniowska
et al. 2014, Montealegre et al. 2015).

For CSF, PTIN, ARC, and PMF algorithms, the tendency to cause
Type I or Type II error was consistent across all areas (Figure 4.5).
SMRF tended to cause Type I error in areas with relatively low slope,
and Type II error in areas of high slope. RW tend to cause Type II
error in all areas except for the forest area with low slope. This
can be attributed to the fact that RealWorks is primarily designed
for Terrestrial laser scanning (TLS), and although it has also been
successfully used for photogrammetric point clouds (Kršák et al. 2016),
its behaviour with ALS data might be erratic.

Table 4.4: Significance of the effect of the algorithm, area, and their interac-
tions on Type I and Type II errors, Success rate, and elevation difference.

Type I error Type II error

Fixed effect 𝜒2 stat. DF P 𝜒2 stat. DF P

Algorithm 197.757 5 < 10−16 126.184 5 < 10−16

Area 32.324 4 1.6·10−6 15.361 4 0.0040

Interaction 62.182 20 3.3·10−6 81.233 20 2.4·10−9

Success rate Elevation difference

𝜒2 stat. DF P 𝜒2 stat. DF P

Algorithm 67.897 5 2.8·10−13 463.049 5 < 10−16

Area 35.892 4 3.0·10−7 317.745 4 < 10−16

Interaction 37.038 20 0.0116 80.946 20 2.7·10−9

4.3.4.1 Grass Vegetation

In general, all filters performed relatively well in the area of low complex-
ity characterized by grass vegetation and flat terrain. PTIN algorithm
yielded the best classification accuracy in the areas dominated by grass
with (see range of success rate in Figure 4.5) as well as the best ability
to remove vegetation in ditches (Figure 4.4 e). However, with increasing
terrain complexity and low vegetation density, error rates caused by
the filters increased (Figures 4.5 and 4.6).
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Figure 4.5: Comparison of six algorithms in five areas of different vegetation
structure and terrain slope (classification error). Columns denote the mean
error (Type I, Type II and Success rate) while the error bars show error range
(maximum and minimum). The maximum, minimum and mean error are
calculated from 10 buffers in each of the Areas IV. Note the relatively stable
performance (low error bars) of all algorithms in forested areas in contrast
to shrub and grass areas.

4.3.4.2 Shrub Vegetation

In areas dominated by shrub vegetation (Areas II and III), the RMSE
ranged from 0.17 m to 0.23 m (Area II) and from 0.16 m to 0.21 m
(Area III). PTIN, PMF and SMRF yielded the best results with
RMSE ≤ 0.20 min both areas (Figure 4.6). The average success rate
ranged from 72.1% to 86.9% and from 76.4% to 89.7% for Area II
and Area III, respectively (Figure 4.5). Sites with low vegetation and
shrubs were problematic for all algorithms and the Type II error in
such areas was higher than in forested areas. Some of the vegetation
was incorrectly classified as ground points due to similarities in the
distribution of points (i.e., their slope and elevation differences). In
particular, CSF, ARC, SMRF and RW tended to misclassify non-ground
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Figure 4.6: Comparison of six algorithms in five areas of different vegetation
structure and terrain slope. Root mean square error (RMSE), mean error
(ME) and normalized absolute deviation (NMAD) of differences between
DTMs and GNSS measurements.

objects (e.g., low shrubs) as ground, thus having a high Type II error.
On the other hand, the performance of PTIN and PMF was relatively
good even in the shrub vegetation with relatively low Type II error;
PMF however showed obvious erroneous peaks or bumps on the shaded
relief map.

4.3.4.3 Forests

All algorithms performed better in the forested areas than in the shrub
vegetation, which is likely caused by the fact that in forests, there is a
relatively lower representation of low vegetation (see Table 4.1) bearing
a profound effect on misclassification, especially in combination with
steep slopes. In forests, RMSE ranged from 0.16 m to 0.33 m and
from 0.12 m to 0.22 m for Area IV and Area V, respectively (Figure
4.6). All algorithms yielded average success rates >90% except for
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ARC (Figure 4.5). The best results in forested areas were yielded by
PTIN and SMRF.

4.3.4.4 Slope

The increasing terrain slope negatively affected the algorithms’ perfor-
mance and resulted in deterioration of the terrain accuracy. Most of
the evaluated algorithms showed relatively good results for slopes up
to 15°; with slopes over 15°, however, the performance of all algorithms
decreased rapidly (Table 4.5). The most accurate and consistent results
with respect to the terrain slope were obtained when using PTIN and
SMRF. This corroborates with results of Montealegre et al. (2015)
who also demonstrated the low vulnerability of PTIN to slope. PMF
also provided very good results but a significant drop in accuracy was
detected at intermediate slopes (10°–15°).

Table 4.5: The effect of the terrain slope on the filter accuracy. Evaluated by
RMSE calculated for four slope categories.

Algorithm Slope
0° - 5° 5° - 10° 10° - 15° > 15°

CSF 0.17 0.18 0.19 0.24
PTIN 0.14 0.15 0.17 0.22
ARC 0.16 0.17 0.19 0.24
PMF 0.13 0.14 0.27 0.22
SMRF 0.15 0.16 0.18 0.23
RW 0.19 0.21 0.23 0.27
Num. of checkpoints 557 506 245 131

4.4 Conclusions

In this study, we evaluated the performance of six ground filtering algo-
rithms. In principle, two error types can occur while filtering ground
points of LiDAR data. The first error type is the failure to identify true
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ground points, classifying them as non-ground objects (Type I error,
omission error), the other type is incorrect classification of non-ground
points as bare earth (Type II error, commission error). Our results show
that PTIN, ARC and PMF tended to cause Type I error while CSF,
SMRF and RW tended more to producing Type II error. In addition,
this tendency was consistent across areas with different vegetation and
terrain character, except for SMRF and RW, the tendencies of which
to Type I and Type II error were affected by vegetation and terrain
character. All tested ground filtering algorithms achieved relatively
good results but their performance is notably affected by the terrain
slope and vegetation cover. In our study area, PTIN implemented in
LAStools provided the best overall results, although some other algo-
rithms performed better in specific environments. In general, algorithms
performed better in forests than in steppes with a high density of low
vegetation. For example, the recently proposed SMRF algorithm has
shown promising results in the forests. The algorithm implemented in
the commercial ArcGIS software also performed quite well, particularly
in forested areas, despite the fact that it allows the use of only a few
predefined options. However, its high initial cost is a serious drawback.
With increasing slope, the performance of all algorithms tended to
deteriorate with a noticeable drop at terrain slope over 15°.

It is evident from our results and from prior studies that to achieve
the optimal filtering performance, the selection of the algorithms and
parameter settings should be guided by a specific landscape type. Such
principle is for example implemented in LAStools, which allows users
to select a set of parameters for a particular landscape (e.g., nature or
town). It is worth mentioning that results of the PTIN algorithm with
such predefined settings implemented in LAStools provided the best
results of all tested software solution, which only confirmed the value
of such approach. Until more automated approaches for parameters
estimation will be developed, we can suggest this approach to be used
also by other software developers.
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Abstract

Most ground filtering algorithms are primarily designed for airborne
LiDAR point cloud processing and their successful use in identifying
ground points from photogrammetric point clouds remains question-
able. We compared six ground filtering algorithms implemented in
Metashape, ArcGIS, CloudCompare, LAStools, and PDAL. We used
UAV photogrammetry-based (acquired under leaf-off conditions) and
airborne LiDAR (leaf-on) point clouds of the same area to: (i) compare
accuracy of generated DTMs; (ii) evaluate the effect of vegetation
density and terrain slope on filtering accuracy; and (iii) assess which
algorithm parameters have the greatest effect on the filtering accuracy.
Our results show that the performance of filtering algorithms was
affected by the point cloud type, terrain slope and vegetation cover.
The results were generally better for LiDAR (RMSE 0.13–0.19 m) than
for photogrammetric (RMSE 0.19–0.23 m) point clouds. The behavior
in varying vegetation and terrain conditions was consistent for LiDAR
point clouds. However, when applied on photogrammetric point clouds,
the algorithms’ behavior was inconsistent, especially in areas of steep
slope (except for the Progressive Triangulated Irregular Network in
LAStools). Parameters related to the selection of the initial minimum
elevation ground points were the most influential in all algorithms and
point clouds.

Keywords: DTM, Filtering, LiDAR, Point cloud, Spoil heap, UAV
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5.1 Introduction

Point clouds derived from light detection and ranging (LiDAR) and
airborne photogrammetry have become commonplace data sources
for digital terrain models (DTMs) production. DTMs are generated
through point cloud filtering (i.e., the process of identification of points
representing bare ground and dividing the point cloud into the ground
and non-ground parts) followed by interpolation. Both airborne laser
scanning (ALS; i.e., LiDAR sensor is mounted on-board an aircraft
or helicopter) and UAV photogrammetry-derived DTMs have been
equally used in many disciplines such as forestry (Balenović et al. 2018,
Tomaštík et al. 2017), hydrology (Rahman et al. 2017), restoration
ecology (Koska et al. 2017, Szostak et al. 2019), or precision agriculture
(Kumhálová and Moudrý 2014, Méndez-Vázquez et al. 2019).

The point cloud filtering (i.e., correct bare ground detection) poses the
greatest challenge for generating DTMs (Sithole and Vosselman 2004).
Many ground filtering algorithms (e.g., cloth simulation, progressive
morphological filter) have been implemented in various GIS software
solutions (e.g., ArcGIS, LAStools, PDAL) and are now readily avail-
able for filtering of both LiDAR and photogrammetric point clouds
(e.g., Petras et al. 2016). The use of such algorithms for filtering of
photogrammetric point clouds is constantly increasing. For example,
Kachamba et al. (2016) used the ground filtering algorithm imple-
mented in Agisoft PhotoScan (now known as Agisoft Metashape) as
a basis for estimation of biomass in a tropical woodland. Similarly,
ground filtering algorithms implemented in LAStools (Wallace et al.
2012, 2016), CloudCompare (Yan et al. 2020) and PDAL (Graham et al.
2019) were successfully used for forestry applications. However, most of
the algorithms were designed for ALS data filtering (Meng et al. 2009,
Susaki 2012, Rashidi and Rastiveis 2017) and their performance with
photogrammetric point clouds (usually denser than ALS point clouds,
containing a lot of noise) is unknown (Zhang et al. 2018). In addition,
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ALS records the order of multiple laser pulse returns (first, intermediate
and last). Some ground filtering algorithms use this attribute as it is
assumed that the last return most likely represents the ground (Chen
et al. 2007, Pingel et al. 2013).

Ground filtering is affected by the presence of above-ground objects
(e.g., buildings and vegetation) and terrain morphology. The higher the
complexity of above-ground objects, the more errors are likely to arise
(Meng et al. 2010). Therefore, specialized algorithms are developed and
tested for different types of environment (e.g., build-up area, forests,
steppes, river banks) and their use in other types of environment requires
additional testing (e.g., Tinkham et al. 2011, Chen et al. 2017b, Tan
et al. 2018).

Successful ground filtering of photogrammetric point clouds is partic-
ularly problematic under dense canopies due to large discontinuities
without or with only sparse ground points (Wallace et al. 2016). While
laser pulses can penetrate through gaps in the canopy to the bare earth
surface, photogrammetry requires "seeing" the same patch of ground
from multiple views to be able to acquire the 3D information. It is,
therefore, challenging to obtain detailed information of the terrain
under the canopy obscuring it and reducing the likelihood of multiple
views (White et al. 2013). A possible solution for increasing the density
of ground points is to use images acquired under leaf-off conditions
(Aguilar et al. 2019, Moudrý et al. 2019b,d). Such conditions can, how-
ever, result in point clouds with lots of noise closer to the ground. This
is in contrast with leaf-on conditions under which the high canopies
(resembling ground or even a complete absence of ground points) rep-
resent the biggest problem (Jensen and Mathews 2016, Wallace et al.
2019) – and therefore make filtering more challenging.

Prior studies that evaluated ground filtering algorithms concentrated
mostly on ALS data (e.g., Sithole and Vosselman 2004, Podobnikar and
Vrečko 2012, Montealegre et al. 2015, Polat and Uysal 2015). Few recent
studies evaluated the performance of ground filtering algorithms on
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dense photogrammetrically acquired point clouds. Serifoglu Yilmaz and
Gungor (2018) tested five filtering algorithms implemented in Airborne
LiDAR Data Processing and Analysis Tools (ALDPAT) in a small
part of a university campus (7.3 ha). In the same university campus,
Serifoglu Yilmaz et al. (2018) distinguished two testing sites with areas
of 2.5 and 6.2 ha, respectively, and with different conditions (i.e., terrain
slope, presence of vegetation and buildings of varying size) and tested
seven filtering algorithms implemented in various software solutions.
The altitude in both studies ranged approximately from 10 to 100 m
AMSL. Zeybek and Şanlıoğlu (2019) compared four filtering algorithms
at a study site located in a mountain area of 50 ha and an altitude of
approximately 1400 m AMSL. However, they proposed different filter-
ing algorithms to be optimal for photogrammetrically acquired point
clouds; Serifoglu Yilmaz and Gungor (2018) recommended the Adaptive
Triangulated Irregular Network algorithm, while Serifoglu Yilmaz et al.
(2018), as well as Zeybek and Şanlıoğlu (2019), recommended the Cloth
Simulation Filter. In addition, unexpected behavior was encountered in
some of the studies. For example, Serifoglu Yilmaz et al. (2018) found
accuracy increasing with increasing slope. Such results indicate that the
selection of an optimal algorithm is likely dependent on the character
of the study area (e.g., terrain slope and vegetation density) and that
the behaviour known from ALS point clouds (i.e., filtering accuracy
decrease with increasing slope and presence of low vegetation) does
not necessarily apply to dense photogrammetric point clouds. However,
none of the previous studies compared both ALS and photogrammetric
data in the same area. Hence, it is difficult to conclude whether or not
can the same behavior of an algorithm be expected for both types of
point clouds.

Our goal is to show the behavior of filtering algorithms with respect to
the increasing slope and vegetation density. While this is well known
for ALS point clouds and all algorithms behave in the very same way,
we hypothesize that this is not true for dense photogrammetric point
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clouds. We used ALS and photogrammetric point clouds of the same
area: (i) to compare the accuracy of DTMs generated by six different
ground filtering algorithms implemented in widely used software; three
available in commercial software and three in open source software;
(ii) to evaluate the effect of vegetation density and terrain slope on
filtering accuracy; and (iii) to assess the sensitivity of parameters and
differences in performance between algorithms applied on both types of
point clouds (i.e., derived from both ALS and UAV photogrammetry).

5.2 Material and Methods

5.2.1 Study Area

Our study area is located in north-west Bohemia, Czech Republic,
50°34’N, 13°34’E (Figure 5.1). Until 1964, when local brown coal min-
ing was terminated, the spoil heap was used to deposit overburden.
The spoil heap has never been technically reclaimed and the terrain
morphology, therefore, remained rugged as a result of heaping that
formed a typical undulated terrain and consequently allowed the de-
velopment of dense heterogeneous vegetation (e.g., Frouz et al. 2018),
which represents a challenge for ground filtering (e.g., Meng et al. 2010,
Pingel et al. 2013, Chen et al. 2017b). The vegetation consists of aquatic
vegetation in terrain depressions (e.g., Phragmites australis and Typha
latifolia), steppes (low vegetation, especially Calamagrostis epigejos
and Arrhenatherum elatius with scattered shrubs and trees, such as
Sambucus, Rosa, Betula, Crataegus), and forests (mostly deciduous
trees such as Betula spp., Salix spp. and Alnus spp.). A rectangular
area of 30 hectares (550×550 m) that represents typical conditions
(Figure 5.1) was selected for testing the ground filtering algorithms.
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Figure 5.1: Details of the study area. (a) Site position within Europe
and hillshaded relief including the location of ground control points and
validation checkpoints; (b) Orthophoto under leaf-on period; (c) Orthophoto
under leaf-off period; (d) Altitude above mean sea level (m); (e) Character
of vegetation based on density (Low grass, Shrub, Medium and Canopy
vegetation); (f) Terrain slope.
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5.2.2 LiDAR Data Acquisition

The ALS data were acquired by the Flying Laboratory of Imaging
Spectroscopy (FLIS) in May 2017 (Hanuš et al. 2016). Although the
FLIS is equipped with a Riegl LMS-Q780 fullwaveform laser scanner,
we used only discrete return data. The scanner has a rotating polygon
mirror and scans in parallel lines. The wavelength is 1064 nm and the
scan field of view is 60°. Flights for data collection were conducted at
1030 m above ground at a velocity of 56.5 m·s−1 (ground speed) and with
55% flight line side overlap. The LiDAR point cloud was processed by
the Global Change Research Institute using their proprietary algorithm.
The data were provided in LAZ format with an average point density
of 8 points per square meter (Table 5.1), referenced to the European
Terrestrial Reference System, Universal Transverse Mercator projection
(ETRS UTM33N), and provided with elevations as ellipsoidal heights.

Table 5.1: Summary of point cloud characteristics for the LiDAR and
photogrammetric datasets.

Dataset Total points Point density Point spacing Returns

(points/sq.m) (m) (1𝑠𝑡/2𝑛𝑑/3𝑟𝑑/4𝑡ℎ)

LiDAR 2,420,802 7.92 0.36 2,173,124/243,784/3882/12

Photogrammetric 91,041,929 299.66 0.06 91,041,929/0/0/0

5.2.3 UAV Data Acquisition

A senseFly eBee Classic UAV equipped with Sony DSC-WX220 RGB
camera (18.2 MP, sensor 1/2.3, 4.45 focal length equivalent to 25 mm)
was used for image acquisition. The camera has been set to automatic
mode; senseFly eBee is a ready-to-fly proprietary solution and flight
planning software does not allow the user to set camera parameters such
as ISO, aperture or shutter speed (ISO ranged 100–200, aperture F/3.3,
shutter speed ranged 1/250–1/800). Flight lines were programmed in
the senseFly eMotion 3 software and the UAV was flying autonomously.
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The lateral overlap of the images was 75% and the longitudinal overlap
85%. The average flight altitude was 95 m above the ground level and
almost 1,300 images were acquired during three flights, covering an area
of 130 ha with the ground sampling distance (GSD) of 3.16 cm/pix.
The UAV survey was performed in early spring (3𝑟𝑑 of March 2017)
under leaf-off conditions, the maximum wind speed was 5 m·s−1 and
the cloud cover was minimal (0–1/8). Changes in the shadow length
resulting from solar positioning during the UAV survey or variable image
contrast across a scanned area can negatively affect point matching
(Carrivick et al. 2016). Therefore, to minimize these effects, all flights
were performed during midday hours with constant solar conditions.

5.2.4 Ground Control Points and Checkpoints
Survey

The point cloud location was georeferenced using 20 ground control
points (GCPs) distributed across the study area. GCPs were made
from white fiberboard squares (40×40 cm) with a black round target
in the middle. The coordinates of each GCP were measured using a
Trimble GeoXR 6000 GNSS in combination with the Zephyr 2 external
antenna supporting RTK. The antenna received signal from GPS and
GLONASS satellites and was connected to the CZEPOS permanent
RTK network, which improved the horizontal positional accuracy to
2–4 cm and vertical to 4–6 cm.

To evaluate DTMs generated by ground filtering algorithms, another set
of points (hereafter referred to as "checkpoints") was spread throughout
the study area. To locate these checkpoints, an RTK GNSS survey was
conducted in March 2017 (leaf-off period) using Leica GPS1200 system
that was connected to the CZEPOS permanent RTK network and
provided the same horizontal and vertical accuracy as described above.
Locations of checkpoints were chosen in a way ensuring sufficient repre-
sentation of all vegetation categories and slope types. In total, 1,414
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checkpoints were collected for this study. All GCPs and checkpoints
were measured in the European Reference Terrestrial System (ETRS 89)
and projected to the Universal Transverse Mercator (UTM 33N).

5.2.5 UAV Data Processing

Agisoft Metashape Professional (Agisoft LLC, Russia) was used to
generate a 3D point cloud from the acquired UAV geotagged images.
Metashape uses Structure from Motion (SfM) in combination with
Multi-View Stereo (MVS) photogrammetric methods to generate point
clouds representing a 3D model of the study area. The processing was
executed in several steps. In the first step (Align photo), external and in-
ternal camera orientations and camera locations were iteratively refined
using the least squares method and a Tie point cloud was generated.
The alignment was computed with the Accuracy parameter set to High
and the Generic preselection and Reference preselection parameters
were enabled. The Accuracy setting ensured that the original image
resolution was used while the other two parameters speeded up the
alignment process. The limit for Key points was set to zero (indicating
as many points as possible sampled within each image), the Tie point
limit (the number of points used for image matching) was set to 10,000
and the Adaptive camera fitting parameter was enabled. The final Tie
point cloud consisted of 1 million key points. The next step was to
Build dense point cloud with High reconstruction quality and Aggressive
Depth filtering (the setting recommended for aerial imagery). The dense
point cloud was georeferenced using 20 GCPs with the total RMSE of
0.03 m and total reprojection error of 0.2 pix. Final Dense point cloud
consisting of 91 million points and with a density of 300 points per
square meter (Table 5.11; Figure 5.2) was cropped to our study area
and exported into the LAS format.
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Figure 5.2: Comparison of photogrammetric and LiDAR point clouds (a) on
different types of the vegetation (low grass, shrub, medium, canopy) and
(b) based on point cloud density.

5.2.6 Ground Point Filtering Algorithms and DTM
Generation

We evaluated six algorithms implemented in five commonly used soft-
ware solutions that have been increasingly used for ground point filtering
(Table 5.2). We selected algorithms that are able to work with LAS file
format and are ready to use (i.e., implemented in existing software). One
of the most popular commercial software solutions used to generate and
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filter point clouds from UAV imagery is Agisoft Metashape Professional
(version 1.6.2; agisoft.com). Rapidlasso LAStools is however almost as
popular (rapidlasso.com). We also tested the algorithm implemented in
the probably most widespread commercial GIS software – Esri ArcGIS
(version 10.6; esri.com) and algorithms available in popular open-source
software CloudCompare (danielgm.net/cc) and PDAL (pdal.io). Short
descriptions of the basic principles underlying the algorithms are given
below; parameters used for each algorithm are detailed in Table 5.2.

Table 5.2: List of evaluated software solutions, algorithms and their parame-
ters fine-tuned in this study.

Software Algorithm Author Filter Number of Parameters

description evaluated

settings for

UAV/LiDAR

Metashape ATIN Agisoft LLC, Russia Surface-based 45/48

Max angle; Max distance; Cell size

ArcGIS ArcGIS Esri Inc., USA – 3/3

Predefined options: Aggressive, Standard, Conservative

Cloud CSF Zhang et al. (2016) Surface-based 143/162

Compare Predefined options: Steep slope, Relief, Flat;

Slope processing: enabled/disabled; Cloth resolution

LAStools PTIN Isenburg (2018) Surface-based 56/56

Step; Spike; Offset

PDAL PMF Zhang et al. (2003) Morphology-b. 600/600

Initial distance; Max distance; Max window size; Slope

SMRF Pingel et al. (2013) Morphology-b. 900/900

Scalar; Slope; Threshold; Window

ATIN – Adaptive Triangulated Irregular Network; CSF – Cloth Simulation Filter;
PTIN – Progressive Triangulated Irregular Network; PMF – Progressive Morpho-
logical Filter; SMRF – Simple Morphological Filter. Filter description based on
classification by Favorskaya and Jain (2017).

The algorithm implemented in Agisoft Metashape is based on the
Adaptive Triangulated Irregular Network algorithm (ATIN) (Axelsson
1999, 2000). The ATIN algorithm uses an iterative process where a
coarse triangulated irregular network (TIN) of initial seed points is
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densified. First, seed points (the points with the lowest elevation in
each grid cell) are selected from a point cloud based on a user defined
grid (Cell size). From these points, an initial TIN is created as the
first approximation of the terrain. Subsequently, for each iteration, one
point above each TIN facet is added to the ground TIN if they are
within a specified distance to the TIN facets (Max distance) and angles
to the nodes (Max angle). This iteration process stops when no more
points are added to the TIN.

The ground filtering algorithm implemented in Esri ArcGIS 10.6 (Classify
LAS Ground) comes without description and Esri answered to our query
on the algorithm implemented in ArcGIS: "The classification method
used by the Classify LAS Ground tool is a comprehensive proprietary
solution that does not fit in the given classes of algorithms, and no
information has been published regarding the technique which is used".
We tested all three options available (Aggressive, Standard and Con-
servative) for ground filtering.

The algorithm implemented in CloudCompare is called Cloth Simulation
Filter (CSF; Zhang et al. 2016). This algorithm inverts (upside-down)
the point cloud and "covers" it with a simulated surface (cloth). Before
running the algorithm itself, outliers have to be removed. Then, the
resolution of the starting grid (Cloth resolution) determines the number
of cloth particles that are placed above the highest point of the inverted
point cloud. Subsequently, the position of each particle (shape of
the cloth) is calculated analyzing the interactions between the cloth
particles and corresponding points in the cloud under the influence of
gravity, intersections and internal forces. The simulation terminates
when it exceeds the Maximum iteration number (default 500). Finally,
distances between the cloth particles and cloud points are computed
and the points with distance lower than the specified threshold (default
0.5 m) are classified as ground (Zhang et al. 2016). We tested all
options for various terrain characters (Steep slope, Relief and Flat) in
combination with several values of the initial grid resolution. We also
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tested the post-processing method for a sharply changing terrain (Zhang
et al. 2016).

Similarly to the algorithm used in Agisoft Metashape, the algorithm
implemented in LAStools is based on ATIN proposed by Axelsson (2000).
To distinguish the two implementations, we refer to the implementation
in LAStools as a Progressive Triangulated Irregular Network (PTIN)
densification algorithm hereinafter as this reference is common in the
literature (Montealegre et al. 2015). First, the point cloud is overlapped
with user defined grid (Step parameter), the lowest points in each grid
cell are selected and serve as the initial ground points. Subsequently,
a triangulated irregular network (TIN) is built with these selected
ground points (reference surface) and the remaining points are used
iteratively for TIN densification. We used a LASground new tool which
allows modification of several settings. In addition to the initial step
parameter, we also modified Spike (the vertical threshold at which spikes
are removed) and Offset (the maximum offset up to which points above
the ground are included). Suitable selected points are used as ground
points of TIN in the next iteration and the iterative process continues
until all points are classified as ground or non-ground (Axelsson 2000,
Isenburg 2018).

Two morphological filters are available in PDAL. The Progressive Mor-
phological Filter (PMF; Zhang et al. 2003) first generates the initial
elevation grid from a point cloud by selecting the point with minimum
elevation in each cell and the point coordinates are stored in that grid.
If there is no point in the cell, a nearest neighborhood interpolation is
used to derive the elevation. Subsequently, the morphological operation
of opening (erosion followed by dilation) is used to filter the grid sur-
face. This operation is repeated iteratively (each time with a different
window size and a different height threshold). Detection of non-ground
points is based on the elevation difference threshold, which grows with
each iteration and is calculated based on the difference in the window
size between the current and last iteration, slope (Slope) based on the
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average slope in the study area, cell size (default value 1 m) and initial
elevation difference threshold (Initial distance). If the difference in
elevation between the original grid and the result of opening exceeds
the elevation difference threshold, it is treated as non-ground. The
window size and elevation difference threshold calculation are increased
iteratively until the window size is greater than the user defined maxi-
mum window size (Max window size). Two possibilities of increasing
window size are available, linear and exponential. Due to the fact that
the SMRF allows only a linear increase of the window size (see the next
paragraph), we decided to keep increasing the window sizes exponen-
tially in case of PMF to see whether there is a significant difference
and to reduce the number of iterations. We did not use the maximum
elevation difference threshold as there are no buildings in the study
area (Zhang et al. 2003).

The other morphological filter available in PDAL is the Simple Morpho-
logical Filter (SMRF; Pingel et al. 2013). It differs from PMF in using
the painting technique for interpolating the empty cells in the initial
elevation grid (the default value of the initial elevation grid Cell size is
1 m) . Besides, it only allows a linearly increasing window size up to the
maximum specified size (Window size), and the change of the elevation
difference threshold for detecting non-ground points is controlled by
a single parameter (Slope), which simplifies the exploratory analysis
(Pingel et al. 2013). Once the iteration process is completed, a binary
grid where each cell is determined as ground or non-ground is produced.
This grid is used as mask to identify non-ground cells in the initial
elevation – these are interpolated using the painting technique and the
resulting grid is used in the final step to identify ground points. Ground
points are identified by applying user-defined threshold (Threshold)
to vertical distances between each point and the grid. An additional
parameter (Scalar) can be used to increase the threshold on the steep
slopes (Pingel et al. 2013).

Points classified as ground were used to generate DTMs. For rigorous
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comparison, it is necessary to compare both DTMs at the same resolu-
tion. We were limited by the density of LiDAR point cloud (8 points
per square meter) and selected the best possible resolution for such
density (i.e., the cell size of 0.5 m) . We considered it a reasonable
compromise but, obviously, the UAV photogrammetric point cloud
provides much more detail and even better resolution can be used. For
DTM generation, we used a bin-average method, i.e., calculated the
elevation of each cell as the average value of all points within that cell.
Areas containing no ground points were triangulated across and linearly
interpolated to determine their cell values.

5.2.7 Accuracy Assessment and Comparison of
Algorithms

A sensitivity analysis was performed to identify the best parameter
setting for each ground filtering algorithm and point cloud. Several
parameter values were used for each parameter and the resulting ele-
vation error was subsequently plotted as a function of the parameter
values. We decided the ranges of individual parameters based on our
experience and on values used in other published studies (Podobnikar
and Vrečko 2012, Korzeniowska et al. 2014, Montealegre et al. 2015,
Serifoglu Yilmaz et al. 2016). From these plots, the best sets of pa-
rameters were identified by visual assessment (see Table 5.2 for a list
of evaluated parameters for each algorithm and Table 5.4 for the best
settings). These parameter values were used for subsequent analyses.

Several accuracy measures were applied to assess the vertical accuracy
of DTMs. The GNSS survey, representing the most accurate data,
was used as the reference dataset (true elevation) for evaluation of the
DTMs. First, the elevation error between the 1,414 checkpoints and
the corresponding DTM was calculated for each checkpoint. Those
differences were subsequently used to calculate the mean error (ME),
standard deviation (SD) and root mean square error (RMSE).
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To evaluate the effect of the vegetation structure and terrain slope on
performance of ground filtering algorithms, ALS data available for our
study area were utilized. The best results acquired with LAStools using
predefined settings for natural environments (a setting providing the
best results according to preliminary testing) were set as ground points.
The resulting point cloud was visually assessed and the remaining
troublesome areas (e.g., impenetrable dense vegetation) manually edited.
DTMs were generated at a 2-meter resolution and slope was calculated,
which was subsequently used in further analyses as a continuous variable.
As there were no manmade structures in our study area, all above-
ground points were classified as vegetation (except the removed noise).
The vegetation was categorized at a 2-meter resolution according to its
density in individual layers into four categories: low grass vegetation,
shrub vegetation (0–1 m) , medium vegetation (1–3 m) and canopy
vegetation (> 3 meters). LAStools (lascanopy tool) was used to calculate
the vegetation density. First, the number of all points above the
cover cutoff was counted and divided by the number of all points
(i.e., density) in three vegetation height levels. Subsequently, each
grid cell was classified according to the layer with the highest density.
Areas without returns in three vegetation height levels were classified
as low grass vegetation. This classification is more appropriate for
assessment of the effect of vegetation on the filtering accuracy as it takes
into account the vertical distribution of points that were potentially
misclassified as ground. The effects of ground filtering algorithms, point
cloud type (photogrammetry vs LiDAR), slope (continuous covariate),
and vegetation (classified as low grass, shrub, medium, and canopy
vegetation; see the previous paragraph) on the difference between
the estimated elevation and reference (GNSS-based elevation) were
evaluated by means of a linear mixed-effect model. Because repeated
measurements on each validation checkpoint were available (one for
each algorithm and point cloud), the checkpoint ID was included as
a random-intercept term in the model. We first fitted a "full" model,

85



including all possible interactions. Then the "final" model including only
significant (based on type-II Wald 𝜒2 test) interaction terms was fitted.
Only this final model is reported in the paper. For each parameter of this
final model (including random-effect and residual standard deviations),
95% confidence intervals were calculated by profiling likelihood. The
goodness of fit was assessed by conditional R2 as defined by Nakagawa
and Schielzeth (2013). To investigate differences between individual
algorithms together with the effect of vegetation and slope, the fixed
effects with Wald 95% confidence bands (conditional on the random-
effect variance estimate) were plotted. All data processing and statistical
computations were performed in the R software (R Core Team 2018;
see Table 5.3 for a list of R packages and functions used).

Table 5.3: Used R packages and functions.

Package Function Purpose Author

lme4 lmer linear mixed-effect modeling Bates et al. (2015b)

car Anova Wald 𝜒2 test of fixed effects Fox and Weisberg (2019)

MuMIn r.squaredGLMM conditional R2 computation Bartoń (2019)

raster – GIS computations Hijmans (2019)

ggplot2 – statistical graphics Wickham (2009)

5.3 Results

5.3.1 Sensitivity Analysis

Our results show that some parameters are important for both types
of point clouds. For each algorithm, a reasonable range and resolution
of each parameter were identified, and ground filtering algorithm was
then run for all combinations of these parameter values. The resulting
ground elevation was then compared with the "true" (GNSS based)
elevation at the 1,414 checkpoints.
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Figure 5.3: Sensitivity analysis of the Adaptive Triangulated Irregular Net-
work (ATIN) algorithm implemented in the Agisoft Metashape Professional
software.

The Adaptive Triangulated Irregular Network (ATIN) algorithm allows
setting of the following parameters: Maximum angle (°), Maximum dis-
tance (m), and Cell size (m). As can be seen from Figure 5.3, the higher
the value of the Maximum angle parameter applied on photogrammetric
point cloud, the lower the effect of remaining parameters. With the
Maximum angle of 20°, the elevation bias stabilized at approx. 0.20 m.
With this value of Maximum angle, the algorithm was insensitive to the
cell size. For LiDAR point cloud, the Cell size parameter elicited the
greatest effect. With the value of Maximum distance set to 1 m and
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Maximum angle higher than 10°, the Cell size of 25 and 50 m led to
the best performances in terms of random-error and bias combination.
The RMSE for tested parameters ranged 0.19–0.89 m and 0.23–1.08 m
for LiDAR and photogrammetric point cloud, respectively.

Figure 5.4: Sensitivity analysis of the algorithm implemented in ArcGIS.

The ArcGIS algorithm allows three settings of Ground detection method,
namely Aggressive, Conservative, and Standard. The type of the
point cloud (LiDAR vs photogrammetric) was, however, the principal
difference-causing variable (see Figure 5.4), the former point cloud
being overestimated by approx. 0.12 m, whereas the latter was overes-
timated by almost 0.20 m. For all parameter-point cloud combinations,
however, a relatively large random error of about 0.13 m was observed.
Consequently, it can be concluded that with both point cloud types,
the choice of the parameter setting has practically no effect on the
algorithm performance. The RMSE for tested parameters were 0.17–
0.18 m for LiDAR point clouds and 0.23 m for photogrammetric point
cloud.

The Cloth Simulation Filter (CSF) algorithm implemented in Cloud-
Compare uses four main parameters: Slope processing (True/False),
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Figure 5.5: Sensitivity analysis of the Cloth Simulation Filter (CSF) algo-
rithm implemented in the CloudCompare software.

Cloth resolution (m), Ruggedness (1 – "Mountain", 2 – "Complex", or
3 – "Flat"), and Classification threshold (m). The greatest effect was
observed for the Cloth resolution parameter (see Figure 5.5), with the
value of 0.1 m leading to the best performances in terms of random-error
and bias combination. It should be noted, however, that for LiDAR
point cloud, the parameter Cloth resolution 2 m in combination with
either Slope processing False, or Slope processing True and Ruggedness
2 or 3, lead to almost zero bias, although the random error was relatively
high. The algorithm generally performed slightly better for the LiDAR
data than for the UAV data. The parameter Classification thresh-
old was practically irrelevant. The RMSE for all tested parameters
ranged between 0.18–0.53 m for LiDAR point cloud and 0.23–1.26 m
for photogrammetric point cloud.
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Figure 5.6: Sensitivity analysis of the Progressive Triangulated Irregular
Network (PTIN) algorithm implemented in the LAStools software.

The Progressive Triangulated Irregular Network (PTIN) algorithm as
implemented in LAStools is controlled by three principal parameters:
Spike (m), Offset (m), and Step (m). Figure 5.6 shows a major difference
between LiDAR and photogrammetric point clouds for small values of
the Step parameter (up to approx. 1 m). For larger Step values (> 2 m),
however, this difference diminishes. The best results, both in terms of
random error and bias, were obtained for Step values between 2 and 5
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m (although for the photogrammetric point cloud, even smaller values
led to a slightly lower error variance but slightly higher overestimation).
The effect of the other two parameter was negligible. The RMSE for
all tested parameters ranged 0.15–3.54 m for LiDAR point cloud, and
0.21–0.80 m for photogrammetric point cloud.

Figure 5.7: Sensitivity analysis of the PMF algorithm implemented in the
PDAL software.

The Progressive Morphological Filter (PMF) algorithm implemented in
the PDAL software allows four settings: Initial distance (m), Slope (–),
Cell size (m) and Exponential (true/false). As Figure 5.7 shows, the
algorithm performed generally better with the photogrammetric than
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with LiDAR point cloud. The Exponential parameter turned out to be
the most important setting in our experiment. Setting it as True and
combining with Slope values greater than 0.1 led to considerably lower
error variances as well as much smaller differences between point clouds.
With these settings, both the Cell size and Initial distance parameters
were without effect. The RMSE ranged between 0.15–3.04 m for LiDAR
and 0.20–1.43 m for photogrammetric point cloud.

Figure 5.8: Sensitivity analysis of the SMRF algorithm implemented in the
PDAL software.

The Simple Morphological Filter (SMRF) algorithm implemented in
the PDAL software also offers four parameters: Cell (m), Scalar (–),
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Threshold (m), and Slope (–). Similarly to the PMF algorithm, the
algorithm produced much better results with photogrammetric point
cloud, especially for lower values of the Cell parameter (see Figure 5.8).
Increasing the value of this parameter improved the performance with
LiDAR point cloud, even to the level of being comparable to results
obtained with the photogrammetric point cloud. Less importantly,
the higher the value of the Scalar parameter, the higher both the
overestimation and error variance. The slope and threshold parameters
didn’t affect the elevation error substantially. The RMSE for tested
parameters ranged between 0.13–1.97 m for the ALS point cloud and
between 0.19–0.26 m for the photogrammetric one, respectively.

5.3.2 Quantitative Comparison of Algorithms

Based on the sensitivity plots, the summary of optimal combinations
of parameters selected for our study area can be found in Table 5.4.
In terms of RMSE, all algorithms yielded very good results, with
RMSE ranging from 0.13 m (SMRF algorithm with LiDAR point
cloud) to 0.23 m (ATIN algorithm with UAV data). LiDAR – on
average – performed 0.05 m better than the photogrammetric point
cloud. At the same time, regardless of the point cloud, PTIN, PMF and
SMRF performed 0.03– 0.05 m better than ATIN, ArcGIS or CSF. All
algorithms overestimated the terrain, and the differences in ME ± SD
among algorithms and point clouds followed the same pattern as in
RMSE. Overestimation was – on average – 0.05 m lower for LiDAR
than for photogrammetric point cloud. With LiDAR data, the best
performing algorithm was SMRF with 0.04 ± 0.13 m overestimation,
followed by PMF and PTIN with overestimation of 0.08 ± 0.12 and 0.10
± 0.12 m, respectively. ATIN, ArcGIS and CSF all overestimated the
terrain by approx. 0.12–0.13 (± 0.13–0.14) m. With photogrammetric
point cloud data, PTIN, PMF and SMRF algorithms overestimated the
terrain by approx. 0.10–0.12 (± 0.16–0.19) m, whereas ATIN, ArcGIS
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and CSF all showed relatively highest overestimation of 0.19 ± 0.13 m
(Table 5.4).

Table 5.4: Best results achieved by evaluated algorithms.

Platform Algorithm RMSE ME SD Parameters

[m] [m] [m]

LiDAR ATIN 0.187 0.126 0.139 Max angle: 10 ; Max distance: 1 ;

Cell size: 50

ArcGIS 0.175 0.121 0.126 Ground detection method: Standard

CSF 0.186 0.129 0.134 General settings: Flat; Slope processing:

enabled; Cloth resolution: 0.2 ;

Classification threshold: 0.25

PTIN 0.154 0.098 0.119 Predefined: Nature

PMF 0.147 0.079 0.123 Exponential: true; Cell size: 0.9 ;

Initial distance: 0.05 ; Max distance: 63.0 ;

Max window size: 33 ; Slope: 0.3

SMRF 0.132 0.040 0.126 Cell size: 0.4 ; Threshold: 0.05 ; Slope: 0.1 ;

Scalar: 0.0 ; Window: 18

UAV ATIN 0.231 0.193 0.127 Max angle: 10 ; Max distance: 2 ;

Cell size: 5

ArcGIS 0.228 0.187 0.130 Ground detection method: Conservative

CSF 0.230 0.192 0.127 General settings: Flat; Slope processing:

enabled; Cloth resolution: 0.1 ;

Classification threshold: 0.1

PTIN 0.214 0.096 0.191 Step: 2 ; Spike: 2 ; Offset: 0.02

PMF 0.200 0.117 0.162 Exponential: true; Cell size: 0.5 ;

Initial distance: 0.05 ; Max distance: 63.0 ;

Max window size: 33 ; Slope: 0.5

SMRF 0.194 0.104 0.163 Cell size: 0.8 ; Threshold: 0.05 ; Slope: 0.5 ;

Scalar: 0.0 ; Window: 18

All predictors (algorithm, slope, vegetation type, and point cloud)
proved to have an effect on the ground filtering accuracy, with a complex
interaction structure (see Table 5.5). The model explained 67% of the
elevation error variability (Nakagawa and Schielzeth conditional R2).
The elevation error variability between the checkpoints (i.e., the random-
effect standard deviation) was 0.106 m (the profiled confidence interval:
0.101; 0.110); the residual standard deviation was 0.087 m (the profiled

94



confidence interval: 0.086; 0.088).

The interaction structure of the model can be described as follows (see
Table 5.5): (1) there were significant pair-wise interactions between
the algorithm, slope, and vegetation type; (2) all these pair-wise in-
teractions as well as all the main effects differed significantly between
photogrammetric and LiDAR point clouds. Further insight into the

Table 5.5: Analysis of deviance table (Type II) for linear mixed-effect models
of elevation difference on algorithm, slope, vegetation type, and point cloud.

Predictor 𝜒2 DF p value

Algorithm 2938.663 5 < 0.001

Slope 1.675 1 0.196

Vegetation type 99.139 3 < 0.001

Cloud 1412.076 1 < 0.001

Algorithm: Slope 83.116 5 < 0.001

Algorithm: Vegetation type 166.756 15 < 0.001

Slope: Vegetation type 16.587 3 0.001

Cloud: Algorithm 363.605 5 < 0.001

Cloud: Slope 386.507 1 < 0.001

Cloud: Vegetation type 371.418 3 < 0.001

Cloud: Algorithm: Slope 30.106 5 < 0.001

Cloud: Algorithm: Vegetation type 226.515 15 < 0.001

Cloud: Slope: Vegetation type 93.933 3 < 0.001

DF – Degrees of freedom.

effects of predictors can be gained from the effect plots (Figure 5.9).
Clearly, the differences between algorithms follow a similar pattern
across the values of the other predictors. Namely, the ATIN, ArcGIS,
and CSF algorithms were almost indistinguishable in their effect on
ground filtering accuracy and performed generally poorer than the
remaining three algorithms (PTIN, PMF, SMRF). Among remaining
algorithms, SMRF performed in most cases best when using LiDAR
point cloud. For the photogrammetric point cloud, the performance
of those three algorithms (i.e., PTIN, PMF, and SMRF) differed with
slope. In higher slopes, the SMRF algorithm again performed best but
in lower slopes, the performance of PTIN was similar or better. The
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LiDAR point cloud elevation error increased with the slope. For the
photogrammetric point cloud, however, this relationship was sometimes
reversed, especially in the case of SMRF algorithm.

Figure 5.9: Effect plots for fixed effects of the linear mixed-effect model of
elevation difference on algorithm, slope, vegetation type, and point cloud
(UAV photogrammetry vs LiDAR). The confidence bands are based on the
point-wise Wald confidence intervals conditional on the estimates of the
random-effect variance.

5.4 Discussion

We compared six ground filtering algorithms implemented in five soft-
ware solutions (ArcGIS, CloudCompare, LAStools, Metashape, PDAL)
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to extract ground from LiDAR and photogrammetric (UAV-based, ac-
quired under leaf-off conditions) point clouds. All algorithms achieved
promising results. However, their performance differed with respect to
the type of the point cloud (photogrammetry, LiDAR) and environmen-
tal conditions (i.e., vegetation density and terrain slope).

The results were generally better for LiDAR point clouds than for pho-
togrammetric ones, which corresponds to the fact that the algorithms
were originally developed for LiDAR data and assume the ability of
LiDAR pulses to penetrate through gaps in vegetation canopies. The
RMSEs of the DTM derived from LiDAR point cloud ranged from
0.13 to 0.19 m. The terrain accuracy (in terms of both random-error
and bias) decreased with increasing slope (Figure 5.9). The mean bias
tended to increase with slope, especially in the low grass vegetation
class. The same pattern was observed for example by Hollaus et al.
(2006). However, they found a mean bias of 0.15 to 0.25 m for slopes
steeper than approximately 30°, while we observed the same bias for
slopes steeper than approximately 10°. We assume that to be due to the
presence of vegetation close to the ground, which is more problematic to
filter out on the relatively steep slopes. Such vegetation is not present
under canopy vegetation (i.e., in forests), which is also evident from
our photogrammetric UAV-based point cloud acquired under leaf-off
conditions that has lower bias under canopy vegetation than in low
vegetation class due to the same effect of persisting dry vegetation. The
higher random-error (i.e., the width of confidence intervals) observed
on steep slopes can be attributed to relatively low number of validation
points especially in case of medium vegetation class at higher slopes.
To lower degree it might be also affected by relative horizontal dis-
placements of the DTM and validation checkpoints (e.g., Hodgson and
Bresnahan 2004). Similarly, Estornell et al. (2011) observed gradual
deterioration of LiDAR derived DTM and increase in random error
with increasing slope. In addition, Hyyppä et al. (2005) showed that
increase in random error with increasing slope is often more dramatical

97



under tree canopy then in open areas. We also observed the increase in
random-error as the slope increased in all vegetation classes, however,
the difference between low grass vegetation and canopy vegetation
classes was minimal.

With RMSE ranging from 0.19 to 0.23 m, we achieved similar accuracy
for photogrammetric point clouds as for LiDAR point clouds. Our
results show that in areas of low grass vegetation and low terrain
slope (Figure 5.9), the acquired DTMs accuracy is similar for all al-
gorithms. However, the overestimation of terrain was slightly higher
for photogrammetric than for LiDAR point clouds, especially in flat
or moderate-slope terrain (Figure 5.9). As already mentioned, this
can be attributed to presence of low dry vegetation that persists in
the study area even in winter and reduce the visibility of ground, but
can be penetrated by LiDAR (e.g., Spaete et al. 2011). All algorithms
yielded the worst results in areas of shrub vegetation, consistently with
LiDAR point clouds. In contrast to the LiDAR point clouds where the
performance of all algorithms clearly decreased with increasing slope,
results were different with photogrammetric point clouds; the same can
be said about the effect of vegetation. With the increase of the terrain
slope and with the increasing representation of dense high vegetation,
two groups of algorithms with different behavior could be distinguished.
The first group consists of ATIN, ArcGIS, and CSF algorithms while
the second group includes PTIN, PMF, SMRF algorithms. The algo-
rithms within the first group behave relatively consistently and their
performance slightly increases with increasing slope. The second group
of algorithms performs better than the first group under the vegetation
canopy but SMRF underestimate terrain in areas of high slope.

Our results show an improvement in DTMs accuracy with increas-
ing slope (except for the PTIN algorithm implemented in LAStools)
for photogrammetric point clouds. However, areas of high slope are
typically problematic for ground filtering of both LiDAR and pho-
togrammetric point clouds (e.g., Meng et al. 2010). On the other hand,
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Serifoglu Yilmaz et al. (2018), for example, also found better results
for the area with higher slopes. High slopes are typically problematic
in combination with vegetation (e.g., branches) close to the ground
(Serifoglu Yilmaz et al. 2016). The improvement with slope can be
related to the presence of grass vegetation in flat non-forested areas,
which cause slight overestimation (Tan et al. 2018), while (at least
in our study area), the steep slopes are predominantly overgrown by
forest and the shrub vegetation is not present. However, we did not
find any interaction between vegetation density and slope. This may
be explained by the fact that LiDAR data used for vegetation density
estimation were acquired in May during leaf-on period and it is likely
that different vegetation prevailed at this time (Moudrý et al. 2019b).
Besides, SMRF underestimated the terrain in areas of high slope which
is likely due to the fact that ground points were not identified in areas
of steep slope and the terrain was interpolated.

Moreover, our results corroborate with other studies and show that
shrub vegetation has a profound negative effect on filtering algorithms
(with both types of point clouds). Recently, for example, Graham et al.
(2019) showed that in case of photogrammetric point clouds, the canopy
cover is three times more influential than terrain slope. In our study
area, however, the effect of vegetation on filtering of photogrammetric
point clouds was relatively lower than in other studies. The most
notable problems were observed in areas with dense vegetation close
to the water bodies; only ArcGIS and partly PTIN were able to filter
it. Moreover, the effect of vegetation density and terrain slope on
the resulting terrain accuracy was significantly lower than that of
filtering algorithms, which indicates that important differences exist in
performance of ground filtering algorithms with photogrammetric point
clouds in our study area.

The algorithms evaluated by prior studies vary significantly and most
algorithms tested in this study were already included in some compara-
tive study (Sithole and Vosselman 2004, Montealegre et al. 2015, Polat
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and Uysal 2015). However, this is the first study that included the
algorithm implemented in ArcGIS into the comparison. It achieved
very good results with both types of point clouds (RMSE 0.18 m for
LiDAR and 0.23 m for photogrammetric point cloud, respectively),
but in particular, it outperformed other methods when used for the
photogrammetric point cloud; unfortunately, it is considered propri-
etary solution. The PTIN algorithm implemented in LAStools also
achieved very good results with both types of point clouds (RMSE
0.15 m for LiDAR and 0.21 m for photogrammetric point cloud, respec-
tively) and it was the only algorithm with consistent behavior across
various terrain slopes and vegetation density regardless of the point
cloud type. Wallace et al. (2019) showed that in dense forested areas
where ground points are missing, PTIN often misclassifies high dense
vegetation as ground. In our study, however, this problem was not
observed, probably due to the fact that we used photogrammetric point
clouds acquired under leaf-off conditions. In contrast to Wallace et al.,
Zeybek and Şanlıoğlu (2019) compared four ground filtering algorithms
(Multiscale Curvature Classification, Surface-based filtering, PTIN, and
CSF) and recommended PTIN implemented in LAStools as suitable
for UAV-based point clouds of forested areas. In addition, Zhang et al.
(2018) showed that PTIN is relatively robust to random noise inherent
in photogrammetric point clouds. Similarly, Graham et al. (2019) found
that PTIN was able to model terrain more accurately than SMRF over
larger areas. Our results also suggest it as a good option due to its
robustness and (therefore) consistent behavior with both types of point
clouds.

Algorithms implemented in non-commercial software also achieved
good results; both PMF and SMRF filters resulted in accurate DTMs.
While SMRF (RMSE 0.13 m for LiDAR point cloud and 0.19 m for
photogrammetric point cloud, respectively) performed better than PMF
with LiDAR point cloud, PMF (RMSE 0.15 m for LiDAR point cloud
and 0.20 m for photogrammetric point cloud, respectively) was a little
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bit more successful than SMRF in canopy vegetation class with the
photogrammetric point cloud. The worst results in our study area
were achieved by CSF (RMSE 0.19 m for LiDAR point cloud and
0.23 m for photogrammetric point cloud, respectively) for both types
of point clouds, which is likely due to the terrain complexity as other
studies show good performance in flat terrains (Tan et al. 2018) or
areas dominated by buildings (Serifoglu Yilmaz et al. 2018).

5.5 Conclusions

In this study, we compared the performance of six algorithms for ground
filtering of LiDAR and photogrammetric point clouds of the same study
area. The accuracy of the filtered point clouds was investigated by com-
paring generated DTMs with data acquired using traditional surveying
methods. All tested ground filtering algorithms achieved relatively
good results but their performance was affected by the terrain slope
and vegetation cover. In addition, we found that while the behavior of
all algorithms was consistent for LiDAR point clouds (i.e., decreasing
accuracy with terrain slope and presence of low vegetation), it was
disparate in case of photogrammetric point clouds. The only robust ex-
ception behaving consistently with both LiDAR and photogrammetric
point clouds was the PTIN algorithm implemented in LAStools.

The most influential parameters did not differ between LiDAR and
photogrammetry point clouds. For all algorithms, the most influential
were those related to selection of the initial minimum elevation ground
points (i.e., Cell size for ATIN, PMF, SMRF, Step size for PTIN and
Cloth resolution for CSF). Other parameters had only minor effect and
were important rather for fine tuning of ground filtering. For point cloud
datasets that are of similar vegetation structure and slope as our study
area, we recommend the following settings: for ATIN algorithm a Cell
size ≥ 25 m for LiDAR and ≤ 10 m for photogrammetric point cloud,
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respectively. In case of PMF and LiDAR, a Cell size ≥ 0.5 m is the most
suitable while ≤ 0.3 m is preferable in case of photogrammetric point
cloud. This is almost the same for SMRF, where for LiDAR point cloud,
we recommend a value ≥ 0.5 m and in case of photogrammetric point
cloud, ≤ 0.4 m. In case of PTIN, the difference in parameters is more
noticeable; the Step size recommended for LiDAR should be between
2 and 5 m while in case of photogrammetric point cloud, the optimal
value is ≤ 1 m. In case of LAStools, the use of predefined options is
also worth considering. In case of CSF, which is based on different
principles than previous algorithms, the most suitable parameters are
similar for both types of point clouds (photogrammetric and LiDAR)
and we can recommend Cloth resolution value from 0.1–0.2 m. Note
however, that these are recommendations for initial testing only and
that fine tuning of parameters is always necessary.

It is obvious that there is no universal ground filtering algorithm that
would outperform the others and the visibility of ground from multiple
views is the primary and necessary prerequisite for the ground detec-
tion and classification of photogrammetric point clouds (and hence for
successful generation of accurate DTMs). In this study, we successfully
avoided problems with uneven distribution of ground points and pres-
ence of high vegetation resembling ground using leaf-off imagery. Our
results provide necessary guidelines for practitioners working with ALS
and photogrammetric point clouds.
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Abstract

Mining is an important human activity that significantly affects the
landscape character, particularly through excavation of spoil material
and its deposition on spoil banks. The information on terrain or vege-
tation cover of spoil banks is often required for two different reasons:
(i) to monitor and prevent adverse effect of hazards associated with
unstable terrain; and (ii) to assess restoration success. Traditionally
used in situ methods for monitoring surface displacement or restora-
tion success are restricted in terms of spatial and temporal coverage.
Therefore, in this study, we assessed the value of photogrammetrically
and Light Detection and Ranging (LiDAR) derived point clouds for
characterizing a post-mining site. We acquired images under leaf-off
and leaf-on conditions and showed that point densities of point clouds
acquired photogrammetrically under leaf-off conditions exceeded densi-
ties of those acquired under leaf-on conditions and uniformly covered
ground of the entire study area (an average density of 288 points per
m2). In addition, the accuracy of the digital terrain model (DTM; 1 m
resolution) derived from images acquired under leaf-off conditions was
comparable to the LiDAR-derived DTM (RMSE of 0.19 m and 0.12 m,
respectively). While LiDAR-derived DTM accuracies were consistent
across vegetation categories (RMSE 0.12–0.14 m), accuracy of image-
based DTMs declined in the following order: forest (RMSE 0.15 m),
steppes (RMSE 0.21 m), and aquatic vegetation (RMSE 0.36 m). We
suggest the leaf-off UAV imagery as a viable alternative for building
DTMs that can be utilized for assessment of risks associated with
instability of spoil banks terrain. In addition, we also suggest that a
combination of acquisitions under leaf-off and leaf-on conditions have a
potential to replace expensive airborne LiDAR surveys for applications
requiring information on vegetation cover or vegetation height.

Keywords: Forest, Leaf-off, Leaf-on, Mining, Structure from motion,
Vegetation
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6.1 Introduction

Mining is an important human activity with strong social, environ-
mental, and economic impacts (Lechner et al. 2017). It significantly
affects landscape character, including ecological stability (Hendrychová
and Kabrna 2016, Popelková and Mulková 2018), aesthetic value (Svo-
bodova et al. 2012), and morphology (Tarolli and Sofia 2016, Brown
et al. 2017). Open-pit mining and associated extensive disturbances,
especially within the coal mining industry, significantly influence large
areas. This involves formation of large pits as well as deposition of the
excavated spoil material on spoil banks.

Mining is in general associated with geomorphic processes such as
erosion, subsidence, landslides and runoff (Tarolli and Sofia 2016). This
is particularly true for spoil banks that are for various reasons (e.g. slope
inclination, composition of waste material, subterranean combustion),
especially prone to erosion (Haigh and Gentcheva-Kostadinova 2002,
Hancock et al. 2008, Nyssen and Vermeersch 2010), terrain subsidence
(Bell and Donnelly 2006, Dulias 2016, Sedlák et al. 2018), and landslides
(Steiakakis et al. 2009, Cho and Song 2014, Bednarczyk 2017, Wasowski
et al. 2018). To be able to study these processes or even to identify
instability problems and to prevent potential adverse effects of such
events (or at least minimize their impact), the knowledge of spoil
banks terrain and vegetation cover is essential. Besides, spoil banks
have been shown, curiously enough, to become important biodiversity
refuges (e.g. Harabiš et al. 2013, Harabiš 2016). Hence, information on
the terrain and vegetation cover of spoil banks is not only needed for
studying geomorphic processes but is also useful for assessment of their
conservation value (Doležalová et al. 2012) and for understanding factors
affecting the successional trajectory (Frouz et al. 2018) or restoration
success (Vymazal and Sklenicka 2012, Wortley et al. 2013).

To efficiently manage spoil banks, namely for detection and quantifi-
cation of terrain changes (e.g. Xiang et al. 2018) or terrain stability
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analyses (e.g. Close et al. 2016, Stephenne et al. 2014, Zalesky and
Capova 2017), repeated topographic surveys and information on vegeta-
tion cover are required. The traditional techniques used to monitor spoil
banks terrain such as total station and GNSS surveys are expensive
and restricted in terms of spatial and temporal coverage (e.g. Zalesky
et al. 2008, Hogarth et al. 2017). Similarly, terrain topography and
vegetation cover used by restoration ecologists are usually determined
by spatially limited and simple categorical variables due to the labour
intensive field collection of data (e.g. Šálek 2012, Harabiš et al. 2013,
Vojar et al. 2016). A great benefit of remote sensing over more tradi-
tional techniques lies in its ability to provide continuous information
over a large area. However, references to the use of remotely sensed
data for monitoring or restoration success assessment of post-mining
sites are scarce (Wężyk et al. 2015, Cordell et al. 2017, Koska et al.
2017, Cmielewski et al. 2018).

Remote sensing methods commonly used to collect data for generation
of digital terrain models (DTMs) and derivation of vegetation cover
variables include terrestrial and airborne light detection and ranging
(LiDAR; Wehr and Lohr 1999) and, more recently, Structure from
Motion (SfM) and Multi-View Stereo (MVS) photogrammetry work-
flows (Fonstad et al. 2013, Smith et al. 2016). Although airborne laser
scanning (ALS) data are increasingly available, sometimes even free of
charge (in some European countries, for example, they are available
through government agencies; e.g. Fogl and Moudrý 2016, Langhammer
et al. 2018), the coverage is still lacking in many countries (e.g. Hofierka
et al. 2018) and high acquisition costs limit a wider use of the data when
repeated measurements are needed. In contrast, photogrammetric meth-
ods offer low-cost alternatives for repeated measurements, especially so
in combination with unmanned aerial vehicles (UAVs), which makes
such a combination a potentially valuable and practically applicable
tool for monitoring of terrain and vegetation cover changes (e.g. van
Iersel et al. 2018, Xiang et al. 2018).
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The DTM generation is however affected by vegetation cover and the
prospects to acquire accurate DTMs under dense vegetation canopies
are limited. Spoil banks are usually covered by heterogeneous vegeta-
tion, which further complicates the use of photogrammetric methods.
Negative effects of vegetation on building of DTMs have been reported
for various types of environment and vegetation cover. Forested areas
are among the most challenging environments and failure to record a
single ground point in such areas is not uncommon. For this reason,
recent studies on the use of photogrammetric methods in forests mostly
focus on partially open canopies. For example, Kachamba et al. (2016)
derived a DTM from UAV imagery in order to estimate biomass at
miombo woodlands. Jensen and Mathews (2016) showed that in a
woodland ecosystem in Texas, SfM DTM provided a suitable repre-
sentation of the bare ground under a vegetation cover (compared to
LiDAR-derived DTM). More recently, Tomaštík et al. (2017) assessed
the quality of a DTM under temperate broadleaf and mixed forests
derived from UAV imagery with different level of canopy openness.

The obvious advantage of LiDAR is the ability of the pulses to penetrate
through gaps in vegetation canopies and registering multiple returns
representing both canopy and terrain. Many studies concentrated on
the accuracy of LiDAR-derived DTMs in dense forest environments
that might be difficult to penetrate even for LiDAR pulses, such as
tropical forests (e.g. Clark et al. 2004) or temperate coniferous forest
(e.g. Reutebuch et al. 2003). Only few studies, however, concentrated
recently on temperate deciduous forests, which are among the principal
canopies in our study. For example, Aryal et al. (2017) evaluated a
DTM accuracy in temperate forests of Bavarian forests national park,
Balenović et al. (2018) in an oak forest in Central Croatia, and Simpson
et al. (2017) in mixed deciduous woodland in northeast England.

In the case of deciduous forest stands, a promising strategy to generate
accurate DTM is to use images acquired under leaf-off conditions –
an approach that has been only scarcely tested for photogrammetric
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methods (Dandois and Ellis 2013, Ni et al. 2015, DeWitt et al. 2017)
but commonly used for ALS data acquisition (e.g. Hodgson et al. 2005).
Bare ground is clearly visible on the leaf-off imagery and the DTM
accuracy similar to that derived over non-vegetated surfaces can be
therefore expected; however, leaf-off imagery may include complex
shadowing and branch patterns and the quality (and extent) of the
terrain visibility strongly depends on the density of forest stands.

The general aim of this study was to assess the value of photogrammet-
rically and LiDAR-derived data for characterizing a post-mining site.
We acquired ALS data during summer (leaf-on period) and UAVborne
imagery during different seasons (summer, spring, winter) and we (1) as-
sessed the character of the generated point clouds with emphasis on
the ability to capture bare earth and compared results yielded by both
methods; (2) assessed whether the accuracy of SfM-derived DTMs can
be improved by acquisition of images under leaf-off conditions and
hence potentially used in combination with leaf-on conditions to esti-
mate vegetation cover characteristics; and (3) evaluated the influence
of vegetation cover (aquatic vegetation, steppes, and forests) on the
DTM quality.

6.2 Materials and Methods

6.2.1 Study Area

The present study was conducted on an area of 61 ha located in the
southern part of the Hornojiřetínská spoil heap in the Most basin
(northwest Bohemia, Czech Republic, 50°34’N, 13°34’E, Figure 6.1).
The spoil heap’s elevation ranges from 220 m to 280 m above sea level.
Due to plans to mine the underlying coal seam in the future, this part
of the Hornojiřetínská spoil heap has never been technically reclaimed.
The terrain morphology has remained rugged as a result of heaping that
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has formed a typical undulated terrain and consequently heterogeneous
vegetation (e.g. Doležalová et al. 2012, Frouz et al. 2018). The vegeta-
tion is in a late succession stage 35–50 years after heaping and consists
of aquatic vegetation in terrain depressions (e.g. Phragmites australis
and Typha latifolia), steppes (low vegetation, especially Calamagrostis
epigejos and Arrhenatherum elatius with scattered shrubs and trees,
for example Sambucus, Rosa, Betula, Crataegus), and forests. Three
forest types are present in our study area; homogenous plantations of
even-aged growth of European ash (Fraxinus excelsior ; eastern part
of the study area), spontaneously grown forest dominated by Birch
(Betula pendula; central part of the study area), and mature forests of
Willow (Salix spp.) and Alder (Alnus spp.) (western part of the study
area; Table 6.1, Figure 6.1).

6.2.2 ALS and UAV Image Data Collection

Airborne LiDAR data was collected over the study area in May 2017 us-
ing a remote sensing platform FLIS (The Flying Laboratory of Imaging
Spectroscopy) (Hanuš et al. 2016). Although the system is equipped
with a Riegl LMS-Q780 full-waveform laser scanner, we used only dis-
crete return data. The scanner has a rotating polygon mirror and scans
in parallel lines. The scan field of view is 60° and the wavelength is
1064 nm. Flights for data collection were conducted at 1030 m above
ground with a velocity of 110 knots (ground speed) and with 55% flight
line side overlap, which provided the average density of 7.7 points per
square meter.

A home-assembled UAV consisting of an Easy Star II airframe by
Multiplex and 3DR Pixhawk autopilot equipped with a Nikon Coolpix A
camera (28 mm prime lens with f/2.8) was used for the series of flights
(in different phenological conditions) over the study area. Hereafter, we
refer to these three flights as Winter (11 March 2017 – leaf-off), Spring
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Figure 6.1: Study Area. (A) Hill-shaded terrain and location of the study
area in the southern part of the Hornojiřetínská spoil heap in the Most
basin (northwest Bohemia, Czech Republic, 50°34’N, 13°34’E); (B) Spring
orthophotomap; (C) Summer orthophotomap; (D) Winter orthophotomap;
(E) Canopy height model. The study plots were used for visual comparison
of DTMs, see Figure 6.4

(29 April 2016 – partly leaf-on), and Summer (1 July 2016 – leaf-on)
flights. Parallel flight lines were set to acquire an image overlap of 85%
and sidelap of 65%. Approximately 1000 images were taken during
each survey from an average flight altitude of 100 m above ground level,
resulting in a 3 cm ground sampling distance. The camera settings
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were manually set to ISO 400 and shutter speed priority 1/1250 s.

Table 6.1: General characteristics of the study area. Maximum, mean
and standard deviation of height are calculated from a LiDAR derived pit
free Canopy Height Model (LiDAR data were collected in May). Other
characteristics are calculated directly form LiDAR classified point cloud.
Canopy cover is calculated as the number of first returns above breast height
(1.37 m) divided by the number of all first returns. Density of ground, shrubs
and trees are number of returns in each height interval divided by total
number of returns.

Vegetation type Area Canopy Height [m]

[ha] cover [%] Max. Mean Std. dev.

Aquatic 3.4 4 16.5 0.5 94.4

Steppe 38.5 25 27.1 3.6 69.4

Forest 19.0 63 29.4 11.5 37.5

Vegetation type Density [%]

Ground and low vegetation Shrubs Low trees High trees

(< 0.3 m) (0.3–3 m) (3–15 m) (> 15 m)

Aquatic 94.4 2.5 3.0 0.0

Steppe 69.4 7.7 22.1 0.8

Forest 37.5 4.4 47.2 10.9

6.2.3 Ground Control Points and Verification
Data Survey

Prior to UAV flights, 20 ground control points in the form of white
square fiberboard targets (40×40 cm) with black round centre (15 cm
in diameter) were distributed over the study area. The coordinates
of the ground control points were surveyed using a Trimble GeoXR
6000 handheld differential GPS with a pole-mounted Zephyr 2 external
antenna in the dual-frequency differential real-time kinematic (RTK)
mode. It was connected to the CZEPOS permanent GNSS network
and provided 2–4 cm horizontal and vertical relative accuracies.

The RTK GNSS survey was conducted in the study area on 28 March
2017 (leaf-off period) to locate reference points for DTMs evaluation
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using a Leica GPS1200 system. In order to quantitatively assess the
effect of different vegetation canopies on DTMs’ accuracy, the infor-
mation about vegetation canopy (i.e., aquatic vegetation, steppes, and
forest) was recorded for each surveyed point. Because collection of
GNSS data under tall canopies was challenging even during the leaf-off
period, a conventional, total-station survey was used in forested ar-
eas. All reference points were transformed into the Datum of Uniform
Trigonometric Cadastral Network (S-JTSK; EPSG: 5514) and Baltic
Vertical Datum - After Adjustment (Bpv; EPSG: 5705) coordinate
systems. In total, 796 reference points were collected for this study
(55 in aquatic vegetation, 311 in steppes, and 430 points in forests).

6.2.4 Point Clouds Processing and DTM
Generation

The LiDAR point cloud was processed using a proprietary software by
Global Change Research Institute CAS, referenced to the local Datum
of Uniform Trigonometric Cadastral Network and Baltic Vertical Datum
– After Adjustment. The LiDAR point cloud was further processed
using Rapidlasso LAStools (rapidlasso.com/lastools). LASnoise and
LASground tools of the LAStools software were used to determine
ground points. We tested several settings for LASground and visually
assessed the resulting DTMs using hill-shaded terrain and the success
of ground points identification in the most troublesome areas. Our
final setting was as follows: step 4, bulge 1, spike 2.3, offset 0.1, and
stddev 10.

The UAV-acquired images, along with positional data measured by the
onboard GPS during the flight, were loaded into Agisoft Photoscan
Professional version 1.2.4 (Agisoft LLC, Russia) and used to generate
a 3D point cloud. Agisoft Photoscan follows a common SfM–MVS
workflow (Smith et al. 2016). First, the alignment algorithm iteratively
refined external and internal camera orientations and camera locations
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through a least squares method and generated a sparse point cloud. The
alignment process was completed with the accuracy parameter set to
"high" and the pair pre-selection parameter to "disabled". The accuracy
setting ensured the use of the original image resolution while the
"disabled" setting of the pair pre-selection ensured the best image
matching. The limit was set to 20,000 for key points (indicating the
maximum number of points sampled within each image) and to 5,000
for tie points (the number of points used for image matching). Dense
point clouds were built using a dense Multi-View 3D reconstruction
algorithm with a high reconstruction quality and mild depth filtering.
Point clouds were georeferenced using ground control points in the
same horizontal and vertical datum as LiDAR and exported into the
LAS format (hereafter we refer to these point clouds as SfM𝑆𝑃 𝑅𝐼𝑁𝐺,
SfM𝑆𝑈𝑀𝑀𝐸𝑅, and SfM𝑊 𝐼𝑁𝑇 𝐸𝑅). Points representing the ground surface
were identified using Classify LAS Ground tool of the ArcGIS 10.4.1
software (Esri Inc., USA).

The identified ground points were used to create DTMs with a cell
size of 1 m (hereafter, we refer to these point clouds as DTM𝑆𝑃 𝑅𝐼𝑁𝐺,
DTM𝑆𝑈𝑀𝑀𝐸𝑅, DTM𝑊 𝐼𝑁𝑇 𝐸𝑅, and DTM𝐿𝐼𝐷𝐴𝑅). We used a bin-average
method, which calculates the elevation for each cell by assigning the
average value of all points within that cell. Areas containing no ground
points (voids, see below) were triangulated and linearly interpolated to
determine their cell values. Water areas were manually vectorized over
a winter orthophoto and removed from the analysis.

6.2.5 Comparison of LiDAR and SfM Point Clouds

Both LiDAR and SfM point clouds were compared by quantifying the
overall point density, density of identified ground points, and percentage
of ground points in relation to all points. Subsequently, point clouds
were overlaid with a 1×1 m grid and the number of grid cells containing
no ground points was calculated (termed the "void fraction"). The void
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fraction represents areas that had to be interpolated in order to create
a DTM. We also visually compared the point clouds with orthophoto
maps for the three seasons (spring, summer, and winter) and through all
assessed types of canopy (i.e. aquatic vegetation, steppes, and forest).

Figure 6.2: Structure of four point clouds (winter, spring, summer, and
LiDAR) over three different environments (aquatic vegetation, forest, and
forest steppe). Comparison of LiDAR and summer point cloud (A) demon-
strates the known fact that dense vegetation prevents SfM ground detection.
However, spring (B) and especially winter (C) point clouds show a good
potential for detecting ground even under forest stands. The combination of
all three SfM point clouds (D) allows the identification of both ground and
vegetation canopy. The profile is 1 m wide.
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6.2.6 DTM Accuracy Assessment

We used six accuracy measures to assess the vertical accuracy of DTMs
generated from data collected using the SfM and LiDAR surveying
techniques (i.e., maximum, minimum, mean, skewness, RMSE, NMAD).
The GNSS survey, representing the most accurate data, was used as
the reference dataset (true elevation) to evaluate the DTMs. We first
calculated vertical differences among the 796 surveyed point elevations
and the corresponding DTM𝑆𝑃 𝑅𝐼𝑁𝐺, DTM𝑆𝑈𝑀𝑀𝐸𝑅, DTM𝑊 𝐼𝑁𝑇 𝐸𝑅, and
DTM𝐿𝐼𝐷𝐴𝑅 grid cell elevations. Descriptive statistics (i.e., maximum,
minimum, and mean) were calculated for vertical differences. To eval-
uate the success of ground identification and vegetation removal, we
calculated the Bowley’s coefficient of skewness. We also used the dif-
ferences to calculate root mean square error (RMSE). We assessed the
deviation from the normal distribution using histograms and Q-Q-plots.
As we detected a highly non-normal distribution (fat-tailed), we also
calculated normalized absolute deviation (NMAD), a robust metric
that is less sensitive to the presence of outliers (see Höhle and Höhle
2009).

6.2.7 Analysis of Vegetation Cover Effect on DTM
Accuracy

Inaccuracy in the generated DTMs results partially from an interpo-
lation of cells containing no ground points. Therefore, to compare
solely the accuracy of the two methods (and not of the interpolation
algorithm), we identified cells containing ground points from both SfM
and LiDAR surveys and performed a pairwise combination between
DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 and DTM𝐿𝐼𝐷𝐴𝑅 using cell-by-cell subtraction. Being the
best of all available SfM point clouds, only the winter point cloud was
used for this evaluation as a representative of SfM models (Table 6.2;
Figure 6.2). Furthermore, we visually compared the results with respect
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to prevailing vegetation type (aquatic vegetation, forest steppe, and
forests) over the study area. To quantitatively evaluate the impact of
vegetation on DTM accuracy for each vegetation type, we calculated the
same descriptive statistics as mentioned above for individual vegetation
categories (which had been recorded for all reference points during the
field surveys).

Table 6.2: Summary of point cloud characteristics for the SfM and LiDAR
datasets. Point density is shown as Mean ± Standard deviation. Voids
fraction is the percentage of cells (1×1 m resolution) not containing any
ground point.

Dataset Total points Point density Ground points
(points/sq. m)

SfM𝑊 𝐼𝑁𝑇 𝐸𝑅 196,103,451 333 ± 57 167,631,147
SfM𝑆𝑃 𝑅𝐼𝑁𝐺 83,358,151 139 ± 74 31,383,865
SfM𝑆𝑈𝑀𝑀𝐸𝑅 78,098,227 135 ± 77 18,241,318
LiDAR 4,667,778 7.7 ± 3.3 2,696,995
Dataset Ground point Percent Void

density (points/sq. m) ground (%) fraction (%)
SfM𝑊 𝐼𝑁𝑇 𝐸𝑅 288 ± 83 85.5 0.6
SfM𝑆𝑃 𝑅𝐼𝑁𝐺 61 ± 30 37.6 15.8
SfM𝑆𝑈𝑀𝑀𝐸𝑅 56 ± 27 23.4 45.1
LiDAR 5.3 ± 3.0 57.8 15.6

6.3 Results

6.3.1 Comparison of Point Clouds

Point cloud characteristics varied substantially for the acquired datasets
(Table 6.2; Figure 6.2). Point densities acquired with SfM significantly
exceeded densities of the LiDAR point cloud. Of the 196,103,451
SfM𝑊 𝐼𝑁𝑇 𝐸𝑅 points (i.e., under optimal conditions for terrain measure-
ments), 85.5% were classified as ground points. In contrast, both
SfM𝑆𝑃 𝑅𝐼𝑁𝐺 and SfM𝑆𝑈𝑀𝑀𝐸𝑅 (i.e., suboptimal conditions) resulted in
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just 83,358,151 and 78,098,227 points, respectively, of which 37.6% and
23.4% were classified as ground points. Accordingly, when overlaid
with a 1×1 m resolution grid, the number of cells containing no ground
points was the highest for leaf-on conditions. For both total points
and ground points, the identified point densities for individual flights
differed significantly. The most evident difference was observed for the
forest environment, for which no ground points were identified through
the summer flight (Table 6.2; Figure 6.3).

Figure 6.3: Visual comparison of ground point densities. All figures are from
the same location. (A) Spring SfM point cloud and (B) orthophoto; (C)
summer SfM point cloud and (D) orthophoto; (E) winter SfM point cloud and
(F) orthophoto; (G) LiDAR point cloud; (H) approximate distribution of the
three types of vegetation under study in the displayed area. No ground points
were identified in the summer (leaf-on period) under the forest vegetation
(C) while the ground is perfectly identified in the winter survey (E). Although
ground points are identified in aquatic vegetation and forest steppes in summer
(C), these may capture low vegetation (e.g., reed, grass) and do not accurately
represent bare ground. See also Figure 6.2.

The density of photogrammetrically derived point clouds is much greater
than that of the LiDAR point clouds but that greater point density
does not necessarily indicate a greater accuracy. The reason is that
only LiDAR can penetrate through the gaps in vegetation canopies
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and capture underlying canopy layers or ground elevation. It is evident
that with the point density used in our study, there are many gaps in
LiDAR ground coverage (Figure 6.3 G). By comparison, the density
of ground points in the SfM𝑊 𝐼𝑁𝑇 𝐸𝑅 point cloud (Figure 6.3 E) is
much higher. This is quantitatively shown in the percentage of void
cells ("void fraction") (Table 6.2). On the other hand, although the
percentages of void cells are similar for LiDAR and SfM𝑆𝑃 𝑅𝐼𝑁𝐺 point
clouds, LiDAR ground points are more evenly distributed. Furthermore,
the point density of SfM𝑊 𝐼𝑁𝑇 𝐸𝑅 was considerably greater (333 points
per square meter) than those of SfM𝑆𝑃 𝑅𝐼𝑁𝐺 and SfM𝑆𝑈𝑀𝑀𝐸𝑅 (with
fewer than 140 points per square meter).

6.3.2 Combination of Point Clouds Acquired
Under Leaf-on and Leaf-off Conditions

SfM𝑆𝑈𝑀𝑀𝐸𝑅 (leaf-on conditions) recorded elevation for the top sur-
face, which in this case means vegetation canopy (Figure 6.2 A). By
comparison, SfM𝑆𝑃 𝑅𝐼𝑁𝐺 (partly leaf-off conditions) and SfM𝑊 𝐼𝑁𝑇 𝐸𝑅

(leaf-off conditions) point clouds were able to capture ground elevation,
albeit with varying degrees of success in various studied environments
(i.e., aquatic vegetation, forest steppe, and forest; Figure 6.2 B and
C). Given the differences in the point clouds acquired in the different
phenological phases, a combination of SfM𝑆𝑃 𝑅𝐼𝑁𝐺, SfM𝑆𝑈𝑀𝑀𝐸𝑅, and
SfM𝑊 𝐼𝑁𝑇 𝐸𝑅 point clouds allowed us to record both vegetation canopy
and ground elevation and resembled the structure of the LiDAR point
cloud (Figure 6.2 D).

6.3.3 Comparison of DTMs

With RMSE of 0.19 m and of 0.12 m, respectively, DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 and
DTM𝐿𝐼𝐷𝐴𝑅 achieved very similar results (Table 6.3). DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 had
a higher maximum and minimum error than DTM𝐿𝐼𝐷𝐴𝑅 and exhibited
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a slight positive skew. This higher frequency of positive errors suggests
a persistent presence of above-ground features even in winter (see
vegetation category comparison). In contrast, DTM𝑆𝑃 𝑅𝐼𝑁𝐺 and in
particular DTM𝑆𝑈𝑀𝑀𝐸𝑅 achieved poorer results. DTM𝑆𝑈𝑀𝑀𝐸𝑅 had
the highest mean error of 0.83 m and RMSE of 1.71 m. DTM𝑆𝑃 𝑅𝐼𝑁𝐺

had a mean error of 0.07 m and RMSE of 0.46 m (see Table 6.3).

Table 6.3: Results of DTMs error analysis. Comparison of each DTM with
796 GNSS-gathered validation points. Bowley coefficient of skewness is used.
NMAD is a normalized absolute deviation – a robust metric less sensitive to
the presence of outliers than RMSE.

DTM Maximum (m) Minimum (m) Mean (m)
DTM𝑆𝑃 𝑅𝐼𝑁𝐺 1.43 −6.23 0.07
DTM𝑆𝑈𝑀𝑀𝐸𝑅 12.88 −4.26 0.83
DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 1.39 −1.25 0.09
DTM𝐿𝑖𝐷𝐴𝑅 0.56 −0.48 0.05
DTM Skewness (m) RMSE (m) NMAD (m)
DTM𝑆𝑃 𝑅𝐼𝑁𝐺 −0.002 0.46 0.15
DTM𝑆𝑈𝑀𝑀𝐸𝑅 0.21 1.71 0.58
DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 0.12 0.19 0.13
DTM𝐿𝑖𝐷𝐴𝑅 0.002 0.12 0.10

6.3.4 The Effect of the Vegetation
on DTMs Accuracy

A high maximum positive error in DTM𝑆𝑈𝑀𝑀𝐸𝑅 indicates an existence
of artefacts resulting from an unsuccessful filtering of the tree foliage.
These have been successfully avoided in DTM𝑆𝑃 𝑅𝐼𝑁𝐺 and DTM𝑊 𝐼𝑁𝑇 𝐸𝑅

due to the smaller amount of tree foliage (or absent foliage in case
of DTM𝑊 𝐼𝑁𝑇 𝐸𝑅) during data acquisition (Figure 6.3 B and F). A
low minimum negative error is however present in DTM𝑆𝑃 𝑅𝐼𝑁𝐺 and
DTM𝑆𝑈𝑀𝑀𝐸𝑅 indicating that some areas are below the ground. This
is due to the inability to capture the undulated terrain over void areas
without ground points that had to be interpolated. In addition to
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these void areas, low vegetation is often identified as terrain in summer
and the DTM𝑆𝑈𝑀𝑀𝐸𝑅 therefore showed a positive error skew. Both
DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 and DTM𝐿𝐼𝐷𝐴𝑅 tend to overestimate the terrain elevation
in all vegetation categories (Table 6.4). While the quality of DTM𝐿𝐼𝐷𝐴𝑅

is relatively consistent across vegetation categories, DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 shows
variable accuracy. Both methods achieved the best accuracy in forests
(Figure 6.4).

Table 6.4: Results of DTMs error analysis for SfM winter and LiDAR in
three environments. Comparison of each DTM with 796 GNSS gathered
validation points.

DTM Mean (m) Skewness (m) RMSE (m) NMAD (m)
Aquatic vegetation

DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 0.32 0.21 0.36 0.12
DTM𝐿𝑖𝐷𝐴𝑅 0.07 0.03 0.14 0.11

Steppes
DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 0.08 0.25 0.21 0.12
DTM𝐿𝑖𝐷𝐴𝑅 0.07 −0.06 0.12 0.09

Forests
DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 0.06 −0.02 0.15 0.11
DTM𝐿𝑖𝐷𝐴𝑅 0.04 −0.003 0.12 0.11

6.4 Discussion

The negative effect of the vegetation on DTM quality and overestimation
of bare earth due to the inconsistent ability of passive methods to
penetrate vegetation canopies is a common observation (Dandois and
Ellis 2013, Tonkin et al. 2014, Lovitt et al. 2017). Both methods
achieved best accuracy in forests, which is not surprising if we consider
the vertical vegetation structure. The density of the most problematic,
i.e., shrub, vegetation in forests is low (Figure 6.4 H, Table 6.1) while
it is considerably higher in forest steppes (Figure 6.4 E). Although
an effective use of UAVs in combination with photogrammetry in
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Figure 6.4: Orthophoto images of 1 ha plots inside study area at three different
environments. (A) aquatic vegetation; (D) forest steppe; (G) forest. The
above-ground height distribution of LiDAR returns (B, E, H), and a raster
surface of vertical difference (DTM𝑊 𝐼𝑁𝑇 𝐸𝑅−DTM𝐿𝐼𝐷𝐴𝑅) at 1 m resolution
(C, F, I). The colour scale indicates the differences between DTM𝑊 𝐼𝑁𝑇 𝐸𝑅

and DTM𝐿𝐼𝐷𝐴𝑅, see legend. Red colour shows areas of overestimation
and green colour areas of underestimation of DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 compared to
DTM𝐿𝐼𝐷𝐴𝑅. Note that overestimation occurs mainly in areas of aquatic
vegetation around water areas. Density is calculated as number of returns in
each bin (here 2 m) divided by the total number of returns. See Figure 6.1
for location of the plots.

ecosystems dominated by shrub vegetation has been demonstrated by
Cunliffe et al. (2016), the quality of acquired DTMs depends on the
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character of the vegetation and terrain. In our study area, the accuracy
of DTMs in steppes was better for DTM𝐿𝐼𝐷𝐴𝑅 (with RMSE of 0.12 m)
but DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 also achieved a very good result (with RMSE of
0.21 m). DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 error was skewed slightly positively. Positive
elevation errors can be attributed to the effect of short vegetation, which
is often misclassified as ground by the filtering algorithms due to the
small height difference between the vegetation and terrain (Meng et al.
2010). Another reason for such errors may lie in the presence of very
dense shrubs that form an impenetrable flat area and resemble terrain
(e.g., Symphoricarpos albus). Besides, for photogrammetrically derived
point clouds, we performed no manual processing of the data acquired
under leaf-off conditions while both datasets acquired under leaf-on
conditions required further manual processing as the tops of the dense
canopies had been identified as ground. Distinguishing ground points
from dense vegetation is particularly complicated for photogrammetric
point clouds due to the very high densities, but its influence is only
local and should be evident and easy to remove by manual evaluation.

LiDAR ground height estimation is particularly problematic for aquatic
vegetation due to the weak laser backscatter caused by water absorp-
tion. As most LiDAR systems operate in the infrared region (like the
one adopted in this study), free water surfaces and saturated soils
dampen the returning signal (Hopkinson et al. 2005). As photogramme-
try methods are based on images from passive sensors, acquired point
clouds do not suffer from this issue and they may be better suited for
DTMs acquisition (Kalacska et al. 2017). Aquatic vegetation stands
however often persist during the winter, and our results show a large
difference of RMSE 0.36 m versus 0.14 m between DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 and
DTM𝐿𝐼𝐷𝐴𝑅, respectively, for aquatic vegetation. DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 error
shows a positive skew due to stands of dry aquatic vegetation (e.g. Ty-
pha latifolia and Phragmites australis). These create dense vegetation
stands completely obscuring the bare earth and making its detection
impossible. On the other hand, the soil in the area of aquatic vegetation
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is not constantly saturated (and was not at the time of LiDAR acqui-
sition) and LiDAR was therefore able to detect the bare earth. This
is also evident from the cell-by-cell comparison of DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 and
DTM𝐿𝐼𝐷𝐴𝑅 (Figure 6.4). DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 overestimated the bare earth in
areas of aquatic vegetation compared to DTM𝐿𝐼𝐷𝐴𝑅. Recently, Lovitt
et al. (2017) compared the performance of photogrammetric and LiDAR
point clouds for characterizing terrain under peatland vegetation. In
contrast to our study, they found photogrammetric point clouds to
perform better than LiDAR point clouds in characterizing terrain under
peatland vegetation. This difference is likely caused by differences in
the vegetation type within the study areas as the authors also reported
significant decline in accuracy for the most densely vegetated areas
(RMSE of 0.42 m, which is similar to our results). Luo et al. (2015) re-
ported RMSE of 0.15 m for a LiDAR-derived DTM under short wetland
vegetation, which is consistent with our result (RMSE of 0.14 m).

Besides the evaluation of the digital terrain models, we also investigated
the possibility of replacing costly LiDAR data with a combination of SfM
data acquired from leaf-off and leaf-on imagery. Our results suggest that
at least for some applications (e.g., calculation of vegetation structure
characteristics often used to measure restoration success; Wortley et al.
2013, Shackelford et al. 2018), such a substitution may be possible. This
is a significant improvement as studies usually relied on DTMs acquired
from external sources, such as ALS (Lisein et al. 2013, Hawryło et al.
2017) or close-range terrestrial photogrammetry (Mikita et al. 2016).
However, it is important to note that photogrammetric point clouds are
inherently different from LiDAR point clouds, lacking detail in the lower
canopy. In addition, the point density can be affected, for example, by
flight parameters, camera settings, and environmental conditions such
as foliage movement in the wind (Jensen and Mathews 2016, Moudrý
et al. 2019d). Consequently, the densities of point clouds combined
from different acquisition periods could be unpredictably biased and
their use likely limited to deriving simple variables (e.g., canopy height
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and canopy cover). It is however fair to point out that many of the
above mentioned problems can also affect LiDAR data (e.g., Coops
et al. 2007, Roussel et al. 2017).

Our results have shown that DTMs derived from UAV-borne images
acquired during leaf-off period are comparable with a LiDAR-derived
point cloud in a forest and only slightly poorer in forest steppes and in
aquatic vegetation. This is consistent with recent findings by DeWitt
et al. (2017) that satellite images acquired under leaf-off conditions can
be used successfully to mitigate the effect of above-ground vegetation
and to acquire DTMs of similar accuracy to that of LiDAR-derived
DTMs. Similarly, Dandois and Ellis (2013) showed an improvement in
a DTM generated under leaf-off conditions of a temperate deciduous
forest; the benefit in their study was however not as significant as
our results (they reported RMSEs from 0.73 m to 2.72 m). This is
likely due to the differences in structure of the forests and thus of
acquired point clouds. The species composition on the three deciduous
forest plots (250×250 m) in their study was different (mainly American
beech Fagus grandifolia, oak Quercus spp., hickory Carya spp., and
tulip-poplar Liriodendron tulipifera) and the canopy was higher (mean
canopy height between 20 m and 37 m; maximum height up to 42 m). In
contrast with Dandois and Ellis (2013; see Figures 2 and 7 in their paper)
high vegetation was only residually present in our point clouds (Figure
6.2). Besides, they used a hexacopter and flew only 40 m above the
peak canopy height (our flying altitude was almost double that above
the canopy). Given the differences in accuracy between our results and
those acquired by Dandois and Ellis (2013), additional investigations
covering a range of various forest stands are needed to investigate
the accuracy, precision, and resolution of photogrammetrically derived
DTMs under deciduous forests. In addition, although our results
indicate that natural conditions in winter appear promising, it must
be noted that the operation of UAVs is restricted to specific conditions
that must be met to acquire accurate terrain information. Meeting
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such conditions in winter may be problematic because of snow, wind,
and relatively short duration of proper light conditions.

6.5 Conclusions

This work evaluated the quality of LiDAR and UAV-borne digital terrain
models of a spoil bank that could be possibly used for various safety,
remediation or ecological research purposes. We generated DTMs from
images acquired under leaf-on and leaf-off conditions in three different
environments (aquatic vegetation, steppe, and forest). Bare ground
was identified using ground classification methods and then binned or
interpolated over void areas to create DTMs at 1 m resolution. The
point cloud derived from images acquired under leaf-off conditions was
of the highest density. Vegetation artefacts were more successfully
removed by the filtering procedure for leaf-off point clouds than for
leaf-on point clouds and the identified ground points covered almost
the entire study area. The accuracy of DTMs generated from leaf-off
point cloud differed among the three environments. Overall accuracy
was close to that of LiDAR-derived DTMs, with the best agreement
in forests and the worst in the environment with aquatic vegetation.
We suggest that accuracy of both methods is sufficient to monitor
spoil banks terrain and provide information complementary to that
acquired by more traditional methods. However, careful consideration
must be given to site conditions at the time of image acquisition
because the accuracy of methods is highly dependent on the vertical
vegetation structure. While airborne LiDAR is suitable for monitoring
ground instability problems and mitigation measures for all seasons and
vegetation structures, UAV image-based photogrammetry can be used
successfully in steppes and deciduous forest stands only under leaf-off
conditions. The greatest advantage of the methodology described in this
paper is that leaf-off images allow accurate detection of ground surface
and, therefore, DTMs that can easily be compared to any subsequent
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DTMs derived from photos taken at a later date; such a comparison
could detect any potential terrain changes. In addition, the combination
of UAV imagery from leaf-off and leaf-on periods can be potentially
used to calculate vegetation structure characteristics for studying a
susceptibility of slope failure or restoration success assessment. Further
research should quantitatively assess the sensitivity of images acquired
under leaf-off conditions to the various structures seen in deciduous
forest stands.
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Chapter 7

Discussion and Summary

The presented dissertation thesis consists of three published studies
focusing on the topic of point cloud filtering in a complex artificial
terrain. All three published studies presented in the previous chapters
investigate the field of LiDAR and UAV photogrammetry-based point
cloud filtering including the comparison of various methods, parameters
of sensitivity analyses, and the use of point clouds in the field of
ecological restoration.

The individual studies will be referred to in the text as follows:

Study I: Assessment of LiDAR ground filtering algorithms for deter-
mining ground surface of non-natural terrain overgrown with forest and
steppe vegetation.

Study II: Sensitivity analysis of parameters and contrasting perfor-
mance of ground filtering algorithms with UAV photogrammetry-based
and LiDAR point clouds.

Study III: Comparison of leaf-off and leaf-on combined UAV imagery
and airborne LiDAR for assessment of a post-mining site terrain and
vegetation structure: Prospects for monitoring hazards and restoration
success.

All presented studies were performed on the Hornojiřetínská spoil heap.
This study area was not selected by chance but because of a research
project, the aim of which was a fusion of LiDAR and multispectral data
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for the assessment of the physiographic diversity of post-mining sites.
Accurate derivation of the DTM was a necessary initial step for all
subsequent analyses performed within the project. Although most spoil
heaps are technically restored, which includes major alterations of the
terrain and leads to a uniform terrain, a significant proportion of spoil
heaps included within the project (including the Hornojiřetínská spoil
heap) has never been technically reclaimed. Therefore, the terrain has
remained rugged as a result of heaping that has formed an undulated
terrain and consequently led to the development of heterogeneous vege-
tation consisting of various types of meadows, steppes with scattered
shrubs and trees, and spontaneously grown mixed forests. The follow-
ing part of the dissertation thesis includes comments on the individual
research topics, conclusions, and summary of the thesis as well as sug-
gestions for further research in the field of point cloud filtering. As the
full discussion and conclusions of the performed studies are included
in the published papers detailed in Chapters 4 – 6, this chapter will
only summarize the findings and provide the author’s comments on the
individual research topic and the discussion on how the aims of the
dissertation were met.

7.1 Ground Filtering of ALS Data

The first study comparing the performance of filtering algorithms was
presented by Sithole and Vosselman (2004), who provided a single
ALS dataset to several researchers who developed filtering algorithms,
and summarized the results (e.g., Axelsson 2000, Elmqvist et al. 2001,
Pfeifer et al. 2001, Roggero 2001, Briese et al. 2002, Brovelli et al. 2002,
Sohn and Dowman 2002, Wack and Wimmer 2002). This study was the
first of its kind and unique in a way. It inspired several other groups,
including ours, to perform similar comparisons for various environments.
The algorithms used in studies that followed Sithole and Vosselman
(2004) are listed in Table 7.1 at the end of this chapter. Note that even
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a few years ago, the implementation of filtering algorithms in common
software was limited and comparison studies concentrated mostly on
validation of algorithms implemented in ALDPAT, the development
of which, however, has been abandoned. On the other hand, currently
available software solutions usually implement only one or two filtering
methods. It would be of great value if several options of filtering
algorithms were available in a single software. Besides, it would also
allow to combine them into ensemble models (see the following chapter
Further research).

Algorithms for ground filtering of ALS data are usually designed with
some specific environment in mind (e.g., forests, steppes, or urban areas)
and their efficiency varies across environments as each environment
poses specific challenges (Meng et al. 2009, Rashidi and Rastiveis 2017,
Buján et al. 2020). It is not entirely possible to apply a universal
filtering method to achieve satisfactory results for all environmental
conditions. The terrain and vegetation character of spoil heaps left
to natural succession is often very complex and differs from what we
can typically observe in the surrounding landscape. During our initial
testing, we realized that the proper filtration of point clouds and the
generation of accurate terrain will not be easy.

A combination of complex terrain and low vegetation, representing a
well-known filtering problem, was common in our study area. Conse-
quently, it was common to observe the following errors during our initial
testing: (i) heaps/piles wrongly classified as vegetation or (ii) returns
from dense vegetation incorrectly classified as terrain. Obviously, there
is a trade-off between these two errors. Testing using multiple settings
in a common software was not satisfactory and we were forced to test
also other available software/algorithms and to evaluate the ability of
the algorithms to produce an accurate DTM in such a complex terrain,
which actually triggered the first part of our research (Study I). Our re-
sults were not much different from what others have shown and basically
confirmed that the performance of tested ground filtering algorithms
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was affected by the terrain slope and vegetation (Korzeniowska et al.
2014, Montealegre et al. 2015). Most importantly, however, this search
allowed us to find the optimal solution for our study area, which was to
split the study area into several tiles with relatively similar terrain and
vegetation characteristics and classify each tile separately with minor
adjustment of parameters.

7.2 Ground Filtering of UAV
Photogrammetry-Based Data

Most filtering algorithms were originally designed for ALS point clouds
and the knowledge of their performance with UAV photogrammetry-
based point clouds is limited (but see Serifoglu Yilmaz et al. 2016, Zhang
et al. 2018). Point clouds derived from UAV photogrammetry have a
different character than point clouds from ALS; in particular, they are
usually denser and contain only the uppermost layer of vegetation.

The comparison of the performance of available ground filtering algo-
rithms when applied on both LiDAR and UAV photogrammetry-based
point clouds arose as our next research question. We have shown that
all filters achieved relatively good performance; however, the combina-
tion of dense vegetation and steep terrain slope complicated the point
cloud filtration. This time, however, we analyzed the behavior of the
algorithms and their sensitivity to changes in individual parameters
in different environmental conditions in more depth. Most of the algo-
rithms were identical to those used in the previous study (Study I) but
algorithms with poor results were replaced by others (i.e., Trimble Real-
Works was removed and Agisoft Metashape was added to the analyses).
In addition, the number of combinations of parameter settings was
dramatically increased to allow a deeper examination of the sensitivity
of the individual parameters. Prior studies typically compared the
performance of several algorithms (with both types of point cloud) on
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various study sites representing different conditions (Serifoglu Yilmaz
et al. 2018, Zhang et al. 2018). Our study area was large enough to
contain several types of natural environment, which facilitated a more
comprehensive evaluation of the performance (Study II). The results
were generally better for LiDAR point clouds than for photogrammetric
ones, which corresponds to the facts that (i) the algorithms were origi-
nally developed for LiDAR data and (ii) that LiDAR pulses penetrate
through gaps in vegetation canopies, thus producing relatively more
ground points. Despite being tested in exactly the same study area,
the behavior of filtering algorithms was inconsistent when applied on
photogrammetric point clouds and differed from the behavior observed
when they were applied on LiDAR point clouds. Hence, when using
photogrammetry-derived point clouds, users can not always rely on
their experience with LiDAR point clouds filtering; rather, attention
should be paid to the development of new algorithms or adaptation of
the existing algorithms to dense photogrammetric point clouds.

7.3 Acquisition of DTMs Under a Forest
Canopy During Leaf-off Conditions

In most cases, when results of aerial laser scanning (e.g., by the gov-
ernment in some EU countries) are not publicly available, private
acquisition of ALS data is very expensive; for this reason, the use of
photogrammetric techniques using UAV imagery seems to be a good
alternative. Dense forest areas are the most challenging environment
for ground filtering or even ground detection using UAV imagery. In
order to at least partially eliminate the problem of difficult capture of
the ground using UAV imagery (as it predominantly contains only the
uppermost layer of vegetation), UAV imaging can be conducted in the
leaf-off period (see for example DeWitt et al. 2017 who used a similar
approach with satellite imagery). Existing studies on the use of UAV
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imagery in forests focused on partially open canopies (Kachamba et al.
2016) where ground filtering is more likely to be successful. The forest
stands in our study area comprised predominantly temperate deciduous
forests. Obtaining images during the leaf-off period, therefore, appeared
to be promising. I would like to say that this approach was inspired by
studies that obtained ALS data in the leaf-off period (e.g., White et al.
2013). To be honest, however, the data were obtained by chance due to
the impossibility to meet the original intended flight date. We just did
not expect such a difference between the leaf-on and leaf-off flights and
such a significant improvement. Several studies have already followed
up on our findings (Study III) and used them in their research, for
example, for supporting teak plantations inventories in Ecuador or for
modeling coastal ecosystems in the southeastern United States, where
a leaf-off derived DTM served as the ground reference (Aguilar et al.
2019, DiGiacomo et al. 2020). Another study confirmed the validity of
this method, testing the influence of seasonal variation in vegetation for
mapping hard-to-access and hazardous parts of forests (Tomaštík et al.
2019). We suggest that in deciduous forests, a combination of two UAV
image acquisitions at different time points could provide a potential
substitution for ALS scanning when vegetation cover or height is of
concern.

7.4 Evaluation of Filtering Algorithms

There are several ways to evaluate the performance and accuracy of
filtering algorithms. The most important aspect of every evaluation is
the quality of the used reference data. The best reference dataset is a
manually classified point cloud. Manual classification of a point cloud
is possible for ALS data but it would be extremely time-consuming
for a (several times denser) UAV photogrammetry-based point cloud.
Another option is to validate the accuracy of the generated DTM
using a more accurate source of elevation data, such as the differential
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GNSS (Study II and III). This, however, provides significantly less
information about the actual accuracy of the filtering itself and may
result in misleading conclusions as the validation points are seldom
located in areas problematic from the perspective of filtering methods
– field operators who collect the validation data are likely to subcon-
sciously or for safety reasons avoid such areas (e.g., steep slopes, dense
vegetation). In any case, the validation data are usually limited to
small areas. Despite the time-demanding manual classification of point
clouds, some recent studies used manually classified samples of UAV
photogrammetry-based point clouds to determine the error trends of
the algorithms (e.g., Zeybek and Şanlıoğlu 2019). However, only a few
square meters of validation data out of tens of hectares of the study
area were classified. A slightly different approach to the assessment of
Type I and II errors was proposed by Zhang et al. (2003) and Zhang
and Whitman (2005) who examined a sample of 648 randomly selected
test points (x and y coordinates) across their testing site.

It is important to note that most of the existing studies only reported
the algorithm that worked best for their study area but did not mention
specific values of the tested parameters. Only a few studies reported
also the range of tested parameters and none of them reported the
performance of all tested settings. This, however, limits the usability
of their results as the sensitivity of algorithms to parameter settings
is equally important for users as the best performance. For example,
Montealegre et al. (2015) presented results of filtering LiDAR point
clouds in forests in Spain acquired using the best settings. Results
from several test sites in Poland were presented by Korzeniowska
et al. (2014) who tried to find the best settings for various types of
land cover and terrain slope. Serifoglu Yilmaz et al. (2016) used a
part of a university campus in Turkey to determine the most suitable
settings for built-up areas. Reporting the best results gives important
insights into the potentially best performance of filtering algorithms
(i.e., information about the accuracy that can be theoretically expected
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from the classification using the particular method in a particular
environment) and provide a combination of parameters that will likely
perform relatively well in a similar environment. However, this approach
lacks information on how sensitive the algorithm is to the change
of parameters and whether it generally tends to cause the Type I
error (percentage of ground points that are incorrectly classified as
non-ground), Type II error (non-ground points incorrectly classified
as ground points) or whether the susceptibility to the type of error
depends on parameter settings. This information is also important for
users as it can help them to make an informed selection of algorithms
and fine-tune the parameters. Therefore, we also studied the overall
tendency of algorithms to cause the Type I and/or Type II error and
showed that the tendency may differ between algorithms (Study I).
I believe that this topic deserves further research to determine whether
the main role in causing Type I and Type II error is played by the
algorithm or by the character of the environment.

The typical best success rate reported in individual studies ranges
between 76 – 96% (Axelsson 2000, Elmqvist et al. 2001, Brovelli et al.
2002). It is, therefore, clear that all classifications require additional
manual processing and, therefore, the question arises, which error
(Type I or Type II error) poses a greater problem. Generally, this
depends on the cost of the error for the intended data application
(Sithole and Vosselman 2004). However, as noted by Sithole and Vossel-
man (2004) it is far easier to manually fix Type II errors than Type I
errors. Results of Study I showed that for all algorithms but SMRF,
fine-tuning caused considerably larger variation in Type I error than in
Type II error. In addition, PTIN, ARC, and PMF algorithms tended on
average to a higher Type I than Type II error while in CSF, SMRF, and
RW, we observed the opposite. However, our study area contained only
one specific type of landscape (e.g., a forested steppe with overgrown
vegetation). Testing the same in other landscapes (e.g., a built-up area),
more sites, and using a wider range of parameters would be beneficial.
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To evaluate filtering algorithms in more depth, we also performed a
sensitivity analysis for identifying the best parameter settings for each
ground filtering algorithm and both types of the point cloud (Study II).
Only a few studies evaluated the differences between these two types
of point clouds together with the effect of heterogeneous vegetation
and slope changes on algorithm performance (Montealegre et al. 2015,
Serifoglu Yilmaz et al. 2018). In our case, the "grain" turned out to be
the most important parameter. This is not surprising as we validated
the accuracy with respect to the height of the terrain (i.e., DTM). In-
deed, our study was particularly limited by the used validation dataset
(GNSS survey) as mentioned above. Further studies should, therefore,
focus on the sensitivity analysis considering individual parameters with
respect to their effects on the Type I and Type II error. This would be
a truly unique step that would benefit all users. Knowing the sensitivity
of parameters can provide valuable advice when most of the predefined
settings of algorithms fail and fine-tuning using custom parameters is
necessary.

Another approach to the assessment lies in a visual examination and
comparison of a shaded relief of the generated DTMs. This approach
is rarely used (Korzeniowska et al. 2014, Montealegre et al. 2015), but
it facilitates the identification of differences between the best results
among several algorithms. The main benefit of this approach lies in
the opportunity to observe small differences in the parameter tuning,
as such differences may not be obvious from numerical values but are
visually apparent at the first glance. It is also possible to quickly
detect errors caused by misclassification of ground points (filled by
interpolation), which can sometimes inaccurately smoothen the terrain.
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7.5 Conclusions

Point clouds from ALS or UAV imagery constitute an important data
source for terrain mapping. The introduction of this thesis briefly
summarized various aspects of these methods and their role in obtaining
a detailed structure of the Earth’s surface. Dozens of algorithms have
been developed to automatically detect the bare earth from point
clouds. In this thesis, I presented the results of the in-depth evaluation
of filtering algorithms’ performance in complex terrain. The detailed
findings can be found in the conclusions of the individual presented
studies. Although all algorithms performed relatively well, it is a
matter of perspective and a result considered good by one person (or
from the perspective of a certain application) might be seen as poor
by another. Hence, I describe the main points that should be in my
opinion considered when filtering point clouds below:

• Algorithms behave consistently when filtering LiDAR point clouds,
with problems typically more common when filtering low veg-
etation and/or with increasing slope; however, when filtering
photogrammetric point clouds, this may not be true and caution
is needed.

• LAStools, in my opinion, present a good option for inexperienced
users due to the useful interface and several predefined options for
parameter settings. In addition, the PTIN algorithm implemented
in LAStools yielded the best results for both types of point clouds.
I propose that software developers should provide users with
predefined sets of optimal parameters for individual environments
under study.

• Some algorithms tended to cause Type I error while others tended
rather to the Type II error; future research should evaluate
whether these tendencies are universal and how they relate to the
vegetation and terrain character.
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• Fine-tuning of parameters is necessary. Parameters affecting
the selection of initial ground points turned out to be the most
important for the accuracy of the resulting DTMs.

• The combination of UAV imagery from leaf-off and leaf-on pe-
riods can be potentially used to calculate vegetation structure
characteristics such as vegetation cover and height.

7.6 Further Research

Many filtering algorithms have been shown to be able to distinguish
ground and non-ground points from point clouds. However, it is often
difficult to derive satisfactory filtering results with the existing methods
and accurate filtering still requires a lot of manual work. A new
ground filter, which would, for example, adapt itself to the surrounding
environment, may be created in the relatively near future. Some
attempts have already been reported, for example, with a slope estimate
(Wang et al. 2020). However, a multitude of issues need to be tested
and solved on the way to such an algorithm. Besides, there are many
interesting applications in which ground filters are increasingly tested
(e.g., ground filtering of raster satellite data) and I would like to use
the experience gained in this thesis to further explore this field.

Currently, UAV LiDAR (mounting of a LiDAR sensor with the UAV
platform) is becoming increasingly available and represents one of the
possible directions of further research. Compared to ALS, it provides
denser point clouds and, thus, brings new challenges for ground filtering
due to a lot of noise and difficult maintaining of symmetric flight lines.
On the other hand, such data offer a great opportunity for very accurate
estimation of ground elevation and vegetation characteristics (Liu et al.
2020, Pinton et al. 2020).

Attempts for the use of ground filtering algorithms in satellite data
processing, e.g., filtering of DSMs, have been reported. Most satellite
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DEMs (including TanDEM-X DEM) include canopy and buildings
because radar waves cannot fully penetrate through vegetation and
buildings to reach the ground (the same applies to photogrammetry).
Therefore, filtering methods are needed if DEMs from satellites are to
be used as DTMs. So far, few filtering algorithms have been tested
(e.g., the morphological filter; Archer et al. 2018, Zhang et al. 2019)
and it would be worth trying other filters or completely new methods.

A promising approach in the current research is represented by combin-
ing filtering algorithms into so-called hybrid methods (Maguya et al.
2013, Buján et al. 2020). I myself refer to this approach (i.e., the com-
bination of several algorithms) as ensemble filtering, which is common
in many other disciplines such as economy or ecology (Effrosynidis
and Arampatzis 2021, Mallick et al. 2021). Ensemble filtering uses the
strengths of all adopted methods. In the case of ground filtering, it can
be used to identify problematic areas (i.e., points, the classification of
which into ground and non-ground differs among algorithms). Besides,
ensemble filtering does not necessarily use several algorithms; it might
be also implemented by the use of various parameter settings within
one algorithm. I believe this is a hot topic as several studies have
already tested the combination of two algorithms and ensemble filtering
is likely to become a common approach quite soon (Zhao et al. 2016,
Wang et al. 2020). Therefore, I consider this a priority in my further
research.

Various data fusions may represent another promising direction of
further research. One way, for example, is the integration of RGB
imagery with UAV photogrammetry-based point clouds or with LiDAR
point clouds. The additional RGB information could help to better
detect ground points. Filtering point clouds using the information about
the land cover type (e.g., Corine Land Cover) is another principle that
should be investigated further. The detail (both spatial and thematic)
in which the land cover data should be provided, however, remains
questionable.
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7.7 Afterword

According to the present trends, it is clear that remote sensing technolo-
gies will play an ever more important role and will evolve ever faster,
driven by the need to obtain more detailed data representing the 3D
structure of the Earth’s surface in the shortest possible time. I believe
this dissertation thesis has addressed these needs and may provide some
basic elements filling a gap in knowledge of ground filtering and laying
the base for further research. The objectives of this thesis were suc-
cessfully reached, and the presented studies appropriately demonstrate
the principal issues of ground filtering of point clouds. The process of
creating DTMs using ground filtering algorithms is just a small piece
of knowledge that will help us better understand the environmental
processes on Earth.
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