

Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Technology

Diploma Thesis

Website of African Students Association in Czech

University of Life Sciences

Wossenyeleh Merid Mekonnen

© 2016 CULS Prague

Declaration

I declare that I have worked on my Master’s thesis titled "Website of African

Students Association in Czech University of Life Sciences" by myself and I have used only

the sources mentioned at the end of the thesis. As the author of the diploma thesis, I

declare that the thesis does not break copyrights of any their person.

In Prague on November 30, 2016 ___________________________

Acknowledgement

I would like to thank Ing. Václav Lohr, Ph.D. for his help and guidance during the

length of my studies. I would also like to thank all my teachers, professors and individuals

that influenced me for the better. A special thanks to my friends who have been there for

me and my family, my beloved mother Fanaye Beyene and my sisters Seble Merid,

Hermela Merid and Bezawit Merid who have been a source of inspiration and strength.

Finally, I would like to thank the Government of Czech Republic for providing me with the

scholarship to pursue my education further.

Webové stránky sdružení afrických studentů na České

zemědělské univerzitě

Souhrn

Webové stránky jsou pilířem šíření informací napříč různými platformami a

s růstem technologií se neustále mění a rozvíjí způsob, kterým jsou stránky vyvíjeny, což

umožňuje vývoj stále stabilnějších a spolehlivějších redakčních systémů. Nicméně většina

redakčních systémů je používána jako jediné řešení webového systému, neboť nabízejí

odpověď na většinu potřeb internetových stránek. I přes to, že tento přístup umožňuje

vyvinout malé životní cykly a podporuje lepší upgrady, aktualizace a zabezpečení,

zanedbává ale skutečnost, že různé nové redakční systémy jsou, aby fungovaly dobře,

závislé na potřebách webu. Z tohoto důvodu se mnoho redakčních systémů, které jsou

volně k dispozici, zaměřuje na různé aspekty, jakými jsou vývoj jazyka nebo optimalizace

výkonu. Tato studie zahrnuje srovnání mezi WordPress, běžně známým redakčním

systémem, a novým systémem s názvem Grav, který je založený na flat file systému, u

malé webové stránky sloužící sdružení afrických studentů na České zemědělské univerzitě.

Práce se zabývá vývojem a hostováním webových stránek, přes načítání až k zátěžovému

testování pomocí simulovaného provozu virtuálními uživateli. Dále se práce zabývá

průzkumem rozsahu uživatelských zkušeností a postojů vybraných studentů na univerzitě.

Srovnávání bylo prováděno zaznamenáváním doby odezvy, četnosti chyb a dotazováním. I

přes to, že průzkum neukázal významný rozdíl mezi těmito dvěma webovými stránkami

v rámci uživatelské zkušenosti, době odezvy a četnosti chyb, poukázal ale, že pro malé

webové stránky, jako jsou stránky studentských sdružení, je systém Grav lepší a využívá

jen velmi málo zdrojů. Budoucí vývoj tohoto projektu by se měl týkat případného rozšíření

a optimalizací systému Grav.

Klíčová slova: redakční systémy, Grav, WordPress, zátěžové testování, vývoj webu,

využití webových zdrojů

2

Website of African Students Association in Czech

University of Life Sciences

Summary

Websites have been the pillar of information dissemination across many platforms

and with the growth of technology, the way websites are developed is constantly changing

and evolving, giving rise to a more stable and reliable content management systems.

However, most content management systems are being used as a one solution website

system, where they are offered as the answer to most website needs. Although this

approach enables development to have a small life cycle and encourages better upgrades,

updates and security, it also neglects the fact that, new different content management

systems can perform well depending on the need of the website. Due to this, there have

been many new content management systems offered freely, that are focusing on different

aspects, like development language or performance optimization. For the case of a small

website serving an African Student Association with in Czech University of Life sciences,

this study covers the comparison between WordPress, a commercially known content

management system and, a new content management system called Grav, that is based on a

flat file architecture. The project moves from developing and hosting the websites, to load

and stress testing them via simulating traffic from virtual users. Finally moves to a survey

to scale user experience and attitude of selected students with in the university. The

comparison is then made through recorded response times, error rates and questioners. The

project concludes that even though the survey didn’t show a significant difference between

the two websites on user experience, response times and error rates showed that for a

small-scale website like a student’s association, Grav Performs better and utilizes very

little resources. Future development of this project should cover possible extensibility and

optimization of Grav.

Keywords: Content Management Systems, Grav, WordPress, Load testing, web

development, website resources utilization

3

Table of content

1 Introduction .. 8

2 Objectives and Methodology ... 9

2.1 Objective .. 9

2.2 Methodology .. 9

3 Literature Review .. 10

3.1 Content Management Systems ... 10

3.2 The world of open source ... 12

3.3 Flat file storage ... 13

3.4 Grav CMS .. 13

3.4.1 TWIG .. 14

3.4.2 Markdown ... 14

3.4.3 YAML ... 15

3.4.4 Parserdown.. 17

3.4.5 Doctrine Cache ... 18

3.5 Folder structure of Grav ... 19

3.6 WordPress .. 20

3.7 Drupal ... 21

3.8 SQL Injection ... 22

3.9 Performance testing .. 23

3.9.1 Load Testing ... 27

3.9.2 Stress Testing .. 27

3.9.3 Speed Testing .. 27

3.9.4 Loader.io ... 28

3.9.5 Load impact .. 30

3.10 Server Monitoring and Management ... 31

3.10.1 Terminal tools ... 31

3.10.2 New Relic ... 33

3.11 Webhosting .. 34

3.11.1 Shared Hosting .. 34

3.11.2 Virtual private servers ... 35

3.11.3 Cloud hosting .. 36

3.12 Ubuntu 16.04 .. 36

4 Practical Part .. 38

4.1 Selection of Content Management System .. 38

4

4.2 Virtual Machine Setup ... 38

4.2.1 WordPress installation .. 41

4.2.2 Nginx .. 42

4.3 Web Design .. 43

4.3.1 Graphics Theme .. 43

4.4 Test Cases .. 44

4.4.1 Test Case A ... 44

4.4.2 Test Case B ... 46

4.4.3 Questionnaire .. 46

5 Results and Discussion ... 48

5.1 Loader.io test .. 48

5.1.1 Loader.io wordpress.. 48

5.1.2 Loader.io Grav .. 52

5.2 Load Impact test ... 57

5.2.1 Load Impact WordPress.. 57

5.2.2 Load Impact Grav ... 58

5.3 Questioners ... 60

6 Conclusion ... 62

References .. 63

Appendix - A.. 67

Appendix - B .. 68

Appendix - C.. 69

Appendix - D.. 70

Appendix - E .. 72

Appendix - F .. 75

Appendix - G ... 76

5

List of figures

Figure 1 Traditional content management systems (source: own) 10

Figure 2 Rank of Content Management Usage (source: w3techs, 2016) 11

Figure 3 Sequence to Scalar mapping (source: own) .. 15

Figure 4 Indentation in YAML (source: Evans, 2001) .. 16

Figure 5 Parsedown vs Markdown comparison (source: parsedown) 18

Figure 6 Grav folder structure (source: own) .. 19

Figure 7 Exploit attempts per day (source: threatpost.com, 2015) 23

Figure 8 IT business value curve (source: Molyneaux, 2014) ... 25

Figure 9 Key Performance Indicators (source: own) ... 26

Figure 10 Client per test load testing (source: loader.io, 2016) ... 28

Figure 11 Clients per second test (source: loader.io, 2016)... 29

Figure 12 Maintain client load (source: loader.io, 2016) .. 30

Figure 13 Loadimpact testing method (source: loadimpact.com, 2016) 31

Figure 14 Usage of linux monitoring comands (source: own) .. 32

Figure 15 Htop resorce monitoring (source: own)... 33

Figure 16 New Relic server monitoring tool (source: Newrelic.com, 2016) 34

Figure 17 SSH keys creation and impimentation (source: own) ... 37

Figure 18 Selecting operating system and processing power (source: own) 39

Figure 19 Selection of datacenter (source: own) ... 40

Figure 20 Test virtual machines (source: own) .. 40

Figure 21 Configuration of My SQL server for WordPress (source: own) 41

Figure 22 Configuration of Nginx for WordPress (Source: own) 42

Figure 23 Color branding selection (source: own) .. 44

Figure 24 Load testing case A (source: own) .. 45

Figure 25 Client per test results for wordpress (source: own) ... 48

Figure 26 Wordpress resource utilization results for client per test (source:own) 49

Figure 27 Maintained client test results for worpress (source: own) 50

Figure 28 Wordpress resource utilization results for maintain client test (source: own) 50

Figure 29 Client per second test for worpress (source:own) ... 51

Figure 30 Client per second test details wordpress (source:own) 51

Figure 31 Wordpress resource utilization results for client per second test (source: own) . 52

6

Figure 32 Client per-test results for Grav (source: own) ... 53

Figure 33 Grav resource utilization results for client per test (source: own) 53

Figure 34 Maintained client test results for Grav (source: own) ... 54

Figure 35 Maintained client test faliure Grav (source: own) ... 55

Figure 36 Grav resource utilization results for maintain client test (source: own).............. 55

Figure 37 Client per second test for Grav (source:own) .. 56

Figure 38 Grav resource utilization results for client per second test (source: own) 57

Figure 39 LoadImpact scenario test for WordPress (source:own) 57

Figure 40 Wordpress resource utilization for loadimpact (source: own) 58

Figure 41 LoadImpact scenario test for Grav (source:own) .. 59

Figure 42 Wordpress resource utilization for Grav (source: own) 59

List of tables

Table 1 Summary of tests for loader.io (source:own) ... 45

Table 2 Summary of Questions for survey (source:own) .. 47

Table 3 Summary of responses for WordPress and Grav (source:own) 60

7

List of Abbreviations

CMS Content Management System

CSS Cascading Style Sheet

HTML Hyper Text Mark-up Language

HTTP Hyper Text Transfer Protocol

IBM International Business Machines

IP Internet Protocol

KPI Key Performance Indicator

ms Millisecond

PHP Hypertext Preprocessor

QA Quality Assurance

SQL Structured Query Language

sudo super user do

URI Uniform Resource Identifier

8

1 Introduction

Information has been one of the key factors for advancement of technology that has

been exhibited within the last century. From the industrial revolution to the recent science

discoveries in medicine and transportation to outer space exploration, all have one huge

common factor that ensured the success of these ventures, that is information.

From small blogs and knowledge bases to massive information Wikipediae that exist

online, content management system has always been the backbone, and fuels

advancements in technology and science. Content management systems also play a great

role in facilitating the learning process by simplifying the e-learning process.

 One aspect of content management system in education apart from dissemination of

information is that it also keeps engaging students by providing them with different source

of interaction. Apart from education, content management systems also help in creating

groups of organizations based on a universities’ culture and ethics for advancing

knowledge, carrier or dissemination of critical information that will be useful for end users.

Student associations can be an extra engine running alongside an educational

institution, assisting in activities and projects while cultivating and preparing the best

minds an education system can produce. They also help in bridging cultural, socio-

economic and language barriers and make it easy to address problems that arise via the

proper setup channels.

Currently, within Czech University of Life Sciences, there is no African Student

Association working for the betterment of the university while also facilitating information

dissemination. If an association is to be made, there will need to be a small website that

will run articles, knowledge base and different types of general and specific information.

9

2 Objectives and Methodology

2.1 Objective

The main objective of this study is to find out what content management system would be

best to design an African Students Association website in Czech University of Life

Sciences. The secondary objective of the study is to design and build a website based on a

content management system that can allow for growth, both in serving requests and one

that is extendable to allow for further development and enhancement of the website. The

final objective of the study is to evaluate and compare two websites built by using different

tests to observe stability of the systems and whether each of them can handle certain

amount of stress and load tests.

2.2 Methodology

The study will begin by a literature review for the main subjects that were encountered

in the planning, design and implementation of two different content management systems.

Then the study will discuss the tools of developing the website and move to testing via

load testing and stress testing methods and observing and recording response times, errors

rates, thresholds that might arise. The study will also record and compare resource

utilization of the built content management systems during each the test.

As a means of evaluating user experience, a questionnaire will be prepared and

distributed to a targeted student body currently attending Czech University of Life

Sciences. The responses form the questionnaire will then be analyzed to observe end user

experience for both sites that will be designed.

The final step of this study will be the comparison of the two designed websites using the

data collected during testing and user experience from the surveys.

10

3 Literature Review

3.1 Content Management Systems

In today's connected world, content is created in abundance from individuals in

elementary school to large international corporations for various reasons. As technology

advanced through the years, so did content creation methods along with the sizes of

contents created. Youtube.com, a video upload and share website that was launched in

May of 2005(YouTube, 2016) as a small platform, currently has one billion users and

payed over two billion USD to right holders. (YouTube, 2016).

So, what is a content management system? One author defined it as “A content

management system (CMS) is a software package that provides some level of automation

to the tasks required to effectively manage content “. (Barker, 2015).

A content management system will have a designated place that will house the data

or content that will be presented in a structured form whenever needed. This may be in

some database form, consolidated with the system or even on a separate standalone system

in another geographical location.

Figure 1 Traditional content management systems (source: own)

11

From figure 1 above, demonstrates that a content management system works in a

way that the back end of the code will store content in databases and when a user requests

the data, it will be called back, structured and provided to the frontend of the website for

the user.

The history of content management systems is a complicated one as such, there are

various arguments that exist on the online and offline community about the first content

management system. Content management systems like cafelog and Wikipedia are just

some of the names that have existed since the beginning although, the Idea of content

management system is one that has always been with mankind since the creation of the

first library.

 There are various content management systems based on several different types of

server side and client side languages. As of November 2016, the number of websites

running on some version of a CMS is 46.4 %. Nearly half of the world’s websites currently

rely on a CMS to structure and deliver content at the time of this study. From figure 2

below we can observe that, WordPress currently has a bold grip on the CMS world and as

much as 58.5 % of all content managements are WordPress based. (w3techs, 2016).

Figure 2 Rank of Content Management Usage (source: w3techs, 2016)

12

3.2 The world of open source

Throughout the history of publication and artistry in many different aspects in

existence, there has always remained a clash between the creator and the distributor of the

art itself, over control and distribution of the creation or the art. The technology that

propelled the dissipation of information and knowledge, namely the printing press enlarged

this problem as authors and printing companies were in constant dispute to get control.

In today's world of information technology, creation also branches out on to

software’s and applications developed by large multimillion dollar companies, which have

hundreds of people working for them at a time. This means developing applications is very

costly, requiring a large amount of money from the companies and the license of the

product remains with the company that got it made.

Open source licensing is a concept that was conceived by programmers as the

copyright-model of large tech companies usually hold the license or the copyright of the

software; not the programmers that spent a lot of time working on it. (St.Laurent, 2004)

The popularity of open source software has greatly encouraged the advancement of

web development technology and content management systems respectively. Within the

past 10 years alone, the world has seen a flourishing community that greatly utilizes new

systems while building upon and improving them in a relatively short turnout time.

Most of the content management systems today are completely free and open

source, allowing end users, external third party vendors and enthusiast individuals access

to the core code and to build upon existing frameworks. Plugins, modules, components and

widgets are available to download for free or as a paid service when it comes to Jooma,

WordPress and Drupal.

13

3.3 Flat file storage

The concept of storing information on a flat file is not a new one, in fact it predates

the creation of computers represented within the entirety of the 20th century. The

philosophy that it is based on, is an interesting one; paper cards with punched holes in

them. This concept started back in the days of Herman Hollerith, when he first brought to

life the idea of using simple paper cards and then punching holes in to them to represent

data, which then are tabulated to create the first forms of structured data. Hollerith patented

his idea and implemented it in the United States Census Bureau in the 1890s, alongside the

creation of a machine that was used for creating the holes and tabulating them. Thus,

information consisted of many boxes with thousands of punched cards in them. In 1911, he

consolidated 3 companies to create IBM. (Pugh, 1995).

With the creation of IBM and the punch card system, the company dominated the

system widely used until the 1970s. Later in the 1980s, concepts of flat file database

systems were very popular and implemented on various systems including DOS and

Macintosh operating systems. In today's website design and development community, flat

file plays a big role in content creation, manipulation, data storage. This concept in recent

years has given rise to various ideas regarding flat file content utilization.

3.4 Grav CMS

Named after a shortened version of nature’s own phenomena gravity, the creators of

Grav define it as “file based web-platform”. (getgrav.org, 2016). Grav basically follows a

different design philosophy when compared to any other Content Management Systems.

To start with, there is no installation required, and it works right out of the box. All it

requires is extract the archived file and its up and running in seconds. But one of the major

aspects of Grav is that it is a flat-file Content Management System, meaning that there is

no database required for the website, making it inherently secure against most commonly

known issues of database driven website security issues.

14

This means that developers and website administrators have a big advantage in that,

it helps eliminate one of the biggest security flaw regarding the current, popular and

extensively used Content Management Systems. Grav was built with technologies that

have already good name in the industry. As the main engine to run, Grav mainly utilizes

PHP but it also makes use of a collection of other languages for scripting and coding

purposes to build what a user requires with fewer complications as possible.

3.4.1 TWIG

TWIG framework serves as a fast and flexible template engine for PHP

programming language. Developed by Sensio Labs own Fabien Potencier, who happens to

be the creator of symphony framework as well. (SensioLabs, 2016). The advantage of

TWIG is basically that is fast, secure and flexible. Currently Twig requires PHP 5.2.7 to

run. Considering that Grav requires PHP 5.5.9 as a minimum requirement Twigs’

requirement is superseded by Grav.

As far as security feature of Twig is concerned, Twig has its own built in sandbox

mode, which means that any untrusted code or a code from an unknown origin can be

opened in the sandbox mode prohibiting the code to perform any operations or allowing

user edited codes to be opened in the sandbox mode to be safe.

The third aspect of Twig is that it is very flexible as such developers can create

their own custom tags and filters as it comes powered with a flexible lexer and parser.

Grav utilizes the power of Twig to have control of user interface.

3.4.2 Markdown

Markdown was created by John Gruber with the help of Aaron Swartz. On his

website, John Gruber writes “Markdown is a text-to-HTML conversion tool for web

writers. Markdown allows you to write using an easy-to-read, easy-to-write plain text

format, then convert it to structurally valid XHTML (or HTML).” (Gruber, 2004).

15

“The idea was to make writing simple web pages, and especially weblog entries, as

easy as writing an email, by allowing you to use much the same syntax and converting it

automatically into HTML.” (Swartz, 2004). Markdown was originally written in Perl with

the sole purpose of carrying this task. Since its creation in 2004, it has gained some

momentum in different communities including publishing and development. Creating

header tags and listing tags in HTML might be a tedious work, especially if the user

creating them is mainly a content creator rather than a developer. For this reason and

because of its fast easy to learn language, grave serves a better purpose in the publishing

and content creation world.

3.4.3 YAML

According to the official website, there are hints in its name that YAML gets

mistaken for markup language every so often by developers that come across it. “‘YAML

Ain’t Markup Language’ abbreviated YAML is a human friendly data serialization

standard for all programming languages.” (Evans, 2001). It is very easy to see how

YAML is considered human friendly considering that it is very readable and

understandable and this can be demonstrated in the home page of the YAML website as

the developers used YAML to create the contents.

Figure 3 Sequence to Scalar mapping (source: own)

From figure 3 above, we can see the mapping of sequences to scalars as in the case

of first names to siblings demonstrates how; though YAML has been written in its native

16

form, it remains very readable to humans. The latest version of YAML is 1.2 - 3rd Edition

and from its official specification, one can see that the priority of YAML is to be easily

readable to humans and uses indentation as way of creating sub or child nodes in writing

data. The syntax of YAML is very easy to learn. Other Content management systems like

Drupal version 8 utilizes YAML to build native forms.

Figure 4 Indentation in YAML (source: Evans, 2001)

As we can see from figure 4 above; all child nodes must be indented one step more

than their parents and in addition all the child nodes must be on the same indentation level

while their content can be further indented.

Grav utilizes YAML for simple configurations ranging from declaring header

blocks on the YAML front matter, to blueprints and page settings. To better elaborate,

Grav uses YAML for scalars, sequences and for mappings. In the developer community,

it’s common to find discussions regarding why the need for YAML when other popular

languages like JSON - Java Script Object Notation and XML Extensive Markup Language

are extensively and widely used for various similar purposes. In some cases, people argue

that JSON and XML serve this purpose better.

XML was created to be backwards compatible with SGML Standard Generalized

Markup Language and is designed with supporting structured documentation where as

YAML goes further towards data structures and messaging. “YAML is the result of lessons

learned from XML and other technologies.” (Clark C. Evans, 2001). JSON and YAML

have different focus in general. JSON is designed primarily with simplicity and

17

universality in mind and its uses lowest common denominator information model, ensuring

that any JSON data can be easily processed by every modern programming environment.

On the other hand, YAML is designed to be human readable as a primary goal. In addition

to that, according to YAML creators, JSON can be considered as a superset of YAML.

Another reason for the existence of strong discussions regarding the

interchangeability of YAML and JSON is that most developers are very comfortable

working with JavaScript and thus can utilize JASON natively; which resulted in JASON

having a huge number of supporters. Than being said, YAML serves a very good purpose

of data serialization.

3.4.4 Parserdown

As markdown is a markup language that need to be parsed to be displayed as an

HTML file output; there needs to be a parser that will work in conjunction with markdown.

Parsedown functions by using what the creator calls line-based approach. This

approach works by trying to read Markdown like a human; by starting to looks for lines. It

uses this method to sniff out and see how the lines start which will allow it to understand

different code blocks and then get to the data within the markdown file. For example, if the

line starts with a ‘*’, Pasedown will see the sign and figure out that this is going towards

text formatting that can range from Italic for one *, to both Italics and Bold for ***. Then

it continues to see if there are any more characters after and parse it to Html.

Parsedown is a PHP based is currently the fastest parser of markdown markup

language that is currently available. It works by converting markdown markup to HTML.

This removes the step of remembering HTML tags and move to writing simple markdown

lines if a developer or content creator of a website decides to write and stylize content like

tables, bullet points and even working with making fonts Italic or Bold or both. (Rusev,

2013).

18

Content creators will have the option to go and edit the markdown files directly

located on the server to create content, or they can go to the back end and continue to

create the content like any other content management system.

Figure 5 Parsedown vs Markdown comparison (source: parsedown)

To measure how fast parsedown is compared to others, there is a tool on the

parsedown website. Parsedown claims to be as much as five times faster than other parsers

including PHP’s own native parser; markdown PHP1.3. figure 5 above shows A small 9

line of markdown was fed on to two parsers, namely Markdown PHP 1.3 and parsedown.

According to the results we can see that parsedown is 4 times faster in parsing markdown.

3.4.5 Doctrine Cache

Grav uses Doctrine cache for fast cashing which will translate to better

performance in general. Doctrine basically supplies users with cache drives for commonly

used cases such as Memcache and Xcache. Apart from that, it also supplies users with

ArrayCache driver which allows users to store data in an array in PHP. (Doctrine, 2010).

19

3.5 Folder structure of Grav

As Grav is a flat file Content Management System, its folder structure is a very

important factor in managing content and system files. Once downloaded and unzipped, it

has a total of 11 folders; out of which 8 are the core-top level folders that will enable it to

run smoothly.

Figure 6 Grav folder structure (source: own)

From figure 6 above, we can see that under the root extraction file of Grav, the

following files are listed in a waterfall format. Folder backup is mainly used to run

frequent backups of the developed site, as it is handy in cases where user is met with fatal

errors. Grav also contains a tmp folder meant to store temporary files during plugin or

template installation processes and for keeping temporary files generally.

Folder webserver-configs also extract and come with the download and contain files

such as copies of .htaccess file or nginx.conf file to make it convenient for developers

setup webserver configuration. If a developer decides to implement Grav using Apachi as a

webserver; he will have access to .htaccess file, the same will apply for nginx via

nginx.config file.

20

Majority of the time, a developer will utilize resources found in user folder. Most of

Grav’s assets are located under this folder including, admin account information, a hashed

version of admin password emails, plugins and themes are all located here, making it

convenient.

3.6 WordPress

WordPress is one of the most popular open source Content Management System

that has a very long history of development and support. The creation of WordPress is

attributed to a blog system first coded by Michel Valdrighi called b2 cafelog in 2001.

(cafelog.com, 2016). Valdrighi didn’t probably realize how much of a 'snowball' effect this

will have in the future but, on the 12th of May 2001 at 21:40 in the evening, he published

his very first post on b2 cafelog. Today, one can still see his first blog post on the actual

website.

Valdrighi worked on b2 cafelog on his spare time, updating it and maintaining it

while adding some small improvements through time, but his contributions to developing

and maintaining it dwindled over time. in November 5th of 2002, Valdrighi released 0.6.1

version of b2 cafelog and disappeared. By March of 2003, other users can be seen posting

messages looking for him on the website. Meanwhile, the lack of progress on b2 cafelog

led Matt Mullenweg to post his views which resulted in the proposed collaboration by

Mike Little. In collaboration of Matt Mullenweg and Mike Little decided to fork b2

cafelog.

On May 27th of 2003, Matt Mullenweg announced the first release of WordPress

with full change logs. (Mullenweg, 2003a). Soon enough in October 2003, WordPress 0.72

final was released by the duo along with b2 cafelog version 0.6.2.2 to help facilitate the

change for people who didn't want to completely change to WordPress but also wanted to

avoid an SQL injection vulnerability. (Mullenweg, 2003b).

21

SQL injection vulnerability in WordPress traces its origins back to the first release

of WordPress 0.72, where developers can be seen discussing on the b2cafelog site about a

fixed SQL injection issue after getting reports by users. Concurrently, they also fixed and

re-released b2 cafelog 0.6.2.2; a blogging system that predates WordPress for users that

were not ready to upgrade their systems to the first version of WordPress.

What made WordPress so popular amongst developers and content creators?

Though the initial idea of WordPress has been to serve as a blogging platform, overtime it

evolved to the point where it became very easy to use it to build landing pages and full-

fledged websites. Compared to similar CMS which use the same identical technology,

WordPress has a very short learning curve and works very well for small to medium scale

websites.

Another feature that contributed to the popularity of WordPress is its diverse library

for third party plugins; which also in some cases one of its vulnerabilities. As WordPress is

an open source platform in its nature, it allows for anyone to be able to develop a plugin

and submit it to the online library. Even though there are precautions that are taken by

worpress.org to eliminate the chance of dangerous plugins from being published, they

seldom find their way on to the website.

A second issue with plugins is that after being published once, they will need to be

constantly updated and maintained to correct flaws and cover security gaps found or

reported by users. Although most developers actively maintain the plugins they published,

some are not published in a timely manner or are neglected.

3.7 Drupal

Drupal is one of the well-known and used content management system in the

world. Like WordPress and most other content management systems, it relies mainly on

PHP and needs a database to function as well. The history of Drupal goes back to the year

2000 and is attributed to Dries Buytaert and Hans Snijder. The two students of the

22

University of Antwerp, frustrated by not getting a good internet connection decide to share

an ADSL modem connection and then decide to create a small website to communicate

with each other. After much use within their dorms, in 2001 they decided to release it to

the world under the name dorp.org as drop meant 'village' in Dutch but only to make a

mistake and release it as drop.org (Drupal, 2016).

Since its creation, Drupal has come a long way and contributed a lot in the content

management world. Drupal has a variety of features and is one of the most stable content

management systems; and is also extensible via the use of plugins. The stability of Drupal

has made helped it in gaining popularity by government Content management systems and

fortune 500 companies like the Economist, BBC store, the Bermuda government to name a

few. The only drawback to Drupal is that it has a very steep learning curve, which turns

back most people who set out to find a content management system they can use.

3.8 SQL Injection

One of the biggest commonly known issues of database driven websites is SQL

injection. According to w3schools.com, the leading web standardization of web

technologies SQL injection is defined as a “technique where malicious users can inject

SQL commands in to an SQL statement, Via webpage input. Injected SQL commands can

alter SQL statement and compromise the security of a web application.” (w3schools,

2016).

Most content management systems that rely on databases actively maintain their

releases to counter against SQL injection attacks and in trying to cover loopholes in which

attacks might occur. If an attack becomes successful, the attacker can redder the entire

website unusable, disrupting services and possibly stealing or corrupting data.

For large corporations that utilize database driven content management systems

within their intranets and on the web, it can result in a significant cost financially and

damage to sensitive data, breach of data or even encrypting attacks for ransom.

23

Figure 7 Exploit attempts per day (source: threatpost.com, 2015)

From figure 7 above reported by threatpost.com, we can see that during October of

2015, due to a high SQL injection vulnerability that was disclosed regarding Content

Management System Joomla versions 3.2 – 3.4.4 there were 12,000 attacks on a single

day. (Brook, 2015). This came after a disclosure regarding a flaw in Joomla release, even

though a patch to earlier versions were released as well. Information including the patches

were announced on a Thursday evening in Europe as most webmasters were home.

On February of 2015 another CMS, namely WordPress had a very high risk of

vulnerability that was discovered in one of its plugins namely WP-Slimstat. Tripwire

reported that “WP-Slimstat, potentially impacting more than one million websites.”

(Santillan, 2015). This opportunity for attack occurred as the plugin had a weak secret key

that was easily breakable, giving way to SQL injection attacks.

3.9 Performance testing

The field of performance testing is vast with a lot of variables to consider. Today,

web based applications are integral part of corporations and small companies, and help

24

them achieve their goals daily. Because of this reason, literature found today focus on

application testing rather than a simple website testing.

Performance testing has become one of the most common practices in the world of

website design, especially in web application development. To test the performance of

anything, we first must define a way of measuring performance relative to the work done.

From an end user perspective, performance is simply being able to carry out a given task

without any delay. (Molyneaux, 2014)

Connectivity to the world-wide web is becoming a standard within our life time and

the tremendous speed networking solutions and internet grew has given rise to the ability

to stream large amounts of data online on the go. Internet connection has gone from 56

Kbps dial-up to Gigabit internet connections in countries like Japan. As a civilization,

having reached the pinnacle of getting information we requested at our figure tips, and the

more connected we became, the less patience we have developed on waiting for response

from any website or application.

Currently most end users have expectations for websites and web applications to

perform at unprecedented speeds and having information at the will of their fingers. In the

connected world of today, most companies and organizations rely on online presence and

the internet to carry out their daily activities. Adobe reported that, in the 2016 USA black

Friday online sales, a new record was seen at 3.34 Billion dollars with a 21.6% growth

since last year and 45% of the visits was from mobile phones. (Adobe, 2016).

Another factor for considering performance testing of websites and applications

revolves around the fact that most bugs and issues with our completed website tend to

surface while a business is running at a late stage of the website and web application life

cycle, increasing the cost and effort of resolving the issues. Figure 8 below demonstrates

the Information Technology business value curve.

25

Figure 8 IT business value curve (source: Molyneaux, 2014)

When dialup was thriving in the early 2000’s, waiting for half a minute for websites

to load or even access was common. Today, the expectation for response time of websites

or accessing email clients have increased dramatically to the point that acceptable response

times has been reduced to mere 2 - 4 seconds. An article in the Guardian stated that, 32%

of internet users in the United Kingdom abandon sites between 2 – 5 seconds for slow

sites. (Weatherhead, 2014.).

Another study by the telegraph stated that the attention span of human beings has

decreased alarmingly. In fact, telegraph reported that looking at another survey, the

attention span of an average Canadian was 12 seconds in the year 2000. The same survey

in 2015 revealed that it has dropped to 8 seconds. (Watson, 2015).

Waiting for more than 10 seconds for a website to load can be expected criteria for

web portals and web applications dealing with large volume of data, data processing and so

on, but considering the attention span of end-users and current technology available for

simple websites, acceptable measures of website response time should be well in range of

2-5 seconds with a maximum of 5 seconds.

26

Figure 9 Key Performance Indicators (source: own)

From figure 9 above, we can see that key performance indicators are grouped in to

two. The first group, service oriented, focuses on the service giving side of the website;

mainly availability and response time. Availability is the amount of time the website is

running, functioning and serving users. It is a key factor to consider for websites and

systems that have high dependency on being available to customers always. A good

example of this is banking websites or web based applications.

 Response time of our website gages how long it takes for our website to run tasks

or requests provided by our end-user. The quicker the response time the better. With

regards to performance testing, it is measured by recording the time between end-user

sending a request and the website giving a complete response.

We can see throughput as the how many hits a website will get within a specified

amount of time. This helps in identifying if there are any bottlenecks with in the code of

the website we have written. As the last efficiency-oriented measure, if performed right,

utilization could demonstrate how much infrastructure resources our website is utilizing in

the background while performing a variety of tasks. This will enable us to determine what

kind of infrastructure demand there will be in the future and whether there are any tasks

within the website that will require heavy utilization of resources.

27

Majority of the time, load testing gets confused with stress testing and in some

cases, they are used interchangeably. Though they might be used in conjunction with each

other, the aims of the tests are very different as such load testing aims to understand the

website from behavioral and stability aspects whereas stress testing aims at finding

breaking points and recoverability of a website after its fail threshold has been reached.

3.9.1 Load Testing

Load testing is simulating a given number users accessing the home or different

parts of the website in question for a given amount of time, so as to see how many users

the website can handle at a given time while still having adequate performance. This gives

developers an insight in to the stability and behavior of the website or application in

question.

3.9.2 Stress Testing

Stress testing is surpassing the threshold that the website has been set to serve and

find out what happens, how and which components fail and it also aims at finding the

breaking point of the website and how it recovers.

3.9.3 Speed Testing

Speed testing simply finds out how much time a website takes to load the pages to a

given user in general. There are a lot of different tools out there to achieve this goal, the

most common one being the developer tools found in Mozilla Firefox and Google Chrome,

as they come integrated on to the browser. These tools come out of the box with a simple

and intuitive interface that will enable users to see various information; one of them being

website load time with a waterfall graph.

28

The problem with testing a website this way is that if the website is hosted locally,

then it would not provide an insight in to how the website behaves in a real-world scenario;

that is when its viewed by people around the world from different locations. Thus, it is

advisable to look for testing tools that use 3rd party servers that can simulate the various

locations that traffic might come from for that specific website.

3.9.4 Loader.io

Loader.io uses common HTTP verbs GET and POST to call landing pages of

websites while checking for error and error responses. This feature will enable users to test

the core system of their website by discovering the error threshold of a website. The testing

methods of loader.io are divided in to 3 major parts. (loader.io, 2016).

Figure 10 below shows how the client per test method sends virtual users across

time to targeted host machines. It is a simple test requiring the number of virtual users

needed and the duration of the time to simulate them. As an example, if testing for 30,000

users with in a time of 30 seconds. In this case, 1,000 virtual clients will connect with our

machine every second. This allows developers to define and set the amount of traffic that

they are expecting for their website run the test and see how much of the traffic their

infrastructure it can handle.

Figure 10 Client per test load testing (source: loader.io, 2016)

29

The second type of test is called client per second test. This test is similar to clients

per test with the difference being that we will be aiming to test virtual clients per second

rather than a general fixed number of clients per the whole test. Figure 11 below shows

how the client per second is carried out.

Figure 11 Clients per second test (source: loader.io, 2016)

The last type of test provided by loader.io is called the maintained client load test.

This test is a very crucial part of loader.io as it simulates a ramp-up test, where virtual

users making calls to the website will start from a small number and will increase to a

number preset by the tester. During this test, each instance of virtual user will be making

another request as soon as it finishes sending the first request. This test will help us in

identifying the threshold of the website and we can see how many clients our website can

serve before reaching its threshold. Figure 12 below demonstrates how virtual users flood

and make recursive requests on maintain client load test.

30

Figure 12 Maintain client load (source: loader.io, 2016)

3.9.5 Load impact

Load impact is an online website and applications testing service with over 20 years

of experience in the QA industry. Moving on alongside new technology, an online test

mechanism was created by the company so that users can test different scenarios; from

small websites and landing pages to heavy demanding applications.

For website testing purposes, load impact runs a test by HTTP verbs like GET,

POST, PUT, HEAD, DELETE, OPTIONS, TRACE, PATCH. According to the W3

consortium, the above-mentioned verbs are methods of HTTP/1.1 used in different

occasions. (w3.org, 1999). Methods like GET and HEAD are specifically used to retrieve

information over the internet by means of using Request -URI, even if the information

requested is a data that will need to be processed beforehand. For this reason, GET and

HEAD methods are considered safe methods.

Method OPTIONS is a way of requesting for information about communication

methods available. Methods, DELETE, PUT, POST and PATCH use different means to

request and put or interact with the counter parts.

31

Figure 13 Loadimpact testing method (source: loadimpact.com, 2016)

Figure 13 above demonstrates how loadimpact.com generates HTTP sessions by

auto analyzing a destination domain name or IP address or by recording a multistep HTTP

session via a chrome browser plugin then enabling the user to view the code generated and

edit it. After validating the created session, it simulates the required number of virtual

users as a load towards the website. All the information it gathers about the website is then

collected and used as needed. The ability of loadimpact.com to allow users to record a

multistep HTTP session helps QA to be able to create custom tests that caters to each

testing scenario.

3.10 Server Monitoring and Management

3.10.1 Terminal tools

There are a couple of ways that infrastructure or resource monitoring can occur

within a server based on a Linux and Unix system whether it is standalone machine or a

virtual machine. The first method of monitoring involves using common and available

resource monitoring commands to evaluate how much resources a website is utilizing.

32

Figure 14 Usage of linux monitoring comands (source: own)

Figure 14 shows the usage of free and vmstat -s -S M in terminal on the virtual machine

running Ubuntu 16.04 to display free disk space size and RAM usage in megabytes.

Although this method proves to be the simplest one, in most cases repeatedly and

constantly monitoring resources that is being consumed is a cumbersome task specially if

the method involves of using multiple separate commands that will exit the moment you

want to run another. For example, vmstat can be run with additional parameters that can

enable us to monitor the RAM of our machine every 2 seconds for 5 times as by adding

this parameter at the end of the line. What if we want to monitor disk read/write? Then

discontinue this command run another? Wait for it to finish or run another terminal in

another window?

To solve this problem, we can use third party installable resource monitoring

services that will run live, displaying all the current utilization. For this purpose, we can try

installing and using a third-party light tool like Htop. Figure 15 below demonstrates the

interactive nature of Htop with better visual aids to monitor resources. It can also monitor

resources in real life. It is one step further but still lacks the recoding capabilities that other

tools have.

33

Figure 15 Htop resorce monitoring (source: own)

Htop is accurate measurement of our resources but it is highly inconvenient, and

won’t work for us especially if we want to not only display but record data. There are a lot

of light weight open source tools for Linux systems than can be installed and help to

manage resources but, in the end, they would even add more RAM usage to our machine

just to be able to record the results per second.

3.10.2 New Relic

The solution comes in the form of an external server monitoring system, that is

setup to constantly gather data and store it in a way that can be retrieved and visualized

while also being able to provide real time to help infrastructure management to keep track

of resources their machines use

New relic server monitoring tools offer users the chance to install a small script that

will capture real live data and steam it back to the virtual machine needed without costing

the user RAM or processing power. The real advantage of New Relic is that it helps store

34

and display data collected from the last 24 hours from multiple to be machines at the same

time and to see what triggered certain events and how much resources our server utilized at

a given period back in time.

This is generally an ideal situation for website developers, admins and QA

engineers as they will be able to find all the machines monitored on one location with the

ability to filter through them and see data they need within the last 24 hours, all for free.

Figure 16 below showcases the server monitoring services provided by New Relic.

Figure 16 New Relic server monitoring tool (source: Newrelic.com, 2016)

3.11 Webhosting

3.11.1 Shared Hosting

Share hosting is one of the most common ways of hosting a website. This method

of hosting a website will utilize all the resources of a single physical machine and supplies

them to all the websites or applications that are being hosted within it. Most of the websites

that are low traffic and that do not serve a lot of people per day or need a bigger

computational power and memory are usually hosting using such plans. As it is the most

common one; it is also the cheapest one that can be found. On most cases, shared hosting

providers will often update to a certain component late thus, it’s hard to find a hosting

provider that can fulfill the pickiest of developers.

35

As an example, ixwebhsoting.com services offer very affordable and intriguing

packages. Almost all their offers come with unlimited bandwidth, unlimited disk space and

unlimited hosted domains with a minimum of 2 dedicated IP's and at least one free domain;

all for 3.95 USD per month. That is a good deal for customers that are looking for

flexibility but if we decide to go and see what versions of My SQL or PHP they support;

then some developers might stray away from such hosting companies as they only have

My SQL 5.1, which does not support UTF8mb encoding and up to PHP version 5 only.

This means that some content management systems will not be able to run in these

environments for example, the latest releases of Grav which requires PHP 5.5.9 or higher.

3.11.2 Virtual private servers

Virtual Private Servers have been a choice of many websites since their inception.

To first see virtual private hosting, we will need to see what a virtual machine is. VM

ware, a popular virtualization software defines a virtual machine as “a software computer

that, like a physical computer, runs an operating system and applications. The virtual

machine is comprised of a set of specification and configuration files and is backed by the

physical resources of a host”. (VM Ware, 2016). This enables web hosts to provide

hosting plans that will give end users the option to have a dedicated amount of memory

and processing power they will require without the need to go for a dedicated server. This

practice insures that the cost of hosting a website is not as expensive as having one

dedicated physical machine. In a virtual private server environment, the physical available

resources of the machine will be divided in to smaller virtual machines. This will enable

different users to run different applications or websites at the same time without interfering

one another. Resources will be divided in a predefined way so that when a website is

hosted on a virtual private server; the resources allocated for it will remain without being

tampered with or utilized by another website or application.

36

3.11.3 Cloud hosting

During the initial introduction of cloud computing, a mist of confusion was created within

the information technology sector. Most companies had questions on whether to move on

to the faster and scalable cloud system for their operational needs. In the specific sector of

web hosting, the promises of cloud computing resembled the way virtual private servers

operated in effect creating a phenomenon called cloud washing. Cloud washing was a term

used when companies presented their old technology as new under the banner of cloud

computing. Many of today's leading companies were accused by some analysts as cloud

washing their services. The distinguishing factors to be able to call a service a cloud is:

 On-demand service

 Broad network access

 Resource pooling

 Rapid elasticity

 Measured service, or pay-per-use model

Thus, the main differences between old technologies provided by vendors and the new

services that exist as cloud can be distinguished from one another.

There are a lot of virtual machine hosting providers and a lot of cloud hosting providers

in the market; with the major difference being the resource pooling, measures service and

on-demand service. Cloud hosting can provide this services without the client having to

call a service center or get in contact with an IT Specialist to setup the virtual machines.

3.12 Ubuntu 16.04

Linux systems were one of the most widely used server based Operating Systems in

existence. Because of their versatile nature and well supported and extensive community, a

lot of vendors and developers choose to use different Linux distro to facilitate, run and

37

manage their servers. There are many different distros of Linux systems that are available

to the public under GNU license; with the most common one being red hat, Ubuntu,

Debian, mint etc.

Ubuntu is a free and popular distro of Linux systems. Because of it is free

distribution and highly supported community, Ubuntu is one of the most used Linux

distros for developers and web admins to design, develop and manage local and remote

servers. The current version of Ubuntu is 16.04 and its well supported by the community.

SSH stands for Secure Shell Script and more often developers and any one with the

need to access a Linux server that a website is hosted on will use SSH keys to connect to

and run scripts and mange servers. SSH keys provide a safe and convenient way of

connecting remotely to Linux severs to conduct daily operations. Figure 17 below shows

SSH key generation and transfer to remote virtual server for our Grav website.

Figure 17 SSH keys creation and impimentation (source: own)

38

4 Practical Part

4.1 Selection of Content Management System

In this part of the study, two different types of content management systems were

chosen and utilized to design a website for African Students Association in Czech

University of Life Sciences.

When selecting the content management system to be used, there were three major

selection criteria that were implemented. The first criteria is that the system selected must

be a fee and open source system. The second selection criteria is the system needed to be

utilizing PHP as a server side language, which will enable us to evaluate content

management systems in a leveled ground. Finally, the third selection criteria is usage

statistics from around the world and new and upcoming technologies for comparison.

As illustrated in the literature review of this study, WordPress is one of the most

popular and utilized content management system, and ranks number one with in the

community of web developers and users alike due to its simplicity and community

infrastructure. This fact alongside WordPress being open source and using PHP made it the

first selection for this study. The second selection was Grav as it is fairly a new system

relaying on less infrastructure and doesn’t have usage statistics currently.

4.2 Virtual Machine Setup

Digital Ocean was selected for three major reasons of which the first being that

Digital ocean provides a handy tool to allow clients to choose from a wide variety of

operating systems with in just a few minutes. The second reason is that Digital Ocean is

one of the cheapest cloud Virtual Machine provides in the world, having a plan that starts

from 5 USD for a 512 MB RAM, 1 Intel Xeon E5-2650L v3 @ 1.80GHz Processor and 20

GB hard disk space Virtual Machine. The final reason relates to the amount of setup time

39

regarding having a working operating system on the virtual machine. Both instances of

virtual machines were up and running with in a 2 minutes’ in total.

Figure 18 Selecting operating system and processing power (source: own)

Figure 18 above shows the setup process, choosing the desired operating system

alongside the processing power required. Digital ocean provides the option to select where

the datacenter for our virtual machines are going to be placed. Figure 19 below shows the

locations of datacenters available. Attached to certain locations, there is also additional

services like adding block storage to a virtual machine.

40

Figure 19 Selection of datacenter (source: own)

The intended location of the website is Prague, but the option of choosing Prague as

a datacenter is not possible because digital ocean does not provide it. Thus, to be able to

simulate a scenario, that gets close to the real-world as much as possible, and because it is

closer to Prague geographically than the other available locations, Frankfurt - Germany

was chosen as the location of the servers.

Figure 20 Test virtual machines (source: own)

Figure 20 above shows the virtual machines that were acquisitioned for hosting the

two different websites and conducting tests afterwards. Digital Ocean calls the Virtual

Machines it offers Droplets. Each Droplets are instances of Virtual Machine that are spine

by the user for however long he desires.

41

For a base operating system, Ubuntu 16.04, X64 was chosen for both droplets for

four main reasons: -

 All Ubuntu versions come under a free license

 Version 16.04 is stable, well documented

 Supported via a large online community

 Recommended by a selection of vendors including Digital Ocean

4.2.1 WordPress installation

As it is not advisable to install and configure files as the only root user on a

machine, we created a second user called ‘wordpress’ with sudo abilities. For the ease of

development and installation, Ubuntu 16.04 was installed on the local machine of the

author to make it easy to use terminal and its commands to configure and install the

website. After installation and configuration of Nginx and PHP 7.0, via terminal, on our

remote virtual machine, installation of SQL Server 5.7 was installed. Figure 21 below

shows the configuration phase of MY SQL 5.7 server on our virtual machine.

Figure 21 Configuration of My SQL server for WordPress (source: own)

42

The second phase of WordPress installation consisted of downloading WordPress

installation files from wordpress.org and extracting it in to the designated webserver

folder. Once extraction is finished, WordPress installation was run and finished in a few

minutes.

The installation of Grav runs in a different way than WordPress, as there is no database

setup needed. After creating a secondary user with sudo capabilities, installing PHP 7.0

Nginx, a terminal command is written to download and extract the Grav package from

github.com.

4.2.2 Nginx

As all websites need a version of webserver to be able to run, Nginx was installed on both

virtual machines as the primary webserver and configured according to the need of each

website. Figure 22 below shows the configuration of Nginx for our WordPress site.

Figure 22 Configuration of Nginx for WordPress (Source: own)

43

4.3 Web Design

The design of the websites was carried out to make both have the same content and

having the same number of pages. Both websites will have the following pages.

 Home

 Resources

 News

 About us

 Contact us

To make the websites have the same content not to affect website response times,

both were populated with a dummy text with 300 words and 2,224 characters in each page

of the websites except the contact us page. A selection of 3 pictures taken by the author

and one video streaming from you tube about Czech University of Life Sciences were

included to be able to inspect how the websites will behave.

More and more people are becoming mobile while working, leaving the traditional

go to work approach to a job, which translates to work being done from different devices.

Most people read, research and email on the go using different devices, like smartphones

and tablets. This has created a need for websites to be responsive in design to be able to

provide service to various types of devices. Both content management systems are

designed to be responsive with the default theme they come with, eliminating the need to

integrate a separate framework within the websites.

4.3.1 Graphics Theme

As both websites are to represent African student association and to represent it

with in Czech University of Life sciences, the author decided to implement a color scheme

for both websites that is representative of both aspects. The color theme was designed with

the colors of the African union in consideration, alongside with Czech university of life

44

Sciences as both use shades of green and yellow as main colors. Figure 23 below shows

the color plate made on adobe color to represent the design aspects of the website.

Figure 23 Color branding selection (source: own)

4.4 Test Cases

In an ideal environment, comparing two different Web Content Management

Systems would be done on a host machine with dedicated CPU and RAM as it would

provide accurate means of measuring the level of stress that is taken by the system. As

renting a dedicated private server is very expensive in most cases and as it does not

represent the real-world scenario involving this study, the next best way to follow is to

obtain virtual machines.

As reflected by the literature review, virtual machines provide the opportunity to

own some part of the CPU as well as RAM of the machine which allows proper and

accurate measurement of resources utilized. For testing purposes, two Virtual Machines

were acquired from cloud hosting provider, Digital Ocean.

4.4.1 Test Case A

For test case A, both virtual machines were linked with new relic server monitoring

tool to enable the author to record resources utilized. In addition, both virtual machines

were verified by a unique token to be able to proceed with sending virtual traffic to the

sites from loader.io. Test case A will focus on sending user per second, ramp up per given

time and users per given time tests to observe how the to the websites.

45

Figure 24 Load testing case A (source: own)

On a client per test, a total of 600 users within 60 seconds will be simulated to both

of our websites. This test will help us identify if the predefined use case for the websites

can be achieved. The second test is a maintained (ramp up) test of 0 – 150 virtual users

simulated over 60 seconds. This test will help us in determining how a website will react

with regards to concurrent virtual requests when virtual users are scaled up in time.

The third test that will be used is client per second test, which will simulate the

number of clients the website can handle per each second in time. In this part of the test we

will send 80 simulated virtual users per second for a duration of 60 seconds. This test will

help us to stress test our website and see the breaking point of each of the designed

websites.

No Test Name VU’s simulated Time in seconds

1 Client per test 600 60

2 Client per second 80/second 60

3 Maintained 0 – 150 60

Table 1 Summary of tests for loader.io (source:own)

46

4.4.2 Test Case B

On test case B, we will be testing for real world usage simulations using

LoadImpact.com. The simulation will consist of 100 virtual users simulating normal

website page navigation and request for a time of 5 minutes. For this purpose, a test case

has been recoded and is ready for execution using load impacts scenario recording tool and

has been edited to fit the needs of the test.

Furthermore, the test will be carried out to simulate the navigation of the websites

using a chrome browser under 3G mobile network to see how the websites respond and

utilize resources as they are being called from another geographical location. The reason

for this is, as the nature of the websites will be an African Students Association website, it

should be considered that some of the traffic the websites will generate will be from the

African continent with a 3G connection. Based on this test we will be able to see the

response and error rates of the website. Since Africa as a possible location does not exist

within loadimapct.com test scenario, the author has opted to test the virtual users from

Dublin, Ireland.

4.4.3 Questionnaire

The last part of the test is a questionnaire conducted within the student body of Czech

University of Life Sciences to gauge the usability of the websites as students and future

students will be the prospective users of the websites designed. The type of the questions

used in the study will be scaled questions to better analyze the information gathered. Each

website will have a questionnaire designed for this purpose and participants will be asked

to navigate the website and answer questions aimed at user experience.

As the collected data is going to reflect on the people’s attitude and personal

experience towards the websites it will be represented in a Likert scale. A total of 20

questions were designed to gain insight in to the usability of the websites as well as to

record the responses of students within the campus. The questionnaires were divided in to

two groups to represent the two different websites with each website having 10 questions.

Respondents will have the options to select from 5 choices so that they can the one that

47

best reflects their experiences about the websites. Table 2 below shows the summary of

questions alongside their representations for simplified use later.

Question Representation

I can clearly see the menu Q1

I can see the content (text and letters) on the website Q2

I can see the title of the page Q3

I know where I am on the website Q4

Changing pages is fast and easy Q5

The website loads fast Q6

I can easily find what I want in this website Q7

I don't need to scroll left and right to see the contents Q8

The design of the website is attractive Q9

The content of this web is organized. Q10
Table 2 Summary of Questions for survey (source:own)

48

5 Results and Discussion

5.1 Loader.io test

5.1.1 Loader.io wordpress

As shown in figure 25 below, the client per test method of test for handling 600

clients inside of 60 seconds, with 10 clients making a request every second, showed that

the test was concluded with 0% error (no errors found) for both internal server error 500

and 400 types. There was no timeout connection or network errors during the test. The

website response time for all the requests had an average of 453ms with a maximum

response time of 652ms and a minimum response time of 348ms. The test was concluded

with 100% success rate with a total of 1200 requests made.

Figure 25 Client per test results for wordpress (source: own)

49

As shown in figure 26 below, New relic server resources monitoring showed that,

during the test, the utilization of RAM by WordPress remained unchanged at 46% of the

521 MB installed (488 available) and 22.6% of the CPU was used during testing. A 1.21

Mb/second rate of data transfer was registered. The effect of the test on Disk utilization

was negligible and Disk IO remained at 0.04% for the duration of the test.

Figure 26 Wordpress resource utilization results for client per test (source:own)

On the maintained (ramp-up) request test from clients starting at 0 – 150 within 60

seconds, It was observed in figure 27 below, that 2544 successful requests got responses.

As 140 clients made recursive requests from the server, 237 occurrences of internal server

error 500 were recorded. There was no server error 400 observed. An average response

time of 2688ms was recorded until 55th second.

50

Figure 27 Maintained client test results for worpress (source: own)

In figure 28 below, it is shown that from new relic server monitor, during the ramp

up load test, a maximum of 56.9 % of CPU usage which suggests that CPU intensive tasks

were carried out. with 46% of RAM utilized. A network transmission of 3.08 Mb/sec was

observed.

Figure 28 Wordpress resource utilization results for maintain client test (source: own)

51

On our client per second test, figures 29 and 30 below show that, on 80 clients per

second for 60 second test, an error rate of 28.2 was observed with 750 instances of internal

error 500 and no internal error 400. As the error responses from the server came starting at

the 4th second, the average and minimum values for response times are highly influenced

and are not considered as they will report a wrong time. This result suggests that the

handling threshold of the WordPress site has been surpassed.

Figure 29 Client per second test for worpress (source:own)

Figure 30 Client per second test details wordpress (source:own)

52

On figure 31 below shows that the average CPU usage was 74.5% and compared to

the other tests, this is the highest usage recorded. RAM usage remained at 47 % of the total

while Disk IO remained at negligible figures. It was observed that there was 4.05

Mb/second data transmitted during the test.

Figure 31 Wordpress resource utilization results for client per second test (source: own)

5.1.2 Loader.io Grav

Form figure 32 below, for the client per test method of testing 600 virtual users

within 60 seconds, show that all 600 of the virtual users successfully made the request.

Furthermore, the average response time for the requests was 134ms with a minimum of

101ms and a maximum of 255ms. There was no internal server error 400 and 500 recorded

in the duration of the test. This suggests that clients of such magnitude can be handled very

well by the Grav version of the website. Moreover, 0 network errors and 0 timed out

connections were also observed with the test.

53

Figure 32 Client per-test results for Grav (source: own)

From the figure 33 below we can see from new relic server monitoring tool that,

there was only a 5% usage of CPU while RAM usage stayed flat at 16% (79.4 MB out of

488 MB). Disk utilization and load average remained unchanged. This suggests that Grav

site is not stressed in handling the virtual users for this test.

Figure 33 Grav resource utilization results for client per test (source: own)

54

Figure 34 Maintained client test results for Grav (source: own)

Figure 34 above illustrates that on a maintained (ramp-up) of 0 – 150 clients within

60 second test, there was an error rate of 1.9% with 114 Internal server error 500. There

were 5932 successful responses counted, however due to the 114 counts of error 500, the

minimum and maximum values are affected and not taken in to consideration. We can also

see from the figure that on the 57th second, prior to the errors started happening, Grav was

registering an average response time of 1325ms.

55

Figure 35 Maintained client test faliure Grav (source: own)

From figure 35 above, we can see that during the 57th second of the test, internal

server error 500 started to appear at 14 errors per second. There was no internal server

error 400 recorded during the test and furthermore there has been no network and timeout

connection recorded.

Figure 36 Grav resource utilization results for maintain client test (source: own)

From figure 36 above, we can see that 44.1% of the CPU was used while ram usage

stayed at 17% during the test unchanged. Even though Grav registered a spike in

processing load, it the figure shows that it still didn’t reach its threshold. There was 1.67%

usage of disk read/write speeds on average and network transmission of 3.74 Mb/second.

56

From figure 37 below, we can see that for the client per second test with 80 clients

within 60 seconds, it was observed that the test concluded with 0% errors with 4795

successful tests. The average response time was 156ms with a minimum of 102ms and a

maximum of 424ms. There was no internal server error 400 and 500 observed in the

duration of the test suggesting that Grav site handled the load ease.

Figure 37 Client per second test for Grav (source:own)

From new relic, we can see from the figure 38 below that only 33.2 % of the CPU

was utilized on average with the RAM remaining at 16%. There was a small Disk

read/write observed at 0.186% on average and a network data transmission of 0.0139

Mb/second suggesting that although it was a demanding test, the resources and function of

Grav remained unchanged.

57

Figure 38 Grav resource utilization results for client per second test (source: own)

5.2 Load Impact test

5.2.1 Load Impact WordPress

Figure 39 LoadImpact scenario test for WordPress (source:own)

58

From figure 39 above, it is observed that at 89 Virtual users concurrently requesting

information form the website, there existed a failure rate of 0.76/second, with 42.67 rates

of requests per second.

As we can see form figure 40 below, new relic server monitoring tools registered

no significant change in the utilization of infrastructure during the test. RAM usage was at

46% with 4.77% use of CPU indicating that the virtual machine was not under stress

processing the requests.

Figure 40 Wordpress resource utilization for loadimpact (source: own)

5.2.2 Load Impact Grav

At a maximum of 100 virtual users performing concurrent tasks on chrome browser

with a 3G internet connection for 5 minutes, figure below shows that the highest failure

rate observed was less than 0.76 request/second with 89 virtual users active and 64.2

requests/second. This suggests that the website has negligible fail rates with concurrent

active users navigating through the website.

59

Figure 41 LoadImpact scenario test for Grav (source:own)

Going over to new relic metrics, we can observe from figure 42 below that CPU

registered an average of 2.49 % usage during the test and RAM usage remained at 17%

(80.8 MB), without having any significant change. This suggests that the website

responded well with the test having no significant effect on resource utilization.

Figure 42 Wordpress resource utilization for Grav (source: own)

60

5.3 Questioners

There was a total of 48 responders to the two-part Questionnaires, each part focusing

on a different website. the following table shows the summary of all the questionnaires.

WP shows responses for WordPress site and G represents responses for Grave site.

Question I strongly

agree

I am

Indifferent

Its normal Disagree Strongly

Disagree

 WP G WP G WP G WP G WP G

Q1 79% 70% 17% 30% 4% 0% 0% 0% 0% 0%

Q2 79% 59% 21% 41% 0% 0% 0% 0% 0% 0%

Q3 88% 75% 4% 21% 4% 0% 4% 4% 0% 0%

Q4 58% 50% 29% 50% 8% 0% 4% 0% 0% 0%

Q5 25% 59% 42% 41% 33% 0% 0% 0% 0% 0%

Q6 17% 48% 38% 52% 33% 0% 13% 0% 0% 0%

Q7 54% 43% 29% 57% 17% 0% 0% 0% 0% 0%

Q8 88% 79% 8% 21% 4% 0% 0% 0% 0% 0%

Q9 79% 71% 4% 29% 13% 0% 0% 0% 4% 0%

Q10 71% 74% 17% 26% 13% 0% 0% 0% 0% 0%

Table 3 Summary of responses for WordPress and Grav (source:own)

From table 3 above, it was observed that responders prefered WordPress for,

Question 1(I can clearly see the menu) and clarity of the display of the text, Question 2 (I

can see the content text and letters on the website), Indicating navigation was better in

wordpress than in grav. It was observed that end users preffered Grav with regards to

Questions 5 (Changing pages is fast and easy) and 6 (the website loads fast) which

indicates that Grav responds faster for endusers. The responses from the rest of the

questions showed no significant favorism to make a solid conclusion.

61

The test load.io of both websites indicated that, on the client per test evaluation, the

WordPress site averaged 453ms with a minimum of 348ms and maximum of 653ms, while

the Grav site managed 134ms response time on average with a minimum of 101ms and

255ms respectively. From this we can see that the Grav site is 319ms faster than the

WordPress site. Considering that this test was a smoke screen test i.e. meant to see the

performance of the websites under very low amount of stress, to have a difference of

319ms represents a significant difference. We can also observe that Grav utilizes far more

less ram than WordPress during the test phase with WordPress RAM on average at 46%

while Grav stayed at 16% having a 30% difference.

For the maintained ramp-up test, it was observed that while the WordPress site

registered 237 internal server errors with a peak of serving 140 clients while the Grav site

had 114 errors while serving at its peak 144 concurrent clients. The WordPress site

generated 93 errors more for the same test which also indicates that Grav handles requests

better during a high traffic time. It was also observed that WordPress used 56.9% of CPU

and 46% of RAM while Disk read/write was negligible where as Grav used 44.1% of the

CPU and only 17% of the RAM while disk read/write was negligible.

On the client per second test, WordPress showed a 28.2% error rate having 750

internal network error 500 instances while having 1913 successful responses. WordPress

also started to generate error messages starting the 4th second during the 60 second test.

Grav concluded the same test with 0% errors and 4795 successful responses and had a

response time of 156ms on average with a minimum of 102ms and a maximum of 424ms.

During the test, it was also recorded that WordPress used 74.5% of the CPU on average

and 47% of the RAM with negligible disk read/write. On the same test, Grav used 33.2 %

of the CPU and 16% RAM with 1.88% of disk read/write. The result of the test shows that

Grav performs better under load than WordPress.

Scenario simulated tests from load impact showed that both websites handled the

simulation successfully.

62

6 Conclusion

Websites relying on content management systems mostly stick to only one type of

framework, disregarding the nature of the website to be designed. Researching a better and

faster solution the caters to the specific needs of the website should come first before the

decision to use a certain type of content management system. This study has shown that

using WordPress because of its versatile nature can be a wrong decision, especially when

considering it for a small website like an African Students Association with in Czech

university of Life Sciences, meant to handle a small amount of traffic.

The study has shown that for the moderate number of virtual users simulated, Grav

has outperformed WordPress in all the load tests while maintaining a very low amount of

resource utilization. In addition, this study has also shown that regarding user experience,

although WordPress showed to have better response from the sample population, there is

no major significant difference between the two websites, underlining the issue that Grav

needs to have more developers in its community in developing themes and collaborating as

to bring the level of theming and experience to that of WordPress.

63

References

1. ADOBE, 2016. Media alert: Adobe data shows black Friday breaks online sales

record with $3.34 Billion. [online] 2016. [Accessed: 27 November 2016].

Available at: http://news.adobe.com/press-release/marketing-cloud/media-alert-

adobe-data-shows-black-friday-breaks-online-sales-record-3

2. BARKER, Dean. 2016. Web Content Management: O’Reilly Media, 2015.ISBN:

978-1-491-90812-9.

3. BROOK, Chris. 2015. Attackers targeting Unpatched Joomla sites through SQL

injection vulnerability. [online] 2015 [Accessed: 29 June 2016].Available at:

https://threatpost.com/attackers-targeting-unpatched-joomla-sites-through-sql-

injection-vulnerability/115179/

4. CAFELOG.COM. 2001. B2 - a classy weblog tool. [online] 2001. [Accessed: 10

October 2016]. Available at: http://cafelog.com

5. DOCTRINE DOCUMENTATION. 2010. [online] 2010. [Accessed: 25 October

2016]. Available at: http://docs.doctrine-

project.org/en/latest/reference/caching.html

6. DRUPAL, 2016. Our History. [online] 2016. [Accessed:14 June, 2016]. Available

at: https://www.drupal.org/about/history

7. GRAV DOCUMENTATION. 2016. Grav Documentation. [online] 2016.

[Accessed: September 30, 2016]. Available at:

https://learn.getgrav.org/basics/what-is-grav

8. GRUBER, John. 2004. Daring fireball: Markdown. [online] 2004. [Accessed: 26

July 2016]. Available at:

https://web.archive.org/web/20040402182332/http://daringfireball.net/projects/mar

kdown/

64

9. LOAD IMPACT. 2016. Website load testing. [online] 2016. [Accessed: 11 June

2016]. Available at: https://loadimpact.com/website-testing

10. LOADER.IO. 2014. Test types. [online] 2014. [Accessed: 16 February 2016].

Available at: http://support.loader.io/article/16-test-types

11. Molyneaux, Ian. 2014. The art of application performance testing: Help for

programmers and quality assurance. second edition edn. United States: O’Reilly

Media, Inc, USA.

12. MULLENWEG, Matt. 2003a. WordPress Now Available. [online] 2003.

[Accessed:14 March, 2016]. Available at:

https://wordpress.org/news/2003/05/wordpress-now-available/

13. MULLENWEG, Matt. 2003b. 0.72 final version available. [online] 2003.

[Accessed:14 March, 2016]. Available at:

https://wordpress.org/news/2003/05/wordpress-now-available/

14. PUGH, Emerson.W. 1995. Building IBM: Shaping an industry and its technology.

Cambridge, MA: MIT Press.

15. RUSEV, Emanuil. 2013. Parsedown. [online] 2013. [Accessed: 17 July 2016].

Available at:https://github.com/erusev/parsedown

16. SANTILLAN, Maritza. 2015. One Million WordPress Websites vulnerable to SQL

injection attack. [online] 2015. [Accessed: 11 June 2016].Available at:

https://www.tripwire.com/state-of-security/latest-security-news/one-million-

wordpress-websites-vulnerable-to-sql-injection-attack/

17. SENSIOLABS. 2016. The flexible, fast, and secure template engine for PHP.

[online] 2016. [Accessed: October 10, 2016]. Available at:

http://twig.sensiolabs.org

65

18. ST.LAURENT, Andrew M. 2004. Understanding open source and free software

licensing. United States: O’Reilly Media, Inc, USA.

19. SWARTZ, Aaron. 2004. Markdown (Aaron Swartz: The Weblog).[ONLINE] 2004.

[Accessed: 17 July 2016].Available at: http://www.aaronsw.com/weblog/001189

20. VMWARE. 2016. VSphere documentation center. [online] 2016. [Accessed: 08

August 2016].Available at: https://pubs.vmware.com/vsphere-

50/index.jsp?topic=%2Fcom.vmware.vsphere.vm_admin.doc_50%2FGUID-

CEFF6D89-8C19-4143-8C26-4B6D6734D2CB.html

21. W3.ORG. 1999. HTTP/1.1: Method definitions. [online] 1999. [Accessed: 29

November 2016]. Available at: https://www.w3.org/Protocols/rfc2616/rfc2616-

sec9.html

22. W3SCHOOLS, 2016. SQL Injection. [online] 2016. [Accessed: 21 January, 2016].

Available at: http://www.w3schools.com/Sql/sql_injection.asp

23. W3TECHS 2016. Usage of content management systems for Websites. [online]

2016. [Accessed: 13 November 2016]. Available at:

https://w3techs.com/technologies/overview/content_management/all

24. WATSON, Leon. 2015. Humans have shorter attention span than goldfish, thanks

to smartphones. [online] 2015. [Accessed: 26 January 2016].Available at:

http://www.telegraph.co.uk/science/2016/03/12/humans-have-shorter-attention-

span-than-goldfish-thanks-to-smart/

25. WEATHERHEAD, Rob. 2014. Say it quick, say it well – the attention span of a

modern internet consumer. [online] 2014. [Accessed: 17 May 2016]. Available at:

https://www.theguardian.com/media-network/media-network-

blog/2012/mar/19/attention-span-internet-consumer

66

26. YOUTUBE. 2016. Statistics. Youtube. [online] 2016. [Accessed: September

08,2016.]. Available at: https://www.youtube.com/yt/about

27. YOUTUBE. 2016. Statistics. Youtube. [online] 2016. [Accessed: September

08,2016.]. Available at: https://www.youtube.com/yt/press/statistics.html

67

Appendix - A

Grav life cycle as taken from getgrav.org

68

Appendix - B

WordPress website - 46.101.194.11

69

Appendix - C

Grav website - 138.68.71.127

70

Appendix - D

Custom style guide, custom.css written for Grav

/*Header task bar on top stationary*/

#header {

 background-color: rgba(0, 98, 57, 0.9);

}

#header.scrolled {

 background-color: rgba(255, 255, 255, 0.9) !important;

}

/* asaculs logo color*/

#logo h3, #logo a, #navbar span {

 color: rgb(255, 255, 255) !important;

}

/*menu text colors*/

#navbar a {

 color: rgb(255, 255, 255) !important;

}

/*menu line colors on mouse hover*/

#navbar a:before, #navbar a:after {

 background-color: rgb(255, 255, 255) !important;

}

/*Active drop down navigation item*/

#header #navbar ul.navigation li ul li:hover>a {

 background-color: #006239;

}

/* roll down color for asaculs logo*/

#header.scrolled #logo a, #header.scrolled #navbar span {

 color: #006239 !important;

}

/*menu text color on normal*/

#header.scrolled #navbar a {

 color: #006239 !important;

}

/* menu text color on mouse hover*/

#header.scrolled #navbar a:hover {

 color: #006239 !important;

}

/*top two lines color */

#header.scrolled #navbar a:before, #header.scrolled #navbar a:after {

 background-color: #006239 !important;

}

/* Buttons within asaculs*/

.button {

 background: #fff;

 color: #23865C;

71

 border: 1px solid #23865C;

 border-radius: 3px;

}

.button:hover {

 background: #23865C;

 color: #fff;

}

.button:active {

 box-shadow: 0 1px 0 #23865C;

}

textarea,

input[type="email"],

input[type="number"],

input[type="password"],

input[type="search"],

input[type="tel"],

input[type="text"],

input[type="url"],

input[type="color"],

input[type="date"],

input[type="datetime"],

input[type="datetime-local"],

input[type="month"],

input[type="time"],

input[type="week"],

select[multiple=multiple]

{

 background-color: white;

 border: 1px solid #006239;

 box-shadow: inset 0 1px 3px rgba(0, 0, 0, 0.06);

}

textarea,

input[type="email"]:focus,

input[type="number"]:focus,

input[type="password"]:focus,

input[type="search"]:focus,

input[type="tel"]:focus,

input[type="text"]:focus,

input[type="url"]:focus,

input[type="color"]:focus,

input[type="date"]:focus,

input[type="datetime"]:focus,

input[type="datetime-local"]:focus,

input[type="month"]:focus,

input[type="time"]:focus,

input[type="week"]:focus,

select[multiple=multiple]

{border-color: #23865C;}

72

Appendix - E

CSS theme sub creation for wordpress site

/*

 Theme Name: ASACULS-WP

 Theme URI:

 Description: A Child theme of Twenty Sixteen theme developed for African Students

Association in CULS

 Author: Wossenyeleh Merid Mekonnen

 Author URI:

 Template: twentysixteen

 Version: 1.0.0

 License: GNU General Public License v2 or later

 License URI: http://www.gnu.org/licenses/gpl-2.0.html

 Tags: dark green, light, two-columns, responsive-layout, accessibility-ready

 Text Domain: twenty-sixteen-asaculs

*/

.entry-title {

 display: none;

}

.menu-toggle {

 border: 1px solid #006239;

 color: #006239;

}

.main-navigation li:hover>a, .main-navigation li.focus>a {

 color: #006239;

}

.menu-toggle.toggled-on, .menu-toggle.toggled-on:hover, .menu-toggle.toggled-on:focus {

 background-color: #006239;

 border-color: #006239;

 color: #fff;

}

.menu-toggle:hover, .menu-toggle:focus {

 border-color: #006239;

 color: #006239;

 }

 blockquote {

 border: 0 solid #23865C;

 border-left-width: 4px;

 color: #23865C;

73

 }

 .widget {

 border-top: 4px solid #006239;

}

button,

button[disabled]:hover,

button[disabled]:focus,

input[type="button"],

input[type="button"][disabled]:hover,

input[type="button"][disabled]:focus,

input[type="reset"],

input[type="reset"][disabled]:hover,

input[type="reset"][disabled]:focus,

input[type="submit"],

input[type="submit"][disabled]:hover,

input[type="submit"][disabled]:focus {

 background: #fff;

 border: 1px solid #23865C;

 border-radius: 3px;

 color:#23865C;

 font-family: Montserrat, "Helvetica Neue", sans-serif;

 font-weight: 700;

 letter-spacing: 0.046875em;

 line-height: 1;

 padding: 0.84375em 0.875em 0.78125em;

 text-transform: uppercase;

}

button:hover,

button:focus,

input[type="button"]:hover,

input[type="button"]:focus,

input[type="reset"]:hover,

input[type="reset"]:focus,

input[type="submit"]:hover,

input[type="submit"]:focus {

 background: #006239;

 color: #fff;

}

input[type="date"],

input[type="time"],

input[type="datetime-local"],

input[type="week"],

input[type="month"],

input[type="text"],

74

input[type="email"],

input[type="url"],

input[type="password"],

input[type="search"],

input[type="tel"],

input[type="number"],

textarea {

 background: #f7f7f7;

 background-image: -webkit-linear-gradient(rgba(255, 255, 255, 0), rgba(255, 255,

255, 0));

 border: 1px solid #006239;

 border-radius: 2px;

 color: #686868;

 padding: 0.625em 0.4375em;

 width: 100%;

}

input[type="date"]:focus,

input[type="time"]:focus,

input[type="datetime-local"]:focus,

input[type="week"]:focus,

input[type="month"]:focus,

input[type="text"]:focus,

input[type="email"]:focus,

input[type="url"]:focus,

input[type="password"]:focus,

input[type="search"]:focus,

input[type="tel"]:focus,

input[type="number"]:focus,

textarea:focus {

 background-color: #fff;

 border-color: #23865C;

 color: #1a1a1a;

 outline: 0;

}

75

Appendix - F

Security token generation and placement from Loader.io for WordPress

Security Token generation and placement from loader.io for Grav

76

Appendix - G

Questionnaire for Grav

77

78

Questionnaire for WordPress

79

