
TECHNICAL UNIVERSITY OF LIBEREC
Faculty of Mechanical Engineering

Development of Evolution Algorithm for Shop

Scheduling Problem

Master Thesis

Liberec 2020 Pandiyaraj Gnanasekar

TECHNICAL UNIVERSITY OF LIBEREC
Faculty of Mechanical Engineering

Development of Evolution Algorithm for Shop

Scheduling Problem

Master Thesis

Liberec 2020 Pandiyaraj Gnanasekar

2

Liberec 2020

Development of Evolution Algorithm for Shop

Scheduling Problem

Master Thesis

Study programme: N2301 Mechanical Engineering
Study branch: Manufacturing Systems and Processes

Author: Pandiyaraj Gnanasekar
Thesis Supervisors: Ing. František Koblasa, Ph.D.

Department of Manufacturing Systems and Automation

3

Name and surname: Pandiyaraj Gnanasekar

Identification number: S18000448

Study programme: N2301 Mechanical Engineering

Study branch: Manufacturing Systems and Processes

Assigning department: Department of Manufacturing Systems and Automation

Academic year: 2019/2020

 Rules for Elaboration:

The aim of diploma thesis is to develop evolution algorithm to solve scheduling problems
in mechanical engineering manufacturing. Thesis will include:
1/ Literature review of scheduling models ending with selecting one type.
2/ Literature review to map current approaches to solve selected model by evolutionary

computing with goal to define nowadays approaches.
3/ Developing own evolution algorithm.
4/ Design testing of developed algorithm with comparison to Simple Genetic Algorithm and

Dispatching rules.
5/ Evaluating efficiency of developed algorithm.

4

Scope of Graphic Work:

Scope of Report: 50-60

Thesis Form: printed/electronic

Thesis Language: English

List of Specialised Literature:

 MICHALEWICZ, Z. Genetic algorithms+ data structures= evolution programs. Springer
Science and Business Media, 2013.

 BACK, T. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary
programming, genetic algorithms. New York: Oxford University Press, 1996. ISBN 0-19-
509971-0.

 EIBEN, A. E. a J. E. SMITH. Introduction to evolutionary computing. Second edition.
Heidelberg: Springer, 2015. Natural computing series. ISBN 978-3-662-44873-1.

 DASH, S. S. a S. DAS, B. K. PANIGRAHI a K. VIJAYAKUMAR. Artificial Intelligence and
Evolutionary Computations in Engineering Systems. Springer, 2017. Advances in Intelligent
Systems and Computing, 517. ISBN 978-981-10-3173-1.

 SIMON, D. Evolutionary optimization algorithms: biologically-inspired and population-
based approaches to computer intelligence. Hoboken: Wiley, 2013. ISBN 978-0-470-93741-9

Thesis Supervisors: Ing. František Koblasa, Ph.D.

Date of Thesis Assignment: November 20, 2019

Date of Thesis Submission: May 20, 2021

prof. Dr. Ing. Petr Lenfeld

L.S.
Ing. Petr Zelený, Ph.D.

Head of Department

Liberec, November 20, 2019

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

Declaration

I hereby certify, I, myself, have written my master thesis as an original and
primary work using the literature listed below and consulting it with my thesis
supervisor and my thesis counsellor.

I acknowledge that my bachelor master thesis is fully governed by Act No.
121/2000 Coll., the Copyright Act, in particular Article 60 – School Work.

I acknowledge that the Technical University of Liberec does not infringe my
copyrights by using my master thesis for internal purposes of the Technical
University of Liberec.

I am aware of my obligation to inform the Technical University of Liberec on having
used or granted license to use the results of my master thesis; in such a case the
Technical University of Liberec may require reimbursement of the costs incurred
for creating the result up to their actual amount.

At the same time, I honestly declare that the text of the printed version of my
master thesis is identical with the text of the electronic version uploaded into the
IS/STAG.

I acknowledge that the Technical University of Liberec will make my master thesis
public in accordance with paragraph 47b of Act No. 111/1998 Coll., on Higher
Education Institutions and on Amendment to Other Acts (the Higher Education
Act), as amended.

I am aware of the consequences which may under the Higher Education Act result
from a breach of this declaration.

April 29, 2020 Pandiyaraj Gnanasekar

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

7

ACKNOWLEDGEMENT

 Hereby, I would like to express my gratitude to the following people who were very

supportive and encouraged me to make this thesis a reality. I am extremely thankful for

dedicating their precious time to motivate me and guided towards the success of this project.

Ing. František Koblasa, Ph.D. – Supervisor

 Department of Manufacturing systems and automation, for his experienced and

expert guidance, support, motivation, patience and a great inspiration to complete the thesis.

Ing. Petr Zelený, Ph.D. – Head of Department, Department of manufacturing systems and

automation, for his encouragement and support for the work.

Technical University of Liberec – For giving me a wonderful opportunity to study and to

learn new things in my life.

For my family members, who made my studies possible with financial support and their

love and continuous support in all difficult times.

For my friends who were there when I needed them the most and helped me gain confidence

to complete the work.

For the support of Student Grant Competition of the Technical University of Liberec

under the project Optimization of manufacturing systems, 3D technologies and automation

No. SGS-2019-5011.

Liberec, 2020 Pandiyaraj Gnanasekar

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

8

ABSTRACT
 This thesis is aimed at research of evolution algorithms (EA) in the field of the shop

scheduling problems and to develop a new strategy in order to improve the performance. Job

shop scheduling problem (JSSP) is one of the most complex scheduling problem and finding

the optimal solution is very difficult due to their complexity. Existing evolution algorithms

were reviewed and one of the best and widely used genetic algorithm is selected for solving

job shop scheduling problem. Active schedules for JSSP were generated based on various

dispatching rules with the help of most used problem instances to compare effectiveness of

EA. Then the structure and the major parameters of simple genetic algorithm (SGA) is

reviewed and based on that a new strategy for replacement (Reusable Replacement Strategy)

is proposed and implemented in the SGA. The implementation of RRS in SGA improves the

results and also its impact on two different type of chromosome representations were

experimented. The developed MSGAJO is concluded to be the best genetic algorithm among

tested to give the best makespan values for the JSSP problem instances.

Keywords

Simple genetic algorithm, Job shop scheduling, Dispatching rules, Evolution Algorithms

ABSTRAKT
Tato diplomová práce je zaměřena na výzkum evolučních algoritmů (EA) v oblasti

plánování zakázkové výroby a na vývoj nové strategie za účelem zlepšení výkonu.

Sekvenční rovrhovací problem (JSSP) je jedním z nejsložitějších plánovacích problémů a

nalezení optimálního řešení je vzhledem ke složitosti velmi obtížné. Byly přezkoumány

existující evoluční algoritmy a pro řešení sekvenčního rozvrhovacího problému byl vybrán

jeden z široce používaných genetických algoritmů. Pro porovnání efektivnosti EA jsou

vygenerovány nejprve Aktivní plány pro pro eta lonové problémy JSSP na základě různých

prioritních pravidel . Poté je přezkoumána struktura a hlavní parametry jednoduchého

genetického algoritmu (SGA) a na základě toho je v SGA navržena a implementována nová

strategie nahrazení (opakovaně použitelná substituční strategie - RSS). Implementace RRS

v SGA zlepšuje výsledky a také byl experimentován její dopad na dva různé typy

reprezentací chromozomů. Navržený MSGAJO je považován mezi testovanými za nejlepší

genetický algoritmus, který dává nejlepší hodnoty promísení pro případy problému JSSP.

Klíčová slova

Jednoduchý genetický algoritmus, plánování pracovních obchodů, dispečerská pravidla,

evoluční algoritmy

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

9

Contents
ACKNOWLEDGEMENT..7

ABSTRACT ..8

LIST OF FIGURES ... 12

LIST OF TABLES ... 13

1. INTRODUCTION ... 14

2. LITERATURE REVIEW ... 15

2.1 SHOP SCHEDULING ... 15

2.2 JOB SHOP SCHEDULING.. 16

2.3 CONSTRUCTIVE ALGORITHM ... 18

2.4 GIFFLER AND THOMPSON ALGORITHM .. 18

2.4.1 GT algorithm ... 19

2.4.2 Dispatching rules ... 20

2.5 EVOLUTIONARY ALGORITHMS (EA).. 21

3. GENETIC ALGORITHM .. 23

3.1 CHROMOSOME REPRESENTATION ... 24

3.1.1 Binary representation ... 24

3.1.2 String representation .. 25

3.2 INITIAL POPULATION ... 27

3.3 FITNESS FUNCTION ... 27

3.4 SELECTION .. 28

3.4.1 Roulette Wheel Selection(RWS) .. 28

3.4.2 Tournament selection... 29

3.4.3 Rank selection ... 30

3.5 CROSSOVER .. 31

3.5.1 One-point crossover ... 31

3.5.2 Two-point crossover .. 32

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

10

3.5.3 Uniform crossover ... 32

3.5.4 Partial mapping crossover .. 33

3.5.5 Order crossover ... 34

3.5.6 Job order crossover .. 34

3.6 MUTATION .. 35

3.6.1 Bit flip mutation .. 36

3.6.2 Swap mutation ... 36

3.6.3 Inversion mutation ... 37

3.6.4 Scramble mutation ... 37

3.6.5 Shift mutation .. 37

3.7 REPLACEMENT SCHEME .. 38

3.7.1 Generational replacement .. 38

3.7.2 Steady state replacement .. 38

3.8 TERMINATION CRITERIA ... 41

4. EXPERIMENT WITH GENETIC ALGORITHM .. 42

4.1 GIFFLER & THOMPSON ACTIVE SCHEDULE ... 42

4.2 SIMPLE GENETIC ALGORITHM.. 44

4.2.1 SGA parameters value ... 45

4.2.2 Results of SGA with job order & operation based representation 45

4.3 PROPOSED STRATEGY .. 48

4.3.1 Motivation and basic idea of proposed algorithm ... 48

4.3.2 Parameters in Reusable Replacement Strategy (RRS) 49

4.3.3 Proposed strategy structure in SGA ... 51

4.4 PARAMETER SET VALUE & RESULTS .. 52

4.4.1 MSGA parameters value .. 52

4.4.2 Replacement parameters .. 52

4.4.3 Result of Modified SGA using job order based representation (MSGAJO) 53

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

11

4.4.4 Result of Modified SGA using operation based representation (MSGAOB) 54

4.4.5 Comparison of Modified SGA of job order (MSGAJO) and operation based

representation (MSGAOB) ... 55

4.4.6 Comparison of SGA and MSGA with job order based representation............... 56

4.4.7 Comparison of SGA and MSGA with operation based representation 58

4.4.8 Comparison of all SGAs with active schedule based on best dispatching rule .. 59

4.4.9 Comparison of optimization time per generation of SGAs and MSGAs 61

4.4.10 Comparison of improvement result from best dispatching rule 62

4.4.11 Result of saved time by improvement .. 64

5. CONCLUSION ... 66

REFERENCES .. 67

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

12

LIST OF FIGURES

Figure 1. Evolution model of genetic algorithm [22] .. 23

Figure 2. Gene, Chromosome, Population [23] ... 24

Figure 3. Operation based representation [25] .. 25

Figure 4. Job-order representation [28] ... 26

Figure 5. Machine based representation[29] ... 26

Figure 6. Roulette wheel fitness distribution [34] ... 29

Figure 7. Tournament selection [37] ... 30

Figure 8. One-point crossover[36] .. 32

Figure 9. Two-point crossover [1] .. 32

Figure 10. Uniform crossover [1] ... 33

Figure 11. Partial mapping crossover [8] .. 33

Figure 12. Order crossover [20].. 34

Figure 13. Job order crossover [37] .. 35

Figure 14. Bit flip mutation [26]... 36

Figure 15. Swap mutation [38] .. 36

Figure 16. Inversion mutation [2] ... 37

Figure 17. SGA pseudocode [40] ... 44

Figure 18. Structure SGA Reusable replacement strategy [42], [source: own] 51

Figure 19. Comparison graph of MSGAJO and MSGAOB [source: own] 56

Figure 20. Comparison graph of SGAJO and MSGAJO [source: own] 56

Figure 21. Comparison graph of SGAOB and MSGAOB [source: own] 59

Figure 22. Comparison of optimization time per generation [source: own] 62

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

13

LIST OF TABLES

Table 1. Results of active schedule based on dispatching rules ... 43

Table 2. Result of SGAJO ... 46

Table 3. Result of SGAOB... 47

Table 4. Result of MSGAJO .. 53

Table 5. Result of MSGAOB ... 54

Table 6. Comparison of MSGAJO and MSGAOB ... 55

Table 7. Comparison of SGAJO and MSGAJO ... 57

Table 8. Comparison of SGAOB and MSGAOB .. 58

Table 9. Comparison SGAs with active schedule based on MTTR 60

Table 10. Comparison of optimization time per generation ... 61

Table 11. Improvement comparison of best dispatching rule, SGAs and MSGAs 63

Table 12. Results of saved time by improvement.. 64

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

14

1. INTRODUCTION

In production technology, there will be no permanent solution for any operations and

technologies. The changes are inevitable and improves the production with their new and

innovative ways of optimization. One of such kind is the classical Job shop scheduling.

Researchers and engineers have been developing numerous ways to optimize the problems

of the Job shop scheduling from the origin of this concept of JSSP.

Job shop scheduling is a typical problem prevail in the production environment, where the

jobs assigned to machines depending upon their technology order. It may seem to be a

solvable problem at first instance, but it is still under the category of NP-hard (Non-

Polynomial time) problems. The difficulty of assigning few jobs like 3 to few machines like

3 is quite easily achievable, as the number of possibility is small. But, if the size of jobs or

machines increases, the possibility will rise exponentially and leading to find an optimal

solution a near impossible one.

The difficult in finding an optimal solution for the classical Job shop problems makes many

researchers to find a way to solve this problem. The optimal solution is the solution with the

minimum makespan of jobs in case of Job shop scheduling. Makespan is the maximum time

required to complete all the jobs assigned to the machines in the production environment.

This aim of this paper is to develop an evolutionary algorithm to optimize the job shop

scheduling problem by using Matlab Programming tool.

This work includes,

 Literature review of the papers related to job shop scheduling and genetic algorithm

along with other evolutionary algorithms

 Creating a simple genetic algorithm (SGA) based on Giffler and Thompson active

schedule

 Exploring options to improve the SGA

 Implementing new strategy to improve the SGA

 Experimenting and comparing the developed algorithm with the SGA

The outcome of the experiment is analysed and based on the results further options and future

developments will be concluded.

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

15

2. LITERATURE REVIEW

 Many researches have tried numerous ways to find optimal solution, but one

significant method which provides good result is the Genetic Algorithm(GA). Genetic

algorithm is a biologically inspired concept in which the process is based on the principle of

evolution. It imitates the biological genetic processes such as generations, crossover,

mutations in order to find an optimal solution from number of generations. Genetic

algorithms have been used widely after its discovery in the world of evolutionary computing

in artificial intelligence. This concept is applied to wide variety of problems and helps to

attain a reasonable result with justification. Problems like production scheduling, travelling

sales man, graph theory are also uses genetic algorithm to get the results. In this chapter,

basics of scheduling and its types, constructive algorithm, Giffler and Thompson algorithm

and dispatching rules are briefly explained. These are the basic concept in which the genetic

algorithm to be developed for job shop scheduling problems. This Thesis proceeds with

simple genetic algorithm and then the experimentation of new strategies to improve the

performance of SGA and then analysing the results.

2.1 SHOP SCHEDULING

Scheduling is the allocation of available resources over time of activities that are

competing. Scheduling process answers the questions of when and where the job or work to

be carried out during the production of a products. The question when comes to reveal the

time at which the operation or activity going to be performed and the question where, reveals

the place or area in which the operation is going to be executed. It is the most used subject

in the field of operation research. The problems based on shop scheduling belongs to multi-

stage scheduling problems, in which each job has a set of operations. In shop scheduling

problems, there will be n number of jobs J1, J2, J3,…Jn which has to processed in a set of m

number of machines M1, M2, M3,…Mm [1]. Each job consists of a number of operations

denoted by Oij, where (i, j) refers to the respected job and machine in which the operation is

processing. The processing time pij of each operation will be given in advance for

deterministic scheduling problems. The shop scheduling is classified into open shop, flow

shop and job shop scheduling.

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

16

A. Flow shop: The problems associated with flow shop will have each job has operation

number exactly equal to the number of machines m (Oi = m) and the technological

route or the machine order will be same for jobs that passes through the machines. In

other words, all jobs will have same technological order and no alteration of order is

involved in flow shop scheduling.

B. Open shop: Open shop scheduling is typical and there is no technological order

involved in job’s operations. The job routes are not fixed before scheduling and each

job has to be processed on any machine is usually assumed in solving the open shop

problems. Like flow shop, each job will have exactly one operation on each machine.

C. Job shop: The technological routes for all jobs are fixed and can be different for

each jobs. Unlike flow shops, the number of machines will not be equal to the number

of operation of jobs, it may be equal, less or more than the number of operations,

(Oi < m, Oi = m, Oi > m). These three possibilities are allowed in job shops and this

is one of the criteria which makes the job shop problems are one of the most

complicated problems. Job shops are employed in most of the manufacturing

operations, which helps to solve more models than the other shop scheduling types.

If the number of jobs n is greater than m (n > m), it can be arbitrarily large and will

become extremely hard to solve and the difficulty increases exponentially with

increase in number of jobs. The job shops are chosen in this paper in order to test the

complexity of various problem sets. Job shop scheduling is explained in detail with

its problem environment and methods to solve it.

2.2 JOB SHOP SCHEDULING

Job : A piece of work, which has a series of operations.

Shop : An area in which the manufacturing or modification of machineries.

Scheduling : A decisive process with the aim to deduce the order of processing[2].

 Job shop is one of the major classification in manufacturing processes. In this process

type, small batches of wide range of custom products are produced. Each product in this

process flow exhibits unique sequencing and set-up steps for its production. Some examples

of job shops are paint shop, machining centre and a commercial printing shop. One of the

major characteristics of job shop is its routing. Routing means the order in which the jobs

are arrived to the production floor. Each job will use certain number of machines and no job

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

17

will utilize every machines in the production floor. Jobs are characterized by its route, its

requirement for processing and its priority. The key issue in job shops are the variety of

mixed products and decision on how and when to schedule these jobs. The minimization of

expensive machine set-ups and change-overs may not be achieved by the arrival pattern of

jobs completed. The jobs or works can also be scheduled depending on their processing

times, longest shortest processing time and shortest to longest processing time[2].

 This problem of scheduling a job shop is considered as one of the most difficult

problem in the production environment. Many researchers following this problem uses many

unique approaches to solve this problem. The main objective of this problem is the

minimization of makespan with the constraints prevailed in the allocation of jobs along with

their unique job sequence. A typical job shop scheduling problem is the n x m minimum-

makespan, which is commonly referred as JSSP. The JSSP consist of n number of jobs {Jk

}1 ≤ k ≤ n which is to be processed on a set of m number of machines {Ml }1 ≤ l ≤ m. The

technological sequence of each job to be processed is unique and different from each other.

Each job has a set of operations Okl to be processed on each machines. These operation

processing on machines requires a uninterrupted duration of processing time Pkl[3].

 In Job shop scheduling, there are some constraints to be considered during the

schedule generation. Those constraints are as follows,

1. Each job consists of a set of operations

2. Definition of machine sequence for each job.

3. The pre-defined machine sequence should be maintained to complete each

job.

4. Processing time also includes the setup time for each operations

5. No operation cannot interrupt other operation.

6. Jobs should not be processed in the same machine twice.

7. Only one type of task can be dealt by each machine

These constraints determine and ensures the feasible solution in the process of generating

the schedule for the defined problems. Apart from the above constraint many specific

constraints can also be considered for the development of optimal solution for the typical

JSSP problems.

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

18

2.3 CONSTRUCTIVE ALGORITHM

 Constructive algorithm means a program which is constructed to find the possible

set of solutions for a problem. These algorithms are widely used in combinatorial

optimizations in which every solution x is a subset of the ground set E [4]. A constructive

heuristic iteratively updates a subset x(k) as follows:

Step 1: The algorithm starts from an empty subset: x(0) = Ø. It is a subset of the optimal

solution.

Step 2: During each iteration k, selection of best element among the admissible elements, i

(k) Є E.

Step 3: It then inserts i (k) to the current subset x(k): x(k+1) = x(k) U {i(k)}.

Step 4: Then the algorithm continues to step 2 until the solution becomes complete.

 This is basic procedure for creating a constructive algorithm. Based on the same

procedure, the Giffler and Thompson algorithm developed in order to solve some of

production based problems.

2.4 GIFFLER AND THOMPSON ALGORITHM

 Giffler and Thompson algorithm is always a good method for the shop scheduling

problems in the production environment. It is a constructive algorithm which consider a

machine scheduling problem, consists of assigning a set of jobs to a set of machines and

fulfilling the given criteria’s optimization requirement. This algorithm also contains some

limitations or constraints similar to the basic scheduling algorithm for JSSP and some more

constraints, which make sure the feasibility of the solution.

1. At time zero, the set of all jobs should be available.

2. Each job in the set should have a series of linearly ordered operations which may be

distinct, but each should have the same number of elements.

3. Only one job can be processed on each machine at a time or each machine can handle

only one job at a time.

4. The set-up time of machines and transportation times between machines are not

considered as they are negligible.

5. Failure of machines never occur. i.e. Machines are available always.

6. Pre-emption of operation are not allowed.

7. The specialization of each machine should be in the sense that it can perform only a

certain type of operation[5].

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

19

 The objective of this algorithm is minimizing the makespan, which is the maximum

completion time. The difficulty of the JSSP is increased if the number of machine and jobs

increases. The more the number of jobs and machines, the more it will require time as the

complexity of problem increases exponentially.

2.4.1 GT algorithm

 Giffler and Thompson developed a recursive algorithm to generate active schedules

in a systematic way[6]. The algorithm of Giffler and Thompson (GT) uses the following

symbols for the representation of its operation in each steps of the algorithm,

n – Number of jobs.

m – Number of machines.

oj – operation j of each job (1≤ j ≤ nm).

pj – processing time of each operation oj.

Pt – partial schedule of the (t – 1) schedule operations.

St - set of operation available to schedule at time t or at each iteration t.

ρj – It is the earliest possible time at which operation oj from set St can start.

βj – It is the earliest possible time at which operation oj from set St can be finished. i.e. βj =

ρj + pj.[6]

With the defined symbols, the algorithm of Giffler and Thompson as follows:

Step 1: Let t = 1 and Pt-1 = {}. St is the set of all the available operations without any

predecessors.

Step 2: Finding the minimum value β* = minoj Є Sj {βj} and the corresponding machine M* at

which oj with β* is executed. If there are multiple machines M* for the selected operation oj,

choose arbitrarily.

Step 3: An operation oj is chosen from St with the following conditions:

 Operation oj requires machine M*, and

 ρj < β*

Step 4: After the selection of operation, proceed to next iteration by:

 adding oj to Pt, which results in Pt+1

 Deleting oj from St and forming St+1 by adding the successor operation of oj to St+1

(not applicable for the last operation)

 t = t + 1

Step 5: If St ≠ {} go to Step 2. Or else stop.[6]

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

20

 The above GT algorithm generates an active schedule with a feasible solution (may not

be an optimal solution). Each iteration, GT algorithm deals with a conflict set St from which

an operation is chosen based on some criteria or rules and then scheduled. This recursive

procedure by Giffler and Thompson is executed until all operations are scheduled. The order

of precedence is preserved. Steps 2 and 3 of this algorithm ensures that there is no operation

of job that can start earlier and respects the precedence constraint, without delaying other

operation.

 The steps 2 and 3 of the above algorithm can also be modified to generate a non-delay

schedule, in which a machine is never idle when there is an operation available to be

executed on that machine.

The modification can be done as follows:

Step 2: Finding the minimum value ρ* = minoj Є Sj {ρj} and the corresponding machine M* at

which oj with ρ* is executed. If there are multiple machines M* for the selected operation oj,

choose arbitrarily.

Step 3: An operation oj is chosen from St with the following conditions:

 Operation oj requires machine M*, and

 ρj = ρ*

 The non-delay schedule improves the solution quality but the probability of not considering

an optimum solution prevails with this schedule. For the search of optimal solution active

schedules are more appropriate[6].

2.4.2 Dispatching rules

 In scheduling and sequencing problems, there are some issues related to select which

operation to be scheduled at a particular stage. There could be conflict among the operations

to be scheduled. This conflict arises when two or more operations requires the same machine

at the same time. These conflicts are generally solved through some rules known as priority

or dispatching rules. These dispatching rules ensures a certain job from the conflict set is

scheduled at the certain time based on some criteria. There are hundreds of dispatching rules

that can be used based on the requirement of the scheduling problems. Some of the most

common classification of dispatching rules are as follows,

I. Simple priority rules:

 The characteristics of these jobs are usually dealing with the information processed

by the jobs, like processing time, remaining number of operations, waiting time, etc. There

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

21

is also certain rule which follows random selection which are not dependant on information

with respect to a specific job. These rules are classified based on

 Processing times

 Setup times

 Number of operations

 Due dates

 Costs

 Arrival times

 Miscellaneous information.

II. Combinations of simple priority rules:

 The above simple priority rules are sometimes combined to solve the conflicts among

the jobs to be scheduled. The combination is applied by either to each set of conflict with

different group of jobs or under the same queue with different circumstances.

III. Heuristics scheduling rules:

 There are some rules which consider more complex criteria such as anticipated

machine loading, effect of alternate routing, alternate operation scheduling, etc. These

standards are typically utilized related to the principles in Simple Priority rules. In some

cases, the heuristics may include non-mathematical parts of human insight, for example,

inserting a job in an idle time availability by visual assessment of a schedule[7].

2.5 EVOLUTIONARY ALGORITHMS (EA)

Evolutionary algorithms are generally based on the nature’s principle of evolution and are

classified as genetic algorithms (GA), evolution strategies, genetic programming and

evolutionary programming [1]. These categories are based on population of individuals and

are widely used for problems like production, scheduling, distribution, inventory and

location based problems.

 Evolutionary algorithms is first used for shop scheduling problems in the year 1980.

It was first applied to flow shop [8] and job shop scheduling problems [9]. The components

and structure of genetic algorithm was discussed by Goldberg [10] or Beasley et al.[11].

 Particle Swarm Optimization (PSO) is one of the evolutionary computation, which

is proposed by Kennedy J, Eberhart R C [12]. PSO is popular in solving problems based on

swarm intelligence paradigm. The idea of PSO is inspired from the social psychology and

swarming theory and it simulates the real life swarms like flocks of birds and schools of

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

22

fishes that search for food [13]. PSO evolves solution based on individual and group

experiences, instead of using evolutionary operators like crossover and mutation. The basic

idea is that the algorithm evolves based on the shared information among the population.

 Ant colony algorithm is also based on evolutionary computation which mimics the

pheromone trails used by ants to search food with their medium of communication and

feedback. This algorithm was first proposed by Marco Dorigo in 1992 [14]. This algorithm

uses the concept of pheromone trails to improve the solutions iteratively and similar to PSO,

this algorithm uses shared information through communication and feedback among within

the population and will not use evolutionary operators like Crossover and Mutation.

 Memetic Algorithm is first proposed by Moscato and Norman [15], based on the

individual enhancement of solutions of agent that interrelated to one another under a process

of cooperation and population competition [16]. This algorithm has been widely applied for

knapsack problems, scheduling problems, routing problems and spanning tree and based on

evolutionary operators like crossover and mutation.

 There are also some of the evolutionary programmes and strategies like simulated

annealing [17], tabu search [18]and neural networks [19]. Among these evolutionary

algorithms, Genetic algorithm has been widely used and applied in various fields of

computation right from its discovery. The computation effectiveness and the ability evolve

the solutions makes the genetic algorithm more reliable for the computation of maximization

and minimization problems [20].

 Genetic algorithms are similar to the algorithms researched from the year 1950’s and

became most popular by J.H. Holland in 1975 [21]. Many researchers preferred genetic

algorithm for solving production scheduling related problems. This is proven by the data

obtained from last two decades of researches [1]. This paper also based on the genetic

algorithm and experiments some strategies and discovering the effect on its implementation

and how it improves the solution during the whole computation.

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

23

3. GENETIC ALGORITHM

 One of the widely used evolutionary computing technique is genetic algorithm. It is

based on the Darwinian theory of evolution. This concept imitates the essential aspects of

evolution of the organisms such as gene cross over, mutation, survival of fittest, development

of chromosomes in each generation, etc. Genetic Algorithm is a powerful set of stochastic

global search techniques, which are used to solve wide range of complex problems. The

Genetic Algorithm will be referred as GA in the upcoming review.

 A typical GA starts with the generation of populations of individuals(chromosomes),

generating fitness function which evaluates each individual, selection of individuals,

application of crossover and mutation techniques and finding the best individual through a

number of iterations. The various stages of GA are shown in figure 1,

Figure 1. Evolution model of genetic algorithm [22]

Start

Generation of Initial Population

Fitness Function

Parent Selection

Crossover

Mutation

Stopping

criteria meet?

Stop

Fittest Individual

No

Yes

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

24

3.1 CHROMOSOME REPRESENTATION

 A chromosome is a set of parameters which characterizes a solution for the problem

that the GA is attempting to solve. The population, chromosome and gene are illustrated in

the figure 2. The chromosome can be represented either by direct or indirect methods. Each

chromosome consists of data for each activity or operation which are called as gene. These

solutions or individuals are cumulatively called as population. By traditional methods, the

chromosomes are represented in binary as series of 0s and 1s. The chromosomes can also

have encoded through other possible methods also. In fact, any series or strings that allows

the solution should be represented as a finite length can be used. The chromosome is called

as parent before application of genetic operators and chromosome formed after the

application of genetic operators are called as offspring. The chromosomes are decoded in

two ways, direct and indirect. Direct encoding contains the information of the solution by

itself, but in indirect encoding a set of rules or constructing the solution. The chromosomes

representation is categorized as two ways,

Figure 2. Gene, Chromosome, Population [23]

3.1.1 Binary representation

 In this representation, the genes in the chromosome is represented as 0s and 1s. the

solution is converted in to binary values in order to employ the genetic operators like

crossover and mutation and generate a solution for the problem to be solved. The length of

the chromosome will be depending on the size of the problem given. A typical example for

a binary representation is 10011011 is the binary string for the number 155. Similarly, each

chromosome possesses a certain value which helps to solve the problem.

0 0

0 1

1

1

1 0 1

1 1

1 1

GENE

Chromosome

Population

0 0 0 1 0 0

0 0

0 1

0 0

0 1

0 0 1

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

25

3.1.2 String representation

 This representation is commonly used for order based problems like production

scheduling problem, travelling salesman problem where the problem arises when and where

the schedule should occur and how it should proceed. The representation can be in any form.

It can be a set of alphabets, set of numbers in which each letter or number carries the

necessary data for the solution set. The decoding of the chromosomes should also be

considered for an uncommon chromosome representation. The representation should allow

the algorithm to generate a feasible solution. A typical example of string representation may

be set of permutation numbers (654312987). This representation can be the order in which a

salesman travel around the cities or a job which visits the machines for its operations. Some

of the commonly used representations for JSSP in genetic algorithm are priority-based

representation, job based representation, machine based representation, algorithm based

representation permutation representation, matrix representation[24].

i. Operation based representation

 This representation is also known as permutation with job repetition, in which the

sequence of operations and each gene in the chromosome represents one operation [25]. All

operations of jobs are represented by their respective job number and the number of

occurrence of their job number in the chromosome is the order of the operation to be

scheduled for the respective job number. This interpretation of the order of occurrence in the

chromosome sequence produces a feasible solution.

Figure 3. Operation based representation [25]

 From the figure 3, the chromosome can be encoded as follows, the first operation of

job 2 is scheduled followed by first operation of job 1, then first operation of job 3 and

followed by second operation of job 3 and so on. The occurrence of each job defines the

order of execution of each operation of a job.

ii. Job order based representation

 This is one of the permutation representation, in which the chromosome is set of

multiple string of job order for machines instead of one complete string. The chromosome

id divided in to substrings of machines and each sub string consist of the order in which jobs

are scheduled. This representation are often breaks the technological constraints, which

2 1 3 3 1 1 3 2 2

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

26

results in infeasible solutions. A separate algorithm is required for converting the infeasible

solutions to feasible one.

Figure 4. Job-order representation [28]

 Figure 4, is a typical example of job-order representation, the jobs J1, J2 and J3 are

scheduled in the machine 1 in the sequence order of 2,1,3.

iii. Random key representation

 In this method, the representation [26] is similar to operation based representation,

except that each gene in chromosome is filled with random numbers between 0 and 1. The

random numbers in the chromosomes are then sorted out and the order resulting from the

operation is replaced with the integers (the order). Then each operation in the chromosome

is assigned with an integer value and the resultant string will be in the length of operations.

A scheduling algorithm can also be used to decode the chromosomes or schedule the

operations based on the information in the chromosome.

iv. Machine based representation

 This representation [27] is based on the string of genes with a total length equivalent

to the number of machines. The machine sequence in the chromosome represents the order

in which the machines are scheduled and the bottleneck machines can be identified with

some heuristics like shifting bottle heuristics [28].

Figure 5. Machine based representation[29]

 In figure 5. An example of machine based representation is given, where each

number represents a machine and schedule of those machines is based on the order in which

they are arranged.

v. Priority rule based representation

 It is one of the algorithm based representation, where chromosome is represented as

a string of n-1 entries (R1, R2, …. Rn-1), where n-1 is the number of operation in the problem

instance and R refers to the rule from a set of priority rules which is chosen beforehand. GT

J2 J1 J3 J3 J1 J2 J1 J3 J2

M1 M2 M3

2 1 3 3 1 2 1 3 2

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

27

algorithm is used to solve the conflicts set with the help of rules in the chromosome[30].

This representation is used mostly in solving the job shop scheduling problems.

vi. Preference list-based representation

 In this representation, instead of using a single string for all the operations, a string

of operation for each machine is used. This makes it to be a direct representation of the

processing sequence based on PIAN model [28]. However, this type of representation are

frequently violates the technological constraints and requires additional computation for

repairing the infeasible chromosome.

vii. Matrix representation

 Matrix representation is applied to the job shop scheduling, where the matrix contains

the number of jobs and its sequence within it [31]. This type of representation requires some

additional computation to solve the problem.

3.2 INITIAL POPULATION

 Population is the set of chromosomes or individuals which is a group of solution

which offers the algorithm to search the best solution. Defining initial population is crucial

in genetic algorithm, as the solution will converge to the local optimum if the population

size is small or the solution will converge to the global optimum if the size of population is

bigger, which eventually requires more time for processing. So the right population size

should be defined based on the problem requirement. The initial population are generated

either randomly or using some creation functions. However, the creation functions should

satisfy all bounds and linear constraints. These limitations will help the program to generate

feasible solutions. The encoding method of each individual in the initial population differs

from problem to problem.

3.3 FITNESS FUNCTION

The fitness function is the function that evaluates the chromosome fitness based on the

objective function for its phonotype[32]. The chromosomes in the initial population are first

decoded and then evaluated based on some heuristics function. This fitness function is in

evaluation phase of the genetic algorithm, which not only ensures the fitness of the

chromosome, but also the capacity of the chromosome to produce the feasible solution. The

computation time of the real-life objective function can be very [35]. An intelligent fitness

function, which ensures that if there is a chromosome with same fitness, it will not be tested

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

28

multiple times. Alternate possible approach is that usage of approximation of the fitness

function [33].

An effective and famous method for generating an active feasible schedule for classical job

shop scheduling is Giffler and Thompson (GT) algorithm. Optimal solutions are always

active and for generating active schedules GT algorithm has been used. The GT algorithm

provides the makespan (objective value) value of each chromosome and a small modification

is used to repair the chromosome if it is not feasible.

3.4 SELECTION

 This is the process of choosing chromosomes to produce new offspring from

reproduction. The selection of individuals is carried out in several ways. Many researchers

have framed unique way of selections and few general methods. Here, the commonly used

methods are explained below.

3.4.1 Roulette Wheel Selection(RWS)

 This is a stochastic method involves in proportionate selection as it selects the

chromosome or individuals based on probability rate using the basic roulette-wheel

procedure. In roulette-wheel, a ball is thrown in to a wheel of numbers and the ball acts as a

pointer. Each time the ball settles in the wheel when the wheel stops. The number where the

ball settles is the selected one. The same procedure is followed in selecting the parents from

the population [33]. The probability of selection is aligned with the fitness, where there is a

chance of reproducing the same individual with the low. This selection method will not

produce population with the best fitness but also individuals with worst fitness as the

selection is based on the probability. This ensures that the population will always have mixed

individuals and finding the optimum solution.

 All individuals in the population are placed on the roulette wheel based on their

fitness value and each one is assembled in the roulette wheel. Each segment of the roulette

wheel is distributed based on the fitness value of the chromosomes. If the probability value

of the individual is bigger, then it will occupy a big space in the wheel and if it is small then

it will occupy only a small space and has less probability of getting selected. The individuals

responsible for the segment is selected after the wheel stops. The same process is repeated

for the desired number of parents to be in the mating pool. By this method, there is no

guarantee that the good individuals with good fitness will be selected in the mating pool.

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

29

There is also a probability in which the best individual can also be missed from the

population.

Figure 6. Roulette wheel fitness distribution [34]

 The roulette wheel algorithm can be explained as follow; The expected number of

individuals in the mating pool should be determined as the initial step. Then the probability

value of each individual is computed by dividing each individual’s fitness value with the

sum of all individual’s fitness value in the population. For minimization problems, the

minimum fitness value is divided with the fitness of each individual and this whole value is

divided with sum of all minimum fitness value divided by the individual fitness value. The

probability of selection 𝑷𝑺 can be expressed mathematically by (1),

 𝑷𝑺 =

𝐦𝐢𝐧(𝒇(𝒙))

𝒇(𝒙)

𝒔𝒖𝒎(
𝐦𝐢𝐧(𝒇(𝒙))

𝒇(𝒙)
)
 (1)

Where, 𝑷𝑺 = Probability of selection,

 𝒇(𝒙) = makespan (Objective function).

Then, the cumulative probability is computed by adding the probability of an individual with

the partial total value of the probability of previous individuals. After that, a random number

between the interval 0 and 1. A loop will execute continuously until it finds the cumulative

probability number equal to the random number. The index of that individual is selected and

the individual is added to the mating pool for the reproduction. This process runs repeatedly

up to the number of expected count of the population.

3.4.2 Tournament selection

 In this method, the individuals are not selected based on their fitness values. The

individuals are selected randomly i.e., two individuals are selected randomly from the

Weakest individual

has small share of

roulette-wheel

Fittest individual

has more share of

roulette-wheel

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

30

population and their fitness value is evaluated and the individual with the best fitness is

added to the mating pool. The process will be repeated to desired number of times to get the

required population in the mating pool. This method of selection is very time-efficient than

some other methods. Also, there is a less chance of strong individuals to get selected as the

selection is random[33]. A selection mechanism in GA’s is the process of selecting the better

individuals in the population which favours the mating pool to be filled with good

individuals, as the genes in the individual are inherited by the next generation[35].

Figure 7. Tournament selection [37]

 The figure 7 illustrates the tournament selection for the minimization problems and

the fittest individual may be changed for the maximization problems, as the fitness value

might be taken as bigger value. For problems like job shop scheduling the selection is usually

based on the smallest fitness value, as it deals with the optimization of makespan as one of

its objective criteria.

3.4.3 Rank selection

 This selection method is simple and requires few steps to select the individual from

the population. The individuals in the population are assigned with a number based on their

fitness value. Then, the individuals are sorted in ascending or descending order based upon

the requirement of the problem to be solved. After that, the top most individual is selected

and included in the mating pool for reproduction. The numbering or scaling of each

individual in the population can be done by using the linear fitness scaling, Boltzmann fitness

scaling, sigma scaling, linear rank scaling, non-linear scaling, transform ranking [33]. This

method allows the algorithm to explore the whole search space which prevents the premature

convergence.

64

78

54

98

60

54

60
54

Fitness value of each

individual in the

population

Two random

individuals

selected

Fittest

Individual

selected

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

31

3.5 CROSSOVER

 Crossover is the process of producing new chromosome or individual in the hope of

finding a better individual than the existing individual. From the perspective of optimization,

crossover helps to exploit the search by recombination of genes in the individuals. Crossover

method can differ in the way that they traverse the search space. The parameter PC denotes

crossover rate, which gives the probability for the application of crossover function to the

generated offspring from the parents selected. Most papers, recommends to use PC ≥ 0.6.

The classical crossover operators like one-point, two-point and uniform crossover can be

used for the binary represented chromosomes. Application of these crossover methods to the

non-binary or permutation representation may result in infeasible solutions or offspring. So,

for such kind of representation operators like PMX (Partial Mapping Crossover), JOX (Job

Order Crossover), OX (Order based Crossover), LOX (Linear Order Crossover), CX (Cycle

crossover), OBX (Order based Crossover), PBX (Position based crossover) operator[1].

Almost every operator follows the principle of two-point crossover, the only criteria differs

in each operator was the heuristics used to produce a feasible offspring after application.

Some operators used in production scheduling are explained as follows.

3.5.1 One-point crossover

 This method is one of most commonly used crossover method, in which two parents

are selected from the mating pool and parts of each parent is exchanged and new offspring

produced. The process starts with randomly locating a gene in the parent individuals which

is called as “cross over point”. The part from start to the cross over point is taken from the

parent 1 and from cross over point to the end is taken from the parent 2 and merged to form

a new offspring (child 1). Similarly, the left over parts of each parents are merged to form

second offspring (child 2). Thus, two offspring can be produced by mixing two parents. This

method has some limitations, if the individual has a bigger defined length then the individual

might get damaged with one-point crossover. In order to manage this situation, two-point

crossover can be used for individuals with long defining length. An illustration of one-point

crossover on individuals with binary representation is shown in figure 8.

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

32

Figure 8. One-point crossover[36]

3.5.2 Two-point crossover

 The working principle is same as the on-point crossover for this method. The only

difference is that this method has two points to cut the parents and interchanged to form

children. The bits or genes in between two points are taken from one parent and remaining

genes are taken from the other parent. This operator is used for individuals with high

definitive length. An illustration of two-point crossover on individuals with binary

representation is shown in figure 9.

Figure 9. Two-point crossover [1]

3.5.3 Uniform crossover

 In this operator, the offspring are produced with the help randomly generated

sequence, which consist of numbers 0s and 1s. This sequence is called as bit mask [1]. The

principle of this operator is that the genes from one parent is selected if the corresponding

number in the bit mask is 0, if there is different number (1) then the gene from the other

parent is taken and a new offspring is produced. For child 2, the same procedure is followed

where the genes from one parent is taken if the corresponding number is 1 and if it is 0 then

the gene from other parent is taken and forms the child 2. This principle is shown with an

illustrative example through binary represented chromosomes in figure 10.

Parent 1

Parent 2

Child 1

Child 2

1 0 0 1 1 0 0 1

1 1 1 0 0 0 1 1

1 0 0 1 0 0 1 1

1 1 1 0 1 0 0 1

Parent 1

Parent 2

Child 1

Child 2

1 0 0 1 1 0 0 1

1 1 1 0 0 0 1 1

1 0 0 1 0 0 1 1

1 1 1 0 1 0 0 1

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

33

Figure 10. Uniform crossover [1]

3.5.4 Partial mapping crossover

 The PMX operator is based on the two-point crossover principle, where the

chromosome is divided with two cut points and the genes between them are interchanged

among the selected parents from the mating pool. The genes between the two cut points from

the first parent is replaced with the genes between the two points of second parent. This will

result in an infeasible child and this child should be repaired to get the feasible outcome.

This operator stores the position of the genes between the points and will use those positions

to repair the child. The crossover operation and the repairing by the PMX operator can be

shown in the figure 11. In the shown illustration, the genes with number 4 and 6 are repeated

in the proto child and hence the gene are mapped to their respective numbers. The gene with

number 4 is mapped to 7 and 7 mapped to 2, so the gene with number 4 is replaced with 2

and similarly, the gene with number 6 mapped to 1, so it is replaced with 1 [1]. Thus, the

child becomes feasible.

Figure 11. Partial mapping crossover [8]

Parent 1

Parent 2

Child 1

Child 2

1 0 0 1 1 0 0 1

1 1 1 0 0 0 1 1

1 0 1 1 0 0 1 1

1 0 0 1 1 0 0 1

Bit mask 0 0 1 0 1 0 1 1

Parent 1

Parent 2

Proto Child

Child

3 1 4 6 7 5 2 9

3 4 7 1 2 9 6 8

3 4 4 6 7 9 6 8

3 2 4 6 7 9 1 8

8

5

5

5

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

34

3.5.5 Order crossover

 The order crossover is first designed for the Travelling salesman problem, in which

two cut points are located randomly and the genes between the cut points are chosen from

the first parent and the remaining gene with indices not equal to the selected genes between

the two cut points are taken from the second parent and filled in to the child in a relative

order, starting from the last gene of the genes taken from the first parent [1]. A typical

example of this principle is shown in figure 12.

Figure 12. Order crossover [20]

 The genes 3,4 and 5 with indices 4,6 and 7 present between the two cut points in the

parent 1 is first extracted and filled the child. The next step is that filling the remaining gene

position of child with the gene indices not equal to the indices 4, 6 and 7. The genes are filled

in the relative order of the parent 2 and the filling starts from the last gene index 7. The

remaining gene are filled in the order 1,2,9,8,5,3.

3.5.6 Job order crossover

 This is one of the operator used for chromosomes with permutation representation.

In this operator, the principle is based on randomly selecting a job number and taking all the

genes with the same job number from the first parent along with their position and filling the

child chromosome. The remaining genes with other jobs are taken from the second parent

and the child is filled with these genes with the order in their parent. Similarly, the same

randomly selected job is taken the parent and the process carried for forming the child 1 is

followed to form child 2. The crossover mechanism of job order can be shown in the figure

13.

Parent 1

Parent 2

 Child

3 1 4 6 7 5 2 9

3 4 7 1 2 9 6 8

1 2 4 6 7 9 8 5

8

5

3

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

35

Figure 13. Job order crossover [37]

 From the illustration, the randomly selected job number is 2 and was taken from the

parent 1 and filled in the same position in the child 1. Then, the remaining gene not equal to

the selected job number are taken from the parent 2 and filled the child with the relative

order from the parent 2. Likewise, the child 2 also formed by taking the gene with selected

job number from parent 2 and remaining genes are taken from the parent 1.

3.6 MUTATION

 Mutation is the process of inducing extra variability to the individuals in the

population, which prevents the premature convergence. This mutation disturbs the solution

by altering the genes in the chromosome or individual. The children produced from the

crossing operation might be subjected to the mutation operation if it is associated with the

mutation probability. The mutation probability is usually ranges between 0 and 1. There will

a designated parameter at the start of the algorithm and this mutation probability is compared

to the designated parameter and if the mutation probability is less than the parameter, then

the mutation takes place in that child. After the mutation operation, the offspring produced

form the mutation is added to the population[16].

 For Mutation operator, three main requirements exist. The first condition is that each

point in the individual must be reachable from an arbitrary point. Not every mutation

operator has this guarantee this condition of reachability. For instance, there might be

difficulties in decoding approaches covering the overall solution space. The second

requirement for the good design of mutation operator is unbiasedness. The mutation operator

does not cause a search drift to a specific path, at least in spaces with no plateaus in

unconstrained solution. In constrained solution spaces bias can be advantageous. The third

principle requirement of mutation operator is the scalability. Every mutation operator should

Parent 1

Parent 2

Child 1

Child 2

3 1 2 2 1 1 3 2

1 3 3 1 2 1 3 2

1 3 2 2 3 1 1 2

3 1 1 1 2 3 3 2

3

2

3

2

Randomly selected job = 2

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

36

provide the degree of freedom for a adaptable strength [36]. This adaptable strength is

usually possible for mutation operator based on probability distribution.

3.6.1 Bit flip mutation

 This is the simple mutation operator which is applied to the individuals with binary

representation. This operator works based on selecting a random bit from the individual and

inverse the number in that bit. That is the number is flipped. For example, if there 0 in that

bit, then it will be flipped to 1 and the individual mutated to a new child. An illustrative

example is shown in figure 14.

Figure 14. Bit flip mutation [26]

 The bit in the position 5 has a binary value is chosen randomly and the value is

flipped to 0 in order to mutate the parent to form a new child. This is a simple mutation

operation in the genetic algorithm.

3.6.2 Swap mutation

 In this mutation, two positions on the individual is selected randomly and then the

number in that bit is swapped between the two positions of the individual. This type of

operator is common in permutation based representations. A typical example of this mutation

operator is shown in the figure 15.

 The positions 2 and 6 are selected randomly and the numbers in the genes of the

individual is interchanged. That is, the number 8 in the bit 6 is interchanged with the number

1 in the bit 2 and this number 1 is interchanged to the bit 6 and the changes are highlighted

and shown in the example.

Figure 15. Swap mutation [38]

 Parent

 Child

0 1 0 0 1 1 0 1

0 1 0 0 0 1 0 1

1

1

 Parent

 Child

2 1 4 6 3 8 7 9

2 8 4 6 3 1 7 9

5

1

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

37

3.6.3 Inversion mutation

 This mutation operator deals with the inversion of a subset within the chromosome

to create a new child from the selected parent for the mutation operation. A subset of

chromosome is selected either randomly or with some heuristics and then rearrange the genes

in the subset in the reverse order [33]. The original order of the genes in the subset is reversed

to form the child. An example of this mutation operator is shown in figure 16.

Figure 16. Inversion mutation [2]

 The figure 17 shows the working of the inversion mutation, the subset of genes with

numbers 1,4,6,3,8 are inversed in the order 8,3,6,4,1 and highlighted in the illustration. This

mutation can be applied for individuals with large definitive length, which enables those

individuals to prevent premature convergence.

3.6.4 Scramble mutation

 This mutation follows the same principle of the inversion mutation, in which a subset

of genes is selected from the individual. Instead of inversing the order of those genes in the

subset, the genes are shuffled or scrambled [33]. So that the individual will create a child

with different order of genes in the chromosome. Similar to the inversion mutation operator,

this operator can also be applied for the large chromosomes and chromosomes with the

permutation representation. Most of the chromosomes with the permutation representation

uses the scramble mutation operator and known as a widely used mutation operator among

them.

3.6.5 Shift mutation

 The mutation is carried out by randomly selecting a gene in the chromosome and a

random position is selected. The chosen random gene is inserted in the random position and

rest of the genes in the chromosome is shifted towards right or left [7]. This mutation is also

called as insert mutation. The shifting of genes within the chromosome impacts a great

change in the chromosome.

 Parent

 Child

2 1 4 6 3 8 7 9

2 8 3 6 4 1 7 9

5

1

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

38

3.7 REPLACEMENT SCHEME

 The last step in the process of breeding in every genetic algorithm is the replacement

of the new offspring to the current population. This replacement is carried through various

methods and techniques. The decision of choosing the individuals to remain and the

individuals to get replaced or deleted from the current population is made with the help of

these replacement techniques. This scheme is classified in two major categories, (1)

Generational replacement, (2) Steady state replacement.

3.7.1 Generational replacement

 In generational replacement or full replacement, the entire population of individuals

is replaced at each generation. This means, the new offspring population generated at each

generation will proceed forward to the next generation by replacing all the individuals or

chromosomes in the current generation. Generational replacement is classified into two

derived forms. (μ+λ) replacement and (μ, λ) replacement[39], where μ is the current

population and λ is the newly generated population.

i. (μ+λ) Replacement

 In this strategy, both offspring and parent population are grouped into one

population. Both the population of parents and children compete for the survival. After

combining both population, they are sorted based on their fitness value. After sorting the set

of best chromosomes equivalent to the population size are selected to proceed for the next

generation of population.

ii. (μ, λ) Replacement

 In this replacement strategy, the offspring generated may be far greater than the

number of parents. The children created in each generation are ranked based on their fitness

value and best children or offspring are selected to replace the individuals in the current

population. Unlike μ+λ replacement strategy, the offspring generated is only being used to

replace the parent population.

3.7.2 Steady state replacement

 Steady State Replacement involves in overlapping strategy in which a small fraction

of individuals from the offspring population is selected and replace the current population

during each iteration. The new individuals from offspring population are inserted in to the

current population as soon as they created. The advantage of this strategy is that best fit

offspring can participate in the genetic operations in each iteration within generation, instead

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

39

of waiting for a generation to complete. The worst individual from the current population is

replaced with the best fit offspring from each iteration.

 Whitley, proposed GENITOR concept, in which the worst individuals from the

parent or current population were replaced deterministically during each iteration. This

makes rapid improvements in the mean value of population fitness. On the other hand, in

some cases, it may lead to premature convergence due to its focus on individuals with best

fitness.

 The steady state replacement uses different strategies for replacing the individuals,

 Replace worst

 Replace random

 Replace Parent

 Replace most similar(crowding)

 Replace weak parent.

i. Replace worst

 This strategy is the most common and one of the elitist scheme of replacing the

individuals in the current population. The worst individual is replaced with the individual

with the best fitness value at each iteration after the application of reproduction and mutation

operators. This is one of the effective optimizing strategy for finding the optimum solution

quickly.

ii. Replace random

 In this strategy, random individuals from the current population is selected and

replaced with children produced from each iteration. The parents of the children are also

included as candidates for the selection of random individual, which may lead to introduce

weak offspring to the population. The disadvantage of this strategy is that, the probability of

replacing the best individual in current population is quite high and there is a risk of replacing

the solution that can produce optimum results.

iii. Replace parent

 In Replace parent strategy, the parents involved in the crossover and mutation is

replaced with the offspring they produced. This may result in losing best individuals in

population during every iteration of each generation. There is also a chance of replacing

almost every individual in the current population.

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

40

iv. Replace most similar (Crowding)

 This technique involves, replacing the individuals with similar fitness value. The

offspring produced is kept, one offspring is first compared with the current population and

replace the individual which is most similar and the same principle is followed by the other

offspring produced. There is minor possibility for the second offspring to replace the first

offspring from the population.

v. Replace weak parent

 After the operations of crossover and mutation, the best individual either parents or

offspring is selected and replace the worst parent of offspring. The offspring produced and

parents involved in genetic operation is compared among themselves and evaluated. Based

on their fitness value, the population gets replaced. Either one parent and one child get

replace or both parents gets replaced or it can delete both children and the parents will remain

in the population

vi. Correlative family based replacement

 Among four individuals (parents and children), the best single individual is selected

as first survivor and the second individual is selected from the remaining individuals which

has the highest distance from the best individual

vii. Other related strategies

Replace random n individuals – In this method, n individuals chosen arbitrarily from the

current population and replace by n best individuals from the new generation of offspring.

This kind of strategy corresponds to generational replacement scheme as the replacement is

done for every generation and not for each iteration in a generation.

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

41

3.8 TERMINATION CRITERIA

 In Genetic Algorithm, it is practically difficult to set a stopping criteria if the exact

optimum is unknown or how long the algorithm should run to get the required solution or

on which generation the optimum will be found. If the optimum value is known, then the

termination rule can be made and the algorithm can be stopped at a generation where it finds

the optimum value. This helps the GA to prevent wasting time in searching the whole

generations. But, the goal of any GA is to determine the optimum value and so the

termination criteria are most probably set based on assumptions and experimentations. It will

require to run the program to certain number of times in order to figure out the good

termination criteria.

 Some GAs follows time depending terminations, in which the algorithm stops if it

reached a certain value of time. For example, if the termination criteria are 15 minutes, then

the algorithm stops when the time reaches 15 minutes.

 In most GAs, the stopping criteria is usually the number of generations, which is

assigned during the initial process of the GA. The algorithm will run until the number of

defined generation and stops.

 Also, the algorithm can be set to terminate if the solution does not improve for over

a predefined generation. Some algorithms can also have a termination if the best and worst

value from the generation becomes same. If both worst and best is same then there is no need

of optimization.

 In some GAs, there is a criterion in which it checks the worst and best solution from

the generation and if both are same, then the program will be terminated. Since, there is no

need for optimization if the best and worst solution in a generation is same, as the population

is converged to one solution.

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

42

4. EXPERIMENT WITH GENETIC ALGORITHM

 This chapter deals with creation active schedule by Giffler and Thompson algorithm

and simple genetic algorithm based on the desired parameters and operators that are widely

used. An experiment based on the replacement strategy used in genetic algorithm is

conducted and a new replacement strategy is proposed and analysed with the simple genetic

algorithm.

4.1 GIFFLER & THOMPSON ACTIVE SCHEDULE

 The basic structure, limitation and parameters are explained in the section 2.3.1. The

exact same approach is followed to generate an active schedule using various dispatching

rules. The dispatching rules used in this thesis are as follows:

 SPT – Shortest Processing Time

 LPT – Longest Processing Time

 MTTR – Most Total Time Remaining

 LTTR – Least Total Time Remaining

 MRPT – Most Remaining Processing Time

 LRPT – Least Remaining Processing Time

 FIFO – First In First Out

 LIFO – Last In First Out

 FIFO+SPT – First In First Out + Shortest Processing Time

 LIFO+SPT – Last In First Out + Shortest Processing Time

 MWKR+SPT – Most Work Remaining + Shortest Processing Time

 LWKR+SPT – Least Work Remaining + Shortest Processing Time

 Random rule

 The Problem sets used to test the algorithm are Fisher and Thompson (FT06, FT10,

FT20) and Lawrence (LA01 to LA25, LA27, LA30, LA40). The results are tabulated in table

1 and the results are then compared with the simple genetic algorithm. From the table 1, the

objective function f(x) – makespan varies for each dispatching rule and among those set of

rules only one rule gives better results when compared to the other rules. MTTR (Most Total

Time Remaining) rule can able to provide the best makespan value for most of the problem

than other dispatching rules. Some SPT, LRPT, FIFO+SPT and MWKR+SPT are considered

to be the worst as these cannot able to give best makespan value for not even a single problem

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

43

among the set. The best makespan doesn’t mean that it is the optimum, but the minimum

that the algorithm can provide based on the dispatching rules.

Table 1. Results of active schedule based on dispatching rules

 The minimum value of the makespan (total completion time) for each problem

instance is highlighted in the table with bold and green colour. The MTTR dispatching rule

is the best among the 12 dispatching rule used in this paper.

Avg Best

FT06 55 94 86 58 92 67 92 84 74 80 82 94 86 75 62

FT10 930 1429 1355 1191 1498 1203 1449 1235 1450 1255 1274 1429 1355 1348 1201

FT20 1165 1675 1661 1594 1658 1604 1653 1520 1462 1569 1699 1675 1661 1602 1437

LA01 666 1185 927 784 1161 784 1161 866 865 1101 1004 1185 927 963 829

LA02 655 1055 1025 852 1063 879 1063 840 863 937 910 1055 1025 902 835

LA03 597 795 894 713 955 847 955 978 871 715 796 795 894 858 796

LA04 590 842 899 817 963 834 828 922 857 866 770 842 899 881 767

LA05 593 977 720 621 936 621 936 809 932 808 887 977 720 734 664

LA06 926 1439 1142 930 1612 985 1612 1169 1156 1515 1116 1439 1142 1092 981

LA07 890 1242 1299 1031 1290 1103 1265 1093 1213 1120 1220 1242 1299 1151 1061

LA08 863 1318 1146 1109 1474 1109 1474 1007 1219 1099 1176 1318 1146 1080 993

LA09 951 1287 1214 1021 1566 1105 1591 1065 1313 1262 1228 1287 1214 1191 1067

LA10 958 1604 1129 1052 1561 1030 1412 1280 1407 1438 1330 1604 1129 1117 1020

LA11 1222 1785 1523 1274 1838 1290 1695 1620 1507 1628 1452 1785 1523 1405 1307

LA12 1039 1545 1279 1167 1635 1217 1586 1287 1482 1504 1393 1545 1279 1260 1131

LA13 1150 1595 1420 1201 1614 1261 1619 1423 1358 1436 1673 1595 1420 1375 1272

LA14 1292 1721 1567 1292 2051 1292 2035 1443 1519 1787 1674 1721 1567 1428 1292

LA15 1207 1793 1612 1415 1841 1483 1814 1426 1427 1645 1483 1793 1612 1545 1418

LA16 945 1464 1336 1219 1416 1207 1540 1325 1440 1337 1344 1464 1336 1358 1214

LA17 784 1128 1122 914 1340 930 1340 1069 1363 966 1262 1128 1122 1168 1028

LA18 848 1250 1542 1039 1615 1087 1607 1243 1397 1055 1259 1250 1542 1228 1137

LA19 842 1286 1120 1123 1309 1244 1260 1144 1309 1278 1277 1286 1120 1166 1059

LA20 902 1436 1250 1076 1437 1230 1437 1150 1248 1289 1171 1436 1250 1256 1147

LA21 1046 1657 1560 1314 1828 1422 1861 1521 1539 1447 1775 1657 1560 1507 1387

LA22 927 1659 1485 1135 1834 1203 1780 1423 1597 1602 1515 1659 1485 1412 1269

LA23 1032 1786 1521 1223 1947 1322 1898 1450 1601 1457 1610 1786 1521 1408 1311

LA24 935 1692 1469 1231 1821 1165 1640 1505 1499 1396 1383 1692 1469 1390 1200

LA25 977 1768 1459 1206 1790 1346 1731 1440 1570 1387 1544 1768 1459 1473 1344

LA27 1235 2201 1737 1567 2282 1709 2119 1783 2026 1781 1970 2201 1737 1786 1632

LA30 1355 2194 1871 1565 2354 1650 2403 2192 2054 1786 1951 2194 1871 1896 1761

LA40 1222 1804 1914 1549 2306 1721 2077 1850 1891 1794 1927 1804 1914 1797 1692

Random
Problem Optimum SPT LPT MTTR LTTR MRPT LRPT FIFO LIFO

FIFO

+SPT

LIFO+

SPT

MWKR

+SPT

LWKR

+SPT

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

44

4.2 SIMPLE GENETIC ALGORITHM

 The framework of SGA used in this paper for the development is given in the figure

18.

 Figure 17. SGA pseudocode [40]

 The algorithm is created to test two type of chromosome representation and their

influence in the results of optimization. Operation order based representation and Job order

based representation are used in SGAs. For Selection, Roulette wheel selection (RWS) is

used for the selection of parents for reproduction process. For both representations, Job

order crossover and Insert mutation operator is employed. This SGA is based on the

generational replacement, in which best children are replaced in each generation. The

replacement is carried out either by replacing some of the worst individuals in the parent

population or the whole population is replaced. Here, the population of individual is replaced

with best children with half the size of the Population.

 Initialization of Population

 Evaluation of Individuals in Population

 While (Termination criteria not met) do

 Individual Selection: Select parents (individuals) from Population

 Crossover : Perform crossover for the selected parents

 Mutation : Perform mutation for children produced by crossover

 Evaluation : Evaluate the children after Mutation

 Replacement : Replace the parents in Population with best children

 Go to step 4 until Termination criteria met

 end while

 return the best individual found during the generations.

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

45

4.2.1 SGA parameters value

Population: The number of individuals in the population (Pop_num) is defined with 2N,

where N is the number of operations. So, the population will be 2 times the number of

operations.

Maximum generation: 1500

Chromosome representation: Job order based representation and Operation based

representation is used to define the individuals (chromosomes) in the population.

Fitness function: Giffler & Thompson algorithm is used to calculate the fitness function

and repair the infeasible solutions.

Selection: Roulette Wheel Selection is used to select the individuals in to the mating pool

for both type of representation The size of mating pool is half the size of population

(Pop_num/2).

Crossover: Job Order Crossover (JOX) is used for both type of chromosome representations

with crossover probability (Pxo) 0.5. So, half of the genes in the individual are subjected to

the crossover operation.

Mutation: Shift Mutation is used for both type of chromosome and probability is not used

and only one gene is subjected to mutation and every individual are subjected to mutation

operation.

Replacement: Generational replacement

Termination: Algorithm terminates if there is no improvement in the solution for a count

up to 200.

4.2.2 Results of SGA with job order & operation based representation

 The table 2 shows the results of the Simple Genetic Algorithm (SGA) based on job

order representation and the table 3 shows the results obtained from the SGA based on the

operation based representation. Both SGAs gives the optimum makespan value (objective

function) for some problem instance (bold value at table 2 and 3). When comparing both the

table 2 and table 3, SGA based on the job order representation is better in producing the best

makespan value for the Lawrence problem instances and SGA with operation based

representation is better in producing best makespan value for the Fisher and Thompson

problem instances.

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

46

Table 2. Result of SGAJO

Problem Optimum
Best
f(x)

Avg.
f(x)

Worst
f(x)

Deviation

Avg.
Dist.
from
optimum

Avg.
Opt
time in
sec

Avg. gen
taken to
find

FT06 55 55 55 66 0.00 0.00% 17.2 236

FT10 930 1042 1054.5 1230 35.42 13.39% 141.71 625

FT20 1165 1315 1337.6 1529 47.43 14.82% 154.45 762

LA01 666 666 666.2 811 0.00 0.03% 35.21 609

LA02 655 668 693.8 839 4.11 5.92% 35.25 863

LA03 597 637 646.5 802 12.65 8.29% 35.23 759

LA04 590 598 614.5 763 2.53 4.15% 36.86 951

LA05 593 593 593 639 0.00 0.00% 36.85 6

LA06 926 926 926 1012 0.00 0.00% 85.35 21

LA07 890 915 925.3 1066 7.91 3.97% 84.2 601

LA08 863 863 867.3 1004 0.00 0.50% 86.28 867

LA09 951 951 951 1052 0.00 0.00% 86.38 43

LA10 958 958 958 1040 0.00 0.00% 87.26 9

LA11 1222 1222 1222 1306 0.00 0.00% 161.31 28

LA12 1039 1039 1039 1140 0.00 0.00% 161.96 65

LA13 1150 1150 1150 1239 0.00 0.00% 156.76 210

LA14

1292 1292 1292 1305 0.00 0.00% 21.31 1

LA15 1207 1269 1276.8 1432 19.61 5.78% 156.66 702

LA16 945 985 998.5 1156 12.65 5.66% 127.46 1028

LA17 784 803 815.9 957 6.01 4.07% 127.35 930.8

LA18 848 888 907.7 1052 12.65 7.04% 127.38 473

LA19 842 869 888.3 1031 8.54 5.50% 129.58 1104

LA20 902 933 953.7 1160 9.80 5.73% 124.14 895

LA21 1046 1177 1201.2 1356 41.43 14.04% 318.39 551

LA22 927 1073 1087.6 1265 46.17 17.32% 307.54 679

LA23 1032 1079 1098.5 1282 14.86 6.44% 307.72 796

LA24 935 1059 1066.7 1236 39.21 14.09% 309.84 699

LA25 977 1105 1125.2 1277 40.48 15.17% 313.73 798

LA27 1235 1439 1451.7 1607 64.51 17.55% 603.55 695

LA30 1355 1456 1502.9 1674 31.94 10.92% 599.9 1043

LA40 1222 1374 1381.1 1566 48.07 13.02% 672.64 813

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

47

Table 3. Result of SGAOB

Problem Optimum
Best
f(x)

Avg.
f(x)

Worst
f(x)

Deviation

Avg.
Dist.
from
optimum

Avg.
Opt
time in
sec

Avg. gen
taken to
find

FT06 55 55 55.6 68 0.00 1.09% 19.38 77

FT10 930 1038 1051.1 1230 34.15 13.02% 179.47 665

FT20 1165 1303 1319.5 1500 43.64 13.26% 180.01 1110

LA01 666 666 671 821 0.00 0.75% 41.8 444

LA02 655 684 703.3 865 9.17 7.37% 39.18 843.3

LA03 597 625 640.4 800 8.85 7.27% 39.09 962.5

LA04 590 603 622.3 764 4.11 5.47% 39.91 538

LA05 593 593 593 639 0.00 0.00% 41.01 2

LA06 926 926 926 1015 0.00 0.00% 99.41 7

LA07 890 894 916.4 1068 1.26 2.97% 95.705 751

LA08 863 863 867.1 1004 0.00 0.48% 99.15 485

LA09 951 951 951 1061 0.00 0.00% 98.65 37

LA10 958 958 958 1038 0.00 0.00% 98.575 3

LA11 1222 1222 1222 1298 0.00 0.00% 187.11 16

LA12 1039 1039 1039 1136 0.00 0.00% 185.28 27

LA13 1150 1150 1150 1241 0.00 0.00% 199.48 100

LA14 1292 1292 1292 1293 0.00 0.00% 29.89 1

LA15 1207 1244 1256.4 1433 11.70 4.09% 195.45 868

LA16 945 979 1008.3 1164 10.75 6.70% 185.94 766

LA17 784 812 831 961 8.85 5.99% 176.74 552

LA18 848 885 910.5 1061 11.70 7.37% 189.15 627

LA19 842 882 900.6 1041 12.65 6.96% 173.85 661

LA20 902 959 968 1147 18.02 7.32% 188.05 685

LA21 1046 1197 1214.7 1366 47.75 16.13% 475.311 752

LA22 927 1065 1084.3 1265 43.64 16.97% 463.62 988

LA23 1032 1106 1123.9 1278 23.40 8.91% 445.74 1084

LA24 935 1074 1089.9 1242 43.96 16.57% 454.56 1023

LA25 977 1118 1133.8 1290 44.59 16.05% 451.13 907

LA27 1235 1441 1452.9 1621 65.14 17.64% 856.14 804

LA30 1355 1470 1504.7 1677 36.37 11.05% 852.72 853

LA40 1222 1385 1407.8 1575 51.55 15.20% 1087.82 929

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

48

4.3 PROPOSED STRATEGY

 The problem with the evolution algorithm is that there is a chance of solution to get

stuck in the local optimum, in order to preserve diversity, various methods are formulated

by the researchers. This process of preserving the diversity is highly depending on the

replacement method used in the algorithm.

4.3.1 Motivation and basic idea of proposed algorithm

 Most of the GAs are dealt with either generational or steady state replacements

strategies. In steady state replacement the children formed by crossover is evaluated and

replaced immediately in to the parent population. Likewise, after the application mutation,

the technique of evaluating the children and replacing in the population is done. The iteration

is carried out after every individual in the population are subjected to crossover and mutation.

Whereas in generational replacements, the individuals are subjected to crossover and

mutation and evaluated after every individual reproduced. After the evaluation, the children

population replace the parent population completely. This concept is combining both the

steady state and generational replacement in order to infuse a new replacement strategy. The

concept is that, evaluating each child right after its reproduction in each genetic operation

(crossover and mutation). The best individual is carried out to the generational replacement

after the reproduction of every individual in the population. The generational replacement is

carried out along with the elitist strategy to preserve the best individual from each generation.

 There is also a concept of using the individuals that are not selected during the

evaluation. The rejected individuals are used to introduce the diversity to the population

based on criteria of uniqueness. A parameter will be used to measure the uniqueness of each

individual in the population in other words, it will find the individuals with the same fitness

value. The introduction of individuals from the rejected population to the population is

performed if the uniqueness value reduces below a defined threshold value. This concept is

applied to the SGA for both job order based and operation with job repetition representations.

 The SGA is modified to implement the combined GSGA (Generational Simple

Genetic Algorithm) and SSGA (Steady State Genetic Algorithm) reusable replacement

strategy of replacement and the modification is carried out in function of crossover, function

of mutation and in the replacement function. The evaluation of the individuals is done in

each function in order to evaluate and sort the individuals for the next step and the

replacement is done as a final step in each generation after evaluating the necessary

parameters. The evaluation and selected right after crossover and mutation is inspired from

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

49

SSGA and replacing procedure is inspired rom GSGA. The individuals will not be replaced

immediately in the population like SSGA, only the evaluation and selection is done based

on it.

4.3.2 Parameters in Reusable Replacement Strategy (RRS)

 Some parameters have been set and used to implement this strategy and the

parameters are explained with its function.

i. Rejected population

 This is a set of individuals that are not succeeded in the selection process after the

reproduction process of crossover and mutation. This is a simple concept of utilizing the

individuals that are close to the best individuals and giving a second chance to evolve better.

It can eliminate the introduction of new individuals which probably reflect the same fitness

values and may be better but this concept motivates to recycle the available resources than

to create new individuals. The individuals in rejected population are sorted in ascending

order before subjected to the replacement process to ensure the best from rejected are used

in place of similar individuals in the existing population. The size of the rejected population

is same as the size of the population of individuals after crossover and mutation. In this

strategy the size of rejected population will be double the size of mating pool population and

this size is reduced by sorting the unique individuals and with respect to the best fitness

value. By this process the computational space and memory is save to improve the

performance of the algorithm.

ii. Uniqueness parameter

 This parameter is used to verify whether the individuals in the population becomes

similar. A desired value is set (ideally 20% of the total population) and there should be at

least 20% of unique individuals in the population. For example, if we have population of

100 and its 20% percentage is 20, if the individuals with same fitness value that exceed the

count 20 then 19 individuals from the 20 is get replaced with the individuals from the rejected

population. Leaving one individual helps to keep the individual which may have the best

fitness. Having a population filled with unique individuals is not possible and it will not

allow the GA to converge. It works as, if the number of similar individuals increases and

exceeds the uniqueness threshold value, then the replacement of similar individuals with the

individuals from the rejected population is performed.

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

50

iii. Unique count

 Unique count calculates the number of unique individuals and evaluates each unique

individual with the uniqueness parameter and determines whether to subject the non-unique

individuals for the replacement process or proceed with the simple generational replacement

with elitism. It counts the number of similar individuals, considering the above example with

population 100, if the count exceeds 20 new replacement strategy occurs else the

generational replacement will occur. This parameter will simply count individuals based on

uniqueness parameter.

iv. Number of generational replacement

 A parameter used to define the number of individuals is replaced in the population

after each generation to proceed to the next generation. In this strategy the generational

replacement is combined with elitist replacement. So the number of generational

replacement is set to 80% of the total population. With this definition, 20% of individuals

will not be replaced in every generation and favours the population to keep the best

individuals found throughout the generations. The replacement is carried out if the unique

count does not exceed the defined uniqueness parameter.

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

51

4.3.3 Proposed strategy structure in SGA

 The Reusable replacement strategy proposed in this paper and its parameters are

defined and the structure of the replacement is given in the figure 18.

Figure 18. Structure SGA Reusable replacement strategy [42], [source: own]

 Initialization of Population

 Evaluation of Individuals in Population

 While (Termination criteria not met) do

 Individual Selection : Select parents (individuals) from Population

 Crossover : Perform crossover for the selected parents

 Evaluation : Evaluate the children after crossover

 Selection : Two required individuals selected to proceed and two

 rejected individuals are saved for future replacement

 Mutation : Perform mutation for the children produced by

 crossover

 Selection : One required individuals selected to proceed and One

 rejected individual is saved for future replacement

 Replacement :

 If Unique count > Uniqueness Parameter

 Replace the individuals with individuals from rejected

 population after sorting

 Else

 Replace the individuals with best children formed by

 reproduction based on number of replacement count

 End If

 Go to step 4 if Termination criteria not met

 end while

 return the best individual found during the generations

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

52

4.4 PARAMETER SET VALUE & RESULTS

 The value defined for each parameter use in the reusable replacement strategy within

the SGA is given as follows

4.4.1 MSGA parameters value

Population: The number of individuals in the population (Pop_num) is defined with 2N,

where N is the number of operations. So, the population will be 2 times the number of

operations.

Maximum Generation: 1500

Chromosome representation: Job order based representation and Operation based

representation is used to define the individuals (chromosomes) in the population.

Fitness function: Giffler & Thompson algorithm is used to calculate the fitness function

and repair the infeasible solutions.

Selection: Roulette Wheel Selection is used to select the individuals in to the mating pool

for both type of representation The size of mating pool is half the size of population

(Pop_num/2).

Crossover: Job Order Crossover (JOX) is used for both type of chromosome representations

with crossover probability (Pxo) 0.5. So, half of the genes in the individual are subjected to

the crossover operation. Correlative family based selection is used to selected the individuals

to proceed.

Mutation: Shift Mutation is used for both type of chromosome and probability is not used

and only one gene is subjected to mutation and every individual are subjected to mutation

operation. Best individual is selected to proceed the process.

Replacement: Reusable replacement strategy.

Termination: Algorithm terminates if there is no improvement in the solution for a count

up to 200. If the solution doesn’t improve for 200 generations, it will be terminated or else,

it will be terminated at the end of maximum number of generations.

4.4.2 Replacement parameters

Uniqueness Parameter (Par_Unique) = 0.2.

Unique Count (Uniq_count) = Par_Unique*Pop_num.

Rejected Population (Rej_Pop) = Pop_num.

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

53

4.4.3 Result of Modified SGA using job order based representation

(MSGAJO)

 The Table 4. shows the results obtained by the implementation of Reusable

Replacement Strategy (RRS) in the simple genetic algorithm based on job order

representation. The result shows that the replacement strategy improves the solution as

compared to SGA. The best makespan values (objective functions) are highlighted with bold

and green colour. The ability to produce the optimum results improved with this strategy.

Table 4. Result of MSGAJO

Problem Optimum
Best
f(x)

Avg.
f(x)

Worst
f(x)

Deviation

Avg.
Dist.
from
optimum

Avg.
Opt
time in
sec

Avg. gen
taken to
find

FT06 55 55 55 63 0.00 0.00% 13.09 25
FT10 930 951 972.1 1175 6.64 4.53% 233.72 978

FT20 1165 1207 1425 1233.8 13.28 5.91% 213.37 295
LA01 666 666 666 793 0.00 0.00% 52.09 1376

LA02 655 655 665.1 786 0.00 1.54% 68.41 598
LA03 597 597 605.5 745 0.00 1.42% 64 711

LA04 590 590 594 709 0.00 0.68% 64.81 453
LA05 593 593 593 627 0.00 0.00% 19.88 4

LA06 926 926 926 987 0.00 0.00% 56.36 5
LA07 890 890 890 1019 0.00 0.00% 126.74 323

LA08 863 863 863 961 0.00 0.00% 143.04 19
LA09 951 951 951 1043 0.00 0.00% 101.37 12

LA10 958 958 958 1004 0.00 0.00% 30.36 3
LA11 1222 1222 1222 1278 0.00 0.00% 93.41 7

LA12 1039 1039 1039 1115 0.00 0.00% 88.03 8
LA13 1150 1150 1150 1220 0.00 0.00% 125.06 13

LA14 1292 1292 1292 1298 0.00 0.00% 37.35 1
LA15 1207 1207 1210.7 1382 0.00 0.31% 145.41 290

LA16 945 977 984.5 1123 10.12 4.18% 133.85 247
LA17 784 784 793.4 928 0.00 1.20% 104.24 162

LA18 848 848 861.8 1026 0.00 1.63% 151.76 189
LA19 842 852 863.1 1007 3.16 2.51% 186.5 360

LA20 902 907 915.9 1105 1.58 1.54% 156.01 231
LA21 1046 1082 1101.8 1326 11.38 5.33% 397.3 521

LA22 927 953 987.4 1244 8.22 6.52% 309.42 244
LA23 1032 1032 1039.3 1263 0.00 0.71% 261.5 192

LA24 935 971 989.4 1218 11.38 5.82% 286.94 369
LA25 977 1012 1034.2 1255 11.07 5.85% 372.07 287

LA27 1235 1282 1315.7 1585 14.86 6.53% 796.05 535
LA30 1355 1383 1400.2 1648 8.85 3.34% 530.08 443

LA40 1222 1255 1281.8 1543 10.44 4.89% 693.14 507

 Even the most demanding problems like LA27, LA30 and LA40 can able to optimize

to a solution better than the SGA. The average distance from optimum shows the

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

54

repeatability of algorithm to find the best solution and except few high demanding problems,

all other problems results 0% which is a good sign of improvement. Also, almost all

expensive problem set reflects less than 5% of average distance from optimum.

4.4.4 Result of Modified SGA using operation based representation

(MSGAOB)

Table 5. Result of MSGAOB

Problem Optimum
Best
f(x)

Avg.
f(x)

Worst
f(x)

Deviation

Avg.
Dist.
from
optimum

Avg.
Opt
time in
sec

Avg. gen
taken to
find

FT06 55 55 55 61 0.00 0.00% 26.88 56
FT10 930 969 995.9 1163 12.33 7.09% 339.21 790
FT20 1165 1237 1257.4 1447 22.77 7.93% 362.37 963
LA01 666 666 666 777 0.00 0.00% 89.52 153
LA02 655 655 672 782 0.00 2.60% 86.66 783
LA03 597 606 618.7 708 2.85 3.63% 83.73 711
LA04 590 590 601.9 702 0.00 2.02% 88.24 639
LA05 593 593 593 605 0.00 0.00% 57.49 2
LA06 926 926 926 959 0.00 0.00% 198.75 4
LA07 890 890 890.8 990 0.00 0.09% 201.48 558
LA08 863 863 863 930 0.00 0.00% 209.74 71
LA09 951 951 951 1001 0.00 0.00% 211.12 7
LA10 958 958 958 972 0.00 0.00% 113.91 2
LA11 1222 1222 1222 1244 0.00 0.00% 350.32 4
LA12 1039 1039 1039 1071 0.00 0.00% 339.86 6
LA13 1150 1150 1150 1193 0.00 0.00% 354.32 11
LA14 1292 1292 1292 1292 0.00 0.00% 49.71 1
LA15 1207 1207 1215.2 1349 0.00 0.68% 679.73 778
LA16 945 973 987.4 1102 8.85 4.49% 341.81 791
LA17 784 787 802.1 908 0.95 2.31% 323.02 739
LA18 848 857 864.9 1014 2.85 1.99% 315.79 881
LA19 842 856 877 1002 4.43 4.16% 336.8 794
LA20 902 912 931 1063 3.16 3.22% 518.29 557
LA21 1046 1141 1164 1326 30.04 11.28% 875.2 912
LA22 927 1002 1032.9 1205 23.72 11.42% 832.27 1175
LA23 1032 1046 1091.3 1235 4.43 5.75% 851.64 916
LA24 935 1017 1035.2 1183 25.93 10.72% 834.98 813
LA25 977 1058 1088.8 1230 25.61 11.44% 837.05 834
LA27 1235 1388 1405 1559 48.38 13.77% 1647.03 985
LA30 1355 1459 1469.1 1611 32.89 8.42% 1649.3 890
LA40 1222 1334 1368.7 1509 35.42 12.00% 1989.51 1105

 The table 5 displays the result obtained from the Modified SGA with reusable

replacement strategy based on the operation based representation (MSGAOB). The best

makespan values (objective functions) are highlighted with bold and green colour. The

results show that the operation based representation has some influence that affects the

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

55

solution of the SGA. The average distance from optimum of some hard problems are above

10% which is not good as the SGA with job order representation. Modifying some

parameters and implementing some criteria to improve the solution might help but from the

result, it might or might not improve the solution. Also, the best solution is found quickly

for some problems and took nearly thousand generations to find near optimum solution for

expensive problems like LA20, LA30, LA40.

4.4.5 Comparison of Modified SGA of job order (MSGAJO) and operation

based representation (MSGAOB)

Table 6. Comparison of MSGAJO and MSGAOB

Problem Optimum

MSGAJO MSGAOB

Best f(x) Avg. f(x)

Avg. distance
from

optimum
Best
f(x)

Avg.
f(x)

Avg. distance
from

optimum

FT06 55 55 55 0.00% 55 55 0.00%

FT10 930 951 972.1 4.53% 969 995.9 7.09%
FT20 1165 1207 1233.8 5.91% 1237 1257.4 7.93%
LA01 666 666 666 0.00% 666 666 0.00%
LA02 655 655 665.1 1.54% 655 672 2.60%
LA03 597 597 605.5 1.42% 606 618.7 3.63%
LA04 590 590 594 0.68% 590 601.9 2.02%
LA05 593 593 593 0.00% 593 593 0.00%
LA06 926 926 926 0.00% 926 926 0.00%
LA07 890 890 890 0.00% 890 890.8 0.09%
LA08 863 863 863 0.00% 863 863 0.00%
LA09 951 951 951 0.00% 951 951 0.00%
LA10 958 958 958 0.00% 958 958 0.00%
LA11 1222 1222 1222 0.00% 1222 1222 0.00%
LA12 1039 1039 1039 0.00% 1039 1039 0.00%
LA13 1150 1150 1150 0.00% 1150 1150 0.00%
LA14 1292 1292 1292 0.00% 1292 1292 0.00%
LA15 1207 1207 1210.7 0.31% 1207 1215.2 0.68%
LA16 945 977 984.5 4.18% 973 987.4 4.49%
LA17 784 784 793.4 1.20% 787 802.1 2.31%
LA18 848 848 861.8 1.63% 857 864.9 1.99%
LA19 842 852 863.1 2.51% 856 877 4.16%
LA20 902 907 915.9 1.54% 912 931 3.22%
LA21 1046 1082 1101.8 5.33% 1141 1164 11.28%
LA22 927 953 987.4 6.52% 1002 1032.9 11.42%
LA23 1032 1032 1039.3 0.71% 1046 1091.3 5.75%
LA24 935 971 989.4 5.82% 1017 1035.2 10.72%
LA25 977 1012 1034.2 5.85% 1058 1088.8 11.44%
LA27 1235 1282 1315.7 6.53% 1388 1405 13.77%
LA30 1355 1383 1400.2 3.34% 1459 1469.1 8.42%
LA40 1222 1255 1281.8 4.89% 1334 1368.7 12.00%

 From the table 6 the comparison of the implementation of Reusable Replacement

Strategy (RRS) in the SGA of both job order and operation based representations (MSGAJO

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

56

and MSGAOB). The best makespan values (objective functions) are highlighted with bold

and green colour and also best average and average distance from makespan values are

highlighted in bold. The results of best solution in MSGAJO is better than the best solution

in MSGAOB. The average distance from the optimum value of MSGAJO is good and better

than the MSGAOB. So, MSGAJO seems to be a better option when compared to MSGAOB.

The comparison of the average distance from the optimum solution of the objective function

– makespan between the MSGAJO and MSGAOB is shown in the figure 19.

Figure 19. Comparison graph of MSGAJO and MSGAOB [source: own]

4.4.6 Comparison of SGA and MSGA with job order based representation

Figure 20. Comparison graph of SGAJO and MSGAJO [source: own]

-1.00%

4.00%

9.00%

14.00%

FT
06

FT
10

FT
20

LA
01

LA
02

LA
03

LA
04

LA
05

LA
06

LA
07

LA
08

LA
09

LA
10

LA
11

LA
12

LA
13

LA
14

LA
15

LA
16

LA
17

LA
18

LA
19

LA
20

LA
21

LA
22

LA
23

LA
24

LA
25

LA
27

LA
30

LA
40

%
 D

is
ta

n
ce

 fr
o

m
 o

p
ti

m
u

m

Problem

Average distance from optimum

MSGA JO MSGAOB

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

FT
06

FT
10

FT
20

LA
01

LA
02

LA
03

LA
04

LA
05

LA
06

LA
07

LA
08

LA
09

LA
10

LA
11

LA
12

LA
13

LA
14

LA
15

LA
16

LA
17

LA
18

LA
19

LA
20

LA
21

LA
22

LA
23

LA
24

LA
25

LA
27

LA
30

LA
40

%
 D

is
ta

n
ce

 fr
o

m
 o

p
ti

m
u

m

Problem

Average distance from optimum

SGA JO MSGAJO

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

57

Table 7. Comparison of SGAJO and MSGAJO

Problem Optimum

SGAJO MSGAJO

Best
f(x)

Avg. f(x)
Avg. distance

from
optimum

Best
f(x)

Avg. f(x)
Avg. distance

from
optimum

FT06 55 55 55 0.00% 55 55 0.00%

FT10 930 1042 1054.5 13.39% 951 972.1 4.53%

FT20 1165 1315 1337.6 14.82% 1207 1233.8 5.91%

LA01 666 666 666.2 0.03% 666 666 0.00%

LA02 655 668 693.8 5.92% 655 665.1 1.54%

LA03 597 637 646.5 8.29% 597 605.5 1.42%

LA04 590 598 614.5 4.15% 590 594 0.68%

LA05 593 593 593 0.00% 593 593 0.00%

LA06 926 926 926 0.00% 926 926 0.00%

LA07 890 915 925.3 3.97% 890 890 0.00%

LA08 863 863 867.3 0.50% 863 863 0.00%

LA09 951 951 951 0.00% 951 951 0.00%

LA10 958 958 958 0.00% 958 958 0.00%

LA11 1222 1222 1222 0.00% 1222 1222 0.00%

LA12 1039 1039 1039 0.00% 1039 1039 0.00%

LA13 1150 1150 1150 0.00% 1150 1150 0.00%

LA14 1292 1292 1292 0.00% 1292 1292 0.00%

LA15 1207 1269 1276.8 5.78% 1207 1210.7 0.31%

LA16 945 985 998.5 5.66% 977 984.5 4.18%

LA17 784 803 815.9 4.07% 784 793.4 1.20%

LA18 848 888 907.7 7.04% 848 861.8 1.63%

LA19 842 869 888.3 5.50% 852 863.1 2.51%

LA20 902 933 953.7 5.73% 907 915.9 1.54%

LA21 1046 1177 1201.2 14.04% 1082 1101.8 5.33%

LA22 927 1073 1087.6 17.32% 953 987.4 6.52%

LA23 1032 1079 1098.5 6.44% 1032 1039.3 0.71%

LA24 935 1059 1066.7 14.09% 971 989.4 5.82%

LA25 977 1105 1125.2 15.17% 1012 1034.2 5.85%

LA27 1235 1439 1451.7 17.55% 1282 1315.7 6.53%

LA30 1355 1456 1502.9 10.92% 1383 1400.2 3.34%

LA40 1222 1374 1381.1 13.02% 1255 1281.8 4.89%

 The comparison data from table 7, clearly depicts that the Modified SGA (MSGAJO)

with Reusable Replacement Strategy (RRS) outruns the result of SGAJO. The best, average

and average distance from the makespan values (objective function) of MSGAJO is far better

than the SGAJO. The generational replacement used in the SGAJO, can produce best

makespan values (objective functions) are highlighted with bold and green colour and also

best average and average distance from makespan values are highlighted in bold in table 7.

The MSGAJO with the Reusable Replacement Strategy has results improved in every aspects

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

58

of the problem. The comparison of the average distance from the optimum solution of the

objective function – makespan between the SGAJO and MSGAJO is shown in the figure 20.

4.4.7 Comparison of SGA and MSGA with operation based representation

Table 8. Comparison of SGAOB and MSGAOB

 The table 8 shows, how the RRS influence the performance of the SGA and all the

best, worst and average results of MSGAOB is better than the SGAOB. This shows that the

Reusable Replacement Strategy has the ability to optimize the SGA efficiently. The best

makespan values (objective functions) are highlighted with bold and green colour and also

Problem Optimum

SGAOB MSGAOB

Best f(x) Avg. f(x)
Avg. distance

from
optimum

Best
f(x)

Avg. f(x)
Avg. distance

from
optimum

FT06 55 55 55.6 1.09% 55 55 0.00%

FT10 930 1038 1051.1 13.02% 969 995.9 7.09%

FT20 1165 1303 1319.5 13.26% 1237 1257.4 7.93%

LA01 666 666 671 0.75% 666 666 0.00%

LA02 655 684 703.3 7.37% 655 672 2.60%

LA03 597 625 640.4 7.27% 606 618.7 3.63%

LA04 590 603 622.3 5.47% 590 601.9 2.02%

LA05 593 593 593 0.00% 593 593 0.00%

LA06 926 926 926 0.00% 926 926 0.00%

LA07 890 894 916.4 2.97% 890 890.8 0.09%

LA08 863 863 867.1 0.48% 863 863 0.00%

LA09 951 951 951 0.00% 951 951 0.00%

LA10 958 958 958 0.00% 958 958 0.00%

LA11 1222 1222 1222 0.00% 1222 1222 0.00%

LA12 1039 1039 1039 0.00% 1039 1039 0.00%

LA13 1150 1150 1150 0.00% 1150 1150 0.00%

LA14 1292 1292 1292 0.00% 1292 1292 0.00%

LA15 1207 1244 1256.4 4.09% 1207 1215.2 0.68%

LA16 945 979 1008.3 6.70% 973 987.4 4.49%

LA17 784 812 831 5.99% 787 802.1 2.31%

LA18 848 885 910.5 7.37% 857 864.9 1.99%

LA19 842 882 900.6 6.96% 856 877 4.16%

LA20 902 959 968 7.32% 912 931 3.22%

LA21 1046 1197 1214.7 16.13% 1141 1164 11.28%

LA22 927 1065 1084.3 16.97% 1002 1032.9 11.42%

LA23 1032 1106 1123.9 8.91% 1046 1091.3 5.75%

LA24 935 1074 1089.9 16.57% 1017 1035.2 10.72%

LA25 977 1118 1133.8 16.05% 1058 1088.8 11.44%

LA27 1235 1441 1452.9 17.64% 1388 1405 13.77%

LA30 1355 1470 1504.7 11.05% 1459 1469.1 8.42%

LA40 1222 1385 1407.8 15.20% 1334 1368.7 12.00%

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

59

best average and average distance from makespan values are highlighted in bold. The

comparison of the average distance from the optimum solution of the objective function –

makespan between the SGAOB and MSGAOB is shown in the figure 21.

Figure 21. Comparison graph of SGAOB and MSGAOB [source: own]

4.4.8 Comparison of all SGAs with active schedule based on best

dispatching rule

 The table 9 shows the comparison of the results obtained by both SGAs and MSGAs

with the results of active schedule based on dispatching rules with best objective function

(makespan). MSGAJO turns out to be the best algorithm to determine the optimum or the

best makespan.

 The schedules generated with the help of dispatching rules are worst when compared

to the SGAs but there are no options of evolution in the active schedules. The dispatching

rules are better in case of optimization time. They will require only a fraction of seconds to

generate a schedule and SGAs will take more time with respect to the problem size. This

comparison of SGAs, MSGAs and active schedule gives a result that the MSGAJO is again

the best algorithm to provide the best makespan values for almost every problem dealt in

this paper. The best makespan values (objective functions) are highlighted with bold and

green colour.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

FT
06

FT
10

FT
20

LA
01

LA
0

2
LA

0
3

LA
0

4
LA

0
5

LA
0

6
LA

0
7

LA
08

LA
0

9
LA

1
0

LA
1

1
LA

1
2

LA
1

3
LA

1
4

LA
1

5
LA

1
6

LA
17

LA
1

8
LA

1
9

LA
2

0
LA

2
1

LA
2

2
LA

2
3

LA
24

LA
2

5
LA

2
7

LA
3

0
LA

4
0

%
 D

is
ta

n
ce

 fr
o

m
 o

p
ti

m
u

m

Problem

Average distance from optimum

SGAOB MSGAOB

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

60

Table 9. Comparison SGAs with active schedule based on MTTR

Problem Optimum SGAJO SGAOB MSGAJO MSGAOB
Active Schedule with

MTTR

FT06 55 55 55 55 55 58

FT10 930 1042 1038 951 969 1191

FT20 1165 1315 1303 1207 1237 1594

LA01 666 666 666 666 666 784

LA02 655 668 684 655 655 852

LA03 597 637 625 597 606 713

LA04 590 598 603 590 590 817

LA05 593 593 593 593 593 621

LA06 926 926 926 926 926 930

LA07 890 915 894 890 890 1031

LA08 863 863 863 863 863 1109

LA09 951 951 951 951 951 1021

LA10 958 958 958 958 958 1052

LA11 1222 1222 1222 1222 1222 1274

LA12 1039 1039 1039 1039 1039 1167

LA13 1150 1150 1150 1150 1150 1201

LA14 1292 1292 1292 1292 1292 1292

LA15 1207 1269 1244 1207 1207 1415

LA16 945 985 979 977 973 1219

LA17 784 803 812 784 787 914

LA18 848 888 885 848 857 1039

LA19 842 869 882 852 856 1123

LA20 902 933 959 907 912 1076

LA21 1046 1177 1197 1082 1141 1314

LA22 927 1073 1065 953 1002 1135

LA23 1032 1079 1106 1032 1046 1223

LA24 935 1059 1074 971 1017 1231

LA25 977 1105 1118 1012 1058 1206

LA27 1235 1439 1441 1282 1388 1567

LA30 1355 1456 1470 1383 1459 1565

LA40 1222 1374 1385 1255 1334 1549

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

61

4.4.9 Comparison of optimization time per generation of SGAs and MSGAs

 The table 10 shows the time taken by each SGA to optimize to the best solution

(objective function – makespan). The influence of the representation can be seen in the time

taken by the SGA and MSGA as the SGA and MSGA with Job order representation has the

best optimization time than the SGA and MSGA with operation based representation.

However, based on overall overview, SGAJO has the most number of best optimization time

and MSGAJO has good number of best optimization time next to SGAJO. The figure 22 shows

the results graphically and from that the SGAJO has most number of best optimization time

and the SGA with worst number of optimization time is MSGAOB. The best optimization

time for each problem instances are highlighted in bold.

Table 10. Comparison of optimization time per generation

Problem
SGAJO

Opt time
in sec

SGAOB
Opt time

in sec

MSGAJO
Opt time in

sec

MSGAOB
Opt time in

sec

FT06 0.039 0.070 0.058 0.105
FT10 0.172 0.207 0.306 0.343
FT20 0.161 0.137 0.714 0.312
LA01 0.044 0.065 0.233 0.254
LA02 0.033 0.038 0.081 0.088
LA03 0.037 0.034 0.070 0.092
LA04 0.032 0.054 0.099 0.105
LA05 0.179 0.203 0.098 0.285
LA06 0.386 0.481 0.275 0.978
LA07 0.105 0.101 0.242 0.266
LA08 0.081 0.145 0.655 0.775
LA09 0.355 0.417 0.479 1.020
LA10 0.419 0.487 0.150 0.566
LA11 0.709 0.867 0.452 1.722
LA12 0.611 0.817 0.424 1.653
LA13 0.382 0.665 0.589 1.679
LA14 0.106 0.149 0.186 0.247
LA15 0.174 0.183 0.297 0.695
LA16 0.104 0.192 0.299 0.345
LA17 0.113 0.235 0.288 0.344
LA18 0.189 0.229 0.399 0.292
LA19 0.099 0.202 0.333 0.339
LA20 0.113 0.213 0.362 0.684
LA21 0.424 0.499 0.551 0.787
LA22 0.350 0.390 0.697 0.605
LA23 0.309 0.347 0.668 0.763
LA24 0.345 0.372 0.504 0.824
LA25 0.314 0.408 0.765 0.810
LA27 0.674 0.853 1.506 1.390
LA30 0.483 0.810 0.825 1.513
LA40 0.664 0.963 0.980 1.525

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

62

Figure 22. Comparison of optimization time per generation [source: own]

This may be due to the impact of the RRS implementation, as it requires some additional

computation time. But on the other hand the MSGAJO with RRS also have some good

optimization time. So, the impact on optimization time will also be based on the type of

representation used in the SGAs. With or without the usage of RRS in SGA, there is a

significant difference between the optimization time of SGA based on job order and

operation based representation. This clearly shows that the chromosome representation is

one of the important parameter in genetic algorithms.

4.4.10 Comparison of improvement result from best dispatching rule

 The best dispatching rule which gives the best makespan value is MTTR (Most Total

Time Remaining). The makespan value provided by this rule is compared with the SGAs

and MSGAs to determine the improvement of the makespan. The improvement of makespan

can be calculated by finding the difference between the best makespan (objective function)

of dispatching rule and best makespan of each SGA. This can be explained with the equation

(2),

 𝐼𝑚𝑝 = 𝑓(𝑥)𝐵𝐷𝑅 − 𝑓(𝑥)𝐵𝐸𝐴 (2)

where, 𝐼𝑚𝑝 = Improvement in min.

 𝑓(𝑥) = makespan (objective function) in min.

 BDR = Best Dispatching Rule

 BEA = Best Evolutionary Algorithm (SGAs and MSGAs).

0

0.5

1

1.5

2

FT
0

6

FT
1

0

FT
2

0

LA
01

LA
02

LA
03

LA
04

LA
05

LA
06

LA
07

LA
08

LA
09

LA
10

LA
11

LA
12

LA
13

LA
14

LA
15

LA
16

LA
17

LA
18

LA
19

LA
20

LA
21

LA
22

LA
23

LA
24

LA
25

LA
27

LA
30

LA
40

O
p

ti
m

iz
at

io
n

 ti
m

e

Problem

Optimization time per generation

SGAJO SGAOB MSGAJO MSGAOB

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

63

Table 11. Improvement comparison of best dispatching rule, SGAs and MSGAs

 The resulting improvement value is tabulated and the respecting optimization time is

shown in the table 11. The result shows that MSGAJO performed well in terms of the

improvement. It may have a bit high optimization time than the minimum optimization of

SGAJO in some problem instance, but the improvement makes it to be the best algorithm for

the better results.

Improve

ment

Opt

time in

min.

Improve

ment

Opt

time in

min.

Improve

ment

Opt

time in

min.

Improve

ment

Opt

time in

min.

FT06 58 3 0.29 3 0.32 3 0.22 3 0.45

FT10 1191 149 2.36 153 2.99 240 3.90 222 5.65

FT20 1594 279 2.57 291 3.00 387 3.56 357 6.04

LA01 784 118 0.59 118 0.70 118 0.87 118 1.49

LA02 852 184 0.59 168 0.65 197 1.14 197 1.44

LA03 713 76 0.59 88 0.65 116 1.07 107 1.40

LA04 817 219 0.61 214 0.67 227 1.08 227 1.47

LA05 621 28 0.61 28 0.68 28 0.33 28 0.96

LA06 930 4 1.42 4 1.66 4 0.94 4 3.31

LA07 1031 116 1.40 137 1.60 141 2.11 141 3.36

LA08 1109 246 1.44 246 1.65 246 2.38 246 3.50

LA09 1021 70 1.44 70 1.64 70 1.69 70 3.52

LA10 1052 94 1.45 94 1.64 94 0.51 94 1.90

LA11 1274 52 2.69 52 3.12 52 1.56 52 5.84

LA12 1167 128 2.70 128 3.09 128 1.47 128 5.66

LA13 1201 51 2.61 51 3.32 51 2.08 51 5.91

LA14 1292 0 0.36 0 0.50 0 0.62 0 0.83

LA15 1415 146 2.61 171 3.26 208 2.42 208 11.33

LA16 1219 234 2.12 240 3.10 242 2.23 246 5.70

LA17 914 111 2.12 102 2.95 130 1.74 127 5.38

LA18 1039 151 2.12 154 3.15 191 2.53 182 5.26

LA19 1123 254 2.16 241 2.90 271 3.11 267 5.61

LA20 1076 143 2.07 117 3.13 169 2.60 164 8.64

LA21 1314 137 5.31 117 7.92 232 6.62 173 14.59

LA22 1135 62 5.13 70 7.73 182 5.16 133 13.87

LA23 1223 144 5.13 117 7.43 191 4.36 177 14.19

LA24 1231 172 5.16 157 7.58 260 4.78 214 13.92

LA25 1206 101 5.23 88 7.52 194 6.20 148 13.95

LA27 1567 128 10.06 126 14.27 285 13.27 179 27.45

LA30 1565 109 10.00 95 14.21 182 8.83 106 27.49

LA40 1549 175 11.21 164 18.13 294 11.55 215 33.16

SGAJO SGAOB MSGAJO MSGAOB

Problem

Active

Schedule

with

MTTR

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

64

4.4.11 Result of saved time by improvement

Table 12. Results of saved time by improvement

Problem
SGAJO SGAOB MSGAJO MSGAOB

Saved time in min. Saved time in min. Saved time in min. Saved time in min.

FT06 2.71 2.68 2.78 2.55

FT10 146.64 150.01 236.10 216.35

FT20 276.43 288.00 383.44 350.96

LA01 117.41 117.30 117.13 116.51

LA02 183.41 167.35 195.86 195.56

LA03 75.41 87.35 114.93 105.60

LA04 218.39 213.33 225.92 225.53

LA05 27.39 27.32 27.67 27.04

LA06 2.58 2.34 3.06 0.69

LA07 114.60 135.40 138.89 137.64

LA08 244.56 244.35 243.62 242.50

LA09 68.56 68.36 68.31 66.48

LA10 92.55 92.36 93.49 92.10

LA11 49.31 48.88 50.44 46.16

LA12 125.30 124.91 126.53 122.34

LA13 48.39 47.68 48.92 45.09

LA14 -0.36 -0.50 -0.62 -0.83

LA15 143.39 167.74 205.58 196.67

LA16 231.88 236.90 239.77 240.30

LA17 108.88 99.05 128.26 121.62

LA18 148.88 150.85 188.47 176.74

LA19 251.84 238.10 267.89 261.39

LA20 140.93 113.87 166.40 155.36

LA21 131.69 109.08 225.38 158.41

LA22 56.87 62.27 176.84 119.13

LA23 138.87 109.57 186.64 162.81

LA24 166.84 149.42 255.22 200.08

LA25 95.77 80.48 187.80 134.05

LA27 117.94 111.73 271.73 151.55

LA30 99.00 80.79 173.17 78.51

LA40 163.79 145.87 282.45 181.84

 The SGAs have improved the makespan value based on their capabilities and all

SGAs performed well. With the improvement, the performance of each SGA can be

evaluated by calculating the time in which each algorithm saved with the improvement of

the makespan value. The saved time can be calculated by finding the difference of

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

65

Improvement and total optimization in time. This can be given mathematically in the

equation (3),

 𝑇𝑠 = 𝐼𝑚𝑝 − 𝑇𝑜𝑝𝑡 (3)

where, 𝐼𝑚𝑝 = Improvement in min.

 𝑇𝑠 = Saved Time in min.

 𝑇𝑜𝑝𝑡 = Optimization time in min.

 The obtained results of the saved time are tabulated in the table 12. The algorithm

MSGAJO saved more time than the other algorithm on the fly optimization. But on the other

all the other algorithms performed well and have reasonable saved time on the fly

optimization. The problem LA14 gives the negative result as EAs involves in iterative

mechanism, the optimization time will be higher and which results the negative value if

makespan obtained by all the search algorithm are same.

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

66

5. CONCLUSION

 The main aim of this thesis is to review the existing evolution algorithms and

selecting one evolution algorithm to select one shop scheduling problem. So, genetic

algorithm is chosen and the problem to solve is selected to be the job shop scheduling. In

order to develop a new evolutionary algorithm based on genetic algorithm, a new

replacement strategy is proposed and implemented in the simple genetic algorithm and also,

two type of chromosome representation is analysed in SGA and also in the developed SGA

the replacement strategy (RRS).

 The outcome of the developed SGA with RRS turns out to be a good strategy for

replacement in which the rejected individuals are reused in order to infuse diversity in to the

population. The basic idea of the replacement strategy is worked well in the process of

optimization of the genetic algorithm.

 This RRS method can be applied for various problems and the outcome can be

analysed and new possibilities for its usage can be discovered. Also, some of the parameters

used in this paper can be changed according to the need of the problem and can combine

some existing strategy with the RRS to create a new more efficient than the current one.

 One recommendation is that the individuals in the rejected population is sorted in

ascending order and then subjected to the replacement process. In this, the individuals can

be randomized and then included in the replacement process to make the population with

random individuals at certain conditions where there is no improvement in the solution.

 The results of saved time with the improvement displays the performance of the

SGAs and in most cases there is a chance of getting negative results and hence on the fly

optimization is not recommended.

 The work can be used in future works related to the optimization of job shop

scheduling and other genetic algorithm related problems. This concept can also be used in

various optimization problem that involves replacement methods.

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

67

REFERENCES

[1] F. Werner, “A survey of genetic algorithms for shop scheduling problems,” Math.

Res. Summ., vol. 2, p. 15, 2017.

[2] S. Kolharkar, “‘Scheduling in Job Shop Process Industry,’” IOSR J. Mech. Civ. Eng.,

vol. 5, no. 1, pp. 1–17, 2013, doi: 10.9790/1684-0510117.

[3] T. Yamada and R. Nakano, “Job-shop scheduling,” no. September 2013, 2000.

[4] L. C. Reyes et al., “Heuristic Algorithms,” Logist. Manag. Optim. through Hybrid

Artif. Intell. Syst., pp. 238–267, 2012, doi: 10.4018/978-1-4666-0297-7.ch009.

[5] M. A. Nascimento, S. The, and N. May, “Giffler and Thompson ’ s Algorithm for Job

Shop Scheduling is Still Good for Flexible Manufacturing Systems Published by :

Palgrave Macmillan Journals on behalf of the Operational Research Society Stable

URL : https://www.jstor.org/stable/2583918 REFERENC,” vol. 44, no. 5, pp. 521–

524, 2020.

[6] M. Moonen, “A Giffler-Thompson Focused Genetic Algorithm for the Static Job-

Shop Scheduling Problem,” pp. 1–14.

[7] J. J. A. Moors et al., “A Survey of Scheduling Rules Author (s): S . S . Panwalkar

and Wafik Iskander Published by : INFORMS Stable URL :

http://www.jstor.org/stable/169546 REFERENCES Linked references are available

on JSTOR for this article : You may need to log in to JSTOR t,” Int. J. Prod. Res.,

vol. 30, no. 1, pp. 45–61, 2018, doi: 10.1080/00207548208947800.

[8] Werner. F, “An adaptive stochastic search procedure for special scheduling

problems,” Econ. Obz., pp. 50–67, 1988.

[9] L. Davis, “Job Shop scheduling with genetic algorithms,” Proc. First Int. Conf. Genet.

Algorithms Their Appl., pp. 136–140, 1985.

[10] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,

1st ed. USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

[11] D. Beasley, D. R. Bull, and R. R. Martin, “A Sequential Niche Technique for

Multimodal Function Optimization,” Evol. Comput., vol. 1, no. 2, pp. 101–125, Jun.

1993, doi: 10.1162/evco.1993.1.2.101.

[12] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of

ICNN’95 - International Conference on Neural Networks, 1995, vol. 4, pp. 1942–

1948 vol.4, doi: 10.1109/ICNN.1995.488968.

[13] V. R. S. E. College and C. Rand, “Particle Swarm Optimization Approach for

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

68

Scheduling of Flexible Job Shops,” vol. 1, no. 5, pp. 1–6, 2012.

[14] M. Dorigo and M. Birattari, “Ant Colony Optimization,” in Encyclopedia of Machine

Learning, C. Sammut and G. I. Webb, Eds. Boston, MA: Springer US, 2010, pp. 36–

39.

[15] E. Özcan, “Memetic Algorithms for Nurse Rostering,” in Computer and Information

Sciences - ISCIS 2005, 2005, pp. 482–492.

[16] J. S. Scheduling, “A memetic algorithm for minimizing the makespan in the Job Shop

Scheduling problem Un algoritmo memético para minimizar el makespan en el

problema del Job Shop Scheduling Um algoritmo memético para minimizar o

makespan no problema do,” vol. 26, no. 44, pp. 111–121, 2016.

[17] P. J. M. van Laarhoven, E. H. L. Aarts, and J. K. Lenstra, “Job Shop Scheduling by

Simulated Annealing,” Oper. Res., vol. 40, no. 1, pp. 113–125, 1992, doi:

10.1287/opre.40.1.113.

[18] E. Nowicki and C. Smutnicki, “An Advanced Tabu Search Algorithm for the Job

Shop Problem,” J. Sched., vol. 8, no. 2, pp. 145–159, 2005, doi: 10.1007/s10951-005-

6364-5.

[19] T. Watanabe, H. Tokumaru, and Y. Hashimoto, “Job-shop scheduling using neural

networks,” Control Eng. Pract., vol. 1, pp. 957–961, 1993, doi: 10.1016/0967-

0661(93)90005-C.

[20] F. Werner, “A survey of genetic algorithms for shop scheduling problems,” Math.

Res. Summ., vol. 2, no. April 2013, p. 15, 2017.

[21] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis

with Applications to Biology, Control and Artificial Intelligence. Cambridge, MA,

USA: MIT Press, 1992.

[22] R. Abd Rahman, R. Ramli, Z. Jamari, and K. R. Ku-Mahamud, “Evolutionary

algorithm with roulette-tournament selection for solving aquaculture diet

formulation,” Math. Probl. Eng., vol. 2016, 2016, doi: 10.1155/2016/3672758.

[23] V. Mallawaarachchi, “Introduction to Genetic Algorithm,” Towards Data Science,

2017. [Online]. Available: https://towardsdatascience.com/introduction-to-genetic-

algorithms-including-example-code-e396e98d8bf3.

[24] F. Geyik, M. Gocken, and A. Science, “Genetic algorithm representation types for a

two-stage supply chain distribution problem,” no. January, 2014.

[25] C. Zhang, Y. Rao, and P. Li, “An effective hybrid genetic algorithm for the job shop

scheduling problem,” Int. J. Adv. Manuf. Technol., vol. 39, no. 9–10, pp. 965–974,

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

69

2008, doi: 10.1007/s00170-007-1354-8.

[26] J. C. Bean, “Genetic Algorithms and Random Keys for Sequencing and

Optimization,” ORSA J. Comput., vol. 6, no. 2, pp. 154–160, 1994, doi:

10.1287/ijoc.6.2.154.

[27] L. Wang and D.-Z. Zheng, “A Modified Genetic Algorithm for Job Shop Scheduling,”

Int. J. Adv. Manuf. Technol., vol. 20, no. 1, pp. 72–76, 2002, doi:

10.1007/s001700200126.

[28] S. Mukherjee and A. K. Chatterjee, “On the representation of the one machine

sequencing problem in the shifting bottleneck heuristic,” Eur. J. Oper. Res., vol. 182,

no. 1, pp. 475–479, 2007, doi: 10.1016/j.ejor.2006.07.024.

[29] Y. Song and J. G. Hughes, “Genetic algorithm with a machine order-based

representation scheme for a class of job shop scheduling problem,” Proc. Am. Control

Conf., vol. 2, no. June, pp. 895–899, 1999, doi: 10.1109/acc.1999.783169.

[30] U. Dorndorf and E. Pesch, “Evolution based learning in a job shop scheduling

environment,” Comput. Oper. Res., vol. 22, no. 1, pp. 25–40, 1995, doi:

10.1016/0305-0548(93)E0016-M.

[31] S. J. T. Liang and J. M. Lewis, “Sparse matrix representation for production

scheduling using genetic algorithms,” Proc. ACM Symp. Appl. Comput., pp. 313–317,

1995, doi: 10.1145/315891.316004.

[32] B. Integer, L. Programming, G. Algorithm, T. Ga, and T. Ga, “CHAPTER 6 TEST

MINIMIZATION FOR COMBINATIONAL BENCHMARK CIRCUITS USING

GENETIC ALGORITHM 6 . 2 Overview of Genetic Algorithm 6 . 4 Genetic

Algorithms versus Traditional Algorithms,” pp. 81–93.

[33] E. Available, “Evolutionary Algorithms for Scheduling Operations,” 2016.

[34] “Chapter 6 : SELECTION,” pp. 94–124, 1991.

[35] B. MILLER, “Genetic algorithms, tournament selection, and the effects of noise,”

Complex Syst., vol. 9, pp. 193–212, 1996.

[36] O. Kramer, Studies in Computational Intelligence 679 Genetic Algorithm Essentials.

.

[37] I. Science, I. Science, I. Science, I. Science, I. Science, and I. Science, “asayuki

Yamamura,” pp. 3–8, 1996.

[38] Yun-Chia Liang and A. E. Smith, “An ant colony optimization algorithm for the

redundancy allocation problem (RAP),” IEEE Trans. Reliab., vol. 53, no. 3, pp. 417–

423, 2004, doi: 10.1109/TR.2004.832816.

Development of evolution algorithm for Shop Scheduling Problem
pandiyaraj.gnanasekar@tul.cz | tel.: +420 728762247 | Liberec, June, 2020

70

[39] “Chapter 7 : REPLACEMENT,” pp. 125–135.

[40] N. Design and U. Genetic, “Genetic Algorithm,” pp. 63–85.

[41] J. Mcdermott, “When and Why Metaheuristics Researchers can Ignore ‘ No Free

Lunch ’ Theorems,” SN Comput. Sci., vol. 1, no. 1, pp. 1–18, 2020, doi:

10.1007/s42979-020-0063-3.

