
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

BACHELOR'S THESIS

Brno, 2018 Michal Granát

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF CONTROL AND INSTRUMENTATION
ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY

MOBILE ROBOT CONTROL AND GUIDANCE USING
COMPUTER VISION
ŘÍZENÍ A NAVÁDĚNÍ KOLOVÉHO ROBOTA POMOCÍ POČÍTAČOVÉHO VIDĚNÍ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Michal Granát

SUPERVISOR
VEDOUCÍ PRÁCE

Ing. Štefan Mišík

BRNO 2018

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

Bachelor's Thesis
Bachelor's study field Automation and Measurement

Department of Control and Instrumentation
Student: Michal Granát ID: 186068
Year of
study: 3 Academic year: 2017/18

TITLE OF THESIS:

Mobile robot control and guidance using computer vision

INSTRUCTION:

The goal of this project is to design control algorithm for mobile robot to follow the path marked on the ground.
Use camera attached to single board computer (e.g. BeagleBoard, Raspberry PI) to detect desired direction of the
robot.
1. Research mobile robot control methods
2. Design testing track for the mobile robot
3. Identify features in the image taken by robot’s camera, which can be used to control the robot
4. Use computer vision tools (e.g. OpenCV) to obtain these features from the image
5. Feed the features obtained from the image into controller(s)
6. Design several controllers (possibly controlling for different aspects of the robot’s movement simultaneously,
e.g. steering, velocity) and compare results using some suitable metric

RECOMMENDED LITERATURE:

[1] LAGANIÈRE, Robert. OpenCV 2 computer vision application programming cookbook: over 50 recipes to
master this library of programming functions for real-time computer vision. Birmingham, U.K.: Packt Open Source
Pub., 2011.

Date of project
specification: 5.2.2018 Deadline for submission: 21.5.2018

Leader: Ing. Štefan Mišík
Consultant: Arben Cela

 doc. Ing. Václav Jirsík, CSc.
Subject Council chairman

WARNING:
The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

ABSTRACT
Products of theory of control are almost everywhere around us beginning with tempera-
ture controller in our houses through modeling of market behavior to spaceship control.
The reason of its widespread is its performance and beauty hidden in mathematical ap-
proach. Wheeled mobile robots are also widely used in industry because of their loading
capability which is necessary. High accuracy path-tracking is very important for the mo-
bile robots to precisely follow the designed path. One of the easiest way how to mark
the path is to use line with different optical features than background. There are several
methods to detect line and most powerful and efficient is camera usage. Subsequently,
there is need to use digital image processing which demanding for computational per-
formance but there is possibility to obtain huge amount of data. Although this principle
could look obsolete (guide line) it is still used in many solutions because of its simplicity
and cheapness. What is more, using camera to navigate robot global (without using line)
is sort of modern technology and it is still in development. Objective of this work is to
assembly small mobile robot, create its mathematical model, design several controllers
and use camera and computer vision for robot guidance using guide line.

KEYWORDS
Wheeled mobile robot, differential drive, digital image processing, line following, path
tracking, openCV, raspberry pi, controller design, motion control

ABSTRAKT
Teória riadenia je aplikovaná takmer všade okolo nás, počnúc reguláciou teploty v našich
domoch cez modelovanie správania sa trhu až po riadenie vesmírnych lodí. Dôvod,
prečo je tomu tak je, je jej výkonnosť a krása, obe skryté v použitých matematických
aparátoch. Kolesové mobilné roboty sú taktiež veľmi rozšírené, hlavne v priemysle,
kvôli ich obrovskej nosnosti, ktorá je nevyhnutná. Veľmi presné detekovanie trasy je
dôležité kvôli dôslednému riadeniu robota po jeho ceste. Jedna z najjednoduchších
možností ako vynačiť trasu je použitie čiary, ktorá má iné optické vlastnosti ako jej
podklad. Na detekovanie takto určenej trasy existuje niekoľko metód, ale najvýkonnejšie
a najefektívnejšie je použitie kamery s následným digitánym spacovaním obrazu, ktoré
je síce náročné na výpočtovú silu, ale je ním možne získať obrovské množstvo dát.
Hoci táto metóda môže vyzerať zastaralo (vodiaca čiara) stále sa využíva v niektorých
projektoch práve kvôli jej jednoduchosti a nízkej cene. Skutočné použitie kamery pre
navigáciu všeobecne (nie pomocou čiary) je dokonca zatiaľ oblasť, ktorá je stále vo
vývoji. Cieľom tejto práce je zostaviť malý mobilný robot, vytvoriť matematický model,
navrhnúť niekoľko regulátorov a riadiť robot po vyznačenej čiare za použitia camery a
počítačového videnia.

KĽÚČOVÉ SLOVÁ
Mobilný kolesový robot, diferenčný podvozok, digitálne spracovanie obrazu, sledovanie
čiary, hľadanie cesty, openCV, raspberry pi, návrh regulátora, riadenie pohybu

GRANÁT, Michal. Mobile robot control and guidance using computer vision. Brno,
2018, 63 p. Bachelor’s Thesis. Brno University of Technology, Fakulta elektrotechniky a
komunikačních technologií, Ústav automatizace a měřicí techniky. Advised by Ing. Štefan
Mišík

Vysázeno pomocí balíčku thesis verze 2.63; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

DECLARATION

I declare that I have written the Bachelor’s Thesis titled “Mobile robot control and
guidance using computer vision” independently, under the guidance of the advisor and
using exclusively the technical references and other sources of information cited in the
thesis and listed in the comprehensive bibliography at the end of the thesis.

As the author I furthermore declare that, with respect to the creation of this Bachelor’s
Thesis, I have not infringed any copyright or violated anyone’s personal and/or ownership
rights. In this context, I am fully aware of the consequences of breaking Regulation S 11
of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of
any breach of rights related to intellectual property or introduced within amendments to
relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009
Coll., Section 2, Head VI, Part 4.

Brno .
author’s signature

ACKNOWLEDGEMENT

I would like to thank my supervisor for my bachelor thesis Mr. Štefan Mišík, Ph.D., for
professional guidance, consultations, patience and inspirational suggestions for work.

Rád by som sa poďakoval vedúcemu mojej bakalárskej práce, pánovi Štefanovi Mišíkovi,
Ph.D., za odborné vedenie, konzultácie, trpezlivosť a podnetné návrhy k práci.

Brno .
author’s signature

CONTENTS

1 Introduction 11

2 Research of mobile robot control methods 12
2.1 Differential drive . 12
2.2 Trial-and-error method . 13
2.3 Mathematical description - transfer function 13
2.4 Feedback . 13
2.5 PID control applied on a line-follower AGV using a RGB camera . . . 14

2.5.1 Mathematics for camera used as a sensor 15

3 Digital image processing 18
3.1 History . 18
3.2 Tasks . 19
3.3 Image Enhancement . 20

3.3.1 Image Enhancement in the spatial domain 20
3.3.2 Image Enhancement in the frequency domain 20

3.4 Main techniques/methods . 21
3.4.1 Filtering . 21
3.4.2 Gray-level Transformation . 22
3.4.3 Gray-level discontinuities . 23
3.4.4 Otsu’s method . 25

4 Used software and hardware 27
4.1 Chassis . 27
4.2 DriverBoard . 28
4.3 Raspberry pi 3 . 29

4.3.1 Operating system . 30
4.3.2 Process priority . 30
4.3.3 Hotspot setting . 31
4.3.4 Samba share . 31
4.3.5 X Window System . 32

4.4 OpenCV . 32
4.4.1 WiringPi . 33

4.5 Netbeans . 33
4.5.1 MSYS2 . 34

4.6 Matlab . 34
4.7 Xming . 35

5 Mathematics of differential drive 36
5.1 Linear model of my robot . 36
5.2 Differential drive kinematics . 36
5.3 Forward kinematics for differential drive robot 37
5.4 Inverse kinematic of differential drive robot 38
5.5 Continuous model . 38
5.6 Constants of my robot . 39
5.7 Motors characteristic . 39

6 Track designing 41

7 Model 43
7.1 Model of robot . 43
7.2 Model of camera . 44
7.3 Controllers . 47

7.3.1 PID controller . 47
7.3.2 PSD controller . 49
7.3.3 Forward speed controller . 49
7.3.4 ITAE Criterion . 49
7.3.5 Fuzzy control system . 49
7.3.6 Anti wind-up . 50

7.4 The resulting model . 51
7.4.1 Simulation results . 51

8 Implementation 54
8.1 Main code . 54
8.2 Computer vision code . 55

8.2.1 Camera set-up . 55
8.2.2 Image saving . 55
8.2.3 Image showing . 55
8.2.4 Find threshold level . 55
8.2.5 Buffering . 56
8.2.6 Find errors function . 56
8.2.7 Find errors in line functions 57

8.3 Controllers code . 57
8.4 Motors control code . 58

8.4.1 Motors set-up . 58
8.4.2 Write to motors . 58
8.4.3 Normalized speed to PWM . 59
8.4.4 Motor stop . 59

8.5 Support supplements . 59
8.5.1 Logger . 59
8.5.2 UDP communication . 59

8.6 Makefile . 61

9 Conclusion 62

Bibliography 63

LIST OF FIGURES
2.1 Differential drive principle [1] . 12
2.2 Angular position 𝜃, given with the camera frame [2] 15
2.3 Dimensions of the camera set [2] . 16
3.1 Convolution matrix use example [3] 22
3.2 Form of transformation function of contrast stretching [4] 23
3.3 Example of contrast stretching [5] . 23
3.4 Application of the Canny Edge Detector 25
3.5 Application of the Otsu’s algorithm [6] 26
4.1 TI RSLK advanced KIT [7] . 27
4.2 Rom02a layout of the power distribution buses and access points on

the board [8] . 28
4.3 Raspberry pi 3 model B [9] . 30
5.1 Kinematic of differential drive [1] . 37
5.2 PWM on forward velocity dependence for used linear motors 40
6.1 Designed robot testing track . 42
7.1 Camera view geometry . 45
7.2 Camera math . 46
7.3 Simple control loop example . 47
7.4 Control loop with two controllers and continuous and discrete part . . 48
7.5 PID controller diagram . 48
7.6 Scheme of anti wind-up method . 50
7.7 System model consisting of models of robot, its controller and camera

in simulink . 51
7.8 Simulated robot control with calculated optimal controller constants . 53
8.1 Control diagram of modular code . 54
8.2 What robot sees after it takes and threshold image example 56
8.3 Measured deviation and roughness and their history progresses 60
8.4 Histogram (abundance) of measured sample time periods of main loop 61

1 INTRODUCTION
Guide a small robot using camera is not quite new idea, but there are still many
domains that can be improved. Digital image processing has already been developing
for more than fifty years and we can recognize faces and objects, but I would say we
are not even in the middle of it capability. As always, limiting factor is computing
power, but there is also place for optimization and new ideas. My first objective is to
create algorithm that would obtain data from image but would be enough efficient
and fast. Basically I need data for two controllers: first would control forward
speed, second would control angular speed (rotation). If that would work I will try
to obtain some more data, e.g. obstacle presence, line interruption, line crossing
and more.

In my bachelor thesis I want to try to solve this classical problem more mathe-
matically. That means that firstly I have to create mathematical model that would
describe my robot and its behaviour. The best case would be to find linear model,
but I am not sure if it would be possible with my chassis and linear motors. After
that I will design number of controllers of different types using several standard
methods like ITEA criteria. In order to reach the best speed of regulating I want to
apply anti wind-up methods.

Code modularity and recycling is well known idea and one of my aims is to apply
it. I want to create three main blocks of code, each in its own file: one for image
processing, one for controllers and one for motor control. Each of them would have
in advance defined interface so they could communicate with each other. When I
will have to change chassis, robot type, controller or way of getting feedback I just
simply change one of these modules.

11

2 RESEARCH OF MOBILE ROBOT CONTROL
METHODS

Whatever you want to develop, it would by silly to start without checking history
of your topic. That is the reason, why research is so important at the beginning
of every study. In this chapter, I will try to find out something about methods of
mobile robot control, that are already developed.

First I have to specify the exact type of chassis. For different kinds of drives there
are, naturally, different methods of controlling and mathematics of control. For pur-
poses of my thesis I am going to use robot chassis with differential drive. The exact
type is TI-RSLK (Robot System Learning Kit developed by Texas Instruments). [7]

2.1 Differential drive
This means two independently powered wheels. Usually there is also one small
omnidirectional wheel for support that is not powered. Rotation of robot is reached
by difference in angular velocity of individual wheels. It is really simple but effective
concept. This image in simplicity shows, how does differential drive work Figure 2.1.
I am going to explain it more detailed in next chapter.

Some of most known uses of differential drive in industry are robot vacuum
cleaner and some kinds of bagels. Tanc driver is also kind of differential drive, but
it has belts instead of wheels.

Fig. 2.1: Differential drive principle [1]

12

2.2 Trial-and-error method
This is the oldest method usable almost for everything. The reason, why is it so
widespread is its simplicity. It is all about changing constants that determines
relation between inputs and outputs, observing how system changed its behaviour
and trying to find the best combination. But the simplest way do not have to be
the shortest. It can take very long time to find solution for more difficult (more
constants) systems and still, most likely, it will not be the most optimal one. So
maybe it is good for everyday life but not for research. For my purposes I will choose
one of following, more sophisticated methods.

2.3 Mathematical description - transfer function
One of the most powerful methods how to control anything is to find its mathemat-
ical description. Science discipline that deal with this is called theory of control and
it is part of bigger unit called automation. The basic idea is, that each system of
every kind can be described by differential equations where outputs are depended on
inputs and initial conditions. These can be transformed to transfer function using
Laplace transform. Transfer function is defined as the ratio of the output Y(s) of a
system to the input U(s) of a system, in the Laplace domain considering its initial
conditions and equilibrium point to be zero. (2.1)

𝐺(𝑠) = 𝑌 (𝑠)
𝑈(𝑠) = 𝑏𝑚𝑠𝑚 + ... + 𝑏1𝑠 + 𝑏0

𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ... + 𝑎1𝑠 + 𝑎0
(2.1)

Once we are in Laplace domain, in mathematical world, everything is possible.
There are already quantity of verified methods designed for controller designing.
Some of them are:

∙ Nyquist’s stability criterion (Nyquist, 1932)
∙ H. S. Black’s analysis of the feedback amplifier (Black, 1934)
∙ H. W. Bode’s frequency domain analysis (Bode, 1940)
∙ W. R. Evans’ root locus method (Evans, 1948)

[10]

2.4 Feedback
There is no sense of any controller if we did not define what is the correct state.
In other words, what is the objective of robot’s behaviour. In my case feedback
would be provided by use of camera module and object of feedback will be caused
deviation. As you can see in Figure 8.1 feedback feature is enclosing the control

13

loop. There is also a famous and little bit funny proverb beetwen automatics: there
is not automation without measurement.

2.5 PID control applied on a line-follower AGV
using a RGB camera

This article [2] is about using AGVs (Automated Guided Vehicles) in order to opti-
mize material handling and similar systems. The reason is still increasing demand
for efficiency in industry in order to increase productivity and reduce costs. On the
other side, the use of inefficient methods and equipment may result in high costs due
to the repetition of activities and time spent on these tasks. The other advantage
of machines like ITSs (Intelligent Transportation Systems) is a potential to improve
the safety and productivity on port operations.

There is one essential difference between AGVs and classical machines: AVGs are
guided and positioned automatically, that means without a driver. The AGV control
is generally based on laser, camera (optic) systems, magnetic or radio systems. There
is possibility to use a combination of some or all systems, applying data fusion
techniques.

To avoid collisions and deadlocks of the vehicle in its environment, there is need
of consideration of kinematic and dynamic of the vehicle as well as an accurately ex-
ecution of the trajectory provided by the route planner. The mathematical model of
the vehicle can be designed as a SISO (Single Input Single Output), MISO (Multiple
Inputs Single Output), SIMO (Single Input Multiple Output) or MIMO (Multiple
Inputs Multiple Outputs) model, increasing or decreasing the complexity of the
applied control.

My intention, as well as their, is to use PID control method after obtain data
from image. The PID controller is a classic control method as it is one of the
simplest methods capable of stabilizing a system without continuous oscillations
commonly used, even though the non-linearities of the system are not considered.
Its results are in their research compared with more complex control methods and
their analysis demonstrated the non-necessity of control complexity which can save
processing power and make control algorithm quicker.

As a robot model are they using the Pioneer 3DX because of their vastly appli-
cations, industrial simplicity and compatibility with systems like MORSE and ROS.
They consider the kinematic model simplified as a punctual mass and the outputs
of their model for actuators are linear (m/s) and angular (rad/s) velocity of vehicle.

14

2.5.1 Mathematics for camera used as a sensor

Interesting part of their research is image processing. They are using other technique
than I have intended so it can be very enriching. They are using also another camera,
but the idea could be useful for me as I know all essential constants of my camera
that are used in the calculations. The basic difference in out ideas is that they are
calculating the angle between robot axis and guide line Figure 2.2, what is smart,
but it can be insufficient for track with sharp twists. My intention is to take first
few lines of taken image can calculate the line offset from the image axle. Then I
want to take few rows in two thirds of image and make some conclusions for future
controlling and forward velocity.

Fig. 2.2: Angular position 𝜃, given with the camera frame [2]

The angle 𝜃 can be obtained from a and b, see (2.2)

𝜃 = ± arctan(𝑎

𝑏
); (2.2)

The b side is calculated at each sample as a count of white pixels from the centre
of the camera frame to the reference line multiplied by the horizontal size of each
pixel. From a known focal distance 𝑑𝐹 (I need to calculate it or find in data-sheet)

15

and a known sensor width 𝑑𝑆 is possible to obtain the image width (2.3). The sketch
with their original values: Figure 2.3.

tan 𝛼 = 𝑑𝑆

2𝑥𝑑𝐹

= 𝐼𝑀

2𝑥𝐼𝐷
(2.3)

, where IM is a distance between lens and an observed object (paper), in this case
it is equal to 200𝑚𝑚.

Fig. 2.3: Dimensions of the camera set [2]

Now we can calculate a horizontal width of one pixel 𝑑𝑃 as 𝐼𝑀
𝑁𝐻

; 𝑁𝐻 is horizontal
quantity of pixels. Therefore 𝑏 is equal:

𝑏(𝑡) = 𝑁𝑝𝑑𝑝 (2.4)

, and parameter 𝑎 which is constant is equal:

𝑎 = 𝑑𝐶 + 𝑑𝑝

2 (2.5)

, where 𝑑𝐶 and 𝑑𝑝 are constant, see Figure 2.2.

16

The final result, angular deviation, can be obtained from (2.2) and than it can
be used as feedback for designed controller.

17

3 DIGITAL IMAGE PROCESSING
Digital image processing means the use of computer power and algorithms in order
to perform image processing on digital images. From its essence it allows to use much
wider range of algorithms to be applied to the input data. The other advantage is
the absence of problems such as the build-up of noise and signal distortion during
processing. As one of fields of digital signal processing, digital image processing has
many advantages over analogue image processing. While images are usually defined
over two and more dimensions, digital image processing should be modelled in the
form of multidimensional systems. The effort is to reach the biggest versatility. [11]

3.1 History
Before talking about digital image processing, it is convenient to make a point on
the history of digital images.

It could be said that the newspaper industry was a pioneer in one of the firsts
applications of digital images. In the early 1920s, when newspaper images were sent
between London and New York by submarine cable, the introduction of the Bartlane
cable picture transmission system was a leap forward for this industry. In fact, it
decreased the time to transport pictures across the Atlantic from more than a week
to less than three hours. At that time, specialized printing equipment coded the
images for cable transmission and then reconstructed them. While at the beginning
the images were coded with 5 gray levels, in the next nine years this capability was
already increased to 15 levels. The field of digital images was taking off.

Despite these cases are directly related with digital images, they are not con-
sidered as consequences of digital image processing, because of computers were not
implicated in their creation. In this manner, the history of digital image processing
is intimately fixed to the development of the digital computer.

After the development of the computer industry, we can approximate the date
of the birth of digital image processing to the early 1960s. Exactly, in 1964 at the
Jet Propulsion Laboratory (Pasadena, California), when the pictures of the moon
needed to be processed to be watched in the television, it began to work on using
computer techniques for improving images, but because of fairly high computational
cost of processing its progress was not very fast.

In parallel with these space applications, digital image processing techniques
began to be used in medical imaging in the late 1960s and early 1970s, highlighting

18

the invention of the computerized axial tomography (CAT), also called computerized
tomography (CT), and the discovery of the X-rays in 1895. Over the years, the field
of image processing has grown vigorously. Big number of the techniques of digital
image (digital picture) processing have been developed with application to satellite
imagery, wire-photo standards conversion, videophone, character recognition and
photograph enhancement among others.

Now, in addition to applications in medicine and the space program, digital image
processing techniques can be used in a wide variety of applications. Today could
be images processed in real time, for some dedicated problems such as television
standards conversion. As computers intended to general were been becoming faster,
they started to take over the role of dedicated hardware for almost all operations.
Digital image processing has become the most common form of image processing
with the arrival of fast computers and signal processors in the 2000s. [4][12]

3.2 Tasks
Digital image processing opens up new possibilities. Among others it allows the
use of much more complex algorithms, so it can offer both more sophisticated per-
formance at simple tasks, and the implementation of methods which would be im-
possible by analog methods. There are several problems for which we do not know
another solution than using digital image processing:

∙ Feature extraction and pattern recognition
∙ Multi-scale signal analysis
∙ Projection
∙ Classification

Some techniques which are used in digital image processing include:
∙ Pixelation
∙ Anisotropic diffusion
∙ Linear filtering
∙ Hidden Markov models
∙ Image editing and restoration
∙ Independent component analysis
∙ Neural networks
∙ Partial differential equations
∙ Principal components analysis
∙ Self-organizing maps
∙ Wavelets

19

3.3 Image Enhancement
The principal objective of enhancement is to process an image modifying its at-
tributes with the objective of getting as result an image more appropriated than the
original for a specific application. It’s important to point out the concept of specific
application, because depending on this fact, it is wise to use different methods or
specific techniques. Unfortunately, there is not exits a general method that satisfy
all our wants, so it is obvious that the methods for example used for detecting breast
cancer are not the same than the methods used for enhancing pictures of Mars. It
is difficult to give a generic method that works well on all pictures.

The field of image enhancement approaches fall into two categories: spatial do-
main methods and frequency domain methods. [4]

3.3.1 Image Enhancement in the spatial domain

The term spatial domain refers to the image plane itself. The techniques used in this
domain are based on direct manipulation of the pixels of the image. The processes
can be denoted by the expression:

𝑔(𝑥, 𝑦) = 𝑇 [𝑓(𝑥, 𝑦)] (3.1)

where f(x, y) is the input image, g(x, y) is the processed image, and T is an
operator on f, defined over some neighborhood of (x, y). [4]

3.3.2 Image Enhancement in the frequency domain

Unlike Spatial domain, based on the direct manipulation of the pixels, Frequency
domain processing techniques are based on modifying the Fourier transform of an
image. All the operations are realized over the Fourier Transform of the original
image and then the Inverse of this transformation is performed to get the result.

The Fourier transform, F(u), of a single variable, continuous function, f(x), is
defined by the equation:

𝐹 (𝑢) =
∫︁ ∞

−∞
𝑓(𝑥)𝑒−𝑗2𝜋𝑢𝑥 𝑑𝑥 (3.2)

where j =
√

−1. Conversely, given F(u), we can obtain f(x) by means of the
inverse Fourier transform:

𝑓(𝑥) =
∫︁ ∞

−∞
𝐹 (𝑢)𝑒−𝑗2𝜋𝑢𝑥 𝑑𝑢 (3.3)

20

These two equations comprise the Fourier transform pair and indicate the impor-
tant fact that a function can be recovered from its transform. Starting from them,
it is easy to obtain the same equations for two variables.

The Fourier transform of two variables, continuous function:

𝐹 (𝑢, 𝑣) =
∫︁ ∞

−∞

∫︁ ∞

−∞
𝑓(𝑥, 𝑦)𝑒−𝑗2𝜋(𝑢𝑥+𝑣𝑦) 𝑑𝑥𝑑𝑦 (3.4)

and its inverse:

𝑓(𝑥, 𝑦) =
∫︁ ∞

−∞

∫︁ ∞

−∞
𝐹 (𝑢, 𝑣)𝑒−𝑗2𝜋(𝑢𝑥+𝑣𝑦) 𝑑𝑢𝑑𝑣 (3.5)

Also, for discrete functions, we can obtain the Fourier transform of two variables:

𝐹 (𝑢) = 1
𝑀

𝑀−1∑︁
𝑥=0

𝑓(𝑥)𝑒−𝑗2𝜋𝑢𝑥/𝑀 𝑓𝑜𝑟𝑢 = 0, 1, 2, ..., 𝑀 − 1 (3.6)

and its inverse:

𝑓(𝑥) = 1
𝑀

𝑀−1∑︁
𝑥=0

𝐹 (𝑢)𝑒−𝑗2𝜋𝑢𝑥/𝑀 𝑓𝑜𝑟𝑢 = 0, 1, 2, ..., 𝑀 − 1 (3.7)

Knowing these equations and their properties it is possible to work on the fre-
quency domain. [4]

3.4 Main techniques/methods
Currently, there exists a big set of techniques or methods that can be used for image
enhancement. Most of them are usually combined to obtain different algorithms for
process the image.

3.4.1 Filtering

One of the biggest fields of digital image transformations is called filtering. That
means the use of digital filters to sharpen and blur digital images. There are several
ways to perform filtering. The most widespread are performed in the spatial domain
by convolution with specifically designed kernels (filter array), or in the frequency
(Fourier) domain by masking specific frequency regions [4]. The following examples
shows some of them:

∙ Spatial Lowpass
∙ Spatial Highpass
∙ Fourier Representation

21

∙ Fourier Lowpass
∙ Fourier Highpass

The simple example of the convolution matrix use is on Figure 3.1. For more

Fig. 3.1: Convolution matrix use example [3]

examples and further explanation see [3].

3.4.2 Gray-level Transformation

Continuing with the study of all of these techniques, we talk about gray-level trans-
formation functions. It could be said that these are among the simplest of all image
enhancement techniques.

In any of its varieties, a gray-level transformation can be denoted by the expres-
sion:

𝑠 = 𝑇 (𝑟) (3.8)

where T is a transformation that maps a pixel value r into a pixel value s. So,
the values of pixels before processing are denoted by r and the values of pixels after
processing are denoted by s.

Depending on this operator T, it can be different type of gray-level transfor-
mations. The three basic types of functions used frequently are linear (negative
and identity transformations), logarithmic (log and inverse-log transformations) and
power-law (nth power and nth root transformations).

Apart from these typical functions, it must be empathized the technique known
as contrast stretching. This technique is based on darkening the levels below some
level m and heightening the levels above it. Firsts values of the input image are com-
pressed by the transformation function into a narrow range of s, toward black, and
the opposite effect takes place for values above m. The Figure 3.2 shows one possible
form of a transformation function. The level m will depend on the circumstances of
the particular image. [4]

22

s=T(r)

r
Dark Light

D
ar

k

Li

g
h
t

m

T(r)

.

Fig. 3.2: Form of transformation function of contrast stretching [4]

The result of the contrast stretching will be an image with higher contrast than
the original one, its histogram will be spread. The Figure 3.3 is an example of a
real image that shows it. The histogram of the input image ranges from 79 to 136,
however, the histogram of the output one is between 0 (black) and 255 (white).

Fig. 3.3: Example of contrast stretching [5]

3.4.3 Gray-level discontinuities

In a digital image, we may find three types of gray-level discontinuities: points,
lines, and edges.

In this case we only focus on edge detections. Although the objective in this
project of processing of image is to find the line, edge detection is by far the most
common approach for detecting meaningful discontinuities in gray level, so, despite
changes in the lighting conditions or changes in the illumination angle, obtaining

23

the different discontinuities of the picture we can binarize the picture and detect the
track.

There is a wide variety of mathematical methods that has the ability to identify
brightness changes sharply. One of the most used is the Canny Edge Detector.
It is an edge detection operator that using a multi-stage algorithm can detect an
extensive range of edges in images. The operating process of this algorithm can be
divided into 5 steps:

1. Filter the image with a Gaussian filter to smooth the image with the purpose
to reduce the noise and reduce detail.

2. Find the intensity gradients of the image (directional change in the intensity).
3. Apply non-maximum suppression to dispose of spurious response (discarding

the variables that are not causally related to each other).
4. Apply double threshold to determine potential edges.
5. Track edge by hysteresis: Suppressing all the other edges that are weak and

not connected to strong edges.

Besides, during the process there are a number of variable parameters which
can be modified. These can affect the computation time and effectiveness of the
algorithm, so, depending on the objective and their conditions shall be adjustable.
These parameters are:

∙ The size of the Gaussian filter: The use of small filters produce less blurring
on the result and permit the detection of small lines. A larger filter causes
more blurring, spreading the value of a given pixel over a larger area of the
picture.

∙ Thresholds: The application of a threshold too high can discard relevant in-
formation of the image. Conversely, a threshold set too low could wrongly
associate irrelevant information as important.[4][13]

The Figure 3.4 is an example of the application of the Canny Edge Detector in
our algorithm. On one side, the Figure 3.4a shows an original image of the track
obtained directly from the camera, on the other side, the Figure 3.4b shows the
result of the application of this method. Parameters used for this example:

∙ Size of the kernel of the Gaussian filter: 3
∙ First threshold for the hysteresis procedure: 50
∙ Second threshold for the hysteresis procedure: 205
∙ Size of the Sobel kernel to be used internally: 3

24

(a) Original image

(b) Result of the Canny Edge Detector

Fig. 3.4: Application of the Canny Edge Detector

3.4.4 Otsu’s method

The Otsu’s method is one of the most used methods in segmentation. This global
algorithm chooses automatically the threshold level with the purpose of minimize
the intraclass variance of black and with pixels or even to reduce a gray level to
a binary image. Exactly, what it does is work with the histogram of the images
assuming that the image contains two classes of pixels, thus selecting the optimum
threshold level to separate them.

The most notable problem is that it is very sensitive to variations of brightness
so depending on the situation it is not always advisable to use it. Besides, as the
classes of the image increase, it takes more time.

The Figure 3.5 shows an example of the Application of the Otsu’s algorithm. [6]

25

(a) Original image

(b) Image thresholded using Otsu’s algorithm

Fig. 3.5: Application of the Otsu’s algorithm [6]

26

4 USED SOFTWARE AND HARDWARE

4.1 Chassis
The Texas Instruments Robotics Systems Learning Kit (TI-RSLK) is a low-cost
robotics kit which provide students with a deeper understanding of how electronic
system designs work. Developed in collaboration with Dr. Jon Valvano, professor,
electrical and computer engineering at The University of Texas at Austin.

The first in its series is the Maze Edition which comes with more than twenty
learning modules covering basic to lot of advanced topics. Texas instruments created
this robotics learning kit to fill a gap in existing engineering curriculum by intro-
ducing comprehensive course-ware that addresses the fundamentals of embedded
systems and progresses to more advanced applications learning. [7]

The full planted chassis with all electronic from TI-RSLK advanced kit is in
Figure 4.1.

Fig. 4.1: TI RSLK advanced KIT [7]

For my purpose I will use only chassis with motors and theirs driver-board
rom02a from Pololu.

27

4.2 DriverBoard
Rom02a board is motor driver and power distribution board for romi chassis Fig-
ure 4.2 designed by Pololu especially for chassis I am using. Some of features it
offers are battery contact slots, several power switching options, reverse voltage pro-
tection and easy access to the various power buses. There is also two-channel motor
driver and powerful switching step-down regulator (MP4423H) that can supply a
continuous 2.5 A at 5 V or 3.3 V. I am using default pre-set 5 V regulator to power
Raspberry pi. This kit is also designed to allow use Romi Encoder Pair Kit which
can be used to track the rotational speed and direction of the robot’s drive wheels,
but I have decided not tu use them, because camera should be enough feedback for
me.

Exact type of motor driver is DRV8838 from Texas Instruments and it offers
a simple two-pin PHASE/ENABLE control interface which makes available DIR
and PWM control for each motor. The DIR pin controls the motor direction (low
= forward) and the PWM pin controls motor speed through PWM signal. The
DIR and PWM control pins are pulled low through internal pull-down resistors
(app. 100 kohm). Dynamic braking while PWM pin is low is secured with shorting
motor outputs to ground. There are also one SLEEP pin for each motor (by default
connected together) which can be driven to low to get drivers into a low-power sleep
mode and turn off the motor outputs. [8]

Fig. 4.2: Rom02a layout of the power distribution buses and access points on the
board [8]

28

4.3 Raspberry pi 3
It is a small (85mm x 56mm) single-board computer (Figure 4.3a) developed to
promote the teaching of basic computer science. Exact type of raspberry I am using
is Raspberry pi 3 model B and it is the newest generation in time of my study. Most
relevant specifications are:

∙ Quad Core 1.2GHz Broadcom BCM2837 64bit CPU - it is almost twice more
powerful than the second generation, what is really important for me: im-
age is processing is computationally demanding and for purpose of real time
controlling it should be very fast

∙ 1GB RAM
∙ BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board - I have

created a hotspot on my raspberry so I can be directly connected to it through
wi-fi without another equipment. It is practical for sending code to it and also
for logging real-time data while improving controllers

∙ 40-pin extended GPIO Figure 4.3b - two of them are able provide physical
PWM (BCM 13 and BCM 18) so I have decided to use raspberry to directly
control motor drivers and not to use real-time micro-controller between com-
puting and power part as it is usual. On the other hand, raspberry pi is
not a real-time system. If it will not fast enough I will consider real-time
microcontoller use (e.g arduino or atmega)

∙ 4 USB 2 ports - I used them at the beginning to connect mouse and keyboard
in order to setup and enable SSH

∙ 4 Pole stereo output and composite video port
∙ Full size HDMI - As USB ports, I used it first time
∙ CSI camera port for connecting a Raspberry Pi camera - connecting camera

directly to processor is the fastest way for getting images so it is better solution
than using web-camera and USB port

∙ DSI display port for connecting a Raspberry Pi touch-screen display
∙ Micro SD port for loading your operating system and storing data - all data

including operating system are on 8 gb micro SD card
∙ Upgraded switched Micro USB power source up to 2.5A

[9]

First I wanted to use BeagleBone board developed by Texas Instruments which
is based on very similar idea as raspberry, but then I changed my mind for several
reasons. The less essential are my previous experience with raspberry compared to
beaglebone about that I heard first time now and that there is wider support for
raspberry as it is more widespread. The main reason is, that raspberry is more

29

powerful, it has direct connection for camera and is more up-to-date. My raspberry
pi 3 model B version is from 2017 but newest beaglebone Black is from 2013.

(a) Looks (b) Pinout

Fig. 4.3: Raspberry pi 3 model B [9]

4.3.1 Operating system

I am using Raspbian stretch lite as operating system, with newest kernel version
4.9. Raspbian is debian-based computer OS ans it is the officially supported by Rpi
Foundation’s. There is possibility to install it with NOOBS or directly download
the image from their WEB-site. I have used the second one. Raspbian comes pre-
installed with plenty of software for education, programming and general use, but
I needed to install some other. There is their own subsections below for some of
them. Important note is that Raspbian is not a real-time operating system, what
can cause problems in my case.

4.3.2 Process priority

As mentioned above, I am working with no real-time operating system. sys/re-
source.h library - setPriority();

30

4.3.3 Hotspot setting

Because I want to work with raspberry using SSH and also because I am going to
develop code remotely I need to create LAN net between my computer an raspberry.
Doing that with cable is, as I see it, restrictive so I have decided to create wireless
LAN. Using wi-fi router would not be the best choice also, because I would need
to have router everywhere I want to work with raspberry. The best choice I have
decided for is to create access point directly on raspberry, so I can connect to it
any time. I had to install DNS mask, what is something between DNS and DHCP
server, on it to work properly and I have created bridge between Ethernet port and
wireless module on raspberry for the purpose of forwarding the internet.

Firstly I have used RaspAP application to configure access point, but there were
som problems with adjusting settings so I have decided to set it in my own changing
configuration files. The necessary changes are:

∙ IP adress configuration: in /etc/dhcpcd.conf I set a new static profile and
its use in case of fall-back in the end of file. That happens when DHCP server
does not give me an IP address, because that is, how it works here in ESIEE
school. I need to set a special static IP address in order to connect to internet.

∙ Access point configuration: HostAPD (Host access point daemon) software
allows me to connect to Raspberry from other devices like my laptop. Rasp-
berry works like router with DHCP server and it is also forwarding internet.
All settings are set in /etc/hostapd/hostapd.conf. There is also possibility to
change ssid or password.

∙ Select default daemon configuration: in /etc/default/hostapd I had set
Packet forwarding etc/sysctl.d/30-ipforward.conf. There was also need to set
firewall in /etc/iptables.ipv4.nat because internet network on univesity re-
quires it. Firewall settings are saved in /esiee_proxy.sh.

4.3.4 Samba share

Samba is a free software, originally developed by Andrew Tridgell, of the SMB/CIFS
networking protocol which provides file and print services for various Microsoft Win-
dows clients and can integrate with a Microsoft Windows Server domain. Samba
runs on most Unix, OpenVMS and Unix-like systems, such as Linux, Solaris, AIX
and the BSD variants and it is standard on nearly all distributions of Linux and is
commonly included as a basic system service on other Unix-based operating systems
as well. Samba is released under the terms of the GNU General Public License.

After I made required configuration in samba.conf file I can map memory of
raspberry to my laptop as external disc through wi-fi net. All source codes with

31

netbeans project and other data are stored in raspberry’s memory (and also in git)
and I am working with them remotely. In this way I can see saved images without
need of copying them. [14]

4.3.5 X Window System

Also X11 or only X is name of software which is used for creating of graphical user
interface (GUI). Most often is it used in unix systems where it is almost standard.
The base model it is using is client-server and it consists of several independent
components like X server, X protocol, Xlib library etc. This X protocol, transferred
via IPC or TCP/IP, provides feature that running application can be displayed on
another computer than on which it was launched. I am using this opportunity for
seeing (almost immediately) images taken and processed by robot on my laptop
using software called Xming section 4.7. It is very useful for checking correctness of
my algorithms by sight. [15]

4.4 OpenCV
OpenCV (Open Source Computer Vision Library) is an open source software released
under a BSD license and hence it is free for both academic and commercial use. All
around the world there are more than forty-seven thousand people of user community
and estimated number of downloads exceeding fourteen million. Usage ranges from
interactive art, to mines inspection, stitching maps on the web or through advanced
robotics. It has C++, Python and Java interfaces and supports Windows, Linux,
Mac OS, iOS and Android, hence there is wide spectrum where it can be used.
OpenCV was designed for computational efficiency and with a strong focus on real-
time applications. Written in optimized C/C++, the library can take advantage
of multi-core processing. While raspberry pi 3 has quad-core processor I will try
to utilize this opportunity. Enabled with OpenCL, it can take advantage of the
hardware acceleration of the underlying heterogeneous compute platform. Current
newest version I am using is 3.4.1.

Officially is openCV released compiled only with Visual Studio compiler for win-
dows. While I am using MSYS2 MinGW-w64 compilers on my laptop and standard
gcc on raspberry I had to compile it on my own. I have used CMake [16] software
in order to ease the compilation. After successful installation have I needed to con-
figure NetBeans to work properly with this library. Important information is that
openCV is now divided into more smaller libraries, not only one like before, hence
I need to include all parts I am using.

32

In the same way, there is not official compiled distribution for raspberry plat-
form, so I have downloaded openCV from [17] and than, using cmake and standard
commands ’make -j 4’ and ’install’, compiled and installed it. To compile code using
openCV correctly there has to be additional parameter ’‘pkg-config opencv –cflags
–libs‘’ while calling compiler. [18]

4.4.1 WiringPi

Open source library wiringPi released under the GNU LGPLv3 license is intended
to PIN based GPIO access. It is written in C for the BCM2835, BCM2836 and
BCM2837 SoC devices that are used in all Raspberry Pi versions and it is usable
from C, C++ and RTB (BASIC) as well as many other languages with suitable
wrappers. Its design is familiar Arduino ’wiring’ system1, but it is also intended for
use by experienced C/C++ programmers.

WiringPi includes a command-line utility gpio which can be used to control the
GPIO pins. This feature is suitable for reading and writing the pins from shell
scripts. While there is no native analogue hardware on a Pi by default, modules are
provided to support the Gertboards analogue chips and other A/D and D/A devices
can be implemented relatively easily.

Firstly I had problem with manipulating pins because of rights, which are in
Linux policy very important. While I was logged in as normal user ’pi’ I did not
have rights to control physical interface. Gpio utility worked good, but when I tried
to run my own script raspberry became frozen and I needed to do hard restart. Than
I find out that it is working while running as root using sudo command. Although
in documentation is that newest WiringPi should not have this problem I did not
find other way than running as root. That is the reason why I have set Netbeans
to log in raspberry as root, however I am realising that it is not very good solution.
[19]

4.5 Netbeans
Netbeans is an open source project developed under CDDL licence. Netbeans IDE
is an integrated development environment for JAVA, there are extensions for other
programming languages like PHP, C, C++ and HTML5. It allows applications to
be developed from a set of modular software components called modules what could
be useful for my intentions. While it is written in Java it can be transferred to run
on Windows, Linux, Mac OS X, Solaris, OS/2 and more. An IDE is more than only
a text editor: it can indents lines, matches words and brackets, and highlights source

33

code syntactically and semantically. It lets you easily refactor code, with a range of
handy and powerful tools(I appreciate rename tool - to rewrite ale istancies of some
variable), while it also provides code templates, coding tips, and code generators.

The main reason why I decided to use this one is one more time my previous ex-
perience, open source character and possibility to develop C/C++ project remotely.
Writing my code directly on raspberry would be restrictive because I would need
external display, mouse and keyboard and what is worse, there are no so handy text
editors. This way I can test my application on raspbian system without even leaving
the IDE. Once I have set up the remote build host I even do not see any difference
in work-flow between doing local and remote development. Another advantage is,
that I can develop algorithm for image processing locally, what is faster than on
raspberry, and then just simply copy it. [20]

4.5.1 MSYS2

MSYS2 is a software distribution and building platform for Windows which provides
a bash shell, auto-tools, revision control systems and the like for building native
Windows applications using MinGW-w64 tool-chains. Its core is an independent
rewrite of original MSYS, based on modern Cygwin (POSIX compatibility layer) and
MinGW-w64 with the aim of better interoperability with native Windows software.
It features a Pacman package management system to provide easy installation of
packages. It brings many powerful features such as dependency resolution and
simple complete system upgrades, as well as straight-forward package building. The
MinGW-w64 gcc and gpp compilers are exactly the reason why I have used it. With
older MinGW compilers I had problem while compiling openCV. [21]

4.6 Matlab
This software combines a interactive desktop environment tuned for iterative anal-
ysis and design processes with a programming language that expresses matrix and
array mathematics directly. Its biggest advantage is great number of external tools
and supplements which can be used to solve as very easy tasks in easy way so also
very complex and difficult problems. The tool I am using is called Simulink. It
is a block diagram environment for multi-domain simulation and Model-Based De-
sign. This is exactly what I need, because I want to create mathematical model of
my robot and then create controller using model-based design technique. Simulink
provides a graphical editor, wide customizable block libraries, and solvers for mod-
elling and simulating dynamic systems. It also supports many more functions, like
system-level design, simulation, automatic code generation, and continuous test and

34

verification of embedded systems, which will not be very useful for me. What is very
useful is that it is integrated with matlab, enabling to incorporate matlab algorithms
into models and export simulation results to MATLAB for further analysis. That
means that I can provide parameters to simulation from matlab file and, in similar
way, save results from simulation to workspace, process them or just plot them. I
will use this feature while designing controller using ITAE criteria.

There are many third part tools like 𝑗𝑢𝑑𝑝, which is free in contrast with original
matlab supplements. It is a small piece of code, which allows communication trough
UDP connection. I am using it for sending some data, such deviations and taken
time, to matlab and the process and plot them.

4.7 Xming
Xming is an open-source(GNU-GPL) port of X server for Microsoft Windows OS.
The main difference with Cygwin is, that Xming does not provide full-fledged Linux
environment. It allows to access to XDMCP (X display manager is system pro-
cess in graphical system X window which allows user to log in from local computer
or trough computer network) session running on remote computer with another X
server and start, see and manipulate with remote X application using tunnelling of
SSH protocol. This is possible with PuTTy, but there is need to allow X11 for-
warding. In very similar way, this feature is provided by NetBeans when developed
code is running on remote machine. I am using it for purpose of controlling my
image processing and deviation obtaining algorithms. After I process image I use
an openCV function 𝑐𝑣 :: 𝑖𝑚𝑠ℎ𝑜𝑤() which opens my image in, only connected, re-
mote display provided by Xming. In this way I can see what my robot see and it is
very fast, what is important for me, in order to keep the sample period as short as
possible.

35

5 MATHEMATICS OF DIFFERENTIAL DRIVE

5.1 Linear model of my robot
Firstly I want to try to create liner model of my robot, because in that case I could
use many methods which were developed for designing controllers for linear systems.
Because differential drive is non-linear system also its mathematical description is
non-linear. There is way how to linearise non-linear system, but such simplified
model is correct only around working point which could be insufficient for my pur-
pose. While I can use powerful computers and professional software, firstly I will
try to design controller on non-linear system using model-based design.

5.2 Differential drive kinematics
Differential drive is one of the most used drive for mobile robots. The basic idea
consists of two independently driven wheels on one common axis. While we can
adjust velocity of each wheel in both directions (forward and backward), the robot
has to rotate about the ICC (Instantaneous Centre of Curvature) point, which has
to lie along centre common axis of both wheels. Than I can write following equations
(5.1), which determine velocities of individual wheels from known angular speed 𝜔

and wheelbase 𝑙, which is distance between centres of wheels. 𝑅 is distance from
middle-point between the wheels to ICC point and 𝑉𝑟 and 𝑉𝑙 are velocities of right
and left wheel. [22]

𝑉𝑟 = 𝜔

(︃
𝑅 + 𝑙

2

)︃

𝑉𝑙 = 𝜔

(︃
𝑅 − 𝑙

2

)︃ (5.1)

From these velocities is possible to determine 𝑅 (5.2) and 𝜔 (5.3) in any time:

𝑅 = 𝑙

2
𝑉𝑟 + 𝑉𝑙

𝑉𝑟 − 𝑉𝑙

; (5.2)

𝜔 = 𝑉𝑟 − 𝑉𝑙

𝑙
(5.3)

For better understanding of these equations see the Figure 5.1.

With this kind of robot drive there are three interesting cases:
∙ 𝑉𝑙 = 𝑉𝑟 -> straight forward motion; R = ∞ and 𝜔 = 0
∙ 𝑉𝑙 = −𝑉𝑟 -> rotation about the midpoint of the wheel axis; R = 0 => rotating

in place
∙ 𝑉𝑙 = 0 or 𝑉𝑟 = 0 -> rotation about one of the wheels; R = 𝑙

2 for this case

36

ICC

(x,y)

vl

vr

R

L/2

ω

θ

Fig. 5.1: Kinematic of differential drive [1]

5.3 Forward kinematics for differential drive robot
Now we can assume, that robot is at position (𝑥, 𝑦) making angle 𝜃 with X axis.
Now we can get robot to move to new position and orientation by manipulating the
control parameters 𝑉𝑙, 𝑉𝑟.

Using equation (5.2) we can from known velocities find current ICC position
(5.4):

𝐼𝐶𝐶 = [𝑥 − 𝑅 sin(𝜃), 𝑦 + 𝑅 cos(𝜃)] (5.4)

and determine the robots position in time 𝑡 + 𝛿𝑡 (5.5):
⎡⎢⎢⎣
𝑥′

𝑦′

𝜃′

⎤⎥⎥⎦ =

⎡⎢⎢⎣
cos(𝜔𝛿𝑡) − sin(𝜔𝛿𝑡) 0
sin(𝜔𝛿𝑡) cos(𝜔𝛿𝑡) 0

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑥 − 𝐼𝐶𝐶𝑥

𝑦 − 𝐼𝐶𝐶𝑦

𝜃

⎤⎥⎥⎦+

⎡⎢⎢⎣
𝐼𝐶𝐶𝑥

𝐼𝐶𝐶𝑦

𝜔𝛿𝑡

⎤⎥⎥⎦ (5.5)

This equation is simply describing the motion of a robot rotating with an angular
velocity of 𝜔 in a distance R about its ICC.

There are two special cases, where previous equations could be unnecessary or
even not applicable. First of them is case, when is truth, that 𝑣𝑙 = 𝑣𝑟 = 𝑣, both
wheels have the same velocity what cause, that robot is moving in a straight line.
In a such case it is obvious from (5.2), that R value become equal to infinity(there is
division by zero), which means, that ICC point is also in infinity distance. That is

37

real problem, because it cause my solution get into singularity point. The adjusted
motion equations are: ⎡⎢⎢⎣

𝑥′

𝑦′

𝜃′

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑥 + 𝑣 cos(𝜃)𝛿𝑡)
𝑦 + 𝑣 sin(𝜃)𝛿𝑡)

𝜃

⎤⎥⎥⎦ (5.6)

The second special become, when 𝑣𝑟 = −𝑣𝑙, the absolute values of both velocities
are equal, but they have different sign. In this case, there is a denominator equal
to zero in (5.2), the ICC point is exactly in the middle of wheel axis. In the result
robot rotates in place and the equations become:⎡⎢⎢⎣

𝑥′

𝑦′

𝜃′

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑥

𝑦

𝜃 + 2𝑣𝛿𝑡/𝑙

⎤⎥⎥⎦ (5.7)

[23]

5.4 Inverse kinematic of differential drive robot
As I explained, the forward kinematics objective is to provide new position from
given wheel speeds (or encoder counts). Obviously, then we can also think to an in-
verse problem: Robot is on position (𝑥, 𝑦, 𝜃) at time 𝑡. Determine control parameters
𝑣𝑙 and 𝑣𝑟 such that the new position at time 𝑡′ = (𝑡 + 𝛿𝑡) is (𝑥′, 𝑦′, 𝜃′).

There is one unpleasant fact in way of finding solution. Differential drive belongs
to the group of non-holomic systems(as the most of vehicles and robots). That means
certain limitation in its movement. For example, robot cannot move directly along
axis of its wheels. Car is also a non-holonomic and that is why pocket parking is
so hard. The result is, that I cannot simply specify an arbitrary robot pose (𝑥, 𝑦, 𝜃)
and find the velocities that will get us there.

5.5 Continuous model
Although previous model is correct, after I modelled it in Matlab I realised, that it
is discrete. Second problem is, that I need equation in ODE (Ordinary differential
equation) shape, what means, that on left side are derivations of state variables and
on right side their function. The equations I found (5.8) are much more simple than
previous description. [24]

𝑥̇(𝑡) = 𝑣(𝑡)𝑐𝑜𝑠(𝜃(𝑡))
𝑦̇(𝑡) = 𝑣(𝑡)𝑠𝑖𝑛(𝜃(𝑡))

𝜃(𝑡) = 𝑤(𝑡)
(5.8)

38

5.6 Constants of my robot
Specific values for my robot are:

∙ Wheelbase, distance between centres of wheels = 0, 14𝑚

∙ Diameter of wheel = 0, 07𝑚

∙ Maximal PWM value is equal to 1023, because there is ten bit resolution. The
insensitivity starts at PWM = 70.

∙ Maximal speed of wheel = 0, 725𝑚/𝑠

∙ Maximal angular speed = 9, 0625𝑟𝑎𝑑/𝑠

5.7 Motors characteristic
I am using linear motors to drive my robot. Linear motors have very unstable char-
acteristic: it is always more-less linear, but it can move up and down depending on
its load. How great is load affecting motors can depend on wheel size, robot weight,
acceleration and friction. Also state of accumulators can influence characteristic of
motors which powers. This is a big contrast with stepper motors where one step
corresponds to a specific angle and in reasonable range of load it does not change.

In order to provide the best conditions for controllers I measured characteristic
of used motors. I was doing this with fully assembled robot in order to obtain
useful information. Changing PWM values for both motors in step of size 100 I
measured the distance driven in particular time. From this values is very easy to
calculate speed and plot Figure 5.2 the PWM dependence on required speed. I
watched that when I set same PWM for both motors it is not going straight, but it
is turning, so I decided to measure one characteristic for each motor. Although, after
several measurements it starts to turn to opposite side. That means, that motor’s
inaccuracy is so big, that there is no sense to make two characteristics. I used least
square method (in excel) and find the polynomial function of second degree that
describes my characteristic.

39

Fig. 5.2: PWM on forward velocity dependence for used linear motors

40

6 TRACK DESIGNING
One of the most important part while designing something is testing. If tests are
not detailed and strict enough, there is no certainty that machine or whatever will
works right. Time invested into making tests is not wasted. In my case I have to
design a testing track. It will consists from white ground (paper) and black line
made from black electrical tape wide 17 mm. There could be also some obstacles,
what would be very advanced task.

Testing track has to contain:
∙ Straight route - velocity controller testing. When there is a relatively straight

line before the robot, it should accelerate in order to reach the best time.
∙ Curve - this track feature will tests the angular velocity controller. Robot

has to be able to compensate any deviation between its centre and line centre
- that is its basic purpose.

∙ Sharp curve - also for velocity controller testing. In similar way, when the
track before the robot is winding, robot has to slow down to reach necessary
reaction time.

∙ Crossing - line crossing is very often seen feature of testing tracks and it is
not so difficult to treat it, because we know, that there are no right angles on
track. Robot should continue following its own line.

∙ Split - also very frequent feature. Usually, there are given rules in advance,
what robot should does in a such case. If it should follow left or right line, or
there are more difficult conditions.

∙ Interruption - when there is an interruption in line, robot should be able to
find line one more time. Elementary, this could be implemented just as it will
continue driving directly in its current direction. However, with camera, there
can be implemented more sophisticated algorithms for line re-find

∙ Interruption in curve - very similar to previous feature. The only difference
is, that after line lost robot will not continue in direct motion, but really in its
current motion. That means, there has to be buffer that will contains several
previous values of its speed, so it can truly continue in its previous motion.

∙ Two lines near each other - more complex test. When there are two lines
very near each other, it is easy to mistaken the actual followed by the second
one.

∙ Light changing - while using camera, lighting conditions are very important.
There is needed sufficient external lighting, because camera does not have its
own source of light, but it can usually vary. That is the reason, why there
has to be implemented quality and robust feature, that will provide optimal

41

threshold level for each image. Second huge problem are shadows, but that is
out of scope of my thesis.

For the track background I am using nine white hard papers conglomerate to-
gether by duct tape because I did not obtain large enough paper in one piece without
pattern. Only problem which can rise is, that paper joins are imperfect what can
cause difficulties in image processing. The route itself I painted with black colour
and its borders are made with fix. The specific track I designed with all its features
and subsequently tested my robot on it is in Figure 6.1.

Fig. 6.1: Designed robot testing track

42

7 MODEL
Considering the relatively very powerful computers and software we have available
nowadays, one of the best ways how to design controller is to create mathematical
model of given system. Then we can can design arbitrary number of controller and
test them virtually, in theoretical sphere. There are two biggest advantages in this
approaches are: speed and safety. In speed I mean, that simulated time can run
much more fast then real time, it depends only on computer performance, so it can
be theoretically infinitely fast. The second advantage, safety, is coming from the
nature of this approach: we are not using real system, so we cannot damage it while
using incorrectly set controller.

There are also several disadvantages. Most common between them is, that usu-
ally it is not easy to find exact mathematical model of our system so in most of
cases are we using simplified model where we neglect some aspect which, as we
hope, have small enough impact on mode behaviour. Eventually, this can have con-
siderable big influence while using very sensitive system, non-robust controller or
long time of simulation. In my work, e.g. I am neglecting wheel steering, level of
battery recharge, non-linearity of motors, noise etc.

My model is divided into three main parts: controlling(two controllers), model
of robot and model of camera.

7.1 Model of robot
Mathematical models of differential drive are described in chapter chapter 5. As
Matlab allows continuous simulation I am using continuous model. In real robot I
am calculate real speed for left and right motor from normalized values for forward
and angular speed. That would not be need in simulink model, because input values
are forward and angular speed. Problem is, that in real code I am implemented also
ramp in order to avoid very big change in required speed. These ramps are applied
on left and right wheel separately, so also in model I need to first calculate right
and left speed (7.1), apply ramp and then calculate back forward and angular speed
for model. Following equations show, how to obtain velocity for both wheels from
robot velocities, all in normalized values.

𝐿𝑛 = 𝑣𝑛 + 𝜔𝑛

𝑅𝑛 = 𝑣𝑛 − 𝜔𝑛

(7.1)

43

Obviously, the sum of forward and angular speed has to be lower than one in order
to keep motor speed normalize in range <-1, 1>. For this purpose I am using anti
wind-up method described in subsection 7.3.6

Next step is to determine real speed from normalized values. For this purpose
we need maximal values which corresponds with normalized values equal to one.
I measured that maximal forward speed is 𝑣𝑚𝑎𝑥 = 0, 725𝑚/𝑠. From this I can
calculate maximal angular speed as following:

𝜔𝑚𝑎𝑥 = 𝑣𝑚𝑎𝑥
𝑊𝐻𝐸𝐸𝐿𝐵𝐴𝑆𝐸

2 = 9, 063𝑟𝑎𝑑/𝑠 (7.2)

Because dependence of motor speed on written PWM is not really linear, in real
robot I am using measured polynomial characteristic from section 5.7.

7.2 Model of camera
In order to design usable controller I need to have real feedback from camera also
in simulation. That means what value would camera return in specific position of
robot and guide line in specific time. For this purpose I need to know what camera
really see. Because camera and track are not making a 0∘ but 45∘ angle, also real
array which camera sees would not be regular square but trapezoid with bases 𝑏1

and 𝑏2 and sides both 𝑠1 and 𝑠2. Centre of shortest base is 0, 10𝑚 from robot’s
centre, as it is shown in Figure 7.1 , where

𝑠1 = 𝑠2 = 0, 20𝑚

𝑏1 = 0, 10𝑚

𝑏2 = 0, 22𝑚

(7.3)

In my C++ code I am looking in one row in order to find deviation. I need to
do the same in my mathematical model. To find required equations I need to make
sketch first: Figure 7.2.

Now I can express coordinates for both P points, which are border points on my
’what camera see’ line as following:

𝑃1𝑥 = 𝑥0 + 𝑠 * 𝑐𝑜𝑠(𝜃 + 𝛼)
𝑃1𝑦 = 𝑦0 + 𝑠 * 𝑠𝑖𝑛(𝜃 + 𝛼)
𝑃2𝑥 = 𝑥0 + 𝑠 * 𝑐𝑜𝑠(𝜃 − 𝛼)
𝑃2𝑦 = 𝑦0 + 𝑠 * 𝑠𝑖𝑛(𝜃 − 𝛼)

(7.4)

Next step is to find 𝑃𝑚 point (7.5), which is middle point between 𝑃1 and 𝑃2.
It is useful, because I want to parametric description of line, so parameter 𝑡 will be

44

𝑠1 𝑠2

𝑏1

𝑏2

𝑃1 𝑃2

x 𝑅𝑜𝑏𝑜𝑡 𝑐𝑒𝑛𝑡𝑟𝑒

Fig. 7.1: Camera view geometry

equal to deviation I want to find. Because of the same reason I need to find also
vector 𝑢 (7.6) in direction from 𝑃𝑚 to 𝑃1. 𝑃1 is on left side of my robot, so also the
sign will be the same as for real deviation (minus on left).

𝑃𝑚 = [𝑃1𝑥 + 𝑃2𝑥

2 ; 𝑃1𝑦 + 𝑃2𝑦

2] (7.5)

𝑢 = 𝑃1 − 𝑃𝑚 (7.6)

Finally, the parametric description of my ’what robot see’ line is following:

𝑥 = 𝑃𝑚𝑥 + 𝑡 * 𝑢𝑥

𝑦 = 𝑃𝑚𝑦 + 𝑡 * 𝑢𝑦

(7.7)

45

𝑦

𝑥

𝑥0

𝑦0

[0, 0]

𝑠

𝑠

𝑙

𝑟

𝑃1

𝑃𝑚

𝑃2
𝛼

𝛼 𝜃

.

Fig. 7.2: Camera math

, where parameter 𝑡 is in range < −1, 1 > for each point which lies in visible zone
of my robot.

In order to find out actual deviation have to I found the intersection between
guide line and ’what robot see’ line. I am using in my simulation only linear guide
line described as following:

𝑥 = 𝐴𝑥 + 𝑘 * 𝑣𝑥

𝑦 = 𝐴𝑦 + 𝑘 * 𝑣𝑦

(7.8)

, therefore it is easy to express value of parameter 𝑡 in point of intersection:

𝑡 =
𝐴𝑥 − 𝑣𝑥

𝑣𝑦
𝐴𝑦 − 𝑃𝑚𝑥 + 𝑣𝑥

𝑣𝑦
𝑃𝑚𝑦

𝑢𝑥 − 𝑣𝑥

𝑣𝑦
𝑢𝑦

(7.9)

In special case, when guide line is parallel with x axis, previous equation would
not work because there will be division by zero. Hence the equation will be:

𝑡 = 𝐴𝑦

𝑢𝑦

+ 𝑃𝑚𝑦

𝑢𝑦

(7.10)

The parameter 𝑡 is then directly the deviation. If its value is not in range
< −1, 1 >, that means that robot cannot see line and I will end my simulation.

46

7.3 Controllers
This is the most important part of my work. Good controller is core of every
automotive system. Theory of control offers wide scale of type of controllers on
techniques for their tuning, but most of them are developed for linear systems. Its
objective is to keep controlled system in specific state, so it needs some feedback
from system, how far our it is from required state. Controller than determine how
big should be action taken in the system. In this way there rise a closed loop which
we call control loop. The basic control loop, containing controller and controlled
system, looks like Figure 7.3. , where

e(t)
CONTROLLER SYSTEM

w(t) x(t)

v1(t)

y(t)

v2(t)

Fig. 7.3: Simple control loop example

∙ w(t) - wanted or required value - required deviation of robot and guide line
(because my objective is to follow line, it is always equal to zero (t) = 0).

∙ y(t) - controlled value - actual deviation of robot and guide line. This will be
measured by camera.

∙ e(t) - controlling error - difference between required and actual deviation e(t)
= w(t) - y(t). This is an input for my controller.

∙ x(t) - action - action(output) of controller, in my case it is speed of both
motors.

∙ v(t) - fault quantities - they appears in different places and controller should
compensate them.

This is loop only with one controller and all values are continuous. In my case
there will be two controllers and only robot system will be continuous, all other like
controller (implemented digitally) and feedback provided by camera (with specific
frame-rate) will be discrete. My control loop then looks more like Figure 7.4.

7.3.1 PID controller

A proportional–integral–derivative controller (PID controller or three term con-
troller) is a control loop feedback mechanism widely used in industrial control sys-
tems and a variety of other applications requiring continuously modulated control.

47

el(t)

ANGULAR SPEED

CONTROLLER
ROBOT

wa(t)=0

vl(t)
y(t)

c(t)

LINEAR SPEED
CONTROLLER

ROBOT DRIVE

CHARACTERISTICS vr(t)

v(t)

ω(t)

CAMERA

CONTINUOUS
PART

DISCRETE
PART

wl(t)

ea(t)

 Ɛa(t)

Ɛl(t)

Fig. 7.4: Control loop with two controllers and continuous and discrete part

A PID controller continuously takes an error value 𝑒(𝑡) and applies a correction
based on proportional, integral, and derivative terms (denoted P, I, and D respec-
tively) Figure 7.5 which give the controller its name. By nature of my robot and

INTEGRAL

xi = Ki e(t) dt

PROPORTIONAL
xp = Kp e(t)

DERIVATIVE

xd = Kd d e(t)/dt

e(t) x(t)

xp(t)

xi(t)

xd(t)

Fig. 7.5: PID controller diagram

way of its control there is an integral element already in system. The reason is that I
am controlling the error - deviation(distance) by speed of rotation. My active value
is derivation of controlled value so there is an integral between them in direction of
control loop.

48

7.3.2 PSD controller

My controller will be implemented in raspberry pi, so I will use its discrete variant
called PSD (proportional–sum–difference) controller. The only difference is, that
instead of integrator there is an accumulator (sum) a instead of differentiator there
is difference of actual and previous value. These elements are doing their function
always once in sample period.

7.3.3 Forward speed controller

After several attempts I decided that controller for forward speed will contain only P
term and constant value. The resulting forward speed can be calculated as following:

𝑣𝐿 = 𝑣𝐿𝐶 + 𝑣𝐿𝑉 * (1 − 𝑒𝑅) (7.11)

, where 𝑣𝐿 is resulting forward speed, 𝑣𝐿𝐶 is constant term of resulting forward speed
and 𝑣𝐿𝑉 is its variable term. 𝑒𝑅 is roughness error value determined by computer
vision module in range < 0, 1 >.

7.3.4 ITAE Criterion

Integral of Time-multiplied Absolute value of Error criterion is very simple and
very powerful method of tuning PID controllers. Its objection is to minimize value
given by (7.12). We start at certain initial set of constants and then use iterative
minimization algorithm like simplex method to find the minimum. For this purpose
am I using 𝑓𝑚𝑖𝑛𝑠𝑒𝑎𝑟𝑐ℎ() function implemented in matlab standard library. By
nature, obviously, it is not an algebraic method nor it is brute-force method, but it
is almost impossible to use it without computer. Also with computer it takes about
several tens of seconds to find the result. Advantage of this method is, that it can
work with slightly non-linear system, but it do not have to always find real minimum
and it can be very unstable. For instance, when I am running the same simulation
with different simulation time it always find very different set of constants.

𝐼 =
∫︁ ∞

0
|𝑒| · 𝑡 · 𝑑𝑡 (7.12)

7.3.5 Fuzzy control system

Another, in machine control widely used, control system based on fuzzy logic math-
ematical system. It analyses analogue input values in terms of logical variables that
take on continuous values in range < 0, 1 > which are equal to probability for given
variable. In contrast, classical or digital logic operates on discrete values of either
1 (true) or 0 (false). The term ’fuzzy’ express the fact that the logic involved can

49

deal with concepts that cannot be expressed only as the ’true’ or ’false’ but rather
as ’partially true’. Although alternative approaches such as genetic algorithms and
neural networks can perform just as well as fuzzy logic in many cases, fuzzy logic
has the advantage that the solution to the problem can be cast in terms that human
operators can understand, so that their experience can be used in the design of the
controller. This makes it easier to mechanize tasks that are already successfully
performed by humans. Obviously, it has a sense to use it when there are more
input and output variables which are depended on each other. In my case, when
there are only one input and one output variable, there is no great sense to use it
in comparison with PID controller, which is very well developed nowadays. [25]

7.3.6 Anti wind-up

Wind-up is a very common phenomenon when output of physical systems is limited
(and it always is) and in certain point in saturate, but integrator element in con-
troller, in order to compensate error as soon as possible, is still integrating. In this
case, the output of controller is still raising without any effect on controlled sys-
tem. Problem happened when error is finally compensated, but integral has already
integrated very big number and there is need to un-integrate it. This takes such
a significant amount of time to recover within the operating range of the actuator
and so causes a lag in response. This process can repeat itself as a limit cycle, or
eventually converge towards the commanded value depending on the set gain and
system response. There are many ways how to prevent this effect, which are very
easy to implement in digital controller. The way I chose is based on creating new
closed loop from point after saturation of actuator to point before integrator. In
this way, the value which is saturated multiplied by constant is deducted from error
value which is integrated. [26]

INTEGRATOR
e(t)

x(t)

xp(t)

xi(t)

xd(t)DERIVATOR

Kp

Kp

Kp

SATURATION

Kw

Fig. 7.6: Scheme of anti wind-up method

50

7.4 The resulting model
The resulting model, created in simulink, is outcome of many previous sub-models
and improvements and it is part of more complex script which provides variables
for model, data logging, their processing and plotting and some more complex tasks
like application of ITAE criteria. How it looks is shown in Figure 7.7.

Fig. 7.7: System model consisting of models of robot, its controller and camera in
simulink

7.4.1 Simulation results

Below is a table Equation 7.4.1 with several combinations of initial position

[𝑥_𝑖𝑛𝑖𝑡, 𝑦_𝑖𝑛𝑖𝑡, 𝑡ℎ𝑒𝑡𝑎_𝑖𝑛𝑖𝑡] (7.13)

and guide line defined by point

𝐴 = [𝑎𝑥, 𝑎𝑦] (7.14)

and vector
𝑣⃗ = [𝑣𝑥, 𝑣𝑦] (7.15)

and determined constants
[𝐾𝑝, 𝐾𝑖, 𝐾𝑑] (7.16)

for PID controller for angular speed. Shift value means how far is robot centre from
guide line and angle value is angle between robot main axis and guide line.

51

Initial position Guide line definition Shift Angle PID constants
[𝑚, 𝑚, ∘] [𝑎𝑥, 𝑎𝑦] [𝑣𝑥, 𝑣𝑦] [𝑚] [∘] [𝐾𝑝, 𝐾𝑖, 𝐾𝑑]
[0.00, 0, 0] [0, 0] [1, 1/3] 0.00 19.47∘ [0.48, −0.01, 0.01]
[0.00, 0, 0] [0, 0] [1, 2/9] 0.00 12.83∘ [0.53, −0.01, 0.01]
[0.00, 0, 0] [0, 0] [1, 4/9] 0.00 26.39∘ [0.47, −0.01, 0.01]
[0.00, 0, 0] [0, 0] [1, 1/2] 0.00 30.00∘ [0.47, −0.01, 0.01]
[0.01, 0, 0] [0, 0] [1, 1/3] 0.01 19.47∘ [0.48, −0.04, 0.01]
[0.02, 0, 0] [0, 0] [1, 1/3] 0.02 19.47∘ [0.48, −0.06, 0.01]
[0.03, 0, 0] [0, 0] [1, 1/3] 0.03 19.47∘ [0.47, −0.06, 0.01]
[0.04, 0, 0] [0, 0] [1, 1/3] 0.04 19.47∘ [0.47, −0.10, 0.01]

Average values for resulting constants are [0.48, 0.05, 0.01] and dispersion [0.02, 0.03, 0.00];
While I and D terms are negligibly small (the order of the hundredths) I will imple-
ment them into robot as zero. This can be caused by I term that is already in my
controlled system-robot: I am controlling deviation 𝑠 by velocity 𝑑𝑠

𝑑𝑡
.

Graphic view of calculated result (first row of table) can be seen in Figure 7.8.
This graph shows 2D space where blue line is a guide line, green one is centre of
robot and red one is centre of line where robot measures its deviation from guide
line.

52

x position [m]
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

y
po

si
tio

n
[m

]

-0.02

0

0.02

0.04

0.06

0.08

Guide line and real trajectory comparison
Robot trajectory
Gudie line
Midpoint of "SEE" line

Fig. 7.8: Simulated robot control with calculated optimal controller constants

53

8 IMPLEMENTATION
When working on some project that is no strictly specialized, good idea is to make
it modular. That means every module lives its own life independent on others and
they communicate only by theirs interfaces. Biggest advantage is that when one
change part of real system (camera for IR sensors or LIDAR or drive for another
type) there is need to write again (or change) only that one specific part of code.
That caused development much more faster and code reusable.

Basic idea of my control loop, how it is implemented in code, can be seen in
Figure 8.1

CONTROLLERS
MOTOR
CONTROL

IMAGE
PROCESSING

CAMERA REAL
ROBOT

Image
Data

Deviation

Roughness

Angular
speed

Linear
speed

Left
motor

Right
motor

Fig. 8.1: Control diagram of modular code

I have split my code into five main blocks/modules:
∙ Main
∙ Computer vision
∙ Controllers
∙ Motor control
∙ Other support

8.1 Main code
In this file, main.cpp, is only one function main(). It should be as simple and
summary as possible so there are only function calls from other files. In the beginning
of main() function, there are setup function calls which should be done only once.
Follows infinite while loop which contains calls of functions required for image taking,
its processing, controlling and data logging. This cycle is executed every sample
period. In the beginning of every cycle it checks if certain pin is shorten to ground
and in a such case is the while cycle finished using break(). Subsequently, function
for safe finish like motors cut-of and file closing are called and whole process is
finished.

54

8.2 Computer vision code
This module contains everything which is related with camera, image processing ant
its saving. There is defined that all images in my code resolution will be 320𝑥240
pixels. I need to have image as small as possible in order to keep process as fast as
possible but detailed enough for data obtaining purposes.

8.2.1 Camera set-up

Called in the beginning of main loop. First it tries to open camera with 𝐼𝐷 = 0
(there is only one camera connected) and in case of failure it writes error message
and exit application. Next step is to set above mentioned resolution.

8.2.2 Image saving

Save image from argument to file /home/pi/ROBOT/CAM/ as im with suffix 𝑖

which is a number also passed by parameter in bitmap (.bmp) format. These images
can be seen by any remote FTS client or by mapping raspberry memory to working
laptop.

8.2.3 Image showing

For showing images real-time. As my virtual display created using Xming section 4.7
is only connected display they will be shown there on my laptop. It is very good
way for controlling what really going on inside.

8.2.4 Find threshold level

Very important part of image processing. When good threshold is done and there
stays only guide line in image, obtaining data is much more easy. In other case it is
very difficult to decide what is really line and what is not. In some cases e.g. when
one side of image is much more lighter the other mere threshold is insufficient and
there are more complex method but I will not use them because of their computa-
tional difficulty. I have tried several methods of obtaining threshold level, among
them: average, median, histogram or only constant. It was really surprising that
poor constant 100 works very well and it takes almost no time to find it. I have tried
also some very complex methods (contrast stretching, canny for edges obtaining and
Otsu’s method) using openCV core libraries which works also very well, but it takes
15𝑚𝑠 that is unaffordable for my purposes.

Example what ’robot sees’ after it takes and threshold image is in Figure 8.2.

55

Fig. 8.2: What robot sees after it takes and threshold image example

8.2.5 Buffering

In computer vision header file there is defined a buffer class which is storing last 𝑛

(count depends on actual linear velocity) values of previous deviation and in case of
line lost or other complication it predicts new deviation as average of stored values.
This allows to continue in right way when intersection is located in arc.

When linear speed is at 10% of maximal speed (7, 25𝑐𝑚/𝑠), I am storing 20
previous values to buffer and sample period is 40𝑚𝑠 am I considering values stored
in previous 5, 8𝑐𝑚 while predicting new value.

8.2.6 Find errors function

Mother function for obtaining errors. It calls other created functions designed for
obtaining line error in one specific line and use them to determine actual deviation
and roughness of guide line. In some cases when these functions throws exceptions
above mentioned buffer class is used to find deviation.

56

Roughness value is calculated as a sum of absolute values of deviations in several
(I am using five) rows across whole height of image. If a line is not find in specific
row value 0.5 is used. This sum is subsequently normalized: it is divided by 3
although maximal value of this sum is theoretically equal to 9. I do not assume that
line can be so winding in reality. After all this value is cut to one because it could
be potentially greater than one because of my assumption.

8.2.7 Find errors in line functions

I have created two of this functions. First starts from centre and the second starts
from right edge. In first case I start with supposition that from nature of this task
(line following) the biggest probability for guide line position is centre of image.
I start with centre of considered image line and check if it lies on guide line. If
it is so I will find its left and right edges. In other case I will start to inquire
alternately on one side and the other in an effort to find line and, eventually, its
edges. After that there several tests on found result. First I check if I found both
borders or at least one of them. If no border was found I will throw an exception
(probably it can be guide line intersection); if one was found I set the second one
to its maximal value. In next step the width of potential line is controlled; there
are defined assumed maximal and minimal values. Last test is about centre shift: if
it is too long probably it is a blunder because there is no way for so fast change of
robot position. If found result is evaluated as valid centre is calculated as (8.1) and
normalized deviation as (8.2)

𝑐𝑒𝑛𝑡𝑟𝑒 = 𝑙𝑒𝑓𝑡 + 𝑟𝑖𝑔ℎ𝑡

2 ; (8.1)

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 2 * 𝑐𝑒𝑛𝑡𝑟𝑒

𝑖𝑚_𝑤𝑖𝑑𝑡ℎ
− 1; (8.2)

Second function is very similar, bit easier but no so resistant to errors in image
processing. Main difference is that I am starting from right edge because one of
requirements is that robot should follow right branch when guide line is divided into
two. All test as in first function are executed and if found line is satisfactory (centre
shift is most important here) the deviation is calculated an returned. If found line
is not satisfactory algorithm try to continue to left and find real guide line.

8.3 Controllers code
Discrete forms of designed controllers and theirs constants are implemented here.
In its header file is declared the error structure which contains two used errors for

57

two controllers: deviation from line centre and roughness of guide line. Part of
controllers is also anti wind-up as described in subsection 7.3.6.

8.4 Motors control code
Objective of this module is to manage motors. First of all there are defined pin
numbers for communication with motor driver as can be seen in Figure 4.3b, chas-
sis mechanical constants and maximal values of velocity and PWM, as written in
section 5.6.

8.4.1 Motors set-up

This function has to be called before motors usage. Sets modes for all pins used for
motor control and proceed initial writing to them. Stop pin and its pull-up are also
initialized here.

8.4.2 Write to motors

Most important part of this part of code because it provides writing to motors itself.
It is called automatically by interruption every 5𝑚𝑠. The reason why is it so is ramp
implementation. First I control if received signal number is really that one which
should call this function.

Second step is to obtain normalized velocities for left and right motors from
normalized linear and angular speed using equations from section 7.1. We assume
that anti wind-up was implemented in control module so absolute value of results
should be less than 1.

Above mentioned ramp is a way how to avoid huge changes of motor rotation
which could potentially damage them or their control electronic because of induced
currents which occurs as a response to sudden variation. The values written to
motors are changed every 5𝑚𝑠 by 10% of its maximal value so their progress looks
like stairs.

Subsequently function for obtaining PWM from speed, subsection 8.4.3. Last
step is to write actual values of PWM to motors. This has to be done in two steps:
absolute value of PWM into PWM pin and its signum to direction pin.

58

8.4.3 Normalized speed to PWM

Here are implemented measured characteristics from section 5.7. Obtained polyno-
mial equation are used for obtaining PWM from given required normalized speed.

8.4.4 Motor stop

Has to be called before and of whole process. It stops (writes PWM = 0) and breaks
both motors. Only then can be execution finished securely.

8.5 Support supplements
Some support functions as logger and UDP communication with matlab are imple-
mented here. Support header contains two inline functions which simplify measuring
and working with time, new type for time points and enums definitions for logger.

8.5.1 Logger

Easy function which objective is to logging messages into file and possibly write
them into stream. There are several levels of logging: ERROR, WARNING, INFO,
DEBUG. These can be logged as several types of message: NON, MAIN, CAMERA,
MOTORS, CONTROL. I am using integrated C libraries in order to obtain actual
time and then format it by strftime() function.

There are also set-up and close functions for logger which opens and closes log
file ’/home/pi/ROBOT/files/logger.txt’ as ofstream. Stdout buffer is set to zero to
insure the best feedback while debugging.

8.5.2 UDP communication

For sending data to matlab am I using UDP (User Datagram Protocol). First step
is to set-up UDP communication. I need to create socket, and set structure of type
sockaddr_in with specific IP address, port number and other configurations. Second
function is intended for data sending. As argument it takes errors_t structure and
optional time information of integer type in ms. Subsequently it convert it all to
strings and join with semicolons among them. Final string is send by sendto()
function to my laptop where these data are processed.

Received errors data are plotted as actual value and its history as can bee seen
in Figure 8.3.

59

Normalized deviation <-1,1>
-1 -0.5 0 0.5 1

1

1.5

2
Actual error value

Time [sample period count]
0 200 400 600 800 1000

-1

0

1
Error values history

Normalized roughness <0,1>
-1 -0.5 0 0.5 1

0

5

10
Actual roughness value

Time [sample period count]
0 200 400 600 800 1000

0

0.5

1
Roughness values history

Fig. 8.3: Measured deviation and roughness and their history progresses

Optional time values are stored into array and then, after communication is com-
pleted, there are calculated some statistics values as maximum, minimum, average
(mean) and standard deviation. These are:

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 = 27 𝑚𝑠

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 = 38 𝑚𝑠

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 = 33 𝑚𝑠

𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 = 2 𝑚𝑠

(8.3)

Histogram is showed in Figure 8.4.
In implemented code I am compensating all sample periods to 40 ms.

60

Sample time [ms]
26 28 30 32 34 36 38 40

A
bu

nd
an

ce

0

50

100

150

200

250

Abundance of time periods

Fig. 8.4: Histogram (abundance) of measured sample time periods of main loop

8.6 Makefile
Make program is there to simplify the compilation process, speed it up and automate.
It reads file called Makefile which contains instruction how my program should be
compiled. In variables there are defined final program name and its cpp source
files. Follows flags (write extra errors, all openCV required flags etc.) and external
libraries (wiringPi, openCV libraries). In next step object files with same base-
names as source files are created. The last ones are several rules for compilation and
cleaning using above defined variables and implicit variables.

61

9 CONCLUSION
Objective of my work was to design and create small wheeled robot which should
follow the marked line using computer vision. I can say I have done this but I
have to admit I am still in the beginning concerning this field of technology. The
biggest problem I have encountered is speed of calculations although raspberry Pi
3 is relatively powerful computer. To take image small like 320x240 pixels takes
approximately 28𝑚𝑠. With other tasks I round the sample period up to 40𝑚𝑠, that
is 25 times in one second. To be able to control it I can use maximal forward velocity
of robot only equal to 10% of maximal power of used motors and still it oscillates
sometimes.

First important part was to process captured image, that means to obtain image
where guide line is black and all other is white. I have tried many methods, among
others also constant threshold value which works very well and takes almost no
time. Other extreme was complex function which consists of several ideas like edge
detector, contrast stretching and Otsu’s method. Its result are very good but it
takes unaffordable long time.

The other part was to find needed information in these image data. While there
is huge amount of information in image there is also big variance and obtaining only
what is important for me is much more complicated. The algorithms I designed
are relatively simple which is caused partially by limited frame of my project and
partially by limited power of used hardware. They works good enough but it is
obvious that it is far away from perfection.

Last step was to use above mentioned data and drive a real robot. I needed to
know (and be able to describe) it from mechanical point of view so I measured all
required constants of used drive and camera and found out all necessary mathemat-
ics. There was also need to install all used software and libraries like openCV or
wiringPi. While debugging I used one way communication with matlab to visualize
and analyse measured data and I created a mathematical model also in matlab to
design the best PID controller using ITAE method.

62

BIBLIOGRAPHY
[1] 42 Bots. Differential drive princip. URL: http://42bots.com/tutorials/

differential-steering-with-continuous-rotation-servos-and-
arduino/.

[2] O Morandin M.Y. Gomes, L.A Bassora. Pid control applied on a line-follower
agv using a rgb camera. International Conference on Intelligent Transportation
Systems, 2016. URL: http://ieeexplore.ieee.org.ezproxy.lib.vutbr.
cz/xpls/icp.jsp?arnumber=7795553.

[3] Gimp. Convolution matrix - generic filter. URL: https://docs.gimp.org/en/
plug-in-convmatrix.html.

[4] Rafael Gonzalez. Digital Image Processing. Pearson Hall, 2008.

[5] Jeff Schuler. Biomedical image processing. 2009. URL: http://
engineersphere.com/biomedical-image-processing-v.

[6] Otsu’s method. Wikipedia - the free encyclopedia, 2018. URL: https://en.
wikipedia.org/wiki/Otsu%27s_method.

[7] Texas Intruments University. Ti robotics systems learning kit.
URL: https://university.ti.com/en/faculty/ti-robotics-system-
learning-kit/ti-robotics-system-learning-kit.

[8] Pololu. Pololu rom02a board. Pololu Corporation. URL: https://www.pololu.
com/product/3543/resources.

[9] Raspberry pi Foundation. Raspberry pi 3 documentation. Raspberry pi Foun-
dation. URL: https://github.com/raspberrypi/documentation.

[10] Gjerrit Meinsma Okko H. Bosgra, Huibert Kwakernaak. Design Methods for
Control Systems. DISC, 2007-2008.

[11] Digital image processing. Wikipedia - the free encyclopedia, 2018. URL: https:
//en.wikipedia.org/wiki/Digital_image_processing.

[12] Azriel Rosenfeld. Picture Processing by Computer. Academic pr, 1969.

[13] Canny edge detector. Wikipedia - the free encyclopedia, 2018. URL: https:
//en.wikipedia.org/wiki/Canny_edge_detector.

[14] Andrew Tridgell. Samba documentation. Samba. URL: https://www.samba.
org/samba/docs/.

63

http://42bots.com/tutorials/differential-steering-with-continuous-rotation-servos-and-arduino/
http://42bots.com/tutorials/differential-steering-with-continuous-rotation-servos-and-arduino/
http://42bots.com/tutorials/differential-steering-with-continuous-rotation-servos-and-arduino/
http://ieeexplore.ieee.org.ezproxy.lib.vutbr.cz/xpls/icp.jsp?arnumber=7795553
http://ieeexplore.ieee.org.ezproxy.lib.vutbr.cz/xpls/icp.jsp?arnumber=7795553
https://docs.gimp.org/en/plug-in-convmatrix.html
https://docs.gimp.org/en/plug-in-convmatrix.html
http://engineersphere.com/biomedical-image-processing-v
http://engineersphere.com/biomedical-image-processing-v
https://en.wikipedia.org/wiki/Otsu%27s_method
https://en.wikipedia.org/wiki/Otsu%27s_method
https://university.ti.com/en/faculty/ti-robotics-system-learning-kit/ti-robotics-system-learning-kit
https://university.ti.com/en/faculty/ti-robotics-system-learning-kit/ti-robotics-system-learning-kit
https://www.pololu.com/product/3543/resources
https://www.pololu.com/product/3543/resources
https://github.com/raspberrypi/documentation
https://en.wikipedia.org/wiki/Digital_image_processing
https://en.wikipedia.org/wiki/Digital_image_processing
https://en.wikipedia.org/wiki/Canny_edge_detector
https://en.wikipedia.org/wiki/Canny_edge_detector
https://www.samba.org/samba/docs/
https://www.samba.org/samba/docs/

[15] Michael Larabel. The high-profile x.org. phonorix, 2010.

[16] CMake. URL: https://cmake.org/download/.

[17] OpenCV GitHub download. URL: https://github.com/Itseez/opencv.git.

[18] Robert Laganiere. OpenCV 2 Computer Vision Application Programming Cook-
book. PACKT BUBLISHING, Birmingham, May 2011.

[19] Gordon. Wiring pi - gpio interface library for the raspberry pi. WiringPi
Website, 2018. URL: http://wiringpi.com/.

[20] Alyona Stashkova Catherine Pickersgill. NetBeans Developing Applications with
NetBeans IDE. ORACLE, 8.2 edition, September 2016. URL: https://docs.
oracle.com/netbeans/nb82/netbeans/NBDAG/toc.htm.

[21] Alexpux Martell Malone Ray Donnelly David Macek Renato Silva niXman.
Msys2. 2017. URL: https://github.com/msys2/msys2/wiki.

[22] Michael Jenkin Gregory Dudek. Computational principles of mobile robotics.
2000.

[23] Thomas Hellström. Kinematics equations for differential drive and articulated
steering. Department of Computing Science, 2011.

[24] Karl Worthmann Mohamed W. Mehrez Mario Zanon George K. I. Mann Ray-
mond G. Gosine Moritz. Regulation of Differential Drive Robots using Contin-
uous Time MPC without Stabilizing Constraints or Costs. IFAC (International
Federation of Automatic Control), 2015.

[25] Witold Pedrycz. Fuzzy control and fuzzy systems (2 ed.). Research Studies
Press Ltd, 1993.

[26] Prof. Alberto Bemporad. Anti-windup techniques. University of Trento, 2011.

63

https://cmake.org/download/
https://github.com/Itseez/opencv.git
http://wiringpi.com/
https://docs.oracle.com/netbeans/nb82/netbeans/NBDAG/toc.htm
https://docs.oracle.com/netbeans/nb82/netbeans/NBDAG/toc.htm
https://github.com/msys2/msys2/wiki

	Introduction
	Research of mobile robot control methods
	Differential drive
	Trial-and-error method
	Mathematical description - transfer function
	Feedback
	PID control applied on a line-follower AGV using a RGB camera
	Mathematics for camera used as a sensor

	Digital image processing
	History
	Tasks
	Image Enhancement
	Image Enhancement in the spatial domain
	Image Enhancement in the frequency domain

	Main techniques/methods
	Filtering
	Gray-level Transformation
	Gray-level discontinuities
	Otsu's method

	Used software and hardware
	Chassis
	DriverBoard
	Raspberry pi 3
	Operating system
	Process priority
	Hotspot setting
	Samba share
	X Window System

	OpenCV
	WiringPi

	Netbeans
	MSYS2

	Matlab
	Xming

	Mathematics of differential drive
	Linear model of my robot
	Differential drive kinematics
	Forward kinematics for differential drive robot
	Inverse kinematic of differential drive robot
	Continuous model
	Constants of my robot
	Motors characteristic

	Track designing
	Model
	Model of robot
	Model of camera
	Controllers
	PID controller
	PSD controller
	Forward speed controller
	ITAE Criterion
	Fuzzy control system
	Anti wind-up

	The resulting model
	Simulation results

	Implementation
	Main code
	Computer vision code
	Camera set-up
	Image saving
	Image showing
	Find threshold level
	Buffering
	Find errors function
	Find errors in line functions

	Controllers code
	Motors control code
	Motors set-up
	Write to motors
	Normalized speed to PWM
	Motor stop

	Support supplements
	Logger
	UDP communication

	Makefile

	Conclusion
	Bibliography

