

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV VÝKONOVÉELEKTROTECHNIKY A ELEKTRONIKY

DEPARTMENT OF POWER ELECTRICAL AND ELECTRONIC ENGINEERING

MALÝ TŘÍFÁZOVÝ ASYNCHRONNÍ MOTOR

A SMALL THREE PHASE INDUCTION MOTOR

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE

Petr Klíma

VEDOUCÍ PRÁCE SUPERVISOR Ing. Martin Mach, Ph.D.

BRNO 2017

Bakalářská práce

bakalářský studijní obor Silnoproudá elektrotechnika a elektroenergetika

Ústav výkonové elektrotechniky a elektroniky

Student: Petr Klíma Ročník: 3 *ID:* 173673 *Akademický rok:* 2016/17

NÁZEV TÉMATU:

Malý třífázový asynchronní motor

POKYNY PRO VYPRACOVÁNÍ:

- 1. Proveďte analytický výpočet konkrétního malého třífázového asynchronního motoru.
- Výpočet ověřte pomocí programu RMxprt.
- 3. Proveďte laboratorní měření na skutečném motoru.
- Výsledky porovnejte.

DOPORUČENÁ LITERATURA:

[1] KOPYLOV, Igor Petrovič. Stavba elektrických strojů: celostátní vysokoškolská učebnice pro elektrotechnické fakulty vysokých škol technických. 1. vyd. Praha: Státní nakladatelství technické literatury, 1988.

[2] PYRHONEN, J.; JOKINEN t.; HRABOVCOVÁ V. Design of rotating eletrical machines. John Wiley and Sons, 2007. ISBN 978-0-470-69516-6.

Termín zadání: 6.2.2017

Termín odevzdání: 31.5.2017

Vedoucí práce: Ing. Martin Mach, Ph.D. Konzultant:

doc. Ing. Petr Toman, Ph.D. předseda oborové rady

UPOZORNĚNÍ:

Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně / Technická 3058/10 / 616 00 / Brno

Abstrakt

Hlavním cílem této bakalářské práce je určení parametrů asynchronního motoru o výkonu 155 W. Pro určení parametrů motoru byly zvoleny tři způsoby. Analytický výpočet dle dostupné literatury, výpočet v programu RMxprt a laboratorní měření motoru. Pro lepší srovnání analytických výpočtů byly zvoleny dva literární zdroje, podle kterých byl proveden výpočet. V práci jsou uvedeny jednotlivé výpočty a hodnoty, které jimi byly získány. Je provedeno srovnání výsledků získaných jednotlivými způsoby.

Klíčová slova

Asynchronní motor; analytický výpočet; RMxprt; určení parametrů

Abstract

The main object of this bachelor thesis is to determine the parameters of the induction motor with an output of 155 W. Three ways of obtaining the parameters were chosen. Analytical calculation according to available literature, calculation in RMxprt program and laboratory measurement of the motor. For a better comparison of analytical calculations, two literary sources were chosen according to which the calculation was performed. Individual calculations and values obtained by them are included in the thesis. A comparison of the results obtained by individual methods is performed.

Keywords

Induction motor; analytical calculation; RMxprt; determination of parameters

Bibliografická citace:

KLÍMA, P. Malý třífázový asynchronní motor. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2017. 66 s. Vedoucí bakalářské práce Ing. Martin Mach, Ph.D..

Prohlášení

Prohlašuji, že svou závěrečnou práci na téma "Malý třífázový asynchronní motor" jsem vypracoval samostatně pod vedením vedoucího bakalářské práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené závěrečné práce dále prohlašuji, že v souvislosti s vytvořením této závěrečné práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

V Brně dne 30. května 2017

podpis autora

Poděkování

Děkuji vedoucímu bakalářské práce Ing. Martinu Machovi, Ph.D. za účinnou metodickou, pedagogickou a odbornou pomoc a další cenné rady při zpracování mé bakalářské práce.

V Brně dne 30. května 2017

podpis autora

Obsah

Úvod	10
1 Asynchronní motor	11
1.1 Konstrukce	11
1.2 Princip funkce	11
1.3 Ztráty	11
1.3.1 Elektrické ztráty	11
1.3.2 Ztráty v železe	12
1.3.3 Mechanické ztráty	12
1.3.4 Přídavné ztráty	12
1.4 Momentová charakteristika	12
1.5 Obvodový model asynchronního motoru	13
2 Parametry analyzovaného motoru	14
3 Analytický výpočet dle Kopylova	15
3.1 Výpočtové jmenovité proudy statorem a rotorem	15
3.2 Magnetický obvod	16
3.3 Odpory a reaktance obvodového modelu	19
3.3.1 Odpor statorového vinutí	19
3.3.2 Odpor rotorového vinutí	20
3.3.3 Rozptylová reaktance statorového vinutí	21
3.3.4 Rozptylová reaktance rotorového vinutí	22
3.3.5 Vliv natočení drážek na rozptylové reaktance	24
3.4 Ztráty při jmenovitém chodu	24
3.4.1 Ztráty v železe	24
3.4.2 Ztráty ve vinutí	26
3.4.3 Mechanické a ventilační ztráty	26
3.4.4 Přídavné ztráty	26
3.5 Účiník naprázdno	27
3.6 Výpočet příčné větve obvodového modelu	27
3.7 Výpočet zatěžovací charakteristiky	28
3.8 Vypočtené jmenovité hodnoty	30
4 Analytický výpočet dle Pyrhönena	31
4.1 Magnetický obvod	31
4.2 Náhradní obvodový model	34
4.2.1 Rozptylové indukčnosti	34
4.2.2 Odpory vinutí	39
4.3 Ztráty při jmenovitém chodu	40
4.3.1 Ztráty v železe	40
4.3.2 Ztráty ve vinutí	40

4.3.3 Mechanické a ventilační ztráty	40
4.3.4 Přídavné ztráty	40
4.3.5 Magnetizační reaktance a odpor reprezentující ztráty v železe…	41
4.4 Vypočtené jmenovité hodnoty	41
5 Výpočet v programu RMxprt	42
6 Měření motoru	44
7 Porovnání výsledků	47
8 Závěr	53
Literatura	55
Přílohy	60
Příloha 1: Tabulky vypočtených hodnot	60

Seznam obrázků

Obr. 1.1: Momentová charakteristika asynchronního motoru v prvním kvadrantu [5]
Obr. 1.2: Náhradní obvodový model asynchronního motoru [7], Upraveno
Obr. 2.1: Části měřeného motoru
Obr. 3.1: Závislost činitele k_i na $cos \varphi$ [2]16
Obr. 3.2: Závislost činitele $k_{\rm E}$ na $D_{\rm e}$ [2]16
Obr. 3.3: Magnetizační křivka elektrotechnické oceli M700-50A [3] 18
Obr. 3.4: Tvar a rozměry rotorové drážky [2]21
Obr. 3.5: Tvar a rozměry statorové drážky [2]21
Obr. 3.6: Křivky pro určení koeficientu k'_{γ} [2]
Obr. 3.7: Křivky pro určení koeficientu Δ_z [2]23
Obr. 3.8: Křivka pro určení koeficientů β_{01} , β_{02} [2]
Obr. 3.9: Tok výkonu v asynchronním motoru [7], Upraveno
Obr. 4.1: Závislost koeficientů c_1 a c_2 na magnetické indukci jha statoru (v obrázku
$B_{\rm ys}$) a jha rotoru (v obrázku $B_{\rm yr}$) [4]
Obr. 4.2: Rozměry statorové drážky [4]
Obr. 4.3: Rozměry rotorové drážky [4]
Obr. 5.1: Ilustrační obrázek z prostředí RMxprt
Obr. 6.1: Měřící pracoviště
Obr. 6.2: Měřící sestava
Obr. 7.1: Srovnání vypočtených momentových charakteristik
Obr. 7.2: Srovnání vypočtených proudových charakteristik
Obr. 7.3: Srovnání naměřené momentové charakteristiky s vypočtenými
charakteristikami v pracovní oblasti motoru
Obr. 7.4: Srovnání naměřené proudové charakteristiky s vypočtenými
charakteristikami v pracovní oblasti motoru
Obr. 7.5: Srovnání závislostí měřením určených a vypočtených účinností v pracovní
oblasti motoru
Obr. 7.6: Srovnání závislostí naměřených a vypočtených účiníků v pracovní oblasti
motoru

Seznam tabulek

Tabulka 6.1: Naměřené hodnoty odporů vinutí	44
Tabulka 6.2: Naměřené a vypočtené hodnoty zatěžovací charakteristiky	45
Tabulka 6.3: Naměřené hodnoty při měření nakrátko	45
Tabulka 7.1: Srovnání vypočtených hodnot prvků obvodového modelu	47
Tabulka 7.2: Srovnání hodnot proudu nakrátko a záběrného momentu	52
Tabulka 7.3: Srovnání jmenovitých parametrů motoru	52
Tabulka P.1: Vypočtené hodnoty z obvodového modelu dle kapitoly 3	60
Tabulka P.2: Vypočtené hodnoty z obvodového modelu dle kapitoly 4	62
Tabulka P.3: Vypočtené hodnoty dle programu RMxprt	64

Úvod

Asynchronní motory jsou nejrozšířenější elektrické motory. Spotřebovávají přibližně polovinu veškeré vyrobené elektrické energie. To způsobuje snahu o zvyšování jejich účinnosti. V roce 2009 byly nařízením Evropské komise stanoveny požadavky na minimální hodnoty účinnosti asynchronních motorů s kotvou nakrátko o výkonu 0,75 kW do 375 kW [6]. Definovány jsou i další parametry motoru, pro které platí toto nařízení platí. V budoucnu není vyloučena možnost, že se bude toto nařízení vztahovat na asynchronní motory i nižších výkonů. To značí důležitost určení jmenovitých parametrů asynchronních motorů a porozumění tomu, jak jsou parametry těchto motorů ovlivněny jeho konstrukcí.

1 Asynchronní motor

Asynchronní motory jsou nejrozšířenější elektrické motory. Jejich velkou výhodou je, že Jsou prakticky bezúdržbové a konstrukčně jednoduché. K jejich provozu je nutné napájení ze zdroje střídavého napětí. Výkony jednotlivých motorů se mohou pohybovat od desítek wattů až do několika megawattů [1], [5].

1.1 Konstrukce

Hlavní části asynchronního motoru tvoří stator a rotor. Stator je statická část, rotor pohyblivá. Kostra statoru je vyrobena z litiny nebo hliníku. V kostře jsou zalisovány statorové plechy tvořící část magnetického obvodu motoru. Na vnitřním obvodu plechů je v drážkách uloženo statorové vinutí, jehož konce jsou vyvedeny na svorkovnici. Součástí statoru jsou rovněž ložiskové štíty, v nichž jsou uložena ložiska vymezující polohu rotoru [5], [7].

V ložiskách se otáčí hřídel, na které jsou nalisovány rotorové plechy. Přes hřídel, na kterou je možno nasadit řemenici, nebo spojku se odvádí mechanický výkon z motoru. Po vnějším obvodu rotoru jsou v plechách vyraženy rotorové drážky. V nich je u motoru s vinutým rotorem trojfázové vinutí vyvedené na kroužky. V motoru s takzvanou klecí s kruhy nakrátko jsou tyče klece odlité přímo v drážkách, které jsou spojeny spojovacími kruhy. Na nich mohou být přímo odlity lopatky větráku. Materiál, ze kterého se odlévá klec nakrátko bývá většinou hliník. Může však být i z mědi nebo mosazi [5], [7].

1.2 Princip funkce

Asynchronní motor vyvolává moment na hřídeli interakcí mezi axiálními proudy v rotorovém vinutí a radiálním magnetickým polem vytvořeným statorovým vinutím. Proudy tekoucí rotorem jsou vyvolány elektromagnetickou indukcí vyvolanou statorem, proto se asynchronnímu motoru říká také indukční motor. Pro indukci elektromotorické síly v rotoru asynchronního motoru je nutné, aby se rotor pohyboval vůči točivému magnetickému poli. Z toho důvodu se těmto strojům říká asynchronní. Poměr rozdílu otáček statoru a rotoru a otáček statorového magnetického pole se nazývá skluz [1], [5].

1.3 Ztráty

1.3.1 Elektrické ztráty

Elektrické ztráty bývají taktéž nazývány Jouleovy ztráty. Je to proto, že proud procházející vodičem statoru, respektive rotoru, vytváří Jouleovo teplo. Elektrické ztráty tvoří u většiny motorů převážnou část celkových ztrát. [2]

1.3.2 Ztráty v železe

Ztráty v železe se rozdělují na ztráty hlavní a dodatečné. Hlavní ztráty jsou dané ztrátami hysterezními a ztrátami vířivými proudy. Tyto ztráty jsou dány vlastnostmi použitého magnetického materiálu. Pro výpočty ztrát v železe se pro magnetické materiály udávají tzv. měrné ztráty v železe. Ty udávají ztráty ve Wattech na kilogram pro materiál v magnetickém poli o indukci 1 T a frekvenci 50 Hz. Ztráty vířivými proudy jsou značně ovlivněny plochou, přes kterou se mohou proudy uzavírat. Kvůli zmenšení těchto ztrát jsou plechy magnetického obvodu statoru a rotoru co nejtenčí a vůči sobě izolované. Hysterezní ztráty jsou způsobeny přemagnetováním materiálu. Dodatečné ztráty v železe jsou způsobeny kmity magnetického pole vyvolanými vlivem nerovnoměrnosti vzduchové mezery způsobené drážkováním. Dodatečné ztráty se dělí na povrchové a pulsační. Povrchové vznikají vířivými proudy na povrchu zubů, pulsační uvnitř zubu. [2]

1.3.3 Mechanické ztráty

Mechanické ztráty vznikají v ložiskách, třením rotoru o vzduch a pohonem ventilátoru. Výpočtově se dají určit pomocí empirických vzorců, přesné hodnoty se dosáhne pouze měřením. [2]

1.3.4 Přídavné ztráty

Přídavné ztráty jsou vyvolány hlavně rozptylovými magnetickými toky a toky vyšších harmonických. [2]

1.4 Momentová charakteristika

Momentová charakteristika motoru vyjadřuje hlavní provozní vlastnosti. Udává závislost momentu na skluzu, popřípadě na otáčkách. Jak je vidět na obr. 1.1, v blízkosti jmenovitého bodu A se se změnou zatížení mění otáčky pouze málo a závislost momentu na skluzu je téměř lineární. Proto oblasti poblíž jmenovitého bodu říká lineární. Hodnota $M_{\rm max}$ udává hodnotu momentu zvratu. Při překročení této hodnoty zatěžovacího momentu se motor zastaví. Poměr momentu zvratu a jmenovitého momentu udává momentovou přetížitelnost motoru. Hodnota $M_{\rm Z}$ udává záběrný moment. Tohoto momentu motor dosahuje při stojícím rotoru. [5]

Obr. 1.1: Momentová charakteristika asynchronního motoru v prvním kvadrantu [5]

1.5 Obvodový model asynchronního motoru

Na obr. 1.2 je obvodový model asynchronního motoru. Ten je tvořen odpory vinutí a rozptylovými reaktancemi. Rozptylové reaktance reprezentují rozptylové indukční toky a vliv vyšších harmonických. Výkon na fiktivním odporu $\frac{R'_2}{s} \cdot (1-s)$ v obvodovém modelu představuje elektrický výkon, který se přemění na mechanický výkon. Výkon na odporu $R_{\rm Fe}$ reprezentuje ztráty v železe a výkony na odporech R_1 a R'_2 Jouleovy ztráty ve vinutí statoru, respektive rotoru. Prvky obvodového modelu R'_2 a $X'_{\sigma 2}$ jsou pro použití v modelu přepočtené na počet závitů statorového vinutí. Velikost jednotlivých prvků obvodového modelu ovlivňuje tvar momentové charakteristiky, účinnost motoru, odebíraný proud a účiník. [5]

Obr. 1.2: Náhradní obvodový model asynchronního motoru [7], Upraveno

2 Parametry analyzovaného motoru

Vzhledem k sériové výrobě analyzovaného motoru nejsou v práci uvedeny všechny rozměry stroje.

Analyzovaný motor je třífázový s kotvou nakrátko tvořenou hliníkovými tyčemi a kruhy.

Jmenovitý výkon	$P_{2N} = 155 \text{ W}$
Jmenovité fázové napětí	$U_{1N} = 230 \text{ V}$
Počet pólů	2p = 2
Jmenovitá napájecí frekvence	$f_1 = 50 \; \text{Hz}$
Počet fází statorového vinutí	$m_1 = 3$
Počet drážek statoru	$Q_1 = 24$
Počet drážek rotoru	$Q_2 = 17$
Vnější průměr motoru	$D_{\rm e} = 58 \rm mm$
Vnější průměr rotoru	$D_{\rm i} = 44,5~{ m mm}$
Délka vzduchové mezery	$\delta = 0,25 \text{ mm}$
Délka statorového a rotorového svazku	$l_{\rm Fe1} = l_{\rm Fe2} = 60 \text{ mm}$

Obr. 2.1: Části měřeného motoru

3 Analytický výpočet dle Kopylova

Jako zdroj pro rovnice a jejich popis byla použita literatura od I. P. Kopylova: *Stavba elektrických strojů* [2].

Cíl analytického výpočtu je určení parametrů motoru při jmenovitém chodu, momentové a proudové charakteristiky. K tomu je nejdříve potřeba vypočíst magnetický obvod, dále určit hodnoty prvků obvodového modelu a poté je možno určit ztráty, charakteristiky a jmenovité hodnoty motoru.

3.1 Výpočtové jmenovité proudy statorem a rotorem

Pro některé výpočty je potřeba předběžně určit velikost jmenovitého proudu statorovým a rotorovým vinutím

Výpočtový jmenovitý proud vinutím statoru

$$I_{1Nv} = \frac{P_{2N}}{m_1 \cdot U_{1N} \cdot \eta \cdot \cos\varphi} = 0,4320 \text{ A}$$
(3.1)

kde η a $cos\varphi$ jsou určeny odhadem podle jmenovitého výkonu a počtu pólů. Odhad pro 2p = 2 a $P_{2N} = 155$ W je $\eta = 65$ % a $cos\varphi = 0,80$.

Pro výpočet rotorového proudu je potřeba určit činitel přepočtu proudů

$$p_{\rm i} = \frac{2m_1 N_1 k_{\rm v1}}{Q_2} = 236,6 \tag{3.2}$$

kde k_{v1} je činitel statorového vinutí. Vinutí analyzovaného motoru je jednovrstvé s plným krokem. Činitel takového vinutí je roven činiteli rozlohy k_{r1} . Kdy

$$k_{\rm r1} = \frac{\sin\frac{\pi}{2m_1}}{q_1 \sin\frac{\pi}{2m_1q_1}} = 0,9577 \tag{3.3}$$

kde q_1 je počet drážek na pól a fázi statorového vinutí. Platí

$$q_1 = \frac{Q_1}{2pm_1}$$
(3.4)

Výpočtový jmenovitý proud tyčí rotoru

$$I_{2NV} = k_i I_{1NV} p_i = 86,88 \text{ A}$$
(3.5)

kde k_i je činitel uvažující vliv magnetizačního proudu a odporů vinutí na poměr statorového a rotorového proudu. Určí se z obr. 3.1. Dle odhadu účiníku $cos \varphi =$ 0,80 je $k_i = 0,85$.

Obr. 3.1: Závislost činitele k_i na $cos \varphi$ [2]

3.2 Magnetický obvod

Cíl výpočtu magnetického obvodu je zjistit magnetizační proud a zjistit magnetickou indukci pro výpočet ztrát v železe.

Pro výpočet magnetizačního proudu se nejdříve vypočítá magnetický indukční tok, který vytváří cívka statorového vinutí. Poté se určí magnetická indukce a magnetické napětí v jednotlivých částech statoru a rotoru. Nakonec se ze součtu magnetických napětí určí magnetizační proud.

Magnetický indukční tok ve vzduchové mezeře

$$\Phi = \frac{k_{\rm E} \cdot U_{\rm 1N}}{4 \cdot k_{\rm B} N_{\rm 1} f_{\rm 1} k_{\rm v1}} = 1,502 \text{ mWb}$$
(3.6)

kde $k_{\rm E}$ je poměr indukovaného napětí vinutí statoru ke jmenovitému napětí. Určí se ze závislosti zobrazené obr. 3.2 podle vnějšího průměru statoru. V případě počítaného motoru je $k_{\rm E} \cong 0,972$.

 $k_{\rm B}$ je činitel tvaru pole, je dán zploštěním křivky pole ve vzduchové mezeře, způsobeném nasycením zubů statoru a rotoru. Pro výpočet se volí $k_{\rm B} = \frac{\pi}{2\sqrt{2}} = 1,11$

Obr. 3.2: Závislost činitele $k_{\rm E}$ na $D_{\rm e}$ [2]

Magnetická indukce ve vzduchové mezeře

$$B_{\delta} = \frac{p\Phi}{Dl_{\rm i}} = 0,556 \,\mathrm{T} \tag{3.7}$$

kde l_i je ideální délka vzduchové mezery. Pro motory bez radiálních ventilačních kanálů platí $l_i = l_{Fe1}$

D je vnitřní průměr statoru

Magnetická indukce v zubu statoru

$$B_{z1} = \frac{B_{\delta} t_{d1} l_{i}}{b_{z1} l_{Fe1} k_{Fe}} = 1,137 \text{ T}$$
(3.8)

kde $k_{\rm Fe}$ je činitel plnění železa a je dán způsobem izolace plechů magnetického obvodu, v případě analyzovaného motoru $k_{\rm Fe} = 0.97$

 t_{d1} je drážková rozteč statoru. Vypočítá se dle vztahu

$$t_{d1} = \frac{\pi D}{Q_1} \tag{3.9}$$

Magnetická indukce v zubu rotoru

$$B_{z2} = \frac{B_{\delta} t_{d2} l_{i}}{b_{z2} l_{Fe2} k_{Fe}} = 1,373 \text{ T}$$
(3.10)

kde t_{d2} je drážková rozteč rotoru. Platí

$$t_{\rm d2} = \frac{\pi D_{\rm i}}{Q_2} \tag{3.11}$$

Magnetická indukce ve jhu statoru

$$B_{j1} = \frac{\Phi}{2 \cdot h_{j1} l_{Fe1} k_{Fe}} = 1,418 \text{ T}$$
(3.12)

Magnetická indukce ve jhu rotoru

$$B_{j2} = \frac{\Phi}{2 \cdot h_{j2} l_{Fe2} k_{Fe}} = 1,518 \text{ T}$$
(3.13)

Z hodnot magnetické indukce v zubech a ve jhu se určí pomocí magnetizační křivky použité elektrotechnické oceli (obr. 3.3) intenzita magnetického pole. Odečtené intenzity magnetického pole:

$$H_{z1} = 189,6 \text{ A/m}$$

 $H_{z2} = 333,6 \text{ A/m}$
 $H_{j1} = 421,9 \text{ A/m}$
 $H_{j2} = 882,6 \text{ A/m}$

Obr. 3.3: Magnetizační křivka elektrotechnické oceli M700-50A [3]

Magnetické napětí obou vzduchových mezer

$$U_{\delta} = \frac{2}{\mu_0} B_{\delta} \delta k_c = 295,93 \text{ A}$$
(3.14)

kde k_c je Carterův činitel vzduchové mezery určený podle vztahu

$$k_{c1(2)} = \frac{t_{d1(2)}}{t_{d1(2)} - \gamma_{1(2)}\delta}$$
(3.15)

kde

$$\gamma_{1(2)} = \frac{\left(b_{01(2)}/\delta\right)^2}{5 + b_{01(2)}/\delta} \tag{3.16}$$

Pro stator platí indexy bez závorky, pro rotor v závorce.

Carterův činitel udává poměr mezi maximální a průměrnou hodnotou magnetické indukce ve vzduchové mezeře. V důsledku drážkování statoru a rotoru se indukční čáry zhušťují pod zuby statoru a rotoru, čímž vzrůstá magnetický odpor a magnetické napětí vzduchové mezery.

Carterův činitel se určuje zvlášť pro stator a rotor. $t_{d1(2)}$ je drážková rozteč statoru, respektive rotoru, $b_{01(2)}$ je otevření jejich drážek.

Výsledný Carterův činitel je dán vztahem

$$k_{\rm c} = k_{\rm c1} \cdot k_{\rm c2} = 1,3377 \tag{3.17}$$

Magnetické napětí dvou zubů statoru

$$U_{z1} = 2h_{z1}H_{z1} = 4,17 \text{ A}$$
(3.18)

Magnetické napětí dvou zubů rotoru

$$U_{z2} = 2h_{z2}H_{z2} = 5,16 \text{ A}$$
(3.19)

Magnetické napětí jha statoru

$$U_{j1} = l_{j1}H_{j1} = 50,43 \text{ A}$$
(3.20)

kde l_{j1} je délka střední magnetické indukční čáry ve jhu statoru a vypočítá se

$$l_{j1} = \frac{\pi (D_{\rm e} - h_{j1})}{2p} \tag{3.21}$$

Magnetické napětí jha rotoru

$$U_{j2} = l_{j2}H_{j2} = 28,42 \text{ A}$$
(3.22)

kde l_{i2} je délka střední magnetické indukční čáry ve jhu rotoru a vypočítá se

$$l_{j2} = \frac{\pi (D_{\rm h} + h_{j2})}{2p} \tag{3.23}$$

Magnetické napětí celého magnetického obvodu (na jednu pólovou dvojici)

$$F_{\rm m} = U_{\delta} + U_{z1} + U_{z2} + U_{j1} + U_{j2} = 384,11\,{\rm A} \tag{3.24}$$

Magnetizační proud

$$I_{\mu} = \frac{pF_{\rm m}}{0.9 \cdot m_1 N_1 k_{\rm v1}} = 0,2122 \,\mathrm{A} \tag{3.25}$$

Magnetizační proud v poměrných jednotkách

$$i_{\mu} = \frac{I_{\mu}}{I_{1Nv}} = 0,4912 \tag{3.26}$$

Magnetizační proud v poměrných jednotkách určuje využití magnetického materiálu motoru. Pokud je $i_{\mu} < 0,20$, aktivní materiál je nevyužit, motor bude mít velkou účinnost a účiník, ale velkou spotřebu materiálu na jednotku výkonu a velké rozměry. U motorů malých výkonů může být $i_{\mu} > 0,5$. To ukazuje, že malé motory mají poměrně malou účinnost a účiník.

Velký magnetizační proud je způsoben hlavně velkým magnetickým napětím vzduchové mezery. To je dáno velikostí vzduchové mezery v poměru k ostatním částem motoru.

3.3 Odpory a reaktance obvodového modelu

3.3.1 Odpor statorového vinutí

Při měření motoru byla z odporu statorového vinutí určena jeho teplota na přibližně 55 °C. Pro účely porovnání je odpor statorového a rotorového vinutí počítán pro tuto teplotu.

Odpor vinutí statoru

$$R_1 = k_{\sim} \rho_{\rm Cu,55} L = 74,90 \ \Omega \tag{3.27}$$

kde činitel zvětšení odporu působením povrchového jevu k_{\sim} je pro malé motory roven jedné, z důvodu malých proudů tekoucích statorovým vinutím

 $\rho_{\rm Cu,55}$ je měrný odpor vodiče vinutí daného průřezu při uvažované teplotě 55 °C

$$\rho_{\rm Cu,55} = \rho_{\rm Cu,20} [1 + \alpha_{\rm Cu} (t - 20)] \tag{3.28}$$

kde měrný odpor drátu vinutí při 20 °C $ho_{\text{Cu},20} = 17,2\cdot 10^{-9}\, \Omega \text{m}^{-1}$

 $\alpha_{\rm Cu}$ je teplotní součinitel odporu mědi, $\alpha_{\rm Cu}=$ 0,004 K⁻¹

L je celková délka vodičů jedné fáze vinutí a vypočítá se

$$L = l_{\rm av} N_1 \tag{3.29}$$

kde l_{av} je střední délka závitu vinutí a vypočítá se

$$l_{\rm av} = 2(l_{\rm Fe1} + l_{\rm c}) \tag{3.30}$$

kde *l*_č je délka čela vinutí

3.3.2 Odpor rotorového vinutí

Odpor R_2 obvodového modelu motoru představuje odpor jedné fáze rotorového vinutí. Počítaný motor má jako rotor klec nakrátko. Jako jedna fáze klece nakrátko se považuje jedna tyč a dvě části kruhů nakrátko. Proudy v jednotlivých tyčích a v kruzích nakrátko jsou různé, proto jsou jejich odpory pro výpočet celkového odporu přepočteny na jeden proud. Odpor R_2 tedy vychází z podmínky rovnosti elektrických ztrát způsobených odporem R_2 vyvolaných proudem I_2 a výsledných ztrát v tyči a části kruhů nakrátko reálného stroje. Tudíž

$$P_2 I_2^2 = R_t I_t^2 + 2R_{\rm kn} I_{\rm kn}^2 \tag{3.31}$$

Proud v tyči je považován za rotorový proud, $I_t = I_2$ Proud v kruzích nakrátko je roven

$$I_{\rm kn} = \frac{I_2}{\Delta} \tag{3.32}$$

kde

$$\Delta = 2\sin\frac{\pi p}{Q_2} \tag{3.33}$$

Po dosazení vztahu (3.32) do rovnice (3.31) a zkrácením kvadrátů rotorových proudů dostáváme

Odpor rotorového vinutí

$$R_2 = R_{\rm t} + 2 \frac{R_{\rm kn}}{\left(2\sin\frac{\pi p}{Q_2}\right)^2} = 1,491 \cdot 10^{-4} \,\Omega \tag{3.34}$$

Přičemž pro odpor tyče platí

$$R_{\rm t} = \rho_{\rm Al,55} \frac{l_t}{S_t} k_{\sim} = 1,023 \cdot 10^{-4} \,\Omega \tag{3.35}$$

kde $k_{\sim} = 1$ a rezistivita materiálu tyče při 55 °C

$$\rho_{\text{Al},55} = \rho_{\text{Al},20} [1 + \alpha_{\text{Al}} (t - 20)] = 37.6 \cdot 10^{-9} \,\Omega\text{m}^{-1} \tag{3.36}$$

pro $\rho_{Al,20} = 33 \cdot 10^{-9} \,\Omega m^{-1}$ a $\alpha_{Al} = 0,004 \,K^{-1}$

odpor části kruhu nakrátko je roven

$$R_{\rm kn} = \rho_{\rm Al,55} \frac{\pi D_{\rm kn}}{Q_2 S_{\rm kn}} = 3,158 \cdot 10^{-6} \ \Omega \tag{3.37}$$

Materiál kruhů nakrátko je stejně jako u tyčí hliník.

 $D_{\rm kn}$ je střední průměr kruhů nakrátko.

 $S_{\rm kn}$ je průřez kruhů nakrátko.

Přepočtený odpor rotorového vinutí

Odpor R_2 je nutno pro další výpočty přepočítat na počet závitů statorového vinutí

$$R'_{2} = R_{2} 4m_{1} \frac{(N_{1}k_{v1})^{2}}{Q_{2}} = 47,30 \ \Omega$$
(3.38)

3.3.3 Rozptylová reaktance statorového vinutí

Pro výpočet rozptylové reaktance statorového vinutí je třeba nejdříve spočítat činitele magnetické vodivosti, jejichž velikost je dána především tvarem a rozměry drážek statoru a velikostí vzduchové mezery. Tvar a označení rozměrů drážky je na obrázku 3.5.

Obr. 3.5: Tvar a rozměry statorové drážky [2]

Obr. 3.4: Tvar a rozměry rotorové drážky [2]

Činitel magnetické vodivosti drážky

$$\lambda_{d1} = \frac{h_3}{3b}k_{\beta} + \left(\frac{h_2}{b} + \frac{3h_1}{b+2b_0} + \frac{h_0}{b_0}\right)k_{\beta}' = 1,763$$
(3.39)

hodnoty koeficientů k_β a k'_β závisejí na kroku vinutí, pro jednovrstvá vinutí $k_\beta=k'_\beta=1$

Činitel magnetické vodivosti rozptylu čel

$$\lambda_{\check{c}1} = 0.34 \frac{q}{l_{i}} (l_{\check{c}} - 0.64t_{p}) = 1.423$$
(3.40)

kde t_p je pólová rozteč. Platí

$$t_{\rm p} = \frac{\pi D}{2p} \tag{3.41}$$

Činitel magnetické vodivosti diferenčního rozptylu

$$\lambda_{\rm dif1} = \frac{t_{\rm d1}}{12\delta k_{\rm c}} \xi_1 = 1,631 \tag{3.42}$$

kde činitel ξ_1 při uvažování natočení drážek

$$\xi_{1} = 2k_{\gamma}'k_{\beta} - k_{v1}^{2} \left(\frac{t_{d2}}{t_{d1}}\right)^{2} \left(1 + \beta_{\gamma}^{2}\right)$$
(3.43)

kde činitel natočení drážek β_{γ} je poměr natočení drážky ku drážkové rozteči rotoru

koeficient k'_{γ} se určí z křivek na obr. 3.6.

Obr. 3.6: Křivky pro určení koeficientu k'_{γ} [2]

Rozptylová reaktance statorového vinutí

$$X_{\sigma 1} = 15.8 \frac{f_1}{100} \left(\frac{N_1}{100}\right)^2 \frac{l_i}{pq} (\lambda_{d1} + \lambda_{c1} + \lambda_{dif1})$$
(3.44)
$$X_{1\sigma} = 27.97 \ \Omega$$

3.3.4 Rozptylová reaktance rotorového vinutí

Pro výpočet rozptylové reaktance rotorového vinutí jsou, stejně jako u výpočtu rozptylové reaktance statorového vinutí, potřeba činitelé magnetické vodivosti. Jsou dány tvarem a rozměry rotorových drážek. Tvar a označení rozměrů drážky je na obr. 3.4.

Činitel magnetické vodivosti rotorové drážky

$$\lambda_{d2} = \left[\frac{h_1}{3b} \left(1 - \frac{\pi b^2}{8S_t}\right)^2 + 0.66 - \frac{b_0}{2b}\right] k_d + \frac{b_0}{b} = 1.028$$
(3.45)

kde pro jmenovitý chod $k_{\rm d} = 1$

Činitel magnetické vodivosti rozptylu čel

$$\lambda_{č2} = \frac{2.3D_{\rm kn}}{Q_2 l_{\rm i} \Delta^2} \log \frac{4.7D_{\rm kn}}{2a_{\rm kn} + b_{\rm kn}} = 0.452$$
(3.46)

kde činitel přepočtu proudu v kruhu na proud v tyči Δ se vypočítá dle rovnice 3.33

Činitel magnetické vodivosti diferenciálního rozptylu

$$\lambda_{\rm dif2} = \frac{t_{\rm d2}}{12\delta k_{\rm c}} \xi_2 = 1,991 \tag{3.47}$$

kde činitel ξ_2

$$\xi_2 = 1 + \frac{1}{5} \left(\frac{\pi p}{Q_2}\right)^2 - \frac{\Delta_z}{1 - \left(\frac{p}{Q_2}\right)^2}$$
(3.48)

Obr. 3.7: Křivky pro určení koeficientu Δ_z [2]

Rozptylová reaktance rotorového klecového vinutí

$$X_{\sigma 2} = 7.9 f_1 l_i (\lambda_{d2} + \lambda_{č2} + \lambda_{dif2}) \cdot 10^{-6}$$

$$X_{2\sigma} = 82.26 \cdot 10^{-6} \Omega$$
(3.49)

Pro další výpočty se musí rozptylová reaktance rotorového vinutí přepočítat, stejně jako odpor, na počet závitů statorového vinutí

kde Δ_z se určí z křivek v obr. 3.7.

$$X'_{\sigma 2} = X_{\sigma 2} 4m_1 \frac{(N_1 k_{v1})^2}{Q_2} = 26,10 \,\Omega$$
(3.50)

3.3.5 Vliv natočení drážek na rozptylové reaktance

V asynchronních strojích se pro snížení vlivu vyšších harmonických magnetického pole na charakteristiky stroje, natáčí rotorové drážky vůči statorovým. Taktéž se tím sníží hluk a vibrace. Mírně se sníží indukované napětí, což se však při výpočtech dle [2] zanedbává. Vliv natočení drážek se projeví zvětšením rozptylových reaktancí statorového a rotorového vinutí.

Činitel zvětšení reaktance natočením drážek

$$\sigma_{\gamma} = 1 + 0.41 \left(\frac{b_{\gamma}}{t_{p}}\right)^{2} \frac{U_{1N}}{X_{1\sigma}I_{\mu}} = 1.2150$$
(3.51)

kde b_{γ} je natočení drážek vyjádřené v násobcích drážkové rozteče. Pro analyzovaný motor platí $b_{\gamma} = t_{d1}$

Rozptylová reaktance statorového vinutí s uvažováním vlivu natočení drážek

$$X_{\sigma 1\gamma} = X_{\sigma 1} \sigma_{\gamma} = 33,98 \,\Omega \tag{3.52}$$

Rozptylová reaktance rotorového vinutí s uvažováním vlivu natočení drážek

$$X'_{\sigma 2\gamma} = X'_{\sigma 2}\sigma_{\gamma} = 31,71\ \Omega \tag{3.53}$$

3.4 Ztráty při jmenovitém chodu

3.4.1 Ztráty v železe

Ztráty v železe jsou tvořeny hlavními ztrátami v železe a dodatečnými ztrátami povrchovými a pulsními. Vlivem malého otevření rotorových drážek dosahuje pulsace magnetické indukce ve vzduchové mezeře pod hlavami statorových zubů velmi nízkých hodnot. Z tohoto důvodu se tyto ztráty ve statoru obvykle nepočítají.

3.4.1.1 Hlavní ztráty v železe

Hlavní ztráty v železe se počítají pouze ve statoru, neboť frekvence přemagnetování rotoru je v blízkosti jmenovitého chodu velmi malá a tím jsou tyto ztráty zanedbatelné.

Hlavní ztráty v železe ve statoru

$$\Delta P_{\rm Feh} = \Delta p_{1,0/50} \left(\frac{f_1}{50}\right)^{\beta} \left(k_{\rm dj} B_{j1}^2 m_{j1} + k_{\rm dz} B_{z1}^2 m_{z1}\right)$$
(3.54)

kde β je exponent závislý na druhu použité oceli. Vzhledem k napájecí frekvenci 50 Hz jej není potřeba určovat

 $k_{\rm dj}$, $k_{\rm dz}$ jsou činitelé uvažující vliv nerovností rozložení toku v částech magnetického toku a vliv technologie výroby statorového svazku, pro stroje do výkonu 250 kW platí $k_{\rm dj} \approx 1.6$, $k_{\rm dz} \approx 1.8$

 $\Delta p_{1,0}$ jsou měrné ztráty v železe, jejich hodnota je udávána výrobcem, podle [3] má ocel M700-50A při indukci 1 T a frekvenci 50 Hz $\Delta p_{1,0/50} = 2,57$ W/kg

 m_{j1} , m_{z1} je hmotnost jha, respektive zubu statoru

$$\Delta P_{\rm Feh} = 10,30 \, \rm W$$

3.4.1.2 Ztráty povrchové

Pro výpočet těchto ztrát je třeba nejdříve najít amplitudu pulsací indukce ve vzduchové mezeře nad hlavami zubů

$$B_{02} = \beta_{02} k_{\rm c} B_{\delta} = 0,279 \, {\rm T} \tag{3.55}$$

Obr. 3.8: Křivka pro určení koeficientů β_{01} , β_{02} [2]

Hustota povrchových ztrát

$$p_{\delta p2} = 0.5k_{02} \left(\frac{Q_1 n_0}{10000}\right)^{1.5} (B_{02} t_{d1} 10^3)^2$$

$$p_{\delta p2} = 39.42 \,\mathrm{W} \cdot \mathrm{m}^{-2}$$
(3.56)

kde n_0 jsou otáčky naprázdno

 k_{02} je činitel respektující vliv opracování povrchu hlav zubů rotoru. Pro neopracované povrchy $k_{02} = 1,4 - 1,6$, pro broušené povrchy $k_{02} = 1,7 - 2,0$

Celkové povrchové ztráty v rotoru

$$\Delta P_{\delta p2} = p_{\delta p2} (t_{d2} - b_{02}) Q_2 l_{Fe2} = 0.29 \text{ W}$$
(3.57)

25

3.4.1.3 Ztráty pulsní

Nejdříve je potřeba nalézt amplitudu pulsací indukce ve středním průřezu zubu statoru.

$$B_{\rm p2} = \frac{\gamma_1 \delta}{2t_{\rm d2}} B_{\rm z2} = 0,103 \,\rm T \tag{3.58}$$

kde γ_1 je stejný jako v rovnici 3.16

Pulsní ztráty v zubech rotoru

$$\Delta P_{\rm P2} \approx 0.11 \left(\frac{Q_1 n_0}{1000} B_{\rm p2}\right)^2 m_{z2} = 1.21 \,\mathrm{W} \tag{3.59}$$

kde hmotnost zubů rotoru m_{z2} se vypočítá

$$m_{\rm z2} = h_{\rm z2} b_{\rm z2} Q_2 l_{\rm Fe2} k_{\rm Fe} \rho_{\rm Fe} \tag{3.60}$$

kde $\rho_{\rm Fe}$ je hustota použité oceli, $\rho_{\rm Fe} = 7800 \ {\rm kg/m^3}$

3.4.1.4 Celkové ztráty v železe

Dodatečné ztráty v železe jsou obvykle o jeden řád menší než hlavní ztráty v železe.

$$\Delta P_{\rm Fed} = \Delta P_{\delta p2} + \Delta P_{\rm P2} = 1,50 \,\,\mathrm{W} \tag{3.61}$$

Celkové ztráty v železe potom

$$\Delta P_{\rm Fe} = \Delta P_{\rm Feh} + \Delta P_{\rm Fed} = 11,80 \, \rm W \tag{3.62}$$

3.4.2 Ztráty ve vinutí

Jouleovy ztráty ve vinutí statoru

$$\Delta P_{j1} = m_1 R_1 I_1^2 \tag{3.63}$$

Jouleovy ztráty ve vinutí rotoru

$$\Delta P_{j2} = Q_2 R'_2 I'_2 \tag{3.64}$$

3.4.3 Mechanické a ventilační ztráty

Součástí motoru není ventilátor, tudíž jsou ztráty dány pouze třením v ložiskách a třením rotoru o vzduch. Přibližný výpočet mechanických ztrát při otáčkách naprázdno je dán vztahem

$$\Delta P_{\rm mech0} = \left(\frac{n_0}{10}\right)^2 D_{\rm e}^4 = 4,74 \,\,\rm W \tag{3.65}$$

3.4.4 Přídavné ztráty

Střední hodnota přídavných ztrát při jmenovitém chodu dosahuje 0,5 % jmenovitého výkonu.

$$\Delta P_{\rm d} = 0.005 \cdot P_{\rm 2N} = 0.78 \, \rm W \tag{3.66}$$

Velikost přídavných ztrát je závislá na kvadrátu poměru proudu statorem ku jmenovitému proudu statorem.

3.5 Účiník naprázdno

Účiník je dán poměrem činného složky proudu k celkovému proudu motorem. Při výpočtu činné složky proudu se předpokládá, že ztráty v železe a mechanické ztráty jsou stejné jako za jmenovitého chodu.

Činná složka proudu naprázdno

$$I_{0č} = \frac{\Delta P_{\rm Fe} + \Delta P_{\rm mech} + \Delta P_{\rm j0}}{m_1 U_{\rm 1N}} = 38,6 \,\,{\rm mA}$$
(3.67)

kde Jouleovy ztráty ve statorovém vinutí

$$\Delta P_{j0} = m_1 R_1 I_{\mu}^2 = 10,12 \text{ W}$$
(3.68)

Proud naprázdno motoru

$$I_0 = \sqrt{I_{0č}^2 + I_{0j}^2} = 0,2157 \text{ A}$$
(3.69)

kde jalová složka proudu naprázdno $I_{0j} = I_{\mu}$

Účiník naprázdno

$$\cos\varphi_0 = \frac{I_{0\check{c}}}{I_0} = 0,1790 \tag{3.70}$$

3.6 Výpočet příčné větve obvodového modelu

Příčná větev obvodového modelu asynchronního motoru obsahuje odpor odpovídající ztrátám v železe vztažených na jednu fázi a magnetizační reaktanci. Počítá se při chodu naprázdno, tudíž proud rotorem je nulový.

Odpor představující ztráty v železe

$$R_{\rm Fe} = \frac{m_1 |\boldsymbol{U}_{i1}|^2}{\Delta P_{\rm Fe}} = 12492,51\,\Omega \tag{3.71}$$

kde U_{i1} je fázor indukovaného napětí v příčné větvi. Platí $U_{i1} = U_1 - Z_1 I_0$

Magnetizační reaktance

$$X_{\rm m} = \frac{|\boldsymbol{U}_{\rm i1}|}{I_{\mu}} = 1044,62\,\Omega\tag{3.72}$$

Pro další výpočty je vhodné nahradit paralelní kombinaci $R_{\rm Fe}$ a $X_{\rm m}$ sériově řazenými R_{12} a X_{12} .

$$R_{12} = \frac{R_{\rm Fe} X_{\rm m}^2}{R_{\rm Fe}^2 + X_{\rm m}^2} = 86,74 \,\Omega \tag{3.73}$$

$$X_{12} = \frac{R_{\rm Fe}^2 X_{\rm m}}{R_{\rm Fe}^2 + X_{\rm m}^2} = 1037,37\,\Omega\tag{3.74}$$

3.7 Výpočet zatěžovací charakteristiky

Výpočet vychází ze soustavy rovnic napětí a proudů, které odpovídají obvodovému modelu (obr. 1.2). Na obr. 3.9 je znázorněn tok výkonu v asynchronním motoru. Výkon na odporu $\frac{R'_2}{s} \cdot (1-s)$ reprezentuje mechanický výkon P_{mech} . Jak vyplývá z tohoto obrázku, pro získání výkonu na hřídeli je nutno od tohoto výkonu odečíst ztráty mechanické a dodatečné.

Obr. 3.9: Tok výkonu v asynchronním motoru [7], Upraveno

3.7.1.1 Povrchový jev

Na charakteristiku asynchronního motoru má vliv povrchový jev. Při rozběhu asynchronního motoru je v rotoru oproti jmenovitému stavu několikanásobně vyšší frekvence. Při stojícím rotoru dosahuje napájecí frekvence. Při těchto frekvencích je proud v tyčích rotoru vytlačován směrem ke vzduchové mezeře. Tím hustota proudu v horní části drážky roste a v dolní části klesá. Odpor rotorového vinutí díky tomu roste, což má příznivý vliv na záběrný moment motoru.

Povrchový jev se však projevuje pouze u motorů středního a velkého výkonu. Jelikož analyzovaný motor je malého výkonu, povrchový jev nemá velký vliv a není s ním počítáno.

3.7.1.2 Vliv nasycení

Při spouštění a provozu motoru nad kritickým skluzem nabývají proudy v motoru vysokých hodnot, čímž se zvětšují rozptylové toky. Přesycení hlav zubů zapříčiňuje zvýšení magnetického odporu pro část rozptylového toku, jehož indukční čáry se uzavírají přes horní část drážky. Tím se snižuje velikost činitele magnetické vodivosti drážkového rozptylu λ_d a částečně i velikost činitele magnetické vodivosti diferenčního rozptylu λ_{dif} . Tento vliv bývá ve výpočtu respektován zavedením dodatečného rozšíření otevření drážky.

Vliv nasycení se u motorů malých výkonů výrazně neprojevuje, proto byl při výpočtu rozběhových charakteristik zanedbán.

3.7.1.3 Výpočet

Pro jednotlivé skluzy se počítají následující rovnice. Dle výpočetních možností se volí počet hodnot skluzů, pro které se provádí výpočty. Pro přehlednost je vhodné vypočtené hodnoty pro jednotlivé skluzy uvést v tabulce.

Jelikož jsou v obvodovém modelu odpory a reaktance, je nutné počítat s komplexními čísly.

Níže jsou uvedeny rovnice použité při výpočtu.

Impedance statorové větve obvodového modelu

$$\boldsymbol{Z_1} = \boldsymbol{R_1} + \boldsymbol{j}\boldsymbol{X_{\sigma 1}} \tag{3.75}$$

Impedance rotorové větve obvodového modelu

$$\boldsymbol{Z}_2 = \frac{R_2}{s} + j \boldsymbol{X}_{\sigma 2} \tag{3.76}$$

Impedance příčné větve obvodového modelu

$$\mathbf{Z_0} = R_{12} + jX_{12} \tag{3.77}$$

Statorový proud

$$I_{1} = \frac{U_{1N}}{Z} = \frac{U_{1N}}{Z_{1} + \frac{Z_{2}Z_{0}}{Z_{2} + Z_{0}}}$$
(3.78)

Rotorový proud

$$I_1 = \frac{U_{1N} - I_1 Z_1}{Z_2} \tag{3.79}$$

Proud příčnou větví obvodového modelu

$$I_0 = I_1 - I_2 \tag{3.80}$$

Odebíraný zdánlivý výkon

$$S_1 = 3U_{1N}I_1$$
 (3.81)

Odebíraný příkon P₁ je reálná část S₁

Mechanický výkon

$$P_{\rm mech} = 3(1-s)\frac{R_2}{s}|I_2'|^2$$
(3.82)

Jouleovy ztráty ve vinutí

V rotorovém

$$\Delta P_{j1} = 3R_1 |I_1|^2 \tag{3.83}$$

Ve statorovém

$$\Delta P_{j2} = 3R_2' |I_2'|^2 \tag{3.84}$$

Přídavné ztráty

$$\Delta P_{\rm d} = \Delta P_{\rm dN} \left(\frac{|\boldsymbol{I}_1|}{|\boldsymbol{I}_{1N}|} \right)^2 \tag{3.85}$$

Mechanické ztráty

$$\Delta P_{\rm mech} = \Delta P_{\rm mech0} (1 - s)^2 \tag{3.86}$$

Výkon na hřídeli

$$P_2 = P_{\rm mech} - \Delta P_{\rm d} - \Delta P_{\rm mech} \tag{3.87}$$

Účinnost motoru

$$\eta = P_2/P_1 \tag{3.88}$$

Účiník motoru

$$\cos\varphi = \frac{P_1}{|S_1|} \tag{3.89}$$

Moment motoru

$$M = \frac{P_2}{2\pi f_1 (1-s)} \tag{3.90}$$

Vypočtené hodnoty pro analyzovaný motor jsou uvedeny v příloze v tabulce P.1.

3.8 Vypočtené jmenovité hodnoty

 $s_{\rm N} = 6,73\%$ $n = 2798,1 \,{\rm min^{-1}}$ $P_{2\rm N} = 155,0 \,{\rm W}$ $I_{1\rm N} = 0,3638 \,{\rm A}$ $M_{\rm N} = 0,529 \,{\rm Nm}$ $\eta_{\rm N} = 73,65 \,\%$ $\cos \varphi_{\rm N} = 0,8389$

4 Analytický výpočet dle Pyrhönena

Druhý analytický výpočet proběhl dle rovnic a výpočtů z literatury dle J. Pyrhönena: *Design of rotating electrical machines* [4]. Popis jednotlivých částí výpočtu byl čerpán z téhož zdroje.

Stejně jako u výpočtu v kapitole 3 je cíl určení parametrů náhradního obvodu, ze kterých se dají jednoduše určit charakteristiky motoru. Dle [4] je postup stejný jako podle [2]. Nejprve se určí prvky magnetického obvodu motoru, ze kterých se určí magnetizační proud. Poté se určí hodnoty rozptylových indukčností a odporů vinutí. Dále se spočítají ztráty v železe. Následně je možno určit příčnou větev obvodového modelu a vypočítat charakteristiky motoru.

4.1 Magnetický obvod

Princip určení magnetizačního proudu je stejný jako v kapitole 3.1.

Magnetický indukční tok vzduchovou mezerou

$$\Phi = \frac{\sqrt{2}U_{1N}}{\omega_1 k_{v1} N_1} = 1,544 \text{ mWb}$$
(4.1)

kde ω_1 je úhlová rychlost napájecí frekvence. Platí $\omega_1=2\pi f_1$

 $k_{\rm v1}$ je činitel statorového vinutí. Vypočtený dle rovnice 3.3

Vzduchová mezera

Magnetická indukce ve vzduchové mezeře

$$B_{\delta} = \frac{\Phi}{\alpha_{\rm i} t_{\rm p} l'} = 0,567 \,\mathrm{T} \tag{4.2}$$

kde α_i je poměr aritmetického průměru magnetické indukce k maximální hodnotě. $\alpha_i = 2/\pi$

 $t_{\rm p}$ je pólová rozteč. Vypočtená dle rovnice 3.41

l'je efektivní délka železa. Zahrnuje vliv okrajového magnetického pole na konci železa motoru. Platí $l'\approx l_{\rm Fe1}+2\delta$

Magnetické napětí vzduchové mezery

$$U_{\delta} = \frac{B_{\delta}}{\mu_0} \delta_{\rm e} = 150,97 \,\rm A \tag{4.3}$$

kde δ_e je efektivní délka vzduchové mezery. Platí $\delta_e = k_c \delta$, kde k_c je Carterův faktor vypočítaný dle rovnice 3.17

Zub statoru

Magnetický indukční tok procházející drážkovou roztečí vzduchové mezery je roven magnetickému indukčnímu toku procházejícího zubem statoru.

Magnetický indukční tok

$$\Phi_{\rm z1} = l' t_{\rm d1} B_{\delta} = 0,2022 \text{ mWb}$$
(4.4)

kde t_{d1} je drážková rozteč statoru. Vypočtená dle 3.9

Magnetická indukce

$$B_{z1} = \frac{\Phi_{z1}}{S_{z1}} = \frac{\Phi_{z1}}{k_{\rm Fe}l_{\rm Fe1}b_{z1}} = 1,170 \text{ T}$$
(4.5)

Z magnetizační křivky na obrázku 3.3 se odečte Intenzita magnetického pole.

Intenzita magnetického pole

$$H_{\rm z1} = 198 \,{\rm A/m}$$
 (4.6)

Magnetické napětí

$$U_{\rm Z1} = H_{\rm Z1} h_{\rm Z1} = 2,18 \, \rm A \tag{4.7}$$

Zub rotoru

Stejný princip jako u zubu statoru platí i u rotorového zubu.

Magnetický indukční tok

$$\Phi_{z2} = l' t_{d2} B_{\delta} = 0,2822 \text{ mWb}$$
(4.8)
kde t_{d2} je drážková rozteč rotoru. Vypočtená dle 3.11

Magnetická indukce

$$B_{z2} = \frac{\Phi_{z2}}{S_{z2}} = \frac{\Phi_{z2}}{k_{\rm Fe}l_{\rm Fe2}b_{z2}} = 1,412 \text{ T}$$
(4.9)

Intenzita magnetického pole

$$H_{\rm z2} = 402 \,\rm A/m$$
 (4.10)

Magnetické napětí

$$U_{\rm z2} = H_{\rm z2} h_{\rm z2} = 3,11 \, \rm A \tag{4.11}$$

Jho statoru

Jedním pólem jha statoru i rotoru prochází celý magnetický indukční tok $\varPhi.$ Proto

Magnetická indukce

$$B_{j1} = \frac{\Phi}{2S_{j1}} = \frac{\Phi}{2k_{\rm Fe}l_{\rm Fe1}h_{j1}} = 1,458 \,\mathrm{T}$$
(4.12)

Intenzita magnetického pole

$$H_{j1} = 553 \text{ A/m}$$
 (4.13)

Magnetické napětí

$$U_{j1} = c_1 H_{j1} h_{j1} = 14,54 \text{ A}$$
(4.14)

kde koeficient c_1 se určí ze závislosti na magnetické indukci jha statoru z obr. 4.1. Koeficient c_1 bere v potaz silně nelineární intenzitu magnetického pole ve jhu

Obr. 4.1: Závislost koeficientů c_1 a c_2 na magnetické indukci jha statoru (v obrázku \hat{B}_{ys}) a jha rotoru (v obrázku \hat{B}_{yr}) [4]

Jho rotoru

Magnetická indukce

$$B_{j2} = \frac{\Phi}{2S_{j2}} = \frac{\Phi}{2k_{\rm Fe}l_{\rm Fe2}h_{j2}} = 1,561 \,\mathrm{T}$$
(4.15)

Intenzita magnetického pole

$$H_{j2} = 1343 \text{ A/m}$$
 (4.16)

Magnetické napětí

$$U_{j2} = c_2 H_{j2} h_{j2} = 13,67 \text{ A}$$
(4.17)

kde koeficient c_2 se určí ze závislosti na magnetické indukci j
ha rotoru z obrázku 4.1

Celkové magnetické napětí je vytvářeno jednou cívkou s proudem v amplitudě a dvěma s proudem v polovině amplitudy v opačné fázi. Magnetická napětí vytvářená všemi cívkami se sčítají a platí, že cívka s proudem v amplitudě se podílí na tvorbě poloviny celkového magnetického napětí.

Magnetické napětí vytvořené cívkou s proudem v amplitudě

$$F_{\rm mA} = U_{\delta} + \frac{U_{j1} + U_{j2} + 2U_{z1} + 2U_{z2}}{2} = 170,37 \, \text{A}$$
(4.18)

Magnetizační proud

$$I_{\mu} = \frac{F_{\rm mA} \pi p}{\sqrt{2}m_1 k_{\rm v1} N_{\rm s}} = 0,1882 \,\,{\rm A} \tag{4.19}$$

Výpočtová magnetizační indukčnost

Pro výpočet rozptylových indukčností je potřeba určit výpočtovou výpočtová magnetizační indukčnost, která bude pro použití v náhradním schématu upřesněna. Výpočet vychází ze vzorce pro indukčnost cívky. Pro cívku s proudem v amplitudě platí

$$L_{\rm mA} = \frac{\psi_{\rm mA}}{I_{\rm m}} \tag{4.20}$$

kde ψ_{mA} je spřažený magnetický tok vytvářený touto cívkou

$$\psi_{\rm mA} = \alpha_{\rm i} \mu_0 \frac{1}{2p} \frac{4}{\pi} \frac{t_{\rm p}}{\delta k_{\rm c}} l' (k_{\rm v1} N_1)^2 I_{\mu}$$
(4.21)

Na tvorbě spřaženého magnetického toku se podílí vinutí všech fází. Proto

Celková výpočtová magnetizační indukčnost

$$L_{\rm mv} = \frac{3}{2} L_{\rm mA} = \alpha_{\rm i} \mu_0 \frac{1}{2p} \frac{4}{\pi} \frac{t_{\rm p}}{\delta k_{\rm c}} l' (k_{\rm v1} N_1)^2 = 4,366 \,\,{\rm H}$$
(4.22)

4.2 Náhradní obvodový model

4.2.1 Rozptylové indukčnosti

Rozptylové indukčnosti jsou prvky, které v obvodovém modelu reprezentují magnetický indukční tok, který neprochází vzduchovou mezerou a tok, který prochází vzduchovou mezerou, ale nepodílí se na elektromechanické přeměně energie.

4.2.1.1 Rozptylová indukčnost rotoru natočením drážek

V asynchronních motorech s klecí nakrátko bývají drážky rotoru vůči drážkám statoru pootočené. Důvod je potlačení vlivu vyšších harmonických indukčního toku vytvářených statorovým vinutím. Natočení rotorových drážek způsobuje, že část indukčního toku procházejícího přes vzduchovou mezeru se neuzavře v rotorovém vinutí.

Činitel natočení drážek

Činitel natočení drážek pro řád harmonické indukčního toku v

$$k_{\rm sqv} = \frac{\sin\left(v\frac{\pi}{2}\frac{\beta_{\rm Y}}{t_{\rm p}}\right)}{v\frac{\pi}{2}\frac{\beta_{\rm Y}}{t_{\rm p}}} \tag{4.23}$$

kde β_{γ} je činitel natočení vyjádřené jako počet drážek o kolik je drážka natočená Pro analyzovaný motor platí $\beta_{\gamma} = 1$ a pro výpočet rozptylové indukčnosti je potřeba znát činitel natočení drážek pro první harmonickou.

$$k_{\rm sq1} = \frac{\sin\left(\frac{\pi}{2}\frac{1}{m_1q}\right)}{\frac{\pi}{2}\frac{1}{m_1q}} = 0,9972$$
(4.24)

Rozptylová indukčnost rotoru natočením drážek

Z napěťových rovnic vycházejících z obvodového schématu platí pro rozptylovou indukčnost rotoru natočením drážek převedenou na počet závitů statorového vinutí

$$L'_{\rm sq} = \frac{1 - k_{\rm sq1}^2}{k_{\rm sq1}^2} L_{\rm m} = 24,99 \text{ mH}$$
(4.25)

4.2.1.2 Rozptylová indukčnost vzduchové mezery

Vlivem prostorového rozložení drážek statoru a rotoru vůči sobě vznikají vyšší harmonické indukčního toku. To je reprezentováno rozptylovou indukčností vzduchové mezery.

Stator

Rozptylová indukčnost vzduchové mezery statoru

Pro rozptylovou indukčnost vzduchové mezery statoru platí

$$L_{\delta 1} = \sigma_{\delta 1} \Delta_2 L_{\rm m} = 25,92 \,\,{\rm mH}$$
 (4.26)

kde $\sigma_{\delta 1}$ je rozptylový činitel vzduchové mezery pro stator. Platí pro něj

$$\sigma_{\delta 1} = \sum_{\nu = -\infty, \nu \neq 1}^{\nu = +\infty} \left(\frac{k_{\nu\nu}}{\nu k_{\nu1}}\right)^2 = 0,007368$$
(4.27)

 \varDelta_2 je tlumící faktor. Ten bere v potaz utlumení vyšších harmonických toku vlivem natočení drážek rotoru. Platí

$$\Delta_2 \approx 1 - \frac{1}{\sigma_{\delta 1}} \sum_{\nu \neq 1} \left(\frac{k_{\nu\nu}}{\nu k_{\nu 1}} k_{sq\nu} \frac{\sin\left(\frac{\nu \pi p}{Q_2}\right)}{\frac{\nu \pi p}{Q_2}} \right)^2 = 0.8057$$
(4.28)

kde řád harmonické v je v rozmezí $1 < v \le 2m_1q_1$. Nabývá hodnot $v = 1 \pm 2m_1q_1$ a $v = 1 \pm 2cm_1$, kde c = 0, 1, 2, ...

Rotor

Rozptylová indukčnost vzduchové mezery rotoru

Pro rozptylovou indukčnost vzduchové mezery rotoru převedenou na počet závitů statorového vinutí platí

$$L'_{\delta 2} = \sigma_{\delta 2} L_{\rm m} = 75,31 \,\,{\rm mH} \tag{4.29}$$

kde $\sigma_{\delta 2}$ je rozptylový činitel vzduchové mezery pro rotor. Platí pro něj

$$\sigma_{\delta 2} = \frac{1}{k_{\text{sq1}}^2} \left(\frac{p\pi/Q_2}{\sin(p\pi/Q_2)} \right)^2 - 1 = 0,01725$$
(4.30)

4.2.1.3 Rozptylová indukčnost drážky

Rozptylová indukčnost drážky reprezentuje indukční tok, který neprochází přes vzduchovou mezeru a uzavírá se přes drážku.

Označení veličin pro výpočet indukčnosti drážky statoru je na obr. 4.2, pro indukčnost drážky rotoru na obr. 4.3.

Obr. 4.2: Rozměry statorové drážky [4]

Obr. 4.3: Rozměry rotorové drážky [4]

Stator

Činitel magnetické vodivosti drážky

Činitel magnetické vodivosti drážky závisí na geometrii drážky. Na obr. 4.2 jsou znázorněny jednotlivé rozměry použité při výpočtu činitele. Pro tvar statorové drážky na obr. 4.2 platí

b b b b b

$$\lambda_{d1} = \frac{h_4}{3b_4} + \frac{h_3}{b_4} + \frac{h_1}{b_1} + \frac{h_2}{b_4 - b_1} \ln \frac{b_4}{b_1} = 1,627$$
(4.31)

Rozptylová indukčnost drážky statoru

$$L_{d1} = \frac{4m_1}{Q_1} \mu_0 l' N_1 \lambda_{d1} = 30,31 \text{ mH}$$
(4.32)

Rotor

Činitel magnetické vodivosti drážky

$$\lambda_{\rm d2} = k_{\rm L} \frac{h_4}{3b_4} + \frac{h_1}{b_1} + 0,66 = 1,028 \tag{4.33}$$

kde $k_{\rm L}$ je činitel skin efektu reprezentující pokles indukčnosti drážky způsobený skin efektem. Platí

$$k_{\rm L} = \frac{1}{z_{\rm t}^2} \cdot \frac{3}{2\xi} \cdot \left(\frac{\sinh 2\xi - \sin 2\xi}{\cosh 2\xi - \cos 2\xi}\right) + \frac{z_{\rm t}^2 - 1}{z_{\rm t}^2} \cdot \frac{1}{\xi} \\ \cdot \left(\frac{\sinh 2\xi - \sin 2\xi}{\cosh 2\xi - \cos 2\xi}\right)$$
(4.34)

kde z_t je počet vodičů v drážce v radiálním směru

 ξ je redukovaná výška vodiče a vypočte se

$$\xi = h_4 \sqrt{\omega \mu_0 \sigma_{\rm Al} \frac{b_{\rm c}}{2b_4}} = 0,299 \,\,\mathrm{m} \tag{4.35}$$

kde $b_{\rm c}$ je šířka vodiče v drážce

 $\sigma_{\rm Al}$ je vodivost hliníku

Pro klec nakrátko platí $z_{\rm t} = 1$, tudíž

$$k_{\rm L} = \frac{1}{1} \cdot \frac{3}{2\xi} \cdot \left(\frac{\sinh 2\xi - \sin 2\xi}{\cosh 2\xi - \cos 2\xi}\right) = 1 \tag{4.36}$$

Z velikosti činitele $k_{\rm L}$ lze usoudit, že se skin efekt neprojevuje.

Rozptylová indukčnost drážky rotoru

$$L_{\rm d2} = \mu_0 l' z_{\rm Q}^2 \lambda_{\rm d2} = 78,16 \text{ nH}$$
(4.37)

kde pro klecové vinutí platí počet vodičů v drážce $z_{\rm Q}=1$

4.2.1.4 Rozptylová indukčnost otevření drážky

Rozptylová indukčnost otevření drážky reprezentuje indukční tok mezi vedlejšími zuby procházející vzduchovou mezerou nad otevřením drážky.

Stator

Činitel magnetické vodivosti otevření drážky

$$\lambda_{01} = k_2 \frac{5\left(\frac{\delta}{b_{01}}\right)}{5 + 4\left(\frac{\delta}{b_{01}}\right)} = 0,1136$$
(4.38)

kde b_{01} je otevření statorové drážky

 k_2 je činitel pro dvouvrstvá vinutí. Pro jednovrstvá vinutí platí $k_2=1$

Rozptylová indukčnost otevření drážky pro jednu fázi statorového vinutí

$$L_{o1} = \frac{4m_1}{Q_1} \mu_0 l' N_1^2 \lambda_{o1} = 2,17 \text{ mH}$$
(4.39)

Rotor

Činitel magnetické vodivosti otevření drážky

$$\lambda_{02} = k_2 \frac{5\left(\frac{\delta}{b_{02}}\right)}{5 + 4\left(\frac{\delta}{b_{02}}\right)} = 0,2064$$
(4.40)

kde b_1 je otevření drážky

Rozptylová indukčnost otevření drážky pro jednu tyč klece

$$L_{o2} = \mu_0 l' z_Q^2 \lambda_{o2} = 15,69 \,\mathrm{nH}$$
(4.41)

4.2.1.5 Rozptylová indukčnost čela vinutí

Rozptylová indukčnost čela vinutí je daná rozptylovým tokem vznikajícím proudem tekoucím konci vinutí. Geometrii konců vinutí je obtížné analyzovat, proto se využívají empiricky získané činitele magnetické vodivosti.

Stator

Rozptylová indukčnost čela vinutí statoru

$$L_{\check{c}1} = \frac{2}{p} N_1^2 \mu_0 l_{l\check{c}} \lambda_{l\check{c}} = 36,27 \text{ mH}$$
(4.42)

kde součin $l_{l\check{c}}\lambda_{l\check{c}}$ je dán

$$l_{l\check{c}}\lambda_{l\check{c}} = 2l_{\check{c}}\lambda_{\check{c}} + W_{\check{c}}\lambda_{W\check{c}}$$
(4.43)

kde l_{c} je délka cívky v axiálním směru od konce statorového železa po okraj konce vinutí

W_č je délka oblouku konce vinutí

 $\lambda_{\check{c}}, \lambda_{W\check{c}}$ jsou činitele magnetické vodivosti konce vinutí. Pro třífázové statorové vinutí a rotorovou klec, kdy vinutí statoru je tří schodové platí $\lambda_{\check{c}} = 0,34$, $\lambda_{W\check{c}} = 0,24$

Rotor

Rozptylová indukčnost části kruhu nakrátko

$$L_{č2} = \mu_0 \frac{Q_2}{2p^2 m_1} \left[\frac{2}{3} \left(l_{\rm t} - l_{\rm r}' \right) + v \frac{\pi D_{\rm kn}}{2p} \right] = 67,95 \,\mathrm{nH} \tag{4.44}$$

kde činitel v = 0,36 pro p = 1

 $l_{
m r}^\prime$ je délka tyče od statorového železa po kraj kruhu nakrátko

4.2.1.6 Celková rozptylová indukčnost

Stator

Celková rozptylová indukčnost statoru je dána součtem rozptylové indukčnosti vzduchové mezery, drážky, otevření drážky a čela vinutí.

$$L_{\sigma 1} = L_{\delta 1} + L_{d1} + L_{o1} + L_{c1} = 94,67 \text{ mH}$$
(4.45)

Rozptylová reaktance

Pro použití v náhradním obvodu se určí z rozptylové indukčnosti reaktance.

$$X_{\sigma 1} = \omega L_{\sigma 1} = 2\pi f_1 L_{\sigma 1} = 29,74\,\Omega \tag{4.46}$$

Rotor

Pro použití v náhradním obvodu se rozptylová indukčnost rotoru musí přepočítat na počet závitů statorového vinutí.

Činitel přepočtu

$$\rho = \frac{4m_1}{Q_2} \left(\frac{N_1 k_{\rm v1}}{k_{\rm sq1}}\right)^2 = 319055,6\tag{4.47}$$

Celková rozptylová indukčnost rotoru přepočtená na stator

Rozptylová indukčnost natočení drážek a vzduchové mezery je již přepočtena na počet závitů statorového vinutí, proto se činitelem přepočtu násobí jen rozptylová indukčnost drážky, otevření drážky a části kruhu nakrátko.

$$L'_{\sigma 2} = L'_{sq} + L'_{\delta 2} + \rho(L_{d2} + L_{o2} + L_{c2}) = 151,92 \text{ mH}$$
(4.48)

Rozptylová reaktance

Stejně jako u statoru se z rozptylové indukčnosti určí reaktance.

$$X'_{\sigma 2} = \omega L'_{\sigma 2} = 2\pi f_1 L'_{\sigma 2} = 47,73 \,\Omega \tag{4.49}$$

4.2.2 Odpory vinutí

Stejně jako v kapitole 3.3.2 a 3.3.3 je odpor vinutí počítán pro teplotu 55 °C.

Statorové vinutí

Výpočet odporu statorového vinutí je stejný jako v kapitole 3.3.1, proto je uveden pouze výsledek.

$$R_1 = 74,90 \ \Omega \tag{4.50}$$

Rotorové vinutí

Výpočet odporu rotorového vinutí je stejný jako v kapitole 3.3.2, proto je stejně jako u statorového vinutí uveden pouze výsledek. Přepočet odporu rotorového vinutí na počet závitů statorového vinutí se však odlišuje. V činiteli přepočtu dle [4] je zahrnut činitel natočení drážek k_{sq1} .

$$R_2 = 1,491 \cdot 10^{-4} \,\Omega \tag{4.51}$$

Činitel přepočtu

$$K_{\rm r} = \frac{2m_1 k_{\rm v1} N_1}{Q_2 k_{\rm sq1}} = 237,28 \tag{4.52}$$

Přepočtený odpor rotorového vinutí

$$R_2' = \frac{Q_2}{m_1} K_r^2 R_2 = 47,57 \ \Omega \tag{4.53}$$

4.3 Ztráty při jmenovitém chodu

4.3.1 Ztráty v železe

Ztráty v železe se stejně jako v kapitole 3.4.1.1. počítají pouze ve statoru, neboť frekvence přemagnetování rotoru je v blízkosti jmenovitého chodu velmi malá a tím jsou tyto ztráty zanedbatelné.

$$P_{\rm Fe} = \sum_{\rm n} k_{\rm d,n} \Delta p_{1,0/50} B_{\rm n}^{2} m_{\rm n} = 10,89 \,\rm W \tag{4.54}$$

kde n reprezentuje index pro statorový zub a pro jho

 $\Delta p_{1,0/50}$ jsou měrné ztráty v železe. Stejně jako v rovnici (3.51) $\Delta p_{1,0}=2,57~{\rm W/kg}$

 m_{j1} a m_{z1} jsou hmotnost jha, respektive zubu statoru

 $k_{\rm dz}$ a $k_{\rm dj}$ jsou korekční koeficienty pro zub a jho. Stejně jako podle v kapitole 3.4.1.1 podle [2] platí $k_{\rm dz}$ = 1,8, $k_{\rm dj}$ = 1,6

Při výpočtu dle [4] se dodatečné ztráty v železe nepočítají.

4.3.2 Ztráty ve vinutí

Výpočet je stejný jako v kapitole 3.4.2

4.3.3 Mechanické a ventilační ztráty

Mechanické a ventilační ztráty jsou určeny v kapitole 3.4.3.

$$\Delta P_{\rm mech} = 4,74 \, {\rm W}$$

4.3.4 Přídavné ztráty

Přídavné ztráty jsou určeny v kapitole 3.4.4.

 $\Delta P_{\rm d} = 0,78 \, {\rm W}$

4.3.5 Magnetizační reaktance a odpor reprezentující ztráty v železe

Počítají se při chodu naprázdno, tudíž proud rotorem je nulový.

Proud motoru naprázdno

$$I_{0č} = \frac{\Delta P_{\rm Fe} + \Delta P_{\rm mech} + \Delta P_{j0}}{m_1 U_{1\rm N}} = 34,2 \,\mathrm{mA}$$
(4.55)

kde

$$P_{j0} = m_1 R_1 I_{\mu}^2 = 7,96 \,\mathrm{W} \tag{4.56}$$

Proud naprázdno motoru

$$I_0 = \sqrt{I_{0č}^2 + I_{\mu}^2} = 0,1913 \text{ A}$$
 (4.57)

Účiník naprázdno

$$\cos\varphi_0 = \frac{I_{0\check{c}}}{I_0} = 0,1788 \tag{4.58}$$

Odpor představující ztráty v železe

$$R_{\rm Fe} = \frac{m_1 |\boldsymbol{U}_{i1}|^2}{P_{\rm Fe}} = 13604,59 \,\Omega \tag{4.59}$$

kde U_{i1} je indukované napětí v příčné větvi a platí $U_{i1} = U_1 - Z_1 I_0$

Magnetizační reaktance

$$X_{\rm m} = \frac{|\boldsymbol{U}_{\rm i1}|}{I_{\rm \mu}} = 1180,80\ \Omega\tag{4.60}$$

4.4 Vypočtené jmenovité hodnoty

Výpočet probíhal stejným postupem jako v kapitole 3.7. Vypočtené hodnoty jsou v příloze v tabulce P.2.

Jmenovité parametry motoru

$$s_{\rm N} = 6,68\%$$

 $n = 2799,6 \,{\rm min^{-1}}$
 $P_{2\rm N} = 155,1 \,{\rm W}$
 $I_{1\rm N} = 0,3528 \,{\rm A}$
 $M_{\rm N} = 0,529 \,{\rm Nm}$
 $\eta_{\rm N} = 74,51 \,\%$
 $\cos \varphi_{\rm N} = 0,8548$

5 Výpočet v programu RMxprt

Výpočetní program RMxprt je součást simulačního programu Maxwell. RMxprt umožnuje jednoduchým způsobem automaticky nastavit kompletní projekt programu Maxwell. V programovém prostředí se nastaví rozměry statoru a rotoru, počet a rozměry drážek, parametry vinutí, počet pólů, materiály a další potřebné parametry. Po spuštění simulace proběhne analytický výpočet elektrických i neelektrických parametrů motoru. Výsledky obsahují i hodnoty prvků obvodového modelu. [8]

Výsledky simulace jsou vypsány v příloze v tabulce P.3. Hodnoty odporů a reaktancí obvodového modelu jsou dle simulace následující

$$R_{1} = 70,63 \Omega$$

$$R'_{2} = 45,40 \Omega$$

$$X_{\sigma 1} = 26,88 \Omega$$

$$X'_{\sigma 2} = 28,12 \Omega$$

$$R_{Fe} = 10495,90 \Omega$$

$$X_{m} = 1107,83 \Omega$$

Jmenovité parametry motoru

$$s_{\rm N} = 6,14\%$$

 $n = 2815,8 \,{\rm min}^{-1}$
 $P_{2\rm N} = 155,1 \,{\rm W}$
 $I_{1\rm N} = 0,3547 \,{\rm A}$
 $M_{\rm N} = 0,526 \,{\rm Nm}$
 $\eta_{\rm N} = 74,06 \,\%$
 $\cos \varphi_{\rm N} = 0,8484$

6 Měření motoru

Pro ověření výsledků výpočtů a simulace bylo provedeno měření analyzovaného motoru. Vzhledem k malým rozměrům měřeného stroje nebylo možné použít k měření dynamometr, proto byl motor přes měřící hřídel připojen ke stejnosměrnému motoru, který sloužil jako zátěž. Mechanické veličiny byly měřeny pomocí měřící hřídele Torquemaster, elektrické analyzátorem výkonu Yokogawa. Měřící pracoviště je na obr. 6.1.

Postup měření byl následující. Nejdříve byl změřen odpor vinutí nezahřátého motoru, to znamená za teploty vzduchu. Poté byl motor připojen na napájecí napětí a chodem se dostal na pracovní teplotu. Znovu bylo provedeno měření odporu vinutí motoru, ze kterého se určila teplota vinutí na začátku měření zatěžovací charakteristiky. Dál bylo provedeno měření se zabrzděným rotorem, po němž následovalo měření naprázdno a měření zatěžovací charakteristiky. Poté byl pro zjištění teploty vinutí na konci měření znovu změřen odpor vinutí. **Tabulka 6.1: Naměřené hodnoty odporů vinutí**

	R _{m0}	R _{m1}	R _{m2}
	[Ω]	[Ω]	[Ω]
U-V	126,91	142,09	146,00
V-W	130,26	145,28	149,26
U-W	133,49	148,41	152,71
Průměr	130,22	145,26	149,32

Tabulka 6.1 obsahuje naměřené odpory cívek vinutí. Jelikož bylo vinutí spojené do hvězdy a přístupné byly pouze tři vývody, naměřené hodnoty jsou odpory dvou cívek. Hodnoty ve sloupci R_0 jsou naměřené za pokojové teploty, v R_{m1} před měřením, v R_{m2} po měření.

Teplota okolního vzduchu θ_0 odpovídající teplotě vinutí při měření sloupce R_{m0} byla změřena digitálním teploměrem. $\theta_0 = 22,0$ °C

Průměrný odpor dvou cívek vinutí při měření

$$R_{\rm prum} = \frac{R_{\rm m0p} + R_{\rm m1p}}{2} = 147,29\,\Omega\tag{6.1}$$

kde odpory R_{m0p} , R_{m1p} jsou odpory z tabulky 6.1 z řádku Průměr.

Průměrný odpor jedné cívky vinutí při měření

$$R_{\rm prumf} = \frac{R_{\rm prum}}{2} = 73,65 \ \Omega \tag{6.2}$$

Platí

$$R_{\rm prum} = R_{\rm m0p} (1 + \alpha \Delta T) \tag{6.3}$$

Z rovnice 6.3 vychází oteplení vinutí při měření

$$\Delta T = \frac{\frac{R_{\rm prum}}{R_{\rm m0p}} - 1}{\alpha} = 32,8\,^{\circ}{\rm C}$$
(6.4)

Průměrná teplota vinutí při měření

$$\theta = \theta_0 + \Delta T = 54.8 \,^{\circ}\text{C} \cong 55 \,^{\circ}\text{C} \tag{6.5}$$

Pro možnost porovnání s analytickým výpočtem a simulací byl odpor vinutí počítán s teplotou 55 °C.

S	n	U _{1s}	I_1	P_1	<i>P</i> ₂	М	η	cosφ
[-]	[min ⁻¹]	[V]	[A]	[W]	[W]	[Nm]	[%]	[-]
0,0063	2981	399,7	0,312	50,84	3,43	0,011	1,59	0,235
0,0157	2953	399,2	0,311	77,73	31,23	0,101	14,53	0,362
0,0270	2919	399,1	0,320	109,54	61,44	0,201	27,81	0,496
0,0383	2885	398,9	0,336	141,90	89,73	0,297	38,63	0,611
0,0517	2845	398,5	0,363	177,21	118,87	0,399	47,48	0,708
0,0663	2801	399,5	0,399	214,23	145,49	0,496	52,75	0,777
0,0830	2751	399,4	0,442	254,31	171,99	0,597	56,28	0,832
0,1017	2695	399,4	0,490	294,71	195,58	0,693	57,68	0,869

Tabulka 6.2: Naměřené a vypočtené hodnoty zatěžovací charakteristiky

V tabulce 6.2 jsou k naměřeným hodnotám otáček, momentu, napájecího napětí, napájecího proudu, příkonu a účiníku jsou uvedeny hodnoty skluzu, výstupního výkonu a účinnosti. V tabulce uvedené hodnoty napájecího proudu a napětí jsou průměrné hodnoty fázových proudů a sdružených napětí všech tří fází.

Tabulka 6.3: Naměřené hodnoty při měření nakrátko

U _{1s}	I_1	М
[V]	[A]	[Nm]
198,51	0,834	0,300

Měření nakrátko bylo provedeno při sníženém napětí, tudíž je pro porovnání s vypočítanými hodnotami nutno je přepočítat na jmenovité napětí.

$$I_{1p} = \frac{U_{1Ns}}{U_{1s}} \cdot I_1 = 1,681 \,\mathrm{A} \tag{6.6}$$

$$M_{\rm p} = \left(\frac{U_{\rm 1Ns}}{U_{\rm 1s}}\right)^2 \cdot M = 1,218 \,\mathrm{A} \tag{6.7}$$

Index s značí sdruženou hodnotu.

Motor je určen pro zabudování do aplikace. Nemá kostru, což je vidět na obr. 6.2. Ukotvení motoru k měřící sestavě proto nemuselo být ideální. Možné vyosení hřídele motoru mohlo způsobit chybu při měření momentů. Další možný zdroj chyb mohl nastat při měření nízkých momentů měřící hřídelí, jelikož její jmenovitý moment je 1 Nm. Jelikož je motor uzavřený, teplota vinutí se v průběhu měření zvyšovala, což způsobuje rovněž chybu.

Obr. 6.1: Měřící pracoviště

Obr. 6.2: Měřící sestava

7 Porovnání výsledků

V této kapitole budou nejdříve porovnány analytické výpočty v kapitolách 3 a 4 a simulace v programu RMxprt. Dále budou porovnány vypočtené charakteristiky s naměřenými.

Cíl obou analytických výpočtů byl stejný, určit prvky obvodového modelu. Postup byl také totožný. Nejprve se vyřešil magnetický obvod, z něhož se určil magnetizační proud. Dále se určily odpory a rozptylové reaktance statoru a rotoru. Poté se určily ztráty. Nakonec se dopočítaly prvky příčné větve obvodového modelu. Princip výpočtu magnetického obvodu byl u obou literárních zdrojů stejný. Jediný výraznější rozdíl byl ve výpočtu magnetického napětí jha. Kde [4] zavádí koeficient c_1 a c_2 beroucí v potaz nelinearitu síly magnetického pole. Kvůli nižšímu výslednému magnetickému napětí je u výpočtu dle [4] nižší magnetizační proud, což zapříčiňuje i rozdílnou magnetizační reaktanci.

Další významnější odlišnost nastala při výpočtu rozptylových reaktancí. Kde byly rovnice pro výpočet v některých částech výrazně odlišné. Z toho plyne velký rozdíl ve velikosti rozptylové reaktance rotoru, jak je vidět v tabulce 7.1. Na tomto rozdílu se výrazně podílí rozptylová reaktance vzduchové mezery, která tvoří přibližně 50 % celkové rozptylové reaktance rotoru. RMxprt určil velikost této rozptylové reaktance blízkou hodnotě vypočtené dle [2]. Rozdíl mezi vypočítaným odporem statorového vinutí dle RMxprt a ručními výpočty je způsoben především rozdílným odhadem rozměrů čel vinutí.

Ztráty v železe při chodu naprázdno byly podle výpočtu dle Kopylova 11,8 W, dle Pyrhönena 10,89 W a RMxprt je určil na 14,23 W. Tyto rozdíly jsou promítnuty v rozdílných hodnotách $R_{\rm Fe}$.

	Kopylov	Pyrhönen	RMXprt
$R_1 \left[\Omega \right]$	74,90	74,90	70,63
<i>R</i> ₂ ' [Ω]	47,30	47,57	45,40
$X_{\sigma 1}$ [Ω]	33,98	29,74	26,88
$X'_{\sigma 2} [\Omega]$	31,71	47,73	28,12
$R_{\rm Fe} \left[\Omega \right]$	12492,51	13604,59	10495,90
$X_{\rm m} \left[\Omega \right]$	1044,62	1180,80	1107,83

Tabulka 7.1: Srovnání vypočtených hodnot prvků obvodového modelu

Na obr. 7.1 je zobrazena momentová charakteristika analyzovaného motoru dle vypočtených hodnot. Vyšší momenty a také proudy dle RMxprt jsou dány hlavně nižšími rozptylovými reaktancemi. Na obr. 7.2 je srovnání proudových charakteristik vypočtených jednotlivými způsoby.

Obr. 7.1: Srovnání vypočtených momentových charakteristik

Obr. 7.2: Srovnání vypočtených proudových charakteristik

Na obr. 7.3 je srovnání momentových charakteristik v pracovní oblasti motoru. Vypočtené hodnoty jsou relativně blízko naměřeným. Výpočty dle Kopylova a Pyrhönena odpovídají lépe naměřeným hodnotám než výpočet v RMxprt.

Obr 7.4 ukazuje výraznou odchylku proudu naprázdno od vypočtených hodnot. Naměřený proud naprázdno je přibližně o 50 % větší než vypočtený. To znamená, že magnetizační proud tvořící převážnou část proudu naprázdno je asi o 50 % větší než vypočtený. Magnetické napětí v motoru je tudíž také přibližně o 50 % vyšší.

Důvod takového rozdílu může být způsoben vlivem technologie výroby na vlastnosti statorových a rotorových plechů. Dle [9] způsobuje technologie výroby zhoršení tvaru BH křivky a zvětšení měrných ztrát. Toto zhoršení je o to větší, pokud jsou hrany mechanicky poškozeného materiálu blízko sebe. Asynchronní motory malého výkonu mají šířku zubu pouze jednotky milimetrů, tudíž se u nich tento vliv projevuje podstatněji. Jelikož vypočtená magnetická indukce v různých částech motoru je blízko kolena BH křivky mohl vliv technologie výroby způsobit výraznou odchylku vypočteného a reálného magnetizačního proudu a ztrát v železe. Jak je vidět na obr. 7.5, velké ztráty naprázdno ovlivnily účinnost motoru.

V obr. 7.6 je zobrazeno porovnání charakteristik účiníku získaných měřením a výpočty. Z důvodu vyššího magnetizačního proudu, než byl vypočten, je naměřený účiník nižší. Nejspíše kvůli vyšším ztrátám v železe je naměřený účiník naprázdno přibližně na stejné úrovni jako vypočtený.

Srovnání jmenovitých parametrů motoru je v tabulce 7.3.

Pro lepší přehlednost následujících grafů nebyly body všech závislostí proloženy křivkou.

Obr. 7.3: Srovnání naměřené momentové charakteristiky s vypočtenými charakteristikami v pracovní oblasti motoru

Obr. 7.4: Srovnání naměřené proudové charakteristiky s vypočtenými charakteristikami v pracovní oblasti motoru

Obr. 7.5: Srovnání závislostí měřením určených a vypočtených účinností v pracovní oblasti motoru

Obr. 7.6: Srovnání závislostí naměřených a vypočtených účiníků v pracovní oblasti motoru

Při porovnání hodnot proudu nakrátko a záběrného momentu je vidět v tabulce 7.2, že hodnoty vypočtené dle Kopylova se téměř shodují s naměřenými hodnotami.

	Kopylov	Pyrhönen	RMxprt	Měření
<i>I</i> _{1Z} [A]	1,684	1,625	1,828	1,681
M _Z [Nm]	1,196	1,099	1,355	1,218

Tabulka 7.2: Srovnání hodnot proudu nakrátko a záběrného momentu

	Kopylov	Pyrhönen	RMxprt	Měření
s _N [-]	0,0673	0,0668	0,0614	0,0723
$n [\min^{-1}]$	2798,1	2799,6	2815,8	2783,1
P_{2N} [W]	155,0	155,1	155,1	155,1
<i>I</i> _{1N} [A]	0,3638	0,3528	0,3547	0,4140
<i>M</i> _N [Nm]	0,529	0,529	0,526	0,532
$\eta_{\rm N}$ [%]	73,65	74,51	74,06	54,02
$\cos \varphi_{ m N}$ [-]	0,8389	0,8548	0,8484	0,7966

Tabulka 7.3: Srovnání jmenovitých parametrů motoru

8 Závěr

Tématem bakalářské práce je analytický výpočet asynchronního motoru malého výkonu a porovnání výsledků výpočtů s výpočtem v programu RMxprt a s laboratorním měřením. První část práce obsahuje obecný popis asynchronního motoru. V následující části jsou vypsány známé parametry analyzovaného motoru. Analyzovaný asynchronní motor je dvoupólový třífázový o jmenovitém výkonu 155 W. K výpočtu byla poskytnuta výkresová dokumentace od výrobce motoru. Z důvodu sériové výroby počítaného motoru nejsou v práci zmíněny rozměry všech částí motoru a k práci není přiložena výkresová dokumentace motoru.

V další části práce je rozepsán postup analytického výpočtu motoru. Kapitola 3 obsahuje výpočet dle Kopylova [2]. Tento zdroj se zabývá spíše výpočtem asynchronních motorů většího výkonu a je staršího vydání (1988), proto byl analytický výpočet proveden podruhé dle Pyrhönena [4], rok vydání 2008. Postup druhého výpočtu je uveden v kapitole 4. Z výpočtů byly určeny jmenovité parametry motoru a byly vytvořeny charakteristiky závislostí proudu, momentu, účiníku a účinnosti.

Dále byl proveden výpočet motoru v programu RMxprt a laboratorní měření motoru, kapitola 5, respektive 6. Výsledky všech výpočtů a měření jsou porovnány v kapitole 7.

Analytické výpočty se odlišovaly hlavně ve výpočtu magnetického napětí jha statoru a rotoru. Další významná odlišnost nastala při výpočtu rozptylových reaktancí. Přepočtená rozptylová reaktance rotoru vyšla dle Pyrhönena 47,73 Ω , dle Kopylova 31,71 Ω . RMxprt určil její velikost na 27,65 Ω , což naznačuje, že hodnota dle Kopylova je pravděpodobně přesnější než dle Pyrhönena. Jiné odlišnosti při výpočtech byly oproti výše zmíněným spíše minoritního charakteru a na výsledné jmenovité parametry neměly tak velký vliv. Výsledky z programu RMxprt se blížily spíše hodnotám vypočteným dle Kopylova.

Měřené a vypočtené hodnoty se výrazně lišily v magnetizačním proudu motoru a ztrátám naprázdno. Změřený proud naprázdno dosahoval hodnoty 0,3122 A, vypočtený dle Kopylova 0,2157 A, dle Pyrhönena 0,1913 A, dle RMxprt 0,2034 A. Takový rozdíl byl nejspíše způsoben vlivem technologie výroby na vlastnosti statorových a rotorových plechů. Mechanické namáhání při stříhání plechů způsobí zhoršení tvaru BH křivky a zvětšení měrných ztrát. Vliv poškození má z důvodu malých rozměrů statorových a rotorových plechů u malých motorů výrazný vliv. Kvůli vyšším ztrátám a vyššímu magnetizačnímu proudu byla měřením zjištěná jmenovitá účinnost 54,02 %, kdežto vypočtená účinnost dle Kopylova 73,65 %, dle Pyrhönena 74,51 % a dle RMxprt dosahovala 74,06 %.

Změřený záběrný moment a proud se téměř shodují s hodnotami vypočítanými dle Kopylova. Záběrný proud byl dle Kopylova 1,684 A, dle Pyrhönena

1,625 A, dle RMxprt 1,828 A a dle změření 1,681 A. Záběrný moment dosahoval dle Kopylova 1,196 Nm, dle Pyrhönena 1,099 Nm, dle RMxprt 1,355 Nm, dle měření 1,218 Nm.

Výpočty byly zatíženy chybami při odečítání koeficientů z charakteristik. Některé materiálové konstanty nemusí být přesné z důvodu odchylky při výrobě. U některých konstant byl znám pouze rozsah, nebo přibližná hodnota. Chyba při výpočtu v RMxprt mohla nastat u parametrů čel vinutí, které program odhadoval. Přesnost měření ovlivnila měnící se teplota vinutí v průběhu měření, dále přesnost měřících přístrojů a skutečnost, že měřící sestava byla improvizovaná a ukotvení motoru nemuselo být dokonalé.

Literatura

- [1] HUGHES, Austin a Bill DRURY. *Electric motors and drives: Fundamentals, types and applications*. 4th ed. Amsterdam: Elsevier, 2013. ISBN 9780080983325.
- [2] KOPYLOV, Igor Petrovič. *Stavba elektrických strojů: celostátní vysokoškolská učebnice pro elektrotechnické fakulty vysokých škol technických*. 1. vyd. Praha: Státní nakladatelství technické literatury, 1988.
- [3] Typical data for SURA M700-50A. In: [online]. Cogent Surahammars Bruks AB, 2008. Dostupné z:
 <u>http://www.sura.se/Sura/hp_products.nsf/vOpendocument/03A8B2433FAE</u> 16C4C1256AA8002280E6/\$FILE/700-50.pdf?OpenElement
- [4] PYRHONEN, Juha., Tapani JOKINEN a Valeria. HRABOVCOVÁ. *Design of rotating electrical machines.* Hoboken, NJ: Wiley, c2008.
- [5] CIGÁNEK, Ladislav. *ELEKTRICKÉ STROJE A PŘÍSTROJE*. 2. vyd. Praha: Státní nakladatelství technické literatury, 1957.
- [6] PŘEHLED IMPLEMENTACE SMĚRNICE O EKODESIGNU A POŽADAVKŮ NA ENERGETICKOU EFEKTIVNOST VYBRANÝCH SKUPIN VÝROBKŮ. In: INFORMAČNÍ PORTÁL Ministerstva průmyslu a obchodu [online]. Praha: SEVEn Energy s.r.o., 2011. Dostupné z: <u>http://www.mpo-</u> <u>efekt.cz/upload/7799f3fd595eeee1fa66875530f33e8a/prehled-</u> <u>implementace-smernice-oekodesignu-a-pozadavku-na-en.pdf</u>
- [7] ONDRŮŠEK, Čestmir. *Elektrické stroje*. VUT, 199?. Skriptum. VUT.
- [8] ANSYS RMxprt [online]. [cit. 2017-05-22]. Dostupné z: http://www.ansys.com/products/electronics/ansys-rmxprt
- [9] MACH, Martin. Analýza ztrát asynchronních motorů malého výkonu. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2015. Dizertační práce. Vedoucí práce Prof. Ing. Vítězslav Hájek, CSc.

SEZNAM SYMBOLŮ A ZKRATEK

a_{kn}	Šířka kruhu nakrátko	[m]
В	Magnetická indukce ve vzduchové mezeře	[T]
b, b ₀	Rozměry drážky	[m]
b _{kn}	Výška kruhu nakrátko	[m]
B _p	Amplituda pulsací magnetické indukce ve průřezu zubu	[T]
bz	Šířka zubu	[m]
B_0	Amplituda pulsací magnetické indukce nad hlavami zubů	[T]
b_{γ}	Natočení drážky	[m]
cosφ	Účiník	[-]
<i>c</i> ₁ , <i>c</i> ₂	Koeficienty	[-]
D	Vnitřní průměr statoru	[m]
D _e	Vnější průměr motoru	[m]
D _h	Průměr hřídele	[m]
D _i	Vnější průměr rotoru	[m]
D _δ	Průměr vzduchové mezery	[m]
F _m	Magnetické napětí magnetického obvodu	[A]
f_1	Napájecí frekvence	[Hz]
Ι	Elektrický proud	[A]
Iμ	Magnetizační proud	[A]
Н	Intenzita magnetického pole	[A/m]
h	Výška jha	[m]
h_0, h_1, h_2, h_3	Rozměry drážky	[m]
k_{B}	Činitel tvaru pole	[-]
k _c	Carterův činitel	[-]
k _d	Činitel	[-]
$k_{ m E}$	Poměr indukovaného napětí vinutí statoru ke jmenovitému	[-]
$k_{ m Fe}$	Činitel plnění železa	[-]
k_{i}	Činitel pro výpočet jmenovitého proudu rotorem	[-]
k_{L}	Činitel skin efektu	[-]
K _r	Činitel přepočtu	[-]
k _r	Činitel rozlohy	[-]
k _{sq}	Činitel natočení drážek	[-]
k _v	Činitel vinutí	[-]
k_0	Činitel respektující vliv opracování povrchu hlav zubů	[-]
k_{β}, k_{β}'	Koeficienty	[-]
k'_{γ}	Koeficient	[-]
<i>k</i> ~	Činitel zvětšení odporu působením povrchového jevu	[-]
L	Délka vodičů jedné fáze vinutí	[m]

l	Délka, Délka střední magnetické indukční čáry	[m], [m]
$l_{\rm av}$	Střední délka závitu vinutí	[m]
L _č	Rozptylová indukčnost čela vinutí	[H]
l _č	Délka čela	[m]
L _d	Rozptylová indukčnost drážky	[H]
$l_{\rm Fe}$	Délka svazku	[m]
li	Ideální délka vzduchové mezery	[m]
L _m	Magnetizační indukčnost	[H]
Lo	Rozptylová indukčnost otevření drážky	[H]
$l_{ m r}^{\prime}$	Délka tyče od statorového železa po kraj kruhu nakrátko	[m]
L _{sq}	Rozptylová indukčnost rotoru natočením drážek	[H]
L _δ	Rozptylová indukčnost vzduchové mezery	[H]
<i>l'</i>	Efektivní délka železa	[m]
М	Moment	[Nm]
m	Hmotnost	[kg]
m_1	Počet fází motoru	[-]
n	Otáčky motoru	[min ⁻¹]
Ν	Počet závitů ve fázi	[-]
Р	Jmenovitý výkon	[W]
p	Počet pólových dvojic	[-]
$p_{ m i}$	Činitel přepočtu proudů	[-]
$p_{\delta p2}$	Hustota povrchových ztrát rotoru	$[W/m^2]$
q	Počet drážek na pól a fázi	[-]
Q	Počet drážek statoru	[-]
R	Elektrický odpor	[Ω]
$R_{\rm Fe}$	Odpor představující ztráty v železe	$[\Omega]$
S	Průřez	[m ²]
<i>S</i>	Zdánlivý výkon	[VA]
S	Skluz	[-]
t _d	Drážková rozteč	[m]
tp	Pólová rozteč	[m]
U	Magnetické napětí, Elektrické napětí	[A], [V]
v	Činitel	[-]
X_{σ}	Rozptylová reaktance	$[\Omega]$
X _m	Magnetizační reaktance	$[\Omega]$
Wč	Délka oblouku konce vinutí	[m]
Ζ	Impedance	$[\Omega]$
$Z_{\rm Q}$	Počet vodičů v drážce	[-]
<i>z</i> t	Počet vodičů v drážce v radiálním směru	[-]
α	Teplotní součinitel odporu	[Ω/K]

$\alpha_{\rm i}$	Činitel	[-]
β	Koeficient druhu oceli	[-]
eta_{01},eta_{02}	Koeficienty	[-]
β_{γ}	Činitel natočení	[-]
γ_1	Činitel	[-]
Δ	Činitel přepočtu proudu v kruhu na proud v tyči	[-]
δ	Délka vzduchové mezery	[m]
$\delta_{ m e}$	Efektivní délka vzduchové mezery	[m]
$\Delta P_{\rm d}$	Přídavné ztráty	[W]
$\Delta P_{\rm Fe}$	Celkové ztráty v železe	[W]
$\Delta P_{\rm Fed}$	Dodatečné ztráty v železe	[W]
$\Delta P_{\rm Feh}$	Hlavní ztráty v železe	[W]
ΔP_{j}	Jouleovy ztráty ve vinutí	[W]
$\Delta P_{\rm mech}$	Mechanické ztráty	[W]
$\Delta P_{\rm P}$	Pulsní ztráty	[W]
$\Delta p_{1,0/50}$	Měrné ztráty v železe při 1T a 50 Hz	[W/kg]
$\Delta P_{\delta p}$	Povrchové ztráty v rotoru	[W]
Δ_z	Koeficient	[-]
Δ_2	Tlumící faktor	[-]
η	Účinnost	[%]
θ	Teplota	[°C]
$\lambda_{\rm d}$	Činitel magnetické vodivosti drážky	[-]
$\lambda_{\check{c}}$	Činitel magnetické vodivosti rozptylu čel	[-]
$\lambda_{ m dif}$	Činitel magnetické vodivosti diferenčního rozptylu	[-]
ξ	redukovaná výška vodiče	[m]
ξ_1	Činitel	[-]
ρ	Měrný elektrický odpor	[Ωm]
ρ	Činitel přepočtu	[-]
$ ho_{ m Fe}$	Hustota železa	[kg/m ³]
σ	Měrná elektrická vodivost	[S/m]
σ_{γ}	Činitel zvětšení reaktance natočením drážek	[-]
$\sigma_{\delta 1}$	Rozptylový činitel vzduchové mezery	[-]
ϕ	Magnetický indukční tok	[Wb]
ω	Úhlová rychlost	[rad/s]

Indexy:

č	Činná složka
j	Týkající se jha, Jalová složka
kn	Týkající se kruhů nakrátko

N	Jmenovitá hodnota
р	Přepočtená hodnota
prum	Průměrná hodnota
S	Sdružená hodnota
t	Týkající se tyče rotoru
v	Výpočtová hodnota
ν	Řád harmonické
Z	Hodnota při chodu nakrátko
Z	Týkající se zubu
0	Hodnota při chodu naprázdno
1	Týkající se statoru
2	Týkající se rotoru
δ	Týkající se vzduchové mezery
(Hodnota přepočtená na počet závitů statorového vinutí

Přílohy

Příloha 1: Tabulky vypočtených hodnot

		-			-	-	
S	n	I_1	P_1	<i>P</i> ₂	М	η	cosφ
[-]	[min ⁻¹]	[A]	[W]	[W]	[Nm]	[%]	[-]
0,005	2985	0,214	37,10	10,30	0,033	27,76	0,251
0,010	2970	0,218	52,16	24,93	0,080	47,80	0,346
0,015	2955	0,225	67,02	38,98	0,126	58,16	0,432
0,020	2940	0,233	81,67	52,46	0,170	64,23	0,508
0,025	2925	0,243	96,13	65,39	0,213	68,02	0,573
0,030	2910	0,255	110,39	77,79	0,255	70,47	0,628
0,035	2895	0,267	124,46	89,67	0,296	72,05	0,675
0,040	2880	0,281	138,32	101,05	0,335	73,06	0,714
0,045	2865	0,295	151,99	111,95	0,373	73,65	0,746
0,050	2850	0,310	165,46	122,37	0,410	73,96	0,774
0,055	2835	0,325	178,74	132,33	0,446	74,04	0,797
0,060	2820	0,341	191,82	141,86	0,480	73,95	0,816
0,065	2805	0,356	204,71	150,95	0,514	73,74	0,832
0,070	2790	0,372	217,40	159,63	0,546	73,42	0,846
0,075	2775	0,388	229,91	167,90	0,578	73,03	0,858
0,080	2760	0,404	242,23	175,78	0,608	72,57	0,868
0,085	2745	0,420	254,36	183,29	0,638	72,06	0,877
0,090	2730	0,436	266,31	190,43	0,666	71,51	0,884
0,095	2715	0,452	278,08	197,22	0,694	70,92	0,891
0,100	2700	0,468	289,66	203,67	0,720	70,31	0,896
0,120	2640	0,531	334,23	226,26	0,818	67,69	0,913
0,140	2580	0,591	376,09	244,23	0,904	64,94	0,923
0,160	2520	0,648	415,37	258,17	0,978	62,15	0,928
0,180	2460	0,703	452,22	268,61	1,043	59,40	0,932
0,200	2400	0,755	486,80	276,02	1,098	56,70	0,934
0,220	2340	0,805	519,25	281,07	1,147	54,13	0,935
0,240	2280	0,852	549,70	283,91	1,189	51,65	0,935
0,260	2220	0,897	578,30	284,87	1,225	49,26	0,934
0,280	2160	0,940	605,16	284,21	1,256	46,96	0,933
0,300	2100	0,980	630,41	282,17	1,283	44,76	0,932
0,320	2040	1,018	654,16	278,96	1,306	42,64	0,931
0,340	1980	1,055	676,51	274,76	1,325	40,61	0,929
0,360	1920	1,090	697,56	269,72	1,341	38,67	0,928

Tabulka P.1: Vypočtené hodnoty z obvodového modelu dle kapitoly 3

		I	מ	מ	M		
S [_]	<i>n</i> [min ⁻¹]	Ι ₁ [Δ]	P_1	P_2	M [Nm]	η [%]	cosφ [_]
0 380	1860	رم <u>ا</u> 1 123	717 41	263.99	1 355	36.80	0.926
0 400	1800	1 154	736 12	257.68	1 367	35,00	0.924
0 420	1740	1 184	753 79	250 31	1 374	33,01	0.922
0 440	1680	1 213	770 47	242 49	1 378	31 47	0.920
0 460	1620	1 241	786.25	234 31	1 381	29.80	0.918
0 480	1560	1 267	801 18	225 83	1 382	28,00	0.917
0 500	1500	1 292	815 32	217 11	1 382	26.63	0.915
0 520	1440	1 316	828 72	208 20	1 381	25,05	0,913
0,520	1380	1 339	841 43	199 15	1 378	23,12	0,913
0 560	1320	1 361	853 49	190.00	1 375	22,07	0,909
0,580	1260	1 382	864 95	180,00	1 370	22,20	0,907
0,500	1200	1 402	875 84	171 53	1 365	19 58	0,905
0,000	1140	1 422	886.20	162.26	1 359	18 31	0,903
0.640	1080	1 441	896.07	153.00	1 353	17.07	0,901
0,640	1020	1 / 59	905.46	143 76	1 346	15.88	0,901
0,000	960	1 476	914 43	134 57	1 339	14 72	0,900
0,000	900	1 493	922 97	125 43	1 331	13 59	0,896
0,700	840	1 509	931 14	116 36	1 323	12 50	0 894
0 740	780	1 524	938.94	107 37	1 315	11 44	0,893
0,740	720	1 539	946 39	98.47	1 306	10.40	0,893
0,780	660	1 554	953 52	89.66	1 297	9 40	0,889
0,800	600	1 568	960 35	80.95	1 288	8 43	0.888
0.820	540	1 581	966 89	72 35	1 279	7 48	0.886
0.840	480	1 594	973 15	63.85	1 270	6 56	0.885
0.860	420	1.607	979.16	55.46	1,261	5.66	0.883
0.880	360	1,619	984.93	47.19	1.252	4,79	0.882
0.900	300	1.631	990.47	39.03	1.242	3.94	0.880
0.920	240	1.642	995.78	30.99	1.233	3.11	0.879
0.940	180	1.653	1000.90	23.07	1.224	2.30	0.878
0,960	120	1.664	1005.81	15.26	1.214	1.52	0.876
0.980	60	1.674	1010.54	7.57	1.205	0.75	0.875
1.000	0	1.684	1015.09	0.00	1.196	0.00	0.874
_,000	0	_,	,	0,00	_,0	5,00	5,571

Pokračování tabulky P.1

S	n	I ₁	<i>P</i> ₁	<i>P</i> ₂	М	η	cosφ
[-]	[min ⁻¹]	[A]	[W]	[W]	[Nm]	[%]	[-]
0,005	2985	0,191	34,44	10,49	0,034	30,47	0,261
0,010	2970	0,196	49,67	25,27	0,081	50,87	0,366
0,015	2955	0,204	64,70	39,44	0,127	60,96	0,460
0,020	2940	0,214	79,52	53,04	0,172	66,70	0,540
0,025	2925	0,225	94,14	66,08	0,216	70,19	0,606
0,030	2910	0,238	108,55	78,56	0,258	72,38	0,662
0,035	2895	0,252	122,74	90,52	0,299	73,75	0,707
0,040	2880	0,266	136,73	101,96	0,338	74,57	0,744
0,045	2865	0,282	150,51	112,89	0,376	75,01	0,774
0,050	2850	0,298	164,08	123,35	0,413	75,18	0,799
0,055	2835	0,314	177,43	133,32	0,449	75,14	0,819
0,060	2820	0,330	190,58	142,84	0,484	74,95	0,836
0,065	2805	0,347	203,52	151,92	0,517	74,65	0,850
0,070	2790	0,363	216,26	160,57	0,550	74,25	0,862
0,075	2775	0,380	228,79	168,80	0,581	73,78	0,872
0,080	2760	0,397	241,11	176,63	0,611	73,26	0,881
0,085	2745	0,413	253,23	184,07	0,640	72,69	0,888
0,090	2730	0,430	265,16	191,13	0,669	72,08	0,894
0,095	2715	0,446	276,88	197,83	0,696	71,45	0,899
0,100	2700	0,463	288,40	204,17	0,722	70,79	0,903
0,120	2640	0,526	332,59	226,26	0,818	68,03	0,916
0,140	2580	0,587	373,80	243,59	0,902	65,17	0,923
0,160	2520	0,645	412,22	256,81	0,973	62,30	0,926
0,180	2460	0,700	448,00	266,46	1,034	59,48	0,928
0,200	2400	0,752	481,32	273,05	1,086	56,73	0,928
0,220	2340	0,801	512,35	277,28	1,132	54,12	0,927
0,240	2280	0,847	541,24	279,31	1,170	51,60	0,926
0,260	2220	0,891	568,15	279,48	1,202	49,19	0,924
0,280	2160	0,932	593,23	278,07	1,229	46,87	0,922
0,300	2100	0,972	616,61	275,34	1,252	44,65	0,920
0,320	2040	1,009	638,43	271,49	1,271	42,53	0,917
0,340	1980	1,044	658 <i>,</i> 80	266,72	1,286	40,49	0,915
0,360	1920	1,077	677,83	261,17	1,299	38,53	0,912
0,380	1860	1,109	695,62	255,00	1,309	36,66	0,909
0,400	1800	1,139	712,28	248,31	1,317	34,86	0,907
0,420	1740	1,167	727,87	240,64	1,321	33,06	0,904
0,440	1680	1,194	742,50	232,59	1,322	31,33	0,901
0,460	1620	1,220	756,22	224,25	1,322	29,65	0,898

Tabulka P.2: Vypočtené hodnoty z obvodového modelu dle kapitoly 4

S	n	I_1	P_1	<i>P</i> ₂	М	η	cosφ
[-]	[min ⁻¹]	[A]	[W]	[W]	[Nm]	[%]	[-]
0,480	1560	1,245	769,10	215,66	1,320	28,04	0,895
0,500	1500	1,268	781,21	206,90	1,317	26,48	0,893
0,520	1440	1,291	792,60	198,01	1,313	24,98	0,890
0,540	1380	1,312	803,33	189,03	1,308	23,53	0,887
0,560	1320	1,332	813,44	180,00	1,302	22,13	0,885
0,580	1260	1,352	822,97	170,95	1,296	20,77	0,882
0,600	1200	1,371	831,97	161,90	1,288	19,46	0,880
0,620	1140	1,388	840,48	152,89	1,281	18,19	0,877
0,640	1080	1,406	848,52	143,91	1,272	16,96	0,875
0,660	1020	1,422	856,13	135,00	1,264	15,77	0,872
0,680	960	1,438	863,34	126,17	1,255	14,61	0,870
0,700	900	1,453	870,17	117,42	1,246	13,49	0,868
0,720	840	1,468	876,65	108,76	1,236	12,41	0,866
0,740	780	1,482	882,80	100,21	1,227	11,35	0,863
0,760	720	1,495	888,65	91,77	1,217	10,33	0,861
0,780	660	1,508	894,20	83,45	1,207	9,33	0,859
0,800	600	1,521	899,49	75,24	1,197	8,36	0,857
0,820	540	1,533	904,52	67,15	1,188	7,42	0,855
0,840	480	1,544	909,31	59,19	1,178	6,51	0,853
0,860	420	1,556	913,88	51,35	1,168	5,62	0,851
0,880	360	1,567	918,24	43,64	1,158	4,75	0,850
0,900	300	1,577	922,40	36,06	1,148	3,91	0,848
0,920	240	1,587	926,38	28,60	1,138	3,09	0,846
0,940	180	1,597	930,18	21,26	1,128	2,29	0,844
0,960	120	1,606	933,81	14,05	1,118	1,50	0,842
0,980	60	1,616	937,28	6,96	1,108	0,74	0,841
1,000	0	1,625	940,61	0,00	1,099	0,00	0,839

Pokračování tabulky P.2

S	n	I_1	<i>P</i> ₂	М	η	cosφ
[-]	[min⁻¹]	[A]	[W]	[Nm]	[%]	[-]
1,00	0	1,828	0,00	1,355	0,00	0,9008
0,98	60	1,816	8,57	1,364	0,75	0,9019
0,96	120	1,804	17,26	1,374	1,53	0,9029
0,94	180	1,792	26,08	1,383	2,32	0,9040
0,92	240	1,779	35,01	1,393	3,14	0,9051
0,90	300	1,766	44,05	1,402	3,97	0,9062
0,88	360	1,752	53,21	1,412	4,83	0,9074
0,86	420	1,738	62,49	1,421	5,71	0,9085
0,84	480	1,723	71,87	1,430	6,61	0,9097
0,82	540	1,708	81,37	1,439	7,54	0,9109
0,80	600	1,693	90,96	1,448	8,50	0,9122
0,78	660	1,677	100,65	1,456	9,48	0,9134
0,76	720	1,660	110,43	1,465	10,49	0,9147
0,74	780	1,643	120,29	1,473	11,53	0,9160
0,72	840	1,626	130,22	1,480	12,59	0,9173
0,70	900	1,607	140,21	1,488	13,70	0,9186
0,68	960	1,588	150,26	1,495	14,83	0,9200
0,66	1020	1,569	160,34	1,501	16,00	0,9213
0,64	1080	1,548	170,43	1,507	17,20	0,9227
0,62	1140	1,527	180,53	1,512	18,45	0,9242
0,60	1200	1,505	190,61	1,517	19,73	0,9256
0,58	1260	1,482	200,64	1,521	21,06	0,9270
0,56	1320	1,459	210,59	1,523	22,42	0,9285
0,55	1350	1,446	215,53	1,525	23,12	0,9292
0,54	1380	1,434	220,43	1,525	23,84	0,9300
0,53	1410	1,421	225,30	1,526	24,56	0,9307
0,52	1440	1,408	230,12	1,526	25,30	0,9315
0,51	1470	1,395	234,90	1,526	26,05	0,9322
0,50	1500	1,382	239,63	1,526	26,81	0,9330
0,49	1530	1,368	244,29	1,525	27,59	0,9337
0,48	1560	1,354	248,89	1,524	28,38	0,9344
0,47	1590	1,339	253,41	1,522	29,18	0,9352
0,46	1620	1,325	257,86	1,520	30,00	0,9359
0,45	1650	1,310	262,22	1,518	30,83	0,9367
0,44	1680	1,294	266,48	1,515	31,67	0,9375
0,43	1710	1,279	270,63	1,511	32,54	0,9382
0,42	1740	1,263	274,67	1,507	33,41	0,9389
0,41	1770	1,246	278,57	1,503	34,31	0,9397

Tabulka P.3: Vypočtené hodnoty dle programu RMxprt

i onin decordanti odis daniji i io	Poki	račo	vání	tabul	lky	P.	3
------------------------------------	------	------	------	-------	-----	----	---

S	n	I_1	<i>P</i> ₂	М	η	cosφ
[-]	[min⁻¹]	[A]	[W]	[Nm]	[%]	[-]
0,40	1800	1,229	282,33	1,498	35,21	0,9404
0,39	1830	1,212	285,93	1,492	36,14	0,9411
0,38	1860	1,195	289,37	1,486	37,08	0,9418
0,37	1890	1,177	292,62	1,478	38,04	0,9425
0,36	1920	1,158	295,68	1,471	39,02	0,9431
0,35	1950	1,140	298,52	1,462	40,02	0,9438
0,34	1980	1,120	301,13	1,452	41,03	0,9444
0,33	2010	1,101	303,49	1,442	42,07	0,9450
0,32	2040	1,081	305,58	1,430	43,12	0,9456
0,31	2070	1,060	307,38	1,418	44,19	0,9461
0,30	2100	1,039	308,86	1,404	45,28	0,9466
0,29	2130	1,017	310,01	1,390	46,40	0,9470
0,28	2160	0,995	310,79	1,374	47,53	0,9474
0,27	2190	0,972	311,17	1,357	48,69	0,9477
0,26	2220	0,949	311,14	1,338	49,86	0,9480
0,25	2250	0,925	310,64	1,318	51,06	0,9482
0,24	2280	0,901	309,66	1,297	52,27	0,9482
0,23	2310	0,875	308,16	1,274	53,51	0,9482
0,22	2340	0,850	306,09	1,249	54,77	0,9480
0,21	2370	0,823	303,42	1,223	56,05	0,9477
0,20	2400	0,796	300,09	1,194	57,34	0,9472
0,19	2430	0,769	296,07	1,164	58,66	0,9464
0,18	2460	0,740	291,31	1,131	59,99	0,9454
0,17	2490	0,711	285,74	1,096	61,33	0,9441
0,16	2520	0,681	279,31	1,058	62,68	0,9423
0,15	2550	0,651	271,96	1,018	64,04	0,9401
0,14	2580	0,620	263,63	0,976	65,40	0,9372
0,13	2610	0,588	254,25	0,930	66,75	0,9336
0,12	2640	0,555	243,73	0,882	68,09	0,9288
0,11	2670	0,522	232,01	0,830	69,38	0,9227
0,10	2700	0,488	218,99	0,775	70,63	0,9148
0,09	2730	0,454	204,59	0,716	71,78	0,9042
0,08	2760	0,419	188,72	0,653	72,80	0,8901
0,075	2775	0,402	180,19	0,620	73,24	0,8813
0,070	2790	0,384	171,26	0,586	73,61	0,8708
0,065	2805	0,367	161,91	0,551	73,91	0,8586
0,060	2820	0,350	152,13	0,515	74,10	0,8440

	-					
S	n	I_1	<i>P</i> ₂	М	η	cosφ
[-]	[min ⁻¹]	[A]	[W]	[Nm]	[%]	[-]
0,055	2835	0,333	141,90	0,478	74,17	0,8266
0,050	2850	0,316	131,20	0,440	74,07	0,8057
0,045	2865	0,300	120,03	0,400	73,75	0,7805
0,040	2880	0,284	108,36	0,359	73,14	0,7500
0,035	2895	0,268	96,18	0,317	72,12	0,7130
0,030	2910	0,254	83,48	0,274	70,54	0,6680
0,028	2916	0,249	78,25	0,256	69,69	0,6474
0,026	2922	0,243	72,93	0,238	68,68	0,6252
0,024	2928	0,238	67,52	0,220	67,48	0,6013
0,022	2934	0,234	62,02	0,202	66,06	0,5755
0,020	2940	0,229	56,43	0,183	64,35	0,5478
0,018	2946	0,225	50,75	0,164	62,30	0,5182
0,016	2952	0,221	44,97	0,145	59,82	0,4865
0,014	2958	0,217	39,10	0,126	56,77	0,4527
0,012	2964	0,214	33,13	0,107	52,98	0,4168
0,010	2970	0,211	27,07	0,087	48,19	0,3790
0,009	2973	0,210	24,00	0,077	45,31	0,3593
0,008	2976	0,208	20,91	0,067	42,02	0,3391
0,007	2979	0,207	17,79	0,057	38,22	0,3185
0,006	2982	0,206	14,65	0,047	33,81	0,2975
0,005	2985	0,206	11,48	0,037	28,64	0,2761
0,004	2988	0,205	8,29	0,026	22,49	0,2542
0,003	2991	0,204	5,07	0,016	15,09	0,2320
0,002	2994	0,204	1,83	0,006	6,02	0,2095

Pokračování tabulky P.3