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Abstract 
This work discusses adversarial attacks to image classifier neural network models. Our goal 
is to summarize and demonstrate adversarial methods to show that they pose a serious issue 
in machine learning. The important contribution of this work is the implementation of a 
tool for training a robust model against adversarial examples. Our approach is to minimize 
maximization the loss function of the target model. Related work and our own experiments 
leads us to use Projected gradient descent as a target attack, therefore, we train against 
data generated by Projected gradient descent. As a result using the framework, we can 
achieve accuracy more than 90% against sophisticated adversarial attacks. 

Abstrakt 
Tato práce pojednává o kontradiktorních útocích na klasifikační modely neuronových sítí. 
Naším cílem je shrnout a demonstrovat kontradiktorní metody a ukázat, že představují 
vážný problém v strojovém učení. Důležitým přínosem této práce je implementace nástroje 
pro trénink robustního modelu na základě kontradiktorních příkladů. Náš přístup spočívá v 
minimalizaci maximalizace chybové funkce cílového modelu. Související práce a naše vlastní 
experimenty nás vedou k použití Projektovaného gradientního sestupu jako cílového útoku, 
proto trénujeme proti da tům generovaným Projektovaným gradientním sestupem. Výsled­
kem použití nástroje je, že můžeme dosáhnout přesnosti více než 90% proti sofistikovaným 
nepřátelským útokům. 
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Chapter 1 

Introduction 

Neural networks plays important role in machine learning. Their success in solving some 
tasks almost completely replaced standard algorithms. Such tasks are for example image 
or speech recognition, malware detection, natural language processing, etc. The progress 
of neural networks and applying it in wide range of systems accelerated in past years and 
nowadays large amount of people in developed world are users of some neural network 
application. 

Unfortunately, there is also a dark site of neural networks and may that issue may trans­
form neural network applications into the weapon. Significant defect of neural networks is 
their vulnerability to malignant inputs, so called adversarial examples, since the algorithms 
of deep learning were not designed with defense mechanism. There is plenty other risks 
connected with deep learning including adversarial reprogramming, model stealing, data 
poisoning, leaking sensitive data(see Subsection 2.3.1), etc. 

Professionals are for long time worried about using neural networks in safety critical 
applications. Safety critical systems managed by neural networks are employed in many 
areas including transport industries, medicine and defence [10], for example autonomous 
cars or operating robots. The reason of concern is the fact, that neural networks contain 
enormous number of trainable parameters and that is why they are too complex for human 
comprehension,. In other words, they are so called black-boxes for humans, therefore it is 
infeasible to explain or fix a misclassification, or another kind of error caused by seemingly 
faultless model. 

This work focuses on one of the potential risks, specifically adversarial examples gen­
erated to fool neural network models for image classification. We explore methods for 
generating adversarial examples, so called adversarial attacks or adversaries. Adversarial 
example is an input almost indistinguishable from original sample, however it is misclassi-
fied [4]. 

Significant danger comes with computationally feasible methods for generating adver­
sarial examples. Using such methods could the enemy affect the model prediction (break­
ing face detection, fooling autonomous car, etc.) and manipulate the target application. 
In some extreme cases this kind of attack could result in fatal consequences like serious 
endangerment lives or property of humans. 

Adversarial attack is method that yields adversarial samples. There is plenty of adver­
sarial attacks and for this work differs between white-box and black-box attacks. In other 
words attacks with and without direct access to parameters parameters of the target model. 
In practise, black-box attacks are usually more common simply because model are often 
a black-box for users. Many neural network applications user accesses only using A P I by 
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passing input data and receiving prediction (or any other output of the model according 
to model type). Even we stated that black-box attacks are more common in this work we 
focus on white-box attacks. The general reason is that our main goal is not to propose best 
adversarial attack but to create and implement defence method. For designing defence and 
following evaluation are white-box adversarial examples much more suitable (see Chapter 4) 
because they are more sophisticated and could fool the model better than black-box sam­
ples. Another reason is that we must also consider situations when steals the model of some 
application (e.g. using reverse engineering or insufficient precautions of application) and 
may be able to attack using white-box method (which is usually more successful in fooling 
the model). Another reason for focusing on white-box attack is that every white-box attack 
could became a black-box attack when we use different target model, in other words when 
we generate adversarial examples against some model and use it against another one. 

It would not be possible to resist all attacks used by enemies, because they are still 
improving their strategies and will probably never stop. However, we have no other choice, 
but to continue on this research, which leads to improving safety and robustness of all 
neural network models. 

Task for this work is to design implementation of training robust neural network and 
evaluate its robustness against adversarial examples. For this purpose we summarized 
some adversarial attacks and we used them during training and evaluation of target model. 
A l l white-box attacks and all defences mentioned in this work are available to use in our 
framework. The one purely black-box attacks used in this work is A d v G A N . For final 
evaluation of robust model with this attack we use still same samples generated by A d v G A N . 

Contribution 

The greatest contribution of this work is bringing tool that enables us to train model that 
is robust against adversarial examples. Also important advantage of our implementation 
is possibility to experiment with attacks and defences. The major improvement of existing 
solution is that our implementation could perform adversarial training for any kind of 
image classification neural network model. There is strong need for such tool and there 
is no available public implementation of defence methods for general usage. Notice, that 
our tool itself does not guarantee perfect results of training. After all, as any other M L 
task, every model is specific and require individual tuning and parameter selection. Wi th 
wrongly selected training parameters is seldom achieved the desired result. 

Notice, that the defence against adversarial attacks (or adversaries) differs according to 
type of attack. Related work and our experiments gave us hypothesis, that we are able to 
train model that is robust to all attacks (wrt. epsilon distance between adversarial example 
and natural sample), which are using only first-order information [11]. In other words, we 
expect to be able to create model which is resistant to whole class of attacks. We have 
experimentally proven the hypothesis with usage of some white-box attacks implemented 
by Ian Goodfellow et a l . 1 and also with modification of Generative adversarial network 
designed for generating adversarial samples called A d v G A N [18]. A l l these attacks was not 
able to decrease accuracy of specially trained MNIST model under 90% without significant 
decrease of accuracy evaluated on natural data. It is important to state, that all attacks 
used for evaluating target model used only first-order information. 

xhttps: //github.com/tensorf low/cleverhans 
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Related work 

Szegedy at al. in 2014 [16] demonstrated some intriguing properties of neural networks, 
including but not limited to fact that one adversarial sample is often misclassified by 
more models. Neural networks are vulnerable to adversarial examples and interesting phe­
nomenon is that some adversarial examples (for some dataset) are indistinguishable for 
human. This observations demonstrates what threat pose neural networks and gives us 
motivation to face the issue. 

After that Ian Goodfellow et al. explained adversarial examples in [4]. They showed 
strategies that could generate adversarial samples to fool even the most precise neural 
networks with really little computation sources. Mentioned work proposed method like 
F G S M and Basic Iterative Method, that we adapted for our experiments and the most 
important defence method is based on these attacks. 

Framework for safety verification of neural networks was proposed by Huang et al. [6]. 
The framework guarantees finding all existing adversarial examples by exhaustive search 
around the region of original sample implemented by technologies like Z3. 

Research by Kurakin et al. [12] brought us ideas about adversarial training including 
his summary of attacks. They demonstrated transferability phenomenon and label leaking. 
Knowledge from their work was helpful to understand the difference between adversarial 
training using one-step attacks and iterative methods (with many steps). These observa­
tions will be explained later in this paper. 

It is important to mention library Cleverhans which provides implementation of several 
attacks, however it currently misses any defence method. This is also the motivation to 
bring implementation that joins attack and defence methods. Madry et al. provided imple­
mentation of adversarial training for some concrete models for classification image samples 
from CIFAR10 and MNIST datasets [11] but this is also not sufficient for M L community 
and it is reason why we are presenting general implementation of adversarial training for 
any model in Python language using high-level library Keras. 

For designing defence we adapted approach of adversarial training introduced by group 
of scientist from Madry et al. in their paper [11]. In this work, they proposed hypothesis, 
that if neural network is robust against P G D (Projected gradient descent) attack, it is 
also robust against every other first-order attack. This statement is experimentally proven 
in the mentioned paper and also in our work against number of adversarial attacks. The 
mentioned paper also studies relation between network architecture and capacity with ro­
bustness. They show, that the larger networks handle adversarial examples better than 
smaller networks with similar accuracy on natural data. The result of their work is a model 
that achieves more than 90% accuracy against state-of-the-art attacks (on MNIST data). 

To demonstrate robustness of model against adversarial examples Madry et al. started 
the challenge of adversarial attacks [11]. Most successful black-box attack to MNIST robust 
model prepared by Madry et al. in this challenge was an extended implementation of 
Generative adversarial networks (GAN) [18]. G A N was firstly proposed by Ian Goodfellow 
et al. in 2014 [3]. Authors created framework called AdvGAN for perturbing original data 
to adversarial examples. AdvGAN framework is described later in this work. 

Structure of this work 

Chapter 2 provides us an overview of the necessary theory for understanding motivation, 
mathematical expression of the problem and the solution. It contains background about 
adversarial examples as a security issue of neural networks, explanation and definition of 
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robustness that is used for evaluation the defence methods, dividing attacks into categories 
and explanations of other important terms used in this work. In Chapter 3 we summarized 
all adversarial attacks used in this work either for evaluation models robustness or for train­
ing model against them. We also expressed every attack formally and explained advantages 
and disadvantages in terms of time consumption and strength of generated samples. Chap­
ter 4 shows our consequent progress in creating defence against adversarial examples. It 
shows simple approaches like improving architecture or preprocessing input data for image 
classifier. In Chapter 4 we also explained how adversarial training works and formally ex­
pressed the minimax optimization problem which the adversarial training should use. In 
Chapter 5 we experimentally demonstrated hypothesis proposed in this work. The experi­
ments supports motivation for robust model and finally evaluates robustness of the robust 
model trained using our framework. Chapter 6 concludes what we discovered and reached 
and on the contrary what are the issues about this work and also how should this research 
continue and what should the consequent work study. 
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Chapter 2 

Preliminaries 

In this chapter we explain and define important terms that will be used later in this work. 
Some of these terms are well-known in the field of machine learning and some are defined 
for purposes of this work. Before we define the research problem for this work we need to 
explain what are adversarial examples and adversarial attacks that generates them. For 
understanding practical motivation of this work we also summarized types of adversarial 
attacks. Experiments proving the risks of the attacks are in Chapter 5. For later evaluation 
of our results we are defining the term robustness. Full understanding of our solution 
requires some basic knowledge of neural networks training that is part of Chapter 4. 

2.1 Adversarial example 

Adversarial {malignant) example, is a data sample, which is almost indistinguishable from 
the original for humans eye, while the model misclassified it. Valid explanation is also that 
it is a little perturbed original data sample, that is misclassified by the target model. We 
need a formal and unified definition of adversarial example. 

Definition 1 Let xadv be such n-dimensional vector that there exists such n-dimensional 
vector x in set of original data, that D(xadv,x) < e, while t(xadv) / C, where D is some 
metric, e is a small constant, t is target model and C is correct class of x. 

Example 1 Consider target model t and dataset of 2-dimensional vectors X, such that 
every element of X is correctly classified by t. Let xadv be a 2-dimensional sample. There 
exists such sample in x G X that LOD(x,xadv) = 0.24 and xadv is misclassified by t. There­
fore xadv is adversarial example for t with respect to metric L°° and e > 0.24. 

According to Definition 1 not every adversarial example is an output of adversarial attacks, 
some of them are natural and would be even a part of training data. This work focuses 
mainly to samples that are generated by adversarial methods. 

2.1.1 Metrics 

In the context of this work we will use term metric with meaning of some distance function. 
The purpose of using metrics in this work is to find out distance between two samples, since 
there is a great need to retrieve information about the similarity between them. There is 
plenty of metrics and some of them (e.g. L2) simulates similarity for humans eye very well. 
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Natural Adversarial 

Figure 2.1: Visual comparison between natural and adversarial sample from MNIST dataset 
wrt. e = 0.3. 

Typical metrics used in the previous work are L°° and I? distances, since they properly 
simulates similarity [11]. 
L°° metric, sometimes called Chebyshev distance between two vectors is defined as greatest 
value of their differences along any coordinate dimension. 

dchebyshev(x, y) = max(abs(xi, yi)) (2.1) 
i 

I? metrics is also called Euclidean distance. 

n 

i=i 

where n is the dimension of the vector. 

L p -bal l around point X 
The term L p - b a l l with midpoint X is frequently used term in this work. It means the 
n-dimensional space with shape of ball, while every point within this ball is meant to be 
similar to X wrt. norm LP. As we stated before this work uses mainly 1? and L°° norms. 
A simple way how to imagine these L p -balls is e.g. in 2 dimensions. In 2 dimensional space 
the L 2 -ba l l around A is a circle with midpoint in X with radius value epsilon, thus we 
would consider every point in this circle as a similar point to X. Another example is the 
L°°-ball around X, this ball in 2 dimensional space would be the square with midpoint 
X. Since we will work in high-dimensional space it would not be possible to provide such 
simple visualization but we later show that the higher epsilon between sample is, the more 
different they are. 

2.2 Robustness 

Hiroaki Kitano provided definition of biological robustness. Robustness is a ubiquitous 
feature of biological systems. It ensures that specific functions of the system are maintained 
despite external and internal perturbations. [7] To generalize the biological explanation our 

deuclideanixi y) — ^ 
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understanding of robustness is the ability of system to handle errors that might affect it 
without changing the initial configuration. 

There is need to adapt this description of robustness for the problem of robust opti­
mization. Theoretically it would be really simple to define robustness using definition of 
adversarial examples this way: The model is robust if it is not possible to generate any 
adversarial example. Obviously this definition would be useless in most practical cases, 
because only models with 100% accuracy is robust according to mentioned definition. Our 
definition must cover this case but also must be much weaker to make it feasible to realize 
it, therefore we provide general definition in context of model optimization. An optimal 
model is robust if it stays optimal under any allowed perturbation of input data. 

That statement is valid and useful for comprehension, however it does not provide us 
possibility to evaluate robustness formally since terms optimal and allowed perturbation 
are not well-defined. That is the reason why we also provide more specific definition that 
respects norm, epsilon and depends on required accuracy of the robust model. Notice, 
that in Definition 2 and also in whole this text we use the term accuracy (of the model). 
Every single occurrence of this term means the percentage of correctly classified samples 
in the related dataset. Because of that is the term accuracy always implicitly or explicitly 
connected with the dataset and the model. 

Definition 2 Let anat be an accuracy of optimal target model t evaluated on natural data 
and aadv is an accuracy of t evaluated on adversarial examples Xadv generated by any 
method, while for each sample Xfdv of Xadv exists X™at such that d(Xfdv,Xj,at) < e, 
where d is some metric and e is small constant distance. Then if there exists such c that 
o-nat — O'adv < c, then model t is c-robust wrt e. 

For using Definition 2 is important to choose optimal value of c and consider out­
standing aadv reached by successful model. Too small value of c would cause inability to 
satisfy robustness conditions, on the other hand high value of c would not satisfy practical 
requirements for robustness. 

Example 2 Consider the target model t with accuracy 98% evaluated on dataset X. Let 
Xadv be the set of adversarial examples for t wrt. X, metric L°° and e = 0.3. Accuracy 
evaluated on Xadv is 91%, therefore model t is robust for c > 7%. 

Notice that value for c = 7% in Example 2 refers to model with outstanding robust­
ness against specific attack, since adversarial attacks could generate samples that decrease 
accuracy of successful model under 10% (see Chapter 5.2). 

Example 3 Let the target model t be a random classifier for 10 classes with accuracy anat = 
9.8% evaluated on dataset X. Since random classifier could not be effectively attacked, let 
the accuracy evaluated on adversarial data Xadv (with certain epsilon value) be aadv = 9.79 
thus random classifier is 0.01-robust wrt. some epsilon. 

As we can see in Examples 3, the random classifier as a target model is 0.01-robust what 
may seem as a brilliant result without knowledge of anat- We are using terms robustness 
and c-robustness through whole this text with similar meaning but beware the important 
difference. The term robustness is not well-defined and indicates model that is successful 
both for natural and adversarial data. On the other hand, term c-robustness always respects 
values of epsilon (measured using some norm) and anat, which need to be implicitly or 
explicitly known from the text. 
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2.3 Characteristics of adversarial attacks 

In this section we described important characteristics of adversarial methods. This section 
is not explaining attack algorithms for every single attack but rather general properties and 
and risk connected to phenomenon of adversarial attacks. Detailed description of concrete 
attacks is located in Section 3. 

Generally we consider finding adversarial examples as a constrained optimization prob­
lem. For the purposes of this work we are defining adversarial attacks as functions with 
variable amount of parameters and the function is outputting adversarial examples (see the 
subsection 2.1) respecting some constraints. The number of parameters the attack differs 
according to type of the attack and specific method. It is common for attacks to take 
as an argument input samples with their labels - this variable is essential for any kind of 
attack used in this work (however in some cases we could guess the labels or even generate 
adversarial samples from random noise). Sometimes the original data is used for training 
adversarial models (e.g. Adversarial generative networks) or in other cases the output data 
are perturbing directly from the original data (e.g. Fast gradient sign method). Another 
possible parameter is the target model. This is often used, but not necessary, because we 
could use our own target model and expect that the real target model will behave similar 
way (see Section 2.3.1). We distinguish two types of adversarial methods, according to 
information about the model that is passed as an argument. If the adversarial methods 
does not access the target model and use some different model for generating samples the 
method is called black-box. The second type is called white-box attacks. We consider 
attack as a white-box when an enemy accesses to all model parameters and whole model 
structure. Notice, that any white-box attack could became black-box - if we do not know 
the target model we could train and attack our own model and use the generated samples 
to attack the target (see Subsection 2.3.1). 

Frequently used term in this work is also order of the method. Every usage of n-th order 
in this work will refer to order in Optimization theory. Generally, n — th order methods 
is an algorithm for that n — th derivation is the highest derivation it requires. For example, 
if the algorithm requires first and third derivation the method is third order. 

2.3.1 White-box vs. black-box 

As we stated above, we also differ between white-box and black-box attacks. Black-box 
attack does not use information about inner structure of the target model therefore it 
does not accesses weights and biases, neuron activation, architecture nor hyperparameters. 
They could only use different neural network model for its purposes. That is the reason 
why we often rely on so called transferability phenomenon, see subsection 2.3.1. In black-
box methods training dataset could be sometimes known for the attacker, in these cases 
it use to be better to train on the same dataset to simulate target model better. If the 
attacker does not know the training dataset there is an alternative way how to find out 
training data called Membership Inference Attack (MIA) (see subsection 2.3.1). On the 
other hand, white-box attacks uses all the information about target model. There is also 
category called semi-white-box attacks but we will not discuss it in this work. In practise 
are black-box attack much more common because only small amount of models that manage 
some products or services are public. However, we need to discuss also white-box attacks, 
because they are more destructive and they could generate strong targeted perturbations 
(see subsection 2.3.2). 
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Membership Inference Attack (MIA) 

Main purpose of M I A is to determine if some sample is in the models training data. 
To retrieve this information we often need confidences for each classes computed by the 
model [15]. M I A relies on the fact that model outputs higher confidence for samples from 
the training dataset. 

This attack could be potentially serious security issue. Many public models are trained 
on sensitive data. If the attacker could be able to assign some personal record to the correct 
label indicating some illness or salary and it would lead to massive data leaks. 

Transferability phenomenon 

Many black-box methods are based on so called transferability phenomenon. According 
to [13] are adversarial examples transferable between neural network architectures i.e. black-
box attacks often rely that generating malignant samples against target model will be also 
harmfull to another one. 

According to Madry et al. [11] it is also useful for attacker to choose suitable model 
because training only against strongest models does not guarantee that the adversarial 
samples will be most transferable as they could. 

2.3.2 Targeted vs. untargeted 

Another partitioning of attacks is to categories targeted and untargeted. Targeted attacks 
are successful the target model classifies perturbed sample as some concrete class - the 
target. For example, the targeted attacks tries to perturb an old one or generate new 
sample that is an instance of class X but the target model classifies it as Y , where Y is the 
target. The goal of untargeted attack is just generate such samples that model classify with 
as low accuracy as possible, i.e. untargeted attacks are trying to maximize loss between 
input sample and perturbed sample so the perturbed sample is misclassified. In opposite 
targeted attacks are trying to minimize loss between perturbed sample and desired output 
class while satisfying the epsilon distance. [5]. 

2.3.3 Single vs. multi step 

Before we show the difference between single and multi-step methods we explain what does 
it mean an attacking step. A step, or iteration, in the context of adversarial methods, means 
a single update of the sample. As we can see in the Figure 3.2, it is absolutely not correct 
to state that the further from the original sample perturbation is, the higher the loss is. 
The step is typically performed by computing the optimal direction and moving by 7 in 
that direction. E.g. F G S M tries to perform the largest possible step, therefore for F G S M 
e = 7. 

Single step attacks are right as their name implies performing just one step of perturbing 
an input sample. Mult i step attacks are performing various number of steps according to 
specific method. Generally, these multi step methods are trying to find local loss maximum, 
while not moving outside the e-ball around the original sample. This can include few times 
restarting the method from random starting points and compare results after method con­
verges to local loss maximum. As we experimentally proved in 5.2 all the local maximums 
found by P G D method are almost the same. Outputs of multi step methods are way more 
sophisticated and harmfull. Single step methods are significantly faster than multi step 
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methods, while still destructive enough (see 5.2). When we training mode against adver­
sarial examples it is useless to train against single step samples, because in that case model 
use to overfit to the specific method. Madry et al. [11] stated that this could be caused by 
simplicity of perturbation which can model easily learn and overfit. 

Notice, that all attacks could be divided into single and multi-step. In context of this 
work we could say that F G S M is the step and other methods are using iterations of F G S M . 
On the other hand, A d v G A N is neither single nor multi-step attack because it is trained 
model that generates samples. 
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Chapter 3 

Adversarial methods 

Important step for creating robust model is to study and understand adversarial methods 
used for attacks. In this chapter we summarized and explained all adversarial attacks used 
in this work. Every attack mentioned in this chapter is also provided in our implementation. 

Method we are using takes as an input original sample and outputs perturbed input 
sample, while the perturbation is computed with the goal not to be classified the same as an 
original sample, respectively to be classified as a desired output in the context of targeted 
attacks. It is also possible to generate adversarial samples from random noise using trained 
generator or adding some noise or object to sample for fooling target model. 

3.1 Fast gradient sign method ( F G S M ) 

The method was proposed first time by Ian Goodfellow et al. in 2015. It is based on 
computing an adversarial image by adding a perturbation with magnitude one pixel in 
the direction of the gradient, thus this method is certainly white-box attack. Formula for 
computing result sample is 

xadv = x+ e*sign(VxL(X,Y)) (3.1) 

where Xadv is adversarial sample, X is original sample, e is size of perturbation, L is loss 
function, Y is label of original data and sign{x) is function that returns — 1 if x < 0; 0 if 
x = 0 and 1 if x > 0. 

The method is very efficient in terms of computational time, because it is computed 
just with one single step. [12] 

3.2 Projected gradient descent ( P G D ) 

Another important term not only for this work but also for whole deep learning field is 
gradient descent. It is an iterative, first-order, optimization algorithm for finding local 
minimum of a differentiable function. Almost all training and many adversarial methods in 
deep learning are based on gradient descent. Purpose is to find local maximums of models 
loss function for optimizing its performance. Since generating adversarial examples given 
maximal epsilon distance from an original sample, it is a constrained optimization problem. 
For this purposes we use modification of gradient descent called projected gradient descent. 

Projected gradient descent (PGD) is the most successful white-box method mentioned 
in this work. Cause this is a key method for improving robustness of the model, it will be 
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Figure 3.1: How adversarial attack modify image. Adapted from [16] 

described more detailed and with special attention. Similarly as F G S M , we are using P G D 
to find such adversarial inputs, that maximizes the loss of the model, while the distance 
between generated data and original data according to certain metric does not exceed e. 
Correctly chosen e (with correctly chosen norm) guarantees that generated examples will 
be similar, or even indistinguishable from the original samples. 

The algorithm is a straightforward extension of F G S M 3.1 that is applied in iterations 
with step size 7 and the algorithm clips pixel values after each step - this ensures keeping 
generated sample within e-ball of the original data sample [9]. Let X®dv be an adversarial 
example computed with n iterations. We first set X^dv to some point within the LP ball 
(in our case p = 00) with radius of e. Then we make a gradient step with size 7 in the 
direction of greatest loss and project back to LP ball 1 as in equation 3.2 if needed. This 
projection back performs function clip. Then we apply equation 3.2 until the stopping 
criteria is satisfied. The stopping criteria in our implementation is number of iteration of 
P G D algorithm but it may also be the value of loss differences between steps or time limit. 
To compute X®dv we use this formula: 

a function that returns xpert if D(X, xpert) < e, otherwise it returns nearest point to x v e r i 

that is within e-ball around X. 
This method also requires access to model parameters, so we consider it as a white-box 

attack. For better understanding the method see the figure 3.2. 

Basic Iterative Method (BIM) 

This method is a special case of P G D . For perform B I M we do not set starting point 
randomly. In this work will be starting point of B I M always set to original sample. 

x; -adv 
0 = X (3.3) 

Another steps of algorithm are same as for P G D . 

projecting back to IP ball means to move to the closest point inside the IP ball 
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Figure 3.2: Visualization of loss function around original sample X . P G D after n iterations 
found the local loss maximum. As you can see the starting point of P G D is random point 
in the e-ball around the original sample. The method reached the highest loss (yellow area). 
Since the Figure contains more local maximums there is a chance that starting point from 
another point would lead P G D to smaller loss value. Figure is adopted from [8]. 

3.3 Momentum iterative method ( M I M ) 

The last white-box method explained and used in this work is M I M . M I M is the extension 
of P G D solving the same constrained optimization problem but the gradient descant used 
in the method is enriched with momentum. [2]. 

Generally, the gradient descent with momentum is used for acceleration the descent [14]. 
It is main principle is to accumulate velocity vector in the direction of gradient across the 
iterations. Steps of the method are not in the direction of steepest descent, but we also 
consider the previous directions. The knowledge of accumulated gradients prevents us to 
reach poor local maximum and helps us to flatten the curve of the gradient descent path 
thus it make descent faster. 

For comprehension imagine a ball rolling down the hill . The ball is not rolling in the 
direction of the steepest descent but its direction is affected also by its speed. If it rolls 
fast enough it could even roll up the hill for some time. This could be useful if the ball get 
into some poor local minimum but it still has enough energy to continue. Finally, the ball 
stops in some valley (local minimum). 

Similarly as P G D and B I M this is also a multi-step algorithm. Starting position for 
XQ*V is the original sample like in B I M , which is a special case of P G D (see Equation 3.4). 
Before the iteration starts we need to initialize velocity accumulator g$: 
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So = 0 (3.4) 

The difference between M I M and P G D is already mention accumulation of velocity 
vector. Before computing the perturbation in every iteration we accumulate the velocity 
by updating gn: 

gn = \*gn-1 + VXL(X%%Y) (3.5) 

where A is the number between 0 and 1 including and it represents decay factor for 
accumulation. Other symbols are used with same meaning as in Equation 3.2. 

For computing XQ*'" we apply this formula: 

X?V = clipxAK-i + 7 * sign(gn)} (3.6) 

where gn is accumulated velocity vector and other symbols are used with same meaning 
as in Equation 3.2. The stopping condition for the algorithm is same as for P G D number 
of iterations. 

Notice that B I M is a special case of M I M with A = 0, since the starting position is the 
original sample and with A = 0 gradient is not accumulated. 

3.4 G A N for generating adversarial examples 

In 2019 was proposed framework A d v G A N in [18] and took the first place in MNIST 
Challenge2 in black-box category. This is the only one black-box attack described and 
used in this paper. The purpose of the this framework is to train generator to be able to 
generate perturbations from the original data - after the model is trained, there is no need 
to access target model. This is also a reason why is AdvGAN much more effective than 
other adversarial attacks. When the generator is trained, we can generate perturbation for 
any sample using feed-forward network, while other methods must apply gradient descent 
for every single sample. Implementation of A d v G A N is an important part of our framework 
that enables us experiment also with this black-box attack. 

Architecture 

Unlike many other GAN-based architectures, our generator does not take as an input 
random noise, but the original instance. Output of G is a noise that is added to original 
sample (see Figure 3.3). The perturbed sample X + G(x) goes into D along with original 
sample and D distinguishes if x + G{x) and x are similar. At the same time x + G{x) takes 
target model / as an input and returns the loss function Ladv, which represents the distance 
between predicted sample and target class. The output of D is the adversarial loss [3]: 

LGAN = 

®x~PdaJog D(x) (3.7) 

+®x~PdatJog(l - D(x + G(x))) 

The loss of target model is: 

Ladv = ^x~PdatJf(x + G(x),t) (3.8) 
2 In the time of writing this work it is still the best submission 
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Figure 3.3: Architecture of A d v G A N . Figure is adopted from [18] 

where t is target class, / is target model and If is loss function of target model. This loss 
is used for targeted attack, untargeted attack could be performed by maximizing distance 
between prediction and label of the sample. We also need to constrain the noise generated 
by G to prevent exceeding previously defined c (see Definition 1). For this purpose we use 
hinge loss, what is usual practise in previous work [1] (unlike referenced work we use L°° 
norm instead of L 2 ) . Hinge loss is formally expressed as follows: 

LHINGE = Ex^Pdatamax(L°°(G(X)) - c, 0) (3.9) 

Finally, the generator is trained on objective function 

L = LADV + a * LGAN + P * LHINGE (3.10) 

where a and (5 are experimentally chosen constants and represents relative importance 
of loss functions. 
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Chapter 4 

Defence 

The important contribution of this work is implementation and evaluation of defence meth­
ods against attacks. This chapter summarizes methods used for increasing accuracy of 
neural networks against adversarial examples without radical decrease of the accuracy eval­
uated on natural data. 

Our first approach for research of defences was that adversarial examples are results of 
overfitting to natural samples. This approach could be formally express as a problem of 
finding parameters 9 for minimizing the loss function L: 

argmin L(x,y,9) (4-1) 
6 

where x and y are vectors of samples and their labels. There are no doubts that this 
problem is solved by standard neural network training, however, for some reason it does 
not work for specially perturbed - adversarial samples. 

We noticed that neural network models with even only 3 layers could achieve almost 
100% accuracy for MNIST dataset. This observation shows us that MNIST dataset is very 
simple and we need to beware this knowledge through whole this work. After performing 
some attack we find out that shallow neural network models with low capacity are more 
vulnerable to adversarial examples comparing to deeper and larger models. As a result we 
discovered that capacity increases c-robustness and it is also approved by research of Madry 
et al. [11]. 

Unfortunately, only increasing capacity does not improve the robustness of model enough 
for practical requirements. Architectures with optimal capacity are still only slightly more 
accurate than random model with uniform distribution for MNIST dataset and their vul­
nerability to attacks is high. On the other hand, in this point of research we expect that 
creating robust model will require sufficiently large capacity, because desired model need 
to learn larger amount of information. 

Another view on the defence against attacks is removing the noise added to samples. 
A suitable method for reducing noise in image samples is using filters. This method is 
easy to apply and consumes low amount of commutable resources. Later in this chapter 
we described that filtering could achieve impressive results for MNIST dataset but not as 
good for CIFAR10. 

Previous experience leaded us to approach of creating model that is trained against wide 
range of data to achieve robustness. This would certainly require model with large capacity 
and extended data source. The method we used for extending our data is data augmentation. 
This approach helped us train better model against both natural and adversarial data but 
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the improvement was again not sufficient. There were still many high local error maximums 
in models loss function that were found by attacks. 

The last approach we decided to use was the computationally hard process of training 
model against adversarial examples. This includes training and performing adversarial 
attacks which makes it hard in terms of resources. This approach is based on minimizing 
maximization the error, i.e. trying to find adversarial examples before the attacker and 
retrain the model against it. Formally it could be expressed as the extension of standard 
training where we aim not just minimize the loss function but we minimize the loss function 
wrt. local loss maximums: 

where E is the maximized error of loss function L wrt. to perturbation 5 which is 
constrained by e, 9 are parameters of the model, x and y are samples with related labels. 
The maximization of the error is performed by some adversarial attack. 

In other words, this defence strategy aims to learn the malignant perturbations gen­
erated by a specific attack. At the beginning we expect to improve c-robustness at least 
against some specific attack and since the vast majority of state-of-the-art attacks are based 
on first-order gradient descent we expect all malignant perturbations will be similar and 
the model will resist them if will be trained correctly. 

To avoid computationally hard process of repetitive applying multi-step attack, we 
decided to train our model against F G S M . This process yields relatively accurate model 
against F G S M samples but not against other methods. Perturbations generated by F G S M 
are probably too simple and the model overfits to them. Another possibility was train­
ing against P G D samples. This methods starts from random points and yields relatively 
complex perturbations so we expected it will prevent overfitting. 

Training MNIST model against P G D samples leaded to creating highly precise model 
with accuracy against both natural and adversarial data high above 90% evaluated against 
few adversarial attacks. The training was relatively fast and did not require massive amount 
of training iterations. The result model achieved similar results as thresholding in terms of 
accuracy and after training model we do not need to filter the image since alone forward 
propagation yields correct results. 

There is also strong need to prove that the method works for larger and more complex 
samples as CIFAR10. We evaluated the method on CIFAR10 and find out that it is also 
very successful, however, with weaker c-robustness than in case of MNIST dataset. An­
other interesting observation was the required resources for training robust model against 
CIFAR10. The training process lasted long time and required large amount of iterations, 
while every iteration lasted few-times longer time than for MNIST because of larger images. 
Finally, we decided that adversarial training with reference attack of P G D is satisfying our 
requirements for models robustness. 

Since in this work we are discussing mainly image samples, this chapter will describe filters 
in the context of computer graphics. This defence method is certainly sufficient for use only 
for some kinds of adversarial examples as image or sound samples. On the contrary, filters 
would not be useful for text or malware adversarial examples. 

4.1 Filters 

19 



Filtering is a method that modifies size, colors, shading and other properties of the 
sample. Purpose of filtering could be addition of some effects (e.g. smoothing). Since 
many adversarial methods add some noise to the sample, removing that noise could lead 
the model to classify sample correctly. 

4.1.1 Thresholding 

Thresholding is simple filter often used for image segmentation and color reduction. As 
we experimentally demonstrated in Section 5.3, thresholding is efficient defence against 
adversarial methods for datasets with low complexity (e.g. MNIST) . Our approach of 
thresholding implementation was to set value of each color channel to minimum if its current 
value was under the threshold, otherwise to maximum. 

Let pij be the pixel on the position and pfjw be the pixel in the result picture on 
the same position. Then we compute value of the pfjw as follows: 

0, if p,-, < 0.5 
i J \ l , if P i , j > 0.5 

(4.3) 

4.1.2 Median filter 

Median filter is non-linear filter commonly used for removing noise. The principle is to 
iterate through the image matrix and replace values with median of their neighborhood. 
The size of the neighborhood depends on filter size. Filter size is normally a value that 
determines size of filter in all dimensions of the image. 

Formally, let us consider filtered object as a two dimensional image. Let pjj be the pixel 
on the position and pfj" be the pixel of the result image on the same position. The 

N^- is a vector containing pixels in the /-neighborhood around pij where / is a size of the 
filter, /-neighborhood around pij Then we need to compute pfjw for every pij as follows: 

p £ f = med(N{d) (4.4) 

4.2 Adversarial training 

As we showed in Equation 4.2, the problem is defined as minimizing the maximized loss 
function. This method includes iterative attacking and learning samples generated against 
current model by applying certain attack, so called reference attack. Our aim is to flat­
ten the loss function and reduce all local loss maximums for all samples in epsilon-ball 
around training samples. There will be no guarantee that some high loss maximum, or 
high value does not exists - it just need to be hard to find. To avoid computationally hard 
process of generating adversarial examples we unsuccessfully used data augmentation to 
extend dataset and train on wider range of samples. This section describes training against 
augmented data and also adversarial training against F G S M and then P G D as reference 
attacks. 

20 



4.2.1 Data augmentation 

Data augmentation is a method for extending dataset and increasing dataset diversity by 
adding modified samples. There is plenty of possibilities how to modify samples, while they 
are not very different to original class. Common method for data augmentation is using 
various image transformations like changing scale, rotation, perspective, cropping, padding, 
horizontal flipping, etc. 

This method is promising since it yields data samples in some unspecified epsilon dis­
tance around the original sample and we hoped it will retrain local loss maximums near 
to original samples. Process of learning augmented data is commonly used for improving 
accuracy of neural networks and consist of extending dataset by generating augmented data 
and then standard learning the dataset. 

In subsection 5.4.1 we showed using MNIST and CIFAR10 datasets that data augmen­
tation is also slightly improving c-robustness but actual results are still not satisfying the 
research requirements and are even worse than random classifier with uniform distribution. 
According our experiments improvements achieved by data augmentation could be achieved 
also by changing number of training epochs. 

4.2.2 Training against reference attack 

Since data augmentation failed to improve c-robustness of the model, we need to train 
model against some predefined adversarial attack (reference attack). The aim of adversarial 
training is to reduce high loss function values around original samples from training dataset 
by learning problematic samples. Process of training is similar to standard neural network 
training but there are some necessary differences. 

The standard neural network training uses some predefined training dataset directly. 
On the other hand, adversarial training uses perturbed training data for learning model. In 
every training iteration the reference white-box attack generates batch of perturbed samples 
from training set against the target model. The model uses the batch of perturbed data for 
parameter optimization and the process continues. That means that samples for learning 
are probably similar but only rarely the same, on the contrary standard neural network 
training repeats samples in every epoch. 

For better understanding the process of adversarial training see the following high-level 
python code of function for adversarial training. 

def adversarial_training(target_model, reference_attack, dataset, iterations): 

for _ in range(iterations): 

natural = get_next_batch(dataset) 

perturbed = generate_perturbations(target_model, reference_attack, natural.x) 

target_model.train_on_batch(perturbed, natural.y) 

For clarification, parameter target model is the model for what we are improving c-robustness. 
Reference attack is some white box attack that generates adversarial samples for models re-
learning. Dataset contains natural training data for the model. Parameter iterations means 
the amount of iterations for training model on one batch therefore one training iteration 
means one optimization of model parameters (batch training). 
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Chapter 5 

Experiments 

This chapter contains experiments performed in order to tune our framework and to demon­
strate its functionality. Experiments are also reasoning the usage of values of parameters 
and metrics. This work focuses on adversarial examples and defences against them gener­
ated by untargeted attacks which main purpose is to fool the model as much as possible. 
Our generated samples are perturbed original samples, while the size of perturbation is 
constrained by maximal epsilon. The target models used in this work are neural network 
models for image classification. 

Since that we are focusing on public image datasets MNIST and CIFAR10, however, 
training robust network is a complex task and every neural networks problem needs unique 
parameters. Result robustness also relates to the architecture of a network, i.e. some 
architectures are not able to be robust (e.g. because of small capacity). MNIST and 
CIFAR10 are simple image datasets. MNIST dataset used in this work contains 70 000 
samples, including 60 000 samples used for training and 10 000 samples used for testing our 
solution and accuracy of the model. Shape of samples from MNIST is [28, 28] with one color 
channel. CIFAR10 dataset used in this work contains 50 000 and 10 000 testing samples. 
CIFAR10 dimensions are [32, 32] with 3 color channels. 

Experiments in this chapter answers important research questions and explores ap­
proaches for solving problems defined in the work. The base problem is creating a model 
that is relatively resistant against adversarial attacks. For completing these tasks we first 
need to validate few assumptions and perform observations leading us to robust model. 

First of all we need to demonstrate adversarial methods to show motivation for creating 
robust model. We assume that adversarial attacks could generate samples that clearly 
belongs to certain class, however neural network model classifies them with high probability 
wrongly. In other words, we expect that naturally trained model would achieve small level 
of c-robustness (with high c value). 

For this purposes we need to show that the state-of-the-art network without special 
training would fail against attacks. This work shows various attacking methods and com­
parison of their time consumption and success against several models. This comparison 
would show us the best attack for specific model or dependency between time and model 
architecture wrt. attack. 

For performing attack we need to set few parameters of the specific method. There is 
always one parameter shared by all the methods and it is the epsilon wrt. norm. Epsilon 
represents maximal distance between the generated samples and the original samples wrt. 
some norm and the distance should simulate similarity. 
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Since this work considers image datasets we need to verify that adversarial attacks are 
able to generate samples similar to original data. As the level of similarity is determined 
by value of epsilon wrt. norm it is also important to choose suitable norm and value for 
epsilon. Important property of epsilon wrt. norm is that every sample within epsilon-ball 
around the original image is at least strongly similar (or even indistinguishable) for human 
eye. 

One of key methods used in this work is P G D . This method is not deterministic because 
uses random starting position. Therefore it is possible that some local maximums found by 
P G D could be significantly lower than local maximum found by restart of the method. It 
is also required to check this hypothesis and act accordingly in following work. 

After illustrating that adversarial attacks are harmful for the model we proposed so­
lutions. Since current state is that models accuracy against adversarial examples is often 
worse than a random model and our goal is to significantly improve the c-robustness. Firstly 
we considered the adversarial examples problem as an overfitting to natural data and we 
tried use the architecture for better generalization. This approach was helpful in terms of 
attacking time consumption and c-robustness, however attack was still feasible to perform 
and caused still significant decrease of accuracy so the method alone is insufficient. We 
experimentally showed that 

Another proposed defence method was filtering. As we can see in the Figure 5.1, ad­
versarial attacks are adding noise to the image and the noise is fooling target model. Our 
idea was to reduce the noise using image filters. We used two simple filters that reached 
certain level of success against attacks, however this solution was non transferable between 
models and specific filters worked only for specific dataset. This method is definitely not a 
final solution to our problem but it worths to study and in some datasets it could resolve 
adversarial examples problem. 

Our final approach was to prepare the model against adversarial examples by special -
adversarial training. This training should minimize the loss against adversarial examples 
and our hypothesis was that it will keep high accuracy against natural data after training on 
adversarial samples. For applying this approach we needed to determine plenty of variables 
like type of reference attack (or attacks) for generating adversarial examples, epsilon, step 
size, number of attack step, etc. 

Firstly we were trying to avoid performing difficult process in terms of time so we 
decided to extend out dataset with augmented data and trained model against them. Result 
was again slightly better robustness without changing the attacking time, however the 
improvement was still not satisfying our requirements. 

As the F G S M is the least time consuming method from the set of attacks we used, 
we tried to use it for adversarial training. We experimentally showed that learning model 
against F G S M examples increased accuracy against F G S M but did not yield model robust 
against other methods. 

After this discovery we used as a reference attack P G D . We expected the model should 
not overfit to this samples because the perturbations are more complex and harder to learn. 
This assumption was successfully demonstrated and will be described in the following text. 

5.1 Similarity level of adversarial examples 

Finding adversarial examples is a constrained optimization problem. The goal of optimiza­
tion is to generate such samples that the target model will not be able to correctly classify, 
while they obviously belong to certain class. The constraint for this problem is that the 
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Figure 5.1: Natural samples and samples perturbed with 0.1, 0.2, 0.3 and 1.2-e in this order. 
Higher located images are from CIFAR10 dataset and the lower ones are from MNIST. The 
figure illustrates how different are perturbed images from the original one wrt. epsilon. 
Norm used for generating perturbation is L^. 

adversarial examples must satisfy certain level of similarity to the original samples. The 
similarity is in this work determined by the value of epsilon wrt. norm. 

First step for generating suitable adversarial examples is choosing suitable value for the 
epsilon. Epsilon value depends mainly on dataset but also on required level of similarity, 
e.g. sample could be recognizable with distance e = 0.5, however it is ugly and unrealistic 
so we choose e = 0.1. It is possible that attack with higher epsilon would not decrease 
accuracy of the network significantly more than one with lower epsilon. However, training 
against high-epsilon attack may be impossible and would not make sense if the samples 
would be strongly different to original samples. 

This section is reasoning selected value of e. Correctly selected epsilon wrt. to norm 
should satisfy successful training and robustness against all samples similar to original ones. 

As mentioned before, important factor for choosing e value for attacks is strong visual 
similarity of generated adversarial image with an original one. Such e differs according to 
dataset and also used norm. For all experiments we will use norm L^. As we can see in the 
figure 5.1 perturbing CIFAR10 image by more than e = 0.1 yields too unclear image, while 
perturbing MNIST image by more than e = 0.3 makes image too unrealistic. Therefore we 
decided to use epsilon for CIFAR10 e = 0.1 and for MNIST e = 0.3. 

5.2 Evaluation of adversarial methods 

The motivation of our work is discovering and validating the solution against vulnerability 
of neural networks to adversarial examples. For this reason we need to demonstrate that 
good working neural network model fails against adversarial attacks. 

This experiment shows accuracy of naturally trained models for both MNIST and CI-
FAR10 datasets against attacks in comparison to accuracy evaluated on natural data. In 
the tables 5.1 and 5.2 we can see how sensitive are the neural network models to adversarial 
attacks wrt. value of epsilon. It makes sense just to use such epsilon value in the context 
of our work, that modifies the image just the way a humans eye could recognize it. That 
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is also the reason why we tested values of epsilon 0.1, 0.2 and 0.3 for both datasets (see 
Figure 5.1). 

To specify experiment details, both models were trained with the 10 epochs. For evalu­
ation we used testing set of 10 000 samples. Accuracy evaluated against some attack means 
in this work percentage of correctly classified adversarial examples generated by specific 
attack. Every samples Xfdv from the adversarial dataset is generated by perturbing sam­
ple Xi from the original testing set at most by epsilon, thus there is a bijection between 
original testing dataset and adversarial dataset. Epsilon is an important parameter for sin­
gle step methods like F G S M , however, for multi-step methods we also consider step size 7 
and number of attack iterations. Iteration or a step, is a process of perturbing the original 
image at most by 7 (for F G S M 7 = e). 

Notice, that MNIST model is keeping relatively high accuracy for a small value of 
epsilon, however with an epsilon of 0.2 and higher, the accuracy is significantly decreased. 
This could be caused by the low complexity of MNIST samples. For comprehension we could 
say that naturally trained MNIST model c-robust wrt e = 0.1 and all used attacks, where 
c = 0.8426, because the accuracy of classifying natural data minus accuracy of classifying 
worst adversarial data is 84.26%. For greater epsilons is robustness strength even lower. 

Another intriguing property of the MNIST model is that it keeps a high accuracy against 
F G S M attack comparing to other attacks. Even we expected that F G S M will be the least 
successful attack, the difference to other attacks is significant. This observations shows us 
that local error maximums in e — balls around original samples are high and steep, thus 
for finding them we need iterations. On the contrary, results from attacks to CIFAR10 are 
more stable and local maximums are less steep and the area is more consequent (less value 
of derivations). 

As we can also see, attacking time does not differ wrt. epsilon value but more likely 
on number of steps, which is the same for all (multi-step) attacks. Notice that all multi-
step methods last slightly the same time. F G S M , which is single-step method should take 
approximately as much time as one step of P G D , in our case it would be time needed for 
P G D divided by 12 (since we used 12 iterations). When you check values in Tables 5.1 and 
5.2 you can see that the previous statement is approximately valid in most cases. 

Evaluating adversarial methods for CIFAR10 model shows that accuracy differs wrt. 
epsilon less than in case of MNIST, in some cases the accuracy is even better for greater 
epsilon value. F G S M decreases accuracy the least, as we expected, however the accuracy is 
not as different to multi-step methods as for MNIST dataset. This is probably caused by 
greater complexity of CIFAR10 data comparing to MNIST, and the model is less overfitting 
to natural samples. However, this observation does not solve the problem of adversarial 
examples, since the accuracy evaluated on malignant data is still worse than random pre­
diction model, even it is 10 time preciser than for MNIST in some cases. 

Local error maximums found by P G D 

Since P G D is the only method in our stack of attacks uses random starting point, we are 
wondering if the results achieved by this method are not unstable, since it could distort final 
result. As the loss function of the target model could contain few local maximums, we should 
consider possibility that P G D could yield radically different results for more restarts of the 
algorithm. Notice, that this phenomenon is only possible for non-deterministic methods. 

In 3.2 we adapted hypothesis from Madry et al. [11], that starting point of P G D is 
irrelevant and all local maximums found by P G D are almost the same. We demonstrated 
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Attack attack time accuracy epsilon 
no attack Os 99.2% 0.0 
M I M 85.24s 25.2% 0.1 
B I M 81.55s 14.94% 0.1 
P G D 83.44s 15.77% 0.1 
F G S M 11.32s 74.58% 0.1 
M I M 81.27s 0.87% 0.2 
B I M 80.53s 0.74% 0.2 
P G D 79.49s 0.94% 0.2 
F G S M 9.69s 31.65% 0.2 
M I M 84.70s 0.57% 0.3 
B I M 82.20s 0.55% 0.3 
P G D 81.50s 0.44% 0.3 
F G S M 7.48s 14.75% 0.3 

Table 5.1: Demonstration of how every single attack deceases accuracy of the M N I S T 
model trained on 10 epochs wrt. epsilon. The attack time describes time needed for 
generating 10 000 samples. A l l iterative attacks ran with 12 iterations and the step size 7 
was the current epsilon divided by 6, thus the total distance of the gradient descent was 
twice the epsilon. This should take the algorithm a chance to find any local error maximum 
in the allowed distance from the original sample. Norm used for the perturbations was L°°. 

Attack attack time accuracy epsilon 
no attack 0s 75.56% 0.0 
M I M 234.85s 7.94% 0.1 
B I M 230.40s 8.42% 0.1 
P G D 227.80s 4.21% 0.1 
F G S M 20.44s 10.81% 0.1 
M I M 224.9s 5.84% 0.2 
B I M 231.3s 6.19% 0.2 
P G D 230.15s 2.43% 0.2 
F G S M 20.27s 11.42% 0.2 
M I M 231.89s 4.19% 0.3 
B I M 235.54s 4.45% 0.3 
P G D 229.81s 1.8% 0.3 
F G S M 20.47s 8.9% 0.3 

Table 5.2: Demonstration of how every single attack deceases accuracy of CIFAR10 model 
trained on 10 epochs wrt. epsilon. The attack time describes time needed for generating 
10 000 samples. The step size and iterations number were used same way as in Table 5.1. 
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MNIST accuracy CIFAR10 accuracy Iterations count 
36.64% 3.97% 5 
9.78% 3.92% 10 
7.05% 3.84% 15 
5% 3.99% 20 
3.35% 3.9% 25 
2.52% 3.9% 30 
1.83% 3.86% 35 

Table 5.3: Progress of P G D with fixed step size 7 = 0.01, epsilon for MNIST 0.3 and for 
CIFAR10 0.1. Both models are trained on 20 epochs. 

this statement by running P G D with 20 restarts against MNIST and CIFAR10 models 
with same architecture trained on 10 epochs. For MNIST dataset the average accuracy was 
0.45% and standard deviation was only 0.0317%, thus there was not any P G D run with 
significantly better results. Experiment with CIFAR10 also approved our hypothesis with 
an average accuracy 4.656% and and standard deviation 0.93%. 

In our work we rely on the assumption that adversarial samples found by P G D cannot 
be improved by restarting the method. 

Evaluation of attacking step size for P G D 

Step size is one of the important parameters for multi-step methods. For single-step meth­
ods is step size commonly equal to epsilon. We maximize the epsilon distance from the 
original image because we assume that the bigger distance from an original samples, the 
harder it is to recognize the image for target model and the greater local loss maximum 
could be found. 

Beware that this statement is not formally correct and the highest local maximum (or 
just highest point) of the epsilon-ball around the original sample does not necessarily lie on 
the border of the ball. However, we rely on the assumption that the greater distance from 
the original samples is, the less similar samples there lie and there is a greater probability 
that the target model fails. 

In this experiment we evaluate various number of attack steps of P G D with fixed size 
of step 7 = 0.05. After certain number of steps the loss function of target model should 
stop increasing and the attack probably reached optimal result. The number of steps differs 
according to epsilon, dataset and step size. We applied this experiment for both MNIST 
and CIFAR10. In the Table 5.3 we can see that increasing attack iterations decreases 
accuracy on MNIST but does not affect CIFAR10 model. This could be caused by the fact 
that epsilon of MNIST if 3 - times larger that for CIFAR10 model. This experiment shows 
that P G D step size matters and it is required to experiment with this parameter. 

5.3 Filters against adversarial examples 

As we proposed in Section 4.1, filters are often used also for reducing noise in the samples. 
Since we consider adversarial sample as a sample with added noise, we experimentally show 
how could filters be helpful for classifying perturbed samples. This section demonstrates 
usage of the filters as a defence method against adversarial examples for two datasets -
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Dataset Natural Adversarial Thresholded adversarial 
MNIST 99.2% 0.5% 94.4% 
CIFAR10 74.4% 3.4% 9.6% 

Table 5.4: Demonstration of adversarial accuracy against thresholded samples in compar­
ison to adversarial and natural samples. Attacks were performed using P G D with e = 0.3 
for MNIST and e = 0.1 for CIFAR10. 

Dataset Natural Adversarial Median filtered adversarial 
MNIST 99.2% 0.5% 0.93% 
CIFAR10 74.4% 3.4% 20.4% 

Table 5.5: Demonstration of effectiveness of median filter against adversarial attacks. At­
tacks were performed using P G D with e = 0.3 for MNIST and e = 0.1 for CIFAR10. 

MNIST and CIFAR10. Filters are often part of a neural networks architecture, however 
we will use them here as a „secret" first layer even against white box attacks. 

5.3.1 Thresholding 

This simple filter sets value of color channel for each pixel to zero if it is under the value 
of threshold, respectively to maximal value (in 8 bit color system 255) otherwise (see Sub­
section 4.1.1). This experiment achieved impressive results for MNIST dataset, since after 
applying thresholding the accuracy increased from 0.5% to 94.4% with linear time com­
plexity wrt. dataset size. This would be acceptable solution in terms of both accuracy and 
time. Table 5.4 shows that using thresholding could be really effective for simple datasets 
like MNIST. On the contrary, for more complex datasets like CIFAR10 it yields unrecog­
nizable images even for human and increases success just a little bit. As we can see in the 
figure 5.2 thresholding seems to be visually helpful for MNIST data, data from CIFAR10 
are after applying threshold filter unrecognizable. Notice that although the improvement 
for CIFAR10 model with thresholding is not satisfying our needs, it is intriguing that even 
if it yields image unrecognizable for human, it increases neural network accuracy of the 
target model. 

5.3.2 Median filter 

Since the thresholding that we evaluated in subsection 5.3.1 produces too drastic changes 
of source images we decided to use median filter. It is meant to reduce noise added by 
adversarial methods as explained in 4.1.2. We evaluated this method using same samples 
as in previous experiment and the interesting observation is that this method yields quite 
better results for CIFAR10 model comparing to thresholding but the achieved result 20.4%. 
against filtered adversarial examples is still not satisfying our requirements. For MNIST 
model median filtering produces just tiny increasing of accuracy. For visual comparison 
see 5.2. Results of experiment with median filter noted in Table 4.1.2. 

5.4 Adversarial training 

Training network robust against adversarial examples requires iterative process of attacking 
the model and generating samples. This samples are used for learning perturbations of 
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Figure 5.2: Natural, adversarial, adversarial filtered data using median filter and adversarial 
filtered data using thresholding in this order. 

attack strategies. Method for generating adversarial samples, so called target attack, needs 
to be chose properly. Some perturbations could be easy to learn and could cause overfitting. 
This phenomenon happens when we train against one-step examples, specially generated 
by F G S M [11]. We demonstrate this hypothesis in subsection 5.4.2. Another target attack 
that we used is Projected Gradient Descent (see subsection 5.4.3). For both experiments we 
used MNIST dataset. Except for attacking methods we decided to use data augmentation 
to extend dataset with hypothesis of increasing generalisation of neural network. 

5.4.1 Training against augmented samples 

As explained in section 4.2.1, data augmentation is a method for increasing the diversity of 
the data and extending dataset. It should make models prediction invariant wrt. rotation, 
scale, etc., and as we hope also small perturbations. There is an idea that extending 
diversity of training data could yield more robust models against adversarial examples. We 
experimentally evaluated data augmentation and find out that this method is not improving 
c-robustness sufficiently. As you can see in Table 5.6, we observed small improvements of 
accuracy evaluated on adversarial examples for both MNIST and C I F A R models but the 
final adversarial accuracy did not even reach accuracy 10% which is theoretical accuracy 
of random classifier for 10 classes. We also observed some decrease of accuracy for natural 
data with augmentation. This may be caused by the fact that bot datasets are large enough 
and evaluation data are similar to training data. This exploration leaded us to last defence 
method of our research explained in Subsection 4.2.2. 

5.4.2 Model trained on F G S M perturbed MNIST data 

As we stated earlier it is faster to train model against single-step as F G S M method than 
against P G D . Experiment described in this subsection shows results of MNIST model 
trained exclusively on perturbed data from MNIST dataset with F G S M as a reference 
attack. 
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Model Attack time P G D accuracy Natural accuracy 
MNIST 140.26s 0.4% 99.4% 
MNIST augmented 145.36s 0.51% 99.1% 
CIFAR10 190.22s 3% 82.4% 
CIFAR10 augmented 189.63s 6.9% 80.4% 

Table 5.6: The table demonstrates effect of data augmentation used for extending training 
dataset to robustness against adversarial examples. We noticed only poor improvements of 
the models robustness. 

PGD BIM FGSM MIM 

Figure 5.3: We can see the progress of models accuracy training on F G S M samples. 

Highest accuracy reached by this model against P G D attack was ~ 19% after 200 
training iterations. One the other hand, the method achieved outstanding results against 
F G S M attack. After 200 iterations model achieved accuracy ~ 85% (see Figure 5.3). As we 
can see in the Table 5.7, training against F G S M samples improved c-robustness and result 
accuracy is definitely better than accuracy of random classifier for 10 classes which is 10%, 
thus such result worths to study. 

Another interesting phenomenon is that accuracy does not converge along with iter­
ations to 100% but we need to select the optimal number of iterations for best results. 
This divergence is undesirable in the training process and may indicate problems with this 
method for future use. 

The result is better comparing to no adversarial training, however still not sufficient. 
Note that trained model can handle F G S M attack quite well - this is probably reason of 
overfitting. The perturbations generated by F G S M are simple and easy to learn [11]. For 
better performance and to avoid overfitting we need a reference attack that yields more 
sophisticated perturbations. For this purpose we employed P G D as a reference attack. 

5.4.3 Adversarial training with P G D reference attack 

Performing adversarial training against samples generated by P G D was the last option 
because its time complexity. Since we generated adversarial examples with 12 steps of 
P G D it would take approximately 12-times more than F G S M . 

However, the adversarial training with P G D as a reference attack was successful and as 
we can see in the Table 5.7, the training yield 0.06-robust model wrt. e = 0.3 for MNIST 
dataset. Or in other words, the most successful training could decrease models accuracy 
only by 6%. 

P G D is more sophisticated and also more time consuming method. Applying this 
method may require few days of training for performing about 2000 training iterations 
for MNIST model. As you can see in the Figure 5.4, accuracy is constantly increasing along 
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PGD BIM FGSM MIM 

Figure 5.4: Demonstration of models accuracy progress during training iterations of adver­
sarial training against P G D . 

Reference attack no attack F G S M P G D B I M M I M A d v G A N 
F G S M 96.1% 92.5% 18.2% 23.5% 33.9% 50.05% 
P G D 98.5% 96.1% 93.6% 92.5% 93.9 % 94.26% 
no attack 99.2% 14.75% 0.44% 0.55% 0.57% 9.85% 

Table 5.7: Demonstration of adversarially trained MNIST network with two reference at­
tacks wrt. e = 0.3. A l l multi-step attacks were performed with 12 steps and step size 
A = 0.05. Results for model trained with P G D reference attack are measured after 2000 
training iterations and with F G S M reference attack after 200 training iterations. 

with iterations and it makes the training process more stable in comparison to F G S M as a 
reference attack. 

Such a good results in terms of robustness for MNIST model could be also achieved by 
thresholding (see 5.3.1). A n advantage of thresholding is no need of computationally hard 
adversarial training. On the contrary, once the robust model is trained there is no need to 
filter an input images. Another important issue of thresholding is that it only works for 
some models (e.g. MNIST) . Our goal is to provide method for improving robustness of any 
neural network model. 

For evaluation of adversarial training with P G D as a reference attack we used also 
CIFAR10 dataset. Our experiments showed that this method yields also CIFAR10 model 
with c-robustness that satisfies our requirements. The difference from training MNIST 
robust model is that CIFAR10 requires enormously larger number of iterations and every 
iteration consumed longer time. CIFAR10 adversarial training reached its best (stopped 
improving) after 80000 iterations which is comparing to 2000 iterations needed for MNIST 
really huge time-resources consumption. The question for consequent research is if it is 
feasible to perform adversarial training for model that classifies much more complex dataset. 
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Reference attack no attack F G S M P G D B I M M I M A d v G A N 
P G D 80.5% 61.81% 55.46% 56.23% 58.48% 69.45% 
no attack 82.4% 10.81% 4.21% 8.42% 7.94% 12.59% 

Table 5.8: Demonstration of adversarially trained CIFAR10 network with P G D as a refer­
ence attacks wrt. e = 0.1. A l l multi-step attacks were performed with 12 steps as in Ta­
ble 5.7 and step size is also epsilon divided by 6 thus A = 0.0167. Results for model trained 
with P G D reference attack are measured after 80000 training iterations. We skipped train­
ing on F G S M samples because experiments with MNIST indicate it will not yield required 
results. 
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Chapter 6 

Conclusion 

The goal of this work was to demonstrate that adversarial examples are able to cause 
significant danger for neural network applications and also to propose, implement and 
evaluate solution for this issue. This work focused on optimization approach of improving 
the robustness in multi-class image classification problems. The field of M L security is 
certainly much larger and even adversarial examples could be generated also for datasets 
containing voice, malware, etc. 

We demonstrated some basic adversarial attacks specifically F G S M , P G D , M I M , B I M 
and A d v G A N . Every attack except for A d v G A N is white-box attack. This focus on white-
box attacks is reasonable - all white-box attacks could be use also as a black-box attack 
because of transferability phenomenon (see Section 2.3.1) thus it is important to study 
carefully these attacks. Notice, that white-box attacks used in this work are based on the 
same principle of gradient descent optimization. P G D extends F G S M , B I M is a special 
case of P G D and M I M extends P G D . There is plenty of other white-box attacks but it is 
valid to say that vast majority of state-of-the-art attacks are extension or modification of 
attacks described in this work. 

Our work also described approaches for solving the problem of adversarial examples 
and creating robust model against it. We showed that deeper neural network models with 
greater capacity have better c-robustness with higher accuracy. This observation included 
that better architecture could improve c-robustness, while keeping same or better natural 
data accuracy but improving architecture alone does not yield model with desired robust­
ness. Since adversarial training requires to learn much more information than standard 
neural network training, number of trainable parameters is also important and should be 
sufficient wrt. data size and epsilon. Deeper research about dependency of robustness and 
architecture should be performed in the future work and we believe it is also a way how to 
face attacks. Another possibility how to increase success against adversarial examples is to 
use filters. Even simple filter as thresholding preformed outstanding results for classifying 
MNIST adversarial examples. Smoothing samples and reducing noise using filters could be 
a great defence, problem is that some filters could improve accuracy for adversarial data but 
also decrease accuracy for natural data. In fact, because of image datasets diversity it may 
be impossible to find one general filter working well for all or at least wide range of image 
classification problems. Preprocessing data for both training and evaluation using neural 
network is definitely promising method for improving robustness and should be also studied 
in detail in the future work. Our final approach was the robust optimization where we were 
solving saddle point (or minimax) problem. The term minimax means that we were trying 
to minimize maximized loss of the target model. Loss maximization was performed by 
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some of previously proposed adversarial attacks. The challenging part was to choose suit­
able attack for maximization the loss function that generates samples accordingly complex 
samples. The first idea was to use F G S M as a reference attack and repeatedly train the tar­
get model on batches generated by F G S M . In result, we obtained MNIST model with good 
performance against F G S M samples without significant loss of natural accuracy. Accuracy 
of model on natural MNIST data was 96.1% and on adversarial F G S M data 92.5% thus 
for only F G S M attack the model was 0.036-robust wrt. e = 0.3 what would be acceptable 
result. Evaluation of this model using multi-step attacks showed us that model is not robust 
enough to face e.g. P G D where it achieved only 18.2%. The model seemed to overfit to 
F G S M samples, while performing well on natural data. Notice, that F G S M always yields 
only samples on the border of epsilon-ball around the original image ignoring any other 
malignant samples closer to original samples. There definitely is plenty of other samples 
within the epsilon-ball that fool the target model. For learning the model also this samples 
we needed some reference attack that find also such samples. This observations leaded us 
to use P G D as a reference attack because P G D generates more complex data and is able 
to find samples with high loss values anywhere within the epsilon-ball. The target MNIST 
model trained on P G D samples also kept high accuracy on natural data, while performing 
very well against any attack described in this work. The most harmfull attack for model 
trained on P G D samples was B I M and the accuracy on B I M samples was 92.5%. As the 
accuracy on natural data was 98.5% the model was 0.06-robust wrt. attacks described in 
this work what is an outstanding result. For further evaluation of method we also trained 
CIFAR10 model on P G D samples. The training process took enormously larger amount of 
time, since we needed about 80000 iterations for training the reaching the optimal model 
(accuracy on both adversarial and natural data stopped improving with iterations). Final 
accuracy of model trained on P G D samples evaluated on natural data is 80.5% which is 
not significant decrease comparing to naturally trained models accuracy 82.4%. Since P G D 
attack was able to decrease accuracy to 55.46% the model is 0.2504-robust wrt e = 0.1. 
This result is not as successful as in case of MNIST, however, we need to consider that 
CIFAR10 dataset is much more complicated than MNIST. 

Even we showed that we can face first-order adversaries, which are currently state-
of-the-art attacking methods, the research is still not done yet. There exist also better 
adversarial attacks than we described - commonly some modification of attacks we used. 
One of them is for examples P G D attack with output diversified initialization [17] that 
could decrease accuracy of robust model under 50% according to experiments in Madry 
Challenge [11]. We should also consider possibility of new attack strategies, especially 
higher-order methods. Bringing this method could completely remove our advantage of 
relatively robust model. We believe that research of higher-order attack method should be 
the part of the future study of the field of M L security. Another weakness of our research 
is that we assume some constant value of e, however there exist samples with high distance 
from original data, but looks similar, therefore there is still possibility to easily generate 
adversarial examples with higher e, which look pretty similar to natural data and fool the 
model this way. Very challenging and also important would be the research of measuring 
similarity between samples and possibility of finding some kind of border between similar 
and different samples. This work discussed and studied only case of adversarial examples 
for image data. The future work should focus on voice (speech, sound) data. This days large 
amount of malware is detected using machine learning and it would be really interesting 
and also challenging to find some ways how enemies could generate malware adversarial 
samples and try to find ways of defence. 
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