
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

IMPLEMENTATION OF NIS BACKEND FOR SSSD

DIPLOMOVÁ PRACE
MASTER'S THESIS

AUTOR PRÁCE Be. LUKÁŠ NYKRÝN
AUTHOR

BRNO 2013

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

IMPLEMENTACE NIS BACKENDU DO SSSD
IMPLEMENTATION OF NIS BACKEND FOR SSSD

DIPLOMOVÁ PRAČE
MASTER'S THESIS

AUTOR PRÁCE Bc. LUKÁŠ NYKRÝN
AUTHOR

VEDOUCÍ PRÁCE Ing. JAN ZELENÝ
SUPERVISOR

BRNO 2013

Abstrakt
Tato práce se v první části zabývá představením technologií a nástrojů pro centrální správu
a přihlašování uživatelů v G N U / L i n u x . Ukazuje využití adresářových služeb v síťové in
frastruktuře, konkrétně služby NIS a její porovnání s dnes pravděpodobně nej rozšířenější
adresářovou službou L D A P . Dále práce popisuje proces autentizace na klientských stan
icích, konkrétně použití P A M a NSS a možné rozšíření celého systému zavedením cache
díky démonu SSSD. Druhá část popisuje návrh a implementaci NIS provideru pro SSSD.

Abstract
The first part this thesis introduces technologies and tools for centralized management and
authentication of users in G N U / Linux. It shows the usage of directory services in a
network infrastructure, namely the NIS and its comparison with today probably the most
widely used directory service L D A P . Then it describes the process of authentication on
client workstations, specifically use of P A M and NSS, and possible expansion of whole
system through the introduction of cache by using daemon SSSD. The second part of this
thesis describes design and implementation of the NIS provider for SSSD.

Klíčová slova
bezpečnost, NIS, L D A P , SSSD, P A M , NSS, GNU/L inux , síťová autentizace,
správa uživatelů

Keywords
security, NIS, L D A P , SSSD, P A M , NSS, GNU/L inux , network authentication,
user management

Citace
Lukáš Nykrýn: Implementation of NIS Backend for SSSD, diplomová práce, Brno, FIT
V U T v Brně, 2013

Implementation of NIS Backend for SSSD

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením Ing. Jana
Zeleného

Lukáš Nykrýn
May 20, 2013

Poděkování
Děkuji svému vedoucímu Ing. Janu Zelenému za veškerou pomoc a rady, které mi poskytl
během vypracování této práce.

© Lukáš Nykrýn, 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 4

2 Directory services 5
2.1 NIS 5

2.1.1 Structure 5
2.1.2 Communication and daemons 6
2.1.3 Maps 7
2.1.4 NIS setup 10
2.1.5 NIS+ 12

2.2 L D A P 13
2.2.1 Information model 13
2.2.2 Naming model 14
2.2.3 Function model 15
2.2.4 Security model 16

2.3 Comparing, use cases and transferability 17

3 G N U / L i n u x user management 18
3.1 P A M 19

3.1.1 Configuration 19
3.2 NSS 20

4 SSSD 23
4.1 SSSD Features 23
4.2 Configuration 24
4.3 Architecture 24

4.3.1 Design of provider 25

5 Design 27
5.1 Features to implement 27

5.1.1 Users 27
5.1.2 Groups 28
5.1.3 Services 28
5.1.4 Netgroups 28

5.2 Communication with NIS 29
5.2.1 R P C communication with NIS server 29
5.2.2 Communication through ypbind 30

5.3 Handling of requests 31

1

6 Implementation
6.1 Initialization 3 3

6.2 Authentication requests 34
6.3 ID requests 3 7

6.3.1 User 3 7

6.3.2 Group 3 7

6.3.3 Service 3 8

6.3.4 Netgroup 3 8

6.4 Communication with NIS 40
6.4.1 Preparation of the request 40
6.4.2 Spawning child 42

6.5 Child process and queries to NIS 43
6.5.1 Initialization of child 43
6.5.2 Query to NIS database 43
6.5.3 Return of values from child 44

7 Testing 4 6

7.0.4 ID provider 46
7.0.5 Authentication provider 46

8 Conclusion 48

2

List of Figures

2.1 Scheme of NIS domain 6
2.2 Elements of information model 14
2.3 Naming model 15

3.1 Accessing data before introduction of P A M and NSS 18

3.2 Usage of P A M and NSS 22

4.1 Scheme of SSSD architecture 24

5.1 Communication in the provider 32

6.1 Authentication request 36
6.2 ID request 39
6.3 Key buffer 41
6.4 Enum buffer 41
6.5 Buffer with reply to lookout request 45
6.6 Buffer with reply to enum request 45

3

Chapter 1

Introduction

Computers in these days became one of the most important tools in our lives and for
example in a company environment, they store huge amount of classified information, so
we need to make sure, that every computer user is authenticated.

Unlike the past where computer networks were organized in the server-terminal model
and the server did the whole authentication process, today in the server-client model part
of this process is done by client computers. This brings the question how can a client
computer determine, if username and password provided by user are correct and what
privileges should the user have.

Because today's networks contain hundreds of users and client computers, it is impos
sible to create database of all users on every computer manually, so we need to define
a storage which will contain all of the information and define, how client computers can
perform queries against this storage.

The extensive usage of mobile devices, especially laptops, brings an another problem,
how can be the user authenticated, when his computer is temporarily not connected to a
company network.

The first part of this work should provide a description of NIS and a comparison with
today's most used directory service L D A P .

The second part describes the current state of G N U / L i n u x account management, con
cretely P A M and NSS.

The third part presents SSSD and it shows benefits from its introduction to the system.
The fourth part discusses ways, how can be the NIS provider for SSSD implemented.
The fifth part contains a description how was the provider implemented.
The sixth part describes methods to test the provider.
The conclusion summarizes the created solution, it discusses its pros and cons and shows

possible improvements.

4

Chapter 2

Directory services

Directory services provide an access to information stored in databases called directories.
The word directory in this context has nothing to do with directories in a file system, it is a
specific type of database, which stores various information organized in groups, for example
telephone numbers, user logins, computer names, . . .

In the contrast to relational databases, these are designed for a frequent reading and
searching and only for an occasional modification and also data in these can be stored
redundantly, if it helps with a performance.

There are many applications, which can be classified as a directory service for example
L D A P , NTS, X.500, DNS, Hesiod and Netlnfo.

This chapter will be dedicated to the two most common directory services, which can
be used to authenticate users: L D A P and NIS.

2.1 NIS

NIS (Network Information Protocol) is a distributed directory service protocol, which is
designed to share various system configurations in a network. It was designed by Sun M i
crosystems in 80's as Y P (Yellow pages) but it was changed because this name is registered
trademark of British Telecoms. But this is the reason, why most of NIS tools begin with a
prefix "yp".

2.1.1 Structure

A l l computers which are sharing information through NIS belong to the same domain and
this name is completely independent on DNS. In every domain there are three types of
machines.

• Master server is a single machine in every NIS domain, that holds and creates
authoritative copy of NIS maps (see chapter 1.1.3) and propagates changes to slave
servers.

• Slave servers are additional servers. They receive complete read-only copies of maps
from the master and offer the same services like the master server for clients. Their
main purpose is to create backup for master server and clients can connect to them,
if other server is unavailable due to a high load.

5

• Clients are machines, that request information from maps on servers. They does not
need to know, if the server, which they are asking, is master or slave since both of
them have complete copies of all maps.[]

NIS domain

Slave
server

Master
server

Slave
server

Client Client Client

Map transfer Request

Figure 2.1: Scheme of NIS domain

2.1.2 Communication and daemons

The communication between machines in NIS domain is completely based on R P C . There
are four daemons in NIS environment: ypbind running on client, ypserv running on all
servers and ypupdated and yppasswdd running only on master server.

ypbind

Every system that runs ypbind is automatically a NIS client. Main purpose of ypbind is
to bind to the NIS domain. After it starts, it finds, through broadcast message, a server
which is responsible for supplying information for a client's domain and periodically checks,
if this that server is still running and his responses are not slow due to a high load. If this
server is unavailable, ypbind sends the broadcast message again to find another one. Other
client's processes can connect to the NIS server through ypbind.

6

ypserv

A l l of NIS services are provided by daemon ypserv. These we can splits to three types:
data lookups, map maintenance calls, and NIS internal calls. Since information in NIS
maps are stored in the key—lvalue format, lookup requests are also key oriented.

We have four queries, which can be performed:

• Match finds the corresponding value to a key.

• First returns the first pair of key-value in a map.

• Next returns the next pair of key-value in a map.

• A l l is used to obtain the whole map from a server.

The maintenance calls are used to obtain information that are needed to perform map
transfers from a master to slave servers.

• Order returns the creation date of a particular map.

• Master obtains the address of master server for this map.

Ypserv is not aware for which domains and maps it is providing information, it simply
looks in /var/yp/$DOMAIN and there obtains information from the desired map. This brings
possibility to host information for multiple domains on one server.

yppasswdd

Yppasswdd daemon brings possibility to change user's password, full name or shell. It
accepts an incoming request, authenticates it and updates password maps.

ypupdated

The daemon ypupdated prompts slave servers to update their copies of maps. Which maps
should be updated is determined from the updaters file.

2.1.3 Maps

NIS maps are catalogs of all information, that NIS provides and they are physically stored
in D B M databases. These maps are mostly generated from regular configuration files
with makedbm in "key —> value" format. In this type of storage it is possible to find
information only through a key, so the same configurations are usually stored in multiple
maps with a different key, for example user's passwords are stored in pas swd. byname and
passwd. byuid. [13]

D B M (DataBase Manager) databases are one of the first databases engines, developed
in 1979 by A T & T . D B M database consists of a set of keys and associated values, organized
in a hash table. Their design allows to obtain the required value in just two accesses
to a filesystem, which brings great performance improvement against reading a normal
configuration file.

Each D B M database, and therefore each NIS map, comprises two files: a hash-table
accessed bitmap of indexes and a data file. The index file has the . dir extension and the
data file uses .pag.[]

7

Map Nickname Source file Description
passwd. byname

passwd /etc/passwd
Contains password
information with user
name as key.

passwd.byuid

passwd /etc/passwd

Same as
passwd. byname, ex
cept that key is user
ID.

group.byname
group /etc/group

Contains group security
information with group
name as key.

group.bygid

group /etc/group

Contains group security
information with group
ID as key.

hosts.byaddr
hosts /etc/hosts

Contains machine
name, and IP address,
with IP address as key.

hosts.byname

hosts /etc/hosts

Contains machine name
and IP address, with
machine (host) name as
key.

ethers.byaddr
ether /etc/ethers

Contains machine
names and Ethernet
addresses. The Ether
net address is the key
in the map.

ethers.byname

ether /etc/ethers

Same as ethers.byaddr,
except the key is ma
chine name instead of
the Ethernet address.

networks. byaddr
networks /etc/networks

Contains names of net
works known to your
system and their IP ad
dresses, with the ad
dress as key.

networks. byname

networks /etc/networks

Same as net
works.byaddr, except
key is name of network.

rpc.bynumber /etc/rpc Contains program num
ber and name of R P C s
known to your system.
Key is R P C program
number.

services. byname service /etc/service Lists Internet services
known to your network.
Key is port or protocol.

Table 2.1: NIS default maps [14]

8

Map Nickname Source file Description
protocols.byname

protocols /etc/protocols
Contains network pro
tocols known to your
network.

protocols.bynumber

protocols /etc/protocols

Same as proto
cols, byname, except
that key is protocol
number.

netgroup.byhost
/etc/netgroups

Contains group name,
user name and machine
name.

netgroup.byuser

/etc/netgroups

Same as net
group.byhost, except
that key is user name.

netgroup

/etc/netgroups

Same as net
group.byhost, except
that key is group name.

bootparams /etc/bootparams Contains path names of
files clients need during
boot: root, swap, possi
bly others.

mail, aliases
aliases / etc / aliases

Contains aliases and
mail addresses, with
aliases as key.

mail.byaddr

aliases / etc / aliases

Contains mail address
and alias, with mail ad
dress as key.

netid.byname /etc/passwd,
/etc/groups,
/etc/hosts,
/etc/netid

Used for UNIX-style au
thentication. Contains
machine name and mail
address (including do
main name). If there
is a netid file available
it is consulted in addi
tion to the data avail
able through the other
files.

netmasks.byaddr /etc/netmasks Contains network mask
to be used with IP sub
mitting, with the ad
dress as key.

ypservers Lists NIS servers known
to your network.

Table 2.2: NIS default maps (continue) []

9

2.1.4 NIS setup

Setup of NIS is quite simple. Preparation of master server, slave server and clients can be
done in few steps.

Master server

1. Setting the NIS Domain Name

This can be done temporarily through command:

domainname name_of_domain

or by modifying /etc/sysconf ig/network to:

NIS_DOMAIN=name_of.domain

2. Starting ypserv daemon
Next step is to run ypserv daemon, which is responsible for handling NIS queries:

/etc/init.d/ypserv start

3. Altering makefile for creating maps
Transferring configuration files to NIS maps is done by running make on /var/yp/Makef il e .
Most important setting are:

• Variable A L L sets, which configuration files will be transfered:

ALL = passwd group hosts rpc services netid protocols netgrp

• Location of configuration files:

YPPWDDIR = /etc

GROUP = $(YPPWDDIR)/group

PASSWD = $(YPPWDDIR)/passwd

SHADOW = $(YPPWDDIR)/shadow

GSHADOW = $(YPPWDDIR)/gshadow

ALIASES = /etc/mail/aliases

• Allowing pushing maps to slave servers:

N0PUSH=false

4. Running ypinit

After altering /var/yp/Makef i l e we can initialize NIS server by running:

/usr/lib/yp/ypinit -m

where parameter -m says, that this will be the master server.

10

Slave server

1. Setting the NIS Domain Name

This can be done temporarily through command:

domainname name_of_domain

or by modifying /etc/sysconf ig/network to:

NIS_DOMAIN=name_of.domain

2. Adding address to the master server
To ensure that maps will be propagated to this slave server, we must add his address
to /var/yp/ypservers on master server.

3. Starting ypserv daemon

Next step is to run ypserv daemon, which is responsible for handling NIS queries:

/etc/init.d/ypserv start

4. Running ypinit
Now we can initialize slave server by running:
/usr/ l ib/yp/ypinit -s master_server

where parameter -s, says that this will be the slave server and master_server is the
address of the master server.

Client

1. Setting the NIS Domain Name and server
In file /etc/yp.conf we must specify name of domain and how ypbind determines
address of a server.

domain name_of_domain server server_address

or

domain name_of_domain broadcast

2. Starting ypbind daemon
Final step is to run ypbind daemon:

/etc/init.d/ypbind start

[]

11

2.1.5 N I S +

In 1992 Sun Microsystems introduced NIS+, which was designed as NIS successor. It brings
features that were missed inthe original NIS, but it is more difficult to administer on server
side and in G N U / L i n u x it has buggy client and no usable server.

Hierarchy

In NIS you can split informations to multiple domains, but these domains are flat and it
is not natively possible to share informations between them. NIS+ can behave similarly as
DNS and you can order domains to hierarchical structures.

Security

Biggest disadvantages of NIS is lack of security. A l l information are available to everyone,
transmissions are not encrypted and there is no authentication between client and server.
NIS+ is build above R P C / D H , so it solves problems with with encryption of transmission
and authentication.

Updating

Generally in NIS every update means that administrator alters configuration files, trans
forms them to D B M files and database is pushed to slave servers. NIS+ offers possibility to
change informations by user and the ability to propagate these changes by incrementation
updates. [13]

12

2.2 LDAP

L D A P (Lightweight Directory Access Protocol) is a simplified version of X.500, which is
collection of standards developed by International Consultative Committee of Telephony
and Telegraphy. Whole system can be described from four views, which are in L D A P
terminology called models.

• Information model describes L D A P as a data storage. It defines, what data types
can we store, mechanism how are these data stored and operation which can be
performed over them. This information for a specific directory creates the directory
schema.

• Naming model defines hierarchical structure over data. In L D A P every record is
identified by Distinguished Name (DN), which can be defined as a path from root of
L D A P domain to the record.

• Functional model deals with access to data. It describes operation, which can be
performed over L D A P .

• Security model describes what needs to be done to get an access to data in L D A P .

2.2.1 Information model

Information model describes basic units of L D A P called entries. Every entry is composed
from attributes, which are basically properties of an object, which is represented by entry.

Every entry can contain multiple attributes and every attribute has a type and its
value(s). For every type of attribute we have also definition of operations, that we can
perform over these attributes. Attributes can be also distinguished as user, which describes
properties of the object, and operational, which contains system information, for example
time stamp.

Set of attributes also creates object class, which describes some object from real world.
Between objects is inheritance which goes from abstract class top. Every class has unique
identification OID, unique name, its ancestors, type, and list of mandatory and optional
attributes. Object classes can be abstract, structural or auxiliar.

A l l classes and attributes are defined in schemes. Standardized schema are often in
cluded in installation of server.

13

Top object
class

Object
class

f Attributed
Type
Value
Value
Value

f Attributed
Type
Value
Value
Value

^Operatiori^ ^Operation^Operatiori^

Figure 2.2: Elements of information model

2.2.2 Naming model

L D A P Naming Model defines, how data will by organized. This structure is called DIT
(Directory Information Tree). Basically, it is tree graph where leafs are entries representing
entities in real world. Any node can be identified by Distinguished Name (DN), which is
defined by sequence of relative D N from root to node.

If a real structure can not be described by pure tree structure (for example in company
is one person working in two departments), we can use aliases. These create link from leaf
to another part of the tree.

Another type of link can be created by object referral. This shows U R L to another
L D A P server. If there is a query which must be performed over referral, it can be process
by the server itself, so client does not know that information is stored elsewhere or server
just gives client the U R L to the other server and client send a query directly to this server.

14

Serve r 1 Serve r 2

Figure 2.3: Naming model

2.2.3 Function model

Function model describes, which operations can be performed over L D A P : queries, data
alteration and access control.

Queries

• Search is used to perform lookup in directory tree and returns whole entries or defined
attributes which fit the search request. We need to specify 8 parameters:

— Base object acts as root of a subtree, where the search will be performed.

— Scope determines on which part of subtree, it will be performed. This can be
only in the root object (base), in all descendants of root object (onelevel) or in
whole subtree (sub).

— Alias dereferencing sets what would be done, if the search encounters an
alias. Options are neverDerefAliases, dereflnSearching, derefFindingBaseObject
and derefAlways.

— Size limit sets maximum number of entries, which client will accept.

— Time limit specify period in seconds, during which client is accepting the re
sults.

15

— Attributes-only says if we want only list of attributes of entries, or if we want
also their values.

— Search filter specifies what we want to find. Filters are equality, substring, ap
proximate, greater than, less than, presence and bool operators AND,OR,NOT

— List of attributes determines, which attributes we want to return.

• Compare is used for testing values of attributes in an entry. According to match it
return true or false. Parameters are D N of the entry and a list of attributes and their
values.

Data altering operations

L D A P has four operations that can be use for modifying database.

• Add adds a new entry to database. It accepts D N of the new entry and lists of
attributes and its values.

• Delete removes an entry from database.

• Rename change location of an entry in tree.

• Modify alters attributes in an entry.

Authentication and control operations

L D A P has two authentication operations and one control operation.

• Bind is used to attach to the server, sets negotiation method of authentication and
identification of client. It provides possibility of plaintext authentication or through
SASL with md5 hash.

• Unbind terminates connection to client.

• Abandon terminates previous operation.

2.2.4 Security model

Last model describes L D A P from a view of security. It describes methods of preventing
unauthorized access to data stored in L D A P . According to type of authorization, we can
divide all L D A P servers to three groups:

• Anonymous authentication - with this settings server does not ask for any cre
dentials and offers data to everyone. This type of server should be read-only.

• Password authentication - this server must offer SASL authentication with MD5.

• Encryption and authentication - server must have support for T L S encryption
and authentication through keys or certificates.

[8][1]

16

2.3 Comparing, use cases and transferability

Comparing

In most cases when somebody is building a new large computer network and there is need
for directory service, L D A P is definitely better choice than NIS.

• Security
As was mentioned above L D A P offers multiple types of authentication, access man
agement and communication can be encrypted. NIS does not have any of these
features. Access for modifiing data can be described as root or nothing, R P C com
munication is not encrypted and everybody has read access to all information stored
in NIS maps.

• Data structure
Ldap organizes data to tree structure and offers possibility to define items according
to our needs. NIS maps are flat key-value tables with no possibility of hierarchical
structure.

• Performance Comparison of performance of L D A P and NIS is not quite possible,
since NIS provides only basic lookups while L D A P can perform more sofisticated
queries. NIS can probably find value according to key faster, because this is primary
purpose of its D B M databases, but when we need more complicated query, we must
go throught whole map and process data on client, while L D A P can solve this itself.

Use cases

Despite this, there are to two cases where NIS is used in these days. First category are
networks, which were built with NIS in the time when L D A P was not widely used, they
have no extra security needs and migration can only brings a possibility of problems.

Second category would be new small networks, in which we just want to share for
example usernames and passwords. In these L D A P can be unnecessarily robust and resource
consuming.

Transferability

For a migration from NIS to L D A P there are a lot of tools which should automatize the
process for example MigrationTools from P A D L Software Pty Ltd.

For improbable migration from L D A P to NIS we can use L D A P tools for example
Idap-get-users to generate configuration files (in this case passwd) and these can be directly
used by NIS.

17

Chapter 3

GNU/Linux user management

In early years of U N I X systems all authentications were purely based on local files (/etc/passwd,
/etc/groups, . . .) and all programs which wanted to get information about users, or ba
sically all system and network information, had to read these files and process them. This
approach has many disadvantages. These files must be readable from whole systems (so for
example everybody can retrieve hashes of user's password), every program must implement
reading of these files, we can not simply use anything else then password authentication
(fingerprints, certificates, . . .) and all user's information must be in these files, so it is
impossible to use another storage unless it is implemented directly in an application.

Figure 3.1: Accessing data before introduction of P A M and NSS

18

This can be solved by introducing an unified access to information about users. A l l
modern Unix systems are typically using P A M for the user authentication and NSS for
providing (among other things) information about him.

3.1 P A M

P A M (Pluggable Authentication Modules), developed by Sun Microsystems, allows to per
form user authentication. P A M system consists two parts:

• Dynamically linked libraries which are usually located in /lib/security.

• A set of configuration files usually stored in /etc/pam.d.

Developer of application simply implements calling of several dynamically linked l i
braries, which are included in P A M and requests the authentication of a user and P A M
performs all needed actions according to configuration file of this application.

Tasks, which are performed by P A M can be split into four groups:

• Authentication - P A M decides, if the user is, who he claims to be. This is typically
done through password authentication, but other methods, like fingerprints, hardware
tokens or certificates, are also possible.

• Account management - P A M provides methods to determine, if user is allowed
to access some service. This area for example covers check of password expiration or
determination, if user is member of a group which can use this service.

• Password management - P A M takes care about changing user's password or up
dating them if they expire.

• Session management - P A M also performs operations which stand besides the
pure authentication process, for example mounting user's home directory or protocol
events and maintaining the log files.

3.1.1 Configuration

As mentioned before, for every application, P A M looks to its configuration file, which is
consisted by lines in format:
Module-type Control-flag Module-path Arguments

• Module-type - This defines type of the module according to to which part of P A M it
belongs.

— auth

— account

— session

— password

• Control-flag - Since modules can be organized in groups, this defines what should be
done in case of success or failure of this concrete module.

— required - Failing in this modules results in complete failure and the next
modules are proceeded.

19

— requisite - This has the same meaning as required, but process is stopped in
case of failure.

— sufficient - Success in this module is enough to success in the complete process
of authentication. If there are not any unprocessed required modules, the
process is stopped.

— optional - This module is not required for complete success.

• Module-path - Describes path to the module, for example /lib/security/pam_access. so.

• Arguments - This optional value represents list of parameters, which will be pass on
to module. There are some standardized parameters:

— debug - This argument turns on writing debugging information to syslog.

— no_warn - Suppresses all warning messages.

— use_f irst.pass - Module does not ask user for password, but it uses password
from previous module.

— try_f irst_pass - This is similar as use_first_pass argument, but if authentication
fails module asks for another password.

3.2 NSS

NSS (Name Service Switch) provides unified access to information stored in various databases.
Whole configuration of NSS is stored in /etc/nsswitch.conf, which describes, where

NSS should look for concrete information. Information provided by NSS are from following
areas:

• aliases - Mai l aliases.

• ethers - Ethernet numbers.

• group - Groups of users

• hosts - Host names and numbers.

• netgroup - Network wide list of hosts and users, used for access rules.

• networks - Network names and numbers.

• passwd - User passwords.

• protocols - Network protocols.

• publickey - Public and secret keys for Secure_RPC.

• rpc - Remote procedure call names and numbers.

• services - Network services.

• shadow - Shadow user passwords.

20

Typical source databases are:

• f i l e s - File in /etc of client.

• nis - NIS map.

• compat - Service provides support for old +/- syntax.

• dns - Obtain host information from DNS.

• ldap - Information will be obtained from L D A P directory.

If there is specified only one source, NSS tries to find information there and according
to the result it returns the corresponding message:

• SUCCESS - Information was correctly found.

• UNAVAIL - The source is not responding or is not available.

• NOTFOUND - Information was not found.

• TRYAGAIN - The source is currently busy.

If there are multiple sources, NSS tries to obtain information from the first source and if it
is successful it returns SUCCESS message, in the other case it continues to the next source.
If the information was not found in any source message NONSUCCESS is returned.

This behavior can be altered by adding action option. For example if we use

networks: nis [NOTFOUND=return] fil e s

and the information is not found in a NIS map, the search is unsuccessful, but when the
NIS is unavailable or busy, NSS will look to local configuration. [9]

21

Chapter 4

SSSD

With mechanisms described in previous text, we can build centrally administered database
of user's account and let the client computer to use it for authentication of users. But this
design is not flawless.

Biggest disadvantage of network authentication is its dependence of network connection.
When the computer is off-line, users can't authenticated themselves, so they are not allowed
to access the system. This can be bypassed by creating local accounts on every computer,
but in most scenarios this impossible due to difficult maintenance and security problems.

4.1 SSSD Features

The SSSD is a service which creates a " layer" between P A M / N S S and identity and authen
tication providers. It brings following improvements to the authentication architecture:

Off-line authentication

SSSD can solve the problem with dependence on permanent network connection by intro
ducing cache.

• Only useful data are stored in cache.

• User can log in, even when he is outside the network or the server is down.

• For log attempt SSSD always tries to contact the server.

• Items in cache expire.

Support for multiple domains

SSSD can connect to multiple domains of the same type, this can be very useful for example
with L D A P , where is setup of obtaining information from different domains complicated.

Decrease load of server

Another great asset of SSSD is help to reduce load on directory servers. For example when
we have on client multiple applications, which are requesting data from L D A P , every one
of them is opening its own connection and this can lead to overload of the server. SSSD
can perform all these requests in single connection.

23

4.2 Configuration
Whole configuration of SSSD is stored usually in /etc/sssd/sssd.conf. This file consist
from configuration of particular sections describing domains and services. Its format is
similar to . ini file:

[section]

Comment line

keyl = vail

keylO = vall , v a l 2

[11]

4.3 Architecture

SSSD consists from several processes which are communicating through protocol DBus,
internally called SBus.

• Monitor is a central process, which supervise other processes.

• NSS responder provides information about users which are requested from NSS
module nss_sss.

• P A M responder performs communication between P A M module pam_nss and SSSD

• Data providers ensure communication with servers and they store data to cache.
[12]

Ldap Kerberos

Ldap Kerberos

\ 1 c ^
Bus — - Cache

Monitor

PAM NSS
responder responder

SSSD

Figure 4.1: Scheme of SSSD architecture

24

4.3.1 Design of provider

Since the object of whole work is to design the NIS provider for SSSD, the architecture of
provider deserves to be described in more details.

Every provider should implement four functions which are used for initialization:

int sssm_<provider_name>_id_init(struct be_ctx *bectx,

struct bet_ops **ops,

void **pvt_data);

int sssm_<provider_name>_auth_init(struct be_ctx *bectx,

struct bet_ops **ops,

void **pvt_data);

int sssm_<provider_name>_access_init(struct be_ctx *bectx,

struct bet_ops **ops,

void **pvt_data);

int sssm_<provider_name>_chpass_init(struct be_ctx *bectx,

struct bet_ops **ops,

void **pvt_data);

This functions can be compared to theirs equivalents in P A M and NSS.

• ID performs general NSS query.

• A U T H represents P A M authentication request.

• A C C E S S handles P A M query about allowing access to various resources.

• C H P A S S ensures P A M command to change user's password.

A l l important information for run of the provider (like connector to SBus, access to
database or information about domain) are set in struct be_ctx.

Provider can set its "personal" data (for example connection to server) to void **pvt_data,
these data can later be accessed through be_ctx->bet_inf o [BET_ID] .pvt_bet_data.

Main goal of these functions is to populate the structure struct bet.ops, which has
three members:

struct bet_ops {

be_req_fn_t check_online;

be_req_fn_t handler;

be_req_fn_t finalize;

} ;

These pointers are for registration of callbacks, which will be called, when we need to check
status of connection, perform a request or end the provider.

25

A l l of these function must accept one argument be_req, which consists following mem
bers:

struct be_req {
struct be_client *becli;
struct be_ctx *be_ctx;
void *req_data;
be_async_callback_t fn;
void *pvt;
int restarts;

} ;

Most important from this structure is obviously be_ctx which is described above and
pointer req_data. For ID provider this should be cast to struct be_acct_req *. This
structure is quite general and can be used for every request, which would be directed to
NSS.

In other cases req_data should be cast to struct pam_data*, which includes all infor
mation for execution of a P A M request.

Now the function has all needed information to perform query to the server. Results are
not directly return to the caller, but data are stored in the database. If data are already in
database (from previous searches), they are updated or in the case that server have returned
message, that there is not such item, they are deleted from database.

When database is successfully updated, last step is to inform, that everything has been
done. This is performed by calling fn function from be_ctx structure. To this function we
should provide the result of the query and report if server have responded normally, was
offline or a timeout occurred. [2]

26

Chapter 5

Design

There are three major areas which should be discussed in the design phase.

• Which parts of the provider should be implemented.

• How will be realized the communication with NIS.

• How will be the returned information processed.

5.1 Features to implement

As mentioned every SSSD provider can implement four basic handlers: id, authentication,
access and password change. NIS provider must implement id handler, because that is main
reason of NIS database and authentication. There is no need for access handler, because
NIS maps does not contain any useful information related to access management.

Handling password changes is possible, but this functionality is already provided by
pam_unix2. so, which can determine if we need to change a password on NIS server through
yppasswd protocol.

ID provider should handle requests for users, groups, services and netgroups.

5.1.1 Users
Query for a user means to lookup or enumerate the passwd map. This map contains
information about users login accounts in the systems. Every value describes single user
and contains seven colon-separated fields[]:

name:password:UID:GID:GECOS:directory:shell

• Name is the user's login name.

• Password is the encrypted user password.

• UID is the identification number of user

• GID is the numeric primary group ID for this user.

• G E C O S is optional and used only for informational purposes. Usually, it contains the
full username.

27

• Directory is the user's home directory: the initial directory where the user is placed
after logging in.

• Shell is the program to run at login.

5.1.2 Groups

Query for a group means to lookup or enumerate the group map. This map contains
information about groups of users in the systems. Every value describes a single group and
contains four colon-separated fields[] :

group name:password:GID:user l i s t

• Group name is the name of the group.

• Password is the (encrypted) group password. If this field is empty, no password is
needed.

• GID is the numeric group ID.

• User list is a list of the usernames that are members of this group, separated by
commas.

5.1.3 Services

Query for a service means to lookup or enumerate services map. This map is providing a
mapping between human-friendly textual names for internet services, and their underlying
assigned port numbers and protocol types. [] Each value describes one service, and is of
the form:

service-name port/protocol [aliases ...]

• Service-name is the friendly name the service is known by and looked up under.

• Port is the port number to use for this service.

• Protocol is the type of protocol to be used. Typical values include tcp and udp.

• Aliases is an optional space or tab separated list of other names for this service.

5.1.4 Netgroups

Query for a netgroup means to lookup in netgroups map. This map defines "netgroups",
which are sets of triples, used for permission checking when doing remote mounts, remote
logins and remote shells. [] Each line in the file consists of a netgroup name followed by a
list of members, where a member is either another netgroup name, or a triple:

(host, user, domain)

where the host, user, and domain are character strings for the corresponding components.
Any of the three fields can be empty, in which case it specifies a " wildcard", or may consist
of the string "-" to specify "no valid value". The domain field must either be the local
domain name or empty for the netgroup entry to be used.

28

5.2 Communication with NIS

There are two different way how can we approach to the communication to NIS. Provider
can talk directly to NIS servers using R P C calls, or start locally ypbind and then use
functions from glibc to obtain data from database.

5.2.1 R P C communication with NIS server

NIS rpc interfaces provides following procedures:

• Y P P R O C _ N U L L is used to check if server is alive.

• Y P P R O C J D O M A I N checks if ypserv serves the named domain.

• Y P P R O C _ D O M A I N _ N O A C K is the same as Y P P R O C J D O M A I N , but server does
not send A C K when it is not serving the domain. This is used mainly for broadcasts.

• Y P P R O C J M A T C H performs a key lookup.

• Y P P R O C _ F I R S T returns first key/value pair from map.

• YPPROCJNTEXT returns next key/value pair from map.

• Y P P R O C J K F R tells server to check for new version of map on master server.

• Y P P R O C _ C L E A R tells ypserv to flush it's file cache.

• Y P P R O C _ A L L is used to obtain whole map from server.

• Y P P R O C J V I A S T E R return master server for domain.

• Y P P R O C . O R D E R returns the order number for a map.

• Y P P R O C _ M A P L I S T reeturns list of maps for domain.

Biggest advantage of direct communication with NIS server is no dependence on any
other components. But this method has one important drawback. Glibc have a good
support for NIS, but it requires, that ypbind is running on client a machine. Unfortunately
we must assume that users in NIS environment can use applications which are build with
NIS support.

29

5.2.2 Communication through ypbind

Glibc offers following interface which can be used when a machine is running ypbind
daemon []

#include <rpc/rpc.h>

#include <rpcsvc/ypclnt.h>

#include <rpcsvc/yp_prot.h>

int yp_all(char *indomain, char *inmap, struct ypall_callback *incallback);

int yp_bind(char *dom);

int yp_first(char *indomain, char *inmap, char **outkey, int *outkeylen,

char **outval, int *outvallen);

int yp_get_default_domain(char **domp);

int yp_master(char *indomain, char *inmap, char **outname);

int yp_match(char *indomain, char *inmap, const char *inkey, int inkeylen,

char **outval, int *outvallen);

int yp_next(char *indomain, char *inmap, char *inkey, int inkeylen,

char **outkey, int *outkeylen, char **outval, int *outvallen);

int yp_order(char *indomain, char *inmap, char *outorder);

void yp_unbind(char *dom);

char *yperr_string(int incode);

int ypprot_err(unsigned int incode);

• yp.match provides the value associated with the given key.

• yp_first provides the first key-value pair from the given map in the named domain.

• yp_next provides the next key-value pair in the given map. To obtain the second pair,
the inkey value should be the outkey value provided by the initial call to yp.first. In
the general case, the next key-value pair may be obtained by using the outkey value
from the previous call to yp_next as the value inkey.

• yp_all provides a way to transfer an entire map from the server to the client process
with a single request. This transfer uses T C P , unlike all other functions in the ypclnt
suite, which use U D P . The entire transaction occurs in a single R P C request-response.
The third argument to this function provides a way to supply the name of a function
to process each key-value pair in the map. yp_all returns after the entire transaction

30

is complete, or the each function decides that it does not want any more key-value
pairs.

• yp_order returns the order number of a map.

• yp_master returns the hostname of the master server for a map.

• yperr.string returns a pointer to a null-terminated error string.

• ypprot_err converts a Y P protocol error code to a ypclnt error code yperr_string.

Beside the friendly interface and system-wide accessibility this approach simplifies the
communication with multiple NIS servers, ypbind will seamlessly switch between servers
in case of their unavailability and offers broadcast search for servers. For these reasons
designed provider will communicate with NIS server through ypbind.

5.3 Handling of requests

SSSD is passing requests to provider by calling function which were specified in the initial
ization phase. A l l requests are performed asynchronously in one thread and after fetching
data from server, provider should save desired information to cache and by calling callback
pass the return state to SSSD.

Unfortunately all yp_* call are blocking, so they can't be called directly in the provider.
Due to this reason, the provider should read a request from SSSD, prepare a query for
server and then fork a child process which will call the appropriate function, wait for the
result and then write them back to the parent process. These data should be processed and
store in sysdb.

31

Provider

Initialize

Starts
ypbind

Loop

Request

Spawns Child

Send query Send query

Returned data
Response

Stops

X
Stops

Figure 5.1: Communication in the provider

32

Chapter 6

Implementation

Implementation can be divided to following parts:

• Initialization

• Handling of ID requests

• Handling of authentication requests

• Communication between parent process and child

• Storing of values

6.1 Initialization

Initialization of provider is handled by two init functions. For initialization of the ID handler
SSSD is supposed to call:

int sssm_nis_id_init(struct be_ctx *bectx,

struct bet_ops **ops,

void **pvt_data);

And similarly for the authentication provider:

int sssm_nis_auth_init(struct be_ctx *bectx,

struct bet_ops **ops,

void **pvt_data);

These functions perform setup and returns pointer to handlers functions. Because internally
there is no difference between initialization of id and authenticate handler, sssm_nis_auth_init
is just calling sssm_nis_id_init and only modifies handler functions.

Both of these handlers are also sharing the same structure with information called
context.

struct nis_ctx {

struct be_ctx *be;

struct dp_option *nis_opts;

pid_t ypbind_pid;

char *domain;

} ;

33

This context contains a pointer to general provider structure, the configuration given by
user, pid of ypbind process and the name of NIS domain. A l l of these are necessary during
whole run of this provider.

Whole initialization process peforms following actions:

1. Allocate memory for context structure

2. Store configuration settings to context

3. Set system domainname with int setdomainname (const char *name, size_t len);

4. Write configuration file

5. Start ypbind and store its pid to context struct

First the initialization checks SSSD configuration file. User can specify following option:

• nis_domain - name of domain

• nis_server - comma-separated list of servers

• nis.broadcast - use broadcast to find NIS servers

• nis_timeout - timeout for queries to NIS database

Domain must be set by user and he must also specify at least one server or set broadcast
search. Broadcast is unset by default and timeout is by default set to 180 seconds.

Initialization continues with writing configuration file for ypbind. That means to write
into /etc/ypbyind.conf line "domain nisdomain server hostname" for every server in
configuration and "domain broadcast" if broadcast search was required.

After configuration files is set, provider can start ypbind. Provides forks a new process
and the child call execle. Timeout for queries is set by environment value TIMEOUT.

At this time last thing is set handlers for queries and provider is ready to accept requests.

6.2 Authentication requests

There are multiple pam action, which can SSSD sent to a provider. As mention before
designed NIS provider is only able handle simple authentication request.

Handler proceeds with following steps:

1. Allocate context structure for performed action.

struct nis_pam_auth_state {

struct be_req *breq;

struct pam_data *pd;

const char *username;

struct dp_opt_blob password;

} ;

2. Get user login from request and ask NIS database for entry from passwd map.

34

3. Create copy of given password and set a destructor for it, which will at the end
overwrite it, so it does not stays in memory. For this we can use existing function
from SSSD.

int password_destructor(void *memctx);

This function will overwrite password wit null bytes.

4. Check if it got answer from server.

5. Parse accepted line from server.

6. Check if password on server was encoded by supported hash.

7. Hash password from pam request with function

int s3crypt_sha512(TALL0C_CTX *memctx,

const char *key,

const char *salt,

char **_hash);

Salt is taken from password field of returned value from NIS server.

8. Compare hashes and if they match report success.

9. If requested, store password to sysdb with function

int sysdb_cache_password(struct sysdb_ctx *sysdb,

const char *username,

const char *password);

Unfortunately in SSSD there is only the SHA512 hash function, so if a server stores
passwords in any other type, authentication through SSSD would not work.

35

n i s p a m a u t h h a n d l e r

register callback

nis_key_send

register callback

nis child send

register callback
w r i t e p i p e s e n d

Jfcfc:
. - - ' " reques t done

n i s c h i l d s t e p w r i t e p i p e r e c v

register callback read_pipe_send

request done

nis read done r e a d p i p e r e c v

. - ' request done

nis child done nis child recv

request done

nis_pam_auth_done nis_key_recv

nis handler done

Figure 6.1: Authentication request

36

6.3 ID requests

Besides netgroups where is possible only to request for context of netgroup, SSSD can ask
for lookout of a single value or enumerate the whole table.

After the handler is called, it determines what type of a request is it and if it is the
request for lookup or enumeration. For the lookup queries the searched value can be
specified as a name (login for user, name of group, name of service) or by its id (uid for
user, gid for group, port for service).

The request is then send to the NIS server and after a return found values are stored
in the sysdb.

6.3.1 User

Data returned from NIS server are same as in /etc/passwd:

name:password:UID:GID:GECOS:directory:shell

This line is split by colons and values are stored in sysdb. If user was already in sysdb,
previous entry is deleted.

In case that requested user was not found in NIS database, value is also removed from
sysdb.

There is a set of functions for more abstract work with sysdb.

errno_t nis_save_user(struct sss_domain_info *dominfo,

struct sysdb_ctx *sysdb, char *response);

errno_t nis_delete_user_name(struct sysdb_ctx *sysdb, char *name);

errno_t nis_delete_user_uid(struct sysdb_ctx *sysdb, uid_t uid);

errno_t nis_save_users(struct sss_domain_info *dominfo,

struct sysdb_ctx *sysdb,

ssize_t num,

char **response);

6.3.2 Group

Storing groups is quite similar to users. From NIS server we get line in format of /etc/group:

group_name:password:GID:user_list

Again value is split by colons and store in sysdb. Previous value is deleted.
Only difference here is list of users, this list is parsed and every user is searched in sysdb,

if the user exists, it is marked as member of the group. If the user does not exists, a ghost
user without no attributes is created and it is included in the group.

Again we have a set of function to operate on sysdb.

errno_t nis_save_group(struct sss_domain_info *dominfo,

struct sysdb_ctx *sysdb, char *response);

errno_t nis_delete_group_name(struct sysdb_ctx *sysdb, char *name);

errno_t nis_delete_group_gid(struct sysdb_ctx *sysdb, uid_t uid);

errno_t nis_save_groups(struct sss_domain_info *dominfo,

struct sysdb_ctx *sysdb,

ssize_t num,

char **response);

37

6.3.3 Service

Searching for services is again similar to users and groups. There is just one difference in the
request. When handler gets request for searching service by a port, it also needs its protocol
(usually tcp or upd). Returned values are similar to configuration file /etc/services:

service-name port/protocol [aliases ...]

This line is parsed by spaces and values are stored in sysdb.
Functions to modify sysdb are very simillar to previouse.

errno_t nis_delete_service_name(struct sysdb_ctx *sysdb, char *name);
errno_t nis_delete_service_port(struct sysdb_ctx *sysdb, int port, char *proto);
errno_t nis_save_service(struct sss_domain_info *dominfo,

struct sysdb_ctx *sysdb,
char *response);

errno_t nis_save_services(struct sss_domain_info *dominfo,
struct sysdb_ctx *sysdb,
ssize_t num,
char **response);

6.3.4 Netgroup

Request for netgroup is basically an enumeration of it content (this will be described later).
Because netgroup can contain other netgroups, child process must perform recursive list on
netgroup and all its subgroups. Returned list is set of triples

(host, user, domain)

which is parsed and values are stored to sysdb. If netgroup already exists in sysdb it is
deleted.

Because there are no enumeration requests over netgroup sysdb, we just need only two
functions.

errno_t nis_delete_netgroup(struct sysdb_ctx *sysdb, char *name);
errno_t nis_save_netgroup(struct sss_domain_info *dominfo,

struct sysdb_ctx *sysdb,
char *name,
ssize_t size,
char **response);

38

nis id handler

register callback

register callback

I

I request done

nis read done

I
I ^.- ' ' request done

read_pipe_recv

nis child done nis child recv

n i s i d u s e r d o n e /
n i s i d g r o u p d o n e /

n i s i d n e t g r o u p d o n e /
nis id services done

request done

nis_key_recv /
nis enum recv

nis handler done

Figure 6.2: ID request

39

6.4 Communication with NIS

As mentioned before, when provider wants to get some information from NIS, it needs to
do it asynchronously.

Sending request to NIS database proceeds following steps:

1. Provider prepares packed buffer with request to child.

2. Provider spawns and setups child.

3. Provider send buffered data to child.

4. Child receives data, unpacks them.

5. Child performs request to NIS database.

6. Child checks return of the requests a prepare packed buffer with answer.

7. Child sends data back to provider and ends.

8. Provider reads data and unpack them.

6.4.1 Preparation of the request

Communication with the child process

For more abstract communication with NIS database through child there are two sets of
functions.

• Enumeration

errno_t nis_enum_recv(TALLOC_CTX *mem_ctx,

struct tevent_req *req,

ssize_t *num,

char ***data);

struct tevent_req *nis_enum_send(TALLOC_CTX *mem_ctx,

struct tevent_context *ev,

struct nis_ctx *ctx,

const char *map);

• Key lookup

errno_t nis_key_recv(TALLOC_CTX *mem_ctx,

struct tevent_req *req,

char **data);

struct tevent_req *nis_key_send(TALLOC_CTX *mem_ctx,

struct tevent_context *ev,

struct nis_ctx *ctx,

const char *map,

const char *key);

40

Data packing

After identifying the request from SSSD, the provider must prepare a packed buffer of data,
which will be sent to child.

For this purpose, there are two functions.

static errno_t nis_key_buf(TALLOC_CTX *mem_ctx,

const char *map,

const char *key,

struct io_buffer **io_buf)

This function produces following message:

Action

Length of a map name

Map name

Length of a key

Key

Figure 6.3: Key buffer

static errno_t nis_enum_buf(TALLOC_CTX *mem_ctx,

const char *map,

struct io_buffer **io_buf)

This function produces the following message:

Action

Length of a map name

Map name

Length of a key

Key

Figure 6.4: Enum buffer

nis_enum_buf is used for enumeration requests and nis_key_buf for lookups. Both
function creates align buffer, where first item is action.

41

enum {
NIS_ACTION_NONE = 0,

NIS_ACTI0N_KEY,

NIS_ACTION_ENUM,

NIS_ACTI0N_NETGR0UP

Action is followed by a length of a name of a map, followed by a name of map. In case of
the lookup request, there is appended a length of a key and a key.

6.4.2 Spawning child

Provider spawns a child process in multiple steps:

1. Alocate structures which will store information about a child and a request.

struct nis_child {
pid_t pid;
int read_from_child_fd;
int write_to_child_fd;

} ;

struct nis_child_state {
struct tevent_context *ev;
struct nis_child *child;
ssize_t len;
uint8_t *buf;

} ;

2. Setup a destructor, which will free these structures and clean after child.

3. Create pipes, which will serve for communication with child.

4. Fork new process.

5. In child replace stdin and stdout with pipes, by use dup2 and exec child binary.

6. Setup callback functions for reading from child.

7. Setup timeout for child. This timeout is bigger than user specified timeout and is
used only in the case of unpredictable behavior of child or ypbind.

8. Send buffer to child.

After these steps are done, handler ends and waits for the call of callback function of timeout
or pipe handler.

42

6.5 Child process and queries to NIS

Child process executes following steps:

1. Setup debugging parameters.

2. Get domainname from system by using

int getdomainname(char *name, size_t len);.

3. Read and parse data from input.

4. Determine which action needs to be executed.

5. Perform requested action.

6. Return state and data.

6.5.1 Initialization of child

After child is stated it must setup debugging environment which is configured by SSSD.
Because name of domain is not include in data from master, child will obtain this

information directly from system.
Then child can finally read data which was sent from master and parse them. First an

action is read and by its value child expect map in case of enumerate request or map and
key in case of lookup request or query for net groups.

A l l os these values are stored in child context:

struct nis_child_status {

int action;

char domain[DOMAIN_LEN];

char *map;

char *key;

void *data;

} ;

6.5.2 Query to NIS database

As mentioned child can perform three actions with NIS database.

Key lookup

Key lookup means simply to pass domain, map and key to function yp_match.

Enumer at ion
Enumeration request is performed by calling yp_all. One of the arguments passed to this
function is a callback, which will be called for every key/value in database. This callback
will only save all value to an array.

43

Content of netgroup

Function will ask NIS server for contain of a netgroup thought yp_match, but returned data
is already parsed in child, and triples and subgroups are stored in separated arrays. Then
this function is called recursively for every subgroup. Before each call name of subgroup is
compared to list of already browsed groups to eliminate potential loops. 1

6.5.3 Return of values from child

Every yp_* function can return one of this return codes:

• YPERR_ACCESS - Access violation.

• YPERR_BADARGS - The arguments to the function are bad.

• YPERR_BADDB - The Y P database is bad.

• YPERR_BUSY - The database is busy.

• YPERR_DOMAIN - Cannot bind to server on this domain.

• YPERR.KEY - No such key in map.

• YPERR_MAP - No such map in server's domain.

• YPERR_N0D0M - Local domain name not set.

• YPERR_N0M0RE - No more records in map database.

• YPERR_PMAP - Cannot communicate with rpcbind.

• YPERR_RESRC - Resource allocation failure.

• YPERR_RPC - R P C failure; domain has been unbound.

• YPERR.YPBIND - Cannot communicate with ypbind.

• YPERR.YPERR - Internal Y P server or client error.

YPERR_SUCCESS is interpreted as success. YPERR.KEY means that key was not found.
YPERR_RPC, YPERR_YPERR, YPERR_PMAP,YPERR_YPBINDYPERR_YPSERV and YPERR_BUSY are prob
ably recoverable errors, so we will report that server is temporally down. Other codes mean
fatal error.

x I t seems that ypserv package is not able to handle loops in structure of net groups
https://bugzilla.redhat .com/show_bug.cgi?id=962178.

44

https://bugzilla.redhat.com/show_bug.cgi?id=962178

After the child has requested data, it again creates packed buffer. Return code goes to
first position followed by returned data, which are represented as length of value and value
itself in case of reply to lookup request.

Return code

Length of a value

Value

Figure 6.5: Buffer with reply to lookout request

Or followed by multiple values in case of enum request and lookup in netgroup map.

Return code

Length of a value 1

Value 1

Length of a value 2

Value 2

Length of a value N

Value N

Figure 6.6: Buffer with reply to enum request

45

Chapter 7

Testing

After the provider was created it is necessary to test its functionality.

7.0.4 ID provider

Testing the ID provider is quite simple. After installing SSSD with the NIS provider we
edit /etc/nsswitch. conf and modify following lines.

passwd: sss files

group: sss files

services: sss files

netgroup: sss

And setup /etc/sssd/sssd.conf. For example:

[sssd]

domains = nis

services = nss

config_file_version = 2

[domain/nis]

id_provider = nis

nis_domain = ruenix.cz

nis_server = 192.168.122.1, localhost

nis_broadcast = true

Then we can try to obtain data by using getent command.

7.0.5 Authentication provider

It is not safe to test this provider the same direct way as the ID provider. So for this
purpose I have used utility pamtester.

We create a new pam configuration file, for example /etc/pam.d/sss-test.

auth required pam_env.so

auth sufficient pam_fprintd.so

auth sufficient pam_unix.so nullok try_first_pass

auth sufficient pam_sss.so use_first_pass

46

http://ruenix.cz

auth requisite

required

pam_succeed_if.so uid >= 1000 quiet_success

pam_deny.so auth

Then we configure sssd to also process pam requests,

[sssd]

domains = nis

services = nss,pam

config_file_version = 2

[domain/nis]

id_provider = nis

auth_provider = nis

nis_domain = ruenix.cz

nis_server = 192.168.122.1, localhost

nis_broadcast = true

enumerate = true

Now we can test the authentication provider by calling pamtester sss-test user operation.

47

http://ruenix.cz

Chapter 8

Conclusion

Despite the fact that NIS belongs more or less between outdated technologies and in most
ways it can be replaced by L D A P , there are still networks which are using NIS and due to
easy setup NIS can still find new users.

Designed provider should cover all possible demands for identification and authorization.
Additionally it offers possibility to cache credentials in the SSSD cache, which will be a huge
benefit in networks where NIS is used and users have laptops which sometimes disconnect
from a network. Moreover provider has a very simple configuration.

There are two main areas, where this project can be enhanced. Biggest weakness of this
provider is limitation to SHA512 hashing function for passwords. This could be solved by
using a crypto library or implementing other hash function to SSSD.

Second area for improvement is to add a possibility to cache other maps then user,
group, services and netgroup, for example hosts.

48

Bibliography

[1] Ldap concepts & overview, http://www.zytrax.com/books/ldap/ch2/, 2011.

[2] Sssd - system security services daemon, ht tps: / / fedorahosted.org /sssd/ , 2011.

[3] group(5) - linux man page. http://linux.die.net/man/5Zgroup, 2013.

[4] netgroup(5) - linux man page. http://linux.die.net/man/5Znetgroup, 2013.

[5] passwd(5) - linux man page. http:ZZlinux.die.netZmanZ5Zpasswd, 2013.

[6] services(5) - linux man page. http:ZZlinux.die.netZmanZ5Zservices, 2013.

[7] ypclnt(3) - bsd library functions manual.
http:ZZwww.manpagez.comZmanZ3ZypclntZ, 2013.

[8] K . Benák. Použití adresářových služeb v informačních systémech. Master's thesis,
české vysoké učení technické v Praze, 2004.

[9] S. Graham, S. Shah, and J . Hynek. Administrace systému Linux: podrobný průvodce
začínajícího administrátora. Grada Publishing, 2003.

[10] R . J . Hontaňón and H . L . Roubíček. Linux - praktická bezpečnost. Grada Publishing,
2003.

[11] J . Hradílek, D. Silas, M . Prpič, E . Kopalová, E . Slobodová, J . Ha, D. O'Brien,
M . Hideo, and D. Domingo. Fedora 15 deployment guide. ht tp:ZZdocs.
fedoraproj ect.orgZ en-USZFedoraZ15ZhtmlZDeployment_GuideZ index.html,
2011.

[12] J . Hrozek. Freeipa a sssd - pokročilá správa uživatelů v linuxu.
http:ZZjhrozek.fedorapeople.orgZsssd .pdf, 2010.

[13] T. Kukuk. The linux nis(yp)/nys/nis+ howto.
http:ZZwww.tldp.orgZH0WT0ZNIS-H0WT0Zindex.html, June 2003.

[14] Sun Microsystems. System administration guide: Naming and directory services
(dns, nis, and ldap).
http:ZZdocs .oracle.comZcdZE19683-0lZ817-4843Zindex.html, 2004.

[15] I . B . M . Redbooks. LBM E Server Certification Study Guide-ALX 5L Communications.
Vervante, 2004.

[16] H . Stern, M . Eisler, and R. Labiaga. Managing NFS and NLS. A nutshell handbook.
O'Reilly & Associates, 2001.

49

http://www.zytrax.com/books/ldap/ch2/
https://fedorahosted.org/sssd/
http://linux.die.net/man/5Zgroup
http://linux.die.net/man/5Znetgroup
http://www.manpagez.comZmanZ3ZypclntZ
http:ZZwww.tldp.orgZH0WT0ZNIS-H0WT0Zindex.html

