
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

TVORBA SPOLEHLIVOSTNICH MODELU PRO PO­
KROČILÉ DIGITÁLNÍ SYSTÉMY

BAKALÁRSKA PRACE
BACHELOR'S THESIS

AUTOR PRÁCE MARIO WANKA
AUTHOR

BRNO 2015

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ
FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

TVORBA SPOLEHLIVOSTNÍCH MODELŮ PRO PO­
KROČILÉ DIGITÁLNÍ SYSTÉMY
CONSTRUCTION OF RELIABILITY MODELS FOR ADVANCED DIGITAL SYSTEMS

BAKALÁŘSKÁ PRÁCE
BACHELOR'S THESIS

AUTOR PRÁCE MARIO WANKA
AUTHOR

VEDOUCÍ PRÁCE Ing. JAN KAŠTIL
SUPERVISOR

BRNO 2015

Abstrakt
Cílem t é t o p r á c e je simulovat v l iv spolehlivosti o b v o d ů detekuj íc ích chybu u komponent po­
kroči lých d ig i tá ln ích s y s t é m ů . P r v n ě je def inována spolehlivost a sku t ečnos t i s ní související
a jsou p ř e d s t a v e n y Markovské modely. T y t o jsou využ i ty pro s a m o t n ý s imulá to r , k t e r ý je
p ř e d s t a v e n ý v následuj íc í kapitole. J e d n á se o ad-hoc řešení a použ i t í tohoto s i m u l á t o r u
je de t a i l ně p o p s á n o . S te jně tak je p o p s á n o jeho chování v p r u ž n ý c h s i tuac ích a s r ů z n o u
konfigurací . N a závěr jsou u k á z á n y a d i s k u t o v á n y výs ledky e x p e r i m e n t ů se spolehl ivost í
o b v o d ů detekuj íc ích chybu pro r ů z n é modely. Dle výs ledků p r á c e je z ře jmé, že z á s a d n í m
faktorem pro za j i š tění spolehlivosti s y s t é m u je k r á t k o d o b é maskován í chyby a d l o u h o d o b é
udržen í opravovatelnosti.

Abstract
The goal of this thesis is to simulate the impact of rel iabi l i ty of circuits designed to detect
failures in components of advanced digi ta l systems. A t first the rel iabi l i ty and terms related
are defined and Markov models are i troduced. These are used as logic for simulator, which
is introduced i n next chapter. This simulator is an ad-hoc solution and it 's usage is thoughly
described, as well as it 's bahviour in various situations and configurations. In the end the
results of experiments wi th rel iabi l i ty of circuits designed to detect failures for multiple
models are shown and discussed. B y the results of this thesis it is obvious, that the crut ia l
factor for system's rel iabil i ty ensurance is failure disguis i n short-term view and repairing
abil i ty i n long-term view.

Klíčová slova
Spolehlivost, M a r k o v s k ý model, S y s t é m y za t í žené chybou, S tochas t i cký s imulačn í algorit­
mus, P r a v d ě p o d o b n o s t bezpo ruchového provozu

Keywords
Reliabi l i ty, M a r k o v model, systems wi th faults, Stochastic Simulat ion A lgo r i t hm, Probabi ­
l i ty of failure-free service

Citace
M a r i o Wanka: Tvorba spoleh l ivos tn ích m o d e l ů pro pokroč i lé d ig i tá ln í sys témy, b a k a l á ř s k á
p ráce , Brno , F I T V U T v B r n ě , 2015

Tvorba spolehlivostních modelů pro pokročilé digi­
tální systémy

Prohlášení
Proh lašu j i , že jsem tuto b a k a l á ř s k o u p rác i vypracoval s a m o s t a t n ě pod v e d e n í m pana Ing.
Jana Kaš t i l a . U v e d l jsem všechny l i t e rá rn í prameny a publikace, ze k t e r ý c h jsem čerpal .

Mar io W a n k a
18. k v ě t n a 2015

Poděkování
Děkuji vedouc ímu své p r á c e za jeho t rpě l ivos t , ochotu se kterou p ř i s t u p o v a l ke k o n z u l t a c í m
a celkový z á j e m o prác i .

© M a r i o Wanka , 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté informa­
čních technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění
autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 2

2 Reliability and it's models 3
2.1 Rel iab i l i ty 3

2.1.1 Basic terms 3
2.1.2 Rel iab i l i ty indicators 4
2.1.3 Ways to achieve system's rel iabil i ty 4

2.2 Markov models 4

3 Model implementation 6
3.1 Used technologies 6
3.2 Definit ion of input x m l file 6

3.2.1 Archi tecture 7
3.2.2 Correctness 7
3.2.3 Repair rules 8
3.2.4 Imunity 10
3.2.5 Computa t ion 10

3.3 The mat r ix of t ransi t ion probabilities 11
3.4 Simulat ion methods 12

3.4.1 Numeric 12
3.4.2 Stochastic s imulat ion algori thm 12

3.5 Simulat ion process 13
3.5.1 Simulator usage 13
3.5.2 M o d e l preparation 13
3.5.3 Simulat ion run 13

4 Simulation results 15
4.1 Execut ion durations 15

4.1.1 M a t r i x generation durat ion 15
4.1.2 Impact of model size and simulation length 16
4.1.3 Impact of various t ime units on simulat ion 18
4.1.4 Impact of model behaviour on simulat ion length 20

4.2 Difference between numerical and ssa methods 21
4.3 Influence of component rel iabil i ty 22

5 Conclusion 26

1

Chapter 1

Introduction

The question of rel iabi l i ty is a crucial aspect of any system i n existence. Even a - in theory -
flawlessly designed system is no use when we cannot rely on results which may be corrupted
by faults of components. So what are the ways to achieve rel iabil i ty and what is the cost of
it? Possible approach is to use redundancy. B u t w i th three, five, etc. times more components,
the price of such system w i l l rise the same way. Another problem is to find out how strong
redundancy is enough, especially considering systems running for years long. Th is is an
ideal case for s imulat ion to take place.

The most precise way to measure rel iabil i ty is, of course, on the operational system.
This is no problem wi th cheap systems whose failure causes no difficulties. B u t sending
hundreds shuttles w i t h different equipment to space and test which holds for longer t ime or
create different systems for some medical equipment on which life of patients depends and
test which w i l l not break is unthinkable. Devices on which life or health of people depends
or which damage w i l l be extremly expensive must be reliable and this rel iabil i ty must be
somehow proven.

A good way to prove rel iabi l i ty is to use computer simulations. Its advantages are
safety (no crashed shuttles or dead patients), price (huttles again, car crash tests, etc.),
speed (atom colision stretched to a minute or forrest growth pushed down to a minute)
and possibil i ty to observe things we cannot i n real (crash of galaxies). The disadvantage of
s imulat in is, above al l , the problem wi th model validity. Other disadvantages might be the
price of model creation, requirements on performance or inaccuracy of numerical solution.
A l l these factors are discussed i n [].

In case of advanced digi ta l systems which are the topic of this thesis the Marcov models
are the op t imal simulation system for solving given problem. A s described in [10] a Markov
model is a stochastic system used to model randomly changing systems as a Moore machine
[3], meaning the next state is dependant only on the present state, not on the past progress.
A s we need fully observable and autonomous system, the Markov chains, described i n [[]
are used.

Rel iab i l i ty simulation, computed and measured in this thesis, is based on [] Jan Trav-
nicek's d ip loma thesis who implemented the proof of concept for this simulator and discussed
the advanced digi ta l system simulation i n general. M y thesis contains brand-new implemen­
tat ion of simulator w i th slightly extended interface dicussing behaviour of the simulator in
various conditions and the impact of part icular components results reliability. Above al l ,
the rel iabi l i ty of fault checkers i n functional units.

2

Chapter 2

Reliability and it's models

In general, rel iabil i ty is an attr ibute of any system describing probabil i ty of success in
system's actions. It may be denned as 1 - probab i l i ty of f a i lure . In common sense
you can say that rel iabil i ty means how long keeps the system working and/or how often is
it (un)broken. However, this is not very accurate and . . . reliable.

2.1 Reliability

• In research, the term rel iabi l i ty means repeatability or consistency. A measure is
considered reliable i f it would give us the same result over and over again (assuming
that what we are measuring isn't changing!) [16].

• General attribute of object based on abil i ty to perform requested functions wi th values
preserved i n defined technical conditions [].

It is crut ia l to define what rel iabi l i ty really is and what values we need to observe before
we start s imulat ing and measuring.

2.1.1 Basic terms

B y [5], the incorrect states of system are fault , f a i l u r e and error. Fault means any sys­
tem malfunction causing the system to perform in an unintended or unanticipated manner.
Th is foul behaviour might be treated i n the system (ie. w i th redundancy of components)
so nothing w i l l happen. In other case may this behaviour be innoticeeable or, w i th speci­
fic conditions met, cause f a i lure . Fa i lure is the inabi l i ty of system to perform required
functions wi th in specified performance requirements. Such behaviour may lead to an error
which is a discrepancy between expected and real value, state or behaviour of system.

In s imulat ion we w i l l consider two states of system f a i l u r e - f r e e where system is
running as supposed to and f a i l i n g where failure occured and the results are incorrect.
A l l failures wi th in this model are permanent and last un t i l broken component is repaired.
Systems wi th possibil i ty to repair their components are called renewable which w i l l be
the most of systems simulated. Systems without abi l i ty to repair their components are
unrenewable [6].

3

2.1.2 Reliability indicators

Basica l indicator of rel iabil i ty is the probabil i ty of failure-free run R(t). Complementary
value of probabil i ty of failure-free run is the probabil i ty of systems failure which defines the
interval between system launch and any first occured failure. Rela t ion between these two
values can be defined as

R(t) = 1 - Q(t) (2.1)

A s described in [] the two fundamental indicators of rel iabil i ty are Mean Time Between
Fai lures - MTBF and Mean Time To Repair - MTTR. W i t h constant failure rate A defined
as the amount of failures per hour can MTBF be described as

Tf = \ (2.2)

Analogica l ly w i th fi defined as the amount of repairs per hour MTTR is defined as

Tr = - (2.3)

2.1.3 Ways to achieve system's reliability

Apparent ly it 's required to achieve the highest rel iabil i ty possible wi th , of course, the lowest
price possible. The straight way of increasing the rel iabi l i ty is for each component to lower
A - the noumber of failures i n t ime. B y lowering A a l l other attributes are improved but
the price of this process might be very high and there w i l l always be some possibil i ty of
failure. This process is called Fault avoidance. It means using techniques and procedures
which a im to avoid the introduct ion of faults dur ing any phase of the safety lifecycle of the
safety-related system [5].

Other way to manage foul behaviour is to expect faults and handle them. System wi th
redundat m of n components (where m components from n must work) is able to hide up to
n — m component failures and work correctly. This is called Fault tolerance - the abi l i ty
of a unit to continue to perform a required function in the presence of faults [5]. Other
abilities of fault-tolerant systems are fault detections and fault recovery.

2.2 Markov models

W i t h need of fully observable and autonomous system the Markov process(/chain) as the
specific model must be used. A s described i n [2] a Markov process is a stochastic process
whose behavior depends only upon the current state of the system. The part icular sequence
of steps by which the system entered the current state is irrelevant to it 's future behavior.
Markov state-space models have four main categories:

• Discrete space and discrete time

• Discrete space and continuous time

• Continuous space and discrete t ime

• Continuous space and continuous time

4

W i t h two possible states of system - working or broken and t ime steps denned by
real numers the second category - discrete space and continuous t ime w i l l be used. A
model is defined by a set of states and a vector of transitions for each state which is
opt imal to represent as mat r ix of t ransi t ion probabilit ies. A vector of transitions consists of
probabilities for t ransi t ion from given state to any other. W i t h set of states it is necessary
to define which states are broken and which are correct.

5

Chapter 3

Model implementation

To measure the impact of rel iabil i ty of checking components on the complete system's
rel iabil i ty we need a simulator to run a Markov model . Such simulator is a part of this thesis
and can be found on attached C D . The implementat ion is based on [15] preserving backward
compat ibi l i ty on program's interface and keeping pseudo-codes of both simulat ion methods
and arcitecture of a program on high level of abstraction. Simulations were executed on pc
wi th Intel Core i5-3470 C P U @ 3.20GHz, 16 G B R A M under x64 W i n 8.1.

3.1 Used technologies

W i t h need of minimal is t ic command line interface, high performance, sophisticated mathe­
mat ical methods and mult i -platform support Python [11] as programming language was
the choice, specifically Python 2.7.x. App l i ca t i on is wri t ten by OOP paradigm and for
more complex mathematical operations uses the NumPy l ibrary []. For model definition the
Extensible M a r k u p Language - XML [12] is used. This choice was done on the former design
and was preserved to keep the backward compat ibi l i ty w i th existing models.

W i t h mult iple data on output of simulator, mostly sets of noumbers, their visualisation
is required. F i rs t type of data is the dot graph drawed by Graphviz []. Dot graph represents
states and transitions of matr ix of t ransi t ion probabilities described i n 3.3. Second data type
on the output is the s imulat ion result. This is a set of pairs giving the t ime and reliability.
To plot these values Gnuplot was used.

3.2 Definition of input xml file

A s mentioned i n 3.5.1, the first parameter of application is path to x m l input file. Th is file
is expected to be i n standatd x m l [12] format and must contain data defined i n this section.
Namely elements architecture, correctness, repairRules, imunity and computation.
A s requierd by xml standard, on first level contains the input file single root element which
contains elements mentioned above as subelements. A n y other data than these five sections
and their content are ignored. D a t a format is based on Jan Travnicek's d ip loma thesis [?]
which is based on work from CSE '2012 conference []. The accuracy of s imulat ion results
is str ightly dependant on values of a l l components. It is, however, not easy and sometimes
impossible to gain them as mentioned i n [].

6

3.2.1 Architecture

This section as it 's name suggests describes components of model . Element architecture
contains set of component-types each defined in component element. Th is element has
two attributes, name and count. The name at tr ibute defines type of modelated component
and the count attribute gives amount of these components i n system. It is convenient to
give names so that each component begins wi th a unique letter. Th is has no impact on
functionality of simulator. Graphviz uses first letters of components to bu i ld name for
state i n graph of transi t ion probabilities (state name consists of first letters of names of
components and count of working components of given type in state).

In comparisom wi th the original structure each component element has three subele-
ments - lambda, mu and r e l . A l l three elements contain single decimal value (given in
decimal or exponential form). Lambda value is as previously defined A, constant failure rate
of given component meaning noumber of failures per hour. Mu value is as previously defined
\i constant repair rate of given component meaning noumber of repairs per hour possible.
Last , new, value r e l defines rel iabil i ty of checkers inside unit . Default r e l value expected
is 1 when lowered for any component it means that checker may fail to find out that this
component is broken by given probabili ty. Probabi l i ty of correct behaviour of whole system
is always lowered by lowered value of checker's reliability.

Complete architecture definition can be seen in 3.1. M o d e l shown defines simple N M R
system wi th five redundant functional units FU, single mult iplexor MUX (used to aggregate
results of functional units) and single repairing unit GPDRC.

A l g o r i t h m 3.1: Example of architecture definition

< a r c h i t e c t u r e >
< c o m p o n e n t name="FU" c o u n t — ' 5 " >

< l a m b d a > 3.358e—6 < / l a m b d a >
<mu> 9 . 9 7 7 e - 5 </mu>
< r e l > 1 < / r e l >

< / c o m p o n e n t
< c o m p o n e n t name="MUX" c o u n t = " l " >

< l a m b d a > 0 . 0 0 0 0 0 0 1 5 < / l a m b d a >
<mu> 0 . 0 0 0 0 9 9 9 </mu>
< r e l > 1 < / r e l >

< / c o m p o n e n t
< c o m p o n e n t name="GPDRC" c o u n t = " l " >

< l a m b d a > 7 . 3 8 8 e - 7 < / l a m b d a >
<mu> 9.9e—5 </mu>
< r e l > 0 .8 < / r e l >

< / c o m p o n e n t
< / a r c h i t e c t u r e >

3.2.2 Correctness

Section correctness defines set of states considered correct by the definition of the model.
Th is means that a state is correct when sufficient amount of components works correctly.
Element correctness contains set of subelements correct where each of these subelemets
defines single min ima l correct state. M i n i m a l means, for example, that when correct defines
three of five functional units are needed for system to work correctly the simulator takes a l l

7

five, four and three working units as correct state. This feature is implemented to save work
wi th creating model so it 's not necessary to write down al l states expl ic i t ly (it is assumed
that the system cannot be broken wi th more components correctly running while running
correctly w i th fewer correctly running components).

Each correct element contains a set of component subelements each defining the
amount of components of given type required for that state to be correct. Component
element contains two attributes - name and count. The name attribute gives a name of
a component type previously defined i n architecture, the count attribute gives the min i ­
mal amount of components needed for that state to be correct as described above. Values
recieved from correctness section are checked by comparism to architecture - states
defined as correct must exist i n model's architecture (it is not possibe to define components
that does not exist or higher amount of components as correct then the model contains).

O n example 3.2 is shown a possible definition of correctness for previous example of
N M R system. System is correct when mult iplexor MUX and three or more functional units
FU are forrect. It would be possible to write down other two states w i t h four and five correct
FU's but as explained above these records are redundant and would make no difference on
the model definition.

A l g o r i t h m 3.2: Example of correctness definition

< c o r r e c t n e s s >
< c o r r e c t >

< c o m p o n e n t name="MUX" c o u n t = " l " / >
< c o m p o n e n t name="FU" c o u n t — ' 3" / >

< / c o r r e c t >
< / c o r r e c t n e s s >

3.2.3 Repair rules

This section defines rules by which may the simulator generate repairing transitions. X m l
element for repair rules-section is namedrepairRules. It's content consists of a set of
component elements and a single priorRules element. Each component element conta­
ins two attributes - name and count. The name attribute defines component-type from
architecture needed for system to make repairs and the count at tr ibute defines the amount
of these component's needed to work. W i t h no component given the system needs no exact
component to repair other components. Th is can mean that, for example, repairing compo­
nent is outside of the modelated system. O n the other hand wi th component count higher
than count defined i n architecture there w i l l never be enough repairing components
working and no repairs w i l l be done. B o t h these extremes are correct.

The priorRules element contains non-empty set of rules (always at least one) by which
a single component may be picked to be repared i n each state of system. W i t h fully defined
rules there is always a deterministic way to find the component to be repaired. O n the other
hand in case when more components have for given state the same prior i ty one of them w i l l
be picked by pseudo-random decision. Important is that at any t ime none or one component
may be repared (or broken - up to sigle action i n one t ime point) . Single rule is defined
by pr ior i tyRule element w i th attr ibute value. Th is value is an integer giving pr ior i ty of
rule where rules w i th higher pr ior i ty w i l l be considered first. W h e n more rules have same
value of pr ior i ty their order is undefined and a pseudo-random decision is used to pick
one of them first. It is appropriate that the rule w i th lowest pr ior i ty has unique value and

8

no required component denned because this rule is used as default rule w i t h no needed
componets running i n situations when no other suitable rule can be found. Pr ior i tyRule
element contains two sets of subelements. The first set consists of component elements and
the second of p r i o r i t y V a l elements.

Element component contains two attributes - name and count. The name attribute gives
the name components type the count attribute the exact amount of given component-
type units needed to be correctly working for applying rule that is being processed. This
means that a rule is picked when al l components mentioned have exactly that amount of
working units as defined i n the rule. The second element type p r i o r i t y V a l is used to
define pr ior i ty of components wi th in given rule. P r i o r i t y V a l has single attribute - name
which defines name of components type. W i t h i n p r i o r i t y V a l is a single integer number
defining pr ior i ty for given component. Th is pr ior i ty defines order i n which components w i l l
be picked for repair. F i r s t suitable component found w i l l be picked. Non-unique component-
priori ty values are processed the same way as non-unique rule-priority values this means
that from components w i th the same prior i ty one w i l l be picked pseudo-randomly. Na tura l ly
the name at tr ibute is checked for being defined i n architecture i n both component and
p r i o r i t y V a l .

It is not possible to gain more components then defined in architecture by repair. Rule
defining such action is correct and w i l l be processed, however never picked so it is pointless
to set such rule. Apropr ia te definition of repairing rules is c ru t ia l for system's reliabil ty
and necessary for expected system's behaviour. For example 3.3 is shown a possible way
to define reraire rules for previously defined system. W h e n some FU is broken, one of the
explicit rules is picked. The same behaviour would be achieved wi th defining rule for every
state wi th any broken component or just the last basic rule. This would define pr ior i ty of
each component and say to repair anything broken in given order.

A l g o r i t h m 3.3: Example of repair rules definition

< r e p a i r R u l e s >
< c o m p o n e n t name="GPDRC" c o u n t = " l " / >
< p r i o r R u l e s >

< p r i o r i t y R u l e v a l u e = " 5 " >
< c o m p o n e n t name="FU" c o u n t = " l " / >
< c o m p o n e n t name="MUX" c o u n t = " l " / >
< p r i o r i t y V a l n a m e = " F U " > l < / p r i o r i t y V a l >

< / p r i o r i t y R u l e >
< p r i o r i t y R u l e v a l u e = " 4 " >

< c o m p o n e n t name="FU" c o u n t = " 2 " / >
< c o m p o n e n t name="MUX" c o u n t = " l " / >
< p r i o r i t y V a l n a m e = " F U " > l < / p r i o r i t y V a l >

< / p r i o r i t y R u l e >
< p r i o r i t y R u l e v a l u e = " 3 " >

< c o m p o n e n t name="FU" c o u n t = " 3 " / >
< c o m p o n e n t name="MUX" c o u n t = " l " / >
< p r i o r i t y V a l n a m e = " F U " > l < / p r i o r i t y V a l >

< / p r i o r i t y R u l e >
< p r i o r i t y R u l e v a l u e = " 2 " >

< c o m p o n e n t name="FU" c o u n t = " 4 " / >
< c o m p o n e n t name="MUX" c o u n t = " ! " / >

9

< p r i o r i t y V a l n a m e = " F U " > l < / p r i o r i t y V a l >
< / p r i o r i t y R u l e >
< p r i o r i t y R u l e v a l u e = " l " >

< p r i o r i t y V a l name="MUX">2</ p r i o r i t y V a l >
< p r i o r i t y V a l n a m e = " F U " > l < / p r i o r i t y V a l >

< / p r i o r i t y R u l e >
< / p r i o r R u l e s >

< / r e p a i r R u l e s >

3.2.4 Imunity

Imunity section defines components that cannot be broken. This means that a l l compo­
nents listed w i l l always work correctly and system wi th a l l units imune w i l l be abolutely
reliable. Element imunity contains set of component subelements. Component element con­
tains two attributes - name and count. The name at tr ibute defines components-type name
from architecture and the count at tr ibute the amount of units of given type that w i l l be
unbreakable during simulat ion. For model w i th no imune components the section imunity
is left empty.

For example 3.4 the definition of imunity is shown. Namely unbreakable repairing unit
GPDRC.

A l g o r i t h m 3.4: Example of imuni ty definition

< i m u n i t y >
< c o m p o n e n t name="GPDRC" c o u n t = " l " / >

< / i m u n i t y >

3.2.5 Computation

This last section gives informations for s imulat ion run. Element computation contains two
subelements - time and samples both containing a single integer value. The value of time
attribute defines s imulat ion length by setting the number of t ime points computed. It is
important to use the same time unit for computing A and \x values for a l l components. In
examle 3.5 the miliseconds are used. In next chapter w i l l be shown the impact of various
units and differences i n simulations.

The second subelement of computation - samples - gives the amount of output values
stored i n the output file. The amount of samples must be lower than the length of simulation
defined i n time. It is impossible to output more values than the simulator counts. The length
of s imulat ion and the number of samples combined gives the length of single simulation step.
The length of one step is equal to divis ion of t ime by noumber of samples. For this time
the simulator runs and counts and when it hits the end of step the overall probabil i ty of
system's correctness is wri t ten down. For example 3.5 are fourty mi l ion milliseconds given
divided into houndred steps. W i t h these settings simulator w i l l count approximately eleven
hours of s imulat ion t ime w i t h one step taking approximately 6.66 minutes.

A l g o r i t h m 3.5: Example of computat ion definition

< c o m p u t a t i o n >
< t i m e > 4 0 0 0 0 0 0 0 < / t i m e >
< s a m p l e s > 1 0 0 < / s a m p l e s >

< / c o m p u t a t i o n >

10

3.3 The matrix of transition probabilities

After reading and parsing a l l input data the matr ix of t ransi t ion probabilit ies must be
created. This mat r ix contains probabilit ies of transitions to other states for each state and
is used by both numerical and ssa algori thm. To generate such mat r ix the set of a l l states
possible must exit.

Generating statespace is done wi th modified depth first search algori thm [17]. W i t h
complete architecture on stack as in i t i a l state the top state is popped and expanded to stack
by decresing the amount of each unit per newly expanded state. To prevent redundancy in
generated states when a new state is picked from the top of the stack a human-readable
hash is generated and saved. W h e n expandinding new states their hashes are compared to
the set of existing hashes and new states, that are duplici t , are ignored. Processed state
after giving a l l chi ld states is appended to list which stands for the final statespace. This
list of states is immutable and posit ion of state is used as it 's index. The first state contains
no broken unit and a l l the other states are expanded form this one. Compared to standard
depth first search algori thm we need to find a l l possible states so the algori thm is not
stopped unt i l there is any element on the stack.

W i t h statespace as a vector of states the mat r ix of t ransi t ion probabilit ies is a carte­
sian product computed as this vector squared. T h a n for every row representing a state a l l
possible transitions are generated. F i rs t is t r ied to break each component and i f this action
leads to a legal state the probabil i ty of t ransi t ion 3.1 is wr i t ten into a row on posit ion
of generated state. After generating a l l breaking-transitions single transi t ion for repair is
chosen i f given state is repairable. For such state the repairing rules are walked through in
order of their pr ior i ty and by the first suitable a component is chosen to be repaired. This is
done by wr i t ing fi value of component being repaired on row's index of state wi th repaired
component.

transjprobability = \Component.broken * numjofjworkingjcompsJbeforeJbreaking (3.1)

The size of matr ix is equal to the square of statespace state which grows exponentially
wi th the amount of components w i th most cells equal to zero (because there is a transaction

11

only to adjectant states). W i t h such mat r ix it becomes hard to work after having more than
a few states. To provide a way to read the mat r ix more easily it may be shown as a graph of
states and transactions between them. Such graph contains the amount of states equal or
less the the statespace (units imune that wont break w i l l preserve the generation of doubled
amout of states). The graph of transaction probabilities for model of N M R system defined
above can be seen i n 3.1. A state is defined by first letters of names of component type
and amount of these components working. A state where the system is working correctly
is dwawn as circle on the other hand the state where system is broken is drawn as square.
Arrows between states show transitions wi th probabil i ty of given transi t ion above.

Language used to describe transi t ion graph is dot []. After computing the matr ix of
transaction probabilit ies a .dot file describing this is automatical ly generated and stored
as path_of_output.dot next to s imulat ion output file. Before the s imulat ion is started the
simulator calls system's u t i l i ty to translate dot to pdf. If dot command is not present or
cannot be executed, warning is raised and simulator continues to begin the simulation.

3.4 Simulation methods

For s imulat ion computat ion there are two implemented methods. In theory, bo th of them
give the same results what, however requiers correct model setting. B o t h methods, their
advantages and disadvateges, w i l l be described i n this section.

3.4.1 Numeric

The numeric method for solving Markov model is based on periodical mat r ix mul t ip l ica t ion.
For every t ime point the mat r ix of t ransi t ion probabilities is mul t ip l ied wi th row vector.
Each value i n vector gives probabil i ty for model to be found i n that state. Sum of a l l
values i n vector meaning sum of a l l t ransi t ion probabilities is always equal to one. Sum of
probabilities of a l l states defined as correct equals the probabil i ty of system's failure-free
run as defined in 2.1.2. Th is value is the desired result of simulation.

Before computat ion the vector must be init ializet to single state by setting the proba­
bi l i ty of model to be found in this state to one. B y default the simulation begins i n fully
working state but this may be changed. After this in i t ia l iza t ion the s imulat ion starts loo­
ping mul t ip ly ing actual vector w i t h matr ix i n every step. The result of such mul t ip l ica t ion
is a new vector for t ime t + 1, used i n next i teration. W h e n sample t ime is reached the
probabil i ty of system's failure-free run is counted and wri t ten into results.

3.4.2 Stochastic simulation algorithm

The basical principle of ssa is to l i teral ly simulate behaviour of given system. This is done
by randomly switching to next state after random time both by probabilities given by
the mat r ix of t ransi t ion probabilit ies. Single run of s imulat ion is single experiment w i th
Markov chain wi th continuous time. Result of such experiment is information that system
is i n given t ime whether working correctly or not. Th is information is recorded i n the end
of each simulat ion step as well as in the numeric method. To gain requested probabil i ty
it is necessary to repeat this cumputat ion. After sufficient amount of repetitions the final
probabil i ty of system's failure-free run per t ime is counted as ar i thmetical mean of values
for given time.

12

It is a l i t t le bit t r icky to obtain the sufficient value of repetit ion. W i t h the number of
repetitions R is the relative error E of s imulat ion described i n 3.2. O n this relation can be
seen that to increase the result accuracy by ten t ime it is necessary to repeat the s imulat ion
hundred more times [].

3.5 Simulation process

W i t h a l l fundamental theoretical parts of s imulat ion described it is t ime to describe the
complete run of s imulat ion script in more pract ical way.

3.5.1 Simulator usage

A s mentioned before the applicat ion is used v i a command line. The file to execute is main.py
which calls a l l other modules. Expected parameters are: path to input x m l file (described
earlier), pa th of output file to be generated and the name of s imulat ion method (numeric,
ssa), for ssa method the number of iterations as required parameter and number of paralel
processes as opt ional parametr (default is one and paralelism is not implemented yet but
interface is prepared fot thes option).

Simulat ion output is simple text file w i t h values showing probabi l i ty of failure-free run of
system in t ime. Amoun t of values is given i n input x m l by samples. Format of a sample (row)
is one integer number showing simulation t ime and decimal number showing probabil i ty
of systems's failure free run for given time. These two numbers are separated wi th space
and ended w i t h new-line. Second possible output is a graph showing transitions between
states representing mat r ix of t ransi t ion probabilit ies. Th is graph, however, is generated for
small-enought amount of states only. The l imi t of states for graph generation is set to 128.

3.5.2 Model preparation

After params parsing wi th Params class from inout .py module, the input data are loaded.
A l l informations are obtained from X M L file described above and then parsed into internal
representation. This is done i n class Data from inpout.py module which has methods to
parse input X M L and stores gained data in diets and tuples as data-object's attributes.

The next step is matr ix creation. This is done by making an instance of Matrix from
module matrix.py. The object's in i t ia l iza t ion takes care of a l l necessary actions as state-
space generation and matr ix creation. In addit ion matrix object contains a l l supportive
methods for any action related to matr ix . W i t h params read, data parsed and mat r ix pre­
pared, the last step before s imulat ion is to create Simulator object from simulator.py
module. Simulator class wraps s imulat ion computat ion which is started wi th method run.

3.5.3 Simulation run

W h e n simulat ion is run Simulator picks chosen method and aggregates results recieved
wr i t ing them into output file.

W h e n Numer ic method is chosen then, as described in 3.4.1, row vector set to in i t i a l
state is created. The main simulat ion loop beginns cycl ing over s imulat ion steps. E a c h step
is a nested while loop cycl ing over each t ime point computing one mat r ix computat ion wi th

13

numpy. dot method. After finishing nested loop, an actual probabil i ty of system's failure-free
run is computed and saved as sample into result diet.

Computa t ion of ssa method is significantlymore complicated. A t first the lambda-vector
is created. B y original a lgori thm are these values supposed to be computated during simu­
lat ion. W i t h opt imal izat ion described i n [] these values are pre-computed. Whole simu­
lat ion is being repeated i n wrapping for cycle that many time set i n input parameter. The
simulation itself runs i n a while cycle to the end of s imulat ion t ime. A l g o r i t h m skips time
points where nothing happens and resolves actions of component breaking and repair and
records probabil i ty of system's failure-free run after t ime of one simulat ion step. To skip
simulation of system which is definitly broken the simulator writes default zero value from
such moment on.

14

Chapter 4

Simulation results

W i t h model defined and working it is t ime to proceed to s imulat ion itself and description
of experiments done. Upcoming chapter is supposed to be the core of this thesis. F i r s t some
statistic about program execution w i l l be mentioned like the length of script run or impact
s imulat ion t ime on simulation methods. Another topic to be discussed is the difference
between both simulat ion methods impact of model size and simulation length and accuracy
of their results. After making al l these variabilit ies clear it is possible to start experimenting
wi th component's reliability. For a l l graphs showing rel iabi l i ty of system both simulat ion
methods were used. The numerical results are always drawn wi th simple line, the ssa results
w i th points.

4.1 Execution durations

The first, pract ical issue for any simulat ion is indeed the length of s imulat ion run. To
measure t ime wi th in the script a standard python module p r o f i l e was used. In simulation
there are two significant parts that may take noticeable t ime and it is possible to measure
them separately. Generat ion of statespace and mat r ix of t ransi t ion probabilities, dependant
on the amount of components, is the first one. The second is the s imulat ion itself which is
more tricky. Even not considering the fact of having two methods the s imulat ion itself is
dependant on size of the model and it 's length which adds another dimension into results.

4.1.1 Matrix generation duration

A s mentioned above the execution t ime of mat r ix generation is directly dependant on nou-
mber of components. In graph 4.1 is shown the dependancy of t ime in seconds on noumber
of components. The t ime needed for matr ix generation is r ising exponetialy, however the
absolute value of t ime grows to one minute for biggest models computable on machine
mentioned in 3. The capabilities of machine allow the model to l imi t l y grow to one hundred
thousand states. Tha t is mul t ip ly more than the simulator is able to compute. The t ime of
practically used models is between fractions of second and single seconds and so it is not
necessary to observe this anymore.

15

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Noumber of components in model

G r a p h 4.1: M a t r i x generation time

4.1.2 Impact of model size and simulation length

It is obvious how both model size and simulat ion length influence the length of execution
of s imulat ion. The bigger model we use the longer it takes to compute one step and the
more steps have to be computed the more t ime it takes. The unpredictible and interesting
information is the real execution time. M o d e l used for this experiment is the one defined
above i n 3.2 w i t h FU units making the tested amount of units and correctnes moved to be
greater than the half of the amount FU units. Used simulat ion t ime unit is milliseconds.
The progress of execution durat ion for numerical method can be seen on the graph 4.2.
One line indicates one model and it 's execution durat ion i n time. The size of the model is
mentioned i n the key of the graph.

Simulation time [milliseconds]

G r a p h 4.2: Numer ic s imulat ion times

A s expected, w i th growing simulat ion time, the execution durat ion grows lineary, each
t ime unit means one mul t ip l ica t ion of mat r ix and nothing else happens. W h a t is more

16

interesting is the inconherent growth of execution t ime wi th regard to the size of used model.
The t ime of execution is par t ia l ly linear. A more detailed graph is shown on 4.3. Here was the
t ime measured again for single simulation length, namely hundred thousand milliseconds,
and more different models i n sizes from five to hundret components. Th is behaviour is most
probably caused by numpy's att i tude to computers memory or computat ion opt imal izat ion
moving i n levels of matr ix size. To prove the source of this behaviour more research would
be needed but since it has no impact on simulat ion results it w i l l stay only mentioned.

1.2 I 1 1 1 1 1 1 1 1 1 1

o1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

Noumber of components in model

Graph 4.3: De ta i l of s imulation t ime dependance on size of statespace

A s the stochastic s imulat ion algori thm uses no sophisticated computat ion methods wi th
regard to the size of model an even growth of execution durat ion can be seen. However w i th
more dynamic simulat ion computat ion is the growth not that stable i n t ime. This stabil i ty
may be dependat even on simulat ion result and is discuddes in 4.1.4.

140

Simulation time [milliseconds]

G r a p h 4.4: Ssa s imulat ion times

17

4.1.3 Impact of various time units on simulation

W h i l e modeling systems that operate i n units of mill isecond it is expected to keep this
resolution and simulate system wi th that precision. O n the other hand it is required to
experiment wint models running for years or decades which is computat ionaly very exacting.
Considering the definition of A and \x 2.1.2 as number of failures and repairs in one hour
it might be possible to simulate the system i n lower resolution wi th the same results and
faster s imulat ion execution. Experiments w i th various t ime units use model defined above
without imuni ty for repairing GPDRC unot and wi th simulation t ime of one day.

liseconds
seconds

: : ! : :

0 le+007 2e+007 3e+007 4e+007 5e+007 6e+007

Simulation time [milliseconds]

7e+007 8e+007 9e+00;

Graph 4.5: Simulations wi th different t ime units for numeric method

A s can be seen on graph 4.5, results for numerical method seem to be perfectly equal.
The difference between both results before the graph gets steady is about one and half
hundreth of percent. Considering possible inacurracy caused by model definition and other
factors influenting result such difference is unimportant . Result of t h i rd experiment w i th
minutes is not shown because wi th current model the numeric method fails to compute wi th
too high values of A and For another enlargement of simulator t ime units redefinition of
A and fi would be required.

This is however not necessary. A s shown in 4.1.2 the execution t ime of numeric method
grows lineary wi th simulation length. This was confirmed again for the execution of model
counting by milliseconds ran for nearly five minutes model counting by seconds ran for 0.36
sec. and model counting by minutes (nonsense result has no inpact on execution duration)
ran for 0.054 sec.

18

milliseconds
seconds
minutes

0 le+007 2e+007 3e+007 4e+007 5e+007 6e+007

Simulation time [milliseconds]

7e+007 8e+007 9e+00;

Graph 4.6: Simulations w i t h different t ime units for ssa method

More interesting results came from experiment 4.6 w i th ssa method. The ssa s imulat ion
results, alike the numeric, differ a l i t t le but s t i l l inconsiderably. The detail of difference is
shown on graph 4.7. F r o m the nature of ssa method the results differ more than at numeric
computat ion but s t i l l the highest difference nears 5%.

A s the ssa algori thm resolves just actions i m model and skips t ime where nothing
happens the execution t ime of a l l the models was similar . Namely 1.32 sec. for model
counting by milliseconds, 1.35 sec. for model counting by seconds and 1.32 sec. for model
counting by minutes. The size of s imulat ion t ime unit has no effect on the execution durat ion
for ssa method.

-le+006 0 le+006 2e+006 3e+006 4e+006 5e+006 6e+006

Simulation time [milliseconds]

G r a p h 4.7: De ta i l of simulations wi th different t ime units for ssa method

W i t h inconsiderable influence on results distinct improvement of numeric s imulat ion
and no effect on ssa the second may be declared as op t imal t ime unit for experiments w i th
greater s imulat ion time. This modification is necesarry even for ssa to keep the same models
for bo th methods.

19

4.1.4 Impact of model behaviour on simulation length

The last remarkable aspect of executions is the relation between simulat ion and simulator
behaviour. It would be expectable that events wi th in s imulat ion w i l l have no effect on it 's
execution. Th is is true for the numeric method. O n graph 4.8 is shown progress of rel iabil i ty
for model without repairing unit , a model w i th repairing unit that can be broken and model
w i th imune repairing unit . A l l three model ran for about 2.5 sec. w i th difference of tenths
of seconds.

1
no repair — i —
repairing

imunity — * —
0.8 -

70000C

Simulation time [seconds]

G r a p h 4.8: L o n g term simulation wi th different repairs by numeric method

The simulations wi th ssa method shown on graph 4.9 wi th approximately same results
has extremely variable execution times. The first two models both breaking quickly have
execution t ime about one second. M o d e l without repairs finished i n 0.8 sec , model w i th
breakable repairs in 1.25 sec. In opposite of fast execution for models which break stand
simulation of model of system that keeps working like model w i th imune repairing unit .
Execut ion of this model took 440 sec.

Simulation time [seconds]

G r a p h 4.9: De ta i l of simulations wi th different t ime units for ssa method

20

4.2 Difference between numerical and ssa methods

A s each method uses different ways to compute results of s imulat ion it is expectabe to gain
not exactly equal results from both methods. G r a p h 4.10 shows results of both methods on
different models. The unbreakable results are from model defined above, the breakable use
the same model but w i th imuni ty section left empty so the repairing units w i l l stop working
sooner or later.

G r a p h 4.10: Compar i sm of results of s imulat ion methods

A s can be seen, ssa results approximate numeric results w i th no big difference. After
thousand repetitions of model s imulat ion wi th ssa method is the deflection from numerical
results up to one tenth of percent and ssa results oscilate around numerical . Th is behaviour
is shown on detail 4.11 from graph 4.10. A s the result of ssa method is an ar i tmetical mean
3.4.2 its graph w i l l always be fuzzy. W i t h sufficient amount of repetitions becomes this
volat i l i ty inconsiderable.

1
numeric breakable

ssa breakable X

- ssa unbreakable

-
numeric unbreakable

-

* * • • • * * * * * *
k *

* * * * * *

* -

- -

600000 800000 le+006 1.2e+0061.4e+006 1.68+006 1.8e+O0G 2e+006 2.2e+006 2.4e+006

Simulation time [milliseconds]

Graph 4.11: De ta i l of comparism between simulat ion methods

21

4.3 Influence of component reliability

W i t h knowladge of simulator's behaviour it is t ime to discuss the results of experiments w i th
various rel iabi l i ty level for different systems. Models used i n upcomming set of experiments
are based on N M R model w i th five functional units defined above 3.2. F i r s t system to
test is TMR - Triple M o d u l a r Redundancy (a NMR w i t h tree redundant functional units)
then a fifteen unit NMR - N - M o d u l e r Redundancy. G o a l of these experiments is to show
what system's redundancy is need for which rel iabil i ty and if the F U ' s unit redundancy is
enought to keep the system working.

0 le+006 Ze+006 3e+006 4e+006 5e+00<

Simulation time [milliseconds]

Graph 4.12: Compar i sm of endurance of systems wi th growing redundancy

O n graph 4.12 are shown the results of both TMR and NMR model ran without repair and
than wi th i t . It can be seen that w i th full rel iabi l i ty of checkers are results of both models
for equivalent situations similar. Regardless of repair the NMR model keeps giving correct
results for a slightly longer t ime but than break never the less. Let us see what happens
after adding the aspect of functional unit 's checkers rel iabi l i ty to these systems for now
behaving similarly.

100% checkers by numeric
100% checkers by ssa X

l \ \ 80% checkers by numeric

1 x \
80% checkers by ssa •

1 x \ 60% checkers by numeric
60% checkers by ssa

40% checkers by numeric
40% checkers by ssa

1 \ 51 20% checkers by numeric
20% checkers by ssa V

le-10% checkers by numeric

- 1 ^ ^ f c le-10% checkers by ssa

»
O

- u \
0 *

^0000000000000000000^0000000000000000000^

le+006 Ze+006 3e+006

Simulation time [milliseconds]

G r a p h 4.13: Impact of F U ' s checkers rel iabil i ty on T M R system

22

A s first, the TMR model was tested. This experiment consists of repeated simulations by
both numeric and ssa method constantly decreasing the functional unit 's checkers reliability.
The value of rel iabi l i ty began on 100% and decreased by 20% for each simulation run. The
last value was not 0% as this is forbidden by simulators definition but was l imi ty converging
to zero, namely le-10%. Results of these ten experiments can be seen on graph 4.13.

U n t i l there is any rel iabil i ty of checkers left the impact is almost inconsiderable. W i t h
repairing unit unbroken the lower checker's rel iabi l i ty is constantly slightly decresing the
probabil i ty of system's failure-free run. This constant lowering can be seen on absolutaly
unreliable checkers where the repairing unit almost stops repairing - not knowing the fun-
cional units are broken.

The same set of experiments was done for the NMR model, results of this second set
of experiments is shown on graph 4.14. Progress of behaviour of both TMR and NMR is
relatively s imilar but few crut ia l diferences can be seen. The most distinctive difference
is the continuous decresing of system's probabi l i ty of failure-free run wi th the decreasing
of checkers reliabili ty. This is caused by repairing unit 's unabi l i ty to manage to repair
such amount of broken units. Based on this experiment we could say that - from long-
term view - the higher functional unit 's redundancy in system wi th unreliable checkers
means deterioration of system's probabli ty of failure free run. O n the other hand, another
important difference can be seen. In the beginning of s imulat ion t ime the TMR system drops
is't probabil i ty before or gets steady for a while what does not happen for the NMR system.
F rom this short-term view, the higher functional unit 's redundancy prevents the system's
probabil i ty drop by keeping enough units working. This difference is more clearly shown on
graphs 4.15 and 4.16 and w i l l be discuseed later more in detail .

A s can be seen on graphs 4.13 and 4.14 increasing the redundancy of functional units
increases the probabil i ty of system's failure-free run in short-term view a l i t t le but w i th
any amount of these units sooner or later the system w i l l inevi tably break. This point of
breaking may be the t ime when the repairing unit itself breaks and the system works just for
the t ime unt i l enough components break. Another set of experiments was done to measure
the impact of repairing units amount. System chosen was N M R wi th five functional units
and one to five repairing units. Results measured in this second set of experiments are
shown in graphs 4.15 and 4.16.

Simulation time [milliseconds]

G r a p h 4.14: Impact of F U ' s checkers rel iabi l i ty on 15-unit N M R system

23

o
1 1 1 1 1 1

0 le+006 Ze+006 3e+006 4e+006 5e+00<

Simulation time [milliseconds]

Graph 4.15: Impact of repairing units amount on system wi th high F U ' s checkers rel iabil i ty

In graph 4.15 can be seen the set of results from extepriments w i th functional unit 's
checkers rel iabi l i ty equal to 80%. The short-term probabi l i ty of system's failure-free run is
kept high by sufficient redundancy of funcional units which is able to disguise faul results
from units that are broken. W i t h adding repairing units the t ime before the system starts
to break increases logari tmical ly - w i th more repairing units the t ime rise by a single new
repairing unit is lowering. Even wi th decreased rel iabi l i ty of checkers is the system wi th
redundancy of repairing units able to keep working. The same can be seen on graph 4.16.
The level of relevancy of functional units rel iabi l i ty was set to 20% which is extremely low.

0 le+006 Ze+006 3e+006 4e+006 5e+00<

Simulation time [milliseconds]

Graph 4.16: Impact of repairing units amount on system wi th low F U ' s checkers rel iabil i ty

However, it is obvious that lowering rel iabil i ty of functional unit 's checkers constantly
decreases the the rel iabil i ty of system as mentioned above. W h i l e not knowing that functi­
onal units are broken the repairing units w i l l not repair them as frequently as necesary and
so the system w i l l return errors more often. In similar t ime as the system wi th more reliable
checkers starts the system wi th unreliable checkers to break. F r o m these facts it is obvious
that rel iabi l i ty of checkers has no impact on system's long-term probabil i ty of failure-free

24

run, on the other hand the redundancy of funcional units is necesary for system to work
correcly i n a short period of t ime. Set of redundant units is able to give correct result w i th
some units broken as defined in 2.1.3. For a long period of t ime it is, however, necessary
to ensure the repair of units. For a breakable repairing unit this is again possible w i th
redundancy. The amount of repairing units needed is dependant on demanded possibil i ty
that at least one repairing unit w i l l work i n time. The value can be counted from repairing
component's lambda value 2.1.2 and the amount of repairing units as

R rep — 1 — (A * amount-of -repairing-units)

25

Chapter 5

Conclusion

After inheri tng a work wi th some progress the biggest challange was to understand what
and how it does. F i rs t step was the ma th behind simulator, namely the theory of rel iabil i ty
and the ways to compute and simulate it as Markov models. Equ iped wi th this knowledge
the second challenge was to understand simulator applicat ion from []. This application
was supposed to be extended and used for experiments but as it was mainly a proof of
concept for s imulat ion methods it was appropriate to implement it from scratch.

The brand new verion is wri ten by object oriented paradigm and keeps only the the abs­
tract concept (read input, make matr ix , run simulation) and simulat ion algorithms which
are opt imalized and their implementat ion is not a part of this thesis. For requested experi­
ments few extensions were done above al l the possibil i ty to define rel iabil i ty of fault-checkers
for each unit type. Other modifications are for example the change of internal data storage
or lambda-transit ion value fix (the old version d id not took i n consideration that posibi l i ty
of breaking single component of set is it 's l ambda mul t ip l ied by the amount of components
in this set).

W i t h this application as min ima l implementat ion needed for this thesis there are many
possibilities to improve it . F r o m the technical point of view the ssa s imulat ion may be coum-
puted in more paralel thread as the computat ion is repeated for hundred or thousand times
and the results are agregated. F r o m the conceptual product point of view the possibil i ty of
starting in somehow broken state of system might be interesting.

Possibilities of usage of the simulater are unl imi ted and other researches may be done.
The results of research made in this thesis w i l l be used for a paper.

26

References

[1] CSN 010102. 1993.

[2] But ler , R . W . ; Johnson, S. C : Techniques for Modeling the Reliability of
Fault-Tolerant Systems With the Markov State-Space Approach. Langley Research
Center - Hampton , V i rg in i a , 1995.

[3] Cohen, D . I. A . : Introduction to Computer Theory. Prent ice-Hal l , 1997,
i S B N 978-0-471-13772-6.

[4] Graphviz developers: Graphviz [online], http://www.graphviz.org/, [cit.
2015-05-18].

[5] Harza t i , V . : Difference between Fault , Failure and Error , [online].
ht tps : / / v ikashazra t i .wordpress . com / 2008 /10 /30 / fau l t - fa i lure -error / , [cit.
2015-05-07].

[6] Hlavička, J . ; Racek, S.; Golan , P . ; aj.: Číslicové systémy odolné proti poruchám.
Praha : V y d a v a t e l s t v í Č V U T , 1992, i S B N 80-01-00852-5.

[7] Kope tz , H . : Design Principles for Disributed Embadded Applications. Springer, 2011,
i S B N 978-1-4419-8236-0.

[8] M e y n , S.; Tweedie, R . L . : Markov chains and stochastic stability. Cambridge:
Cambridge university press, 2009, i S B N 978-0-521-73182-9.

[9] N u m p y developers: N u m P y [online], http://www.numpy.org/, 2008 [cit. 2015-05-03].

[10] Puki te , P . ; Puki te , J . : Modeling for reliability analysis: Markov modeling for
reliability, maintainability, safety and supportability analysis of complex systems.
New York : I E E E Press, 1998, i S B N 0-7803-3482-5.

[11] P y t h o n community: P y t h o n [online], http://www.python.org/, [cit. 2015-05-03].

[12] Q u i n , L . : Extensible M a r k u p Language (X M L) , [online]. http://www.w3.org/XML/,
[cit. 2015-05-04].

[13] R á b o v á , Z . ; J a n o u š e k , V . ; Peringer, P . ; aj.: Modelování a simulace. B rno : V U T , 1992,
i S B N 80-214-0480-9.

[14] Straka, M . ; Kaš t i l , J . ; K o t á s e k , Z . : Methodology for Reliability Analysis of
FPGA-based Fault Tolerant Systems. In CSE'2012 International Scientific
Conference on Computer Science and Engineering. The Univers i ty of Technology
Košice, 2012, 146-153 s., i S B N 978-80-8143-049-7.

27

http://www.graphviz.org/
https://vikashazrati.wordpress.com/2008/10/30/fault-failure-error/
http://www.numpy.org/
http://www.python.org/
http://www.w3.org/XML/

[15] Trávniček , J . : Tvorba spolehlivostních modelů pro pokročilé číslicové systémy. F I T
V U T v B r n ě , 2013.

[16] Troch im, W . M . : Theory of Rel iab i l i ty [online].
h t t p : / /www. s o c i a l r e s e a r c h m e t h o d s . n e t / k b / r e l i a b l t . php, 2006-10-20 [cit.
2015-05-02].

[17] Zboři l , F . ; Zboři l , F . : Základy umělé inteligence. Brno : V U T , 2012.

2<S

