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Introduction 

Drug development is a lengthy and costly process with a low chance of stumbling upon rele-

vant substances. Until recently, it had relied on assiduity and, in great part, on chance. Thanks 

to the introduction of computers as tools able to quickly handle immense amounts of data, it 

was possible to transfer some of the tasks in the early stages of drug design to the newly aris-

en field of computational chemistry, substantially reducing the time spent on screening while 

increasing hit rate by discarding entities with predicted poor properties. Although in silico 

simulations cannot replace experimental steps in drug development, they prove helpful in 

finding and focusing on substances with higher likelihood of exerting biological activity. 

Human glycogen synthase kinase-3β (GSK-3β) is a serine-threonine specific protein kinase 

discovered in 1980 [1]. Although 35 years have passed, the many mechanisms it participates 

in haven’t been fully understood. The enzyme has been shown to be virtually omnipresent in 

human cells and to interact with a number of other proteins. Beside its role in glucose me-

tabolism, it is also involved in several signaling transduction pathways where its excessive 

activity appears to be related to neurodegenerative and inflammatory diseases and certain 

types of cancer. GSK-3β is responsible for hyperphosphorylation of tau proteins which, to-

gether with amyloid beta plaques, accumulates in the brain tissue of patients with Alzheimer’s 

disease [2]. This having been said, it comes naturally that finding pharmaceutically usable in-

hibitors of its activity arouses major interest in pharmaceutical companies. To date, more than 

40,000 compounds have been reported to inhibit GSK-3β but there are insufficient data con-

cerning their accurate IC50 values, their binding sites and binding modes, their selectivity and 

drug-likeness [3]. 

The objective of this thesis was to study the surface of GSK-3β in order to find pockets 

which could further be investigated as potential allosteric binding sites for selective down-

regulation of GSK-3β’s activity with pharmaceuticals. In order to cover the range of already 

determined structures of GSK-3β and a library of molecules to be tested for affinity to poten-

tial cavities, in silico approach was chosen. 

The search was conducted employing a tool called fpocket, optimized for finding putative 

binding pockets protein structures. The structures used in the study had been determined by 

the methods of X-ray analysis of GSK-3β co-crystallized (a) with an inhibitor and (b) with a 

substrate. Fpocket implements Voronoi tessellation and α-spheres for quick search of pockets 

in the protein surface. Descriptors of found pockets were determined using a bundled algo-

rithm named dpocket. 

A secondary aim of the thesis was to validate any conserved pockets reported by fpocket. 

This was done by the means of a virtual screening in which several already known GSK-3β 

inhibitors were docked into the pockets. 
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1 Theoretical Part 

1.1 Rational Design of Protein-Targeting Drugs 

1.1.1 Proteins Make Desirable Targets 

Throughout the history of mankind, drugs used to be discovered by observing the effects of 

substances of natural origin, mainly ones derived from medicinal plants, such as extracts or 

brews. However, little was known about the underlying principles of their action. It was as 

late as in the 19th and 20th centuries that little by little, scientific methods started seeping into 

pharmacology. Thanks to advances in all branches of chemistry, structures and functions of 

biomacromolecules as well as mechanisms of their interactions with other molecules had be-

come partly elucidated. In the 1960s, functions of enzymes, receptors and ion channels were 

described, marking a turning point in drug design [4]. 

Various theories elucidating physico-chemical mechanisms of interaction between biom-

acromolecules and drugs have been proposed, providing a scaffold for a more complex esti-

mation of therapeutic action of pharmaceuticals. The current widely accepted hypothesis 

states that by modulating the activity of a molecule involved in the pathways of a disease, 

therapeutic effects can be achieved. Endogenous molecules whose activity can be regulated by 

mediators, including drugs, are called biological targets. They are usually present in the bio-

system only in low concentrations but play a vital role within the organism. Biological targets 

can be whole bacteria or viruses, cytoplasmic membranes, but in most cases, they are either 

nucleic acids (genes) or proteins (enzymes, receptors, ligand or voltage-gated ion channels, 

but also structural proteins). Those biological targets which are known or predicted to bind to 

a drug are called druggable, and as different proteins have different structures and chemical 

properties, they can potentially be targeted with high selectivity [5]. 

When on the lookout for a drug, it is advisable that, if possible, one first get acquainted 

with the structure, localization and function of its intended target. The structure of proteins 

can be described at four distinct levels of organization. Primary structure is the sequence of a 

protein’s building blocks – residues of amino acids. There are twenty common proteinogenic 

amino acids and several rare, non-standard ones. Primary structure is essential for bioinfor-

matics because it allows for comparison of chemical composition, similarity searches etc. Sec-

ondary structure is the local spatial orientation of the amino acid backbone and its 

stabilization by non-covalent bonds. The positioning of backbone atoms often shows a degree 

of regularity, with the two prominent motives being α-helices and β-pleated sheets. Tertiary 

structure, or fold, is the overall three-dimensional (3D) arrangement of the whole protein 

molecule, including side-chains. In its natural environment in the biological system, the mole-

cule is held together by non-covalent bonds and may further be cross-linked by covalent di-

sulfide bonds. The process of protein folding does not depend solely on its primary structure; 

it requires proper conditions and the involvement of auxiliary elements present within the 

cell environment. Quaternary level only applies to proteins consisting of more than one subu-

nit, each represented by a single molecule with its own tertiary structure. It describes the mu-

tual connection and orientation of the subunits [6]. 
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Proteins play a vast number of roles in the organism. They may, among others, have struc-

tural, transport, immune, signaling, regulatory, or catalytic functions. The latter group is the 

most numerous and its members are called enzymes. Each cell contains literally thousands of 

enzymes catalyzing its chemical reactions, allowing for higher reaction rates, milder reaction 

conditions, greater specificity and fine-tuned control [7]. This is why proteins have increasing-

ly been attracting the interest of pharmaceutical researchers, especially in the case of so-

called molecular diseases, i.e. diseases with a simple etiology which can be traced back to 

point mutations or protein misfolding [8]. 

 

1.1.2 A Primer to Enzymes 

Enzyme is a biomolecule with catalytic function highly specific for the molecules it processes, 

called substrates. A vast majority of enzymes are proteins, although RNA molecules demon-

strating catalytic activity are also known. Enzymes are divided into classes according to the 

reactions they catalyze. Main classes recognized are oxidoreductases, transferases, hydrolas-

es, lyases, isomerases and ligases. Enzymes with absolute specificity are capable of catalyzing 

the reaction of one substrate only. Most enzymes, however, are group-specific, meaning that 

they catalyze reactions of a whole group of related substrates, even though for each, they 

reach different reaction speeds. In order to function properly, enzymes may require the pres-

ence of non-protein structures –cofactors. A covalently bound cofactor is called a prosthetic 

group while non-covalently bound ones are known as coenzymes. The protein part of an en-

zyme is called apoenzyme, the complete enzyme a holoenzyme [7]. 

A hypothesis has been put forward which claims that the sequence of proteins, among 

them enzymes, unambiguously predetermines their 3D structure which, in turn, determines 

their function. This so-called sequence-structure-function paradigm would mean that each 

protein is a deterministic static, rigid structure with a predictable function [9]. Although there 

certainly are tight relations of sequence-to-structure and of structure-to-function, the subject 

turns out to be more complicated. In the last decades, the concept has been challenged by 

suggestions that also dynamics are vital for protein function. These claims are supported, for 

example, by observing conformational changes in proteins and by resolving structures of pro-

teins lacking persistent structure, or intrinsically disordered proteins (IDPs) [10]. How does 

this pertain to the functioning of enzymes? 

The pioneers of enzyme research formulated first theories at the close of 19th century. It 

had been known since 1850s that enzymes act as biological catalysts and that they somehow 

bind to their substrates. Scientists scrutinized enzyme action and wondered how come that 

they always so minutely maintain specificity. By the study of invertase (an enzyme catalyzing 

hydrolysis of sucrose to fructose and glucose), Emil Fischer came up with the idea that to pre-

serve chirality, enzymes must themselves be chiral [11]. According to him, the reaction would 

run within a relatively small restricted space of a given shape within the protein, into which 

the substrate molecule fits just like a key fits in the lock. Nowadays we call the aforemen-

tioned space the enzyme’s active site. The lock-and-key complementarity model was im-

proved by the notion of an enzyme-substrate complex [12], which would be a transitional 

state occurring between the binding of the substrate to the active site and its conversion into 

the product. 
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The theory was further worked upon by Koshland who stated that the enzyme and the 

substrate aren’t perfectly complementary (Figure 1). Rather, the bond between the ligand and 

the active center is weak in the beginning; it is the proximity of ligand that induces a gradual 

conformational change of the protein, strengthening the bond [13]. The induced-fit model was 

the first to acknowledge certain dynamics of protein function and provided grounds for later 

models. The fluctuation fit theory by Brunó Ferenc Straub suggests that the enzyme molecule 

fluctuates in time – some of its forms are able to bind a ligand whereas others aren’t but may 

bind different ligands [14]. The experimental techniques at the time were not sufficient for 

determining which of the theories was correct, though, so it wasn’t until recently that further 

progress has been made. 

 

 
Figure 1: Comparison of lock and key model and induced-fit model. 

Taken from http://ibbiology.wikifoundry.com/page/Describe+the+induced-fit+model. 

 

It is now generally accepted that each enzyme has at least one domain – a set of dozens to 

hundreds independently folded conserved amino acid residues performing a specific function. 

Domains may contain an active site formed by the side chains of amino acid residues with 

specific physico-chemical properties; the residues can be located far from each other in the 

terms of their position in the sequence but thanks to the enzyme’s 3D conformation they get 

topologically close. Active site is the region where the binding process and the catalytic reac-

tion take place. Domains typically have the characteristics of small independent globular pro-

tein units, and in larger, multi-domain proteins they may form lobes, although at times these 

are so intertwined that it is difficult to tell them apart. During conformational changes, the 

domains themselves don’t undergo substantial changes in shape, rather they are hinged by 

less rigid parts that move relatively freely [6]. 

Since the emergence of new simulation and experimental methods, a synthesis of both Ko-

shland’s and Straub’s theories has been accepted: it regards each of the two concepts as ex-

tremes while usually the two co-exist and contribute with different ratios. Conformation 

ensemble model [15] further generalizes the idea to say that the enzyme occupies a delicately 

balanced set of possible states in the conformational space among which it fluctuates. The 

http://ibbiology.wikifoundry.com/page/Describe+the+induced-fit+model
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changes in states are related to shifts in probability of population distribution caused by a 

multitude of stabilizing and destabilizing interactions [16]. 

The latest views border closely on the idea of enzyme regulation. Roughly put, there are 

three ways of regulating enzymes’ activity: first, localization of individual enzymes within the 

cell and their competition for available substrate. Second, controlling the synthesis and deg-

radation of enzyme molecules. And third, modulation of their activity through changes in their 

structure or by the action of effectors. From pharmaceutical point of view, the last principle is 

the most enticing, as by the use of different agents, a range of effects can be achieved. 

Agents binding to an enzyme may do so reversibly by creating non-covalent bonds, or irre-

versibly via covalent bonds. Effectors increasing the activity of an enzyme are called activa-

tors, those decreasing it, inhibitors; it is interesting to note that virtually all drugs act as 

inhibitors. Four types of reversible inhibition can occur: competitive inhibitors are molecules 

which resemble the enzyme’s substrate so closely that they bind to the active site. However, 

no product is created after the formation of the enzyme-substrate complex and the active site 

becomes blocked. Because the effect occurs directly in the active site, it is sometimes called 

orthosteric inhibition; it can be overcome by increasing substrate concentration. Uncompeti-

tive inhibitors are those which react with the enzyme-substrate complex; by binding to it, they 

decrease the maximum speed of the reaction. Mixed inhibition is the combination of competi-

tive and uncompetitive inhibition – the inhibitor can bind to the enzyme whether or not the 

substrate has already bound to it. The binding of the substrate and the binding of the inhibitor 

affect each other. In non-competitive inhibition, the inhibitor binds to the enzyme regardless 

of whether the substrate has been bound (Figure 2). Non-competitive inhibitors always bind 

at locations other than the active (orthosteric) site, called allosteric sites [7]. Inhibition type 

can be determined by the properties of the line resulting from plotting the ratio of reciprocal 

values of reaction speed (y-axis) as a function of time (x-axis). This method is based on Mich-

aelis-Menten equation  in a reciprocal form (Equation 1) [17]. 

 

  maxmax

111

VSV

K

V

M   

Equation 1: Reciprocal Michaelis-Menten equation. V – speed of reaction; Vmax – maximum speed 

of reaction; KM – Michaelis-Menten constant; [S] – concentration of substrate. 

 

Molecules bound at the allosteric sites usually provoke a conformational change in the pro-

tein; they can act as allosteric activators as well as allosteric inhibitors (inhibitors binding at 

the allosteric site don’t necessarily act as non-competitive ones but may well fall into either 

category of competitive, non-competitive, or uncompetitive inhibitors). Compared to or-

thosteric sites, allosteric sites offer a greater spatial diversity because there is no need for 

them to bind to a specific substrate which would necessitate their high evolutionary conserva-

tion. Therefore, allosteric sites may differ among an enzyme’s subtypes sharing the same sub-

strate, allowing for a higher selectivity of drugs targeting them. It has been suggested that all 

proteins are potentially allosteric and that their allosteric behavior only needs to be awoken 

by the use of a properly chosen effector [15]. 
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Figure 2: Illustration of (a) competitive, (b) non-competitive and (c) uncompetitive inhibition 

mechanisms with their corresponding and Lineweaver-Burk plots. v – reaction speed; [I] – con-

centration of inhibitor; [S] – concentration of substrate. 

Taken from https://biochemshariestar.wordpress.com/2013/04/14/enzymes. 

 

1.1.3 Evolution of Drug Design Methods 

Natural medicines have accompanied man since the dawn of civilization. The findings of pol-

len from healing herbs at burial sites dating to Paleolithic, 60,000 B.C., suggest that beneficial 

effects of plants were known to Neanderthals. What led ancient humans to first use natural 

substances as crude drugs can now hardly be ascertained but what we do know is that the 

millennia of accumulated experience have bequeathed to future generations vast amounts of 

medicinal lore. Although the teachings of ancient medicine were often coupled with mysti-

cism, spiritualism and philosophy, they dealt, sometimes in great detail, with procuring, treat-

ing and storage of crude drugs, complemented with instructions on indications and dosage. 

These copious data gave rise to traditional medicines, notably Chinese traditional medicine. 

After the advent of script, much of extant information interspersed across cultures was 

written down, constituting a body of historical literature collectively related to as māteria 

medica (Latin for “medicinal substance”). As more and more information on medicinal sub-

stances was being gathered in Europe, the scope of pharmacology started to expand beyond 

the mere knowledge of how to use medicinal plants, incorporating domains of other, then 

emerging, natural sciences such as chemistry, biology and physics. In the 18th century, the ex-

tended medical information containing additional data on purification, potency, safety etc. 

became known by the name of pharmacognosy, from the Greek words φϊρμακον (farmakon) 

– drug and γνῶςισ (gnosis) – knowledge. Yet for that whole period, the mechanisms of drug 

action remained entirely unknown. Among concepts attempting to elucidate them, the doc-

trine of signatures is worth mentioning. It was based on the assertion that plants affected 

those body parts to which they were morphologically similar. Pharmacognosy along with its 

https://biochemshariestar.wordpress.com/2013/04/14/enzymes
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botany-centered point of view was regarded as one of the pillars of pharmacy and persisted as 

a teaching subject of medical doctors and pharmacists until the beginning of 20th century. In 

conjunction with other research branches, it is making a return today [18]. 

Thanks to the influence it exercised on modern natural sciences, pharmacognosy contrib-

uted to the emergence of classical pharmacology – a science which relies on the assessment of 

activity of substances on models of disease, represented usually by cell cultures or animals. 

After an effect is confirmed during primary screening, classical pharmacology takes up a study 

of the substance’s mechanism of action. Detection of any positive hits is followed by the 

search for affected molecular structures and may result in the discovery of relevant biological 

targets. Through an iterative process, methods of combinatorial chemistry are used to synthe-

size new ligands based on the structure of the hit compounds with the aim to improve their 

properties. Resulting derivatives are then again subjected to high-throughput screening and 

sifted to find suitable leads. Lead compounds are further chemically modified in the attempt 

to meet strict criteria of low toxicity, high selectivity, good bioavailability etc. imposed by Eu-

ropean Medicines Agency (Europe), Food and Drug Administration (USA) or their counter-

parts elsewhere. [4]. The duration of a typical preclinical phase is 5.5 years on average; its 

costs amount to over 180 million USD. If the meticulous process of lead optimization happens 

to yield any promising drug candidates, clinical phases ensue. The three stages of clinical trials 

take about 7-10 years and bring expenditures of another 200 million USD. In case of final 

market approval of the drug, a long-term fourth clinical testing phase may be required which 

may last up to decades and require even more funds [19]. Upon summing up the above num-

bers, we arrive to long 10 to 15 years and a whopping 400 million USD needed for the process 

between finding a biologically active compound and introducing it to the market. That natu-

rally only holds if everything goes well. As this way of designing drugs relies heavily on chance 

in a long trial-and-error marathon, it is quite obvious that high failure rates combined with 

nine to ten-figure costs of development render classical drug design a risky business. 

Serendipity has played a noteworthy role in drug discovery. In the world of science, the 

word “serendipity” does not refer to a pure stroke of luck, it also has a connotation of making 

a discovery thanks to a keen mind. In drug discovery, this was the case of chloral hydrate 

(1869), paracetamol (1887), penicillin (1928), LSD (1943), warfarin (1948), chlorpromazine 

(1950), cisplatin (1965) and sildenafil (1996), to name a few famous ones [20, 21]. Unfortu-

nately, crazes for new drugs sometimes led to sinister consequences which could have been 

avoided had due caution been taken. An example is the Elixir Sulfanilamide scandal from 

1937, during which 105 patients died because of a poisoning with ethylene glycol solution of 

sulfanilamide. The consequent public outcry caused an elevated interest in drug regulation 

and resulted in the prompt implementation of Food, Drug and Cosmetic Act in 1938 [22]. An-

other wave of updates in drug regulations began in 1970s in the wake of the thalidomide af-

fair which caused tens of thousands babies to be born with severe malformations [23]. The 

impact of the rigorous regulations is, of course, vastly beneficial in that it brings an increase in 

patients’ safety but as a trade-off it ties, so to say, Fortuna’s hands. 

An approach envisioning a suppression of the dependence of drug discovery on happen-

stance is rational drug design, also called reverse pharmacology. As opposed to classical 

pharmacology, it starts from a genomic or a proteomic study and, usually with the help of a 
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bioinformatic search, estimates which biological structure is likely to be involved in the dis-

ease. After inferring the relevant structure, it designs molecules with the aim to find ones 

which will have a biological effect on the target. The rest of the process, i.e. clinical phases, is 

analogous to traditional pharmacology. Main difference between rational design and classical 

pharmacology lies in the reduction of time (about 2 years for rational design vs. 5 years for 

classical pharmacology) and costs of the pre-clinical phase [4]. 

To-date, rational design has brought numerous drugs to the market. First attempts to sys-

tematically design a drug began on the verge of 19th and 20th century, when purposeful chemi-

cal modifications were introduced into salicylic acid to reduce its irritating properties, 

yielding acetylsalicylic acid (1897). Shortly, salvarsan (1910), the first chemotherapeutic 

agent, and several drugs developed in Germany by Bayer, notably sulfonamides (1930s), fol-

lowed [24, 25]. The most productive Czech scientist in the field of biomedicine and rational 

drug design was Antonín Holý who designed three potent antivirotics used against hepatitis B 

and HIV infections [26]. 

 

1.2 Computer-Aided Drug Design 

1.2.1 Structure-Based Drug Design 

In the 1980s, considerable progress was made in the techniques used for experimental de-

termination of protein 3D structure – X-ray crystallography and NMR spectroscopy. The two 

approaches provide an insight at a near-atomic resolution and have been providing the major-

ity of now available protein structures. Many resolved structures, often with already co-

crystallized drug candidates, are uploaded by scientists to the free online worldwide database 

PDB (Protein Data Bank) [27]. As of now, PDB contains over 118,000 structures of biomacro-

molecules and their complexes. Such a variety makes it possible to design drugs based on the 

knowledge of their corresponding target’s structure in a process called structure-based de-

sign. The central point of structure-based design is that structure-specific drugs react selec-

tively with their biological target based on their mutual structural and chemical 

complementarity [7]. Their advantage over non-specific drugs lies in high selectivity and thus 

lower probability to cause side effects. 

In the search for a drug, the first step is determining whether we need an activator or an 

inhibitor. Inhibitor design is always easier than that of an activator, among other reasons be-

cause inhibitors can be obtained by suitably modifying the substrate. Second step should fo-

cus on finding whether there are any experimental leads yet. As for the target, it should be 

essential, unique or conditionally expressed for the disease of interest. When a lead is found, it 

is tested for drug-likeness (solubility, lipophilicity, non-toxicity, stability, molar mass) and 

pharmacokinetics (absorption, distribution, metabolism, excretion, and toxicity – collectively 

denoted as ADMET) [28]. 

The binding of a ligand into an enzyme is mediated by short to mid-range non-covalent in-

teractions. The contributions of interactions in order of decreasing strength are as follows: 

hydrophobic forces, coulombic charge–charge, charge–dipole, dipole–dipole, dipole-induced 

dipole and induced dipole–induced dipole. The abovementioned interactions include ion-pair 

formation, π-π interactions, hydrogen bonds and van der Waals forces. A significant contribu-
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tion to protein-ligand interaction can be attributed to the hydrophobic effect. It is an entropy-

driven force causing water molecules to orient in such a way along a non-polar surface that 

the disruption of their 3D H-bond network is minimized. The total change of free energy in the 

reaction of ligand binding at given temperature and pressure can be calculated from its en-

thalpic (released heat) and entropic (probability of states) contributions (Equation 2). 

   STHTpG ,  

Equation 2: Free energy change of ligand-binding reaction. G° – Gibbs free energy; H° – enthalpy; 

S° – entropy; p – pressure; T – thermodynamic temperature. 

 

Gibbs free energy itself is related to the value of the dissociation constant by Equation 3 [29]: 

DKRTG ln  

Equation 3: Relationship between Gibbs free energy and enzyme-ligand dissociation constant. 

G° – Gibbs free energy; R – molar gas constant; T – thermodynamic temperature; KD – 

dissociation constant. 

 

The measure of how strongly a ligand binds to its target is affinity. The higher the affinity, 

the lower dose of the drug is needed to provoke biological response. Affinity is expressed in 

the terms of energy needed to break the bond between the ligand and the target. It is charac-

terized by dissociation constant of the enzyme-ligand complex. For the reaction 

Enzyme + Ligand  Complex 

dissociation constant KD can be calculated using Equation 4. 

  
 Complex

LigandEnzyme
K D   

Equation 4: Dissociation constant of enzyme-ligand complex. KD – dissociation constant; [En-

zyme] – equilibrium concentration of enzyme; [Ligand] – equilibrium concentration of ligand; 

[Complex] – equilibrium concentration of enzyme-ligand complex. 

 

In biological systems, KD can span many orders, from 10 mmol L-1 (weak binding strength) to 

10-16 mol L-1 (very strong binding). 

It is important to note that although their concepts are related, affinity is not the same as 

biological potency. Whereas affinity merely denotes the strength of a bond, potency is a meas-

ure of the efficacy of a substance in producing biological response upon binding to its target. It 

is often expressed as half-maximal inhibitory concentration IC50 at which the substance inhib-

its its target’s function by 50 %, or, analogically, half-maximal effective concentration EC50 for 

activators (Figure 3). 
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Figure 3: Illustration of IC50 and EC50. The sigmoid curve represents dependence of % response 

(activation or inhibition) on drug concentration. 

Taken from http://www.preskorn.com/books/ssri_s3.html. 

 

1.2.2 Computer-Aided Structure-Based Drug Design 

It is estimated that the number of molecules synthesizable with currently available  synthesis 

methods amounts to somewhere between 1020 and 1024 [30]. Although possible in theory, it 

would be an unthinkable mission to perform a “wet” screening in search for a new drug trying 

all of them. Luckily, the onset of computer era has brought about a rapid growth of computa-

tional power, memory and data storage capacity, enabling scientists to transfer a great deal of 

tasks of the early stages of drug development to the virtual plane – namely looking for a hit, 

hit-to-lead optimization and lead optimization. The displacement alleviates many a burden 

linked to wet screenings, such as having to purchase chemicals, handle and store unstable or 

toxic substances, perform time-consuming repetitive tests etc. Experimental screening can 

then be performed only on compounds which are predicted with some level of confidence to 

possess biological activity. Computer-aided drug design (CADD) usually focuses on the predic-

tion of physico-chemical properties of chemicals followed by clustering them into libraries 

based on similarity in some of those properties [31]. Two main approaches are structure-

based design (based on detailed knowledge of target biomolecule) and ligand-based design 

(stemming from knowing which molecules are active and which are not while target’s struc-

ture remains a mystery) [32]. Another use of computers lies in estimating the structure of bi-

omolecules with a known sequence by modeling them ab initio (“from scratch”) or by 

searching them against entries in specialized sequence databases. Similarly, their biological 

function can be inferred from phylogenetic evidence by searching their structures against 

structural databases of molecules of known function [33]. 

The invaluable services offered by computers consist in graphical visualization of mole-

cules and in powerful computational tools built upon the knowledge brought by theoretical 

chemistry, computer science and information science. Cutting-edge supercomputers achieve 

performance in the order of peta (1015) FLOPS (floating-point operations per second). They 

are massively-parallel machines with tens or hundreds of thousands individual processors 

(CPU) [34]. There are basically two approaches in parallel computing: either a centralized 

http://www.preskorn.com/books/ssri_s3.html
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cluster (server farm) of processors located physically close to one another performs the com-

putations, or there are many discrete heterogeneous stations connected via a network and 

coordinated by a central server (distributed computing). The asset of chemical problems is 

that often, many subtasks can be computed in parallel. Determination of chemical properties 

can be carried out in a pleasingly parallel workload, i.e. such where the separation of the prob-

lem into partial tasks doesn’t pose a problem [33]. 

Typical theoretical apparatus underlying CADD algorithms employs quantum mechanics 

(solving Schrödinger equation is feasible only for systems not exceeding hundreds of atoms), 

molecular mechanics (classical mechanics applied to atoms represented by rigid balls and 

connected into molecules by springs), molecular dynamics (physical movement of particles in 

time) or hybrid methods. 

To assess types and strengths of enzyme-ligand interactions, it is useful to describe the sur-

face of the molecules. In computer modeling, this can be done in several ways. For the purpose 

of computation and visualization, surface area can be represented in different modes (Figure 

4). Van der Waals surface is given by the union of the set of all spheres of atoms’ van der 

Waals radii. Van der Waals radius is half of the distance between two free (unbound) atoms in 

the crystal. Accessible surface area (ASA) or solvent accessible surface area (SASA) is the sur-

face obtained by tracing van der Waals surface of the molecule with the center of a ball-

shaped probe of a given radius, typically approximated to water molecule (r = 1.4 Å). Solvent-

excluded surface (SES, a.k.a. Connolly surface) is the surface eroded by the same probe [8]. 

 

 
Figure 4: Representations of molecular surfaces. Dotted line – van der Waals surface; dashed 

line – ASA; solid line – SES (Connolly surface). 

Taken from http://link.springer.com/article/10.1186/1471-2105-10-276.  

 

Additionally, surface-exposed atoms or moieties can be assigned descriptors such as elemen-

tary charges, polarity, acidity or basicity, hydrophobicity and hydrophilicity. The descriptors 

can be qualitative (e.g. positive/negative) or quantitative (e.g. hydropathy index); they can 

typically by visualized as color-coded. 

Curvature of surfaces is of great interest in molecular modeling as concave surfaces fail to 

fully satisfy solvent hydrogen bonding requirements (Figure 5). Their relative inaccessibility 

means fewer H-bonds can form, thus small non-polar ligands binding into concave areas re-

sult in a greater enthalpy-driven desolvation change [35]. Hence, clefts between domains are 

http://link.springer.com/article/10.1186/1471-2105-10-276
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often the binding sites of small molecules because the flexible connection between otherwise 

rather rigid conserved domains enables more than one domain to participate in the interac-

tions [6]. 

 
Figure 5: Hydration of concave (left) and convex non-polar surface (right). Taken from 

http://ncbr.muni.cz/~martinp/C3210/StructBioinf6.pdf. 

 

As witnessed by approved drugs captopril (1981), dorzolamide (1995), saquinavir (1995), 

ritonavir, indinavir (1996), tirofiban (1998) and others [32], structure-based CADD is a pow-

erful servant. Nevertheless, it is essential to remember that it is still but a tool the results of 

which must be taken with a grain of salt. When it comes to reliability, it is unlikely that in near 

future it will be able to hold a candle to experimental methods. As much as CADD takes into 

account steric effects, affinity, lipophilicity etc., thorough in vitro and in vivo testing still need 

to take place to confirm the drug’s actual selectivity, pharmacokinetics, stability, solubility etc. 

A good starting point  in this regard is sticking to Lipinski’s “rule of five”: for the molecule to 

be bioavailable, it should have at most 5 H-bond donors, 10 H-bond acceptors, a molecular 

mass of 500 Da and a partition coefficient (octanol : water) of 5 [36]. This is a necessary but 

not sufficient condition, for many unexpected factors can occur. 

 

1.2.3 Detecting Pockets in Proteins 

As mentioned earlier, concave areas in proteins are often ligand-binding sites. There is no 

naming convention as to their differentiation by name but generally they can be divided to 

cavities (void spaces buried in the protein), invaginations (cavities connected with the protein 

surface via a tunnel), and pockets, clefts or grooves (shallow depressions on the surface). 

There are several dozen pocket-finding computational tools at hand, many of which come 

with a front-end for visualization and description of pocket metrics, surface properties, listing 

of residues involved in binding etc. They can be divided into several groups by the general ap-

proach they exploit for recognizing concave areas in 3D structures of biomolecules. 

Geometric algorithms usually employ splitting the molecule into a number of smaller sec-

tors using some type of 3D grid. Subsequently a ball-shaped probe is rolled over the grid 

points located near the surface while its clashes with protein’s atoms are registered. Suffi-

ciently overlapping segments containing no clashes are then aggregated into larger clusters. 

The tools SURFNET [37], LIGSITE [38], CAST [39], fpocket [40] and VICE [41] fall into this cat-

egory. Early methods would e.g. measure angles between centers of spheres located on the 

protein surface [42], while VOIDOO algorithm used iterative mapping of the surface with a 

probe followed by increasing van der Waals radii to close the cavities off [43]. Others rely on 

various shape descriptors or filling the cavities with spheres which are then clustered or sub-

http://ncbr.muni.cz/~martinp/C3210/StructBioinf6.pdf
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stituted with bigger spheres. The outcome of analysis with geometric algorithms is influenced 

by structure resolution, orientation of coordinates, cavity size and position. Their drawbacks 

consist in neglecting protein dynamics and in their tendency to miss less common binding 

sites outside concave areas but on the other hand, they work fast and require few computa-

tional resources [32]. 

Energy-based approaches apply a grid to a static structure as well but instead of relying 

purely on geometry, they calculate binding energies of a small probe docked into the struc-

ture. They take into account electrostatic, van der Waals, H-bond, hydrophobic and solvent 

terms. GRID [44], CS-Map [45], Q-SiteFinder [46] and PocketPicker [47] employ this type of 

algorithm. Simple energy-based computations are almost as fast as geometric methods and 

offer a higher sensitivity. However, there are many energy minima on proteins’ potential en-

ergy surfaces, resulting in a high chance of false-positive hits. Additionally, which pockets are 

detected depends on the properties of selected probe [32]. 

Unlike the previously mentioned methods, pocket detection based on molecular dynamics 

(MD) perceives proteins as structures whose shape fluctuates in time. These methods often 

require a set of several conformations as input; such data can be obtained by running an MD 

simulation carried out from a single structure. MD simulations numerically solve Newtonian 

equations of motion for all atoms placed in a force field defined by molecular mechanics 

(MM). The structure of the molecule is calculated for all states along a trajectory fractionated 

into many short time steps of e.g. 1-10 fs. MD-based tools include MDpocket [48], dxTuber 

[49] and Caver 3.0 [50]. Drawbacks of MD methods include the tendency of the algorithms to 

get stuck in local energy minima and high time complexity [32]. 

Finally, some tools use not-so-standard methods such as homology searches, 

e.g. SiteEngines [51], introduction of mutations [52], or consensus approaches, like MetaPock-

et [53]. 

Each of the algorithms must employ ranking of some kind to estimate which pockets are 

most likely to bind small molecules. Nearly planar surfaces happen to be the sites of protein-

protein interactions more often than small ligand binding sites, therefore exclusion of shallow 

pockets may take place. Besides, descriptors suitable for detecting binding site of one type of 

molecule may overlook sites for other types of ligands. Another issue is posed by the fact that 

pocket-finding algorithms neglect induced fit mechanics and thus may fail to detect cavities 

without a bound ligand. 

Fpocket is a free open-source geometric tool employing Voronoi tessellation and α-

spheres. It is able to detect over 90 % of top-three ranked pockets, which is an above-average 

feat among currently available algorithms, and is complemented with adequately high speed 

[40]. 

In a metric space Rn with a defined distance function d, Voronoi cell Vi of an atom ai is the 

set of all points x in Rn whose distance from ai is lesser than or equal to their distance to each 

atom aj while i ≠ j (Equation 5). 

    jixadxadRxV ji

n

i  ,,  

Equation 5: Definition of a Voronoi cell. Vi – Voronoi cell of an atom ai; Rn – metric space; d(a, b) –

distance of points a and b (for Euclidean space, d is their Euclidean distance). 
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Each Voronoi cell contains exactly one atom. In layman’s terms, a 2D Voronoi tessellation is a 

polygonal partition of the plane in which every point of an edge is equidistant from exactly 

two nearest atoms and each vertex is equidistant from three or more [54]. Each convex poly-

gon is the intersection of all half-planes delimited by the perpendicular bisectors between ai 

and each aj. When extended to 3D space, Voronoi edges form planar 2D faces and the cells, 

convex 3-polytopes. Delaunay triangulation diagrams convey equivalent information as Voro-

noi tessellation diagrams because one can be mapped directly from the other. Delaunay dia-

gram can be obtained from a Voronoi diagram by connecting every tuple of atoms separated 

with a Voronoi edge with a straight line. 

For each Voronoi vertex in 2D, a circle can be constructed with the center in the vertex 

such that it touches at least three atoms but contains none inside (Figure 6). Analogously, α-

spheres touching at least 4 atoms can be obtained in 3D space. α-sphere radii correspond with 

the curvature of the protein’s surface; highly curved surfaces yield spheres of small radii 

whereas four atoms located on a plane would produce an infinitely great radius. Thus, by fil-

tering α-spheres by their radii gives information about protein surface; discarding too big and 

too small spheres will leave only spheres located in concave areas. 

 

 
Figure 6: 2D Voronoi diagram (black lines) and its relation to Delaunay triangulation (blue 

lines) for a set of atoms (red). A Delaunay triangle is circumscribed by a green circle (2D coun-

terpart of α-sphere) with the center located in a Voronoi vertex. 

Adapted from [55]. 

 

In the next step, fpocket clusters related α-spheres with proximate centers of mass. Polari-

ty of found pockets is also evaluated – α-spheres containing at least two polar atoms are 

marked as polar while those containing at least 3 atoms with low electronegativity are 

marked as non-polar. Finally, a simple scoring function based on Partial Least Squares is ap-

plied to determine the propensity of each pocket to bind small molecules. The output of the 

software presents information about detected pockets sorted by rank [40]. 
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1.2.4 Molecular Docking 

After binding sites in a protein are identified, it is useful to find out what molecules satisfy 

spatial and physico-chemical requirements which would enable them to non-covalently bind 

in those sites and thus perhaps produce a biological response in the biomolecule. This can be 

done by the means of molecular docking – a computational procedure which determines the 

best mutual alignment of two molecules and the affinity of the ligand. Besides scanning librar-

ies of small compounds in search for suitable ligands for a protein, it can as well be used to 

infer the conformation of the complex of two molecules of known structure but unknown 

binding mode (i.e. position and conformation) [56]. 

The molecules can be represented in three ways which influence how the docking will be 

done. Atomic representations are computationally expensive as they have to tackle the inter-

actions between all tuples of close atoms. It is used with potential energy functions used for 

scoring. Surface representation considers only shapes of the molecules and looks for comple-

mentarity. It considers mainly surface atoms in the computation but the interior atoms cannot 

be neglected either for they contribute to the properties of the surface. The surface is consid-

ered as a set of geometric features like convex, concave and saddle-shaped areas modeled ac-

cording to their accessibility to a probe. Grid representation replaces the protein with a grid of 

points with given properties, then assigns them “interior”, “exterior” and “surface” markers 

according to their position in the protein. A similar procedure is performed with the ligand, 

after which the method looks for maximization of the contact of surface areas of the protein 

and the ligand [32]. 

The simplest case of docking considers two rigid molecules. The protein remains fixed in 

space whereas the ligand is subject to a search for best binding mode. The ligand molecule has 

6 degrees of freedom – three translational and three rotational ones. The docking algorithm 

separates the space with a grid, then positions the ligand molecule (usually its center of mass) 

into different points in it, calculating binding energies for possible rotations. Decreasing the 

angle of rotation steps and lowering grid granularity lead to longer computational times, be-

cause the number of ligand poses (set of specific translational and rotational variables) grows 

rapidly and easily reaches tens of thousands poses for even simple ligands in small, coarse 

grids. By introducing flexible (stretchable, rotatable) bonds, the number of degrees of freedom 

rockets and so does the computational complexity. Therefore exhaustive or brute force algo-

rithms (systemically going through all possible poses) would be highly inefficient and are re-

placed with optimized methods [57]. 

One of the simplest solutions is manual, i.e. user-driven docking. However, this requires 

that the user have a good idea of how the ligand will bind in the pocket, for example thanks to 

knowing a crystal structure with a very similar ligand. The search space is very narrow in this 

case. The drawback is that even very similar ligands can adopt quite different poses, as 

demonstrated by crystallographic studies. One of the first docking algorithms, DOCK, was 

based on complementarity of ligand and pocket shapes represented by overlapping spheres. 

Fragment docking is a method where a rigid ligand moiety (such as an aromatic ring) is 

docked into a favorable position and anchored there; subsequently the rest of the molecule is 

searched for acceptable conformations. This approach is used by FLEXX, FLOG, SURFLEX and 

SEED. Stochastic methods are, so to say, descendants of serendipity as they cannot guarantee 
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that they will find the optimal solution; they rely on generators of pseudorandom numbers 

based on which they place and orient the ligand. Already explored poses can be discarded to 

ensure that broader conformational space is explored (so called tabu search). By repeating 

the steps many times, different statistically distributed poses are covered. Monte Carlo meth-

ods are an example of stochastic approach. They methods can be implemented with Metropo-

lis criterion which directs the search to converge to lower energy states. Stochastic methods 

are an alternative for exhaustive methods when the search space is too large. An example of 

Monte Carlo-Metropolis approach is MDOCK. MD methods employ classical Newtonian laws. 

They are not very suitable for docking because of high dependence on starting conformation 

and inefficiency in overcoming high energy barriers on potential energy surfaces; this holds 

especially for small, very flexible ligands [58]. This inconvenience can partly be suppressed by 

strategies like simulated annealing. Finally, genetic algorithms can also be used. They simulate 

evolution – the parameters of “parent” generation undergo minor random mutations to give 

rise to “child” generations. New conformations are kept if their parameters score better. An 

example of a genetic algorithm in docking is GOLD [32]. All of the algorithms make simplifying 

assumptions, for example that the bond lengths and angle do not change; that charges remain 

the same in the course of the docking; that the protonation states do not change, etc. [56]. 

Complications concerning docking arise from the fact that even when an algorithm finds a 

well-scoring binding mode, it may still not correspond to reality. The algorithms can’t fully 

take into account all factors influencing the binding, e.g. solvent model, low Gibbs free energy 

value of the interaction, multiple binding sites, induced fit [8]. Another problem is that crystal-

lographic structures are usually the ones used for docking. Their ligand is removed and the 

freed binding site stays in the conformation adapted to the original ligand’s shape, therefore 

docking has a tendency to identify ligands of a very similar structure while in fact, the protein 

could accommodate a much wider range of shapes. 

Docking software typically immediately filters out poses with substantial steric clashes. 

The rest are evaluated with scoring functions. When a single ligand is docked, only its fit with 

the protein needs to be assessed but when scanning large libraries, the requirements on the 

scoring function include not only scoring affinities of individual ligands quickly but also being 

able to compare the binding of ligands relatively to each other. For this purpose, maintaining a 

good comparative ranking is more important than the absolute scale of scores. A handful of 

scoring functions can be used; each of the available approaches has its pros and cons. Most 

scoring functions approximate the binding free energy by adding up the terms describing en-

ergetic contributions of solvent effects, conformational changes of both the ligand and the 

protein, specific protein-ligand interactions, free energy loss due to freezing rotatable bonds, 

the loss of free rotational and translational free energy caused by binding of the two mole-

cules into a single complex, changes in vibrational modes and possibly other terms (Equation 

6). The inclusion or omission of different parameters are a hot topic to-day. The parameters in 

consideration may further be assigned a weighing coefficient extrapolated from experimental 

data or quantum mechanical calculations. 

...6/54int321  vibrtrotconfsolventbinding GaGaGaGaGaGaG  

Equation 6: Gibbs free energy of binding between the protein and the ligand. ΔG – Gibbs free en-

ergies of individual contributions; an – experimentally determined weighing factors. 
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Molecular mechanics scoring functions are more simplistic as they calculate only some of the 

free energy terms but as a tradeoff, they are more likely to yield inaccurate results. Empirical-

ly derived functions observe the dependences of total binding energy on individual parame-

ters, then sum the contributions up: ionic interactions, hydrogen bonding, lipophilic 

interactions, loss of internal degrees of freedom of the ligand etc. [58]. An example of an atom-

ic interaction-based function neglecting solvation/desolvation and entropy changes could 

look like Equation 7. 
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Equation 7: Example of an interaction-based scoring function with atomistic resolution. The first 

term is empirical Pauli repulsion; the second, van der Waals attraction; the third, electrostatic 

potential. Fourth and fifth term denote angular-dependent H-bond potential [28]. 

 

Knowledge-based scoring functions are built upon knowledge contained in experimentally 

determined structures. Specific interatomic distances that occur often are considered favored 

ones while rarer are not. This scoring is applied by DRUGSCORE. Because as of now, no single 

function achieves perfect accuracy, consensus scoring is sometimes used to get the best re-

sults. The point of all these functions is to perform at high speed and throughput; candidate 

poses with promising scores can be refined in successive steps to calculate more accurate val-

ues of binding energies [28]. 

An important decision in docking for a given purpose is whether or not one should consid-

er flexibility of the molecules and to what extent. Each flexible element in a structure increas-

es the computational complexity immensely because not only relative orientation of 

molecules must be calculated but also their conformations. In fact, this task has been proved 

to be NP-hard, which means that increasing the size of an input parameter leads to a polyno-

mial increase in time required to solve the problem [59]. That means that fully flexible dock-

ing is not feasible in practice. Flexibility is thus allowed only for a subset of the variables. 

There are rigid receptor – flexible ligand docking; flexible receptor – rigid ligand docking; and 

flexible receptor – flexible ligand docking. They are a compromise between rigid-body dock-

ing and fully-flexible docking, typically used to refine binding modes found by other methods 

[60]. 

It may seem that docking requires huge computational resources and lots of time in return 

for questionable output. It has, however, proved to be a serviceable tool in drug design. To 

name at least a few instances of a successful outcome, it has been helping in elucidating the 

function of acetylcholinesterase reactivators and to design novel antidotes for organophos-

phorus compound and nerve agent poisonings [61]. Virtual screening has provided the most 

hits for G-protein coupled receptors and for kinases [62]. And, to conclude, MD docking has 

led to the discovery of the first approved HIV-integrase inhibitor [32]. 
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1.3 Human GSK-3β as a Biological Target 

1.3.1 GSK-3β Characterization and Function 

Kinases are enzymes catalyzing the transfer of an activated γ-phosphate moiety (PO43-) from 

ATP to a substrate molecule. This leads to the priming of the substrate or to a modulation of 

its activity, resulting in transmission of signals and regulation of metabolic pathways. Phos-

phorylation is one of the possible post-translational modifications of proteins and as such, it 

plays an important role in metabolism regulation. It follows naturally that dysfunctioning ki-

nases can have a variety of adverse effects on health. Human proteome sports over 500 kinas-

es sharing a highly conserved catalytic site and an ATP-binding pocket. One kinase can 

phosphorylate a variety of molecules and, conversely, one substrate can be subject to the reg-

ulation by a handful of different kinases [63]. 

GSK exists in isoforms α and β in mammals, encoded by two different genes (GSK3A and 

GSK3B) and having distinct functions. Insufficiency in one type cannot be compensated for by 

the abundance of the other. Although they possess 97 % similarity in the active center, there 

are major differences between them in the remainder of the molecule [3]. GSK-3β (EC 

2.7.11.26) is expressed ubiquitously in animals, plants and microorganisms; it is located main-

ly in the cytosol, but to a lesser extent also in the nucleus and mitochondria. It is a proline-

directed serine-threonine protein kinase, i.e. its substrate residues can be both serine and 

threonine side chains which are immediately followed by a proline residue. The general reac-

tion it catalyzes is 

ATP + protein → ADP + phosphoprotein. 

 

It was first isolated from rabbit skeletal muscles and reported to regulate glycogen synthase 

(GYS1, GYS2) by the means of phosphorylation [1], hence its trivial name. Under physiological 

conditions, phosphorylated GYS is the inactive form in vivo. It easily becomes allosterically 

inhibited with cytosolic ATP, ADP and Pi; the active form doesn’t show such inhibition. Phos-

phorylation of GYS by GSK-3β inactivates the former. Glycogen synthase, as its name suggests, 

is responsible for the synthesis of glycogen from an oligosaccharide primer provided by gly-

cogenin. Glycogen is a glucose polysaccharide serving as energy depository, therefore the reg-

ulation of this pathway has impact on glucose uptake and storage [6]. 

Since its discovery, GSK-3β has been proved to partake in many metabolic pathways be-

yond that reported by early studies. To name a few, the protein tyrosine phosphatase 1B 

(PTP1B) insulin signaling pathway modulates insulin-dependent signaling and thus blood 

levels of glucose; in Wingless integration gene (WNT) signaling pathway, GSK-3β forms a deg-

radation complex with axin, adenomatous polyposis protein (APC), protein phosphatase 2A 

(PP2A) and casein kinase 1α (CK1α) which degrades β-catenin, thus activating gene transcrip-

tion [64]; through phosphorylation of Tau-protein it interferes with the stabilization of micro-

tubules in the nervous system; via interaction with Microtubule-actin cross-linking factor 1 

(MACF1), it disrupts cell migration; and there seem to be more pathways, many of which still 

awaiting elucidation [3]; more details can be seen in Figure 7. 

GSK-3β is implicated in metabolic disorders – diabetes mellitus type II (which actually was 

the first disease of interest after GSK-3β discovery) by regulating glucose levels, and obesity 
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by promoting adipogenesis. Besides that, it regulates many neuronal signaling pathways, 

wherefore its overexpression or aberrant activity are connected with neuroinflammation and 

several neurodegenerative diseases. It takes part in the formation of neurofibrillary tangles 

(NFT) and, via hyperphosphorylation of tau-protein, amyloid-β plaques resulting in neuronal 

apoptosis: these conditions are the staple degenerative processes in Alzheimer’s disease. [3]. 

It has been demonstrated that certain GSK-3β genotypes are associated with an increased risk 

for Parkinson’s disease; furthermore, it is strongly suspect from accounting for Huntington’s 

disease, bipolar disorder, depression, schizophrenia and stroke [65]. Last but not least, since 

GSK-3β acts as a negative regulator of cell growth, its dysregulation can result in development 

of colorectal, breast, prostate, lung, ovarian and stomach cancer. Some studies also indicate its 

involvement in the formation of melanoma and glioblastoma [3]. 

 

 
Figure 7: Diagram showing the involvement of GSK-3β in metabolism [66]. (a) post-translational 

modifications of GSK-3β; (b) association into multi-protein complexes; (c) primed GSK-3β sub-

strates; (d) distribution within the organism. 

 

From the aforementioned information it is quite obvious why GSK-3β has become a tempt-

ing target in the quest for drugs treating so far unmet diseases. Unfortunately, as it is involved 

in so many pathways, it will be difficult to pinpoint and exploit suitable regulatory sites with-

out disrupting the enzyme’s function in the pathways which need to stay intact. 
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1.3.2 GSK-3β Structure and Modulation 

PDB contains several dozen GSK-3β structures, hinting at how rich its conformational space is. 

GSK-3β in crystals occurs as a slightly asymmetric, low-affinity homodimer. Each subunit has 

420 residues but experimentally resolved structures only show the residues from Lys35 to 

Ser386 as the terminal regions lack rigid structure in the crystals and thus don’t show clearly 

localized electron densities (Figure 8). The molar mass of monomer is about 47 kDa. The N-

terminal domain (residues 35-134) forms a seven-stranded orthogonal β-barrel whose 5th and 

6th strands are connected with a short, two-turn α-helix. The barrel serves as an activation 

segment dissimilar from other Ser/Thr kinases, reminding instead of traits of tyrosine kinas-

es. The C-terminal α-helical domain (152-342) is connected to the N-terminal domain by an α-

helix (138-149). It is via the α-helical domain that the dimer subunits bind. The activation 

segment link is stabilized by the presence of an exogenous anion, a sulfate group (SO4
2-) in the 

crystal but possibly a phosphate in vivo. The core α-helical domain shows topological resem-

blance to mitogen-activated protein kinases (MAPK) and cyclin-dependent kinases (CDK) 

[67]. The closest conformation to GSK-3β among other kinases has been found in ERK2 (a 

MAPK). While ERK2 shows a strong preference for proline residues at the n+1 position, GSK-

3β is more tolerant [68]. 

Activation segment is present in many kinases; it contains residues which can be phos-

phorylated in order to increase the kinase’s activity manifold (over 1000-fold for MAPK) by 

altering the conformation of catalytic and substrate-binding sites. In GKS-3β, this residue is 

Tyr216 but the resulting modulation is subtler. As phosphorylated kinases are active and 

dephosphorylated ones, inactive, it is apparent that different kinases can regulate one anoth-

er, participating in an intricate network of delicately balanced signal transduction pathways. 

 

 
Figure 8: Structure of human GSK-3β (PDB 1GNG) monomer. Left: cartoon demonstrating the 

position of N-terminal β-barrel with its auxiliary α-helix (blue), and the α-helical domain (rain-

bow). Two co-crystallized sulfate anions can be seen near the joint between both domains. 

Right: SES (Connolly surface) for a water probe. Red regions are hydrophobic. 

 

GSK-3β’s active site is formed by the residues Lys85, Glu97, Asp181 and Asp200. The ATP-

binding pocket is found in the cleft between β and α-lobes. In the vicinity of this site are the 

binding sites of two Mg2+ ionic cofactors. The enzyme exhibits a preference for substrates con-
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taining the sequence S/T-X-X-X-Sp/Tp, i.e. such where the serine or threonine residue at the 

position n+4 (n denotes the substrate side chain) has already been phosphorylated (Figure 7). 

Substrates lacking the primed site are phosphorylated less readily. Binding pocket for the 

primed substrate is found in the activation loop (Arg96, Arg180 and Lys205) [68]. Inhibition 

is achieved by the phosphorylation of Ser9, signaled by insulin. It works as a competitive auto-

inhibition mediated by binding of the phosphorylated N-terminal region, similar to a primed 

pseudosubstrate, into the enzyme’s own active site [67]. 

There are over 40,000 molecules reported to inhibit GSK-3β to a certain extent but IC50 

values have only been determined for about 7,500 of them [3]. Lithium has been known as a 

treatment for bipolar disorders since 1950s; it was later found that its main target is GSK-3β 

and that it competes with its magnesium cofactors. Lithium ions are, alas, not sufficiently se-

lective so high concentrations are required. Most to-day known inhibitors compete for the 

ATP-active site but due to relatively high structure similarity in the kinase family, selectivity 

still remains an issue. It is unlikely that selectivity for GSK isoforms could be achieved by an 

ATP competitor; higher selectivity could, however, be attained by targeting β-isoform-specific 

pockets. So far the most specific inhibitors are paullones, substituted indirubins and substi-

tuted maleimides. Their shared traits are low molecular mass (<600 Da) and flat molecules 

with hydrophobic heterocycles [66]. 
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2 Practical Part 

2.1 Finding Pockets in Human GSK-3β 

2.1.1 Experimental Setup 

The study is a follow-up of the work carried out in 2011 by Palomo et al. [63] who undertook 

the study of binding pockets in then available 25 GSK-3β structures in sufficient resolution. 

They found 7 pockets conserved across structures, three of which were already-known bind-

ing sites of ATP, substrate, and axin and frattide peptides. 

PDB currently stores 65 GSK-3β structures, all of which have been determined by X-ray 

crystallography. 48 of the structures are co-crystals with inhibitors; vast majority of the inhib-

itors binds in the ATP site and the enzyme in remaining crystals is either inhibited by phos-

phorylated peptides or autoinhibited. The enzyme is co-crystallized with different ligands and 

the resolutions range from 1.80 to 3.20 Å. Two different structures were selected based on 

their novelty compared to Palomo’s research, their reasonable resolution and suitable ligands: 

GSK-3β bound to an inhibitor (N-[4-(isoquinolin-7-yl)pyridin-2-yl]cyclopropanecarboxamide) 

as a representative of inhibited enzyme conformation, PDB access code 4PTE (released in 

2015); and uninhibited GSK-3β complexed with a primed axin peptide bound at its substrate 

binding site, PDB ID 4NM0 (released in 2014). 

One of the measures of structure quality in PDB is Ramachandran plot. The protein back-

bone is created by repeating regular segments of Cα and planar amide bonds stabilized by de-

localized electrons. Due to rigidity caused both by amide bonds and by steric effects of 

residues’ side chains, the backbone dihedral angles φ and ψ (see Figure 9) are limited to cer-

tain value ranges. 

 

 
Figure 9: Dihedral angles φ, ψ and ω in protein backbone. 

Taken from http://www.keyword-suggestions.com/ZGloZWRyYWwgYW5nbGUgcHJvdGVpbnM. 

 

When φ and ψ of individual amino acid residues are plotted on x and y axis, densely populat-

ed areas of naturally occurring conformations form a characteristic map showing favored and 

allowed conformations, called Ramachandran plot or Ramachandran diagram [6]. Different 

amino acids have different rigidity and different side chain volumes so their accessible areas 

in the plot can vary. In X-ray crystallography, outliers in Ramachandran plot can indicate that 

something had gone wrong during crystallization or during the experiment. The lower the 

number of outliers, the more representative the obtained structure. Therefore Ramachandran 

plots are important indicators of structure validity. As can be seen from Figure 10, the select-

ed structures have a good degree of reliability: there is but one outlier in 4PTE and none in 

4NM0. 

http://www.keyword-suggestions.com/ZGloZWRyYWwgYW5nbGUgcHJvdGVpbnM
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Figure 10: Ramachandran plots. Left: generic plot indicating favored (dark grey) and allowed 

(light grey) conformations; center: 4PTE; right: 4NM0. 

Taken from http://www.cryst.bbk.ac.uk/PPS95/course/3_geometry/rama.html (left) and from 

corresponding PDB entries (center and right). 

 

Fpocket was chosen for detecting pockets because of its reported decent performance, free 

availability for distribution, and platform independence. Fpocket accepts adjusted PDB struc-

tures as input. The structure cleanup consisted in removing all solvent (water and buffer) 

molecules, ions, ligands and non-polar hydrogen atoms. Only one monomer subunit was left in 

place. Resulting structures were randomly rotated to reduce bias, as the pocket finding algo-

rithm may perform slightly differently for different coordinates. 

Fpocket parameters were set as follows: minimal radius of αsphere to 3 Å; maximum radi-

us of α-sphere to 6 Å; minimum apolar neighbors to 3; minimum number of α-spheres to 35; 

maximum clustering distance to 1.73 Å; maximum distance between pockets to 4.5 Å; maxi-

mum distance for single linkage to 2.5 Å; and minimum proportion of apolar spheres to 0.0. 

 Minimal radius of α-spheres sorts out too small spheres which arise mainly in small inter-

nal cavities. Maximum radius, contrariwise, discards too big spheres which are located on 

more or less planar surfaces. Apolar neighbors parameter sets the criterion for polarity: only 

spheres containing at least the indicated number of apolar atoms on their surface will count. 

Minimum number of α-spheres parameter also prunes too small cavities; only pockets with 

sufficient number of spheres are left. The last three parameters govern clustering. Maximum 

clustering distance influences the first clustering step – it clusters spheres whose distance is 

lesser or equal to the threshold and whose centers are connected by a Voronoi edge, forming 

small pockets. Maximum distance between pockets determines how small primary pockets 

will be clustered based on the distance of their centers of mass. Linkage distance checks how 

many α-spheres belonging to different pockets coincide and how much. It is determines the 

results of the last clustering step. Minimum proportion of apolar spheres spans from 0.0 to 1.0 

and has the final word about whether or not a pocket will be discarded due to overly high po-

larity. The value is defined as the ratio of apolar spheres to the total amount of spheres in the 

pocket; 0 means that all pockets are kept regardless of polarity [69]. 

Volume of the pockets was calculated in 2,500 iterations. The calculation uses a stochastic 

approach based on pseudo-random numbers. The implemented Monte Carlo method gener-

ates random coordinates and checks if the point lies within the pocket. This step is repeated 

http://www.cryst.bbk.ac.uk/PPS95/course/3_geometry/rama.html
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many times and the volume is eventually obtained from the ratio of hits to number of itera-

tions. 

 

2.1.2 Results 

Fpocket detected 15 pockets in 4PTE (Figure 11, Figure 12). The top-scoring pocket corre-

sponds to the site where the ATP-competitive inhibitor was bound in the original structure. 

The 4th-scoring pocket lies on the opposite side of the joint between α and β-domains. The 

remaining sites might act as allosteric sites. The 6th-scoring pocket forms a gap in the other-

wise more or less planar area where the two subunits of the dimer contact. It is the same site 

where axin binds. The 2nd-scoring pocket is the largest and more polar than the ATP-binding 

site. It is located close to the 5th pocket; they might form a single binding site. Detailed data 

about the pockets can be found in Table 1. 

 

 
Figure 11: Top 7 scoring pockets in 4PTE. 1st – red; 2nd – orange; 3rd – yellow; 4th – green; 5th – 

teal; 6th – blue; 7th – magenta. 

 

 
Figure 12: Top 7 scoring pockets in 4PTE – rear view. 1st – red; 2nd – orange; 3rd – yellow; 4th – 

green; 5th – teal; 6th – blue; 7th – magenta. 
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The search of 4NM0 structure returned 20 pockets (Figure 13, Figure 14). Again, the top-

scoring pocket, along with pocket no. 6, are located in the crevice between the two domains. It 

is the binding site of ATP along with two Mg2+ cofactor ions. The 4th-scoring pocket is part of 

the binding site of axin peptide. Interestingly, just like in the inhibited protein 4PTE, the 2nd 

and the 5th pockets are located in the same lobe, their ranking is the same and they are so ad-

jacent that they might form a single site. Pocket no. 7 at the opening of the β-barrel accommo-

dates a glycerol molecule in the original structure. More details can be seen in Table 2. 

 

 
Figure 13: Top 7 scoring pockets in 4NM0. 1st – red; 2nd – orange; 3rd – yellow; 4th – green; 5th – 

teal; 6th – blue; 7th – magenta. 

 

 
Figure 14: Top 7 scoring pockets in 4NM0 – different view. 1st – red; 2nd – orange; 3rd – yellow; 4th 

– green; 5th – teal; 6th – blue; 7th – magenta. 
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Table 1: Pocket descriptors for 4PTE. 

No. Score Hydrophobicity score Polarity score Volume Å3 Charge score 

1 38.6565 32.5200 13 2372.5518 2 

2 32.3441 13.9615 15 3555.5063 -4 

3 23.1745 51.2174 10 2718.9121 0 

4 18.8411 17.9500 11 2012.3595 1 

5 13.6342 15.0000 9 1205.1886 0 

6 11.4581 49.0000 4 1548.2566 1 

7 9.8622 34.0714 6 1778.8041 0 

8 9.5371 9.0000 9 1578.1012 1 

9 8.5365 33.8333 7 1959.4733 0 

10 8.4940 30.4000 6 1328.7073 2 

11 8.4226 39.7000 6 1443.9266 0 

12 5.8861 21.6000 7 1501.4696 0 

13 5.7936 59.2727 4 820.7696 -1 

14 5.3918 32.7000 3 1185.0250 -1 

15 1.4518 35.8462 6 2548.1270 2 

 
Table 2: Pocket descriptors for 4NM0. 

No. Score Hydrophobicity score Polarity score Volume Å3 Charge score 

1 32.1009 36.3929 14 2727.7402 3 

2 26.5142 19.3500 13 2004.8190 -2 

3 25.5595 51.5417 8 3434.9426 0 

4 17.7633 53.8000 4 1777.3320 1 

5 17.0870 9.3750 11 1442.2821 0 

6 12.1386 17.6471 10 2054.9795 2 

7 11.5500 39.2857 7 1687.4370 3 

8 11.4333 33.2308 4 1716.0238 -2 

9 10.8063 20.5000 6 1763.3873 3 

10 10.6944 16.7273 7 839.7458 -2 

11 9.1007 34.0714 6 1662.4253 0 

12 6.8876 28.8333 4 1454.2434 3 

13 6.1350 51.0000 4 854.5778 0 

14 6.1038 -14.5000 8 1640.0389 1 

15 6.0868 42.8182 6 1476.6116 0 

16 5.2157 21.9000 6 1654.5199 0 

17 4.3280 43.0000 3 598.7144 -1 

18 4.2593 6.0000 5 1781.4888 -1 

19 4.0036 27.3000 4 1256.8938 1 

20 2.2033 43.3750 1 984.2368 0 
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2.2 Docking into Human GSK-3β Selected Pocket(s) 

2.2.1 Experimental Setup 

After pockets had been identified, the putative binding sites were tested by docking against a 

library of 12 small molecules. Eleven molecules were proclaimed inhibitors of GSK-3β in the 

literature, the last one was ADP, the enzyme’s natural substrate. The selected ligands and their 

IUPAC names are listed in Table 3. 

 

Ligand ID Ligand name 

30 4-benzyl-4,5-dihydro-3H-1λ³,2λ³,4-dithiazole-3,5-dione 

44 4-benzyl-2-ethyl-1,2,4-thiadiazolidine-3,5-dione 

4NM0-ADP adenosine 5′-diphosphate (substrate bound to 4NM0 in its original structure) 

4PTE_ligand 
N-[4-(isoquinolin-7-yl)pyridin-2-yl]cyclopropanecarboxamide (inhibitor bound 
to 4PTE in its original structure) 

alsterpaullone 9-nitro-7,12-dihydroindolo-[3,2-d][1]benzazepin-6(5)-one  

cimetidine 
1-cyano-2-methyl-3-[2-[(5-methyl-1H-imidazol-4-
yl)methylsulfanyl]ethyl]guanidine 

famotidine 
3-[({2-[(diaminomethylidene)amino]-1,3-thiazol-4-yl}methyl)sulfanyl]-N'-
sulfamoylpropanimidamide 

indirubin-oxime indirubin-3′-oxime 

ligand_3du8_h 
(7S)-2-(2-aminopyrimidin-4-yl)-7-(2-fluoroethyl)-1H,4H,5H,6H,7H-pyrrolo[3,2-
c]pyridin-4-one 

maleimide 3-(2,4-Dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione 

manzamine A 
(1R,2R,4S,5Z,12R,13S,16Z,22R)-25-{9H-pyrido[3,4-b]indol-1-yl}-11,22-
diazapentacyclo[11.11.2.1²,²².0²,¹².0´,¹¹]heptacosa-5,16,25-trien-13-ol 

ZINC5932684 
3-(3-{[(2S)-2,3-dihydroxypropyl]amino}phenyl)-4-(5-fluoro-1-methyl-1H-indol-3-
yl)-2,5-dihydro-1H-pyrrole-2,5-dione 

Table 3: Overview of ligands selected for docking. 

 

Ligands 30 and 44 are reported in literature as potent GSK-3β inhibitors [70]. 4NM0-ADP is 

the natural substrate which was co-crystallized in 4NM0 structure. 4PTE_ligand is the inhibi-

tor bound in the original structure of 4PTE. The two latter ligands served for validation of the 

docking results against their original PDB files. Remaining compounds represent several fami-

lies of GSK-3β inhibitors discovered up to now [66]. 

The docking was carried out using free, open-source software AutoDock Vina 1.1.2. This 

software was selected because of its free license, high reliability, accuracy, robustness, ex-

haustiveness, speed, and easy parallelization. The scoring function of Vina makes a summa-

tion of symmetric interaction functions representing intramolecular and intermolecular 

contributions (Equation 8). 

 



ji

ijtt rfc
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Equation 8: Scoring function of Vina. t – type of atom; f(a, b) – set of interaction functions as-

signed to an atom pair a, b; rij – interatomic distance between atoms i and j. 
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Vina employs a stochastic global optimization approach with a genetic algorithm. It alter-

nates mutation steps and local optimization by Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

method. BFGS is a quasi-Newtonian method which takes into account not only the value of the 

scoring function at a given point but also its local gradient with respect to its arguments. Sev-

eral runs are performed from random conformation seeds; they can be pleasingly parallelized, 

achieving near-ideal speed-up. For input, Vina takes .pdbqt files, an extension of .pdb format. 

Their difference lies in the fact that .pdbqt provides additional information about atom types 

and partial charges. [56]. 

For the screening, rigid-body docking was selected. The ligands were prepared in Hyper-

Chem 8 via a semi-empiric PM3 (quantum calculation of molecular electronic structure) geo-

metric optimization method. Afterwards, they were converted from .pdb to .pdbqt format in 

MGL AutoDock Tools. Gasteiger-Marsili empirical atomic partial charges were added and non-

polar hydrogens of protonated forms of the ligands calculated for physiological pH 7.4 were 

merged into heavy atoms. Finally, torsion angles were detected automatically. 

Preparation of protein molecules was also carried out in MGL AutoDock Tools. The proce-

dure included the removal of redundant enzyme subunits, cofactors, ions, ligands and water 

molecules. Although water takes part in the formation of enzyme-ligand complex, Vina is not 

suited for multi-particle simulations, therefore solvent effects were disregarded. Polar hydro-

gens were added and non-polar hydrogens were collapsed into associated carbon atoms. Al-

ternative conformations of residues were detected and removed. The resulting files were 

converted to .pdbqt format. Center of the docking gridbox and its dimensions were set by an 

in-house C++ program. 

The following computation parameters for the targets were used: 

 

4MN0     4PTE 
cpu = 16     cpu = 16 

center_x = -7.259   center_x = -13.959 

center_y = 34.229   center_y = 1.950 

center_z = -15.976   center_z = -44.282 

 

size_x = 60    size_x = 69 

size_y = 63    size_y = 57 

size_z = 75    size_z = 55 

 

exhaustiveness = 124  exhaustiveness = 124 

 

num_modes = 20    num_modes = 20 

 

CPU setting denotes the number of processor units which are to be used for calculation. 

The x, y and z are Cartesian coordinates of the center of the gridbox, followed by the dimen-

sions of the gridbox. The size of the gridbox was chosen to accommodate the bulk of the pro-

tein plus some additional volume so as to leave enough space for the ligand to probe the 

whole of the enzyme’s surface. Increasing the exhaustiveness parameter exponentially de-

creases the probability that the global minimum will not be found. This is achieved at the cost 
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of linear increase of the time spent on the calculation. Num_modes parameter defines the 

maximum number of binding modes to be generated. 

Setting the CPU parameter to 16 means that multi-threading was used. Distribution of cal-

culations was achieved by the use of an in-house shell script using PBS Torque scheduler for 

high-performance computing (HPC) systems. The preliminary calculations and refinement of 

computational methods was carried out at MetaCentrum VO (Virtual Organization). MetaCen-

trum VO provides infrastructure for distributed computing and storage resources free of 

charge for students and researchers in the Czech Republic. Subsequent scale-up and finaliza-

tion of the calculations were performed at IT4Innovations Supercomputing Center research 

institution, at HPC Cluster with nodes of the following configuration: 2x Intel Xeon E5-2680v3, 

2.5GHz, 24 CPU, 128GB RAM, x86-64, CentOS 6.6 Linux, InfiniBand FDR56 / 7D Enhanced hy-

percube, 0.5PB /home NFS disk storage and DDN Lustre shared storage. 

 

2.2.2 Results 

Each of the 12 ligands was docked sequentially into both receptor molecules. Each pair of 

molecules underwent 10 iterations of docking, each yielding 20 top-scoring binding modes, 

providing a total of 200 binding modes. An example of one output file can be seen below: 

 
Using random seed: 1457334310 

mode |   affinity | dist from best mode 

     | (kcal/mol) | rmsd l.b.| rmsd u.b. 

-----+------------+----------+---------- 

   1         -5.8      0.000      0.000 

   2         -5.7      2.735      3.125 

   3         -5.7      0.278      2.143 

   4         -5.6      1.536      2.284 

   5         -5.5      1.132      1.681 

   6         -5.5     15.541     16.373 

   7         -5.5     15.813     16.578 

   8         -5.4      1.869      1.900 

   9         -5.4     16.161     16.793 

  10         -5.4     16.028     16.634 

  11         -5.4     15.968     16.581 

  12         -5.4     16.126     16.791 

  13         -5.4     15.504     16.409 

  14         -5.4      2.257      3.276 

  15         -5.4     16.029     16.663 

  16         -5.3     15.659     16.668 

  17         -5.3     38.914     40.076 

  18         -5.3     15.525     16.500 

  19         -5.3      2.491      3.621 

  20         -5.2     38.855     40.083 
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The “random seed” item is the pseudorandom number generated for the stochastic part of Vi-

na’s algorithm. The rows in the file correspond the top-20 binding modes. The first column is 

the ranking of the mode; the second, estimated affinity (binding energy). Negative number 

means that energy is released upon creation of the bond, therefore the binding is favorable –

the lower the energy, the greater the affinity. RMSD columns show the root mean square devi-

ations between actual binding mode and upper bound (ub) or lower bound (lb) mode. RMSD 

is a measure of structural similarity – the lower its value, the better. 

An overview of calculated binding sites for each protein and ligand can be seen in Table 4. 

 

Ligand ID 
Avg 4PTE 
affinity 

kcal/mol 

Binding sites 
4PTE 

Avg 4NM0 
affinity 

kcal/mol 

Binding sites 
4NM0 

30 -5.60 
ATP 
barrel opening 
2&5 

-5.80 
ATP 
barrel opening 
2&5 

44 -6.30 

ATP 
2&5 
Axin site  
undetected pocket 

-6.40 

ATP 
2&5 
barrel opening 
undetected pocket 

4NM0-ADP -7.44 
ATP 
2&5 

-7.53 
ATP 
2&5 

4PTE_ligand -8.89 
ATP 
2&5 

-8.40 
ATP 
undetected pocket 

alsterpaullone -8.70 ATP -8.37 
ATP 
2&5 
Axin site 

cimetidine -5.23 
ATP 
2&5 
3 

-5.41 
ATP 
2&5 
Axin site 

famotidine -5.67 
ATP – whole cleft 
2&5 
undetected pocket 

-5.67 
ATP 
2&5 
Axin site 

indirubin-oxime -9.00 ATP -8.60 ATP 

ligand_3du8_h -8.70 
ATP 
2&5 

-8.10 
ATP 
2&5 

maleimide -9.28 ATP -8.31 ATP 

manzamine A -11.40 
ATP – whole cleft 
2&5 
4PTE – pocket 7 

-11.10 
ATP 
2&5 
Axin site 

ZINC5932684 -8.79 ATP -8.69 
ATP 
2&5 

Table 4: Binding energies and binding sites for 4PTE, 4NM0 and 12 ligands. ATP – ATP-binding 

site, in both proteins detected as no. 1 by fpocket. 2&5 – adjacent pockets scoring second and 

fifth by fpocket in both proteins. Barrel opening – ATP-cleft-side mouth of the β-barrel, detected 

as pocket no. 7 in 4NM0, undetected in 4PTE. Axin site – detected as no. 6 in 4PTE and as no. 4 in 

4NM0. 3 – 4PTE 3rd ranking pocket (next to ATP-site). 
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Obtained data show a satisfactory consistency with literary sources. The proteins’ corre-

sponding ligands were in most occasions correctly docked in the places where they had origi-

nally been found in experimentally determined crystallographic structure (Figure 16). 

Uniformly, all of the inhibitors and the substrate show a strong preference for the ATP-

binding pocket. The docking experiment shows that most of the ligands may be able to bind to 

other sites as well, only indirubin-oxime and maleimide derivative seem to bind solely in the 

ATP-pocket. 5 of the ligands show some degree of affinity to the axin-binding site. Ligands 30 

and 44 (thiadiazolidinone derivatives) show a considerable affinity toward the mouth of the 

β-barrel, occluding its side turned to the ATP-binding pocket. This shallow β-barrel pocket has 

been detected by fpocket but only in 4NM0 and with a low ranking (7th rank). The reported 

binding modes support the claim that compounds 30 and 44 act as non-ATP-competitive in-

hibitors. According to Vina, they do bind in the ATP site but much less frequently than all the 

other tested ligands (Figure 17). 

Ten ligands seem to be inclined to adopt positions in the area detected by fpocket as two 

pockets in close vicinity of each other, ranking identically 2 and 5 in both protein structures. 

These depressions might together form one larger pocket able to contain a rather large ligand. 

Seven of the ten ligands have been reported by Vina to bind into this pocket in both of the pro-

tein structures. This information is of interest because the place might function as an alloster-

ic site. 

The binding energies for corresponding pairs of protein-ligand complexes were virtually 

the same in both proteins. The chart displaying average energies for each binding couple is 

shown in Figure 15. 

Manzamine was found to have the lowest negative binding energy (lower than -11), i.e. it 

has the greatest affinity to GSK-3β from among the ligands selected for the study. It also tied 

for having the richest portfolio of binding modes – apart from being able to bind along the 

cleft between α and β domains, which is the binding site of ATP, it can also occupy three more 

pockets (Figure 18, Figure 19). 
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Figure 15: Average top-scoring binding energies with different ligands. Red –NM0; blue- 4PTE.  

 

 

 
Figure 16: 4NM0 bound to ADP. Left: original crystallographic structure; center: docked struc-

ture; right: binding modes with ADP docked in the large, potentially allosteric pocket, identified 

by fpocket as 2nd and 5th ranking pocket (rear view). 

 

 
Figure 17: 4NM0 (left) and 4PTE (right) with ligand 30 docked in. The cluster of binding modes 

close to the center is ATP-binding site. The cluster to the right is bound in the mouth of the β-

barrel and may account for non-competitive inhibition. 
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Figure 18: 4NM0 bound to manzamine A. Left: manzamine bound to the ATP-binding site (huge 

cleft in the middle). Another binding mode can be seen to the left, in the area corresponding to 

rank 7 pocket found in 4NM0. Right: rear view of the same structure. Manzamine A is bound to 

the potentially allosteric site (pockets 2 and 5 as ranked by fpocket). 

 

 

 
Figure 19: 4PTE bound to manzamine A. Left: manzamine bound to the ATP-binding site (huge 

cleft in the middle). Right: rear view of the same structure. Near the top of the picture, manza-

mine A is bound to the potentially allosteric site (pockets 2 and 5 as ranked by fpocket). The 

bottom position of the ligand corresponds to pocket ranked as no. 7 in 4PTE. 
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Conclusion 

The results of pocket finding are in accordance with available literature on the topic. The 

pocket which scored by far the best is the ATP-binding site found in the cleft between α and β-

domains of GSK-3β. It is followed by the other two already known binding sites, that of pro-

tein substrate and that of axin which is known to associate with GSK-3β and other proteins 

into a gene transcription regulatory unit. No pockets were detected on the planar side where 

two GSK-3βsubunits contact in crystals except for a small depression forming a part of axin-

binding site. 

The docking experiment confirmed relevance of top-scoring pockets found by fpocket. 

First-ranking pocket had by far the highest score; it corresponds to the ATP-binding site. All 

docked molecules had a decent fit and a high affinity for it and can be considered ATP-

competitive inhibitors (except for ADP which is the natural substrate). The cofactor and pro-

tein substrate sites were also well characterized but hardly any binding interactions in these 

regions were found for the ligands. Instead, the ligands showed a tendency to bind to a large 

pocket which had been confirmed by fpocket and ranked as 2nd and 5th in both proteins. Each 

ranking corresponds to what could be considered one half of a larger pocket. This might prove 

to be a potential allosteric site but this hypothesis would require further essays. 

It is possible that there are other possibly allosteric sites but they haven’t been detected 

with the setup used in the experiment. This may have been caused by the fact that all “probes” 

used for rigid-body scanning were ATP competitors and thus had similar properties. It might 

be worthwhile to try docking a probe with different characteristics in future experiments. 

 

Part of this study’s results was submitted to 8th International Conference on Computational 

Collective Intelligence (ICCCI 2016) which will take place in Halkidiki, Greece, 28th – 30th Sep-

tember 2016. 
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Appendix 

Contents of enclosed DVD-R 

Docking    contains data relevant to docking 

 input structures  contains structures used for docking experimental part 

  4NM0   structures of 4NM0 prepared for docking 

  4PTE   structures of 4PTE prepared for docking 

  Ligands  structures of 12 ligands prepared for docking 

 results_4nm0  output from docking 4NM0 with 12 ligands 

 results_4pte  output from docking 4PTE with 12 ligands 

Images    contains images created for the thesis 

Pockets    contains data for and output from pocket calculation 

 4NM0_monomer  4NM0 input and output for pocket search 

 4PTE_monomer  4PTE input and output for pocket search 

Melikova BP text.pdf  electronic version of the thesis 


